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Bayesian Optimization for Whole-Body Control of High Degrees of
Freedom Robots through Reduction of Dimensionality

Kai Yuan, Iordanis Chatzinikolaidis, and Zhibin Li

Abstract—This paper aims to achieve automatic tuning of
optimal parameters for whole-body control algorithms to achieve
the best performance of high-DoF robots. Typically the control
parameters at a scale up-to hundreds are often hand-tuned
yielding sub-optimal performance. Bayesian Optimization (BO)
can be an option to automatically find optimal parameters.
However, for high dimensional problems, BO is often infeasible
in realistic settings as we studied in this paper. Moreover, the
data is too little to perform dimensionality reduction techniques
such as Principal Component Analysis or Partial Least Square.
We hereby propose an Alternating Bayesian Optimization (ABO)
algorithm that iteratively learns the parameters of sub-spaces
from the whole high-dimensional parametric space through
interactive trials, resulting in sample efficiency and fast conver-
gence. Furthermore, for the balancing and locomotion control of
humanoids, we developed techniques of dimensionality reduction
combined with the proposed ABO approach that demonstrated
optimal parameters for robust whole-body control.

Index Terms—Optimization and Optimal Control, Legged
Robots, Humanoid and Bipedal Locomotion, Humanoid Robots

I. INTRODUCTION

FOR robot locomotion, control parameters are essential
for the stabilization [1], Inverse Dynamics and whole-

body control [2] of legged robots, e.g. humanoids [3], [4]
and quadrupeds [5]. However, the high-dimensional and often
sensitive parameters need to be correctly chosen to guarantee
stability and good performance, which could be manually
tuned or automatically found by search algorithms. The former
is time consuming and suboptimal due to the correlation of
high-dimensional parameters, while the latter requires sophisti-
cated search subject to the high-dimensionality of the problem
that may be sample-inefficient or often impossible.

The influence of parameters on the performance of a task
cannot be directly computed, because the evaluation needs to
be quantified from the interaction between the robot and the
environment. Therefore, the objective function for evaluating
the performance can be treated as a black-box, and derivative-
free searching algorithms can be useful to determine the
optimal parameters. With increasing dimensionality of the
parameters, random or grid search approaches are inefficient
as the parametric space increases exponentially, and thus the
amount of evaluations. Derivative free searching algorithms,
such as Sequential Model-based Algorithm Configuration [6],
evolutionary algorithm [7], and particle swarm methods [8],
are able to find a suitable set of parameters. However, they are
not well suited for expensive evaluations due to their sample-
inefficient nature.

This research is supported by the EPSRC CDT in Robotics and Autonomous
Systems (EP/L016834/1), Future AI and Robotics for Space (EP/R026092/1),
and Offshore Robotics for Certification of Assets (EP/R026173/1).
The authors are with the School of Informatics, the University of Edinburgh,
UK. Corresponding author’s email: kai.yuan@ed.ac.uk

Fig. 1: Robust balancing against perturbations of NASA’s
Valkyrie using 36 automatically tuned control parameters.

Furthermore, automatic tuning of control parameters can
be equivalently achieved by machine learning. Reinforcement
learning can be used in robot control to tune optimal gait pa-
rameters [9], or to directly learn control policies for humanoid
balancing control [10]. Alternatively, mathematical optimiza-
tion can be effective in low dimensional problems such as
optimizing the gait parameters considering the kinematics and
dynamics constraints [11], [4].

Bayesian Optimization (BO) [12], a derivative-free, sample-
efficient optimization algorithm, is suitable to find global op-
tima for black-box optimization functions [13], and is widely
used for hyper-parameter tuning [14]. In robotics, BO has been
used to find gait parameters on real, physical hardware in [15]
(5 dim./9 dim.), [16] (7 dim.), [17] (8 dim.), [18] (15 dim.).
Additionally, domain knowledge has been applied to find
suitable kernels for improving sample efficiency on hardware
experiments [15], [19]. However, the dimensionality in these
works was relatively low, and hence a direct implementation
of BO performed well.

Despite its benefits, the capability of BO in finding
global optima is limited by the high dimensionality, as the
search space grows exponentially. Dimensionality reduction
approaches, such as Principal-Component Analysis [20] or
Partial Least Squares [21], would fail when the evaluation of
the objective function is expensive, or the data is insufficient to
find correlations in parameters. An approach to combine BO
with LQR was suggested in [22], in which, rather than tuning
the full state-feedback controller, only the lower dimensional
LQR weights were tuned via BO. For humanoid Whole-Body
Control, a Trial-and-Error learning algorithm in [23] dealt with
model inaccuracies by learning repulsors to alter reference
motions that prevents an unstable configuration of state space.

Recently, high-dimensional BO methods have been pro-
posed: in [24] only a subset is optimized over by randomly
dropping out parts of the parameters space; in [25] a local
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search is performed near a priorly given location. However,
the work in [24] does not consider the correlation between
the parameters and randomly drops out parameters, while the
solution in [25] relies on prior knowledge of the optimum
which is mostly unavailable without pre-tuning.

To overcome these limitations, we propose a novel approach
that applies domain knowledge for partitioning the parameter
space, and is able to find an optimum without assuming the
location of the optimum. We adopt the idea of Alternating
Optimization [26] and iteratively optimize one partitioned
parameter sub-space at a time while keeping the rest of the
parameter space fixed.

Our proposed algorithm has similarities with Coordinate
Descent approaches [27]. However, instead of a sequential
search along the coordinates until convergence, our proposed
method searches in sub-hyper-boxes of the parameter space
and is independent on the convergence of previous iterations.
In combination with BO, a global optimization algorithm, the
alternating nature reduces the risks of local minima and allows
parallelization, which are the two characteristics that are not
provided by Coordinate Descent methods.

In this work, we show in simulation that the proposed
algorithm is able to find an optimal hyper-parameter set
for 36 parameters of a Whole-Body Quadratic Programming
controller. As a further validation, our proposed algorithm is
shown to be capable of finding the optima of 24 challenging
objective functions from the COCO benchmarks [28]. Our
contributions are summarised as follows:
• A novel Alternating Bayesian Optimization (ABO) al-

gorithm that is able to optimize black-box objective
functions with high-dimensional parameters.

• An automated parameter tuning framework for Whole-
Body Control that can find the high-dimensional optimal
parametric set from scratch within a few iterations.

• Evaluation of the versatility of the proposed ABO on
the COCO benchmarking platform that shows consistent
convergence of finding near global optima for challenging
high-dimensional objective functions.

This paper is structured as follows. First, the BO problem
for whole-body control is formulated in Section II. Second, our
novel ABO algorithm and the automated tuning framework are
presented in Section III. The results of the whole-body control
and benchmarking on COCO are analyzed in Section IV, and
the potential uses and possible limitations of the proposed
algorithm are discussed in Section V. Finally, we conclude
in Section VI.

II. BAYESIAN OPTIMIZATION

To find the maximum of an expensive-to-evaluate objective
function, BO performs three steps. First, a cheap-to-evaluate,
surrogate objective function is built as a Gaussian Process
(GP). Second, an acquisition function maximises over the
GP in order to find a local maximum. The point found by
maximising the acquisition function is a candidate for the
global optimum. Third, this point is sampled on the actual
expensive-to-evaluate objective function. Observing a point at
the suspected optimal points reduces (eliminates if noiseless)

the variance of the GP at that point, and therefore refines
the GP. By continuously iterating so, a global optimum of
the actual objective function can be found [14]. The pseudo
code is given in Algorithm 1. The sampled objective value
yi consists of the true objective function J(xi) and the noise
εi. The notation y1:T indicates the samples gathered for yi at
time step i = 1, ..., T .

Algorithm 1 Pseudo code for Bayesian Optimization

1: y1:T ← J(x1:T ) + ε1:T , sample T points
2: Initialise GP with D1:T ← {x1:T ,y1:T }
3: for i = 1, 2, ..., N do
4: xt ← argmaxxa(x), get next query point
5: yt ← J(xt) + εt, sample query point xt
6: Update GP with D1:t ← {D1:t−1, (xt, yt)}

A. Gaussian Processes

A Gaussian Process is defined by a mean function m(x)
and a covariance function k(x,x′):

f(x) ∼ GP(m(x), k(x,x′)). (1)

The prior mean m(x) (not conditioned on data) is chosen
to be a zero function m(x) = 0 [29]. For the choice of
a covariance function k(x,x′), several kernels have been
proposed [29]. Throughout this work, we used a Matérn kernel
with the parameters1 ν = 1.5, l = 1.0:

k(xi,xj) =
21−ν

Γ(ν)

(√
2νd

l

)ν
Kν

(√
2νd

l

)
, (2)

where d = ‖xi − xj‖, gamma function Γ(·), modified Bessel
function Kν , and non-negative parameters ν, l.

B. Optimization Problem Formulation

The BO aims to find a set of parameters X that maximises
the reward function J(X), which keeps the objectives to
be within a certain user-defined range. The reward function
Jtrack(X) for tracking performance is:

Jtrack(X) = rC + rF + rT + rP + rH , (3)

where the tracking objectives are Centre of Mass (COM) (rC),
foot (rF ), torso (rT ) and pelvis (rP ), and hand (rH ). Every
tracking reward rX =

∑N
i=0 rx,i consists of the sum of N

rewards rx,i. A reward 0 < rx,i ≤ 1 at time step i for tracking
a desired value xdi is given if the objective is in a certain range
(determined by width κ):

rx,i = exp(−κ‖xdi − xi‖2). (4)

The width κ = −ln(C)/δ2max is calculated by the range δmax
and associated reward C

.
= 0.001 (C → 0, because C =

1While BO requires user-choices, e.g., kernel and acquisition function and
related hyper-parameters, our ABO in this study is robust towards these
choices. The same results were achieved by different acquisition functions
(Expected Improvement, Upper Confidence Bound, Probability of Improve-
ment), and kernels (Radial Basis Function, Matérn, Rational Quadratic) using
the default parameters of scikit-learn.



3

−0.1 −0.05 0 0.05 0.1
0

0.5

1

Error e = xd - xi

R
ew

ar
d

fo
r

er
ro

r
Admissible error: 0.1 Admissible error: 0.05 κ = 690 κ = 2760

Fig. 2: Reward of error values for κ = 690 and κ = 2760.

0 and ln(0) are infeasible). Critical links, such as feet and
COM have an error range δmax = 0.05 for both orientation in
[rad] and position in [m] (κ = 2760, red curve, Fig. 2). An
error range δmax = 0.1 for torso, pelvis, and hands yields a
width parameter κ = 690 (blue curve, Fig. 2). The admissible
error range is motivated by the physical shape of the support
polygon, where 0.1m and 0.05m correspond to half of the
foot length and width respectively, and the rotational errors
approximately match the smallest torso joint limits.

A fall penalty is added if either the orientation of the torso
θrpy exceeds a threshold δrpymax , or the pelvis height zc is
below a threshold δz:

Jfall =

{
0, if θrpy ≥ δrpymax

or zc < δz,

1, else.
(5)

The overall reward function is:

J(X) = Jtrack(X) · Jfall. (6)

C. Acquisition Function
The goal of an acquisition function a(x) is to have a fast-to-

evaluate function at any given point x in order to decide where
to sample next for the observation (yi,xi). The next sample
point is chosen as the point x = argmaxxa(x) that maximises
the acquisition function. The mean µ(x) = µ(x;D, θ) and
variance σ2(x) = σ2(x;D, θ) are calculated from previous
observations D = {x1:n,y1:n} and hyper-parameters θ of the
GP. In this paper, the upper confidence bound (UCB) [30] is
used. It automatically trades off exploration and exploitation
by weighing mean against variance:

aUCB(x) = µ(x) + ασ(x), (7)

where the trade-off parameter α ≥ 0. The UCB for max-
imisation can be seen as an algorithm that minimises the
accumulated regret RT = ΣTt=1f(x∗) − f(xt) with the
unknown-optimal point x∗ to a point of no-regret [31]:

lim
T→∞

RT /T = 0. (8)

III. DIMENSIONALITY REDUCTION TECHNIQUES

This section presents the principles for reducing the di-
mensionality of the optimization variables. First, we elaborate
our proposed Alternating Bayesian Optimization (ABO) ap-
proach for finding high-dimensional parameters using a pseudo
algorithm. Next, we introduce domain knowledge such as
symmetry to reduce the dimensionality of parameters from
more than 100 down to 36, and then group these 36 parameters
by their correlation.

A. Core Concept and Formulation of the Algorithm

We propose a novel method (Algorithm 2) of finding the
global optimum for the whole set of optimization variables
X . We partition X = [X1, ..., XK ] into K groups, and suc-
cessively optimize the objective function (6) on each partition
Xj (j = 1, ...,K) while keeping the other K − 1 partitions
fixed. We define the crossed-out notation Xi to indicate that
the parameter group Xj (j = 1, ...,K) is fixed.

First, an initial set of parameters X0 will be used for all
optimization variables with maximum value ymax = J(X0).
Next the objective function J(X) will be optimized via BO
with all parameter groups being fixed except Xj . If using Xj

results in a better value than the current maximum value ymax,
then Xj will be used and ymax will be updated.

After iterating through all K groups for N times or when
a termination criterion is met, a final BO step with Nfinal
iterations is performed to locally optimize around the near
optimal parameter set. This step aims to either fine-tune the
parameter Xsub (if J(Xfinal) − J(Xsub) < δ), or unstuck
the optimization (if J(Xfinal)− J(Xsub) > δ).

In Algorithm 2, ABO is used to find near-optimal param-
eters, and the final holistic BO will either globally fine-tune
or unstuck the local optimum. For large variations between
ABO (Algorithm 2, line 2) and holistic BO (Algorithm 2,
line 9), which indicates a local maximum, the algorithm will
be restarted with new initialisation X0 = Xfinal.

Algorithm 2 Pseudo code for Alternating Bayesian Optimiza-
tion

1: X ←X0, ymax ← J(X0)
2: for i = 1, 2, ..., N and not terminate do
3: for j = 1, ...,K do
4: X+

j ← argmax
Xj

J(X1, ..., Xj , ..., XK)

5: if J(X1, ..., X
+
j , ..., XK) > ymax then

6: X ← [X1, ..., X
+
j , ...XK ]

7: ymax ← J([X1, ..., X
+
j , ..., XK ])

8: Xsub ←X
9: for i = 1, 2, ..., Nfinal do

10: Xfinal ← argmaxX J(X)

11: if J(Xfinal)− J(Xsub) > δ then
12: Restart ABO with X0 ←Xfinal

B. Reduction of Dimensionality for Whole-Body Control

The Quadratic Programming (QP) based Whole-Body con-
troller optimizes physically feasible torques for tracking task-
space references. The task priorities are represented by the
weights as w = [w0, ..., wn] in the objective function of the
whole-body optimization problem2 (9). The whole-body QP
in [3] is adopted and the tasks Jtasks are:

Jtask =
1

2
‖AX − b‖2, (9)

2The priority is determined via ABO. The reward function (6) is designed
such that the weights will be optimized to keep the tracking error within the
user-specified error range and as close to zero as possible.
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where A = [w0A0, · · · , wnAn]T , b = [w0b0, · · · , wnbn]T ,
and the optimization variable X = [q̈, τ ,λ]T consisting of
torque commands τ , joint accelerations q̈ and ground reaction
forces λ. Rearranging (9) leads to the QP form:

min
X

XTHX + fTX (10)

s.t. AeqX +Beq = 0 (11)
AineqX +Bineq ≥ 0. (12)

The cost function (10) is a weighted sum over tracking
objectives and regularization (cf. Table I). The Cartesian refer-
ence acceleration for tracking COM and body link trajectories
is calculated from the desired position xd, velocity ẋd, and
acceleration ẍd via a PD law as:

ẍ = ẍd +KP (xd − x) +KD(ẋd − ẋ). (13)

The equations of motion form the equality constraints (11):

[
M(q) −S −JT (q)

] q̈τ
λ

+ h(q, q̇) = 0, (14)

with inertia matrix M(q), selection matrix S, stacked Ja-
cobian matrices JT (q) of the contact links, and nonlinear
effects h(q, q̇). Torque limits, friction constraints, and COP
constraints are considered in the inequality constraints (12)
and are implemented as proposed in [32].

C. Optimization Variables

By assuming symmetry between the left and right and
grouping symmetric links, the optimization variables can be
reduced to 36 (Table I). As shown in Table II, III, holisti-
cally optimizing 36 parameters altogether for the whole-body
control yields suboptimal results, and is thus impractical.

We will show that grouping the optimization variables
into three physically meaningful groups will result in faster
convergence and better performance. The parameters X =
[XW , XPD, XM ] are categorised into objective function
weights XW (9), PD gains XPD (13), and miscellaneous
parameters XM . Here, the miscellaneous set XM describes
the parameters required for the wrench constraints as in [32],
including the foot geometry xfront, xback, yleft, yright with
yside = yleft =yright, and friction constraints µ. Instead of
using a constant foot size in XM , the foot geometry can be
treated as a tunable parameter for finding a suitable stability
margin, where boundary limits are the actual foot dimensions
of the robot. We found that leaving a stability margin for
the actual foot geometry and XM leads to higher robustness.
Averaged over 10 trials, a stability margin of 2cm was found.

IV. RESULTS

This section presents three key results: 1) the ability of
ABO to find optimal parameters for whole-body control of
the Valkyrie robot; 2) comparison of ABO with three other
parameter search algorithms; 3) a further evaluation study of
ABO on the COCO benchmarking suite [28].

A. Comparison Methodology

ABO is compared with three other parameter search algo-
rithms: holistic BO, alternating random search, and BO using
dropout [24]. The holistic BO approach optimizes over the
whole parametric space (Algorithm 1), while ABO iteratively
optimizes over its sub-spaces (Algorithm 2). The alternating
random search method is similar to our ABO approach, but
the next sample point is uniformly and randomly sampled
from the search space instead of being found by an optimized
acquisition function.

BO using dropout achieves dimensionality reduction by
randomly dropping out dimensions and optimizing over d
parameters instead of the full, high-dimensional parameter
space. The work in [24] proposed two fill-in strategies for
the dropped dimensions: dropout-random and dropout-copy.
The third method, dropout-mix, performed similar to dropout-
copy and is not shown in our comparison (Fig. 5b) for
clarity purposes. We implemented both fill-in strategies with
a sampled dimension of d = 8 and d = 16.

For ABO, every BO iteration consists of 30 BO evaluations
with UCB as acquisition function aUCB(x) using the trade-
off parameter α = 3. For the low-dimensional parameters
XM , only 10 BO evaluations are conducted. Thus, for the
whole-body control, 70 objective function evaluations are
conducted per iteration (30 for XW , XPD, 10 for XM ). The
holistic, random search, and dropout algorithms use the same
evaluation budget (70 per iteration) as ABO.

B. Optimizing Hyper-parameters for Whole-Body Control

This section presents the results obtained from learning
optimal parameters by interacting with the environment. All
simulations were conducted in Gazebo using an accurate
model provided by NASA for the humanoid Valkyrie [33] -
a 1.80m tall, 139kg heavy humanoid robot with 44 actuated
Degrees of Freedom (DOF).

An episode consists of a start and an end phase of 1s each
and 5 straight steps of 0.25m with a step duration of 3s.
The walking motion is generated by using Model-Predictive
Control as in [34] to track these pre-planned footsteps for
both Gait Planning and Feedback Control. At a frequency of
50Hz, the sum of 850 rewards (4) are gathered per episode
as the scalar output of the reward function. To the best of
our skills, the hand-tuned parameter set yielded a value of
726. At a theoretical maximum of 850 for absolutely perfect
tracking, a value of over 700 is able to robustly perform all
locomotion tasks (Fig. 3b). As a baseline, walking all 5 steps
using bad tracking is possible for values over 550, and standing
is possible for values over 250 (Fig. 3a). The objective weight
and PD gain parameters for the alternating approaches are
initialised (alg. 2, line 1) with zeros XW = XPD = 0, and
the miscellaneous parameters are initialised using their mean
values XM = [0.09, 0.04, 0.03, 0.5].

On average, optimal parameters were found within 6 iter-
ations via ABO (alg. 2). These parameters were generalised
to multiple locomotion and balancing tasks and exhibit good
impedance behaviour of walking over unmodelled, uneven
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TABLE I: Range for the optimization variables. For pose tracking, separate weights for position and orientation are used.

Objective
weight Objective Range x

in [10x]
PD gain Controlled link Range x

in [10x]
Misc.
param. Range

O0 Track COM [0] C1-C2 PD COM position [−1, 3] xfront [0, 0.18]
O1-O2 Track torso pose [−3, 3] C3-C4 PD COM orientation [−1, 3] xback [0, 0.08]
O3-O4 Track pelvis pose [−3, 3] C5-C6 PD foot position [−1, 3] yside [0, 0.06]
O5-O6 Track Hand pose [−3, 3] C7-C8 PD foot orientation [−1, 3] µ [0.2, 0.8]
O7-O8 Track Foot pose [−3, 3] C9-10 PD torso/pelvis position [−1, 3]
O9-O10 Track COP & weight dist. [−3, 3] C11-C12 PD torso/pelvis orientation [−1, 3]
O11 Joint angle q [−3, 3] C13-C14 PD hand position [−1, 3]
O12-O16 Reg. τ , q̈, τ̇ , λ̇ [−3, 3] C15-C16 PD hand orientation [−1, 3]

(a) Objective value of 250
(poorly tuned, 1st iteration).

(b) Objective value of 730
(well tuned, 6th iteration).

(c) Gait on slabs with 5◦

inclination (well tuned).
(d) Gait on roll inclination
of 10◦ (well tuned).

(e) Gait on pitch inclina-
tion of 5◦ (well tuned).

Fig. 3: Snapshots of different walking trails using automatically tuned parameters. The detailed motions and scenarios can be
found in the accompanying video.

terrain (cf. supporting video, Fig. 1, Fig. 3c-e). The tracking
performance of task space references is shown in Fig. 4.

The learning curves of the automatic parameter tuning are
in Figure 5. The best values indicate the maximum value at
the respective time step and therefore only shows improving
values. The mean of this curve shows that the robot starts
to walk after roughly 2 ABO iterations (140 evaluations),
achieves a manual-tuned level after 4 ABO iterations (280
evaluations), and performs the final mean value of 732 after
8 ABO iterations (560 evaluations).

Table II shows the number of iterations and the final value
at convergence from four different methods. Over 10 trials,
ABO always found a parameter set for task completion. The
alternating random approach has one trial finding such a
parameter set, but the holistic approach has no trial of finding
a working parameter set. BO using dropout-copy was able to
find a task-completing parameter set for all 10 trials with both
d = 8, d = 16, while BO using dropout-random was not able
to find a working parameter set. The results in Table II suggest
that the nature of alternating search of parameters for high-
dimensional problems greatly improves the success of finding
good parameters even for non-sophisticated search algorithms
such as random search.

Both ABO and dropout-copy for d = 8 and d = 16 can
achieve an objective value over 550 indicating that the robot
is able to walk stably (Figure 5b). However, ABO converges
faster and achieves a higher value than the dropout-copy, and

thus tracks the reference trajectories better. Dropout-random
achieves similar performance as the alternating random search,
which is not able to succeed a stable 5-step walking task.

C. Validating Versatility of ABO by COCO Benchmarks

To further understand the versatility of solving other prob-
lems, ABO was validated on the COCO benchmarking suite
that has 24 functions (f1-f24) in an explicit form for bench-
marking global optimizers in a black-box setting. Notably,
in addition to standard objective functions (f1, f5, f13), it
also contains ill-conditioned (f2, f6, f10, f11, f12, f18), local
minimum trapping (f3, f4, f7, f8, f9, f14, f15, f20, f23),
irregular (f16, f21, f22), and multi-modal (f17, f19, f24)
objective functions to thoroughly test the optimizer.

For normalization, every objective function is off-setted
such that the smallest value is larger than zero. The smallest
possible value varies for every objective function f1 − f24
and increases with the dimension of the problem. In addition
to a maximal number of iterations, tolerances t1 = 1% and
t2 = 10%, representing the tolerance of being 1% and 10%
away from the maximal possible value, are used as termination
criterion calculated individually for each function f1 − f24.
The average maxima for the well and poorly conditioned
objective functions, and the success rate rt1 , rt2 of using
tolerance rate t1 and t2 are described respectively in Table
III. All parameters are uniformly randomly initialised, and the
optimization variables are partitioned randomly.
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TABLE II: Average number of iterations and final values over 10 trials for Whole-Body Control of NASA’s Valkyrie. The
values in parenthesis indicate the number of evaluation.

Prob.
dim.

Opt.
dim.

Mean
iter.

Mean
max.

Median
iter.

Median
max.

Best
iter.

Best
max.

Worst
iter.

Worst
max. Method

36 36 8 (560) 304 8 (560) 299 8 (560) 360 8 (560) 289 Holistic BO
36 16 5 (350) 734 6 (418) 737 2 (84) 779 8 (560) 665 Alternating BO
36 16 8 (560) 452 8 (560) 448 8 (560) 662 8 (560) 259 Alternating Rand.
36 16 8 (560) 560 8 (560) 605 8 (560) 676 8 (560) 330 Dropout-copy, d = 16
36 16 8 (560) 403 8 (560) 384 8 (560) 470 8 (560) 330 Dropout-random, d = 16
36 8 8 (560) 611 8 (560) 584 8 (560) 742 8 (560) 543 Dropout-copy, d = 8
36 8 8 (560) 386 8 (560) 300 8 (560) 440 8 (560) 294 Dropout-random, d = 8

TABLE III: Average number of iterations and final values over 10 trials for well and poorly (f2, f7, f10, f11, f12, f18, f22)
conditioned optimization problems. The random search is averaged over 1000 trials.

Prob.
dim.

Opt.
dim.

Max. value
(good cond.)

Max. value
(bad cond.)

Success rate
rt1 (opt.)

Success rate
rt2 (opt.)

Success rate
rt1 (rand.)

Success rate
rt2 (rand.) Method

40 40 6 · 105 7 · 1010 0.12 0.13 0.00 0.12 Holistic
20 20 3 · 105 8 · 109 0.13 0.24 0.09 0.16 Holistic
10 10 3 · 105 7 · 109 0.54 0.80 0.15 0.40 Holistic
5 5 2 · 105 3 · 108 0.64 0.88 0.26 0.46 Holistic
40 16 6 · 105 7 · 1010 0.13 0.70 0.13 0.32 Alternating
40 10 6 · 105 7 · 1010 0.21 0.75 0.13 0.38 Alternating
20 10 3 · 105 8 · 109 0.27 0.74 0.12 0.39 Alternating
10 5 3 · 105 7 · 109 0.59 0.88 0.31 0.48 Alternating
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(a) Tracking task space references in x coordinate.

0 2 4 6 8 10 12 14 16 18 20

−0.12

0

0.12

Time in [s]

Po
si

tio
n

in
[m

]

Desired COM Real COM Desired ZMP Real ZMP
Left foot desired Right foot desired Left foot Right foot

(b) Tracking task space references in y coordinate.

Fig. 4: Tracking of COM, COP and feet trajectories, where
the yellow solid line is the online re-generated desired ZMP
consists of the nominal ZMP and the feedback corrections.

The lower success rates from the alternating random search
suggest that the higher success rates of ABO is attributed
to our proposed method, rather than randomly finding the
optimum.Furthermore, similar to the whole-body control ABO

0 50 100 150 200 250 300 350 400 450 500 550 600

200

400

600

800

Evaluations

O
bj

ec
tiv

e
va

lu
e

Mean of all iterations (ABO) Mean of best values (ABO)
Mean of all iterations (random) Mean of best values (random)
Mean of all iterations (holistic) Mean of best values (holistic)

(a) ABO, alternating random search, and holistic BO comparison.
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8, 16), and BO using dropout-copy (d = 8, 16).

Fig. 5: Comparison between ABO, alternating random search,
holistic BO, and BO using dropout for Whole-Body Control
(shaded area: standard deviations).

case, using an alternating approach increases the success rate
over a holistic one, especially for high-dimensional problems.
In contrast to [28], an evaluation budget is used. This is due
to the fact that a limitless evaluation budget would lead to
lengthy computations, as well as an exhaustive search that
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eventually leads to the optimum. The COCO benchmark, in
which budget is considered as secondary, is designed for being
challenging to “defeat” the optimization problem. We aim to
preserve the sample efficient nature of BO, by trading off an
absolute success rate of the ABO approach that can arguably
be improved. In fact, the success rate of ABO being 2-3
times higher than that of holistic BO has already shows an
advantage. In summary, a holistic BO approach yields good
results for dimensions up to 10D but low success rates for
the dimensions higher than 10D, whereas the ABO approach
yields good results of success rates over 75%.

V. DISCUSSION

This section discusses the potential use of our proposed
ABO algorithm and the consideration of deploying ABO on
real systems regarding the simulation-to-reality gap.

A. Reality Gap between Simulation and Real World

Model uncertainties hinder a direct transfer of the tuned
parameters from simulation to reality, and are mainly caused
by the inaccuracy of the masses, inertias, link dimensions,
communication latency, and noises. The following study shows
the robustness of our automatically tuned parameters against
model uncertainties, and suggests the need of a small number
of fine-tuning iterations on the real system given an initial set
of parameters auto-tuned from a perfect model.

1) Model Imperfections: The imperfection was modelled
by the differences between model and real robot in mass and
inertia. We first ran ABO on a perfect model in simulation, and
then for the test, we altered the simulation model by adding
uncertainties of masses and inertia from a normal distribution
with varying standard deviations.

In Figure 6a, the results averaged over 5 trials suggest that
it is important to accurately identify mass as it contributes
greatly to the reward and causes COM deviations (blue line,
Fig 6a) of up to 3cm on average. In contrast, wrong inertia
identification contributes much less to the reality gap. Inaccu-
racies of up to 5% can be tolerated without losing tracking
quality, and even inaccuracies of up to 25% still yield stable
gait despite bad tracking.

2) Fine-tuning of Parameters on Real Hardware: After
obtaining a parameter set that works well in simulation, but
exhibits bad tracking performance on the real model, ABO
has the potential to be further used to fine-tune parameters on
the real robot, which is studied in simulated cases here (not
on the real hardware) by using a different model with inten-
tional changes mimicking discrepancies between simulation
and hardware. From the results in Fig. 6b, it can be seen that
for small model errors, ABO converges after one iteration and
50 function evaluations; for a 25% discrepancy as the reality
gap, the algorithm requires 6 ABO iterations (360 evaluations)
to reach optimal behaviour.

B. Potential and Possible Applications of ABO

In addition to tuning whole-body control, ABO could also
identify and tune additional parameters by considering model
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(a) Resulted reward due to model imperfection on mass and inertia.
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(b) Learning curve for fine-tuning on realistic model.

Fig. 6: Reward from different model discrepancies and the
resulted learning curves for fine-tuning the parameters.

asymmetries between the left and right, using independent
gains in x, y, z coordinates, and identifying dynamics and off-
diagonal elements in the weight matrices (10). In the following
we depict potential applications of ABO.

1) Consideration of Asymmetries: In Table I symmetry
between left and right side of the robot is assumed, which may
not be true in reality. In Section V-A, we showed that the opti-
mized parameters were robust to uncertainties including model
asymmetry, and additional fine-tuning can further improve the
performance. Alternatively, the model asymmetry could be
directly included in the optimization setting by adding more
optimization variables. As a proof of concept, we were able to
achieve the same performance as before by adding 4 additional
tuning parameters for the left and right foot separately.

2) Separate Parameters for Postural Control: In addition to
physical asymmetries, the body pose can also be decomposed
into 6 components with separate weights requiring longer
training time due to higher dimensionality. We tested separate
horizontal (x, y) and vertical (z) gains for the feet and COM,
and obtained similar results as in the original non-separating
case by an average increase of training time of 100 evaluations.

3) Adaptation to Variation of Dynamics Properties: In Sec-
tion IV-B, we exemplarily showed the possibility of identifying
friction parameters. Identification of more parameters could
be conducted on the dynamics parameters. To this end, ABO
would optimize over masses and inertia matrices. We used
ABO to successfully identify the 8 heaviest links and the
inertia matrix of torso with a deviation of up to 10% from
the nominal values specified in the URDF.

4) Identification of Correlated Off-diagonal Elements:
Perceiving correlations of the off-diagonals in manual tuning
is difficult for humans, and thus ABO could potentially be
a leverage to identify those elements in the cost function
(10). Future work is needed to study ABO’s ability to find
suitable parameters given a much larger number of additional
optimization variables.
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VI. CONCLUSION

In this work, we proposed an Alternating Bayesian Op-
timization (ABO) algorithm capable of tuning optimal pa-
rameters for high-dimensional optimization problems. This
was achieved by evaluating data from interactive trials of
between the robot and the environment (simulated scenar-
ios) and the search of appropriate hyper-parameters, which
produced optimal performance of robust locomotion under
model uncertainties. We tackle the arising problems in high-
dimensionality, such as sample-inefficiency and exhaustive
searches, by partitioning the whole parameter space into low-
dimensional sub-spaces, and iteratively optimizing over each
sub-space while fixing the rest sub-spaces.

We first applied dimensionality reduction to reduce 100
more parameters to 36, and then used the proposed ABO
algorithm to automatically tune this 36-dimensional parameter
set for whole-body control of NASA’s Valkyrie robot to
locomote over uneven terrains. The robot stood stably after
1 iteration, performed dynamic walking after 3 iterations, and
converged to the best performance within 6 iterations.

The proposed method found better parameters within fewer
iterations than the manual tuning from the experienced re-
searchers. This is mainly due to human limitation in spotting
correlations between parameters in high dimensions, whereas
ABO utilises Gaussian Processes which are precisely designed
to capture these correlations. Hence, our proposed algorithm
can be applied to other systems that require automatic tun-
ing of high-dimensional, correlated hyper-parameters. In the
COCO benchmarking suite, the proposed ABO algorithm was
further validated by finding global optima of the challenging
objective functions. Lastly, we discussed potential applications
and limitations of the algorithm that may arise particularly
during the transfer from simulation to reality.

Our future work will focus on implementing ABO on real
hardware for automatic gait tuning by using the parameters
obtained from simulation as an initialisation. Furthermore,
constrained Bayesian Optimization methods, such as SafeOpt
[35], will be considered to protect the robot from damage.
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