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Mind the gaps – ignoring errors in long read assemblies can critically affect protein prediction 

Amanda Warr1 and Mick Watson1 

1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter 

Bush, EH25 9RG 

Long read, single molecule sequencing technologies are now routinely used for whole-genome 

sequencing and assembly. However, even after multiple rounds of correction, many errors can 

remain which can critically affect protein coding regions, resulting in significantly altered and often 

truncated protein predictions.   

Second generation sequencing technologies have revolutionised biological research1, largely driven by 

cheap, high-throughput short-read sequencing technologies2. However, it is now clear that these 

technologies often result in incomplete and highly fragmented assemblies3 and may not be ideal for 

the assembly of large complex genomes. Technically and computationally, de novo genome assembly 

has been considered a “solved problem” for over a decade4 – one simply needs reads that are longer 

than the longest repeat region, with sufficient depth and accuracy to detect overlaps between those 

reads. 

Long-read, single-molecule technologies such as those produced by Pacific Biosciences5 (PacBio) and 

Oxford Nanopore6 (ONT) have the potential to sequence DNA molecules with lengths in the tens- or 

hundreds- of thousands of bases, enabling researchers to assemble large and complex repeats. 

However, both of these technologies have high per-read error rates (in the order of 5-15%), which has 

resulted in the development of “correction” algorithms. These attempt to use consensus base-calls, 

raw signal level data and/or shorter more accurate reads to correct long-read assemblies. Examples 

include Quiver and Arrow7 for PacBio, Nanopolish8 for ONT, and Pilon9. 

Published human genome assemblies using both PacBio10,11 and Oxford Nanopore exist12. Pendleton 

et al reported a PacBio-only human genome assembly of NA12878 with a stated accuracy of 99.7%, 

whereas Koren et al report a polished PacBio human genome assembly of CHM1 with a stated 

accuracy of 99.8%. Most recently, in this journal Jain et al report the genome assembly of NA12878 

using ONT’s MinION device, a portable USB sequencer, generating the longest DNA reads ever 

sequenced. Accuracy after polishing is stated as 99.8%.   

By most measures, these are highly accurate assemblies; however, in a genome of over three billion 

bases, each 0.1% of error represents over 3 million erroneous bases. Also, it is impossible to encode 

the accuracy of a genome assembly in a single percentage figure; in practice, large regions of any 

genome assembly are highly accurate, with most of the errors concentrated in repeat regions that 

suffer from a far lower accuracy than the stated figure13–17. The predominant errors in both PacBio 

and Nanopore sequencing technologies are insertions and deletions (indels)18,19.  By introducing 

frameshifts and premature stop codons, these errors have the potential to critically affect translated 

regions, which rely on the fidelity of open-reading-frames to predict protein sequences from 

annotated transcripts.   

Alternate assemblies of both NA1287820 and CHM121 from short-read data are available, and can serve 

as a control for the above single molecule assemblies; where transcripts show evidence of indels in 

the long read assembly, but no evidence of indels in the short-read assembly of the same sample, we 

can be reasonably confident that those indels are errors specific to the long-read assembly.   

Using all of these data, we sought to investigate the prevalence of insertion and deletion errors in the 

recently published Jain et al MinION/Illumina assembly of the human genome, including comparisons 



to previously published long-read assemblies from PacBio data and short-read Illumina assemblies of 

the same cell lines.  

Methods 

The assemblies used in this analysis are given in table 1. 

Accession Technology Chemistry Coverage Sample Name used in 
this paper 

GCA_900232925.1 
 
Jain et al 

Nanopore + 
Illumina 
polishing 

R9.4 1D 
R9.4 1D 
ultra 
Illumina 

27X 
24X 
 
55X 

NA12878 NA12878.nano 

GCA_001013985.1 
 
Pendleton et al 

PacBio + 
Quiver 
polishing 

Pre P5-C3 
P5-C3 

24X 
22X 

NA12878 NA12878.pacb 

GCA_000185165.1 
 
Gnerre et al 

Illumina 
paired-end + 
mate-pair + 
fosmid 

Illumina 103X NA12878 NA12878.ilum 

chm1.round2.fasta* 
 
Koren et al 

PacBio + 
Quiver 
polishing 

P6-C4 142X CHM1 CHM1.pacb 

GCA_000306695.2 
 
Steinberg et al 

Illumina + 
BAC clone 

Illumina 100X CHM1 CHM1.ilum 

* Available from http://gembox.cbcb.umd.edu/shared/canu/index.html 

Table 1. A list of publicly available human genome assemblies used in this paper 

We sought to minimise the computational burden of aligning all human transcripts to five human 

genome assemblies by introducing a filtering step.  All exons containing protein-coding sequence were 

downloaded from Ensembl using BioMart and aligned to the above assemblies using BLAT.   Short 

exons (<300bp) were removed, and alignments only considered where > 90% of the exon was 

contained within a single alignment.  If an exon showed any evidence of insertions or deletions when 

compared against any of the assemblies, then the relevant transcript was added to a list of 

problematic transcripts.   Any transcripts for which no BLAT alignment could be found were also added 

to this list, resulting in a total of 46423 “problematic” protein-coding transcripts for downstream 

analysis.   

These were subsequently aligned to each assembly using splign22, which attempts to find the best, full 

length spliced alignment between an RNA and its genomic sequence.  Where splign suggested multiple 

potential hits, those producing protein coding alignments were prioritised, and then the best chosen 

as that with the lowest number of insertions/deletions, then the lowest number of mismatches.  If a 

single best alignment could not be found, the transcript was rejected.   

Alignments of the transcripts back against the GRCh38 reference genome were produced as control 

step.  Of the 46423 transcripts, the following sets of transcripts were removed from downstream 

analysis: any transcript showing evidence of insertion/deletion errors in the GRCh38 splign analysis; 

any transcript ID annotated on an alternate haplotype of GRCh38; any transcript that did not map to 

the correct location in the GRCh38 splign analysis.  Additionally, for NA12878 only, transcripts from 

the Y chromosome were removed (NA12878 originates from a female sample; CHM1 has been shown 

http://gembox.cbcb.umd.edu/shared/canu/index.html


to be male23).  This resulted in 40949 transcripts for the NA12878 analyses, and 41035 for the CHM1 

analyses. 

For comparisons of long-read assemblies with their short-read counterparts, only transcripts with a 

near full-length (>80%) alignment in both assemblies were considered.  Transcripts that show evidence 

of insertion/deletions in the single molecule assembly but not in the short-read assembly of the same 

sample were counted as errors. 

Results 

A summary of the results for each assembly can be seen in table 2, and a comparison of the single 

molecule assemblies with their short-read counterparts in table 3. 

Assembly 
name 

Input 
transcripts 

# aligned Full 
length 

Near full 
length 
(>80%) 

# total 
transcripts 
with indels 

# total 
genes with 
indels 

NA12878.nano 40949 34665 29440 34278 8478 3960 

NA12878.pacb 40949 34606 29277 34146 25127 10736 

NA12878.ilum 40949 31927 27131 31496 901 589 

CHM1.pacb 41035 36128 30939 35744 1342 744 

CHM1.ilum 41035 36487 31273 36104 587 397 

Table 2 alignment statistics for all assemblies 

Except for NA12878.ilum (which has fewer) all assemblies had similar numbers of total, full-length and 

near-full length mRNA alignments.  Compared with their short-read counterparts, a naïve comparison 

shows that the Jain et al and Pendelton et al assemblies are massively enriched for indel errors (7x 

and 18x genes affected respectively).  In contrast, the Koren et al assembly of CHM1 appears only 

slightly enriched for indel errors (1.9x genes affected). 

Single-
molecule 
assembly 

Short-read 
control 

# transcripts 
with indel 
errors 

# genes with 
indel errors 

NA12878.nano NA12878.ilum 5929 2746 

NA12878.pacb NA12878.ilum 20816 8983 

CHM1.pacb CHM1.ilum 845 413 

Table 3.  Remaining indel errors in single molecule assemblies after removal of transcripts that show 

evidence of indels in the short-read assembly. 

After subtraction of transcripts that show evidence of indel errors in the control short-read assemblies 

of the same sample, we are left with indel transcripts unique to the single molecule assemblies.  The 

highest number of errors occurs in the Pacbio-only assembly of Pendelton et al, with 8983 protein 

coding genes predicted to be disrupted by insertions/deletions.  Next is the polished nanopore 

assembly of NA12878 by Jain et al, with 2746 protein coding genes affected.  Finally, the polished 

pacbio genome of Koren et al shows the best statistics; however, there are still 413 protein coding 

genes with indel errors in this assembly, broadly consistent with estimates of errors in other single-

molecule assemblies of CHM1 reported in the literature24. 

Full results of the three comparisons reported in table 3 can be found in supplementary tables 1-3.  

Specific examples of alignments with indels are available in the supplementary information. 

 

 



Discussion 

Many factors influence genome assembly quality, including the underlying complexity of the genome 

in question, the ploidy of the cells being sequenced, the quality and accuracy of the technology being 

used to sequence the genome, the version and chemistry of that technology, the amount of sequence 

coverage generated, the length of the reads generated, the accuracy of tools used to assemble the 

genome and the accuracy of tools used to correct errors post-assembly, plus any manual steps used 

to correct errors the software tools cannot.  

In this paper we assessed three long-read human genome assemblies for remaining insertion/deletion 

errors.  All three assemblies reported accuracies between 99.7-99.8%, which may lead researchers to 

believe they are of a similar quality.  Our analysis shows they are anything but. 

Initial reports of the R7 MinION pore suggested 1st pass accuracies around 70-80%18,25, and 2D (where 

each DNA strand is read twice and the consensus taken) accuracies around 85%25,26.  The R7 pore is 

no longer available, nor is the 2D method; Jain et al report read accuracies in the region of 86% for a 

more recent pore (R9.4) and 1D sequence reads.  MinION reads totally 51X coverage of the human 

genome were used to create the assembly, and 55X coverage Illumina reads used to polish remaining 

errors.  Despite this, the assembly contains a significant number of indel errors, with 5929 transcripts 

and 2746 genes affected. 

PacBio data has also undergone improvements, with raw read accuracies improving from 82% to 87% 

for later chemistries27, which also tend to produce longer reads.  Pendleton et al used a total of 46X 

coverage PacBio reads generated on the older P5-C3 chemistry to produce their assembly, and carried 

out one round of Quiver polishing.   Unfortunately, in terms of indels, this has produced a very flawed 

assembly, with 20816 transcripts and 8983 protein-coding genes predicted to contain indel errors.  

Both the P5-C3 sequencing chemistry and Quiver have now been replaced, by P6-C4 and Arrow 

respectively.   

There is a substantial improvement between the PacBio assembly produced by Koren et al compared 

to that produced by Pendleton et al.  This is perhaps not surprising – as well as benefitting from longer 

and more accurate reads of the P6-C4 chemistry, the group generated 142X coverage and used two 

rounds of Quiver polishing.  The assembly tool used, Canu, includes an at least one round of consensus-

based read-correction.   CHM1 is also a haploid cell line, which means the assembly and correction 

algorithms do not have to deal with the added complexity of differences between haplotypes28. 

Together, these improvements in data quality and bioinformatics explain the observed improvement.  

Without doubt the Koren et al assembly is highly accurate, yet there remain insertion/deletion errors 

affecting 845 protein coding transcripts and 413 protein coding genes.   

Although the PacBio assembly produced by Pendleton et al is unlikely to be viewed as anything other 

than a “proof of concept”, the large numbers of errors in that assembly serve as a warning to those 

trying to assemble genomes with lower quality data, lower coverage, and insufficient assembly and 

polishing work.  The Koren et al assembly proves that it is possible to reduce the number of erroneous 

protein-coding regions to a few hundred, but it is important to note the resources and skills needed 

to do so. 

The nanopore assembly by Jain et al benefitted from Pilon correction with short Illumina reads. 

However, many indels remain because of the problems inherent with mapping short Illumina reads to 

repetitive sequences (which includes gene families). If reads do not map, or map to multiple locations 

(a known issue in RNA-Seq29), then it can be more difficult to correct erroneous bases.  Again, this 

assembly mainly exists as a “proof of concept”, but many other research groups are undoubtedly 



engaged in genome assembly using nanopore data, and the high number of indel errors in protein 

coding regions shown here (largely unaddressed in Jain et al) should serve as a warning to those groups 

to pay particular attention to insertion/deletion errors. 

This analysis is not intended to be a comparison of sequencing technologies, nor should it be 

interpreted as such.  Rather, it is an attempt to use published single molecule sequencing assemblies 

of the human genome to demonstrate that insertion/deletion errors remain prevalent, many of which 

can critically affect protein coding transcripts and genes.  The human genome serves as a useful model 

for studying assembly accuracy given the availability of multiple public assemblies from the same 

samples (e.g. Genome in a Bottle24) and the availability of high quality annotation for the reference 

genome, GRCh38.  The transcripts and genes identified in this study may be used as a focus for the 

improvement of assembly correction and improvement algorithms.   

These results should not be considered a criticism of either PacBio or Oxford Nanopore, both of which 

are highly accurate technologies; nor should they be considered a criticism of Pendleton et al, Jain et 

al or Koren et al, all of which are ground-breaking pieces of research. Rather, the results indicate that 

even after multiple rounds of polishing, critical errors remain in single molecule assemblies that can 

critically affect protein predictions. This conclusion has ramifications across the biological and medical 

sciences, for those researchers seeking to sequence genomes (and seek funding to sequence 

genomes) using single molecule technologies.  For those seeking to push long-read technologies into 

human clinical practice, the prevalence of indel errors remains a significant obstacle.   

We are not suggesting that short-reads are a good alternative to long-reads when assembling a large 

or complex genome.  Long reads have revolutionised genome assembly, and we believe they should 

be the starting point for all new genome assembly projects.  Detailed assembly statistics for the five 

assemblies used in this paper can be found in Supplementary Table 4.  NA12878.ilum, despite using 3 

different types of long-range “jumping” libraries, has the shortest length, the largest number of gaps 

and the second lowest N50.  Despite impressive statistics, CHM1.ilum is not typical of short-read 

assemblies as a reference-guided approach was used.   

To obtain the best possible assembly, it is important to use high quality, high coverage sequencing 

data from one of the long-read technologies.  Inclusion of data from multiple technologies can help 

improve assembly quality.  It is important to incorporate multiple rounds of assembly polishing into 

downstream analyses, and to perform additional checks for remaining indels and errors.  These 

additional checks should include alignment of known proteins and cDNA/mRNA sequences against the 

genome to check for genic indels, manual inspection of genomic alignments and, where necessary, 

manual fixing of errors that the correction algorithms miss.  It is known that assembly quality has a 

huge impact on genome and gene annotation30, and our work here provides further evidence that we 

must improve existing tools and build new tools that enable correction of genomes and undertake 

manual correction/curation where required. 

A pipeline to reproduce the above analysis can be found at:  

https://github.com/WatsonLab/sm_assemblies 
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Supplementary Table Descriptions 

Supplementary table 1 

Summary of splign alignments comparing NA12818.nano with NA12878.ilum.  Columns: vtid = 

versioned ensemble transcript id; tid = ensemble transcript id; gid = ensemble gene id; len = length of 

the transcript; nan.tid = the query ID from splign; nan.hit = the hit ID from splign; nan.start = the start 

of the alignment in transcript co-ordinates; nan.len = the length of the alignment; nan_over_len = 

ratio of alignment length to query length; nan.mis = the number of mismatch events; nan.misb = the 

number of bases in mismatch events; nan.ins = the number of insertion events; nan.insb = the number 

of bases in insertion events; nan.del = the number of deletion events; nan.delb = the number of bases 

in deletion events; nan.indels = the total number of indel events; nan.sequence = the predicted protein 

sequence from the nanopore alignment; ilm.tid = the query ID from splign; ilm.hit = the hit ID from 

splign; ilm.start = the start of the alignment in transcript co-ordinates; ilm.len = the length of the 

alignment; ilm_over_len = ratio of alignment length to query length; ilm.mis = the number of 

mismatch events; ilm.misb = the number of bases in mismatch events; ilm.ins = the number of 

insertion events; ilm.insb = the number of bases in insertion events; ilm.del = the number of deletion 

events; ilm.delb = the number of bases in deletion events; ilm.indels = the total number of indel 

events; ilm.sequence = the predicted protein sequence from the illumina alignment 

 

Supplementary table 2 

Summary of splign alignments comparing NA12878.pacb with NA12878.ilum.  Columns: vtid = 

versioned ensemble transcript id; tid = ensemble transcript id; gid = ensemble gene id; len = length of 



the transcript; pacb.tid = the query ID from splign; pacb.hit = the hit ID from splign; pacb.start = the 

start of the alignment in transcript co-ordinates; pacb.len = the length of the alignment; 

pacb_over_len = ratio of alignment length to query length; pacb.mis = the number of mismatch 

events; pacb.misb = the number of bases in mismatch events; pacb.ins = the number of insertion 

events; pacb.insb = the number of bases in insertion events; pacb.del = the number of deletion events; 

pacb.delb = the number of bases in deletion events; pacb.indels = the total number of indel events; 

pacb.sequence = the predicted protein sequence from the pacbio alignment; ilm.tid = the query ID 

from splign; ilm.hit = the hit ID from splign; ilm.start = the start of the alignment in transcript co-

ordinates; ilm.len = the length of the alignment; ilm_over_len = ratio of alignment length to query 

length; ilm.mis = the number of mismatch events; ilm.misb = the number of bases in mismatch events; 

ilm.ins = the number of insertion events; ilm.insb = the number of bases in insertion events; ilm.del = 

the number of deletion events; ilm.delb = the number of bases in deletion events; ilm.indels = the 

total number of indel events; ilm.sequence = the predicted protein sequence from the illumina 

alignment 

 

Supplementary table 3 

Summary of splign alignments comparing CHM1.pacb with CHM1.ilum.  Columns: vtid = versioned 

ensemble transcript id; tid = ensemble transcript id; gid = ensemble gene id; len = length of the 

transcript; pacb.tid = the query ID from splign; pacb.hit = the hit ID from splign; pacb.start = the start 

of the alignment in transcript co-ordinates; pacb.len = the length of the alignment; pacb_over_len = 

ratio of alignment length to query length; pacb.mis = the number of mismatch events; pacb.misb = 

the number of bases in mismatch events; pacb.ins = the number of insertion events; pacb.insb = the 

number of bases in insertion events; pacb.del = the number of deletion events; pacb.delb = the 

number of bases in deletion events; pacb.indels = the total number of indel events; pacb.sequence = 

the predicted protein sequence from the pacbio alignment; ilm.tid = the query ID from splign; ilm.hit 

= the hit ID from splign; ilm.start = the start of the alignment in transcript co-ordinates; ilm.len = the 

length of the alignment; ilm_over_len = ratio of alignment length to query length; ilm.mis = the 

number of mismatch events; ilm.misb = the number of bases in mismatch events; ilm.ins = the number 

of insertion events; ilm.insb = the number of bases in insertion events; ilm.del = the number of 

deletion events; ilm.delb = the number of bases in deletion events; ilm.indels = the total number of 

indel events; ilm.sequence = the predicted protein sequence from the illumina alignment 

 

Supplementary table 4 

Summary statistics for the 5 assemblies calculated using assembly-stats.  “Length (Gb)” = length of the 

assembly in gigabases; “# seqs” = number of unique sequences in the assembly; “Gaps” = number of 

gaps; “N” = total number of N bases; “N50 (Mb)” the assembly N50 in megabases 

 


