

Edinburgh Research Explorer

Calculation View: multiple-representation editing in spreadsheets

Citation for published version:
Sarkar, A, Gordon, AD, Jones, SP & Toronto, N 2018, Calculation View: multiple-representation editing in
spreadsheets. in 2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Institute of Electrical and Electronics Engineers (IEEE), pp. 85-93. DOI: 10.1109/VLHCC.2018.8506584

Digital Object Identifier (DOI):
10.1109/VLHCC.2018.8506584

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 07. Aug. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/219873728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/VLHCC.2018.8506584
https://www.research.ed.ac.uk/portal/en/publications/calculation-view-multiplerepresentation-editing-in-spreadsheets(3f2a7757-d77d-4bec-a9ae-83cb905c5151).html

Calculation View: multiple-representation
editing in spreadsheets

Advait Sarkar∗, Andrew D. Gordon∗†, Simon Peyton Jones∗, Neil Toronto∗
∗Microsoft Research, 21 Station Road, Cambridge, United Kingdom

†University of Edinburgh School of Informatics, 10 Crichton Street, Edinburgh, United Kingdom
{advait,adg,simonpj,netoront}@microsoft.com

Abstract—Spreadsheet errors are ubiquitous and costly, an
unfortunate combination that is well-reported. A large class of
these errors can be attributed to the inability to clearly see
the underlying computational structure, as well as poor support
for abstraction (encapsulation, re-use, etc). In this paper we
propose a novel solution: a multiple-representation spreadsheet
containing additional representations that allow abstract oper-
ations, without altering the conventional grid representation or
its formula syntax. Through a user study, we demonstrate that
the use of multiple representations can significantly improve
user performance when performing spreadsheet authoring and
debugging tasks. We close with a discussion of design implications
and outline future directions for this line of inquiry.

I. INTRODUCTION

Spreadsheets excel at showing data, while hiding computation.
In many ways the emphasis on showing data is a huge
advantage, but it comes with serious difficulties: because the
computations are hidden, spreadsheets are hard to understand,
explain, debug, audit, and maintain.

It is often remarked that “spreadsheets are code” [1]. What
would happen if we take that idea seriously, and offer a view of
the spreadsheet designed primarily to display its computational
structure? Then, in this Calculation View, we might be able to
offer more abstract operations on ranges within the grid, and
alternative ways to achieve useful tasks that are cumbersome
or error-prone in the grid view. We have designed, prototyped,
and evaluated just such a feature (Fig. 1). More specifically,
we make the following contributions.

• We present a design for a view of a spreadsheet primarily
intended for viewing formulas and their groupings. Edits
to either the grid or to Calculation View show up imme-
diately in the other. This design and its possible variants
are discussed in the context of the theory of multiple
representations (Sections III and IV).

• We describe two particularly compelling advantages of
Calculation View:

– Calculation View improves on error-prone copy/paste
(Section III-B) using range assignment: a new textual
syntax for copying a formula into a block of cells.

– Calculation View offers a simple syntax for naming
cells or ranges, and referring to those names in
other formulas (Section III-C). Naming is available
in spreadsheets such as Excel, but few users exploit
it because of the high interaction cost.

Fig. 1. Calculation View lists the formulas in a spreadsheet. It enables abstract
operations such as range assignment and cell naming.

• We present the results of a user study (Section V) show-
ing that certain common classes of spreadsheet authoring
and debugging tasks are faster when users have access
to Calculation View, with lower cognitive load, without
reduction in self-efficacy.

We regard Calculation View as a first step in a rich space
of multiple-representation designs that can enable new expe-
riences in spreadsheets, discussed further in Section VI.

II. THE PROBLEM AND OUR APPROACH

A. Problem: errors in spreadsheets

As with any large body of code, spreadsheets contain errors
of many kinds, with often catastrophic implications, given
the heavy dependence on spreadsheets in many domains. The
ubiquity and maleficence of spreadsheet errors has been well
documented [2], and there are even specialised conferences
dedicated solely to spreadsheet errors!1

We focus on the following specific difficulties, using the
vocabulary of cognitive dimensions [3]:

1) Invisibility of computational structure. The graphical
display of the sheet does not intrinsically convey how
values are computed, which groups of cells have shared
formulas, and how cells depend on each other. This
creates hidden dependencies in the sheet’s dataflow.

1http://www.eusprig.org/

978-1-5386-4235-1/18/$31.00 c© 2018 IEEE

Apart from individually inspecting cell formulas, or re-
lying on secondary notation provided by the spreadsheet
author (layout, borders, whitespace, colouring, etc.),
there are no affordances for auditing the calculations of
a spreadsheet, which makes auditing tedious and error-
prone. Visibility suffers in large spreadsheets; the display
is typically too small to contain all formulas at once.
Visibility is also impaired by the inability to display
formulas and their results simultaneously; the user must
inspect formulas individually using the formula bar.
The “Show formulas” option, which displays each cell’s
formula in the cell instead of the computed value, is
also impractical, since the length of formulas typically
exceeds the cell width, leading to truncation.

2) Poor support for abstraction. Consider the following
common form of spreadsheet:

Data Formula 1 Formula 2 ... Formula k
d1 F1(d1) F2(d1) ... Fk(d1)
d2 F1(d2) F2(d2) ... Fk(d2)
...
dn F1(dn) F2(dn) ... Fk(dn)

The first column is a list of data, and each other
column simply computes something from the base data.
The formulas in each row repeat the calculation for
the data in that row; rows are independent. There are
only as many distinct formulas as there are columns;
the complexity of building and testing this spreadsheet
should not be affected by whether there are ten rows, or
ten million. The user experience, unfortunately, is deeply
affected. The notation is error prone in that the user
is responsible for manually ensuring that the column
formula is precisely copied the correct number of rows.
Any subsequent edits to column formulas are viscous as
well as error prone, as they must be correctly propagated
to the correct range, which involves identifying all the
cells that the author intended to contain that formula, an
intention for which there is usually no explicit record.

3) Formulas suffer from a lack of readable names. Grid
cell references (e.g., A1, B2, etc.) are terrible variable
names, as they contain no information regarding what
the value in the cell might represent. They can be easily
mistyped as other valid grid cell references, leading
to a silent error. Conventional programming languages
allow users to give domain-relevant names to their
values (improving closeness-of-mapping); for example,
we might want to refer to cell B2 as TaxRate – a simple
form of abstraction. Some spreadsheet packages do in
fact support naming cells and cell ranges (e.g., Excel’s
name manager2) but these features are not widely used
due to high additional interaction and cognitive costs: of
naming cells; of recalling what cells have been named;
and remembering to actually use the name (i.e., not
mixing usage of the name and the cell it refers to).

2https://support.office.com/en-ie/article/Define-and-use-names-in-formulas
-4d0f13ac-53b7-422e-afd2-abd7ff379c64

B. Our approach: augmenting the grid

Previous approaches to mitigating errors in spreadsheets
have focused either on auditing tools, or on modifying the
grid and its formula syntax (see Section VII). In this paper,
we present an exploration of a fundamentally new approach to
the problem. We propose that the grid, and its formula syntax,
be left untouched, but to provide opportunities for abstraction
through additional representations. We build on the theory
of multiple representations that originates in Ainsworth’s re-
search in mathematics education [4] but has found widespread
applications in computer science education [5], [6], and end-
user programming research [7]. By offering multiple repre-
sentations of the same core object (in our case, the program
exemplified by the spreadsheet), we can help the user learn to
move fluently between different levels of abstraction, choosing
the abstraction appropriate for the task at hand.

III. TEXTUAL NOTATION IN CALCULATION VIEW

Thus motivated, we created an alternative representation,
Calculation View, or CV for short, of the spreadsheet as a
textual program. CV is displayed in a pane adjacent to the grid.
In CV, the grid is described as a set of formula assignments.
For example:

B1 = SQRT(A1)

assigns the formula =SQRT(A1) to the cell B1. Edits in
one view are immediately propagated to the other and the
spreadsheet is recalculated; it is live [8].

A. Review: formula copy-and-paste in spreadsheets

Before we introduce a new, more powerful type of assignment
in CV, it is helpful to review the distinctive behaviour of copy-
and-paste in spreadsheets today.

Suppose that cells A1 to A10 contain some numbers, and
the user wishes to compute the square root of each of these
numbers in column B. The user would begin by typing
=SQRT(A1) into cell B1. They could type =SQRT(A2) into
cell B2, and so on, but a more efficient method is to copy
=SQRT(A1) from cell B1 and paste into B2. The user intention
is not to paste the same literal formula, but rather one that is
updated to point to the corresponding cell in A. The operation
of formula copy-and-paste rewrites the formula =SQRT(A1)
into the intended form =SQRT(A2).

This is achieved by interpreting references in the original
formula as spatially relative to the cell, as can be expressed
using “R1C1” notation. For example, the expression SQRT(A1)
occurring in cell B1 is represented as SQRT(R[0]C[−1]) in
R1C1, because with respect to B1, A1 represents the cell in
the same row (R[0]) and the previous column (C[−1]). This
formula pasted into the cells B2 to B10 becomes the sequence
SQRT(A2), . . . , SQRT(A10); the relative reference resolves into
a different cell reference for each case. Spreadsheet packages
generally allow this behaviour to be overridden (e.g., Excel’s
absolute references3).

3https://support.office.com/en-us/article/switch-between-relative-absolute-
and-mixed-references-dfec08cd-ae65-4f56-839e-5f0d8d0baca9

The drag-fill operation builds on formula copy-and-paste.
In a drag-fill, the user types =SQRT(A1) into cell B1, selects
it, and then drags down to cover the range B1:B10, which is
equivalent to copying B1 into each cell in the range.

Copy/paste and drag-fill enable the user to create compu-
tations on arrays and matrices without needing to understand
functional programming formalisms such as map, fold , and
scan. However, the conceptual abstraction of arrays is not
reflected in any grid affordances; it is easy to accidentally
omit cells or overextend the drag-filling operation, and the
user must manually propagate any changes in the formula to
all participating cells – a fiddly and error-prone process.

CV, being separate from the grid, presents an opportunity
to allow abstract operations on arrays and matrices without
affecting the usability of the grid.

B. First idea: range assignments

The first novel affordance of our notation is range assign-
ment, which assigns the same formula to a range of cells just as
a drag-fill copies a single formula to a range. In CV, the user
could accomplish the previous example using the following
range assignment:

B1:B10 = SQRT(A1)

The colon symbol is already used in Excel to denote a range,
and so its use capitalises on users’ existing syntax vocabulary.

The assignment has an effect identical to entering the
formula =SQRT(A1) into the top-left cell of the range B1:B10,
and then drag-filling over the rest of the range. Observe how
our syntax uses the literal formula for the top-left cell; users
must apply their mental model of formula copy-and-paste to
predict how the formula will behave for the rest of the range.
In this manner, range assignment exposes a low-abstraction
syntax for array/matrix assignment.

An alternative, that does not rely on knowledge of copy-
paste semantics, would be to use R1C1 notation:

B1:B10 = SQRT(R[0]C[−1])

This is clearer, because the same formula is assigned to every
cell, but understanding the formula requires knowledge of the
more abstract R1C1 notation.

Range assignment has many benefits. It is less diffuse/ver-
bose, as it represents all formulas in a block using a single
formula. It has a greater closeness-of-mapping to user intent.
It greatly improves visibility of the formulas in the sheet (take
for example our sheet with one formula per column – even
with thousands of rows, the CV representation shows a single
range assignment per column). Moreover, the representation
greatly reduces the viscosity and error-proneness of editing a
block of formulas. Instead of manual copying or drag-filling,
the user simply edits the formula in the range assignment. The
range itself can also be edited to adjust the extent of the copied
formula precisely and easily.

Cells and Ranges:

Cell ::= A1−notation
Range ::= Cell | Cell :Cell

Formulas:

Literal ::= number | string
Name ::= identifier
Fun ::= SUM | SQRT | ...
Formula ::=

Literal | Range | Name | Fun(Formula1, ..., FormulaN) | ...

Assignments and Programs:

Assignment ::=
Range = Formula |
Name Range = Formula

Program ::= Assignment1 ... AssignmentN

Fig. 2. Abstract Syntax for Calculation View

C. Second idea: cell naming

The lack of meaningful names for grid cell references
leads to unreadability and error proneness in formulas. Extant
naming features in spreadsheet packages are seldom used in
practice; CV presents an opportunity to drastically lower the
interactional and cognitive costs for using names. To name a
cell or range, the user employs the following syntax:

Name Cell = Formula

A concrete example is this:

TaxRate A1 = 0.01

which puts the value 0.01 into cell A1 and gives it the name
TaxRate. Thus to compute tax, one can write the formula in
terms of TaxRate rather than A1, which is more readable, more
memorable, more intelligible, and more difficult to mistype
as a different but valid reference. We considered alternative
naming syntaxes (e.g., TaxRate[A1] = ...; TaxRate in A1 = ...;
A1 as TaxRate = ...; TaxRate = A1 = ...; etc.) and a detailed
investigation of this would make for interesting future work,
but within the scope of our initial exploration we settled on
the simple space-delimited syntax for its readability.

D. Summary syntax and semantics for Calculation View

Figure 2 shows the complete grammar of the textual notation
in our initial implementation of Calculation View.

Our language has a simple semantics, as follows. An assign-
ment Range = Formula is equivalent to entering =Formula into
the top-left cell of Range, and pasting that formula to every
other cell in Range. An assignment Name Range = Formula
additionally binds the name Name to the range Range.

We require that no two assignments target the same cell.
We place other constraints on the program including that each
range targets a non-empty set of cells.

IV. INTERACTION DESIGN IN CALCULATION VIEW

A. Use of multiple representations

“Multiple representations” is a broad umbrella term for
systems that show some shared concept in multiple ways,
but this can have a variety of different manifestations, de-
pending on how tightly coupled the representations are, what
underlying concepts they share, and other design variables.
CV’s specific use of multiple representations – in particular,
what functions CV does, and does not perform – can be
characterised in terms of Ainsworth’s functional taxonomy for
multiple-representation environments [4]:

• Complementary roles through complementary tasks. In
CV, these tasks are: creating and editing formulas, creat-
ing and editing ranges of shared formulas, and viewing
the computational structure of the sheet. In the grid view,
these tasks are: setting cell formatting, layout, and other
secondary notation to prepare the data for display, insert-
ing charts and other non-formula entities, etc. CV and
the grid facilitate complementary strategies; the primary
strategy for range editing in the grid is copy/paste or drag-
fill, which is well suited for small ranges and for visual
display of data. In CV, the primary strategy is to use
range assignment, which is well suited for robust editing
of ranges with shared formulas.

• Complementary information: CV can display formulas
while the grid displays data and formula output.

• CV constructs deeper understanding using abstraction
through reification: a type of abstraction where a process
at one level is reconceived as an object at a higher
level [9]. In spreadsheets, users understand a range of
shared formulas as a single abstract entity; the process of
copy/paste or drag-filling at the cell level creates an object
at the range level. In CV, we build on that understanding
and reify those ranges as single objects.

Our model of shared representation is depicted in Figure 3.
Both CV and the grid share certain features, such as the
ability to assign names, and the ability to assign formulas to
individual cells. However, CV allows range assignment and
a naming syntax not possible in the standard grid. Similarly,
CV does not have facilities for adjusting cell formatting, or
viewing the spatial grid layout of formulas.

CV introduces no new information content to the spread-
sheet; indeed, the CV is generated each time the spreadsheet
is opened, or when the grid view is edited (see Section IV-C).

B. Editing experience design

CV departs from traditional text editors in a few deliberate
ways. The first is the explicit visual distinction between
lines, creating a columnar grid of pseudocells. This makes
CV appear familiar, due to its similarity to the grid, and
reinforces the fact that there should only be one assignment
per line. Unlike many other programming languages, which
permit multiple statements on a single line (delimited by, e.g.,
semicolons), Excel has no counterpart to this and so CV’s
pseudocells help indicate the absence of that facility.

Fig. 3. Relationship between Calculation View and the traditional grid.

The second departure of CV from a simple text editor is
the newline behaviour. In the Excel grid, hitting the enter (or
return) key has the effect of committing the current formula
and moving focus to the next cell down. If this same behaviour
were adopted wholesale into CV, then hitting enter would
only navigate between pseudocells, and additional interface
components would be required to allow users to create new
cell/range assignments. Instead, in our design, hitting enter
while any pseudocell is in focus creates a new pseudocell
underneath it, combining the properties of a flat text editor
and the grid. Pseudocells can only be empty while they are
being edited. If a pseudocell is empty when it loses focus, it
disappears. Thus, cell and range assignments can be deleted
by deleting the contents of the corresponding pseudocell, and
when the pseudocell loses focus, it disappears from CV and
so do its formulas on the grid. Another aspect of this design
is that unlike in a text editor, where multiple blank lines
can be entered by repeatedly hitting enter, in CV repeatedly
hitting enter does nothing after the initial empty pseudocell is
created – no new pseudocells will be created while an empty
pseudocell is in focus.

We acknowledge, however, that the free addition of whites-
pace and re-ordering of statements is a valuable form of sec-
ondary notation in textual programming languages. In future
work it would be useful to compare a version of CV presented
as a simple text editor, with the pseudocell representation we
have created (Section VI).

C. Block detection algorithm

It is not sufficient for CV to only display range assignments
created in the CV editor. In order to fully capitalise on the
increased abstraction possible in CV, any block of copied/drag-
filled formulas, even if these operations were performed man-
ually in grid view, should also be represented in CV as a
range assignment. We implemented a simple block detection
algorithm to achieve this. The algorithm operates as follows:
the cells in the sheet are first placed into R1C1 equivalence
classes (i.e., cells with the same formula in R1C1 are grouped
into the same class. Then, for each class, maximal rectangular
ranges (called ‘blocks’) are detected using a greedy flood-

filling operation: the top-left cell in the class is chosen to
‘seed’ the block. The cell to the right of the seed is checked;
if it belongs to the same class, then the block is grown to
include it. This is repeated until the block has achieved a
maximal left-right extent. The block is now grown vertically
by checking if the corresponding cells in the row below are
also part of the equivalence class. Once it can no longer be
grown vertically, this maximal block is then ‘removed’ from
the equivalence class. A new top-left seed is picked and grown,
and the process is repeated until all the cells in the equivalence
class have been assimilated as part of a block.

Each block so detected becomes a range assignment in CV.
There are edge cases in which the behaviour of our algorithm
is somewhat arbitrary. For instance, in an L-shaped region
of cells containing R1C1-equivalent formulas, the ‘corner’
of this region could reasonably belong to either ‘arm’, but
our greedy approach gives preference to the top-leftmost arm.
Blocks of this shape are unusual in practice, and for our initial
exploration, our basic approach has proven adequate.

D. Formula ordering

In what order should formulas be listed in CV? There
are at least two straightforward options: (1) ordering by cell
position (e.g., left to right, top to bottom) and (2) ordering
by a topological sort of the formula dependency graph. Both
options are viable: the former juxtaposes cells that are spatially
related to each other, the latter juxtaposes cells that are
logically related. In our investigation we have not addressed
this design choice. For simplicity we adopted spatial ordering,
but it may be better to allow the user to choose, or to choose
using a heuristic characterisation of the spreadsheet.

The user can enter a newline in any pseudocell in CV
to create a new pseudocell below it. The formula in this
pseudocell can pertain to any cell or range in the grid, and
will remain in the position it was entered until another cell
in the grid (not CV) is selected, which triggers a regeneration
of CV, at which point the formula is moved to its position
according to spatial ordering. This is illustrated in Figure 4.

Alternative designs are possible. For instance, the interface
might make an exception for formulas entered in CV, remem-
ber their position relative to other formulas, and try to preserve
that position as well as possible in order to prevent the jarring
user experience of having their formula moved around. The
problem of preserving position is nontrivial, and would make
for interesting future work.

E. View filtering

Even after block detection has collapsed blocks of formulas
into single pseudocells, there is still potential for CV to
become cluttered. For instance, in the example from Section II,
if all the cells containing base data in the first column were
displayed in CV, hundreds of pseudocells displaying base data
would obscure the range assignments for the other columns
– which are the main items of interest. To improve this,
CV filters out literal values by default (with the option to
show them if necessary). In future work, one might imagine

advanced sorting and filtering functionality, such as “show
only formulas within a certain range”, or “show only formulas
containing some subexpression”, or “show formulas which
evaluate to a certain type, e.g., boolean”, or even simpler
options such as “sort by formula length”.

The key observation with respect to view filtering in CV
is that, as in other multiple representation systems, each in-
dividual representation is suitable/superior for certain specific
things. Here, the grid is a superb place to display lots of literal
values; CV need not compete with the grid for doing that. CV
is good at showing formulas and their abstract grouping, so it
should have affordances for doing that well.

V. USER STUDY

CV aims to present a higher level of abstraction in spread-
sheets without affecting the fundamental usability of the grid.
We are interested in whether access to such a representation
helps users create and reason about spreadsheets with less
manual and cognitive effort.

We refined our research interests into the following concrete
hypotheses. Does the addition of CV to the grid affect:

1) the time taken to author spreadsheets;
2) the time taken to debug spreadsheets;
3) the user self-efficacy in spreadsheet manipulation; and
4) the cognitive load for spreadsheet usage?
We are also interested in whether any observed difference

is affected by the participant’s level of spreadsheet expertise.

A. Participants

We recruited 22 participants, between 25 and 45 years of
age, 14 female and 8 male, using convenience sampling. Par-
ticipants spanned four different organisations and worked in a
range of professions including office administration, real estate
planning and surveying, interaction design research, and civil
engineering. All 22 had prior experience with spreadsheets and
18 used spreadsheets in regular work.

B. Tasks

We used two types of tasks: authoring and debugging.
For the authoring tasks, participants were given a partially
completed spreadsheet and asked to complete it. For each au-
thoring task, completion involved writing between 1-3 simple
formulas, and copying those formulas to fill certain ranges. We
created 2 pairs of authoring tasks, where tasks within a pair
were designed to be of equal difficulty. For instance, one task
was for participants to calculate several years of appreciated
prices for a list of real estate properties whose current values
were given. The matched counterpart for this task was for
participants to calculate several years of depreciated values for
a list of company assets whose current values were given. Both
require writing a formula of similar complexity and filling it
to a range of similar size.

In debugging tasks, participants were given a completed
spreadsheet and informed that there may be any of two types
of errors: a copy/paste or drag-fill error where a row or column
had been accidentally omitted or included, and a cell where

Fig. 4. The user can create assignments at any position in CV. When CV loses focus, assignments are re-ordered according to their spatial ordering.

a formula had been inadvertently overwritten using a fixed
constant. The task was to detect any errors of these two
types. We created 2 pairs of debugging tasks with matched
difficulty. These tasks resembled the completed sheets that the
participants were to create in the authoring task, so that the
participant already understood what the purpose of the sheet
was. In each task there was exactly one drag-fill error and one
overwriting error, but participants were not informed of this.

C. Protocol

Participants were briefed and signed a consent form. They
then completed a questionnaire about their spreadsheet and
programming expertise, based on a questionnaire used in a
previous study of program comprehension [10], but refactored
to include items specific to spreadsheets. They were then given
a 10-minute tutorial covering formulas and drag-filling in the
standard public release of Microsoft Excel, as well as the range
assignment syntax in CV, and given the opportunity to clarify
their understanding with the experimenter.

Participants then completed four tasks: two authoring and
two debugging tasks. Half the participants used Excel without
CV and the other half used Excel with CV. After these tasks,
participants completed standard questionnaires for cognitive
load (NASA TLX [11]) and computer self-efficacy [12].
Participants completed a further four tasks, these being the
matched counterparts to the tasks in the first round, this time
with CV if they were without CV for the first round, or vice
versa. After these tasks, participants again completed cognitive
load and self-efficacy questionnaires.

The order in which participants encountered our experimen-
tal conditions (with or without CV) was balanced, and we
could make a within-subjects comparison. The order in which
tasks of each type were presented was counterbalanced. Within
each task-pair, each task of the pair was assigned alternately
to the with-CV and the without-CV condition.

The experiment lasted 70 minutes on average and partici-
pants were compensated £20 for their time.

Fig. 5. Task times with and without CV.

D. Results

Task times: Participants took less time to complete spread-
sheet authoring tasks when using CV than without (median
difference of -54 seconds, or a median speed-up of 37.14%).
This difference is statistically significant (Wilcoxon signed
rank test: Z = −4.14, p = 3.6 · 10−5). See Figure 5.

Participants took less time to complete spreadsheet debug-
ging tasks when using CV than without (median difference
of -20 seconds, or a median speed-up of 40.7%). This dif-
ference is statistically significant (Wilcoxon signed rank test:
Z = −3.3, p = 9.6 · 10−4). See Figure 5.

Task times were not normally distributed.4 However, they
conformed to a lognormal distribution. Due to statistical con-
cerns with the inappropriate application of log normalisation
[13] we opted for a nonparametric test.

Cognitive load: Participants reported a lower cognitive load
when using CV than without (median difference of -2.25;
the TLX is a 21-point scale). This difference is statistically
significant (Wilcoxon signed rank test: Z = −3.04, p =
0.0024). Cognitive load scores were not normally distributed.
See Figure 6.

4The Shapiro-Wilk test for normality was used throughout.

Fig. 6. Cognitive load scores with and without CV.

Analysing this result in terms of the six individual items
on the TLX questionnaire, it appears as though this differ-
ence is attributable to three of them. With CV, there was
a lower mental demand (median difference of -2.5), lower
effort (median difference of -3), and lower frustration (median
difference of -2.5). Of these, only the difference in frustration
was statistically significant with Bonferroni correction applied
(Wilcoxon signed rank test: Z = −3.12, p = 0.0018)

Self-efficacy: Participants had a slightly higher self-efficacy
when using CV than without (median difference of 0.28; self-
efficacy is a 10-point scale). This difference is not statistically
significant. No individual item on the self-efficacy question-
naire showed significant differences between the with and
without-CV conditions. We view this as a positive outcome,
as it shows that the beneficial effects of shorter task times and
lower cognitive load does not come at the cost of a reduced
self-efficacy, which is sometimes the case when participants
are asked to interact with a system that is more complex than
what they are familiar with.

Effect of previous spreadsheet experience: participants were
categorised into two groups based on their responses to the
spreadsheet expertise self-assessment. Eleven participants fell
into a ‘higher’ expertise group (H) and the other 11 into
a ‘lower’ expertise group (L). Higher expertise was charac-
terised by a prior knowledge of spreadsheet features relevant
to our tasks (formulas, range notation, and drag-filling) as
well as practical experience in applying these features. Lower
expertise participants lacked knowledge, experience, or both.

While both H and L participants reported lower cognitive
load overall, seven H participants reported a lower physical
demand with CV, in comparison to only three L participants.
Most L participants did not perceive drag-filling as physi-
cally demanding, despite the fact that experienced participants
typically have developed coping mechanisms to deal with
large drag-fill operations (e.g., checking the ranges beforehand,
zooming the spreadsheet outwards, making selections using
keyboard shortcuts) that reduce the physical effort of drag-
filling. This is attributable to the fact that H participants apply
drag-fills more regularly and so are more sensitive to the
reduction in physical effort afforded by CV.

Revisiting task times, it appears as though H and L partic-
ipants benefited to a very similar extent for debugging tasks
(36.7% median speed-up for group H, 44.28% median speed-
up for group L). However, L participants benefited to a greater
extent during authoring tasks (55.3% median speed-up for
group L, versus only 13.5% median speed-up for group H).
Again, this can be attributed to the fact that H participants had
developed better coping mechanisms that allowed them to be
more efficient at drag-filling operations.

We did not observe a statistically significant difference in
self-efficacy scores within either group H or L in isolation.

VI. MULTIPLE REPRESENTATIONS IN SPREADSHEETS

Calculation View’s fundamental idea is simple: provide a
view of a spreadsheet that is optimised for understanding
and manipulating its computational structure. This apparently
straightforward idea has revealed a complex design space, the
surface of which we have only scratched. In this section we
describe alternatives that we have considered, or which might
be scope for future work.

Variations of range assignment

What if you want to assign a single formula to a non-
rectangular range, or even to disjoint ranges? Since the comma
operator already denotes range union in Excel, we could allow
it on the left hand side of an assignment, thus:

B1:B10, C1:C5, D7 = SQRT(A1)

Excel’s drag-fill also allows for constructing sequences of
numbers or dates, such as 1,3,5,7... in a range of cells;
manually type the first few entries, select them, and drag-fill. In
CV, this will appear as a large number of literal assignments,
concealing the user intent. We might instead imagine using
ellipsis as a notation to indicate sequence assignment:

B1:B10 = 1,3,5,7...

Similarly, imagine that the cells A1 and B1 contain two
distinct formulas. The user may select both and drag-fill
downwards to copy. In CV, the user would have to make two
edits, since they are two separate range assignments. We might
instead provide a notation to capture this, for instance:

A2:B10 = copy A1:B1

Variations on the editing experience

The current CV editor inhabits a space between textual
programming and the grid, in order to improve usability
for non-expert end-users. However, for experts (e.g., with
programming experience), we could use an existing, generic
IDE framework (e.g., Visual Studio Code) as the editor for
CV, where the expert programmer could rely on familiar
affordances, including syntax highlighting, auto-complete, etc.

Textual notations have the capacity to solve a certain set
of problems in spreadsheet interaction, but alternative repre-
sentations might be better suited for solving different kinds of
problems. Some sketches are shown in Figure 7. For instance,
the editor could employ a blocks-style visual language, which

Fig. 7. Multiple representations need not just be text. From left to right: a professional code editor, a blocks programming language, and a flow chart.

would prevent syntactic errors. Alternatively, the editor could
display formulas within a flow chart diagram, emphasising
the dependencies between cells. In fact, the editor could
display any number of spreadsheet-based visual programming
languages, as long as the correspondence between the two
representations was carefully considered. Users could then
switch representations according to the task at hand.

Data specific to the alternative representation

Some content is present in the grid view, but not CV (e.g.
cell formatting); but not the other way round. That is, the
CV can be generated automatically, simply from the existing
spreadsheet (Figure 3). However, a more expert programmer
might want to do more in calculation view, such as using
comments within formulas, and grouping together related
assignments, even if they are not adjacent in the grid. In
order to enable these types of secondary notation, additional
information needs to be persisted within the file that is present
in CV but not presented or editable in the grid.

Professionally written code is typically kept in a reposi-
tory, and subject to code review, version control, and other
engineering practices. If we could express all the information
about a spreadsheet in textual form, these tools could also be
applied to spreadsheets.

VII. RELATED WORK

A. Multiple representations and spreadsheet visualisation

Multiple representations have previously been applied in
spreadsheets in the interactive machine learning domain [14],
but not as simultaneous editing experiences. Programming
languages theory has a concept of ‘lenses’ [15] which is a
form of infrastructure enabling multiple representations. One
application of lenses to spreadsheets [16] allows the user to
edit the value of a formula, and have the edit propagate back
to the cell’s input to the formula.

Previously explored approaches to mitigate computation
hiding in spreadsheets include identification and visualisation
of groups of related cells using colour [17]. Surfacing parts
of the dataflow (cell dependency) graph, and allowing the
graph to be directly manipulated, has also been explored [18].
Visualising the relationship between different sheets has also
been shown to be beneficial [19]. Several commercial tools
aim to assist with editing and debugging spreadsheet formulas,
often via capabilities for visualisation.5

5Some examples include: www.arixcel.com, www.formuladesk.com, https:
//devpost.com/software/formula-editor, www.matrixlead.com

B. Overcoming spreadsheet errors

There are broadly two approaches to the mitigation of
spreadsheet errors. The first approach is auditing tools, which
rely on heuristics such as code smells [20], [21], [22] or
type inference [23], [24], or assist users to write tests [25]
to identify and report potential errors. They are not always
effective [26], and they are limited by their post-hoc nature
(i.e., they help users find errors after they have been made,
rather than helping users avoid them in the first place), as well
as their heuristics – they cannot detect errors not anticipated by
developers of the tool. A machine learning approach where a
model is trained on an error corpus [27] is unlikely to mitigate
this latter limitation – here the heuristics are exemplified by
the training dataset, rather than hand-coded.

The second approach to error mitigation in spreadsheets
focuses on altering the structure of the grid, or creating
an enhanced formula language. For example, sheet-defined
functions [28] allow users to define custom functions in
the grid. The Forms/3 system [29] focuses on the design
space between grids and textual code. Representations such
as hierarchical grids [30] support better object orientation
in grids, sometimes combined with a richer formula lan-
guage [31]. These formula languages can become sophisticated
abstract specification languages that support ‘model-driven’
spreadsheet construction [32], [33], [34]. Excel’s ‘calculated
columns’6 apply a single formula to an entire column, but
using a more abstract ‘structured reference’ syntax, and there
is no way to create a calculated ‘row’ or ‘block’. Excel’s array
formulas7 use an abstract syntax to assign a single formula to
a block of cells, but violate Kay’s ‘value principle’ [35] by
forbidding inspection or editing of any of the constituent cells
except the header. Solutions of this second approach address
the poor abstraction gradient in spreadsheets [36], but require
substantially greater expertise to use.

VIII. CONCLUSIONS AND NEXT STEPS

Our initial study has demonstrated that a textual calculation
view of a spreadsheet, adjacent with the grid view, can make
spreadsheets more comprehensible and maintainable. We plan
to develop our prototype, exploring a number of variations,
including using a free-form text editor, view filtering and
navigational support, and enhanced syntax for assignments.

6https://support.office.com/en-us/article/use-calculated-columns-in-an-excel-table
-873fbac6-7110-4300-8f6f-aafa2ea11ce8

7https://support.office.com/en-us/article/create-an-array-formula
-e43e12e0-afc6-4a12-bc7f-48361075954d

REFERENCES

[1] F. Hermans, B. Jansen, S. Roy, E. Aivaloglou, A. Swidan, and D. Hoe-
pelman, “Spreadsheets are code: An overview of software engineering
approaches applied to spreadsheets,” in Software Analysis, Evolution,
and Reengineering (SANER), 2016 IEEE 23rd International Conference
on, vol. 5. IEEE, 2016, pp. 56–65.

[2] R. R. Panko, “What we know about spreadsheet errors,” Journal of
Organizational and End User Computing (JOEUC), vol. 10, no. 2, pp.
15–21, 1998.

[3] T. Green and M. Petre, “Usability analysis of visual programming
environments: a ’cognitive dimensions’ framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[4] S. Ainsworth, “The functions of multiple representations,” Computers
& education, vol. 33, no. 2-3, pp. 131–152, 1999.

[5] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[6] A. Stead and A. F. Blackwell, “Learning syntax as notational expertise
when using drawbridge,” in Proceedings of the Psychology of Program-
ming Interest Group Annual Conference (PPIG 2014). Citeseer, 2014,
pp. 41–52.

[7] M. I. Gorinova, A. Sarkar, A. F. Blackwell, and D. Syme, “A
live, multiple-representation probabilistic programming environment for
novices,” in Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. ACM, 2016, pp. 2533–2537.

[8] S. L. Tanimoto, “VIVA: A visual language for image processing,”
Journal of Visual Languages & Computing, vol. 1, no. 2, pp. 127–139,
jun 1990.

[9] A. Sfard, “On the dual nature of mathematical conceptions: Reflections
on processes and objects as different sides of the same coin,” Educa-
tional studies in mathematics, vol. 22, no. 1, pp. 1–36, 1991.

[10] A. Sarkar, “The impact of syntax colouring on program comprehension,”
in Proceedings of the 26th Annual Conference of the Psychology of
Programming Interest Group (PPIG 2015), Jul. 2015, pp. 49–58.

[11] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task
load index): Results of empirical and theoretical research,” in Advances
in psychology. Elsevier, 1988, vol. 52, pp. 139–183.

[12] D. R. Compeau and C. A. Higgins, “Computer self-efficacy: Develop-
ment of a measure and initial test,” MIS quarterly, pp. 189–211, 1995.

[13] F. Changyong, W. Hongyue, L. Naiji, C. Tian, H. Hua, L. Ying et al.,
“Log-transformation and its implications for data analysis,” Shanghai
archives of psychiatry, vol. 26, no. 2, p. 105, 2014.

[14] A. Sarkar, M. Jamnik, A. F. Blackwell, and M. Spott, “Interactive visual
machine learning in spreadsheets,” in Visual Languages and Human-
Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, Oct
2015, pp. 159–163.

[15] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt, “Combinators for bidirectional tree transformations: A
linguistic approach to the view-update problem,” ACM Trans. Program.
Lang. Syst., vol. 29, no. 3, p. 17, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1232420.1232424

[16] N. Macedo, H. Pacheco, N. R. Sousa, and A. Cunha, “Bidirectional
spreadsheet formulas,” in IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2014, Melbourne, VIC, Australia,
July 28 - August 1, 2014, S. D. Fleming, A. Fish, and C. Scaffidi,
Eds. IEEE Computer Society, 2014, pp. 161–168. [Online]. Available:
https://doi.org/10.1109/VLHCC.2014.6883041

[17] R. Mittermeir and M. Clermont, “Finding high-level structures in spread-
sheet programs,” in Reverse Engineering, 2002. Proceedings. Ninth
Working Conference on. IEEE, 2002, pp. 221–232.

[18] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. T. Zellweger, “Fluid
visualization of spreadsheet structures,” in Visual Languages, 1998.
Proceedings. 1998 IEEE Symposium on. IEEE, 1998, pp. 118–125.

[19] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 2012,
pp. 441–451.

[20] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and refactoring
code smells in spreadsheet formulas,” Empirical Software Engineering,
vol. 20, no. 2, pp. 549–575, 2015.

[21] M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[22] J. Zhang, S. Han, D. Hao, L. Zhang, and D. Zhang, “Automated
refactoring of nested-if formulae in spreadsheets,” CoRR, vol.
abs/1712.09797, 2017. [Online]. Available: http://arxiv.org/abs/1712.
09797

[23] R. Abraham and M. Erwig, “Header and unit inference for spreadsheets
through spatial analyses,” in Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 2004, pp. 165–172.

[24] T. Cheng and X. Rival, “Static analysis of spreadsheet applications for
type-unsafe operations detection,” in European Symposium on Program-
ming Languages and Systems. Springer, 2015, pp. 26–52.

[25] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook,
M. Durham, and G. Rothermel, “Harnessing curiosity to increase
correctness in end-user programming,” in Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 2003, pp.
305–312.

[26] S. Aurigemma and R. Panko, “Evaluating the effectiveness of static
analysis programs versus manual inspection in the detection of natural
spreadsheet errors,” Journal of Organizational and End User Computing
(JOEUC), vol. 26, no. 1, pp. 47–65, 2014.

[27] R. Singh, B. Livshits, and B. Zorn, “Melford: Using neural networks
to find spreadsheet errors,” https://www.microsoft.com/en-us/research/
wp-content/uploads/2017/01/melford-tr-Jan2017-1.pdf, 2017, last ac-
cessed 12 April 2018.

[28] S. Peyton Jones, A. Blackwell, and M. Burnett, “A user-centred approach
to functions in Excel,” ACM SIGPLAN Notices, vol. 38, no. 9, pp. 165–
176, 2003.

[29] M. Burnett, J. Atwood, R. W. Djang, J. Reichwein, H. Gottfried, and
S. Yang, “Forms/3: A first-order visual language to explore the bound-
aries of the spreadsheet paradigm,” Journal of functional programming,
vol. 11, no. 2, pp. 155–206, 2001.

[30] K. S.-P. Chang and B. A. Myers, “Using and exploring hierarchical data
in spreadsheets,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, 2016, pp. 2497–2507.

[31] D. Miller, G. Miller, and L. M. Parrondo, “Sumwise: A smarter
spreadsheet,” EuSpRiG, 2010.

[32] J. Mendes, J. Cunha, F. Duarte, G. Engels, J. Saraiva, and S. Sauer,
“Systematic spreadsheet construction processes,” in Visual Languages
and Human-Centric Computing (VL/HCC), 2017 IEEE Symposium on.
IEEE, 2017, pp. 123–127.

[33] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooperstein, “Gencel:
a program generator for correct spreadsheets,” Journal of Functional
Programming, vol. 16, no. 3, pp. 293–325, 2006.

[34] G. Engels and M. Erwig, “Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005, pp. 124–133.

[35] A. Kay, “Computer software,” in Scientific American, vol. 251, no. 3,
1984, pp. 53–59.

[36] D. G. Hendry and T. R. Green, “Creating, comprehending and explaining
spreadsheets: a cognitive interpretation of what discretionary users think
of the spreadsheet model,” International Journal of Human-Computer
Studies, vol. 40, no. 6, pp. 1033–1065, 1994.

