-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

High-level synthesis of functional patterns with Lift

Citation for published version:

Kristien, M, Bodin, B, Steuwer, M & Dubach, C 2019, High-level synthesis of functional patterns with Lift. in
Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for
Array Programming: ARRAY'19, June 22, 2019. ACM, New York, pp. 35-45, 6th ACM SIGPLAN
International Workshop on Libraries, Languages and Compilers for Array Programming - Part of PLDI 2019
Conference, Phoenix, United States, 22/06/19. DOI: 10.1145/3315454.3329957

Digital Object Identifier (DOI):
10.1145/3315454.3329957

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array
Programming

Publisher Rights Statement:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 07. Aug. 2019

https://core.ac.uk/display/219873787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3315454.3329957
https://www.research.ed.ac.uk/portal/en/publications/highlevel-synthesis-of-functional-patterns-with-lift(83669066-8900-453b-ae07-472415ebb98b).html

High-Level Synthesis of Functional Patterns
with LirFT

Martin Kristien
University of Edinburgh
United Kingdom
m.kristien@sms.ed.ac.uk

Michel Steuwer
University of Glasgow
United Kingdom
michel.steuwer@glasgow.ac.uk

Abstract

High-level languages are commonly seen as a good fit to
tackle the problem of performance portability across paral-
lel architectures. The LirT framework is a recent approach
which combines high-level, array-based programming ab-
stractions, with a system of rewrite-rules that express algo-
rithmic as well as low-level hardware optimizations. L1rT has
successfully demonstrated its ability to address the challenge
of performance portability across multiple types of CPU and
GPU devices by automatically generating code that is on-par
with highly optimized hand-written code.

This paper demonstrates the potential of LirT for target-
ing FPGA-based platforms. It presents the design of new L1rT
parallel patterns operating on data streams, and describes
the implementation of a LirT VHDL backend. This approach
is evaluated on a Xilinx XC7Z010 FPGA using matrix multi-
plication, leading to a 10x speed-up over highly optimized
CPU code and a commercial HLS tool. Furthermore, by con-
sidering the potential of design space exploration enabled
by L1FT, this work is a stepping stone towards automatically
generated competitive code for FPGAs.

CCS Concepts + Hardware — Hardware accelerators;

Reconfigurable logic applications; Hardware-software code-

sign; Emerging languages and compilers; « Software and
its engineering — Functional languages; - Computer sys-
tems organization — Data flow architectures.

Keywords Lirt, FPGA, data flows, design automation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ARRAY 19, June 22, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6717-2/19/06...$15.00
https://doi.org/10.1145/3315454.3329957

Bruno Bodin
Yale-NUS
Singapore

bruno.bodin@yale-nus.edu.sg

Christophe Dubach
University of Edinburgh
United Kingdom
christophe.dubach@ed.ac.uk

ACM Reference Format:

Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe
Dubach. 2019. High-Level Synthesis of Functional Patterns with
LirT. In Proceedings of the 6th ACM SIGPLAN International Work-
shop on Libraries, Languages and Compilers for Array Programming
(ARRAY ’19), June 22, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3315454.3329957

1 Introduction

The last decade has seen the widespread adoption of novel
parallel architectures such as GPUs (Graphics Processing
Units), which have enabled exciting new applications such
as deep learning. However, programming these devices is
challenging, requiring knowledge about the low level details
of the hardware to extract maximal performance. Further-
more, the optimization process is often platform-specific
leading to non-performance-portable code.

Field Programmable Gate Arrays (FPGA) have been around
for over three decades but have largely remained a niche
market for very specific domains. However, we are now wit-
nessing a large move towards the massive deployment of
FPGAs in data centers from major industrial players [20].
Compared to GPUs, FPGAs have a higher energy efficiency
and the ability to specialize the hardware makes them ideal
for applications such as machine-learning.

Programming and optimizing FPGAs is, however, even
more demanding than the already challenging task of pro-
gramming GPUs. The lack of higher-level abstractions in
Hardware Description Languages (HDLs) requires FPGA
developers to possess extensive knowledge of computer ar-
chitecture and hardware design. Several projects try to close
this gap, such as the high-level LiquidMetal [4] approach or
high-level synthesis tools based on a dialect of C (e.g., HLS)
or OpenCL. However, these approaches are usually still very
specific to FPGAs, requiring programmers to write code in a
certain contrived style in order to extract high performance.

Solving this programmability, optimization and perfor-
mance portability challenge is critical for bringing FPGAs to
the masses. We argue that the key to solving this issue lies in

https://doi.org/10.1145/3315454.3329957
https://doi.org/10.1145/3315454.3329957

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

the development of a high-level platform-agnostic program-
ming language which can be compiled into efficient code.
In particular, it should be possible to express an application
at a purely algorithmic level in a declarative way without
any need to understand and/or choose the target platform.
This simplifies the development of applications but at the
same time it is also important for achieving performance
portability, pushing the responsibility for achieving high
performance onto the compiler.

In this work, we propose to extend the existing L1rT [22]
compiler framework, with a backend targeting FPGAs. LIFT
is a novel approach to achieving performance portability in
heterogeneous systems. Developers describe their applica-
tions using parallel patterns, such as map and reduce, in a
high-level and platform-agnostic functional language. The
LirT compiler then generates high-performance code for a
selected architecture via a design space exploration driven
by a set of rewrite rules expressing optimization choices.

The functional nature of the L1rT language makes it easier
to be mapped into hardware design, as individual composable
functions can be directly translated to composable hardware
modules. Functional programming avoids many common
problems such as tracking of global state and mutable data
and instead allows for representing applications purely as
data flows. The LirT language is platform-agnostic and prior
work [23, 24] has already demonstrated promising perfor-
mance when targeting different GPU classes by exploring
the design space using L1FT’s rewrite rules.

This paper focuses on high-level synthesis for FPGAs from
an intermediate representation of LIFT programs. The gen-
erated code consists of hardware description files to be syn-
thesized and used on an FPGA and C code executed by the
CPU, functioning as both the user interface and the driver
of the FPGA logic. To summarize, our contributions are

o A set of new low-level patterns for LIFT operating on
data streams;

e anew LirT VHDL backend targeting FPGA-based sys-
tems and an associated runtime for the host;

e an evaluation of our work using matrix-multiplication
comparing against optimized CPU code and a commer-
cial HLS tool for FPGAs.

2 The Lirr Framework

Figure 1 shows an overview of the LIFT project [22]. LIFT
programs are written in a high-level language using a set of
parallel patterns, such as map and reduce. This figure shows
the dot product example in L1rT: the two vectors x and y are
pairwise combined using the zip pattern. The map pattern
then applies a function (in this case multiplication) to each
combined pair, effectively multiplying the two vectors. Fi-
nally, the result of the multiplication of x and y is summed up
with the reduce pattern. The dot product is a small example
program used to illustrate LirT. Much more complex and

Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach

LIFT High-Level Language
fun((x, y) =>

) Reduce(add, 0, Map(mult, Zip(x, y)))
(Optimization by Rule Rewriting

fun((x, y) =>

fun((x, y) =>))
Reduce(add, 0, Join(MapWrg(
toGlobal(MapLcl(
ReduceSeq(fun((acc, z) =>
acc * (z.0 + z. , 0),
Split(2048, ReorderStride(lZBg)g)
split(2048+128, zip(left, right))))))

N

GPU Backend [22,24]

L

FPGA Backend

Figure 1. LIrT compiler pipeline with dot product example
optimized via rewrite rules and code generation targeting
OpenCL. In this paper we extend LIFT to target FPGAs.

interesting programs are expressible in LIFT, including more
complex linear algebra [23] and stencil computations [10, 24]
which are both essential building blocks of convolutional
neural networks.

This input program, which only describes what is com-
puted but not how, is then transformed using a set of rewrite
rules which encode implementation and optimization choices.
The transformation process is either driven by heuristics or
by an exploration process which applies rules more freely [23].
The result of the rewrite phase is a low-level LIFT expression
for which the decision of how to perform the computation
has been made. Performance portability is achieved by ap-
plying a different sequence of rewrite rules targeting specific
computer architectures.

In a final step OpenCL code (for CPUs and GPUs) or VHDL
code (for FPGAs) is generated. This step is conceptually easy
as all implementation decisions have been made, but still
requires a careful compiler design [24].

In this paper, we introduce new low-level patterns in LIFT
which encode implementations and optimizations which
are particularly good for FPGAs. We will introduce these
patterns in the next section and describe how we generate
VHDL code for them. In the following section 4 we discuss
how we can introduce these FPGA-specific low-level patterns
via a set of new rewrite rules.

Lift programs are described as Lambda function declara-
tions. Since Lift is a functional language, the Lift compiler
can decide on how to map semantics of programs to the
target architecture. It does so by applying semantically con-
sistent rewrite rules to high-level IR, in order to explore the
design space. The rewrite rules can lower the abstraction of

High-Level Synthesis of Functional Patterns with LiFT

‘ Producer ‘ clk mmm_
s s 78T N 2N DN

vald | oy wid [\ O\

last ready / L

‘ Consumer ‘ last /__

Figure 2. Streaming protocol used for data flow between pro-
ducer and consumer. Timing diagram demonstrates transfer
of a stream of four elements.

the IR, effectively deciding on what architectural primitives
will participate in performing the computation described by
the program.

In this paper we present new low-level patterns for the
Lift framework and implement the last stage of the com-
piler pipeline, namely code generation, for these patterns
targeting FPGA.

3 LiFt Primitives for Hardware Synthesis

This section describes the FPGA-specific primitives, or pat-
terns, that are introduced to L1FT in order to generate FPGA-
compatible code.

Two patterns operate at the hardware-software interface,
namely ToFPGA and ToHost. These can be used to move
data between the main memory and the FPGA. The data
transfer at the FPGA boundary is viewed as a stream. Several
new patterns are introduced that operate at the hardware
level, this includes MapStream, ZipStream, ReduceStream,
LetStream and UserModule.

Before introducing these patterns, we explain how we
compose hardware modules with streams.

3.1 Hardware Composability with Streams

To enable composability of hardware modules produced by
LiFT, arrays from the high-level L1rT IR are represented as
data flows, i.e. streams. Using streams, hardware entities can
be connected in a consumer-producer fashion. Each entity
can hide its internal logic as long as the entity’s boundary
respects the streaming protocol described by Figure 2.

The streaming protocol used allows for bidirectional syn-
chronization. Producer asserts the valid signal when the
data bus contains a new valid element of the corresponding
stream. Consumer can assert the ready signal when it is
ready to consume the new data. The data transfer is con-
sidered successful for cycles when both valid and ready
signals are asserted.

Producer can further indicate when the corresponding
stream ends by asserting the last signal. This is useful for
instance when dealing with multi-dimensional data struc-
tures such as matrices, represented as arrays of arrays at the
LirT level. In such cases, the last signal will be composed
of multiple bits, one for each dimension of the array (e.g.,
one for the end of a row and one for the end of the matrix).

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

3.2 Types and Notation

Each pattern is described by giving its type signature and an
informal description of its semantics. The types are impor-
tant, as they determine which composition and nesting of
the patterns are valid. For the type signature we are using
the following notation:

e S, - denotes a scalar type S of size n-bytes.
Examples of scalar types are int and float.
e [T], - denotes an array of n many elements of type T.
o (T,U) - denotes a two-elements tuple of type T and U.
e T — U - denotes a function mapping arguments of
type T to a result of type U.

We use S exclusively for denoting scalar types, where T and
U denote arbitrary data types.

When depicting hardware design schemes, entity bound-
aries are depicted using boxes with solid lines. Logic inside
boxes with solid lines is encapsulated in terms of scope and
can only access signals inside the box or at the box’s interface.
Global scope patterns are depicted using logical boundaries,
represented by boxes with dashed lines. As opposed to boxes
with solid lines, logic inside boxes with dashed lines can
access signals outside of the box.

3.3 Low-level Patterns for FPGA

This section presents the low-level patterns that are added
to LIFT to support FPGA hardware synthesis. At the abstract
level, all these patterns operate on arrays which are synthe-
sized as streams, as explained earlier.

3.3.1 ToFPGA

The ToFPGA pattern moves data into the FPGA without mod-
ifying it. The pattern operates on an array of values of the
same type:

ToFPGA : [S], — [S]n

When code generation occurs, this pattern triggers the
generation of host code to manage the data transfer to the
FPGA as well as FPGA hardware to manage receiving this
data and turn it into a stream.

3.3.2 ToHost

The ToHost pattern performs the inverse operation and moves
the data from the FPGA back into the host’s main memory.
It has, therefore, the same straightforward type:

ToHost : [S], — [S]a

Similarly to the ToFPGA primitive, this pattern triggers
the generation of host code to receive the data produced by
the FPGA and generates FPGA hardware to handle the com-
munication with the host. Furthermore, the responsibility of
generating the input stream of this pattern is handed over
to an FPGA generator.

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

3.3.3 ZipStream

The ZipStream pattern takes two arrays of the same length
and base type as arguments and creates an array of pairs.
The type of the pattern is:

ZipStream : ([T1n, [T1n) — (T, Dla

ZipStream does not only reshape the input data into tuples,
it also synchronizes the consumption of the two inputs. This
is achieved using the ready and valid valid signals from the
two input components connected to the ZipStream module.
The hardware design scheme of the pattern is shown below.

Stream In 1
1 2 3 4 \ Stream Out
Stream In 2 ZipStream (1,5)(2,6)((3,7)(4,8)

5678/

3.3.4 LetStream

The LetStream pattern takes a function as an argument which
represents the body of the LetStream. LetStream maps its
data input to the input parameter of the function, which
should consume it. The type of LetStream is:

LetStream: (T - U), T) »> U

Crucially, the LetStream pattern allows the data input to
be consumed multiple times by the body by caching it in a
block RAM and streaming it whenever the data is requested
until the cache is released. The cache can be released after
the body of the LetStream pattern has produced the last
result, as indicated by the generation of a 1ast signal at the
output from the LetStream pattern’s body. This is the main
mechanism used to achieve data reuse. LetStream usage will
be demonstrated later in section 3.4.

Stream In bbb
112|3]4 }—» BRAM }»—»’f&é&}%» Stream Out
i Buffer
Let

LetStream is implemented in global scope, as indicated by
the dashed boundary. This is necessary, as the body is an
arbitrary function which could potentially access other data
in global scope.

3.3.5 MapStream

The MapStream pattern accepts a function declaration f as
the first and an input array as the second parameter. Using
the MapStream pattern results in application of the function
f to all elements of the input array. The type signature of
MapStream is:

MapStream : ((T — U), [T],) — [Uln

Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach

Stream Out

F’{f(ﬂ f(2) | f3) | f(4)

Stream In

1 2 3

Note, like LetStream the MapStream pattern has only logi-
cal boundaries (i.e. it is not enclosed in a separate entity) to
allow function f to be arbitrary, giving it access to signals in
global scope.

3.3.6 ReduceStream

The ReduceStream pattern reduces a sequence of multiple
elements into a sequence of one element. Reduction is per-
formed by repeated application of a binary function f to
all elements in the input sequence, storing the output in an
accumulator, which is fed back into the function f as one of
its two inputs. When the whole input sequence is consumed,
ReduceStream outputs the value of accumulator. The type of
ReduceStream is:

ReduceStream : (((T, U) — U), U, [T],) — [Ul

Stream In Stream Out

Accumulator

ReduceStream

Similarly to LetStream and MapStream, ReduceStream has
only logical boundaries to allow an arbitrary function f to
be used.

3.3.7 SplitStream

The SplitStream pattern introduces new inner dimensions
to a stream of data. This is necessary to represent multi-
dimensional streams. Given the size of the inner dimension
n and a stream, SplitStream generates a two-dimensional
stream. The new stream has inner dimension of n and the to-
tal number of elements equal to the original one-dimensional
stream. In case m does not divide n, the Lift compiler rejects
the program during type checking. This can be done by
multi-bit last signal, each indicating the end of stream for
the corresponding dimension.

SplitStream : (n, [T]m) = [[Tlnlm/n

As can be seen in the figure below, the inner bit of the
last signal is generated by a counter. This last inner signal is
emitted when the counter reaches the length of the inner di-
mension of the output. This information is directly extracted
from the pattern input n.

High-Level Synthesis of Functional Patterns with LiFT

data —>{data
valid —>»valid
ready —>{ready
last 0 —>jlast_1
last_0

SplitStream

YVYVY

Stream In

Stream Out

3.3.8 JoinStream

The JoinStream pattern is the opposite to the SplitStream
pattern. It removes one dimension from a multi-dimensional
stream by flattening (i.e., merging) the two outermost dimen-
sions. This is easily done by discarding the last signal from
the inner dimension.

JoinStream : ([[T]n]m) - [T]n*m

data —>{data
valid —>{valid
ready —>{read
last_1 —>{last_{

last_0 ;<

JoinStream

Stream In

YVYVYVY

Stream Out

3.3.9 UserModule

A UserModule has a user-defined signature and functionality.
UserModule : T — U

It can only be implemented as a separate entity, encapsu-
lating the logic of the user module. This pattern encapsulates
custom simple modification of data that do not require any
global context. Potential examples are arithmetic operations
operating on integers or pairs of integers which can be de-
fined by creating an Adder UserModule.

Addition An addition UserModule is defined as an entity
accepting a pair of integers and producing their sum as a
single integer.

Multiplication The multiplication of two 64-bits integers
can incur a large delay. For the investigated designs, the
direct multiplication of two integers could not be achieved
for clock frequencies greater than 95MHz. This frequency
limit results in sub-optimal performance. To resolve this
issue, a new UserModule was developed which performs
integer multiplication in two pipeline stages.

The multiplication is split into 4 partial multiplications
and their results are added together for the final result, as
shown in Figure 3.

Since the multiplication UserModule accepts two 64-bit
integers and produces a 64-bit integer, the upper bits of
the multiplication can be discarded. Therefore, the partial

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Figure 3. Multiplication expressed through partial results

multiplication of a*c is not computed at all. The other three
partial multiplications (i.e. axd, bxc, and bxd) are computed
in the first stage of the pipeline. In one clock cycle, these
partial results are summed up to produce the final output.
Using a pipelined version of integer multiplication produced
correct results even for high clock frequencies of 175MHz
on our hardware.

3.4 Dot Product with Low-Level Patterns

L1FT uses rewrite rules to describe the step-by-step process
of transforming the original high-level expression of the dot
product from Figure 1 into an FPGA-compatible low-level
expression. The most basic way of performing this transfor-
mation is to wrap the expression by a ToHost operator and
to wrap each input by a TOFPGA while replacing every opera-
tor by FPGA-compatible ones (i.e. Map into MapStream). The
Dot product in LirT after the transformation to low-level
FPGA-specific patterns is depicted in Listing 1.

Listing 1. Dot product in Lift Low-level for FPGA

1 add = fun(x => UserModule.Addition(x))

2 mul = fun(x => UserModule.Multiplication(x))

3 program = fun((x, y) =>

4 ToHost (

5 LetStream(fun (z =>

6 ReduceStream(add, o,

7 MapStream(mul, ZipStream(z, ToFPGA(y)))
8)

9 , TOFPGA(x)

0)))

As this program is a sequence of nested function calls
it is read from right to left. The program starts by sending
argument x to the FPGA (line 9), where it is stored using
the LetStream pattern in line 5. The stored argument can
be referred to in the body of LetStream as z. Then, second
argument is sent to the FPGA (line 7), where it is zipped
with the stored first argument z. Zipped arguments are pair-
wise multiplied and the resultant sequence is reduced using
addition operation in line 6. At the end, the program sends
the result back to the host using ToHost pattern.

The block diagram corresponding to the program in List-
ing 1 is depicted in Figure 4. In the example above, addition
and multiplication operations are expressed using the User-
Module pattern which wrap the custom modules described
in the section above.

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach

| MapStream

ZipStream Multiplication ;

(pEmux | [tuple |

Top-level
Entity

x

ToFPGA 2 SR
=
w
o Buffer

HOST
Let
ToHost
FPGA

!

Accumulator Addition
ReduceStream

Figure 4. Hardware design of dot product.

Figure 4 demonstrates the composability of LIFT patterns
in hardware design. Aligned with the paradigm of func-
tional programming, LIFT makes use of a strong type system
to ensures that the composition of patterns remains valid
throughout the rewrite process inside the compiler. Figure 4
shows that the hardware design closely follows the data flow
through the composition of patterns, resulting in a valid
composition at the hardware design level as well. There is
no need for an explicit control unit to orchestrate the exe-
cution of individual modules. All control is performed by
individual entities through controlling the streaming proto-
col signals. This design results in fully distributed control
based on interactions of producers and consumers in the
data flow. Furthermore, since LIFT patterns are mostly self-
contained, they can be directly mapped to VHDL entities and
composition of entities can be directly derived from com-
position of LIFT patterns. This results in almost one-to-one
mapping between LIrT functions and structural VHDL code.

4 Expressing Optimizations in LIFT

The previously defined low-level patterns are already suffi-
cient to generate a valid program for FPGA. However, as the
L1rT framework is fully based on rule rewriting for applying
performance optimization, we defined a set of rewrite rules
beneficial for FPGAs. To reach the performance achieved
in this paper, there are only three optimizations encoded
as rewrite rules required: tiling, vectorization, and coarse-
grained parallelism. These optimizations are beneficial for
applications with a high level of data reuse. Since the dot
product accesses each data element only once, it is not suit-
able for demonstration of these optimization rules. Therefore,
we will consider the much more interesting matrix multipli-
cation as the case study discussing optimizations.

4.1 Baseline

Listing 2 shows a naive implementation of matrix multi-
plication in L1rT which essentially applies the dot product

(in line 4) to each combination of row and column of the
twoinput matrices.

Listing 2. Matrix Multiplication in Lift high-level patterns
1 fun((A, B) =>

2 Map (fun(aRow =>

3 Map (fun(bCol =>

4 Reduce (add, @, Map(mul, Zip(aRow, bCol)))
5), Transpose(B))

6), A))

The naive implementation of matrix multiplication can be
directly compiled to hardware design depicted in Figure 5.
The computation starts by sending one input matrix to the
FPGA and storing it in a block ram module (1). Then, another
input matrix is sent to the FPGA. The second matrix is split
into rows and each row is stored in another block ram module
(2) for reuse.

When one full matrix and one row of another matrix are
stored on the FPGA, matrix-vector multiplication (Let pat-
tern 3) can be performed. This is done by splitting the matrix
into columns and mapping dot product operation (4) over
the resultant stream of columns.

Since one matrix and one row of another matrix have to be
stored on the FPGA, the amount of block memory available
limits the size of the matrices that can be multiplied. This
issue is addressed by our first optimization, tiling.

4.2 Tiling

Tiling is a common loop transformation that improves cache
utilization in CPUs and GPUs. The principle of tiling is to
subdivide the data to be processed inside a loop in tiles, and
to individually process those tiles. This reduces the amount
of data computed at once, and thus reduces the memory
required on the FPGA. Such techniques are required with
FPGAs to support matrix multiplication of large matrices.
In LiFT, tiling is performed by splitting the input matrices
along both dimensions, so that they are decomposed into

High-Level Synthesis of Functional Patterns with LiFT

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Host
ToFPGA ToHost
DEMUX FPGA
) SplitStreal JoinStream
MapCounter MapStream
Buffer
JoinStream | :
MapCounter ‘
R —— :
i [Additon | [Accumulator]:
[tuple | ((DEMUX] :
Multiplication | 1 ' §
ReduceStream;
MapStream | oot
(4) MapStream
I e

Figure 5. Hardware design of baseline matrix multiplication.

multiple memory blocks. Tiling is achieved by reusing the
Split pattern using the following combinations:

1 Tile(m, n, matrix) =

2 Map(splitRows =>

3 Map(splitColumns =>

4 Transpose(splitColumns)

5 ,Split(n,Transpose(splitRows))
6 ,Split(m,matrix))

UnTile is built in a similar fashion using a series of Map,
Join and Transpose.

A sequence of rewrite rules transforms the program in
Listing 2 to express the tiling optimization [23]. We can reuse
these existing rules which produce this tiled version of the
matrix multiplication:

Listing 3. Matrix Multiplication after Tiling
fun((A, B) =>
UnTile(Map(fun(rowOfTilesA =>
Map (fun(colOfTilesB =>
Reduce (fun(tileAcc, (tileA,
Map (Map(add), Zip(tileAcc,
Map (fun (aRow =>
Map (fun(bCol =>
Reduce (add, @, Map(mul,
, tileB)) , tileA)))
), 0, Zip(rowOfTilesA,
), Tile(m, k,
), Tile(n, k,

tileB) =>

Zip (aRow, bCol))))

colOfTilesB))
Transpose(B)))
A

Here one can still see how the same matrix multiplication
primitives are used in lines 6-9 to be applied to the tiles

which have been created using the Tile primitive. The com-
puted tile is then added to an accumulation tile using the
outer Reduce primitive (line 4).

At a later stage of compilation this tiled matrix multiplica-
tion is transformed into a low-level implementation where
only the matrix multiplication operating on the tiles is sent
to the FPGA. The accumulation of computed tiles is done on
the host.

4.3 Vectorization

Stream In Stream Out

Vector

MapVecto

Vectorization is a form of data parallelism. Vectorized data
streams access multiple elements at the same clock cycle,
whereas elements in sequential streams are only accessed
one at a time. Multi-element access can speed up memory
throughput as well as computational throughput. These two
combined result in speedups almost linearly proportional to
the vectorization factor.

In LiFT, we added specific patterns that manipulate vector-
ized data streams. StreamToVector and VectorToStream con-
vert data streams between scalar values and streams of vec-
tors with a particular size. The MapVector and ReduceVector

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

patterns operate on vectors and behave similar to their coun-
terparts operating on streams. Note that vectorization is lim-
ited by the available hardware as it requires more resources
but results in better resource utilization.

The figure above demonstrates application of MapVector
pattern to a stream of vectorized data with vectorization
factor of 4. All elements of a vector are processed at the
same clock cycle. To achieve parallel processing of vector
elements, function f has to be duplicated.

4.4 Coarse-Grained Parallelism

In hardware, coarse-grained parallelism is expressed by repli-
cating the same data-flows multiple times. In matrix multi-
plication when mapping the dot product function over the
rows of the input matrix, we can exploit coarse-grained par-
allelism by performing the dot product for multiple rows in
parallel. As opposed to vectorization, this form of parallelism
requires duplication of streams.

In L1FT, this optimization is applicable by rewriting the
MapStream pattern to the MapStreamPar variant for which
the backend generates several data flows in parallel. Since
the input and output are sequential, the backend creates a
demultiplexer at the beginning of the parallel logic block
and a multiplexer at the end.

5 Evaluation

We start by presenting the target system and our evaluation
methodology. The Lirt FPGA backend performance is com-
pared against existing solutions and we evaluate the impact
of our optimizations.

5.1 System Setup and Implementation Details

The target system is a Xilinx’s ZYBO board [28] which is the
smallest board of the Zynq-7000 family. This board features a
dual-core Cortex-A9 processor running at a clock frequency
of 650 MHz and runs Linux. The core has access to 512MB of
DDR3 memory with a bandwidth of 1050Mbps and 8 DMA
(Direct Memory Access) ports. The FPGA comprises 240 KB
Block RAM (i.e. PL. memory) and 28,000 logic cells.

Applications are evaluated by measuring throughput (i.e.
number of operations divided by execution time). The run-
time is measured across the call to the driver’s API specific
to the application. The average of five measurements is re-
ported. Standard deviation of the measurements was less
than 5% of the measured value for all experiments, which
is negligible. All the C programs are compiled using gcc 4.9
with -O3 optimizations.

The L1rT compiler produces VHDL code for the FPGA
side of the program. This also include an AXI DMA used to
communicate with the FPGA. The LirT framework generates
a C host program performing the computation that is not
offloaded, and that uses a DMA driver to communicate with
the DMA device on the FPGA.

Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach

C Naive ——1 C Optimized —— FPGA (HLS) C— FPGA (Lifty ——

1.000 £

w1

0.001

Throughput (Gops)

Figure 6. Throughput (in Giga operations per seconds) of
integer 64 bits matrix multiplication for different matrix
sizes.

5.2 Comparison with High-Level Synthesis

To evaluate the performance of the VHDL code generated
with L1rT, we implemented an integer 64bits matrix multi-
plication using the optimizations described in Section 4. We
compared the LIFT generated program against a naive imple-
mentation in C, a hand-tuned implementation in C (using
tiling and OpenMP), and an FPGA design produced using a
commercial High-level Synthesis tool (Vivado).

Figure 6 summarizes the results of our experiments for
matrices of different sizes from 128x128 to 2048x2048. The
same tile size is used for all input sizes. Tile size is selected
to be the largest possible that would still fit onto the FPGA
logic. In our experiments, tile size is selected to be 128x128.
Note, for the smallest input size, tile size is equal to the input
size, thus no tiling is performed by the host.

The baseline of our experiments, a naive implementation
of the matrix multiplication in C, performs poorly. It has no
particular optimization in term of cache reuse, and it is single
threaded. In order to have a fair comparison between CPU
and FPGA, we also implemented an optimized C program
using tiling, and thread parallelism. This version performs
an order of magnitude faster than the naive C.

The Lirt generated FPGA designs are up to ten times
faster than the hand-tuned C CPU version and one hundred
times faster than the naive C implementation. Generally, the
performance of the LirT-generated FPGA designs are ten
times faster than those generated with the HLS tool.

The HLS tool we used automatically generates the commu-
nication between the host and the FPGA during compilation.
The implementation of matrix multiplication we used was
tiled, the tile size was up to 2KB. The HLS tool takes ap-
proximately 15 minutes to generate a bitstream for matrix
multiplication of 2048x2048 matrices (Table 1). In contrast
the synthesis of LIFT programs was ten times faster. This is
mostly because most the L1FT design reuses a set of common
IP blocks. In terms of FPGA utilization, a bitstream obtained
using LIFT is comparable with HLS design except that the

High-Level Synthesis of Functional Patterns with LiFT

1.8 T T

16 F Lift Baseline 1
14 F + Pipelined Multiplication T——1 |
+ Vectorized operations (factor 4) E——1 |

12
+ Coarse-grained parallelism (factor 2) T

1.0
0.8
0.6
0.4
o2 [[T

Throughput (Gops)

Figure 7. Impact of optimizations on LIFT generated FPGA
design for 128x128 matrix multiplication.

number of used DSP was five time bigger. This higher usage
of DSP explains the difference in runtime performance since
LirT makes efficient use of the available hardware resource.

5.3 Study of Optimization Benefits

To better understand the effect of the optimizations imple-
mented in LIFT on performance, we generate multiple imple-
mentations for the same matrix multiplication program with
different optimizations written by hand in L1rT. We executed
all designs at the same frequency (100Mhz). Figure 7 shows
the results. A first naive implementation of matrix multipli-
cation for matrices of 128x128 elements achieves only 0.22
Gops. In the case of small matrices there is no need for tiling
as the FPGA’s BRAM is big enough to hold the entire matrix.
Using pipelined multiplication instead of standard multi-
plication operator (as described in Section 3) will have no
impact on the execution time, however the maximum clock
frequency to be used with the design could be increased.
The optimization with the biggest impact is vectorization
(described in Section 4). The maximum we were able to gen-
erate was using a factor of 4, leading to a throughput of 0.63
Gops. Furthermore, with coarse-grained parallelism of a fac-
tor of 2, we reached the final performance for this frequency
of 0.91 Gops.

6 Related Work

To improve the programmability of hardware, design tools
provide optimized version of primitive operations, such as ad-
dition or multiplication. However, the programmer must still
express the application and connection of library functions
manually at low level. Instead of directly using Hardware
Description Languages, several projects provide abstractions.
For example, SystemVerilog [1] is a major improvement
compared to Verilog or VHDL. It introduces object-oriented
programming, strong type system, and parametrization of
hardware modules. Bluespec [17] includes even higher-order
functions and polymorphism. Esterel [7] creates abstraction
of Verilog control flow elements, reducing code size and
producing optimized circuits. Functional languages such as
uFP [21], HML [14], or CAaSH [2] provide similar features.

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Lava [5] and Kansas Lava [9] are embedded DSLs in Haskell
to describe circuits aiming to provide an elegant interface
between design implementations and verification tools. Sim-
ilarly, Chisel [3] is an embedded DSL in Scala. Even though
these approaches take advantage of modern programming
language features, they require the programmer to under-
stand hardware design concepts. Moreover, designed applica-
tion is directly mapped to hardware without much compiler
optimization. Achieving good performance is hard for any
application of moderate size.

High-Level Synthesis (HLS) frameworks compile C-based
programs into hardware [16]. The advantage of HLS is that
software programmers can design hardware, which is a
great step in programmability of FPGAs. C-based approaches,
however, have limited power to express coarse and fine
grained parallelism. Furthermore, C and C++ have software
specific constructs, such as dynamic memory management,
pointers, and recursion, which complicate designing hard-
ware. Other approaches rely on heterogeneous programming
frameworks such as CUDA [18] or OpenCL [6]. While ex-
pressing coarse and fine grained parallelism of application,
they remain low-level, harder to program than C or C++.

A different approach is HLS from functional languages [12,
15, 27], and dataflow languages [11, 13, 25]. For example
Townsend et al. [27] uses a subset of Haskell and perform a
syntax-directed translation to a internal dataflow represen-
tation which ultimately translated into a hardware design.
Those works are closer to ours, as applications are expressed
using high-level platform-agnostic patterns. However, with
L1rT, we want to take advantage of its rewrite rule engine
that enables automatic design space exploration and can lead
to competitive implementation for FPGA.

In that regard Delite [26] is the closest work to L1rT. Delite
also provides a FPGA backend [8, 19]. However, their solu-
tion differs in two important ways. First, the LIrT framework
adopts a different philosophy compared to Delite which uses
generic (e.g. dead-code elimination) and domain-specific (e.g.
tiling) transformations in a traditional fashion. Pattern-based
transformations are thus part of domain-specific transforma-
tions and are not platform-specific. In contrast L1FT is solely
based on rule rewriting which allows a bigger exploration
space, with more opportunities for optimization. Second,
the Delite backend generates either C or JMax, while our
proposed approach directly produces VHDL.

7 Conclusion and Future Work

In this paper, we describe a new backend for the LirT frame-
work enabling efficient FPGA code generation. Demonstrat-
ing with matrix multiplication, we show that our approach
achieves significantly higher performance than optimized
C code as well as the FPGA design by a commercial HLS

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach

Table 1. FPGA synthesis data for 64 bits matrix multiplication of 2048x2048 matrices using L1FT and a commercial HLS tool.

LUT pairs | LUTs | Slices | Registers | DSP | BRAMs || Frequency | Synthesis Time | Execution Time
Resources 17600 17600 | 4400 35200 80 60 - - -
Lift 12% 30% 50% 18% 60% 70% 131 Mhz 2 min 20 sec
HLS 19% 32% 66% 29% 13% 80% 100 Mhz 15 min 126 sec

tool. Optimizations such as tiling, vectorization, and coarse-
grained parallelism are expressed as rewrite rules. This en-
ables sophisticated design space optimizations using LIFT’s
existing rewrite engine.

We believe that this work paves the way for a fully au-
tomated and efficient HW/SW code generation of hetero-
geneous systems where CPU, GPU, and FPGA can be used
altogether. Nevertheless, this work is still in progress and
further steps are necessary for achieving our ultimate goal of
a high-level platform-agnostic framework for programming
of heterogeneous systems. We plan to extend our approach
with more low-level patterns specialized for FPGAs as well
as rewrite rules implementing transformations commonly
used in HLS [16].

Future work will also focus on convolutions, which is a
key component of neural networks. We are confident that the
approach presented in this paper will be suitable for produc-
ing efficient convolution, given that they can be represented
easily as matrix operations.

References

[1] Accellera. 2002. SystemVerilog 3.0 AccelleraAAZs Extensions to Verilog.
(2002).

[2] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. 2010.
CAaSH: Structural Descriptions of Synchronous Hardware Using
Haskell. In EUROMICRO. https://doi.org/10.1109/DSD.2010.21

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
2012. Chisel: constructing hardware in a scala embedded language. In
DAC. ACM.

[4] David F Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA pro-
gramming for the masses. Commun. ACM 56, 4 (2013), 56-63.

[5] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.
Lava: hardware design in Haskell. In ICFP. ACM.

[6] Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Free-
man, Michael Kinsner, David Neto, Jason Wong, Peter Yiannacouras,
and Deshanand P Singh. 2012. From OpenCL to high-performance
hardware on FPGAs. In FPL. IEEE.

[7] Stephen A Edwards. 2002. High-Level Synthesis from the Synchronous
Language Esterel. In IWLS.

[8] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin

J. Brown, Arvind K. Sujeeth, Martin Odersky, Kunle Olukotun, and

Paolo Ienne. 2014. Hardware system synthesis from Domain-Specific

Languages. In FPL. IEEE.

Andy Gill. 2011. Declarative FPGA circuit synthesis using Kansas Lava.

In ERSA.

Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,

and Christophe Dubach. 2018. High Performance Stencil Code Gener-

ation with Lift. In Proceedings of the 2018 International Symposium on

Code Generation and Optimization (CGO 2018). ACM, New York, NY,

USA, 100-112. https://doi.org/10.1145/3168824

—
=)
—

[10

[t

[11] Amir Hormati, Manjunath Kudlur, Scott Mahlke, David Bacon, and
Rodric Rabbah. 2008. Optimus: Efficient Realization of Streaming
Applications on FPGAs. In CASES.

[12] Shan Shan Huang, Amir Hormati, David F Bacon, and Rodric M Rab-
bah. 2008. Liquid Metal: Object-Oriented Programming Across the
Hardware/Software Boundary.. In ECOOP. Springer.

[13] Hyunuk Jung, Hoeseok Yang, and Soonhoi Ha. 2008. Optimized
RTL code generation from coarse-grain dataflow specification for
fast HW/SW cosynthesis. Journal of Signal Processing Systems 52, 1
(2008), 13-34.

[14] Yanbing Li and M. Leeser. 1995. HML: an innovative hardware de-
scription language and its translation to VHDL. In ASP-DAC. https:
//doi.org/10.1109/ASPDAC.1995.486388

[15] Alan Mycroft and Richard Sharp. 2000. A Statically Allocated Parallel
Functional Language. In ICALP.

[16] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H.
Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. 2016. A Survey
and Evaluation of FPGA High-Level Synthesis Tools. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35, 10
(2016), 1591-1604. https://doi.org/10.1109/TCAD.2015.2513673

[17] Rishiyur S. Nikhil. 2008. Bluespec: A General-Purpose Approach to
High-Level Synthesis Based on Parallel Atomic Transactions. Springer
Netherlands, Dordrecht. https://doi.org/10.1007/978-1-4020-8588-8_8

[18] Alexandros Papakonstantinou, Karthik Gururaj, John A Stratton, Dem-
ing Chen, Jason Cong, and Wen-Mei W Hwu. 2009. FCUDA: Enabling
efficient compilation of CUDA kernels onto FPGAs. In SASP.

[19] Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee,
Christopher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016.
Generating Configurable Hardware from Parallel Patterns. In ASPLOS.
ACM.

[20] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Jan
Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, Eric Peterson, Aaron Smith, Jason
Thong, Phillip Yi Xiao, Doug Burger, Jim Larus, Gopi Prashanth Gopal,
and Simon Pope. 2014. A Reconfigurable Fabric for Accelerating Large-
Scale Datacenter Services. In ISCA. IEEE.

[21] Mary Sheeran. 1984. muFP, a Language for VLSI Design. In LFP. ACM.

[22] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating performance portable code using rewrite
rules: From high-level functional expressions to high-performance
OpenCL code. In ICFP. ACM.

[23] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2016.
Matrix multiplication beyond auto-tuning: rewrite-based GPU code
generation. In CASES. ACM.

[24] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.
Lift: a functional data-parallel IR for high-performance GPU code
generation. In CGO. ACM.

[25] Robert Stewart, Deepayan Bhowmik, Andrew Wallace, and Greg
Michaelson. 2017. Profile Guided Dataflow Transformation for FPGAs
and CPUs. Journal of Signal Processing Systems 87, 1 (01 Apr 2017),
3-20. https://doi.org/10.1007/s11265-015-1044-y

[26] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2014. Delite: A
Compiler Architecture for Performance-Oriented Embedded Domain-
Specific Languages. ACM Trans. Embed. Comput. Syst. 13, 4s, Article

https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1145/3168824
https://doi.org/10.1109/ASPDAC.1995.486388
https://doi.org/10.1109/ASPDAC.1995.486388
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1007/978-1-4020-8588-8_8
https://doi.org/10.1007/s11265-015-1044-y

High-Level Synthesis of Functional Patterns with LiFT ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

134 (April 2014), 25 pages. https://doi.org/10.1145/2584665 ACM.
[27] Richard Townsend, Martha A. Kim, and Stephen A. Edwards. 2017. [28] Xilinx. 2017. Zybo Zynq-7000 ARM/FPGA SoC Trainer Board. https:
From Functional Programs to Pipelined Dataflow Circuits. In CC. //www.xilinx.com/products/boards-and-kits/1-4azfte.html.

https://doi.org/10.1145/2584665
https://www.xilinx.com/products/boards-and-kits/1-4azfte.html
https://www.xilinx.com/products/boards-and-kits/1-4azfte.html

	Abstract
	1 Introduction
	2 The Lift Framework
	3 Lift Primitives for Hardware Synthesis
	3.1 Hardware Composability with Streams
	3.2 Types and Notation
	3.3 Low-level Patterns for FPGA
	3.4 Dot Product with Low-Level Patterns

	4 Expressing Optimizations in Lift
	4.1 Baseline
	4.2 Tiling
	4.3 Vectorization
	4.4 Coarse-Grained Parallelism

	5 Evaluation
	5.1 System Setup and Implementation Details
	5.2 Comparison with High-Level Synthesis
	5.3 Study of Optimization Benefits

	6 Related Work
	7 Conclusion and Future Work
	References

