

Edinburgh Research Explorer

Addressing Skewness in Iterative ML Jobs with Parameter
Partition

Citation for published version:
Wang, S, Chen, W, Zhou, X, Chang, S-Y & Ji, H 2019, Addressing Skewness in Iterative ML Jobs with
Parameter Partition. in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE, pp.
1261-1269, IEEE International Conference on Computer Communications, Paris, France, 29/04/19. DOI:
10.1109/INFOCOM.2019.8737583

Digital Object Identifier (DOI):
10.1109/INFOCOM.2019.8737583

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 07. Aug. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/219873723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/INFOCOM.2019.8737583
https://www.research.ed.ac.uk/portal/en/publications/addressing-skewness-in-iterative-ml-jobs-with-parameter-partition(cae4cf8c-ef85-46af-89a0-4cf473c6ce67).html

Addressing Skewness in Iterative ML Jobs with
Parameter Partition

Shaoqi Wang†, Wei Chen†, Xiaobo Zhou†, Sang-Yoon Chang†, and Mike Ji*
†Department of Computer Science, University of Colorado, Colorado Springs, USA

*School of Informatics, University of Edinburgh, UK
{swang,cwei,xzhou,schang2}@uccs.edu, mji@inf.ed.ac.uk

Abstract—Computational skewness is a significant challenge
in multi-tenant data-parallel clusters that introduce dynamic
heterogeneity of machine capacity in distributed data processing.
Previous efforts to addressing skewness mostly focus on batch
jobs based on the assumption that processing time is linearly
dependent on the size of partitioned data. However, they are
ill-suited for iterative machine learning (ML) jobs, which (1)
exhibit a non-linear relationship between the size of partitioned
parameters and processing time within each iteration, and (2)
show an explicit binding relationship between input data and
parameters for parameter update.

In this paper, we present FlexPara, a parameter partition
approach that leverages the non-linear relationship and pro-
visions adaptive tasks to match the distinct machine capacity
so as to address the skewness in iterative ML jobs on data-
parallel clusters. FlexPara first predicts task processing time
based on a capacity model designed for iterative ML jobs
without the linear assumption. It then partitions parameters to
parallel tasks through proactive parameter reassignment. Such
reassignment can significantly reduce network transmission cost
incurred by input data movement due to the binding relationship.
We implement FlexPara in Spark and evaluate it with various ML
jobs. Experimental results show that compared to hash partition,
FlexPara speeds up the execution by up to 54% and 43% in
private and NSF Chameleon clusters, respectively.

I. INTRODUCTION

Statistical machine learning (ML) plays an important role
in modern applications and services. Recently, distributed
implementation and execution of iterative ML algorithms on
data-parallel clusters are increasingly common, e.g., Spark [1]
and MLlib [2]. ML algorithms begin with an initial solution
(called parameters) and then improve the solution to fit input
data through sequential iterations [3], [4].

For cost-effectiveness and high utilization, data-parallel
clusters are frequently multi-tenant [5], [6], [7]. However, it
introduces dynamic heterogeneity and unpredictable perfor-
mance variation of machine capacity in data processing due
to resource contention and interference in the shared cloud
infrastructure. Such heterogeneity yields computational skew-
ness among parallel tasks and poses a significant challenge
for iterative ML jobs. When skewness occurs, tasks on slower
workers take longer to process and update their parameters
than tasks on faster workers, slowing down the entire iteration
execution and the job completion time.

Speculative task execution has been applied to address
skewness in jobs that fit MapReduce framework [8], [9], [10].
For example, in reduce stage, the job duplicates a straggler

task on a fast worker and shuffles intermediate data to that
task. However, iterative ML jobs work differently. Intermediate
parameters shuffled between adjacent iterations get bound with
input data to ensure the convergence. The binding relationship
results in that both parameters and the input are moved to
the straggler task. Such data movement leads to significant
network transmission cost since the input size is several orders
of magnitude larger than the size of parameters.

Most efforts [11], [12], [13], [14] mitigate skewness based
on the assumption that task processing time is linearly de-
pendent on the size of partitioned data. While the assumption
may hold true for map stage, it does not work well for reduce
stage. Recent work [15] shows that the linear assumption can
be a serious limitation when there is non-linear relationship
between the processing time of reduce task and the size of
partitioned intermediate data. It proposed a new task progress
indicator that operates without the linear assumption. But
it does not utilize the non-linear relationship to mitigate
computational skewness.

As reduce stage, iterative ML jobs, such as PageRank
and Topic Modeling, exhibit non-linear relationship between
the size of partitioned parameters and the task processing
time within each iteration. We recognize that the nature
of iteration also provides the opportunity to leverage the
non-linear relationship through adaptive parameter partition
so as to mitigate skewness. However, leveraging the non-
linear relationship in these ML Jobs should address several
challenges. First, the capacity model developed in work [15]
only accounts for reduce tasks in MapReduce Jobs. The
model cannot be applied to iterative ML jobs since it ignores
the parameter-input binding relationship. Second, parameter
partition should be aware of the binding relationship so as
to reduce the cost of network transmission incurred by input
data movement. A detailed explanation of the binding and
non-linear relationships is described in Section II-A.

In this paper, we propose FlexPara, a partition approach
that embraces the non-linear relationship and accounts for
parameter-input binding relationship. FlexPara includes two
major components: capacity model and parameter partition.
Capacity model is built to predict task processing time during
the job execution. Specifically, each worker (i.e., machine)
profiles the procedure of parameter processing and correlates
the parameter processing time and the size of bound input.
Afterward, for a task with partitioned parameters on the

worker, it calculates the processing time of each parameter
and predicts the task processing time.

Based on the capacity model, parameter partition first ob-
tains the predicted processing time of each task under hash
partition, in which parameters are partitioned to the worker
with the bound input (i.e., no additional input data movement).
Then, parameters from slower tasks are continually and reg-
ularly reassigned to faster ones to mitigate the skewness. In
contrast to previously partitions (e.g., PIKACHU [12]), this
reassignment-based partition reduces the deviation from hash
partition to reduce network transmission cost.

In a nutshell, we make the following contributions over
previous approaches: (1) we provide a capacity model tailored
for iterative ML jobs to predict task processing time without
the linear assumption, and (2) we develop a novel parameter
partition approach that accounts for the non-linear relationship
and the parameter-input binding to efficiently address skew-
ness in iterative ML jobs on multi-tenant clusters.

We implement FlexPara in Spark and evaluate it in clus-
ters using various iterative ML jobs. Experimental results
show that the execution time by FlexPara is faster than that
by hash partition by up to 54% and 43% in private and
NSF Chameleon clusters, respectively. FlexPara achieves even
greater significant performance improvements when compared
to PIKACHU, obtaining 1x and 72% faster execution time in
private and Chameleon clusters, respectively.

The rest of this paper is organized as follows. Section II
gives the analysis of iterative ML jobs and a case study
to establish the relevance of FlexPara. Section III describes
the design of FlexPara. Section IV gives the implementation
details. Section V and Section VI present the experimental
setup and evaluation results. Section VII reviews related work.
Section VIII concludes the paper.

II. MOTIVATIONS

A. ML Analysis

In MapReduce jobs, intermediate data generated from map
tasks is partitioned and shuffled to reduce tasks. However, in
iterative ML jobs, model parameters are partitioned from the
previous iteration. The task first receives partitioned parame-
ters. It then fetches the input data bound to the parameters.
Finally, the task starts computation.

The definition of parameter and bound input varies in
different ML jobs. Thus, we conducted analysis of Topic
Modeling and PageRank jobs theoretically and experimentally.

Topic Modeling uses LDA [16] to iteratively learn the
parameters of topic-word distribution until they can best
explain the corpus of documents. For the entire corpus, each
document has its own parameters: Dirichlet parameter γ and
multinomial parameter φ. These two parameters are regarded
as one parameter in the following description since they are
updated together. In each iteration, the parameter is shuffled
to the corresponding document (i.e., the bound input) and
updated based on variational inference algorithm [16].

In study [16], the authors proposed that the total number
of computations to process (i.e., update) one parameter within

one iteration is about N2K. N is the number of words in the
document and K is the number of total topics. To validate
this, we conducted the experiment that uses the dataset from
Wikipedia [17] in Spark local mode. We ran the LDA job on
two workers with different processing capacities, separately.
The result is represented as a set of data points in Figure 1(a),
where we used polynomial regression to plot two curves that
fit these points. Moreover, since every document has a different
number of words, the processing time for every parameter
within the task is different. We rank the processing time of
parameters in one task and set each parameter a serial number.
The result is shown in Figure 1(b).

For the distributed implementation of Topic Modeling, the
input data is identically distributed in clusters before the itera-
tion begins. All parameters are then partitioned to the input in
order to conduct parallel task processing during each iteration.
Since the processing time for each parameter varies, there is
no linear relationship between the task processing time and
the number of parameters within the task. Figure 1(c) shows
the cumulative processing time in order of serial numbers and
the non-linear relationship.

PageRank assigns a weighted score (i.e., parameter) to
every page, and the score of a page measures its importance
in the web. Let u be a web page. Let |Nu| be the number of
pages u points to and Bu be the set of pages that point to u. In
each iteration, its parameter Pu is shuffled to the set Bu (i.e.,
the bound input) and updated as Pu = c

∑
w∈Bu

Pw/Nw.
Variable c is the normalization factor, w is the page in Bu.
We can see that the processing time for one parameter depends
on the number of pages within its Bu. Since every page has
different size of Bu, the processing time for every parameter
is different, leading to the non-linear relationship between the
processing time and the number of parameters.

B. Case Study

TABLE I
PARTITIONED INPUT PAGES.

Serial number
of parameters

The bound
input size of

each parameter

Total
input size

Input
location

1 - 200 2.5MB 500MB slow worker
201 - 400 5MB 1000MB slow worker
401 - 600 2.5MB 500MB fast worker
601 - 800 5MB 1000MB fast worker

We created a small 3-node Spark cluster with 800Mbps
network bandwidth just for demonstration of dynamic hetero-
geneity and computational skewness. The 3-node cluster was
configured with one master and two slave nodes (i.e., worker).
The slave nodes are heterogeneous with one fast worker and
one slow worker. The CPU processing capacity of the fast
worker is twice as fast as that of the slow one.

We ran PageRank job under different skewness mitigation
scenarios. Before the iteration begins, the input data bounded
to each parameter is partitioned among two nodes based on
hash partition as shown in Table I. Within each iteration, 800
parameters are partitioned to two workers to be updated.

In the default task execution, 800 parameters are partitioned
based on hash partition as the input data. Figure 2 shows the

(a) Relationship between parameter pro-
cessing time and size of bound input.

(b) Ranked parameter processing time
within one task.

(c) Non-linear relationship between task
processing time and number of parameters.

Fig. 1. Experimental analysis of Topic Modeling for the non-linear relationship.

(a) Slow worker. (b) Fast worker.
Fig. 2. Parameters processed on two workers.

(a) Default execution. (b) Speculative execution.

(c) Linear-based partition. (d) Proposed partition.
Fig. 3. Task executions.

processing time of each parameter. For parameters with 2.5MB
bounded input data, the slow worker spends roughly 0.1s on
one parameter among serial numbers from 1 to 200 and the fast
worker spends roughly 0.05s on one parameter among serial
numbers from 401 to 600. For parameters with 5MB bounded
input data, each worker takes twice as much time. The default
execution time of two workers is shown in Figure 3(a). In
detail, tasks 1 and 2 receive 400 parameters from the previous
iteration and update them on the 1,500MB size input pages
separately. Due to the distinct computational capabilities, task
1 takes approximately 60s to finish while task 2 takes 30s.

Figures 3(b) to 3(d) show the performance of three skewness
mitigation scenarios. Figure 3(b) uses the reactive speculative
task execution method. The cluster starts a straggler task of
task 1 on the fast worker after task 2 is finished. To guarantee
the convergence speed, the input bounded to parameters from
serial number 1 to 400 is moved from the slow worker to
the fast worker, incurring network transmission cost of 15s.

Although the straggler spends less time on the fast worker, the
overall task execution time is longer than the default execution.

In a linear partition strategy, the processing capacities of
two workers are calculated as 0.15s per parameter and 0.075s
per parameter respectively, based on the statistics from the
default execution. As a result, it partitions 270 parameters to
the slow worker and 530 to the fast one, expecting processing
time to be 40.5s and 39.75s on the two workers separately.
Moreover, previous linear-based approaches (e.g., PIKACHU)
are not aware of input data transmission in ML jobs. Thus,
one partition scenario is shown as Figure 3(c). Such a partition
results in 27s processing time on slow worker and 46.5s on
fast one. Also, the slow worker spends extra 5s to transfer
the input bounded to parameters 401 to 600, while the fast
worker spends extra 13.25s to transfer the input bounded to
parameters 71 to 400.

Figure 3(d) shows the result of the proposed partition by
FlexPara in this paper. Based on the processing time of each
parameter, the slow worker spends 42s in processing 310
parameters, and the fast worker spends 39s in processing
490 parameters and 4.5s in transferring the input bounded to
parameters 311 to 400. The overall execution time is 37.9%
faster than that of the default execution.

III. FLEXPARA DESIGN

A. Optimality Problem Formulation

The goal of skewness mitigation is to minimize the overall
execution time of parallel tasks. That becomes equivalent to
minimizing the time of the slowest task (the one with the
largest execution time):

argmin
−→
V

max
i

Ti,Exe(Vi) (1)

where the vector
−→
V refers to the entire set of parameters.

Each of the element Vi refers to a subset of parameters
partitioned to task i. Ti,Exe(Vi) represents the execution time.
For iterative ML jobs, it is comprised of those components
from processing and networking:

Ti,Exe(Vi) = Ti,Pro + Ti,Netpa + Ti,Netin (2)
where Ti,Pro is processing time that is non-linearly dependent
on the size of partitioned Vi; Ti,Netpa corresponds to the
transmission cost (time) for parameter shuffling; and Ti,Netin

is the cost for the input movement. These two network costs
are non-negligible, especially in multi-tenant clusters with

D1,1, ... Di,1, ...

Fig. 4. The architecture of FlexPara.

unstable network bandwidth. Note that, Ti,Pro refers to the
processing time on CPU since a previous study [18] has shown
that most ML jobs are CPU-intensive jobs.

FlexPara studies each performance variable in Equation 2
and solves Equation 1. Specifically, it first approximates the
execution time to Ti,Exe(Vi) = Ti,Pro by assuming that the
network bandwidth is unlimited. Based on this assumption,
FlexPara models the heterogeneous worker capacities to pre-
dict each Ti,Pro and partitions

−→
V to balance various Ti,Pros.

It then improves the partition to further balance execution
time (Ti,Exe(Vi)) by considering network transmission costs
Ti,Netpa and Ti,Netin .

Figure 4 shows the architecture of FlexPara. We describe
their functionality as follows:
• Capacity Model correlates the parameter processing time

to the size of bound input on the worker based on poly-
nomial regression. It then uses the regression function to
estimate the processing time of each parameter within the
task so as to predict the task processing time.

• Parameter Partition uses capacity models from parallel
workers to predict processing time of each task in the next
iteration. It continually and regularly reassigns parameters
from slower tasks to faster ones to mitigate the skewness.

B. Capacity Model

1) Model overview: Iterative ML jobs, such as PageRank,
Matrix Factorization, and Topic Modeling, fit within one
model that searches a set of parameter V to best explain or
fit input data D. Such jobs are usually solved by iterative
algorithms that can be expressed as the following form:

V (t) = ∆(V (t−1), D) (3)

where, V (t) is the parameters at iteration t, update function ∆
trains the parameters from previous iteration t-1 on the bound
input D. This operation repeats itself until parameters in V
converge or meet certain requirements specified by users.

Running these jobs on data-parallel clusters often distributes
the input D over multiple parallel workers. Thus, V and D
become vectors

−→
V and

−→
D . Specifically, in each iteration, the

subset of data Di,j located on worker j is used for updating Vi
by running task i based on function ∆(). At the end of each
iteration, all updated Vi are synchronized and partitioned to
the next iteration. Note that, Di,j and Di,k refer to the same
data and the difference is the data location.

2) Task processing time: The processing time of task i
depends on the various parameters within Vi and the worker
on which it runs. For running it on worker j, we define a
function to estimate the time:

Ti,Pro =
∑

vi∈Vi,di,j∈Di,j

fj(vi, di,j) (4)

where vi is the parameter within Vi and di,j refers to the
bound input within Di,j . vi and di,j are connected by sharing
the same hash key. fj(vi, di,j) represents the processing time
of each parameter.

3) Parameter processing time: As illustrated in Section II,
the processing time of each parameter depends on the size
of the bound input. To estimate fj , we first collect historical
parameter processing results from the tasks running on the
worker. To adapt to the dynamic heterogeneity, we use the
information from tasks (one slave worker could run multiple
tasks) in the previous iteration to estimate fj in the current
iteration. Thus, we collect a set of data points that relate the
processing time of each parameter to the size of bound input as
shown in Figure 1(a). For each worker, the number of collected
data points equals the number of parameters partitioned to the
worker.

We then use polynomial regression to construct a mathemat-
ical function that has the best fit for these points. The function
can be presented as the fitting curves in Figure 1(a). After the
regression, we obtain all coefficients to construct the function:

fj(vi, di,j) =a1j ∗ |di,j |
0

+ a2j ∗ |di,j |
1

++ an+1
j ∗ |di,j |n

(5)
where a1j to an+1

j are coefficients and n represents the highest
order in the regression.

Note that a previous work [15] uses an exponential function
with fixed index to construct the mathematical function. How-
ever, such a method cannot be adaptive to various ML jobs
with different time complexities in fj . In contrast, polynomial
regression can effectively characterize linear, super-linear and
nlogn computations. Thus, we use polynomial regression to
construct the mathematical function.

C. Parameter Partition

The partition is comprised of three components as follows.
We first predict computational skewness based on the default
hash partition. Afterwards, we mitigate the skewness through
two steps: balance processing time via parameter reassignment
to shift loads from slower tasks to faster ones, and consider
network transmission cost and improve the partition via bal-
ancing execution time. The executed partition accounts for the
input-parameter binding relationship so that it does not hamper
the convergence of ML model.

1) Skewness prediction: With the capacity model, one can
directly partition parameters to balance the processing time.
However, such a method ignores the parameter-input binding
relationship, leading to non-trivial network transmission cost.
To reduce such cost, FlexPara partitions parameters on the
basis of the default hash partition that causes no network
transmission. We first calculate the parameter distribution
under hash partition. We then use the capacity model to predict

10 20 30 40 500

Task 1

Task i

Task m

Task j

Task n

60 70
Execution time (s)

cut processing time

processing time appended processing time

T1,Pro

Ti,Pro

Tj,Pro

Tn,Pro

updated parameters

80 ~ 90

80~90

60~65

60~65

(a) Skewness mitigation though parameter
reassignment.

i

m

j

n

(b) Unbalanced execution time due to het-
erogeneous transmission costs.

Fig. 5. Example of Parameter Partition.

the processing times of the tasks running on parallel workers
and examine the potential computational skewness. If the
skewness exists under the hash partition, FlexPara performs
parameter reassignment.

2) Skewness mitigation - parameter reassignment: We use a
heuristic load balancing algorithm to reassign parameters from
slower tasks to faster ones in order to mitigate the skewness.
Algorithm 1 describes the process of parameter reassignment.
Specifically, it calculates the difference of processing time
between the fastest task and the slowest task. If the difference
exceeds a threshold p, the skewness exists and the reassign-
ment is initiated (lines 4 to 13). During the reassignment, tasks
are ranked according to the processing time. Let Tm,Pro be
the median value. The tasks with processing time larger than
Tm,Pro are regarded as slower tasks. Faster tasks are defined in
a similar way. Then, we pair a faster task j with a slower task i
based on their distance to m. Afterwards, parameters from i are
reassigned to j. Note that the number of reassigned parameters
is in proportion to the time difference between tasks i and j in
order to accelerate the skewness mitigation (lines 7 to 9). |Vi|
refers to the number of parameters in partitioned Vi. Finally,
we predict processing time based on the new partition until
the difference (Diff) is smaller than the threshold p.

Figure 5(a) shows an example with the predicted processing
time for five tasks. After detecting faster tasks (i.e., j and n)
and slower tasks (i.e., i and 1), FlexPara pairs task 1 with n and
task i with j. It then reassigns parameters from task 1 to n and
from i to j. Figure 5(a) shows the execution time (T1,Pro and
Ti,Pro) that are cut from tasks 1 and i, and the execution time
(Tj,Pro and Tn,Pro) that tasks j and n get appended. Indeed,
before the reassignment, task 1 spends T1,Pro in processing
parameters from serial number 80 to 90. After reassignment,
these parameters are processed by task n with execution time
of Tn,Pro. The number of reassigned parameters from 1 to n is
larger than that from i to j. Tasks 1 and i reassign parameters
to tasks n and j separately during the next reassignment circle
until the threshold p is met.

3) Skewness mitigation - balancing execution time: After
reassignment, the uneven partitioned parameters result in het-
erogeneous Ti,Netpa as well as extra input data movement
Ti,Netin . For example, when the five tasks in Figure 5(a) are
located on different workers, Figure 5(b) shows the execution
time after the reassignment. Although the processing times are

Algorithm 1 Parameter reassignment
1: Variable: Skewness threshold p, reassignment unit b;
2: Rank tasks based on processing times;
3: Diff = difference of the time between the fastest task and the slowest one;
4: while Diff is larger than p
5: set Tm,Pro as the median processing time of tasks;
6: for task i in tasks with larger time than Tm,Pro

7: d = the distance between task i and m in the rank;
8: Obtain task j with same distance but smaller time;
9: Calculate the number of reassigned parameters |Vr| = d * b;

10: Parameter reassignment from task i to task j:
11: |Vi| = |Vi| - |Vr|; |Vj | = |Vj | + |Vr|;
12: end for
13: Re-predict processing times under current partition;
14: Re-rank tasks; Re-calculate the Diff ;
15: do while

balanced, the network transmission cost of tasks with more
shuffled parameters (i.e., tasks j and n) is more than that of
others, leading to unbalanced execution time. To evaluate the
cost, FlexPara estimates the network transmission rate of each
worker. For worker j, the rate is defined as:

Rj,Net =
∑

Sk/
∑

(Tk,Netpa + Tk,Netin) (6)
where k refers to task k that previously runs on this worker.
Sk is the size of transmissive data including the shuffled
parameters and transmitted input data. Both numerator and
denominator are collected from the previous iteration to esti-
mate Rj,Net in the current iteration.

In Section III-C2, Algorithm 1 only predicts the processing
time at the end of each reassignment (line 15). To balance
the execution time, FlexPara replaces it with execution time
prediction. Algorithm 2 describes the procedure.

Algorithm 2 Execution time prediction of task i
1: Get shuffled parameters Vi;
2: Estimate the rate Rj,Net of the worker j running task i;
3: Obtain the binding input Di,∗ based on Vi and shared keys;
4: Get local input data Di,j on worker k;
5: Calculate the moved input Di,move = Di,∗ - Di,j ;
6: Transmissive data size Si = size of Vi and Di,move;
7: Predict Ti,Pro based on capacity model and Vi;
8: Predict transmission cost Ti,Netpa + Ti,Netin = Si/Rk,Net;
9: Execution time Ti,Exe = Ti,Pro + Ti,Netpa + Ti,Netin ;

10: Return Ti,Exe;

IV. IMPLEMENTATION

We implement FlexPara in Spark version 1.6.3 by modifying
spark.core code and spark.mllib library. The driver
in Spark collects capacity models from parallel workers and
conducts the parameter partition.

A. Capacity Model

To store the capacity model, we add an object
executor.coefficient in each worker. The object
collects the data points during task execution in Spark
executor by rewriting function rdd.iterator() in
ShuffleMapTask.scala file. The information of shuffled
parameters comes from the class shuffleReadMetrics
in TaskMetrics.scala file and MLlib library. We use
Flanagan’s Java Scientific Library [19] to calculate the coef-
ficients in polynomial regression.

B. Parameter Partition

Skewness prediction: Both the parameter and the input are
stored in key-value form, where the key is the id (i.e., hash
key) and the value is the parameter or the bound input. We add
an object executor.localid in each worker to collect id
of the stored input and send them to the driver. The driver
connects id with the keys in executor.globalvalues
that stores the information of global parameters to obtain the
hash partition.

Parameter reassignment: Figure 6(a) shows the imple-
mentation of the default hash partition that consists of two
phases. In the shuffle write phase, the task from the previous
iteration first partitions parameters based on their hash values
and then stores them as buckets in the buffer space. Each
task has R buckets and R equals to the number of tasks in
the next iteration. Afterward, parameters in these buckets are
written continuously to the local disk and form files called
ShuffleBlockFile. Each bucket corresponds to one file. In the
shuffle read phase, tasks in the next iteration fetch these files.

Parameter reassignment in FlexPara reassigns a subset of
parameters from one task to another. However, the default im-
plementation does not support such reassignment. The reason
is that for each task t in the next iteration, a previous task
only stores the parameters partitioned to t in one file. For
example, in Figure 6(a), if the parameters partitioned to task
2 in iteration t are reassigned to task 1, task 1 has to fetch
two File-2 files from iteration t-1. In other words, the entire
set of parameters in task 2 are reassigned to task 1.

Figure 6(b) demonstrates our implementation. We change
the storage of ShuffleBlockFile in the shuffle write phase so
that each bucket can be written to multiple local disk files.
Note that, the number of these files equals to the reciprocal of
the reassignment unit in Algorithm 1. For example, when the
reassignment unit is set to 5%, each bucket is be written to 20
files and one reassignment reassigns at least 5% parameters
from a fast task to a slow one. To support multi-file shuffle
read, we establish more TCP communication channels to trans-
fer the files. Thus, in the shuffle read phase, the reassignment
is realized by reading a subset of files corresponding to one
bucket according to Algorithm 1. For example, reassigning a
subset of parameters from task 2 to task 1 can be implemented
by additionally transferring files a and b to task 1.

Parameters in each task are stored in variable records in
ShuffleMapTask.scala. Class SortShuffleWriter
writes the parameters to the local disk. To write
one bucket to multiple files, we revised the function
insertAll() in the class ExternalSorter used
by SortShuffleWriter and we modified the
buffer related class PartitionedPairBuffer in
spark.util.collection.

To obtain the network transmission rate, we used Linux
command netstat to monitor the network status of each
worker and implemented a distributed monitoring tool based
on RPC. The tool estimates the transmission rate at the end of
each iteration.

(a) Default implementation. (b) Reassignment implementation.
Fig. 6. Partition implementation comparison.

(a) Task execution time. (b) Dynamic skewness.
Fig. 7. (a) the execution time in the physical cluster, (b) the average error of
execution time in subsequent iterations compared to the reference.

V. EVALUATION SETUP

A. Testbeds

We built two multi-tenant Spark clusters to evaluate the
performance of FlexPara. A private cluster is deployed in a
university private cloud with 37 virtual machines (VMs), i.e.,
one master node and 36 worker nodes. Each node is assigned
with one virtual CPU core. A Chameleon cluster is deployed
in NSF Chameleon OpenStack KVM cloud [20]. The cluster
contains one master node and 9 worker nodes (Chameleon
allows total 10 nodes). Each node is assigned with four virtual
CPU cores. The two clusters are configured with 10Gbps
network bandwidth. Note that the private cloud is shared by all
faculty, staffs, and students and Chameleon OpenStack KVM
cloud is shared by different universities and institutions.

B. Workloads

To estimate the effectiveness of FlexPara, we choose three
representative ML jobs. PageRank uses the dataset from Hi-
Bench, containing 10k pages (k = 1000) for the private cluster
and 5k pages for Chameleon cluster. The number of parameters
equals to the number of pages. Matrix Factorization uses
alternating least squares approach for model training. The
experiments use the dataset from SparkBench [21], containing
a 20k*3k matrix and 23k parameters for the private cluster,
and a 10k*3k matrix and 13k parameters for Chameleon
cluster. The rank is configured as 300 for the two clusters.
Topic Modeling with LDA uses the dataset from Nytimes
corpus [22], containing 40k articles with 256 topics for the
private cluster, and 20k articles with 256 topics for Chameleon
cluster. The number of parameters equals to the number of
articles. The data size in the Chameleon cluster is smaller
since only 10 VMs can be applied. We run these jobs until
they reach default convergence thresholds in Spark.

(a) PageRank. (b) Matrix Factorization. (c) Topic Modeling.
Fig. 8. Execution time comparison among three approaches in private and Chameleon clusters.

C. Compared Approaches and Metrics

The ideal execution environment for ML jobs is a homo-
geneous cluster and input data are pre-partitioned to achieve
homogeneous loads on parallel tasks. Hence, we run the jobs
in such an environment and consider it as the baseline.

We evaluate the performance of three partition approaches:
FlexPara (our scheme), default hash partition in Spark, and
PIKACHU (recent proactive partition approach). In default
hash partition, parameters with the same hash key are parti-
tioned to the same task (parameter is stored in key-value form).
PIKACHU estimates machine capacity based on the linear
relationship between map task execution time and task input
size. It then partitions intermediate data to reduce stage [12].
Note that PIKACHU was implemented in MapReduce Hadoop
environment. In our evaluation, we implement PIKACHU in
Spark environment so as to compare it with FlexPara on the
same computing framework.

The performance measurements include execution time,
processing time, and network transmission cost spent on one
iteration on average. The measurements are normalized to the
baseline performance.

VI. EXPERIMENTAL EVALUATION

FlexPara features several run-time hyperparameters. In the
default settings, the highest order n in Equation 5 is set to be 9
in the two clusters. The threshold p and the reassignment unit b
in Algorithm 1 are set to be 9% and 5% in the private cluster.
These two values are set to be 6% and 8% in Chameleon
cluster. Note that these default values are the best settings
empirically obtained by experiments in Section VI-D.

A. Dynamic Heterogeneity and Capacity Model Accuracy

To illustrate the computational skewness in multi-tenant
clusters, we run PageRank job with hash partition in the
private cluster. We present the actual task execution time in a
randomly selected iteration in Figure 7(a). The result shows
that the fastest task can be 1.5x faster than the slowest task
in the private cluster. Figure 7(a) also shows the estimated
execution time using the capacity model. The results show
that the capacity model achieves high accuracy in execution
time estimation, with an average error of 7.5% (average error
in work [15] is 7.05%). Note the average error is 6.95% in
Chameleon cluster. To verify the dynamics of heterogeneity,
we run PageRank job with the hash partition in the private
cluster. We randomly select one iteration as the reference. We
measure the average error of the time in the subsequent iter-
ations and compare to the reference as shown in Figure 7(b).

(a) PageRank. (b) Topic Modeling.
Fig. 9. Processing time comparison among three approaches.

(a) PageRank. (b) Topic Modeling.
Fig. 10. Transmission cost comparison among three approaches.

The cluster exhibits different skewness in the subsequent
iterations. We observed similar results, though omitted due
to space, for Chameleon cluster and other three jobs.

B. Execution Time Evaluation

Figure 8 shows the result of the execution time. Among
the three approaches, FlexPara is the closest to the ideal and
it achieves significant performance gain over the other two
approaches. Compared to hash partition, FlexPara achieves
significant performance improvements, with 54%, 39% and
43% faster execution time the three ML jobs respectively, in
the private cluster. The experiment in Chameleon cluster shows
similar results with 43%, 32% and 33% faster execution time
respectively, for the three jobs. The private cluster has better
performance improvement since the skewness in the private
cluster is more severe than that in Chameleon cluster.

Compared to hash partition, PIKACHU results in obviously
worse performance in execution time for each of the three
ML jobs. The performance degradation mainly comes from
a large amount of network transmission cost. Moreover, for
iterative ML jobs, PIKACHU partitions parameters based
on the inaccurate linearity assumption, leading to additional
computational skewness. Overall, FlexPara achieves significant
improvements over PIKACHU, by 1x, 70% and 82% faster
execution time for the three ML jobs in the private cluster,
and 72%, 47% and 59% faster execution time for the three
ML jobs in Chameleon cluster.

Fig. 11. Task execution time of PageRank job in the private cluster.

Figures 9 and 10 show the processing time and the network
transmission cost of the three approaches in PageRank and
Topic Modeling jobs. Figure 9 shows that processing time
of both FlexPara and PIKACHU are smaller than that of
hash partition, and FlexPara is closest to the ideal. FlexPara
outperforms hash partition due to the parameter reassignment.
Although PIKACHU models the capacity based on inaccurate
linearity assumption, it can still mitigate the skewness to
a certain extent. PIKACHU in Chameleon cluster performs
better than that in the private cluster since the larger cluster
increases its error in modeling capacity.

In Figure 10, the hash partition is close to the ideal in
transmission cost, because they both incur little input data
movement and the cost only comes from the parameter shuf-
fling. The cost of FlexPara and PIKACHU is larger than that
of the hash partition due to the extra input data movement.
Specifically, PIKACHU results in the largest cost since it is
not aware of the binding relationship. FlexPara, in contrast,
reduces such cost through the parameter reassignment depen-
dent on hash partition. Also, compared to PageRank, the cost
of Topic modeling in hash partition is larger since it shuffles
larger size of parameters.

Figure 11 plots the task execution time in a randomly
selected iteration of PageRank job in the private cluster. Re-
sults show that the hash partition causes severe computational
skewness. PIKACHU worsens the skewness due to its resulted
network transmission cost. FlexPara can balance the task exe-
cution time. Figure 12 further plots the parameter reassignment
procedure between tasks 7 and 8 before the iteration begins.
The x-axis represents the reassignment times (i.e., while loop
times in Algorithm 1). The left y-axis refers to the estimated
execution time of two tasks after each reassignment. Before
reassignment begins (reassignment times = 0), parameters size
in each task is the same as that in hash partition. After each
reassignment, estimated execution time in task 8 gets closer to
the time in task 7 since more parameters are partitioned to task
8. The network transmission cost in task 7 is negligible since
only parameters are shuffled to the task. In contrast, after first
reassignment, the transmission cost in task 8 becomes non-
negligible due to input data movement. The cost increases as
more parameters are reassigned from task 7 to task 8.

TABLE II
OVERHEAD OF FLEXPARA IN THE PRIVATE CLUSTER.

Workload regression algorithms storage transmission total
PageRank 0.83% 1.2% 2.5% 1.7% 6.23%
Matrix Factorization 0.79% 2.2% 2.9% 2.1% 7.99%
Topic Modeling 0.81% 1.8% 2.3% 1.6% 6.51%

Fig. 12. Parameter reassignment procedure between two tasks.

C. Overhead

FlexPara has four overheads: the CPU overhead in poly-
nomial regression, the CPU overhead in the algorithms, the
I/O overhead in multiple parameters files storage, and the I/O
overhead in multiple parameters files transmission. Table II
lists their percentages in task execution time with default hy-
perparameters in the private cluster. The sum of four overheads
is much smaller than the performance improvement. Similar
results, omitted in this paper, hold for Chameleon cluster.

D. Hyperparameter Evaluation

We vary each hyperparameter and show the results of
PageRank in the private cluster. Similar results hold for the
other three jobs and also for the Chameleon cluster.

The highest order. Figure 13(a) shows the goodness of Fit
and the overhead of polynomial regression when the highest
order n varies from 1 to 15. For the Goodness of Fit, the
smallest value occurs when the order is set to one. Once the
order is set to 2 or higher, it becomes much better and remains
on a slow-growth path. For the overhead (normalized to the
overhead when the order is 1), it is increasing rapidly when
the order is larger than 9. Thus, to maintain a good balance
between performance and the overhead (high Goodness of Fit
and low overhead), we choose 9 as the default highest order.

The threshold. Figure 13(b) presents task execution time
and the algorithms overhead (both of them are normalized to
the execution time when threshold is 1%) when the threshold
p varies from 1% to 20%. The sum of the two achieves the
lowest value when the threshold is set between 6% and 9%.
A lower threshold brings smaller execution time but higher
overhead, and vice versa.

The reassignment unit. Figure 13(c) plots task execution
time, the algorithms overhead, and the overhead in multiple
parameters files storage when the reassignment unit b varies
from 1% to 20%. Once the unit is set between 5% and 8%,
FlexPara performs the lowest sum. For a smaller unit, it spends
longer time to calculate the reassignment in Algorithm 1. It
also needs more files to store parameters and more TCP chan-
nels to shuffle parameters. A higher unit has lower overhead
in the files storage, but it causes redundant reassignments.

VII. RELATED WORK

Speculative execution and task cloning: Speculative ex-
ecution is used to mitigate skewness in data processing
frameworks like MapReduce and Spark [8], [9], [10]. The
concept is to run slow tasks redundantly on multiple machines.

(a) The highest order. (b) The threshold. (c) The reassignment unit.
Fig. 13. Hyperparameter evaluation of PageRank in the private cluster.

However, for ML jobs with binding parameter and input data,
speculative execution on other machines results in extra input
data movement, leading to certain network transmission cost.

Work stealing, work shedding: The concept of work steal-
ing or work shedding is to move task loads from a busy worker
to an idle worker. Previous approach [11] waits for a worker to
idle before looking to steal work, incurring additional delays
until work is found. Recent effort FlexRR [14] identifies slow
workers and reassigns the load before fast workers finished.
However, these stealing approaches estimate the stolen task
load based linear assumption. In contrast, FlexPara proactively
steals (reassigns) parameters without linear assumption.

Adaptive task size adjustment: Task size adjustment
solves the performance skewness by matching the amount of
data processed at heterogeneous machines to their respective
capabilities. FlexMap [13] proposes a new map execution en-
gine for MapReduce to create elastic map tasks with different
input block sizes. PIKACHU [12] proposes new intermediate
data partition algorithms to adaptively adjust the reduce task
size for MapReduce jobs. Recent work [15] proposes a new
task progress indicator for MapReduce jobs. But it does not
use the indicator to mitigate computational skewness.

Less strict synchronization: Synchronization in Spark
follows the strict BSP model and thus their performances can
be impaired by slower tasks. Recent efforts propose alternative
synchronization models to mitigate the skewness. A-BSP [23]
is a BSP-based aggressive synchronization model that uses
updates from partial input data for synchronization. SSP [3],
[24] uses flexible synchronization and allows any worker to
be up to a bounded number of iterations ahead of the slowest
worker. SSP-based frameworks (e.g., Petuum [3]) mitigate
the communication overhead problem with parameter server
architecture [24], [25], [26].

VIII. CONCLUSION

In this paper, we tackle the difficult skewness problem in
distributed iterative ML jobs in multi-tenant clusters. We pro-
pose FlexPara, a parameter partition approach that provisions
adaptive tasks to match the distinct machine capacity. FlexPara
first models machine capacity in task processing for iterative
ML jobs without linear assumption. Then, it leverages the na-
ture of iterative jobs to adaptively partition parameters in each
iteration through proactive parameter reassignment in order to
adjust task size. We have implemented FlexPara in Spark and
performed evaluations with various ML jobs. Experimental
results show that the execution time with FlexPara is faster
than that with hash partition by up to 54% and 43% in private
and Chameleon clusters, respectively.

IX. ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grants
CNS-1422119 and SHF-1816850. Results presented in this
paper were obtained partially using the Chameleon testbed
supported by NSF.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets.” Proc. of USENIX Hot-
Cloud, 2010.

[2] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[3] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho,
G. R. Ganger, P. B. Gibbons, G. A. Gibson et al., “Exploiting iterative-
ness for parallel ml computations,” in Proc. of ACM SoCC, 2014.

[4] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. of IEEE INFOCOM, 2018.

[5] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapreduce
clusters,” in Proc. of USENIX ATC, 2014.

[6] S. Wang, W. Chen, X. Zhou, L. Zhang, and Y. Wang, “Dependency-
aware network adaptive scheduling of data-intensive parallel jobs,” IEEE
Transactions on Parallel and Distributed Systems, 2018.

[7] C. Chen, W. Wang, and B. Li, “Performance-aware fair scheduling:
Exploiting demand elasticity of data analytics jobs,” in Proc. of IEEE
INFOCOM, 2018.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, 2008.

[9] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments.” in
Proc. of OSDI, 2008.

[10] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones.” in Proc. of USENIX NSDI,
2013.

[11] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: mitigating
skew in mapreduce applications,” in Proc. of ACM SIGMOD, 2012.

[12] R. Gandhi, D. Xie, and Y. C. Hu, “Pikachu: How to rebalance load in
optimizing mapreduce on heterogeneous clusters.” in Proc. of USENIX
ATC, 2013.

[13] W. Chen, J. Rao, and X. Zhou, “Addressing performance heterogeneity
in mapreduce clusters with elastic tasks.” in Proc. of IEEE IPDPS, 2017.

[14] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing, “Addressing the straggler problem for iterative
convergent parallel ml,” in Proc. of ACM SoCC, 2016.

[15] E. Coppa and I. Finocchi, “On data skewness, stragglers, and mapreduce
progress indicators,” in Proc. of ACM SoCC, 2015.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[17] “Wikipedia corpus,” https://corpus.byu.edu/wiki/.
[18] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and

V. ICSI, “Making sense of performance in data analytics frameworks.”
in Proc. of USENIX NSDI, 2015.

[19] M. T. Flanagan, “Michael thomas flanagans java scientific library,” 2007.
[20] “Chameleon cloud,” https://www.chameleoncloud.org/.
[21] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a

comprehensive benchmarking suite for in memory data analytic platform
spark,” in Proc. of ACM CF, 2015.

[22] “New york times corpus,” https://catalog.ldc.upenn.edu/LDC2008T19.
[23] S. Wang, W. Chen, A. Pi, and X. Zhou, “Aggressive synchronization

with partial processing for iterative ml jobs on clusters,” in Proc. of
ACM Middleware, 2018.

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server.” in Proc. of OSDI, 2014.

[25] Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, Y. Wan, Z. Li,
J. Wang, S. Huang et al., “Bigdl: A distributed deep learning framework
for big data,” arXiv preprint arXiv:1804.05839, 2018.

[26] S. Wang, A. Pi, and X. Zhou, “Scalable distributed dl training: Batching
communication and computation,” in Proc. of AAAI, 2019.

