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Dear Editor,

We are submitting our study entitled “Structural studies on the Cu-H system under compression” 
for your consideration. In this letter, we present a structural characterization of copper hydride 
formation using X-ray diffraction, laser heating and Diamond Anvil Cell (DAC) techniques.

Hydrogen chemistry is currently of intense interest, with hydrogen-bearing systems (hydrides) 
displaying remarkable properties, such as the H2S system with reports of high crtitical 
temperatures for superconductivity. Hydrides could also find commercial application, proving to 
be volume-efficient tools for hydrogen-storage, with pressure acting as a mechanism to readily 
trap or release hydrogen gas. Despite this extensive research activity and also hydrogen’s 
reactivity there are still binary-systems which have not been explored, with the noble metals 
(group 11) making a notable gap in the periodic table.

In this work, with the use of high-pressures, in-situ laser heating and sychrotron x-ray diffraction 
we explore the Cu-H system up to pressures of 50 GPa and temperatures in excess of 1000 K. We 
report the previously identified γ0-CuH0.15, γ1-CuH0.5 and ε-Cu2H phases. Crucially, however we 
we identify a new γ-phase, γ2-CuH0.65, synthesised via laser heating. This discovery is the highest 
reported hydrogen content for a group-11 system and strongly suggestive that a fully 
stoichiometric might be stable at higher pressures.

This work will motivate the re-examination and thorough exploration of many other metal-
hydrogen systems and perhaps encourage the realisation of the other elusive group-11 hydrides, 
Au-H and Ag-H.    

My best regards,

Phil Dalladay-Simpson
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Currently, hydrogen chemistry at extreme pressures is subject to extensive research

due to the observed and predicted enhanced physical properties when it is incor-

porated in numerous binary systems. Despite hydrogen’s high reactivity, the noble

metals (Cu, Ag, and Au) display an outstanding resilience to hydride formation, with

no reports of a stable compound with a hydrogen molar ratio ≥ 1 at room temper-

ature. Here, through extreme compression and in-situ laser heating of pure copper

in a hydrogen atmosphere, we explore their affinity to adopt binary compounds. We

report on the phase behaviour and stabilities in the Cu-H system, analysed via syn-

chrotron X-ray diffraction, up to pressures of 50 GPa. We confirm the existence of

the previously reported γ0-CuH0.15, γ1-CuH0.5 and ε-Cu2H phases. Most notably, we

report the highest hydrogen content noble-metal hydride stable at room temperature

to date, γ2-CuH0.65, sythesised through laser heating. This study furthers our un-

derstanding of hydrogen-transition metal chemistry and could find applicability in

future hydrogen-storage applications.
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I. INTRODUCTION

Hydrogen-bearing systems are currently of intense interest, due to their desirable phys-

ical properties and as possible hydrogen storage materials. Physical properties such as

superconductivity at high temperatures have been reported in the hydrogen-sulfur system1,

whilst their storage capabilities are best exemplified by the hydrogen amassed in methane-

hydrogen, CH4(H2)4
2, and more recently in the hydrogen-iodane system, HI(H2)13

3. Despite

these prospects and intensive research activity in this field, there remain many systems which

have not been explored with the noble metals making a notable hydride-gap in the periodic

table.

The noble metals, Cu, Ag and Au are relatively inert under ambient conditions, as seen

by their reluctance to form oxides under ambient conditions, an attractive quality for their

usage in ancient coinage and electronics. High-pressure has become an indispensable tool in

modifying chemical affinities and thereby creating exotic materials4–7. Typically for hydride

formation in d-metals, the barrier for molecular dissociation is driven down by pressure,

resulting in atomic hydrogen permeating freely through the metallic lattice, tending to

reside at interstitial sites. The presence of atomic hydrogen in the metal can lead to changes

in the crystalline structure ranging from simple lattice expansion to reconstructive phase

transitions and changes in space-group symmetry8.

Despite numerous attempts using complex synthesis techniques such as high pressures

coupled with resistive and laser heating9,10, the definitive formation of Au-H and Ag-H has

remained elusive, likely due to their large reduction potentials. On the other hand, Cu, with

a reduction potential approximately half that of Ag, has been known to form a binary system

with hydrogen for over 100 years, making it the first metal hydride to be discovered11.

The Cu-H system is found to have an extensive chemistry with some very unusual chem-

ical pathways, such as sonofication12. Copper’s reactivity with hydrogen offers a testing bed

for further experimental and theoretical studies of the group-11 hydrides. The first binary

compound was formed by the reduction of coper sulphate with hypophosphorous acid to

form the stoichiometric monohydride, CuH11. CuH was identified to have a Wurzite struc-

ture with a significantly modified mechanical response, a consequence of Cu-H bonding,

a highly unusual characteristic in d -metal hydride systems13. However, Wurzite-CuH, the

only stoichiometric noble-metal hydride, is unstable at ambient temperatures and readily
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decomposes above −60◦C14, with calculations predicting that pressures in excess of 30 GPa

are required to stabilize it at room temperature14.

Since this early pioneering work, high-pressure experimental campaigns have attempted

to form new hydrogen-bearing Cu compounds. Direct compression of Cu in a H2 atmosphere

results in the formation of a low-H content hydride, isostructural to Cu exhibiting a slightly

expanded lattice, in accordance with the literature naming scheme this phase is γ0-CuH0.15.

Compressing this phase above 10 GPa leads to further hydrogen entering the lattice forming

the second γ1-CuH0.5 phase9. In both phases the lattice expansion is a consequence of

hydrogen filling the octahedral interstitial sites. A subsequent study, using synchrotron X-

ray diffraction, identified an ε-Cu2H phase10, distinctly different from the previously reported

Wurzite-CuH and γ phases, synthesised around 18.6 GPa. This phase adopts an anti-CdI2

type structure and its stoichiometry was constrained from significantly reduced volumes

when compared to the formerly identified phases. As Cu-H has the highest chemical affinity

with hydrogen of all the group-11 metals, it is imperative that we endeavour to fully describe

its chemistry and perhaps reveal higher hydrogen stoichiometries, as reported for other d-

metal systems15,16.

Here, with the use of high-pressure, in-situ laser heating and synchrotron X-ray diffraction

we explore the Cu-H system up to pressures of 50 GPa and temperatures in excess of 1000 K.

We report the previously identified high-pressure phases, γ0-CuH0.15, γ1-CuH0.5
9 and Cu2H

10,

and constrain their pressure evolution up to 50 GPa respectively. Crucially we identify a

new γ phase synthesized by laser heating Cu in a dense hydrogen atmosphere. Unusually

this phase decomposes into γ1-CuH rather than the ε-Cu2H phase previously found to be

stable at these pressures. This work illustrates the complexities that may be found in the

noble-metal hydride phase diagrams when explored with the latest experimental techniques.

II. EXPERIMENTAL METHODS

The diamond-anvil cell (DAC) is the workhorse in most static high-pressure experiments.

Its compact and simple design has proven powerful and adaptable finding itself as a principal

driving force in high-pressure science for the last 30 years. The concept is simple, by cou-

pling very small sample chambers and the hardness of diamond, pressures can be generated

that are orders of magnitude greater than what can be achieved with conventional mechan-
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ical presses. In this study high-pressure measurements were conducted in symmetric-type

DAC with Boehler-Almax cut diamonds on tungsten-carbide seats with large opening angles

(∼50◦). The diamond culets varied from 200-300 microns in diameter. Samples were loaded

in a laser-milled rhenium-foil gasket chamber with initial dimensions of 20-30 microns in

thickness and approximately 75% the culet size in diameter. No pressures higher than 50

GPa were probed, limited by the mechanical instability dictated by the geometry of the

diamond anvils. Pressures were determined during the experiment via the known equation

of state of a particulate of gold and/or the calibrated shift of the R1 floresence of a ruby

sphere placed in the sample chamber17,18.

High-purity Cu-grains (Alfa Aesar 99.9 %), approximately 10 µm in size, were placed

so that they were centered on a diamond anvil. The DAC was calibrated such that it

hermetically sealed in a 2 kbar hydrogen atmosphere (research grade 99.9995%). The loading

procedure resulted in significant excess of hydrogen, to promote hydride formation, whilst

also providing hydrostatic conditions for synthesised samples.

The Cu-sample was heated in-situ from both sides uniaxially by directly coupling to IR

lasers. Powder X-ray diffraction data were collected at the GSECARS beamline at APS,

USA . The diffraction from 0.3344 Å wavelength X-rays was recorded using a Pilatus 1M

image-plate detector, after which it was integrated using DIOPTAS19 software to a two-

dimensional data set. The data were subsequently indexed and further underwent Le Bail

refinement using Jana200620.

III. RESULTS AND DISCUSSION

Although now a mature field in its own right, modern high-pressure chemistry dates back

to the invention of pressure devices built and used by Bridgman, earning him the Nobel

prize for physics in 1946. Since, high pressure has been widely applied to the formation

and study of d-metal hydrides, first by Baranowski et al. over 50 years ago up to 0.3

GPa21 and was further extended by the work of Antonov in the 1980s up to 9 GPa8. In

recent times, primarily due to the advent of new extreme condition techniques along with

key developments in diagnostics, we are in a prime position to routinely investigate and

expand our understanding of hydrogen chemistry at high densities. This study providing

an important example, outlining the techniques, diagnostics and synthesis pathways in the
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FIG. 1. High pressure X-ray diffraction patterns (λ = 0.3344 Å) showing the stepwise synthesis of

γ1-CuH0.5 (orange) and γ2-CuH0.65 (blue) by sequential laser heating at 30 GPa and 49 GPa. Tick

marks indicate the positions of Bragg reflections from the noted phases.

Cu-H system, in doing so reporting a noble metal-hydride material with the highest reported

hydrogen stoichiometry at ambient temperature.

The use of synchrotron radiation has greatly expedited the exploration of high-pressure

systems, with their brilliance and tight focus finding great applicability with sample sizes on

the order of tens of microns. In this study, harnessing synchrotron generated light, we have

ascertained structural insight in the Cu-H system using conventional powder X-ray diffrac-

tion, as these studies only require a fraction of accumulation time when compared with

conventional in-house sources9 we present a thorough mapping of phases in the Cu-H sys-

tem. Through the high-quality spectra obtained, which can be readily seen in Figures 1 and

3, we have identified the appearance of four phases in the Cu-H system: γ0-CuH0.15, Cu2H,

γ1-CuH0.5 and γ2-CuH0.65, the latter two requiring high-temperatures (discussed later). As
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discussed previously, the Cu-H system has been well characterised at ambient temperatures

up to 50 GPa in previous studies9,10 and our data up to 25 GPa at room temperature are

in agreement, observing the direct reaction between Cu and its surrounding H2 atmosphere.

The reaction product is readily seen by the appearance of diffraction peaks, Figure 1, corre-

sponding to previously reported ε-Cu2H crystallising in space group P 3̄m1, a = 2.5229(2),

c = 4.1984(8) Å at 25 GPa.

Temperature has always been an essential parameter in chemistry, where in particular

high-temperatures serve as a pathway to overcome potential energy barriers thereby promot-

ing reactivity. In diamond-anvil cell work specialist heating techniques are required, where

large amounts of thermal energy need to be deposited typically over very small surface ar-

eas. Laser heating provides an optimum solution22, where high-powered IR lasers (∼100

W) can be tightly focused, consequently having roughly an energy density of 20 W/µm2

and, if incident on strongly coupling metallic foils, temperatures in excess of 3000 K can

be produced. Therefore, to promote further reactions, samples that were first compressed

to 30 GPa were further subjected to laser heating to temperatures in excess of 1000 K. A

treatment that resulted in radical changes to the observed diffraction patterns. Peaks due to

aforementioned ε-Cu2H phase disappeared to be replaced by a new phase, γ1-CuH0.5, that

was readily indexed to a face-centered cubic structure with a = 3.5976(1) Å at 30.1 GPa.

Once transformed, the sample was further compressed to explore the possible synthesis of

other Cu-H compounds. After heating at 50 GPa we observe another abrupt increase in unit-

cell volume consistent with the formation of an isostructural phase with greater hydrogen

content, γ2-CuH0.65.

Unfortunately, despite the brilliance of synchrotron light, hydrogen has a weak X-ray

scattering cross-section and is therefore essentially invisible to the X-ray diffraction tech-

nique. Although this makes it impossible to directly infer the stoichiometry of synthesised

hydrides, it is still possible to ascertain the content in interstitial hydrogen systems as the

presence of hydrogen distorts the structure of the metallic host, often observed as a volume

expansion. Therefore, examination of the atomic volume per Cu atom with pressure allows

us to understand the relationship and estimate the hydrogen contents of these new copper

hydride phases. Figure 2 illustrates the observed volumes for Cu2H, and the two new phases

induced through laser heating γ1-CuH0.5 and γ2-CuH0.65 previously discussed. In fcc metal

hydrides (γ phases), hydrogen atoms occupy the octahedral vacancies and result in a vol-
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umetric expansion proportional to the hydrogen content with ∆V = 2.9 Å3 per hydrogen

atom for the stoichiometric n = 1.0 and in the absence of neutron diffraction data this

provides the assigned estimate of the hydrogen content in a metallic hydride23.

As is common with interstitial hydrides, none of the high-pressure phases in the Cu-

H system, γ0-CuH0.15, γ1-CuH0.5 and γ2-CuH0.65, display modified mechanical properties

when compared with the host material, Cu. As can be seen in Figure 2 both synthesised

γ phases show similar compressibility as pure Cu over this pressure range, the average

increase in volume versus pure Cu for ‘γ1-CuH’ is 1.44(10)Å3 per Cu atom which establishes

our stoichiometric assignment of γ1-CuH0.5. The second isostructural γ phase formed after

laser heating γ1-CuH0.5 shows an average ∆V = 1.85(5) Å3 implying a formula γ2-CuH0.65.

Therefore, despite revealing CuH0.65 with a marked 30% molar increase in hydrogen content,

the mechanical properties remain largely unchanged. However, although there is not a

marked change in their mechanical properties, these materials’ electronic properties can be

altered profoundly. As reported for the Pd-H system, the absorption of hydrogen to form the

monohydride PdH, results in an enhanced critical temperature for superconductivity when

compared with elemental Pd (greater than 3 orders of magnitude)24. The same has also

been proposed for other transition metal hydrides, such as PtH25,26. Studying the impact

on the electrical propoerties of nobel metal-hydrides through the incorporation of hydrogen

would be of particular interest, as these materials find widespread industrial and commercial

application due to their desirable conductive properties.

From the highest pressure point of 50 GPa samples were decompressed to determine the

stability range of the newly formed hydride phases. γ2-CuH0.65 was found to be stable to

32 GPa (Figure 3) where interestingly it decomposed to γ1-CuH0.5, rather than the ε-Cu2H

phase which is the favoured phase under room temperature compression10. This phase in

turn was stable down to 19 GPa where weak peaks due to ε-Cu2H could be observed, and

below this pressure the sample transformed to the known ε-Cu2H phase.

Laser-heating is a powerful technique to synthesise new phases particularly with unreac-

tive metals. The observation of two new stable phases, with increasing hydrogen content,

in the pressure range up to 50 GPa and the known existence of analogous d-metal monohy-

drides hydrides, CoH16 and NiH21, it is strongly suggestive that further pressurization and

high tempertures a true copper monohydride species could be stable. These results should

encourage the reexamination of many metal-hydrogen systems, particularly in light of the
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FIG. 2. Atomic volume as a function of pressure for Cu-H compounds. Data from this study are

shown with squares, data on Cu2H from Ref.10 shown with diamonds, γ0-CuH0.15 and γ1-CuH0.5

from Ref.9 shown with circles. Equations of state shown with solid lines.

moderate pressures used here. This method is applicable to any metal-hydrogen system and

may be of interest in the study of high-performance alloys under extreme conditions.

IV. CONCLUSIONS

In summary, using high-pressure powder X-ray diffraction, we have explored the Cu-H2

system up to pressures of 50 GPa. In agreement with previous studies we have verified

the synthesis of ε-Cu2H, γ0-CuH0.15 and γ1-CuH0.5 compounds, further constraining their

structural evolution with pressure. We find that a second, more hydrogen-rich, γ2-CuH0.65

phase is formed after laser heating above 30 GPa, and is the highest hydrogen content

system known to exist for the noble metals stable at room temperatures. This study and its

incorporated understanding will reinvigorate interest in H-rich hydrogen bearing materials

and the realisation of the other noble metal hydrides, Au-H and Ag-H.
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