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Previous studies have shown that the auditory cortex can enhance the perception of

behaviorally important sounds in the presence of background noise, but the mechanisms

by which it does this are not yet elucidated. Rapid plasticity of spectrotemporal receptive

fields (STRFs) in the primary (A1) cortical neurons is observed during behavioral tasks that

require discrimination of particular sounds. This rapid task-related change is believed to

be one of the processing strategies utilized by the auditory cortex to selectively attend

to one stream of sound in the presence of mixed sounds. However, the mechanism

by which the brain evokes this rapid plasticity in the auditory cortex remains unclear.

This paper uses a neural network model to investigate how synaptic transmission within

the cortical neuron network can change the receptive fields of individual neurons. A

sound signal was used as input to a model of the cochlea and auditory periphery,

which activated or inhibited integrate-and-fire neuron models to represent networks

in the primary auditory cortex. Each neuron in the network was tuned to a different

frequency. All neurons were interconnected with excitatory or inhibitory synapses of

varying strengths. Action potentials in one of the model neurons were used to calculate

the receptive field using reverse correlation. The results were directly compared to

previously recorded electrophysiological data from ferrets performing behavioral tasks

that require discrimination of particular sounds. The neural network model could

reproduce complex STRFs observed experimentally through optimizing the synaptic

weights in the model. The model predicts that altering synaptic drive between cortical

neurons and/or bottom-up synaptic drive from the cochlear model to the cortical neurons

can account for rapid task-related changes observed experimentally in A1 neurons. By

identifying changes in the synaptic drive during behavioral tasks, the model provides

insights into the neural mechanisms utilized by the auditory cortex to enhance the

perception of behaviorally salient sounds.
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INTRODUCTION

The auditory cortex utilizes a variety of processing strategies to
enhance the perception of behaviorally-meaningful sounds in the
presence of background noise. Rapid plasticity of receptive fields
in primary (A1) cortical neurons is observed during behavioral
tasks that require discrimination of particular sounds (Fritz et al.,
2003, 2005a,b; Elhilali et al., 2004, 2007). This rapid, task-related
change may enhance the ability to selectively attend to one
acoustic feature or to one stream of sound in the presence of
mixed sounds.

An essential property of acoustic signals is their temporal
dynamics. Electrophysiological studies have shown that A1
neurons can encode the temporal structure of acoustic stimuli
(Elhilali et al., 2004). A traditional view of auditory processing
describes how a temporal sequence of sounds is distributed in the
frequency domain along the auditory pathway from the basilar
membrane to the cortex. Therefore, it is important to consider a
sound’s spectral and temporal features together.

The spectrotemporal receptive field (STRF) is a description an
auditory neuron’s input-to-output transformation encompassing
both the spectral and temporal features. The STRFs of A1
neurons exhibit complex patterns that can undergo rapid, task-
related changes (Fritz et al., 2003, 2005b; Elhilali et al., 2007).
Complex patterns are observed, such as an increase in firing
rate in response to increases in power at a certain frequency
while decreasing firing rate in response to increases in power
at an adjacent frequency (Fritz et al., 2005b). Rapid changes
in the STRF are observed in A1 during task performance of
ferrets trained to attend to a tone of any frequency (Fritz et al.,
2003). Attending to a target tone consistently induced facilitative
changes in the STRF at the location of the target tone for a
conditioned avoidance Go-NoGo task, while in contrast, rapidly
induce suppressive STRF changes at the target tone frequency in
positive reinforcement Go-NoGo (David et al., 2012). However,
the neural mechanisms by which cortical neurons dynamically
change their STRFs in a matter of seconds remains unknown.

There have been several previous attempts to model the
auditory cortex to investigate the role it plays in the perception
of important sounds. For example, it has been shown that

changes in STRFs can enhance discrimination between different
sounds using mathematical filters (Mesgarani et al., 2010).
However, using filters or similar macro mathematical processes
(for example, Wrigley and Brown, 2004; Loebel et al., 2007;
Grossberg and Kazerounian, 2011), neglects the fine temporal
information that is encoded in the precise timing of action
potential firing of neurons in the cortex (Elhilali et al., 2004).
Other models that do contain fine temporal information (for
example, Bendor, 2015) have not addressed the challenge of
global auditory perception. Extending previousmodels to include
fine temporal information has the potential to overcome the
limitations of previous studies and allows for an investigation of
the role of timing in the adaptive neural mechanisms utilized by
the brain.

This study develops a neural network model that can produce
realistic STRFs in response to a sound signal. The model
consists of a cochlea model and a neural network model

FIGURE 1 | Schematic diagram of the general model structure. A sound

signal was played into a model of the cochlea. There were 15 models in the

cochlea, each with a different center frequency (CF) evenly spread along the

logarithmic tonotopic axis. Integrate-and-fire neuron models were used to

represent the neural networks in the A1 cortex. The output of the cochlear

model excited or inhibited a single integrate-and-fire neuron model. All neurons

were interconnected (indicated by the green arrows) with excitatory or

inhibitory synapses of varying strengths. The action potentials from one

cortical neuron model were used to calculate the STRF.

representing the A1 cortex. Action potentials in the neural
network model were used to calculate the STRF. Mechanisms by
which cortical neurons can change their STRF were investigated
and directly compared to electrophysiological recordings. This
model can reproduce complex STRFs observed experimentally.
The model shows that synaptic drive between cortical neurons
and/or synaptic drive from the cochlear model to the cortical
neurons can account for rapid task-related changes exhibited by
A1 neurons.

METHODS

A phenomenological neural network model was developed to
investigate mechanisms by which cortical neurons can change
their spatiotemporal receptive fields. Figure 1 shows an overview
of the model structure. A sound signal was sent into a model of
the cochlea. The output of the cochlearmodel excited or inhibited
integrate-and-fire neuron models to represent networks in the
primary auditory cortex (A1). Each neuron in the network was
tuned to a different frequency. All neurons were interconnected
with excitatory or inhibitory synapses of varying strengths.
Action potentials in one of the cortical neuron models was
used to calculate the STRF using reverse correlation, which
could be directly compared to electrophysiological recordings
of real world, experimentally derived STRFs in ferrets (Fritz
et al., 2003). The cortical neuron, from which the STRF was
calculated, was chosen according to best frequency (defined as
the frequency which produced largest spiking response at a given
sound intensity) in the experimentally recorded STRF. A genetic
algorithm was used to optimize the synaptic drive between
neurons to produce STRFs and the behavioral changes in STRFs
that matched experimentally recorded data.

The Model
Sound Signals
Computer-generated sound signals were used to activate the
mathematical model of the cochlea. The sound signals consisted
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of temporally orthogonal ripple combinations (Klein et al., 2000),
called TORCs. The TORCs were synthesized from the general
expression (Klein et al., 2000):

S (t, x) =
∑N

i=1
2aki ,li cos

{

2π
(

ωki t + εlix
)

+ ϕkili

}

, (1)

where N is the number of distinct moving ripples, t is the time
course of the stimuli, x is the bandwidth of the stimuli, ak,l
describes the amplitude, ωk describes ripple velocity, εl describes
the ripple frequency, and ϕk,l describes the phase of the stimulus

components. The particular ripples chosen are parameterized by
the list of indices k =

[

k1, k2, . . . , kN
]

∈ (−∞,∞) and l =
[

l1, l2, . . . , lN
]

∈ (0,∞ ).
To generate a STRF, a set of 30 TORCs were used. The set

of TORCs had identical properties to TORCs used as acoustic
stimuli in electrophysiological recordings. The TORCs had
durations ranging over 1–2 s. Each TORC had a spectral profile
that was the superposition of the envelopes of six ripples. Each
ripple had a sinusoidal spectral profile with peaks spaced between
0 and 1.4 peaks per octave (εl in Equation 1) and the envelope
drifted temporally along the logarithmic tonotopic frequency
axis at a constant velocity ranging from 2–24 to 4–48Hz (ωk in
Equation 1).

Cochlear Model
A model of the cochlea was used to convert the acoustic signal
into neural activity. Fifteen auditory nerve fibers were simulated,
with center frequencies evenly distributed along the logarithmic
axis between 0.5 and 16 kHz. For each nerve, the auditory nerve
model of Carney and colleagues was used (Tan and Carney, 2003;
Zilany et al., 2009, 2014), so it will only be summarized here.
There are two modes of basilar membrane excitation to the inner
hair cell. The two modes are generated by two parallel filters. The
first is a narrow-band chirp filter, which is responsible for low
and moderate level responses. The second is linear, static, and
broadly tuned, which is critical for producing transition regions
and high-level effects. The responses from the two modes of the
basilar membrane excitation are then added and passed through
the inner hair cell low-pass filter followed by the inner hair
cell-auditory nerve synapse model and discharge generator. The
model responses are consistent with a wide range of physiological
data from both normal and impaired ears for stimuli presented at
levels spanning the dynamic range of hearing.

Version 5.2 of the auditory periphery model was used (Zilany
et al., 2009) with modifications and updated simulation options
(Zilany et al., 2014). Cat was used as the species option to
produce good responses in the 12–16 kHz range, whereas the
human option would show a decline in output above 12 kHz.
A medium level of spontaneous activity and a variable noise
type were chosen as these produced more robust responses when
stimulating with TORCs. A normal setting for both inner and
outer hair cell function was used.

Cortical Neuron Model
A standard integrate-and-fire neuron was used of the form,

τm
dv (t)

dt
= (vrest − v (t)) + Isyn (t) ∗Rm∗

(

v (t) − vEI
)

, (2)

TABLE 1 | Numerical values used in the cortical neuron model.

Parameter Value

τm 10 ms

vrest −70 mV

Rm 4 M�

vEI −30mV (excitatory)

−90mV (inhibitory)

vEK −90 mV

gm 2 µ�

τs 2 ms

Sampling rate 0.25 ms

This table shows the numerical values used in the integrate-and-fire neuron model. These
parameters appear in Equations (2, 3).

where v is the membrane potential, vrest is the resting membrane
potential or equilibrium potential of the membrane leak, τm is
the membrane time constant of the neuron, Rm is the membrane
resistance, Isyn is the current resulting from the synaptic input
into the neuron, and vEI is the driving force (or equilibrium
potential) of the synaptic current.

Synaptic input from the Carney model and synaptic input
from other cortical neurons (Figure 1) was modeled by an
injected synaptic current with an alpha time course,

Isyn (t) = h (t) ∗gm
t

τs
e
−t
τs , (3)

where h (t) =

{

0 if t ≤ 0
1 if 0 < t

where t is the time since the synaptic event, gm is the maximum
conductance, and τs is the time constant of the synapse.

The parameters values for Equations (2, 3) are given
in Table 1.

Reverse Autocorrelation of the STRF
The STRF is a description of the auditory system’s input-to-
output transformation. It has the general form,

r (t) =

∫∫

FSTRF (τ , x) ∗S (t − τ , x) dτdx, (4)

where r is a neuron response as a firing rate, FSTRF is the STRF
functional, and S is the stimulus’s dynamic spectrum.

The spectrotemporal reverse-correlation function C, is
obtained by cross-correlating the dynamic spectrum of the
stimulus with the measured response,

C (τ , x) =
1

T

∫ T

0
S (t − τ , x) ∗r (t), (5)

where x is the frequency bands (and denotes the number
of octaves above the lowest frequency). By inserting the
STRF functional (Equation 4) directly into (Equation 5) and
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rearranging the terms, one obtains the spectrotemporal cross-
correlation function,

C (τ , x) =

∫∫

FSTRF
(

τ ′, x′
)∗

8
(

τ − τ ′, x, x′
)

dτ ′dx′ + ε (τ , x), (6)

where ε is the portion of the measure response due to non-linear
and random aspects of the system transformation not described
by the STRF and 8 is given by

8
(

τ − τ ′, x′, x
)

,

∫

S
(

t − τ ′, x′
)

S (t − τ , x) dt. (7)

Here, 8 is a function that, in discrete channel interpretation,
describes the cross-correlation between two channels x and x′

of the stimuli’s dynamic spectrum. Thus, a single channel x of
C is produced by the sum of the convolutions of every channel
x′ of the STRF with the cross-correlation between the channels
x′ and x of the stimulus. However, for both an ideal white noise
dynamic spectrum and for a TORC, this expression reduces to a
relatively simple two-dimensional convolution between the STRF
and a spectrotemporal filter 8(τ , x). For these two special cases,
8 depends only on the channel difference, x - x′, and is given by
the autocorrelation of S.

Optimization Algorithm
A genetic algorithm was used to optimize the synaptic drive
between neurons to produce STRFs and the behavior-induced
changes in STRF that matched experimentally recorded data.
The neural network model contained 15 neurons, so the genetic
algorithm optimized 255 parameters representing 225 synaptic
connections between all 15 neurons, and 30 variables (2 per
neuron) for the input from the cochlear model (15 for the
strength of the input and 15 for the delay in transmission).
All parameters were limited to a range of −5 to 5 and only
integer values were used to reduce the probability of overfitting. A
positive value for the synaptic drive resulted in an excitatory post-
synaptic potential, whereas a negative value for the synaptic drive
resulted in an inhibitory post-synaptic potential. The positive or
negative values of the parameters for the delay in transmission
were added to a baseline value to produce a transmission delay in
the range of 0–50 ms.

The genetic algorithm followed a typical methodology. All
parameters were assigned at random for the initial population of
1,000. The best 40 responses were classified as elite and passed
directly to the next generation. The best 100 responses were used
as parents for the next generation, where 480 were created from
crossing-over parameters from parents and 480 were created
from mutation of individual parents.

To determine the best responses, the STRF estimated from the
action potentials in the cortical neuron network were compared
with an experimentally recorded STRF by the cost function,

c =
∑Nf

i

∑Nt

j

∣

∣

(

MSTRF

(

i, j
)

− ESTRF
(

i, j
))

∣

∣∗sig
(

ESTRF
(

i, j
))

, (8)

where Nf is the number of points along the frequency axis of
the STRF, Nt is the number of points along the time axis of the
STRF,MSTRF is the STRF calculated in the cortical neuron model,

ESTRF is the experimentally recorded STRF, and sig is a function
used to focus the genetic algorithm on the regions of the STRF
that are significantly different from the remainder of the STRF. A
point in the STRF was determined to be significantly different if it
exceeded 3 standard deviations from themean of the whole STRF,

sig(x) =

{

1 if x ≥ 3s.d.from mean(x)
0.1 if x < 3s.d.from mean(x)

(9)

where s.d. is the standard deviation.

Sensitivity Analysis
The genetic algorithmwas used to optimize the 255 parameters in
the mathematical model to reproduce the electrophysiologically
recorded STRF in the model. This was performed for STRFs
electrophysiologically recorded in the passive state and the
behavioral states, where the ferret was actively listening for
the target tone. A comparison between the model parameters
optimized for the passive and behavioral states was performed
by doing a sensitivity analysis on each parameter. The sensitivity
analysis involved sequentially increasing and decreasing each
parameter by one value from the optimal solution and
determining the amount of change to the cost function (see
Equation 8) and normalized over all 255 parameters. This
sensitivity analysis quantified the effect of each parameter change
upon the STRF for a given solution. The optimization by the
genetic algorithm and sensitivity analysis was repeated five times
for the same electrophysiologically recorded STRF.

To understand the changes occurring between the passive and
behavioral states, a network diagram was generated containing
the important parameters highlighted by the sensitivity analysis.
A parameter was determined to be important if it was in the top
two parameters of the sensitivity analysis for either the passive
or behavioral states. Additional parameters were included to view
the flow of information from the sound signal to the neuron from
which the STRF was calculated to understand how the important
parameters would be influencing the STRFs. The additional
parameters included input from the cochlear model to neurons
involved in the important parameters and synaptic connections
between the neurons involved in the important parameters and
the neuron from which the STRF was calculated from. Input
from the cochlear model to the neuron from which the STRF was
calculated was also included.

Experimental Procedures
All experimental procedures were approved by the University
of Maryland Institutional Animal Care and Use Committee
(IACUC). Electrophysiological recordings from the A1 cortex
of adult ferrets were performed with a behavioral paradigm
requiring the ferrets to actively listen for a particular tone. This
experimental procedure has been described in detail elsewhere
(Fritz et al., 2003, 2005a,b), so will only be summarized here.

A stainless-steel head post was surgically implanted onto the
skull and mounted with dental cement to stabilize the head for
neurophysiological recordings. Craniotomies were made over
auditory cortex, allowing microelectrodes to be inserted into A1.
Location was based on stereotaxic coordinates and distinctive A1
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FIGURE 2 | Output at different stages of the model. Examples of the signals

and activity patterns for different components in the model. (A) An example of

one cycle of a TORC sound signal sent into the model of the cochlea. (B) The

mean activity rate in the model of the cochlea with a center frequency of 3 kHz.

(C) Synaptic events that occur in the hair cell-auditory nerve synapse model

and subsequent discharge generator in response to the mean activity rate in

(Continued)

FIGURE 2 | (B). (D) Membrane potential trace from the cortical neuron model

receiving the synaptic events from (C) with a 5ms delay to represent

transmission from the auditory nerve to the cortex. (E) Membrane potential

trace from the cortical neuron model receiving the synaptic events from (C)

with a delay in transmission. This panel differs from (D) because the cortical

neuron model has a small constant drive to produce tonic firing.

neurophysiological characteristics such as latency, receptive field
tuning, and position relative to the cortical tonotopic map.

Experiments were conducted in a sound attenuation chamber.
Ferrets were trained on a tone detection task using a Go-NoGo
conditional avoidance procedure (Klump, 1995; Fritz et al., 2003).
In the passive state, the ferrets were awake and quiescent when
the TORC stimuli were presented. In the behavioral state, ferrets
licked water from a spout while listening to reference stimuli
until they heard a target tone, whereupon the ferret learned to
stop licking for a short period of time (400ms) to avoid a mild
shock. The same sets of TORCs and the same procedures for
calculating the STRF from electrophysiologically recorded spikes
were used in the animal experiments and themathematical model
described above.

RESULTS

A neural network model was developed to reproduce
experimentally observed changes in STRFs of neurons in
the A1 cortex. A sound signal was sent into a model of the
cochlea, which provided input into integrate-and-fire neuron
models to represent neural networks in the A1 cortex (Figure 1).
The action potentials in one of the neuron models was used
to calculate an STRF using reverse correlation, which could be
directly compared to electrophysiological recording in vivo.

Producing Anticipated STRFs
To ensure the overall model structure was producing expected
results, the cortical neural network model was reduced in
complexity by removing synaptic connections between cortical
neurons. Playing a simple chirp as the input sound signal
produced activity in the cochlear model and cortical neuron
model at the expected times (data not shown). Figure 2 shows
an example TORC sound signal for one repetition (Figure 2A)
and the resulting activity in the different stages of the model. The
mean activity in the cochlear model (determined by the inner
hair cell potential) fluctuated with the intensity of the sound
signal (Figure 2B) and the resulting output from the discharge
generator in the cochlear model was dependent on the mean
activity (Figure 2C). Events in the discharge generator resulted in
synaptic potentials in the cortical neuron model that were offset
with a time delay corresponding to the delay in transmission from
the cochlear model to the cortical neuron model (Figure 2D).
When the events in the discharge generator were close enough
together in time, summation of the synaptic potentials in
the cortical neuron model could result in action potentials
(Figure 2D). When investigating complex neural networks, more
robust responses were observed with cortical neurons that had

Frontiers in Computational Neuroscience | www.frontiersin.org 5 May 2019 | Volume 13 | Article 28

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Chambers et al. Computational Neural Model of STRFs

tonic firing of action potentials. Figure 2E shows a cortical
neuron with tonic firing that received the exact same inputs as
the cortical neuron in Figure 2D. The cortical neuron with tonic
firing showed an increase in the action potential firing rate at
times corresponding to the times of high activity in the discharge
generator, as expected (Figure 2E). Therefore, when a TORC
is played into the model, action potentials are observed in the
cortical neurons as expected.

With a sound signal producing expected activity in the
cochlear model and cortical neuron model, an STRF calculated
from the action potentials in the cortical neuron model
also produce expected results. When there were no synaptic
connections between cortical neurons, each neuron produced
a simple STRF with a simple excitatory region (Figure 3A).
Altering the center frequency of tuning in the cochlear model
(from 5 kHz in Figure 3A to 2.5 kHz in Figure 3B) moved the
simple excitatory region to the expected frequency. Furthermore,
switching the connection to inhibitory from the cochlear model
to the cortical neuron model produced an inhibitory region
(Figure 3C). Increasing the delay of transmission from the
cochlear model to the cortical neuron model produced a
time shift in the appearance of the excitatory region in the
STRF (Figure 3D). These results demonstrate that the model is
producing STRFs that accurately represent the model structure
between the cochlear model and the cortical neuron model.

To ensure the cortical neuron network was also influencing
STRF as expected, the cortical neuron network model was
extended to include one synaptic connection from a cortical
neuron receiving input from cochlear model tuned to a different
frequency. This resulted in a second excitatory region (Figure 3F)
or an inhibitory region (Figure 3E) depending on the type of
synaptic connection. The transmission time from one cortical
neuron to another caused a delay in the appearance of the second
region in the STRF (Figures 3E,F). This delay is proportional to
the difference in frequency of tuning in the cochlear model to
represent the tonotopic organization observed in the A1 cortex.

In Figure 3, alternating regions of excitation and inhibition
can be observed in the STRFs. Usually these regions are quite
weak, but sometimes the regions can be strong (for example,
the excitatory region at 3 kHz and 45ms in Figure 3E). These
alternating regions of excitation and inhibition are produced as
a combination of the intrinsic properties of the neuron model
(in particular resetting of the membrane potential after an action
potential and the presence of an after-hyperpolarising potential,
data not shown) and the properties of the TORCs. Reducing
the noise within the model increases the appearance of these
alternating regions, so they are obvious in Figure 3 where the
model was simplified to ensure it was working properly.

Reproducing Experimentally
Observed STRFs
The excitatory and inhibitory regions in the STRFs calculated
from this model of the auditory system can be manipulated
by synaptic connections from other cortical neurons, synaptic
drive from the cochlear model, and delay in transmission from
the cochlear model to the cortical neuron model. Complex

STRFs can be generated using different combinations of
these manipulations. To test if this model can reproduce
experimentally recorded STRFs, a genetic algorithm was used to
optimize the STRF generated from the mathematical model with
an experimentally recorded STRF.

Figure 4 displays the experimentally recorded STRFs and
the STRFs generated from the computer model. We note that
in physiological experiments, under both passive listening and
active behavioral conditions, the same acoustic stimuli (i.e.,
broadband rippled noise combinations or TORCs, and target
tones) were presented in identical order. To focus the genetic
algorithm on important regions of the STRFs, points in the
STRF more than three standard deviations from the mean value
of all points in the STRF were emphasized (see Equations 8
and 9) and these physiologically recorded targets (Figures 4A,E)
were closely matched by the model (Figures 4B,F). Furthermore,
the STRFs electrophysiologically recorded and those generated
from the mathematical model closely matched both the passive
(Figures 4C,D) and the behavioral states (Figures 4G,H). This
demonstrates that the optimization method and parameter
space of the mathematical model enable the mathematical
model to reproduce experimental observations. Repeating the
optimization method with a different seed for the random
number generator produce a different solution, which also closely
matched the experimental observations. For each experimental
observation, repeating the optimization five times produced
five unique solutions (Figure S1), but often similar values of
the cost function were produced over 100 generations of the
genetic algorithm.

The optimal solutions found by the genetic algorithm for
the passive and behavioral states were compared to investigate
the changes that are likely to occur from top-down attentional
control. Since the genetic algorithm was optimizing 255
parameters, a sensitivity analysis was performed to highlight the
parameters that were important in determining the behavior
of the model in relation to the cost function. To account for
the parameters highlighted by the sensitivity analysis due to
chance in the complex multi-dimensional space, the genetic
algorithm and sensitivity analysis were performed five times and
the results averaged (Figure 5). The averaged sensitivity analysis
indicated that three parameters were important in determining
the network structure in the passive state (Figure 5A): (1)
the input strength to the neuron from which the STRF was
recorded, (2) the delay from the cochlea model to the neuron
from which the STRF was recorded, and (3) the strength of
the synaptic connection from the neuron tuned to the same
frequency as the target tone to the neuron from which the
STRF was recorded. Intuitively, these parameters correspond to
the simplest network to generate the excitatory and inhibitory
regions that are significantly different to the remaining parts
of the STRF (Figure 4A). For the behavioral state, the average
sensitivity analysis indicated that only one parameter was
important in determining the network structure (Figure 5B),
corresponding to the input strength to the neuron from which
the STRF is recorded. Therefore, the sensitivity analysis allows
a comparison of the average numerical values between the
passive and behavioral states (Figures 5C,D). In this example,
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FIGURE 3 | Simple STRF manipulations. Examples of the STRFs calculated from action potentials in the cortical neuron model for simple model structures to

demonstrate the model is behaving as expected. (A) The cortical neuron received a simple excitatory connection from the cochlear model tuned with a center

frequency of 5 kHz. (B) The cortical neuron received a simple excitatory connection from the cochlear model tuned with a center frequency of 2.5 kHz. (C) The cortical

neuron received a simple inhibitory connection from the cochlear model tuned with a center frequency of 5 kHz. (D) The cortical neuron received a simple excitatory

connection from the cochlear model tuned with a center frequency of 5 kHz, but the delay in transmission from the cochlea to the cortical neuron was increased from

5 to 55ms. (E) The cortical neuron model contained two neurons, one that received input from the cochlear model tuned to 8 kHz and the second received input

tuned to 3 kHz. The second neuron provided an inhibitory input into the first neuron. The STRF was calculated from the first neuron. (F) The cortical neuron model

contained two neurons, one that received input from the cochlear model tuned to 8 kHz and the second received input tuned to 1.5 kHz. The second neuron provided

an excitatory input into the first neuron. The STRF was calculated from the first neuron.

it can be seen that the behaviorally induced reduction in
the STRF at ∼8 kHz (Figures 4A,D) was reproduced in the
mathematical model by reducing the strength of the inhibitory
synaptic connection from neuron 13 (CF 10 kHz) to neuron 14
(CF 12 kHz) and by reducing the strength of input from the
cochlea model to neuron 13 (CF 10 kHz). The network structures
identified in Figure 5 do display a large amount of variation.
Increasing the number of repetitions from 5 to 10 (see Figure S3)
decreases the variation for some parameters, but increases the
variation for other parameters. This indicates the variation is
due to the genetic algorithm finding unique combinations of
parameters to fit the physiological data.

Reproducing More Experimentally
Observed Changes in STRFs
The same protocol (see section Reproducing Experimentally
Observed STRFs) was used to predict the changes in network
structure for a further nine single cell recordings from the A1
cortex of ferrets. The STRFs, significant components of the
STRFs, sensitivity analyses, and important network parameters
for the passive and behavioral states are provided for all
10 cells in the Supplementary Material (Figure S2). For each
cell recording, the genetic algorithm was able to reproduce a

close match to the experimentally recorded STRF for both the
passive and behavioral states. Running the genetic algorithm
five times for both the passive and behavioral states allowed
sensitivity analyses to highlight important network parameters
that were able to provide an explanation for the changes
observed in the STRFs between passive and behavioral states
(Figure 6 and Figure S2). Figure 6 provides a summary of
four single unit recordings. For the first cell (Figure 6A),
there was a reduction in the inhibitory region at ∼8 kHz
in the behavioral state compared to the passive state. This
was reproduced in the network model by increasing the
excitatory input from the neuron tuned to 12 kHz, which was
producing the excitatory region in the STRF at this location
(Figure 6A). For the second cell (Figure 6B), the inhibitory
region at and below the target tone was converted to an
excitatory region at the target tone during behavior. The
network model reproduced this switch by changing the input
to the neuron at the target tone from inhibitory input to
excitatory input and removing the inhibitory input to the neuron
tuned to a lower frequency (Figure 6B). The third example
(Figure 6C) displayed a complex pattern of inhibitory regions
above and below an excitatory region; during behavior the
lower inhibitory region was abolished. The sensitivity analysis
indicated the important network parameters were determining
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FIGURE 4 | Reproducing experimentally observed STRFs. All the panels on the left-hand side are electrophysiological recordings from the A1 cortex of ferrets. All the

panels on the right-hand side are output from the mathematical model. Identical sound signals were played to the ferrets and into the mathematical model. The

mathematical model contained a network of neurons to represent the A1 cortex. All neurons were interconnected and the synaptic drive between them was optimized

using a genetic algorithm to match the STRF recorded experimentally. (A–D) The passive state where the ferret was not actively listening for a tone. (A,B) Regions of

the STRF that were significantly different (>3 standard deviations) from the mean value of the STRF. The passive target (A) from the physiological recordings was used

in the cost function for the optimization. The passive fit (B) is the result of the genetic algorithm trying to reproduce (A). (C) The STRF electrophysiologically recorded

from a ferret. (D) The STRF calculated from the mathematical model. (E–H) The behavioral state where the ferret was actively detecting a tone. (E,F) Regions of the

STRF that are significantly different (>3 standard deviations) from the mean value of the STRF. The behavioral target (E) was used in the cost function for the

optimization. The behavioral fit (F) is the result of the genetic algorithm trying to reproduce (E). (G) The STRF electrophysiologically recorded from a ferret. (H) The

STRF calculated from the mathematical model.

the excitatory region and the higher frequency inhibitory
region, so these network parameters were maintained between
the passive and behavioral states (Figure 6C). Intuitively, this
makes sense because the excitatory and higher inhibitory
regions are larger than the lower inhibitory region, so they
would have a larger influence on the cost function. In the
fourth example (Figure 6D), the inhibitory region at ∼1.5 kHz
was abolished in the behavioral state. The network model
reproduced this removal of the inhibitory region by increasing
the strength of the excitatory region (Figure 6D), which reduces
themagnitude and significance of the inhibitory connection from
the lower frequency.

DISCUSSION

Temporal dynamics are a key component of acoustic signals
and neurons in the primary auditory cortex can detect the
temporal structure of acoustic signals (Elhilali et al., 2004).
The cochlea and auditory pathway distribute sounds in the
frequency domain from the cochlear basilar membrane to
the auditory cortex. Therefore, it is important to consider a
sound’s spectral and temporal features together. Spectrotemporal
receptive fields (STRFs) combine both the spectral and temporal
features of the auditory system. Previous studies have shown
that the STRFs of A1 neurons display rapid plasticity during
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FIGURE 5 | Changes in the network structure to reproduce experimental observations. The mathematical model can reproduce physiological recordings from the

passive and behavioral states (Figure 4). To understand the changes in the network structure, the optimization was repeated five times and a sensitivity analysis was

performed for each solution. (A,B) The average sensitivity analysis of the five solutions for both the passive (A) and behavioral (B) states. Both (A,B) contain two

matrices, one 15-by-15 matrix and one 2-by-15 matrix. The 15-by-15 matrix represents the synaptic connections between all 15 neurons, with the y-axis representing

the neuron number providing the synaptic output and the x-axis representing the neuron number receiving the synaptic. The 2-by-15 matrix represents the input from

the cochlea model to the cortical neuron network, where Istr is the strength of the synaptic input and Itm is the length of the time delay for the synaptic input. The

frequency axis on the far right hand side indicates the center frequency tuning for each neuron number. For clarity, if the sensitivity analyses were not in the top two

values for either the passive or behavioral state, the value is not shown. (C,D) The network schematic diagram indicating the average values of the network

parameters for the passive (C) and behavioral (D) states. Solid lines indicate that parameter had a high sensitivity (the two most sensitive parameters over five

repetitions of the optimization) for that state, whereas dashed lines indicate the parameter was sensitive for the other state or were required to follow the network path

from the sound signal to the neuron from which the STRF was calculated. Red lines indicate excitatory synaptic connections, blue lines indicate inhibitory synaptic

connections, and the thicknesses of the lines indicate the strength of the synaptic connections. The numerical values presented for each line indicate the mean ±

standard deviation for the five repetitions of the optimization.

behavioral tasks requiring discrimination of particular sounds
(Fritz et al., 2003, 2005b; Elhilali et al., 2007). However, the
neural mechanisms underlying changes in a neuron’s STRFs are
yet to be elucidated. In this study, a neural network model was
developed to investigate mechanisms by which cortical neurons
can change their receptive fields. This model can reproduce
complex STRFs observed experimentally and demonstrates that
altering the synaptic drive between cortical neurons and/or
synaptic drive from the cochlear model to cortical neurons
can account for the rapid-task related changes displayed by
A1 neurons.

The mathematical model presented here comprised a cochlear
model and a cortical neuron network. A sound signal was sent
into a model of the cochlea. The cochlear model consisted
of 15 auditory nerve fiber models, previously developed and
published by Carney and colleagues (Tan and Carney, 2003;
Zilany et al., 2009, 2014). Each of the auditory nerve models had a
different center frequency evenly distributed along a logarithmic-
tonotopic axis. The synaptic output from the cochlear model
excited or inhibited one integrate-and-fire neuron model. There
were 15 integrate-and-fire neuron models to represent networks
in the A1 cortex. All neurons were interconnected with excitatory
or inhibitory synapses of varying strengths. Action potentials
of one of the cortical neuron models was used to calculate

the STRF using reverse correlation, which could be directly
compared to electrophysiological recordings of the STRF a ferret
(Fritz et al., 2003). A genetic algorithm was used to optimize
the synaptic drive between neurons to produce STRFs and
the behavioral changes in STRFs that matched experimentally
recorded data.

The results demonstrate that this simple phenomenological
model can produce complex STRFs similar to those observed
experimentally. The genetic algorithm was able to optimize
the synaptic drive in the cortical neural network to ensure a
close match between an electrophysiologically recorded STRF
and the STRF calculated in the mathematical model. A genetic
algorithm was used because there were a large number of
variables, the cost function relating the fitting the STRFs to
experimental data was not a smooth function and as a method
of avoid local optimal solutions in a neural network with a large
number of possible synaptic pathways. This optimization worked
for both the passive and behavioral states, thereby allowing a
comparison between network parameters for both states. Since
the genetic algorithm was optimizing 255 parameters and the
network behavior could be highly influenced by combinations
of multiple parameters, the genetic algorithm optimization and
sensitivity analyses were repeated five times and averaged.
For each repetition, the optimization algorithm produced a
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FIGURE 6 | STRF and changes in the network structure for a further 4 single unit recordings. Physiological recordings were used to optimize the synaptic drive in a

neural network model and sensitivity analyses of network structures were performed to highlight important parameters of four single unit recordings (A–D). Within

each panel, the first two columns display the regions of the STRF that were significantly different (>3 standard deviations) from the mean value of the STRF. The first

column is for the passive state; the second column is the behavioral state. The first row of STRFs is electrophysiological recordings, while the second row is the

outputs from the model. The third column displays the important network parameters for the passive and behavioral states. In the network schematic diagrams, solid

lines indicate that parameters have a high sensitivity, whereas dashed lines indicate the parameter was not sensitive but is provided for comparison between the two

network structures or to follow the pathway from sound signal to the neuron from which the STRF is calculated. Red lines indicate excitatory synaptic connections,

blue lines indicate inhibitory synaptic connections, and the thicknesses of the lines indicate the strengths of the synaptic connections. The numerical values presented

for each line indicate the mean ± standard deviation for the five repetitions of the optimization.

unique set of parameters that produced an STRF similar to
those observed experimentally. While the network parameters
displayed variations between repetitions, the sensitivity analysis
highlighted network parameters whose influence over the
network behavior was preserved multiple times. The sensitivity
analysis was also important for comparisons of parameter values

between the passive and behavioral states where the numerical
value showed little change. Traditional statistical methods would
deem that no change has occurred, suggesting the parameter is
not important in the switch from passive to behavioral states.
However, the sensitivity analysis could show that a parameter
was indeed important in determining the properties of the neural
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network for one or both states, even if there was no change
in that parameter. Therefore, this process is able to predict the
important network parameters and their changes, or no change,
in the passive and behavioral states.

This work has demonstrated that changes observed in STRF
of neurons in the A1 cortex for behavioral tasks can be
accounted for by changes in the synaptic drive between cortical
neurons and/or synaptic drive from the cochlear model to the
cortical neurons. The changes in the STRF between passive and
behavioral states can occur with seconds to minutes (Fritz et al.,
2003; Lu et al., 2017) and can dissipate rapidly or remain stable for
a long time (Fritz et al., 2003). There are several mechanisms that
can potentially change the synaptic drive between two neurons
with a very rapid time course (such as synaptic potentials,
spike-timing dependent plasticity (STDP), changes in dendritic
spine shape as well as activity dependent depression) or in a
manner that remains stable for an extended period of time
(such as synaptogenesis, or long-term changes mediated by
intracellular second messenger systems). A major advantage of
producing a spiking neuron model to reproduce experimentally
observed changes in the STRF is that these mechanisms for
rapid changes or longer stability can be readily investigated by
evoking the appropriate mechanisms within a single neuron.
These investigations will require further challenging studies, such
as intracellular recordings from individual A1 neurons in a
behaving animal.

In this study, the experimental paradigm produced a
positive change in the STRF at the target tone, which has
been previously reported (Fritz et al., 2003, 2005a,b; Elhilali
et al., 2004, 2007). In individual examples reproduced in
this mathematical model, the model predicted the increased
excitation in the behavioral STRF at the target tone could arise
from reduced inhibitory output from the neuron at the target
tone, increased excitatory synaptic drive from a region different
to the target tone (which can reduce the influence of inhibition
from the target tone; e.g., cell 10, Figure S2), or by reduced
synaptic drive from the cochlear model to the neuron at the
target tone. These different mechanisms could potentially be
distinguished by further experimental studies. For example,
distinguishing between increased excitatory drive and decreased
inhibitory drive could be accomplished by pharmacological
intervention or by directly recording neuronal membrane
potential. Similarly, a bottom-up change in synaptic drive from
the cochlear model to the cortical neurons could be distinguished
from cortical neuron to cortical neuron interactions through
localized pharmacological agonists or blockers for relevant
neurotransmitters or neuromodulators. Such experiments
require technical advances for pharmacological, optogenetic
manipulations, and intracellular or patch-clamp recordings
from A1 neurons in animal engaged in behavioral tasks such
as the ones used in this study. The increased synaptic drive
from the cochlear model could be measured experimentally by
examining whether there was enhanced thalamic input to A1
neurons. Increase in thalamic drive to auditory cortex could
arise from a variety of mechanisms, including increased thalamic
firing or disinhibition of inhibitory circuits in A1 (for example,
Letzkus et al., 2011).

The current model predicts that rapid task-related changes
in A1 STRFs occur at the synaptic level by changing the
weights of task-relevant synaptic inputs to A1 neurons;
however, the mechanisms for this plasticity are not yet known.
Neuroanatomical studies have shown the existence of diffuse
and widespread cholinergic projections (that modify synaptic
behavior) from the Nucleus Basalis to A1 that are likely to play
an important role in neuroplasticity (Goard and Dan, 2009;
Leach et al., 2013; Pinto et al., 2013; Bajo et al., 2014; Zhang
et al., 2014, 2016). This projection pattern would suggest that
cholinergic modulation during attentional tasks should produce
uniform changes across the entire A1 cortex. However, our
experimental results demonstrate highly selective attentional
effects, and in our model, the pattern of network changes
between passive and behavioral states was variable and complex,
involving increases, no change, and/or decreases in synaptic
drive at different synapses. The solutions generated by the model
predict that the effect of top-down control from higher executive
brain regions via cholinergic activation from Nucleus Basalis can
influence the synaptic drive in A1 cortex in a specific fashion,
perhaps by selectively modulating A1 synapses and neurons
“tagged” by recent “target stimulus” activation. A previous model
of cholinergic modulation of A1 suggests differential effects on
the receptive fields of cortical neurons, depending on cholinergic
receptors and site of action (thalamocortical or intracortical)
(Soto et al., 2006). Another possibility is that there is focal
top-down control from higher brain regions that target the
task-relevant subset of synaptic sites in A1 cortex. Our spiking
neuron network model of the auditory receptive fields provides
a platform to test these and other possible mechanisms of top-
down control during behavioral tasks (Zhang et al., 2014, 2016).

In addition to using the Carney and colleagues model for
the auditory nerve fibers (Tan and Carney, 2003; Zilany et al.,
2009, 2014), we also tested the early auditory processing model of
Shamma and colleagues (Chi et al., 2005) and gamma-tone filter
banks (Johannesma, 1972). All three types of models produced
qualitatively similar results. This indicates that the important
process performed by the cochlea model in this work is band-
pass filtering to break up the sound signal into the frequency
components. Such band-pass filtering is present in the three
cochlear models tested here. Other features present in some of
these cochlear models and not others (for example, synaptic
adaptation in the Carney model or lateral inhibition in the
Shammamodel) do not have a significant effect on the qualitative
results observed in the model presented in this study. The
model of Carney and colleagues had the advantage of better
responses in the higher frequency ranges (12–16 kHz) used in
this mathematical model. The better responses observed in these
ranges may have been due to the high frequency range of
the cat, whereas other cochlear models based on humans have
responses that start to drop off at frequencies above 12 kHz,
as did the model of Carney and colleagues when using the
human parameters. The model of Carney and colleagues also
had the advantage of providing a discrete synaptic drive into
the integrate-and-fire neuron model compared to a continuous
output provided by other cochlear models. A discrete synaptic
drive is a more realistic response, but does create an additional
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source of noise in the system because the amplitudes are driving a
Poisson process.

The model presented here is missing many steps from the
cochlear model to the neural network model in the A1 cortex. As
stated in the previous paragraph, qualitatively similar results can
be observed using the cochlear model of Shamma and colleagues
(Chi et al., 2005), which incorporates a limited amount of early
processing such as lateral inhibition. However, obviously, given
the multiple neuroanatomical stages for auditory information
processing between cochlea and cortex (including cochlear
nucleus, laminar lemniscus, inferior colliculus, thalamus), our
model is oversimplified. Nevertheless, these results indicate that
it is not critical to include early processing strategies to reproduce
the electrophysiologically recorded STRFs. However, this model
was tested against neurons that showed a change in their STRF
during behavioral tasks and ∼70% of neurons show a change in
their STRF during behavioral tasks (Fritz et al., 2003). It is also
possible that initializing an A1 cortical neuron network where
all neurons are interconnected allows the optimization to include
early auditory processing as well as A1 cortical processing. Our
results indicate that it is not necessary to incorporate early
auditory processing to reproduce the experimental observations
in the model presented here.

Furthermore, our model included two variables for each
neuron to describe the strength and timing of the connections
from the cochlear to the auditory cortex. These variables
were included in the optimization and the sensitivity analyses
indicated these connections from the cochlear to the auditory
cortex are significant at times. Therefore, bottom-up information
from band-pass filtering can be important in this model of
STRFs, but the inclusion of exclusion of early processing
strategies does not have a significant effect in this model
of STRFs.

In conclusion, this study has produced a mathematical
model that can replicate complex STRFs observed in
response to the same sound signals. The model demonstrates
that synaptic drive between cortical neurons can account
for rapid task-related changes exhibited by A1 neurons.

These results lay a foundation for future extensions and
elaborations of this model to include top-down control from
higher brain regions, and a more detailed investigation
into the multiple cellular mechanisms and neuronal
receptive field plasticity utilized by the brain during sound
discrimination tasks.
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