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Abstract: The traditional inventory policies have been developed for constant 
demand processes. In reality, demand is not always stable; it might have an 
increasing pattern. In this paper, a forward with backward inventory policy 
algorithm is developed to determine the operational parameters of an inventory 
system with a nonlinear increasing demand rate, shortage backorders and a 
finite planning horizon. Numerical experiments are also conducted to compare 
the results with the existing techniques and to illustrate the applicability of the 
proposed technique. 

Keywords: inventory; nonlinear increasing demand pattern; shortage 
backorders; forward with backward inventory policy algorithm. 
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1 Introduction 

Zhou et al. (2004) mentioned that inventory models considering shortage backorders can 
be classified into two categories. They are: 

1 Inventory followed by shortage (IFS) where each cycle starts with replenishment and 
end with shortage. 

2 Shortage followed by inventory (SFI) where each cycle starts with shortage before 
replenishment arrives. 

Before, Teng et al. (1997) investigated two categories of inventory model above by 
taking into consideration whether shortages are allowed or not allowed in the last cycle of 
the planning horizon. 
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Complexity of the development of inventory model arises when demand is not stable. 
To the best of author’s knowledge, initial research on IFS policy for shortage backorders 
case with positive linear trend in demand was done by Deb and Chaudhuri (1987) who 
developed a heuristic method by assuming that the shortage period in each cycle is a 
constant fraction of the length of the cycle. Later, Dave (1989a) corrected and tested the 
work of Deb and Chauduri (1987) by using Donaldson’s (1977) example and the result 
from the corrected method was better than that of Silver (1979) and even close to the 
optimal solution provided by Dave (1989b). Other optimal solution was provided by 
Murdeshwar (1988) and Hariga (1994). It is noted that while Deb and Chauduri (1987), 
Dave (1989b) and Murdeshwar (1988) developed IFS policies for the case where 
shortages are not allowed in the last cycle, Hariga (1994) developed IFS policy for the 
case where shortages are allowed in the last cycle. 

Other research on inventory policy for linear demand considering shortage backorder 
was conducted by Goyal et al. (1996) who concluded through empirical experiments that 
SFI policy often perform better than IFS policy. Further work was done by Teng et al. 
(1997) who compared among four inventory models, i.e. 

1 IFS policy without shortage allowance in the last cycle 

2 IFS policy with shortage allowance in the last cycle 

3 SFI policy without shortage allowance in the last cycle 

4 SFI policy with shortage allowance in the last cycle. 

From their results Teng et al. (1997) concluded that model 4 is the best among the four 
investigated models, which provides the lowest total cost. Other research was done by 
Goyal and Giri (2000) who stated that the comparisons conducted by Teng et al. (1997) 
were invalid. They improved the method to make valid comparisons among the four 
models and came up with the conclusion that when inventory starts with zero demand 
rates, model 3 will provide the lowest cost, while if inventory starts with positive demand 
rate, model 4 is the best. It should be noted that, when model 4 is employed, there exist 
shortages in the last replenishment cycle, and this means that total demands of the whole 
planning horizon will not be met. 

In reality, demand is not always linear increasing; it may have a nonlinear increasing 
pattern. Development of IFS policy for nonlinear increasing demand with shortage 
backorders case was done by Hariga (1994), who developed an exact solution procedure 
and also Astanti and Luong (2009) who developed the heuristic technique based on 
consecutive method. 

For SFI policy with nonlinear increasing demand pattern and inventory starts with 
positive demand rate, Yang et al. (2002) proposed a forward recursive algorithm for the 
case when shortages are allowed in the last replenishment cycle. For this case, if 
shortages are assumed to be completely backlogged, an additional replenishment at the 
end of planning horizon should be taken into consideration to ensure that total demands is 
fulfilled. The additional replenishment will affect the total cost function and the optimal 
solution should be revised. However, this fact has not been discussed in the research of 
Yang et al. (2002). 

A recent research for nonlinear increasing demand considering shortage backorders 
where inventory starts with zero demand rate, was also conducted by Yang (2006) who 
developed a backward recursive algorithm, compared among the four models 



   

 

   

   
 

   

   

 

   

    A forward with backward inventory policy algorithm 495    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

investigated by Teng et al. (1997), and came up with the conclusion that model 4 always 
provides the lowest total cost. It is noted that this conclusion is contrary to the conclusion 
of Goyal and Giri (2000) for linear increasing demand case, which stated that, when 
inventory starts with zero demand rate, model 3 will provide a better cost performance.  

Other researches on inventory policy problem for nonlinear increasing demand rate 
were conducted by considering more characteristics of inventory policy model in to the 
model such as deterioration rate, partial backlog and time value of money. However, the 
solution methodology are developed under the assumption of the very specific nonlinear 
increasing demand pattern such as quadratic demand pattern (Panda et al., 2009a, 2009b; 
Sarkar et al. 2010; Sanni and Chukwu, 2016; Vandana and Sharma, 2016), polynomial 
demand pattern (Bai and Kendall, 2008; Lukas and Hofman, 2016), exponential demand 
pattern (Wu, 2002), and ramp-type demand pattern (Kawakatsu, 2011; Manna and 
Chiang 2010; Roy and Chaudhuri 2011; Valliathal and Uthayakumar, 2016). Astanti and 
Luong (2014) developed a repetitive forward rolling technique for determining inventory 
policy for nonlinear increasing demand pattern and considering shortage. 

From above literature reviews, it can be seen that past researches conducted for 
finding exact solution for the case of nonlinear increasing demand considering shortage 
backorders have not ensured yet that total demand over a pre-established planning 
horizon will always be fulfilled (Hariga, 1994). In addition, the exact solution 
methodologies were developed for very specific nonlinear demand pattern. The research 
presented in this paper therefore focuses on the development of an inventory policy for 
more general nonlinear increasing demand pattern (i.e., any log-concave function) and 
shortage backorders case in such a way that the total demand over a pre-established 
planning horizon can always be met. By working on more general demand pattern, it is 
expected that the result of this research can be applied to solve problems with various 
nonlinear demand pattern that may appear in practical situation including some patterns 
that have been individually discussed in past research, i.e., quadratic, polynomial, 
exponential, and ramp-type demand patterns. 

In this research, a forward with backward inventory algorithm is proposed where the 
proposed algorithm consist of two steps. The first step is a procedure to help determine 
the replenishment times and intermediate shortage starting point simultaneously for two 
consecutive cycles in the planning horizon is proposed. Then, the proposed technique 
from the first step will be incorporated into a forward with backward rolling procedure 
for every two consecutive cycles in the planning horizon to help determine all 
replenishment times and shortage starting points in such a way that the total inventory 
cost will be gradually reduced until no improvement can be realized. 

The remaining parts of this paper are organized as follows. Section 2 presents the 
mathematical model in which the expression of total inventory cost will be derived. In 
Section 3, the proposed technique to find the two replenishment times and the 
intermediate shortage starting point for any two consecutive cycles in the planning 
horizon will be derived, followed by the development of the forward with backward 
rolling procedure in Section 4. Numerical experiments to illustrate the applicability of the 
proposed forward technique are then presented in Section 5. Sensitivity analysis on the 
effect of the predefined number of cycles will be conducted in Section 6. And then, some 
concluding remarks will be discussed in Section 7. 
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2 Mathematical model 

The following notation will be used throughout the paper: 

 H is the length of planning horizon under consideration 

 f(t) is the demand rate at time t, which is assumed to be an increasing log-concave 
function 

 c1 is the ordering cost per order 

 c2 is the holding cost per unit per unit time 

 c3 is the shortage cost per unit per unit time  

 n is the number of replenishment cycles in the planning horizon 

 ti is the ith replenishment time (i = 1, 2, …, n) 

 si is the ith shortage starting point (i = 1, 2, …, n, n + 1), which is also the starting 
point of the ith cycle [si, si+1], except that sn+1 = H 

 I(t) is the inventory level at time t, which should be evaluated after the replenishment 
arrives at time t = ti in the ith cycle [si, si+1]. 

The behavior of the inventory level function is illustrated in Figure 1. For the 
development of the mathematical model, the following assumptions are also used: 

a Replenishment orders are made only at time ti (i = 1, 2, …, n). 

b Lead time is negligible, i.e., replenishment is instantaneous 

c Shortages are permitted at the beginning of each cycle but no shortages are permitted 
at the end of planning horizon (i.e., sn+1 = H) 

Figure 1 Inventory level over the whole planning horizon 

 

From the above assumptions, the expression of total inventory cost function, which 
includes ordering cost, holding cost, and shortage cost; of the inventory system during a 
planning horizon H  when n orders are placed is expressed as follows: 

1 2 3
1 1

, ,
n n

i i i i
i i

TC n s t nc c I c S  (1) 
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in which 

 Ii is the cumulative holding inventory during cycle i 

 Si is the cumulative shortage during cycle i. 

The expressions of cumulative holding inventory Ii and cumulative shortage Si for each 
cycle i from si to si+1 will be derived in Sections 2.1 and 2.2 below: 

2.1 Cumulative holding inventory Ii 

If F(t) denotes the cumulative demand from time 0 to time t then 

0

( ) ( )
t

F t f t dt  

The inventory level at time t  [ti, si+1] in cycle i can be expressed as: 

1

1( ) ( )
is

i i

t

I t f τ dτ t t s  

Hence, the cumulative holding inventory Ii in cycle i can be determined as: 

1 1 1

( )  = ( )
i i i

i i

s s s

i

t t t

I I t dt f τ dτdt  

1

1 1 ( )
i

i

s

i i i i

t

I s t F s F t dt  (2) 

2.2 Cumulative shortage Si 

The shortage level at time t [si, ti] in cycle i can be expressed as: 

( ) ( )
i

t

i i

s

S t f τ dτ s t t  

Hence, the cumulative shortage Si in cycle i (i = 1, 2, …, n) can be determined as: 

( ) ( )
i i

i i i

t t t

i

s s s

S S t dt f τ dτdt  

( )
i

i

t

i i i i

s

S s t F s F t dt  (3) 
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From equations (2) and (3), the expression of the total inventory cost can be defined as 
follows: 

1

1 2 1 1
1

3
1

, , ( )

( ) )

i

i

i

i

sn

i i i i i
i t

tn

i i i
i s

TC n s t nc c s t F s F t dt

c s t F s F t dt

 (4) 

3 Proposed technique to determine replenishment times and shortage 
starting point for two consecutive cycles  

Consider two consecutive cycles i and (i + 1) of the planning horizon in which si and si+2 
are fixed. The technique proposed in this section is developed to help determine the two 
replenishment times ti, ti+1 and the intermediate shortage starting point si+1 so as to 
minimize total inventory cost of the two cycles (see Figure 2 for the illustration). The 
total inventory cost of the two consecutive cycles started with cycle i, denoted by TC2i, is 
determined as follows. 
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2 2 1 2
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3 1 1 1
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i i i i
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i i i
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t

i i i

s

t

i i i

s

TC c c s t F s F t dt

c s t F s F t dt

c s t F s F t dt

c s t F s F t dt

 (5) 

Figure 2 Inventory levels of the two consecutive cycles 
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The optimal values of ti, ti+1 and si+1 (if exist) are the solutions of the following set of 
equations: 

1 1

2 2 20, 0, and 0i i i

i i i

TC TC TC
t t s

 

or equivalently, 

2 3 2 1 3 0i i ic c F t c F s c F s  (6) 

2 3 1 2 2 3 1 0i i ic c F t c F s c F s  (7) 

2 3 1 3 1 2 0i i ic c s c t c t  (8) 

or 

2 1 3

2 3

i i
i

c F s c F sF t
c c

 (9) 

2 2 3 1
1

2 3

i i
i

c F s c F sF t
c c

 (10) 

2 3 1
1

2 3

i i
i

c t c ts
c c

 (11) 

The unique existence of the solution * * *
1 1, ,i i it t s  of the set of equations (9), (10), and 

(11) can be confirmed through the following iterative procedure: 

a In the first iteration, assign si to be the starting value of si+1: (0)
1 ;iis s  then  

 From (9), (0)
it  can be found 

 From (10), (0)
1it  can be determined which is a value that satisfy the condition: 

(0) (0)
21 1i ii is s t s  

b In the next iteration, (1)
1is  will be determined from equation (11) based on (0)

it  and 
(0)

1 ;it  then (1)
it  and (1)

1it  will be determined from equations (9) and (10) based on  (1)
1.is  

It is noted that (1) (0)
1 1i is s  and hence, (1) (0)

i it t  and (1) (0)
1 1 .i it t  

The above procedure will be performed until the series ( )
1

k
is  converges. The 

convergence of the series ( )
1

k
is  can be ensured due to the fact that ( )

1
k

is  is increasing 
and has an upper bound of si+2. From the procedure, it can be seen that the set of 
equations (9), (10), (11) has unique solution * * *

1 1, and .i i it t s  
In brief, the following step-by-step procedure can be employed to determine 

* * *
1 1, , ;i i it t s  
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Step 0 k = 0; assign (0)
1 iis s  

Step 1 

a Determine ( 1)k
it  and ( 1)

1
k

it  from equations (9) and (10) by using bisection 
method. 

b Determine ( 1)
1

k
is  from ( 1)k

it  and ( 1)
1

k
it  using equation (11). 

c Check if ( 1) ( )
1 1

k k
i is s ε  then update 1,k k  go back to step 1a. 

Otherwise, stop.  The current values ( 1) ( 1) ( 1)
1 1, ,k k k

i i it t s  will be recorded as the 
solution for * * *

1 1, , and .i i it t s  

In the next paragraphs, the unique solution * * *
1 1, ,i i it t s  of (9), (10), (11) determined by 

the above procedure is optimal will be proven by investigating the Hessian matrix of the 
total cost function TC2i and proving that the Hessian matrix is positive definite at 

* * *
1 1, , .i i it t s  

It is noted that the Hessian matrix of TC2i can be expressed as: 

2 2 2

2
1 1

2 2 2

2
1 1 11

2 2 2

2
1 1 1 1

2 2 2

2 2 2

2 2 2

i i i

i i i ii

i i i

i i i ii

i i i

i i i i i

TC TC TC
t t t t s

TC TC TCJ
t t t t s
TC TC TC

s t s t s

 

Consider the following determinants: 
2 2 2

22 2
1 1

22 2 2 2
1

1 2 32 22 2
1 1 11

2 2 2 2
1 1

2
1 1 1 1

2 2 2
2 2

2 2 2 2
2 2

2 2 2

i i i

i i i iii i

i iii i i i

i i i ii ii i

i i i i i i

i i i i i

TC TC TC
t t t stTC TC

t ttTC TC TC TC
J J J

t t t st tTC TC
t t t TC TC TC

s t s t s

 

In order to prove that the Hessian matrix J is positive definite at * * *
1 1, ,i i it t s  it is 

sufficient to prove that J1, J2, J3 are positive at * * *
1 1, ,i i it t s  [see Rao (2009)]. In fact, 

* * * * * *
1 1 1 1

2
*

1 2 32, , , ,

2
0

i i i i i i

i
it t s t t s

i

TC
J c c f t

t
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* * *
1 1

* * *
1 1

2 2

2
1

2 2 2, ,

2
, ,1 1

*
2 3

* * * *
2 3 1 2 3 1 1

*
2 3 1

2 2

2 2

0

0

i i i

i i i

i i

i ii
t t s

i i

t t si i i

i

i i i i

i

TC TC
t tt

J
TC TC
t t t

c c f t

c c s c t c t f s

c c f s

 

It is noted that at * * *
1 1, , ,i i it t s  we have * * *

2 3 1 2 3 1 0i i ic c s c t c t  [see equation(8)]. 
Hence, 

* * *
1 1

*
22 3 * *

2 2 3 1, , *
2 3 1

0
0

0i i i

i
i it t s

i

c c f t
J c c f t f s

c c f s
 

* * *
1 1

2 2 2

2
1 1

2 2 2

3 2, ,
1 1 11

2 2 2

* * *2
1 11 1 1 1

* *
2 3 2 1

2

2 2 2

2 2 2

2 2 2
, ,

0

0

i i i

i i i

i i i ii

i i i
t t s

i i i ii

i i i

i i ii i i i i

i i

TC TC TC
t t t st

TC TC TC
J

t t t st

TC TC TC
t t ss t s t s

c c f t c f s

c c * *
3 1 3 1

* * *
2 1 3 1 2 3 1

22* * * 2 *
2 3 2 3 1 1 3 1

* * *
2 1 2 2 3 1 1

i i

i i i

i i i i

i i i

f t c f s

c f s c f s c c f s

c c f t c c f t f s c f s

c f s c c c f t f s

 (12) 

In order to prove that * * *
1 1

3 , ,
0

i i it t s
J  it will be derived that 

22 * * 2 * * *
2 3 1 1 3 1 2 2 3 1 1i i i i ic c f t f s c f s c c c f t f s  (13) 

and 

* *
2 3 2 1i ic c f t c f s  (14) 

First, it is noted that the inequality (13) is equivalent to 

* * 2 * * *
2 3 1 1 3 1 1 1 0i i i i ic c f t f s c f s f t f s  

which holds true due to the facts that * *
1 1i it s  and f(.) is an increasing function. 
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Second, inequality (14) can be derived based on the assumption that the demand rate 
function f(.) is an increasing log-concave function (see Appendix). 

From inequalities (13) and (14), it can be easily seen that * * *1 13 , ,i i it t sJ  is also 

positive. This completes the proof that the unique solution * * *
1 1, ,i i it t s  of (9), (10), (11) 

is optimal. 

4 Forward with backward rolling technique 

In this section, a forward with backward rolling technique will be proposed to help adjust 
the predefined replenishment times ti’s (i = 1, 2, …, n) and shortage starting points si’s  
(i = 2, …, n) for the planning horizon of length H so that the total inventory cost can be 
gradually reduced.  The proposed procedure is as follows: 

Step 1 Divide the planning horizon of length H into n equal cycles in which cycle i 
goes from si to si+1 (i = 1,2,…,n; s1 = 0; sn+1 = H). Assign a large value for the 
total cost function TC = Inf. 

Step 2 
a Forward move 

1 Set i = 1; consider two consecutive cycle i and i + 1; apply the 
procedure discussed in Section 3 to determine the optimal solution {ti, 
ti+1, Si+1} 1 1, ,i i it t s  of the set of equations (9), (10), and (11). 

 Record the value of ti and update the value of si+1 by the newly found 
value. Go to step 2.a.2. 

2 Update i = i + 1. If i < n, go back to step 2.a.1. Otherwise, record also 
the value of ti+1 found in the last iteration and go to step 2.a.3. 

3 Determine the total cost TC and check if the total cost function has 
been improved (i.e., reduced). If yes, go to step 2b.  If no, stop the 
iterative procedure. 

b Backward move 
1 Set I = n – 1; consider two consecutive cycle i and i + 1; apply the 

procedure discussed in section 3 to determine the optimal solution  
{ti, ti+1, si+1} of the set of equations (9), (10), and (11). 

 Record the value of ti+1 and update the value of ai+1 by the newly found 
value. Go to step 2.b.2. 

2 Update i = i – 1. If i > 0, go back to step 2.b.1. Otherwise, record also 
the value of ti found in the last iteration and go to step 2.b.3. 

3 Determine the total cost TC and check if the total cost function has 
been improved (i.e., reduced).  If yes, go to step 2a. If no, stop the 
iterative procedure. 

The forward with backward rolling procedures discussed above are illustrated in  
Figures 3(a) and 3(b). 
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Figure 3 (a) Forward rolling procedure (b) Backward rolling procedure 

 
(a) 

 
(b) 
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5 Numerical experiments 

In this section, numerical experiments are conducted to illustrate the applicability of the 
proposed method.  Three examples will be considered here. 

5.1 Example 1 (Yang, 2006) 

Consider the demand function of the form: f(t) = btu with u = 2, b = 900. The other 
parameters are set as follows: H = 1, c1 = 4.5, c2 = 1, c3 = 3.5. 

The number of cycles n used in this sample problem is determined based on the 
formula developed by Teng (1996) for the case of linear increasing demand, where 

1/2
2 3 1 2 3rounded integer of ( ) / 2 5n c c HF H c c c  

Sensitivity analysis can be conducted later to find the appropriate value of n. The  
step-by-step procedure to determine ti (i = 1, 2, …, n) and si (i = 2, …, n) is presented 
below: 

Step 0 Determine the initial values of si (i = 1, 2, …, n): For s1 = 0, s2 = 0.2, s3 = 0.4,  
s4 = 0.6, s5 = 0.8, s6 = H = 1.0, set TC = Inf. 

Step 1 Forward move 
 Iteration 1: consider cycles 1 and 2 which goes from s1 = 0 to s3 = 0.4. Solve the 

set of equations (9), (10), and (11), then the following values are found:  
t1 = 0.1740, t2 = 0.3197 and s2 = 0.2873. 
Record the value of t1 and update s2 from 0.2 to 0.2873 

 Iteration 2: consider cycles 2 and 3 which goes from s2 = 0.2873 to s4 = 0.6. 
Solve the set of equations (9), (10) and (11), then the following values are 
found: t2 = 0.3459, t3 = 0.5044 and s3 = 0.4692. 
Record the value of t2 and update s3 from 0.4 to 0.4692 

 Iteration 3: consider cycles 3 and 4 which goes from s3 = 0.4692 to s5 = 0.8. 
Solve the set of equations (9), (10) and (11), then the following values are 
found: t3 = 0.5226, t4 = 0.6925 and s4 = 0.6547. 
Record the value of t3 and update s4 from 0.6 to 0.6547. 

 Iteration 4: consider cycles 4 and 5 which goes from s4 = 0.6547 to s6 = 1.0. 
Solve the set of equations (9), (10) and (11), then the following values are 
found: t4 = 0.7061, t5 = 0.8838 and s5 = 0.8443. 
Record the values of t4, t5 and update s5 from 0.8 to 0.8443. 
Determine total cost TC from expression (1): TC = 43.67. Continue to step 2. 

Step 2 Backward move 
 Iteration 1: consider cycles 4 and 5 which goes from s4 = 0.6547 to s6 = 1.0. 

Solve the set of equations (9), (10) and (11), then the following values are 
found: t4 = 0.7061,  
t5 = 0.8838 and s5 = 0.8443. 
Record the value of t5 and update s5. 
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It is noted that this iteration can be ignored because the solution should be 
exactly the same as in iteration 4 of step 1. 

 Iteration 2: consider cycles 3 and 4 which goes from s3 = 0.4692 to s5 = 0.8443. 
Solve the set of equations (9),(10), and (11), then the following values are 
found: t3 = 0.5332, t4 = 0.7244 and s4 = 0.6817 
Record the value of t4 and update s4 from 0.6547 to 0.6817 

 Iteration 3: consider cycles 2 and 3 which goes from s2 = 0.2873 to s4 = 0.6817. 
Solve the set of equations (9), (10) and (11), then the following values are 
found: t2 = 0.3684, t3 = 0.5655 and s3 = 0.5217. 
Record the value of t3 and update s3 from 0.4692 to 0.5217. 

 Iteration 4: consider cycles 1 and 2 which goes from s1 = 0 to s3 = 0.5217. Solve 
the set of equations (9), (10) and (11), then the following values are found:  
t1 = 0.2270, t2 = 0.4619 and s2 = 0.3747. 
Record the values of t1, t2 and update s2 from 0.2873 to 0.3747. 

Determine total cost TC from expression (1): TC = 42.24.  Since there is improvement in 
total cost, another forward move step will be conducted.  The forward with backward 
rolling procedure will be repeated until no improvement in total cost can be realized. 

For the current example, the intermediate replenishment schedules after the first 
forward step and the first backward step, as well as the final replenishment schedule are 
shown in Table 1. It is noted that the total cost TC = 40.51 resulted from the proposed 
technique in this example is exactly the same as the one reported by Yang (2006). 
Table 1 Replenishment schedule of example 1 

After the first forward step 
i 1 2 3 4 5 6 Total cost 

*
it  0.1740 0.3459 0.5226 0.7061 0.8838 - 43.67 

*
iS  0 0.2873 0.4692 0.6547 0.8443 1.0000  

After the first backward step 
*
it  0.2270 0.4169 0.5655 0.7244 0.8838 - 42.24 

*
iS  0 0.3747 0.5217 0.6817 0.8443 1.0000  

Final replenishment schedule 
*
it  0.2760 0.5070 0.6708 0.8043 0.9198 - 40.51 

*
iS  0 0.4556 0.6343 0.7746 0.8941 1.0000  

5.2 Example 2 (Yang et al., 2002) 

Consider the demand function of the form: f(t) = (a + bt)u with u = 2, a = 10, b = 30. The 
other parameters are set as follows: H = 1, c1 = 4.5, c2 = 1, c3 = 3.5. 
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For n = 8, which is also determined from the formula of Teng (1996), the 
replenishment schedule in this example can be determined based on the proposed method 
in a similar way as in example 1. The detailed results are shown in Table 2 and illustrated 
in Figure 4. 

Figure 4 Replenishment schedule of example 2 

 

The corresponding total inventory cost for this example is TC = 67.21.  It is noted that the 
total inventory cost reported by Yang et al. (2002) for this example is 66.13 with n = 7 
However, in the resulting replenishment schedule reported by Yang et al. (2002), 
although shortages were assumed to be completely backlogged, there still exist a shortage 
period at the end of the planning horizon, and the author did not mention how to deal 
with this shortage (see Figure 5 for illustration). 

Figure 5 Replenishment schedule of example 2 

 

Source: Yang et al. (2002) 

In this example, there are two practical ways to fulfill the demand at the end of the 
planning horizon. They are: 

1 adding one more replenishment at the end of the planning horizon with the 
replenishment quantity exactly equals to the shortage amount 

2 increasing the time coverage of the last replenishment cycle. 

The associated costs of these two adjustments are shown also in Table 2 for comparison 
purpose. From the results in Table 2, it can be seen that, if the total demand in the 
planning horizon is completely fulfilled, the total inventory cost resulted from the 
proposed technique is smaller when it is compared with the result from the adjusted 
Yang’s models. 
 

 

 



   

 

   

   
 

   

   

 

   

    A forward with backward inventory policy algorithm 507    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 Comparisons between the proposed technique and the adjusted Yang’s models 

i 
Proposed method  Adjusted Yang’s model (1)  Adjusted Yang’s model (2) 

si ti  si ti  si ti 

1 0 0.0743  0 0.0826  0 0.0826 
2 0.2261 0.2695  0.2457 0.2923  0.2457 0.2923 
3 0.3865 0.4200  0.4171 0.4528  0.4171 0.4528 
4 0.5185 0.5467  0.5574 0.5873  0.5574 0.5873 
5 0.6333 0.6581  0.6791 0.7053  0.6791 0.7053 
6 0.7364 0.7588  0.7881 0.8117  0.7881 0.8117 
7 0.8307 0.8513  0.8876 0.9093  0.8876 0.9093 
8 0.9181 0.9372  0.9798 1.0000  1.0000 - 
9 1.0000   1.0000   -  

TC 67.21 (n = 8)  70.63 (n = 8)  67.58 (n = 7) 

5.3 Example 3 

Consider the demand function of Example 1, which is in the form f(t) = btu with u = 2,  
b = 900. The other parameters are set as the combination of following values: H = 1, 1.5, 
and 2, c1 = 3.5 and 4.5, c2 = 1, c3 = 3.5 and 4.5. In order to demonstrate the capability of 
the proposed algorithm, the same problems are also solved using Yang’s (2006) method 
and a Nelder-Mead algorithm. The comparison of the results is presented in Table 3. 
Table 3 Comparisons among the proposed technique, Yang’s method, and Nelder-Mead 

algorithm 

No. 
Problem parameters  Total cost of the solution 

b u H c1 c2 c3  Yang’s method 
(2006) 

Proposed 
algorithm 

Nelder-Mead 
algorithm 

A 900 2 1 4.5 1 3.5  40.51 40.51 42.17 
B 900 2 1.5 4.5 1 3.5  90.91 90.56 96.53 
C 900 2 2 4.5 1 3.5  169.41 160.95 178.69 
D 900 2 1 3.5 1 4.5  36.89 36.94 38.13 
E 900 2 1.5 3.5 1 4.5  83.72 82.22 83.72 
F 900 2 2 3.5 1 4.5  159.71 146.33 163.48 

From Table 3, it can be seen that the proposed algorithm is consistently able to provide a 
good solution, in which it is able to obtain five out of six problems with the smallest total 
cost. It is noted that the result of proposed algorithm of problem D is slightly worse than 
Yang’s method, however, the deviation is very small, i.e., about 0.14%. 
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6 Sensitivity analysis 

From Section 5, a good initial value of the replenishment cycle n derived by Teng (1996), 
for linear increasing demand pattern is used. In order to find the best value of n, 
sensitivity analysis is conducted to investigate the effect of n on the total cost function.  
For the two examples discussed, the summarized sensitivity analysis results are presented 
in Tables 4 and 5, respectively. From the results in Tables 4 and 5, it can be seen that the 
values of n for example 1 and 2 are respectively 5 and 8. 
Table 4 Sensitivity analysis on the effect of n for example 1 

i 
n = 4 n = 5 n = 6 

si ti  si ti  si ti 
1 0.0000 0.3087  0.0000 0.2760  0.0000 0.2518 
2 0.5097 0.5671  0.4556 0.5070  0.4157 0.4625 
3 0.7096 0.7504  0.6343 0.6708  0.5787 0.6120 
4 0.8665 0.8997  0.7746 0.8043  0.7067 0.7338 
5 1.0000   0.8941 0.9198  0.8157 0.8392 
6    1.0000   0.9124 0.9333 
7       1.0000  

TC 40.56 40.51 41.97 

Table 5 Sensitivity analysis on the effect of n for example 2 

i 
n = 4 n = 5 n = 6 

si ti  si ti  si ti 
1 0.0000 0.0852  0.0000 0.0743  0.0000 0.0658 
2 0.2518 0.2994  0.2261 0.2695  0.2055 0.2454 
3 0.4265 0.4629  0.3865 0.4200  0.3540 0.3851 
4 0.5694 0.5999  0.5185 0.5467  0.4769 0.5032 
5 0.6934 0.7202  0.6333 0.6581  0.5841 0.6073 
6 0.8045 0.8286  0.7364 0.7588  0.6805 0.7015 
7 0.9060 0.9281  0.8307 0.8513  0.7688 0.7881 
8 1.0000   0.9181 0.9372  0.8507 0.8687 
9    1.0000   0.9275 0.9443 
10       1.0000  

TC 67.28  67.21  68.17 

7 Conclusions 

We have developed and solved the inventory replenishment problem for nonlinear 
increasing demand pattern considering shortage backorders. A forward with backward 
inventory policy algorithm has been developed to determine the replenishment times and 
the shortage points so as to minimize the total inventory cost. Comparing with the other 
techniques developed in the past, the proposed technique results in either the same or 
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better cost performance. In addition, unlike the past-developed techniques that require 
specific functional forms of the demand pattern, the proposed technique can be employed 
for a more general demand pattern (i.e., any log-concave function). 
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Appendix 

By the assumption that the demand function f(t) is a log-concave function, the following 
inequality holds true: 

( ) ( ) with .
( ) ( )

f t f s t s
f t f s

 (A1) 

Fix *,it t  multiply both sides of (A1) by f(s), and integrate with respect to s from *
it  to 

*
1,is  we have: 

* *1 1

* *

*

*
( ) ( )

i i

i i

s s
i

it t

f tf s ds f s ds
f t

 

or equivalently, 
* 1

*

*
* *

1 *
( )

i

i

s
i

i i
i t

f tf s f t f s ds
f t

 (A2) 

Multiplying both sides of (A2) by c2, we have: 
* 1

*

*
* *

2 1 2 *
( )

i

i

s
i

i i
i t

f tc f s f t c f s ds
f t

 (A3) 

Noted from equation (6) in the main text that 

1

2 3 2 1 3 2 30 ( ) ( )
i i

i i

s t

i i i

t s

c c F t c F s c F s c f t dt c f t dt  

We also have: 
* *1

* *

2 3( ) ( )
i i

i i

s t

t s

c f t dt c f t dt  

Hence, inequality (A3) can be rewritten as: 
*

*

*
* *

2 1 3 *
( )

i

i

t
i

i i
i s

f tc f s f t c f s ds
f t

 (A4) 

Applying the Cauchy’s mean value theorem for the two functions f(.) and F(.), i.e., the 
demand rate and the cumulative demand functions, in the interval * *,i is t  there should 

exist a value * *,i ix s t  such that: 

* * * *( ) i i i if x F t F s F x f t f s  

or equivalently, 
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* *( )( )
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 (A5) 

Replacing (A5) into the right-hand side of (A4) we have 

*
* * * *

2 1 3 *
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i i i i
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Due to the fact that 
*

*

( ) ,
( )

i

i

f x f t
f x f t

 inequality (A6) implies that: 

* * * *
2 1 3i i i ic f s f t c f t f s  

or, 

* * *
2 3 2 1 3i i ic c f t c f s c f s  (A7) 

From (A7), we can derive: 

* *
2 3 2 1i ic c f t c f s  (QED) 

 


