
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

605 | P a g e
www.ijacsa.thesai.org

Software Product Line Test List Generation based on

Harmony Search Algorithm with Constraints Support

AbdulRahman A. Alsewari
1
, Muhammad N. Kabir

2
,

Kamal Z. Zamli
3

IBM Centre of Excellence, Faculty of Computer Systems &

Software Engineering

Universiti Malaysia Pahang, Pahang, Malaysia

Khalid S. Alaofi
4

College of Computer Science and Engineering

Taibah University

Saudi Arabia

Abstract—In software product line (SPL), selecting product's

features to be tested is an essential issue to enable the

manufactories to release new products earlier than others.

Practically, it is impossible to test all the products’ features (i.e.

exhaustive testing). Evidence has shown that several SPL

strategies have been proposed to generate the test list for testing

purpose. Nevertheless, all the existing strategies failed to produce

an optimum test list for all cases. Thus, the current study is

aimed to develop a new SPL test list generation strategy based on

Harmony Search (HS) algorithm, namely SPL-HS. SPL-HS

generates a minimum number of test cases that cover all of the

features that are required to be tested based on the required

interaction degree (t). The results demonstrate that the

performance of SPL-HS is able to compete with the existing SPL
strategies for generating test list size.

Keywords—Harmony search; computational intelligence;

combinatorial testing problem

I. INTRODUCTION

A software product line (SPL) is a set of a common
software-objects that are collected to handle certain tasks [1].
These software-objects are in accordance with the software
features. Testing the interface between all the features is
aimed to ensure accurate communication and the data transfer
between the software’s features. Testing of all the features is a
challenge as testing all possible interactions is intractable.
Nevertheless, many researchers use the combinatorial testing
to generate the test list of SPL products [2].

The main challenge of SPL is to minimize the possible test
cases during test case generation with constraints supports [3].
To address this issue, many strategies have been implemented,
however, none of these are successful to generate the optimum
test list. Johansen et al. adopted the notion of covering arrays
in their strategy called SPLCAT [4] in which each column
represents one feature and each row represents one product
configuration. Furthermore, Microsoft has produced a tool
called Pairwise Independent Combinatorial Testing (PICT)
[5]. PICT uses random selection to generate a test suite. As an
alternate, LOOKUP [6] uses In Parameter Oreder Generation
(IPOG) approach combined with Minimum Invalid Tuples
(MIT) for testing suite generation. Although these strategies
are able to generate test suit, but are not well optimized.
Generally, minimizing test suite is an optimization problem.
Harmony Search algorithm (HS) has been applied to solve
many optimization problems. HS demonstrates an excellent

performance in test cases optimization compared to the other
optimizations algorithms [7, 9]. Nevertheless, the HS in a
previous study [10] failed to demonstrate the support for high
system configuration. Therefore, the current study has
extended work of a previous study [11] and adopted HS in
SPL testing and supported high configurations.

The contributions of this paper are as follows:

● A New Software Product Line Testing Strategy has
been developed based on HS, called (SPL-HS).

● The constraint combinations of the features have been
addressed by carrying out the test cases .

The rest of the paper as: Section 2 will illustrate the SPL
background, Section 3 will explain the proposed strategy,
Results and discussion will be presented in Section 4, in the
last section, the conclusion will be presented.

II. SPL BACKGROUND

For testing a SPL, there is a need for testing all possible
interaction between features. Fig. 1 illustrates the example of
Smartphone’s Features. Most of the Smartphones like
Samsung, IPad, and Nexus 7 are under a similar product line
because the devices share some common features such as Wi-
Fi, Sim card, Bluetooth, GP, and etc. As such, for testing the
interaction between such smartphone, each feature represents
as ON or OFF, where ON indicates that the feature is
presented in the new product while OFF indicates the
opposite. Table 1 demonstrates the values for only three
features (i.e. Wi-Fi, Bluetooth, and GPS). There are 8 test
cases were applied for testing this feature as shown in Table 2
(i.e. Exhaustive testing). For four features, there are 16 test
cases are required to test all the combinations. Hence,
generating test cases is NP-hard problem. Normally, a SPL
contains more features. For testing the combinations for 20
features, then the generated test cases are 1048576 test cases.
If each test case requires five minutes, testing 20 features will
take 5,242,880 minutes (around 87381 hours) for exhaustive
testing.

Combinatorial Testing (CT) is a method for generating
covering an array (CA) test suite with the consideration of
interactions between features of SPL [12]. On that account,
during testing any software that has several inputs of features,
it is not possible to trigger errors or bugs with any
combination of the system features. Therefore, the testing

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UMP Institutional Repository

https://core.ac.uk/display/220098704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

606 | P a g e
www.ijacsa.thesai.org

requires interaction strength that can reduce the number of test
cases based on the identified requirements or based on tester
experience.

Fig. 1. Features of Smartphone.

TABLE I. FEATURES SOFTWARE PRODUCT LINE EXAMPLE

Feature Wi-Fi Bluetooth GPS

Value

On On On

Off Off Off

TABLE II. EXHAUSTIVE TESTING TEST LIST

No Wi-Fi Bluetooth GPS

1 On On On

2 On On On

3 On On On

4 On On On

5 On On Off

6 On On Off

7 On On Off

8 On On Off

Each feature of the smartphone is treated as an input
parameter with value on and off as shown in Table 1. The
exhaustive test list consists of 2 x 2 x 2, which are 8 test cases
as shown in Table 2.

The process of SPL-HS in 2-way interaction strength (i.e.
) is described as below:

First, the interactions between the features are: Wi-Fi x
Bluetooth (2 x 2 = 4 combinations), Wi-Fi x GPS (2 x 2 = 4
combinations), and Bluetooth x GPS (2 x 2 = 4 combinations).

Then, SPL-HS is able to generate a test list with 4 test
cases or more but less than 8 test cases.

III. PROPOSED STRATEGY SPL-HS

This paper proposes a new t-way strategy to generate test
cases for SPL testing based on HS with constraint support
called (SPL-HS). On that account, HS uses to select only valid
products from all possible products. The following steps
illustrate on how HS applies in SPL testing.

The implantation of the proposed strategy involves three
main parts: a) interaction list generation, b) constraint
handling and c) test case generation.

A. Interaction List Generation

In this stage, the SPL-HS will generate all possible
interaction between the features according to the interaction
degree (t) as in Table 3.

Each digit of a binary number represents a single possible
interaction. The binary number 11100, represents the
interaction combination index for WiFi, Camera, and GPS,
while 11010 represents the interaction combination index for
WiFi, Camera, and Media and etc. (see Table 3).

In SPL, each feature has two possible values, namely On
or Off (i.e. selected or not selected in the new product).
Table 4 demonstrates the example of the interaction elements
list of the first index 11100 (i.e. WiFi, GPS and Camera).
Moreover, there are additional interaction element lists
available for the other indexes (11010, 11001, 10110, 10101,
10011, 01110, 01101, 01011, 00111).

TABLE III. INTERACTION LIST OF A SMARTPHONE PARAMETERS

WiFi Camera GPS Media Message Interaction

X x x WiFi, Camera, GPS 11100

X x x WiFi, Camera, Media 11010

X x x WiFi, Camera, Message 11001

x x x WiFi, GPS, Media 10110

x x x WiFi, GPS, Message 10101

x x x WiFi, Media, Message 10011

 x x x Camera, GPS, Media 01110

 x x x Camera, GPS, Message 01101

 x x x Camera, Media, Message 01011

 x x x GPS, Media, Message 00111

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

607 | P a g e
www.ijacsa.thesai.org

TABLE IV. INTERACTION ELEMENTS LIST FOR COMBINATION OF WIFI,
GPS AND CAMERA (11100)

No. WiFi GPS Camera

1 On On On

2 On Off Off

3 On On Off

4 On Off On

5 Off On Off

6 Off Off On

7 Off On On

8 Off Off Off

B. Constraints Handling

There are two types of constraints in SPL testing; required
and excluded constraints. Constraints in SPL fix certain
combinations of features in final test suite whether these
constraints are excluded or required.

The required constraints are combinations of features that
needed for the final test suite. Specific combinations are
carried out to test the smartphone product, for example, WiFi
feature must be tested along with GPS. Therefore, at least one
test case that contains WiFi and GPS with the values (On, On)
is required to be included during test suite generation.

Excluded constraints are combinations of features that are
required to be excluded from the final test suite.

For example, in another testing, to test the smartphone
product, Media features could not be operated by Camera
features; therefore the combination of Media and Camera is
excluded from the final test suite (Fig. 2).

At this stage, strategy lists of required combinations and a
list of excluded combinations have been proposed. Then, each
test case that has been generated was checked whether it
contains the required combination to be added to the final test
suite. In addition, the test case was checked if it contains
unwanted combination to be excluded from the test case. For
example, when the parameter value equal to 4, interaction
degree in = 2, and the value of the excluded constraint is
(x01x), “x” represent no constraint value in this feature and
the combination that involves second parameter and third
parameter with values of 01 should be deleted from the test
cases.

C. Test Case Generation

Based on the concept of HS, the test suite generation steps
in SPL-HS are listed as below (see Fig. 3):

 Initialization of HS’s parameters such as the harmony
memory size (HMS), the harmony memory
consideration rate (HMCR), the pitch adjustment rate
(PAR) and the iteration.

 Construction of the harmony memory (HM) with
random test cases considering the constraint
combinations based on HMS.

T=x1,x2,x3,….xn (1)

xi= Random * (UB-LB) (2)

where T represents the test case, xi represents the value of
the feature I..

 Improvement of the test list by either randomly
generate test case or adjusting the selected existing test
case from the HM with consideration the constraint
combinations.

 Updating HM by replacing the worst test case in HM
with the new test case generated from the improvement
step iii.

 Repetition of steps iii, and iv until meeting the exit
criteria of the improvement.

 Add the best test case in the HM to the final test list.

 Repetition of steps ii to vi until all the interactions in
the interaction lists are covered.

IV. RESULT AND DISCUSSION

The performance of the SPL-HS were evaluated by
conducting the following experiments: Firstly, the test cases
were generated for SPL with constraints supports. Secondly,
the test cases were generated for several system
configurations. In both experiments, the results of SPL-HS’s
were compared with the results of existing strategies.

The SPL-HS run in the Java platform on an Asus A45
laptop with the specification of Intel Core i7-2450M CPU
6GB DDR3, SATA 500GB Hardisk and run on operating
system Windows 10. Each experiment was repeated for 30
times and carried out to obtain the average and the minimum
results for SPL-HS.

The SPL-HS parameters were initialized based on a
previous study [9] as follows: HMS size was 100 test cases,
HMCR with 0.7, iteration of improvisation was 1000, PAR
was 0.5.

The future work should investigate on supporting higher
than 2-valued parameter, which would allow the strategy to be
applied on other combinatorial testing problems. Moreover,
input-output feature, which allows the tester to define the
combinations for generating the test case should also be
evaluated in the future.

A. Experimental Result on SPL with Constraints Supports

In this section, a selected case study from SPLOT [13] was
used. The study features repository for the feature model of
the video player. The case study contains 71 features (i.e. 23
are mandatory features and 12 are optional features). In this
model, certain features were included. Therefore excluded
constraints were defined prior to the generation of the test
suite. The features involved are (F5, F6, F7), (F9, F10 ……
F14), (F22, … F29), (F32 … F42), (F44 …… F50) could not
be OFF simultaneously because at least one of them in each
set must be On.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

608 | P a g e
www.ijacsa.thesai.org

Fig. 2. Feature Model of Smart Phone Example.

Fig. 3. Implementation of Harmony Search Algorith.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

609 | P a g e
www.ijacsa.thesai.org

TABLE V. RESULT OF COMPARING SPL-HS WITH EXISTING STRATEGIES

WITH CONSTRAINTS SUPPORTS

Combination

Degree (t)
PICT SPLC LOOKUP SPLBA SPL-HS

2 15 16 18 13 13

3 47 47 39 49 46

4 N/A N/A N/A N/A 153

Table 5 demonstrates that the proposed strategy is able to
produce a minimum test suite size in all cases compared with
other strategies. In this case, SPLBA and SPL-HS produced
the best result (i.e. 13 test cases), when t = 2. LOOKUP
produced the best test size (i.e. 39 test cases) when t = 3. SPL-
HS generated superior result compared to SPLBA, SPLC and
PICT, which is 46 test cases. For t = 4, SPL-HS managed to
produce the result of 153 test cases, however, the results were
unavailable from the other strategies. In general, SPL-HS
produced a superior results compared to other strategies with
supporting for t = 4.

B. Experimental Result on T-way

The proposed strategy was compared with the existing t-
way strategy to evaluate the performance of SPL-HS strategy
during the t-way testing. The results were obtained from a
previous study that a test generation research tool called
LOOKUP performs better than the existing test generation
tools in term of test size and execution time [6].

Table 6 demonstrates that SPL-HS has produced superior
results in most of the cases. Nevertheless, there was no
significant difference between SPL-HS and IPOG-F in other
cases, which IFOG-F has produced reliable results. Based on
the balancing between the local search and the global search in
HS, SPL-HS has demonstrated an ability to generate superior
or at least same result as IPOG-F for lower interaction degree
(t). Table 6 demonstrates that SPL-HS has achieved 26 out of
30, while IPOG-F achieved 17 out of 30. Hence, SPL-HS has
worked efficiently with a higher interaction degree while
IPOG-F produced poor results compared to SPL-HS. This is
mainly due to SPL-HS search for best test list in local search
and global search.

V. CONCLUSION

The current study proposed a new strategy for SPL testing,
known as SPL-HS. SPL-HS adopted Harmony Search as the
optimization algorithm and generated test cases for SPL that
supports constraints for both required constraints and excluded
constraints.

SPL-HS is the first strategy that adopted HS as the core
implementation for generating a test suite for SPL that is
capable to support t equal 4.. The SPL-HS has superior
performance in comparison with existing SPL strategies such
as PICT, SPLC, LOOKUP and SPLBA. SPL-HS produced
superior result compared to IPOG-F results when t is equal to
4, while it failed to produce satisfactory results when t is equal
to 2 and 3.

TABLE VI. RESULT COMPARING SPL-HS WITH IPOG-F

T Parameters IPOG-F
SPL-HS

(best)

SPL-HS

(Avg)

t= 2

10 8 8 9

20 10 10 10.6

30 11 11 11.3

40 11 11 12.2

50 11 11 12.9

60 12 12 13.2

70 12 12 13.6

80 13 13 14.1

100 13 13 15.1

200 15 15 17.8

300 16 16 20

t= 3

4 9 8 8.5

8 17 15 15.99

12 19 18 19.3

16 22 22 22.59

20 25 25 25.5

24 26 28 28.5

28 28 30 30.6

32 31 32 32.4

t= 4

5 22 16 19

6 26 27 27.79

7 32 28 30.5

8 34 32 33.09

9 37 33 36.69

10 41 36 39.3

11 43 42 46,1

12 47 40 43.4

13 49 44 46.19

14 52 46 48.2

15 53 49 50.4

ACKNOWLEDGMENT

This research is funded by RDU180367, “Enhance Kidney
Algorithm for IoT Combinatorial Problem”,
and (FRGS/1/2016/ICT01/UMP/02/3) A new global
optimization algorithm based on stochastic approach to
minimize software testing redundancy.

REFERENCES

[1] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, "A
Classification And Survey of Analysis Strategies For Software Product

Lines," ACM Computing Surveys (CSUR), vol. 47, p. 6, 2014.

[2] P. Clements and L. Northrop, "A Framework For Software Product Line
Practice," SEI interactive, vol. 2, 1999.

[3] I. do Carmo Machado, J. D. McGregor, and E. Santana de Almeida,

"Strategies For Testing Products In Software Product Lines," ACM
SIGSOFT Software Engineering Notes, vol. 37, pp. 1-8, 2012.

[4] M. F. Johansen, Ø. Haugen, and F. Fleurey, "Properties Of Realistic
Feature Models Make Combinatorial Testing Of Product Lines

Feasible," in Model Driven Engineering Languages and Systems, ed:
Springer, pp. 638-652, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 1, 2019

610 | P a g e
www.ijacsa.thesai.org

[5] J. Czerwonka, "Pairwise testing in the real world: practical extensions to

test-case scenarios," in Proceedings of 24th Pacific Northwest Software
Quality Conference, Citeseer, 2006, pp. 419-430.

[6] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, "Combinatorial

Test Generation For Software Product Lines Using Minimum Invalid
Tuples," in High-Assurance Systems Engineering (HASE), 2014 IEEE

15th International Symposium on, pp. 65-72, 2014.

[7] K. Z. Zamli, A. R. Alsewari, and B. Al-Kazemi, "Comparative
Benchmarking of Constraints T-Way Test Generation Strategy Based on

Late Acceptance Hill Climbing Algorithm," International Journal
Software Engineering Computer Science(IJSECS), vol. 1, pp. 14-26,

2015.

[8] K. Z. Zamli, F. Din, G. Kendall, and B. S. Ahmed, "An Experimental
Study of Hyper-heuristic Selection and Acceptance Mechanism for

Combinatorial T-Way Test Suite Generation," Information Sciences,
vol. 399, pp. 121-153, 2017.

[9] K. Z. Zamli, A. R. Alsewari, and M. H. M. Hassin. "On Test Case

Generation Satisfying the MC/DC Criterion," International Journal of
Advances in Soft Computing & Its Applications, vol 5, pp. 104-115,

2013

[10] A. R. A. Alsewari and K. Z. Zamli, "A Harmony Search Based Pairwise
Sampling Strategy for Combinatorial Testing," International Journal of

Physical Sciences, vol. 7, pp. 1062-1072, 2012.

[11] A. R. A. Alsewari and K. Z. Zamli, "Design and Implementation of a
Harmony-Search-Based Variable-Strength T-Way Testing Strategy with

Constraints Support," Information and Software Technology, vol. 54,
pp. 553-568, 2012.

[12] C. Nie and H. Leung, "A Survey of Combinatorial Testing," ACM

Computing Surveys (CSUR), vol. 43, p. 11, 2011.

[13] M. Mendonca, M. Branco, and D. Cowan, "SPLOT: Software Product
Lines Online Tools," in Proceedings of the 24th ACM SIGPLAN

conference companion on Object oriented programming systems
languages and applications, pp. 761-762, 2009.

