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Model Criticism in Latent Space

Sohan Seth∗¶,‖, Iain Murray†¶, and Christopher K. I. Williams‡,§¶,‖,∗∗

Abstract. Model criticism is usually carried out by assessing if replicated data
generated under the fitted model looks similar to the observed data, see e.g. Gel-
man, Carlin, Stern, and Rubin (2004, p. 165). This paper presents a method for
latent variable models by pulling back the data into the space of latent variables,
and carrying out model criticism in that space. Making use of a model’s structure
enables a more direct assessment of the assumptions made in the prior and like-
lihood. We demonstrate the method with examples of model criticism in latent
space applied to factor analysis, linear dynamical systems and Gaussian processes.

Keywords: model criticism, latent variable models, factor analysis, linear
dynamical systems, Gaussian processes.

1 Introduction

Model criticism is the process of assessing the goodness of fit between some data and
a statistical model of that data. Following O’Hagan (2003, p. 423) we prefer the term
model criticism over model validation and model checking as it is impossible to vali-
date a model if “all models are wrong”, and model criticism has a more active tone of
looking to discover problems, compared to model checking, which may seem a more pas-
sive activity that does not expect to uncover any problems. While model criticism uses
goodness-of-fit tests to judge aspects of the model, its general objective is to identify
deficiencies in the model that can lead to model extension to address these deficiencies.
The extended model(s) can again be subjected to criticism, and the process continues
until a satisfactory model is found (O’Hagan, 2003). Model criticism is contrasted with
model comparison in that model criticism assesses a single model, while model com-
parison deals with at least two models to decide which model is a better fit. Model
comparison can be applied to compare the original and the extended model after model
criticism and extension (O’Hagan, 2003, p. 2).

Bayesian modelling has become an indispensable tool in statistical learning, and it
is being widely used to model complex signals, e.g., by Ratmann et al. (2009). With
its growing popularity, there is need for model criticism in this framework. Most work
on model criticism makes use of the idea that “if the model fits, then replicated data
generated under the model should look similar to observed data” (Gelman et al., 2004,
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2 Model Criticism in Latent Space

Figure 1: a) A probabilistic model with observed variables X, unobserved variables U ,
and known parameters γ, b) Given the observed data xobs from P (X | γ) and a posterior
sample u∗ from P (U |xobs, γ), (xobs, u∗) is a joint sample from P (X,U | γ), and therefore,
u∗ is a sample from P (U | γ) and xobs is a sample from P (X |u∗, γ). c) If the prior

(or part of it) factorizes into identical distributions, e.g., P (U | γ) =
∏2

k=1 Pu(Uk | γ),
then posterior sample {u∗

1, u
∗
2} is independent and identical sample from Pu(· | γ). d)

A factor analysis model showing observed variables X={xi}ni=1, unobserved variables
U={{zi}ni=1,Θ, τ, τθ}, and known parameters γ={α, β, τz}. We test if {z∗11, z∗12, . . .} is
a sample from P (Z | τz), and {θ∗11, θ∗12, . . .} is a sample from P (θ | τ∗θ ).

p. 165). In contrast, in this paper we focus on a less well explored idea that for latent
variable models, we can probabilistically pull back the data into the space of the latent
variables, and carry out model criticism in that space. We can summarize this principle
as that if the model fits, then posterior inferences should match the prior assumptions.

To elaborate, consider a model with observed variables X and unobserved variables
U with joint distribution P (X,U | γ) where γ are known parameters. In general U may
contain latent variables Z, parameters Θ, and hyperparameters λ. For example, in the
context of the Bayesian matrix factorization (Salakhutdinov and Mnih, 2008), X is the
observed data matrix, U = {Z,Θ, λ} is the matrix of latent factors Z, the loading matrix
Θ, precision hyperparameters λ, and γ denotes the parameters of the hyperpriors. Given
a sample xobs from the marginal distribution P (X | γ), and a single posterior sample
u∗ from the conditional distribution P (U |xobs, γ), the joint sample (xobs, u∗) is a draw
from the distribution P (X,U | γ). This property can be used to check the fit of the model
in the latent space by checking if u∗ is a sample from the marginal distribution P (U | γ).
Testing a single sample against a distribution, however, is not an effective approach.
But, in many widely-used models, groups of unknown variables are independently and
identically distributed under the prior. These related variables are easily aggregated
together, giving a simple test of the prior assumptions. Figure 1 summarizes the overall
approach, which is justified in §3.

In comparison to model criticism in the observation space, comparing u∗ with prior
P (U | γ), provides an additional tool for model criticism which does not require crafting
an appropriate discrepancy measure, generating replicate observations, and approxi-
mating the null distribution. This approach also does not suffer from the “double use”
of data (see discussion in §2). These points have also been made by Yuan and Johnson
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(2012), but were applied to a relatively small scale hierarchical linear model. We develop
the use of model criticism in latent space for large scale and complex models, yielding
new insights and developments. Specifically, we apply this approach to the criticism
of linear dynamical systems, factor analysis and Gaussian processes, and discuss its
connection to the observation space based approach.

The structure of the rest of the paper is as follows: in §2 we describe the methods
of model criticism in observation space. §3 provides details of the argument for model
criticism in latent space and describes related work, and §4 shows results from applying
the method to the three examples. Table 1 describes the notations followed in the paper.

Style Explanation Example

Upper case italics Random variable or a group of random variables X,Z,U = {U1, . . . , UK}
Lower case italics Realization of a random variable {xi}ni=1, u

∗

Lower case bold Vectors, realization or random variable {xi}ni=1, P (z),u=(u1, . . . , uK)�

Upper case bold Matrices, realization or random variable {Xi}ni=1, P (Z),U= [u1, . . . ,uK ]
P (X) Distribution of random variable X X ∼ P (X)
P (X | y) Conditional distribution of r. v. X given Y = y X ∼ P (X | y)
p(x) Probability density function of r. v. X, p(y) =

∫
p(x, y)dx

abbreviation for pX(x)
p(x | y) Conditional density function of r. v. X p(y) =

∫
p(x | y)p(y)dx

given Y = y, abbreviation for pX |Y (x | y)
· ∼ · Distributed as Xrep ∼ P (X), X ∼ N (0, 1)
·∗ A posterior sample u∗, z∗

·obs Observed data Xobs ∼ P (X)
·rep Replicate data Xrep ∼ P (X)
0 Zero vector x ∼ N (0, I)
I Identity matrix x ∼ N (0, I)
1(·) Indicator function 1(x > y)

Table 1: Description of notation used in the paper.

2 Model criticism in observation space

A general approach of model criticism is to evaluate if replicated data generated under
the (fitted) model looks similar to observed data. Consider that we are modelling ob-
served data xobs with a latent variable model parameterized by U , i.e., we have defined
the likelihood p(x |u) and (optionally) a prior distribution P (U) over potential param-
eter values. The principle of model criticism in the observation space is to assess if xobs

is a reasonable observation under the proposed model. For example, given the maxi-
mum likelihood estimator (or another point estimate) û of the parameters, one standard
approach is to find the plug-in p-value (Bayarri and Berger, 2000)

pplug-in = Pr(D(Xrep, û) > D(xobs, û)). (1)

Here D is called a discrepancy function and it resembles a test statistic in hypothesis
testing, i.e., a larger value rejects the null hypothesis or indicates incompatibility of
data and model, and Xrep is a replicate observation generated under the fitted model,
i.e., Xrep ∼ P (X | û).



4 Model Criticism in Latent Space

If the p-value is low, then it implies that the probability of generating a more extreme
dataset than the observed data is small, or in other words, the observed data itself is
considered extreme relative to the model, and thus, the model does not adequately
describe the dataset. In summary, a low p-value rejects the hypothesis that the data is
being adequately modelled. The p-value is usually estimated via an empirical average by
generating multiple replicates xrep

r , r = 1, . . . , R, and evaluating

p̂plug-in =
1

R

∑
r

1(D(xrep
r , û) > D(xobs, û)), (2)

where xrep
r is a sample from P (X | û).

An alternative to point estimation is to consider a Bayesian treatment of the problem
where one can integrate out the contribution of the parameters. The test statistic can
be averaged under either the prior distribution or the posterior distribution. The prior-
predictive distribution is defined to have the density p(xrep | γ) =

∫
p(xrep |u) p(u | γ) du

where γ parameterizes the prior distribution over U . One can generate replicate obser-
vations from this distribution, and compute the prior predictive p-value (Box, 1980)

pprior = Pr(D(Xrep, U) > D(xobs, U))

≈ 1

R

∑
r

1(D(xrep
r , ur) > D(xobs, ur)) = p̂prior, (3)

where (xrep, u)r is a sample from P (X,U | γ). This approach is not reasonable when the
prior distribution is improper (cannot be integrated) or uninformative. Additionally,
even if the prior distribution is informative, one might not generate enough samples to
represent the data distribution well when the parameter space is large. However, notice
that one does not need to fit the model to criticise it.

On the other hand, one can use the posterior distribution P (U |xobs), and
sample from the posterior-predictive distribution with density p(xrep |xobs) =∫
p(xrep |u) p(u |xobs) du. The posterior predictive p-value (Rubin, 1984) is then com-

puted as:

ppost = Pr(D(Xrep, U) > D(xobs, U) |xobs)

≈ 1

R

∑
r

1(D(xrep
r , ur) > D(xobs, ur)) = p̂post, (4)

where (xrep, u)r is a sample from P (Xrep, U |xobs), i.e., by generating samples ur from
the posterior distribution instead. The support of the posterior is usually more concen-
trated than prior, and the posterior distribution may be well-defined even if the prior
distribution is improper. Note that the p-value ppost(u) = P (D(Xrep, u) > (xobs, u))
might be available in closed form depending on the choice of D (Gelman et al., 1996,
Eq. (8–9)). Then ppost =

1
R

∑
r ppost(ur) where ur are posterior samples.

The posterior predictive p-value has been criticised for “double use” of data, once for
computing the posterior distribution P (Xrep |xobs) and once for computing the discrep-
ancy measure D(xobs, U) (Bayarri and Berger, 2000). This means that ppost does not
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have a uniform distribution under the null hypothesis, whereas pprior is a valid p-value.
pplug-in is subject to the same criticism as ppost since the maximum likelihood estimate
(MLE) uses the observed data as well (Bayarri and Berger, 2000). Lloyd and Ghahra-
mani (2015, §7) view the different p-values as arising from “different null hypotheses
and interpretations of the word ‘model’ ”. They argued that the posterior predictive
and plug-in p-values are most useful for highly flexible models, as the aim is to assess
the fitted model rather than the whole space of models. Lloyd and Ghahramani (2015)
also point out that “it may be more appropriate to hold out data and attempt to fal-
sify the null hypothesis that future data will be generated by the plug-in or posterior
distribution”, which is also in line with the discussion in (O’Hagan, 2003, §2.1). Fur-
ther examples of posterior predictive checking can be found in (Belin and Rubin, 1995;
Gopalan et al., 2015).

In all of the model criticism described above, a key quantity is the discrepancy func-
tion D used to compare the data and predictive simulations. We agree with Belin and
Rubin (1995, p. 753) who wrote of the importance of identifying discrepancy functions
“that would not automatically be well fit by the assumed model”, and that “there is
no unique method of Bayesian model monitoring, as there are an unlimited number of
non-sufficient statistics that could be studied”.

Lloyd and Ghahramani (2015) suggest the Maximum Mean Discrepancy (MMD) as
a measure of discrepancy between the observed data and replicates. The motivation of
using this approach is to maximize the discrepancy over a class of discrepancy functions
rather than choosing only one, i.e.,

MMD = sup
f∈F

(EXobsf(Xobs)− EXrepf(Xrep)). (5)

where F is a set of functions. The function that maximizes the discrepancy is known as
the witness function. When F is a reproducing kernel Hilbert space (RKHS) the witness
function can be derived in closed form as

f̂(·) = 1

|xobs|

|xobs|∑
i=1

κ(·, xobs
i )− 1

|xrep|

|xrep|∑
j=1

κ(·, xrep
j ), (6)

where κ is the kernel of the RKHS. This estimation does not work well in high dimen-
sions, and therefore, the authors suggests reducing the dimensionality of the observation
space before applying this statistic (Lloyd and Ghahramani, 2015, p. 4).

3 Model criticism in latent space

Recall we have a model P (X,U | γ), with observed variables X, unobserved variables U ,
and known parameters γ. In general U may contain latent variables Z, parameters Θ,
and hyperparameters λ. Our procedure depends on the following two key observations:

1. If xobs is drawn from the above model, then a sample u∗ from P (U |xobs, γ) is a
sample from the prior distribution P (U | γ). To see why this is true, observe that
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a natural way to sample from the joint P (U,X | γ) is to generate a sample u from
P (U | γ), and then generate a sample x from P (X |u, γ) in that order. However,
it is also valid to draw samples from the joint by first sampling x from P (X | γ)
and then sampling u from P (U |x, γ). Thus we have

Statement 1. If xobs is a sample from P (X | γ), then a sample u∗ from
P (U |xobs, γ) will be a draw from P (U | γ).

It is important to clarify what Statement 1 is not saying. It is not saying that
repeated draws from P (U |xobs, γ) will explore the full prior distribution P (U | γ),
but only that it is a valid way to draw one sample from it if xobs is a draw from
the model. However, testing how well a single draw from a given distribution fits
that distribution is difficult. This brings us to our second observation.

2. If U is a collection of variables, i.e., U = (U1, . . . , UK), and the prior distri-
bution of U decomposes into independent draws from the same distribution, e.g.,
P (U | γ) =

∏K
k=1 Pu(Uk | γ) then it is possible to aggregate these variables together,

i.e., instead of testing if (u∗
1, . . . , u

∗
K) is a sample from P (U | γ), one can test if

{u∗
1, . . . , u

∗
K} is independent and identical draws from the distribution Pu(· | γ).

In other words, rather than testing one sample against a known high dimensional
distribution, one can test if the collection of K samples are independent and
identical draws from a known lower-dimensional distribution Pu. Thus, we define
aggregation as pooling variables with the same prior distribution together, and an
aggregated posterior sample (APS) is defined as a set of posterior samples that
have been aggregated for comparison with a specific reference distribution. The
above can be generalized to the situation where U = (U1, . . . , UK , θ) is a collec-

tion of variables and parameters such that P (U | γ) =
∏K

k=1 Pu(Uk | θ)P (θ | γ).
Then {u∗

1, . . . , u
∗
K} can be aggregated and tested against Pu(· | θ∗). Alternatively,

U and θ can be combined to define a pivotal quantity s whose distribution does
not depend on θ (Yuan and Johnson, 2012), and s(u∗, θ∗) can be tested against
that distribution. Aggregation can be also extended to the case where U con-
sists of groups of variables (U1, . . . , UG) where aggregation is performed within
each group Ug = (Ug

1 , . . . , U
g
Kg

) by pooling {ug∗
1 , . . . , ug∗

Kg
} and comparing against

pug (· |u−g∗) where U−g denotes all groups except g. We provide more concrete
examples of aggregation in §3.1 and Table 2.

We refer to this approach as aggregated posterior checking (APC). We summarize
this approach in Algorithm 1. We assume that the prior distribution is proper, so the
respective posterior distribution is well-defined, and that any Markov chain Monte Carlo
(MCMC) sampler has converged, i.e., the posterior sample is well-behaved. Ideas equiv-
alent to Statement 1 and the aggregation of posterior samples can also be found in
Yuan and Johnson (2012)1, but were applied to the case where U contains only model
parameters, and for hierarchical linear models. See §3.2 for more details on related work.

1We had independently derived the key results. We thank an anonymous referee for pointing out
the work of Yuan and Johnson (2012).
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Model xobs U APS reference distribution

MF (13) {xobs
i }ni=1

{zi}ni=1,Θ,b, τ, τz for (14)-(15)
{zi}ni=1,Θ,b, τ,π, τ for (16)

{z∗ki}
n,K
i=1,k=1, and

{(z∗k1i
, z∗k2i

)}n,K
i=1, k1,k2=1,k1 �=k2

N (0, τ∗z
−1), and

N (0, τ∗z
−1I2) for (14)

L(0, τ∗z ), and
L(z1; 0, τ∗z )L(z2; 0, τ∗z ) for (15)∑

m π∗
mN (0, τ∗m

−1), and∑
m π∗

mN (0, τ∗m
−1I2) for (16)

LDS
(17), (18)

{(x, y,
cos(ν), sin(ν))obst }nt=1

{st}nt=1, {zt}nt=1,A
(1), . . . ,

A(S),Q(1), . . . ,Q(S),B,R

{z̃∗kt}nt=2 from (19) and
{x̃∗

jt}nt=2 from (20) ∀ j, k

{(z̃∗kt, z̃∗k(t+1)
)}n−1

t=2 from (19) and

{(x̃∗
kt, x̃

∗
k(t+1)

)}n−1
t=2 from (20) ∀ j, k

N (0, 1)
N (0, 1)
N (0, I2)
N (0, I2)

GP (9) {(xi, yi)
obs}ni=1

σ2
f , l, τ for (22)

σ2
f , p, lp, ld for (22) and (23)

σ2
f , f, lp, ld, σ

2
fs, ls, σ

2
fl, ll

for (22) (large and small) and (23)

{z∗i }ni=1 from (21) N (0, 1)

Table 2: The table summarizes observed data xobs, unknown variables U , aggregated posterior sample(s) (APS), and cor-
responding reference distribution(s) (as elaborated in Algorithm 1) for three models discussed in §4, and different scenarios
within each model.
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Algorithm 1 Aggregated posterior check

Require: Observed data xobs

Require: Bayesian model P (X |U, γ)P (U | γ) with latent variables U
1: Generate a posterior sample u∗ from P (U |xobs, γ)
2: Generate aggregated posterior sample(s) 	 See Table 2
3: Compare aggregated posterior sample(s) with corresponding reference distribu-

tion(s) with appropriate test
4: return p-value of the test(s)

So far, we have addressed the idea of assessing deviations from the prior distribution
and aggregation in the latent space. However, the same idea can be applied to the
observation space as well, i.e., to the likelihood by testing if xobs is a sample from
P (X |u∗, γ). Although it is true that a discrepancy in the choice of likelihood should
be reflected in the posterior sample, assessing the discrepancy in the likelihood directly
provides better understanding and easier resolution of the discrepancy. Notice that,
although we make use of xobs, our approach is not equivalent to model criticism in
the observation space since we do not compare the observed data xobs with replicate
observations xrep

r , but only investigate the relation between the latent space u∗ and
observation space xobs. Both methods, however, require generating posterior samples
ur (for model criticism in the latent space we use r = 1).

3.1 Application to different models

We discuss below the application of model criticism in latent space to factor analysis,
linear dynamical systems and Gaussian process regression. These situations are then
demonstrated on real data in §4.

Factor analysis model Consider a factor analysis model with hyperparameters λ =
{τθ, τ}, parameters (loading matrix)Θ, latent variables (factors) z and data x. Grouping
Z = {zi}ni=1 and similarly for X,

p(λ,Θ,Z,X) = p(λ) p(Θ |λ) p(Z |λ) p(X |Z,Θ, λ)

= p(τθ) p(τ)p(Θ | τθ)
n∏

i=1

p(zi) p(xi | zi,Θ, τ). (7)

Figure 1d illustrates this model. We have omitted the fixed parameters γ for simplic-
ity. In Gaussian factor analysis, z ∼ N (0, τz

−1I) and θ |λ ∼ N (0, τθ
−1I). There is an

identifiability issue in the factor analysis model between Θ and z, which is resolved
by fixing the scale of one of the two. In (7) the dependence of z on λ is taken to be
null, i.e., τz = 1. (In the case of example §4.1 we fix the scale of Θ instead.) Also,
P (x | z,Θ, τ) = N (Θz, τ−1I) and τ, τθ |α, β ∼ Gamma(α, β). Thus the fixed parameters
γ = {τz, α, β}.

If Xobs is drawn from the above model, then a sample λ∗,Θ∗,Z∗ from P (λ,Θ,Z |
Xobs) is a sample from the prior P (λ)P (Θ |λ)P (Z |λ). In factor analysis, Z decom-
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poses into independent draws from P (z | τz), and therefore, one can pool the posterior
samples z∗i to assess deviations from P (z | τz). Moreover, each zi usually decomposes
into independent draws over the different latent dimensions as

∏
k p(zik | τz), one can

pool the z∗ik to assess deviations from p(z | τz). Similarly, if the prior over the factor
loadings matrix Θ decomposes as p(Θ | τθ) =

∏
kj p(θkj | τθ) then one can pool the θ∗kjs,

and compare with p(θ | τ∗θ ). One can also go beyond the marginal z or the full vector z,
and assess a subset of the vector such as bivariate interactions (see §4.1).

Linear dynamical system One can extend the idea of aggregation beyond factor anal-
ysis models. For example, Statement 1 holds for general latent variable models with
repeated structure. Take, for example, a linear dynamical system model with a latent
Markov chain, so that

p(X,Z |U) = p(z1)p(x1 | z1, U)

T∏
t=2

p(zt | zt−1, U)p(xt | zt, U), (8)

where U consists of the system and observation matrices A,B, and precisions, Q,R.
Then according to Statement 1 a sample (Z∗, u∗) drawn from P (Z, U |Xobs) should be
distributed according to the prior over (Z, U). Although the zt’s are not independent
(due to the Markov chain), we can consider model criticism for p(zt | zt−1). For example
for a system model parameterized as zt | zt−1 ∼ Azt−1 + εt with εt ∼ N (0,Q−1),
violations of the model will show up as deviations of the ε∗t ’s from N (0,Q∗−1) (see
§4.2). Similarly, for an observation model parameterized as xt | zt ∼ Bzt + ψt with
ψt ∼ N (0,R−1), violations of the model may also show up as deviations of the ψ∗

t ’s
from N (0,R∗−1). See §4.2.

Gaussian process regression A Gaussian process probabilistic model is defined as:

ϑ, ζ, τ ∼ p(ϑ) p(ζ) p(τ), (9a)

f(x) ∼ GP(m(x |ϑ), κ(x, x′ | ζ)), (9b)

yi ∼ N (f(xi), τ
−1) ∀i = 1, . . . , n, (9c)

where m(x |ϑ) is the mean function parameterized by ϑ, κ(x, x′ | ζ) is the covariance
function (or kernel) parameterized by ζ, and τ is the observation noise precision, see e.g.,
Rasmussen and Williams (2006). Given observations {(xi, yi)}ni=1, y ∼ N (m,K), where
y = (y(x1), . . . , y(xn))

�, m = (m(x1 |ϑ), . . . ,m(xn |ϑ))� and Kij = κ(xi,xj | ζ) +
τ−1δ(xi,xj). Alternatively, considering the eigendecomposition K = UΛU� where U =
[u1, . . . ,un] is the matrix of the eigenvectors uis and Λ is the diagonal matrix of the
corresponding eigenvalues, i.e., Λii = λi,

c = U�(y −m) ∼ N (0,Λ). (10)

This implies that, according to the model, the projections ci of the signal y on the
eigenvector ui are independent samples from N (0, λi). Thus, the normalized projections

z = Λ−1/2U�(y −m) ∼ N (0, I) (11)
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should be independent samples from N (0, 1) distribution. One can thus test the normal-
ity of the z’s to assess the goodness of fit. However, note that if the ith eigenvalue of K
is much smaller than the noise variance τ−1, then this zi is dominated by the white noise
contribution. Thus we only include z’s corresponding to eigenvalues with λi > 2τ−1 to
assess the fit of the GP model. The factor of 2 on the right-hand side (RHS) of the
inequality is included because the λi’s are shifted by τ−1 by definition. See §4.3.

3.2 Related work

Cook et al. (2006) consider the situation with (in our notation) a prior p(u) on the
parameters of the model, and likelihood p(x |u). They then assume that specific pa-
rameters u0 are drawn from the prior, then data xobs drawn from P (X |u0). They then
consider samples u1, u2, . . . , uL drawn from P (U |xobs), and comment (in the caption of
their Figure 1, translating to our notation) that “(xobs, u�) should look like a draw from
P (X,U) for  = 0, 1, . . . , L”. They then use the ‘reverse’ of Statement 1 to validate the
correctness of posterior samples generated by a statistical software, by comparing u0

with u1, u2, . . . , uL. Their recommended method for this is to calculate posterior quan-
tiles for each scalar parameter; if the software is working correctly then the posterior
quantiles are uniformly distributed. Although they share with us the observation that
(xobs, u�) should look like a draw from P (X,U), this is used to answer a totally different
question. Also, they do not discuss the inclusion of latent variables in the model.

Johnson (2007) and later Yuan and Johnson (2012) also consider a model with
parameters U and data drawn from P (X |U). Their interest is in the use of pivotal
quantity d(x, u) that has a known and invariant sampling distribution when data xobs are
generated from a model with data-generating parameters u0. Then Yuan and Johnson
(2012) show that if the d(X,u0) is a pivotal quantity distributed according to F , then
d(X,u�) is also distributed according to F , if u� is drawn from the posterior on U given
xobs. The result of Yuan and Johnson (2012) extends earlier work by Johnson (2007) to
the case where d(x, u) does not depend on the data x—for example this situation can
arise in a Bayesian hierarchical linear regression model, when considering the second
level where parameters for individual units are generated from a hyperprior.

Regression diagnostics is a well-explored example of model criticism. Existing ap-
proaches assess certain statistical assumptions made during modelling, e.g., if the resid-
uals follow a normal distribution with zero mean, (e.g., using a Q-Q plot (Wilk and
Gnanadesikan, 1968)), if the residuals are homoscedastic, (e.g., using the Breusch–
Pagan (Breusch and Pagan, 1979) or White test (White, 1980)) or if the successive
residual terms are uncorrelated (e.g., using the Durbin–Watson test (Durbin and Wat-
son, 1950)). Regression diagnostics can be seen as a special case of model criticism in
the latent space since residuals are representatives of errors, which are latent variables
of the model. However, our methods are also applicable to more complex models.

Meulders et al. (1998) consider a factor analysis model for binary data, using (in
our notation) Beta(2, 2) priors on Z and Θ. They carry out posterior sampling using
block Gibbs sampling for Z and Θ and compare histograms of these variables against
the prior. Discrepancies between the prior and histograms of the sampled aggregated
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posterior led to model extension, expanding the model to use a mixture of two beta
distributions for the parameters. However, the authors do not explain the basis for
carrying out this check (cf. Statement 1).

Buccigrossi and Simoncelli (1999) consider the posterior distribution of wavelet co-
efficients (analogous to z in the factor analysis model) in response to image patches.
By considering the distribution of a bivariate aggregated posterior, they show that this
is not equal to the product of the marginals, but exhibits variance correlations. (This
is shown by introducing a “bowtie plot” showing the conditional histogram of z2 given
z1.) This work is a nice example of how the failure of a diagnostic test can give rise to
an extended model (see §4.1).

O’Hagan (2003, §3) considered model criticism tools that can be applied at each node
of a graphical model (and of course latent variables can be considered as such). O’Hagan
(§3.1 2003) discussed the idea of residual testing at different levels of a hierarchical
model as well as a generic probabilistic model. He suggested checking if a node in a
probabilistic model is misbehaving by comparing the posterior samples at that node to
prior distribution. O’Hagan (§3.2 2003) also emphasized that conflict can arise between
the different sources of information about a variable at a particular node, arising from
contributions from each neighbouring node in the graph. However, he did not suggest
using the aggregated posterior to assess goodness of fit, but considered the posterior at
each node separately.

Tang et al. (2012) introduce the concept of the “aggregated posterior” as applied
to deep mixtures of factor analysers (MFA) model. Consider the situation as above
but where Θ is estimated by maximum likelihood, so it is the posterior over Z that is
of interest. Thus p(X,Z |Θ) =

∏n
i=1 p(zi) p(xi | zi,Θ). Under this model we also have

that p(z) =
∫
pΘ(z |x) pΘ(x)dx where the Θ subscript denotes that both pΘ(z |x) and

pΘ(x) correspond to distributions under the model. Tang et al. (2012, p3) define the
aggregated posterior as “the empirical average over the data of the posteriors over the
factors”, i.e.,

p̃(z) =
1

n

n∑
i=1

pΘ(z |xobs
i ), (12)

where the integral with respect to pΘ(x) has been replaced by the empirical average
over samples. If the data distribution p(x) is equal to the model distribution pΘ(x) then
p̃(z) should agree with p(z). However, differences between p(x) and pΘ(x) will manifest
as differences between the two respective distributions in the latent space.

In practice, however, one does not explicitly construct the aggregated posterior (12)
since it is only asymptotically equal to the prior. Instead Tang et al. (2012) compare
a collection of n samples z∗i from pΘ(z |xobs

i ) for i = 1, . . . , n to p(z). This is a valid
approach since if {xobs

1 , . . . ,xobs
n } follow the distribution pΘ(x), then {z∗1, . . . , z∗n} follow

the distribution p(z) as we show in Statement 1. Additionally, as Θ is not known in

practice, Tang et al. (2012) replace Θ with maximum likelihood estimate Θ̂ in the
definition of aggregated posterior (12). In Statement 1 we extend this idea to a Bayesian
setting where Θ and λ are not fixed parameters but latent variables themselves.
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Tang et al. (2012) started with a simple mixture of factor analysers (MFA), and
observed that the aggregated posterior for a latent component often doesn’t match the
N (0, I) prior. By replacing the prior for a component with another MFA model, they
constructed a deep MFA model. The idea of the aggregated posterior (although not the
name) can be traced back e.g. to Hinton et al. (2006), where in deep belief nets the idea
was that the posterior distribution of the latents of a restricted Boltzmann machine
(RBM) could be modelled by another RBM.

4 Examples

In this section, we provide three examples of model criticism and extension in the latent
space. First, we explore a factor analysis model in the context of image compression
(§4.1). The objective of this example is to show how the model can be criticised in
the latent space as well as in the observation space. Our analysis leads to changing
the latent distribution from a single Gaussian to a scale mixture of Gaussians, which
captures both the marginal and the joint structure of the latent space, and improves
the model in the observation space as well.

Next, we explore a linear dynamical system model (§4.2) in the context of modelling
time series. We show that model criticism in latent space allows us to interrogate not
only the standard “innovations” (defined in (20)), but also the latent residuals (defined
in (19)).

Finally, we explore a Gaussian process model (§4.3) in the context of modelling time
series. The objective of this example is to show when model criticism in the latent space
can be a natural choice whereas model criticism in the observation space can be difficult.
Our analysis leads to changing the covariance function from squared exponential to a
combination of periodic and squared exponential kernels.

We implemented all models (except the Gaussian process model) in JAGS (Plummer,
2003), keeping a single sample in the MCMC run after discarding a burn-in of 1000
samples (10,000 samples for §4.2). Note that for model criticism in the latent space, we
need only a single sample. We summarize the aggregation process and corresponding
reference distributions used in this section in Table 2.

4.1 Image patch data

The Berkeley Segmentation Database (Martin et al., 2001) consists of 200 training
images. Following Zoran and Weiss (2012), we convert the images to greyscale, extract
8 × 8 randomly located patches, and remove the mean from all image patches2. We
extract 50,000 image patches, and fit different matrix factorization models of the form:

b ∼ N (0, I), τ ∼ Gamma(α, β), θjk ∼ N (0, 1) (13a)

zi ∼ LatentDist, xi ∼ N (Θzi + b, τ−1I) (13b)

2https://people.csail.mit.edu/danielzoran/NIPSGMM.zip

https://people.csail.mit.edu/danielzoran/NIPSGMM.zip
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Figure 2: Aggregated posterior [agg. post] and associated prior at the latent node for
(left to right) the Gaussian, Laplace and Scale mixture of Gaussian models of image
patches. Top: Empirical cumulative distribution function (ECDF) of aggregated pos-
terior samples (16 × 50, 000 samples) and cumulative distribution function (CDF) of
respective prior. Middle: conditional mean and standard deviation of the bivariate ag-
gregated posterior samples (16× 15× 50, 000÷ 2 samples, over 100 bins) and respective
prior distribution. Bottom: eigenvectors of respective loading matrices.

with K = 16 latent dimensions (> 82% explained variance in PCA). Previously Zoran
and Weiss (2012) used full covariance zero-mean Gaussians (τ =0, K=64, b=0). We
set α=β=0.001.

We start by assuming a Gaussian distribution for the latent model

τz ∼ Gamma(α, β), z ∼ N (0, τz
−1), (14, Gaussian)

and generate a sample (Z∗,Θ∗,b∗, τ∗, τ∗z ) from the posterior. To criticise the model, we
aggregate the univariate posterior samples {z∗ki} ∀k, i, and bivariate samples {(z∗ki1 , z

∗
ki2

)}
∀k, i1 �= i2. If the observed data follows the model, then the distributions of the cor-
responding APSs are univariate normal N (0, τ∗z

−1) and bivariate normal N (0, τ∗z
−1I2)

respectively. We observe that neither of the APSs follow the expected prior distribution.
Also, the marginal distribution is more concentrated around zero than the expected dis-
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tribution, whereas the joint distribution shows heteroscedasticity (Figure 2, left column)
which is inconsistent with the factorized bivariate normal prior.

An alternative latent variable model for the factor analysis model is

z ∼ L(0, τz). (15, Laplace)

We use the same aggregation strategy as before, and compare the empirical distributions
with the univariate distribution L(0, τ∗z) and bivariate distribution L(z1; 0, τ∗z )L(z2; 0, τ∗z )
respectively. We observe similar characteristics in the aggregated posterior as before
(Figure 2, middle column).

To accommodate these observations, we allow a scale mixture of Gaussian distribu-
tions as used by Wainwright and Simoncelli (2000) with 8 components for the latent
variable

π ∼ Dir(1), τm ∼ Gamma(α, β), z ∼
8∑

m=1

πmN (0, τm
−1I). (16, Scale Mix. of Gauss)

We generate sample (π∗
1 , . . . , π

∗
8 , τ

∗
1 , . . . , τ

∗
8 ) as well. We assess the same aggregated dis-

tributions as before and compare them with
∑

mπ∗
mN (0, τ∗m

−1), and
∑

m π∗
mN (0, τ∗m

−1I2)
respectively. We observe that the empirical marginal distribution follows the mixture
distribution well, although a KS test rejects the hypothesis that the aggregated poste-
rior follows the mixture distribution. Additionally, the joint distribution captures the
heteroscedasticity in the latent space (Figure 2, right column).

We also show the eigenvectors of the corresponding loading matrix for each of the
three cases (Figure 2 bottom row). We show the eigenvectors rather than the loading
matrix themselves since for the Gaussian and Gaussian scale mixture, the columns of
the loading matrix may not correspond to any particular pattern due to rotational
invariance. We observe that all three loading matrices span a similar space.

The matrix factorization model can be criticised in the observation space with es-
tablished image statistics as a discrepancy measure. This, however, requires generating
replicate data of the same size as the observed data, which in this case is computationally
extensive since Xobs ∈ R

64×50,000. To avoid generating multiple replicates, i.e., matrices
Xrep

r ∈ R
64×50,000, we only generate a single replicate for each latent distribution choice

and compare them the observed data.

For all three cases, i.e., Gaussian, Laplace, and Scale Mix. of Gauss, we generate
latent samples zrepi from the fitted parameters τ∗z (and τ ,π∗ for Scale Mix. of Gauss).
We use the rest of the fitted parameters, i.e., Θ∗, τ∗, and b∗ to generate samples xrep

i

from zrepi . We generate 50,000, 8×8 replicate image patches, and compare the observed
and replicate data in terms of the distribution of raw pixel values. We show the results
in Figure 3. We observe that the distribution of the image pixel values in the replicate
data follows the observed data more closely for Scale Mix. of Gauss than the other
latent distributions. However, it is not a perfect fit, and that tells us that this model
can improved further; potentially by increasing K, and varying the noise characteristics
such as using a full diagonal covariance.
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Figure 3: Empirical cumulative distribution functions of raw pixel values on observed
and replicate data for varying different distributions.

4.2 Honey bee data

The honey bee data consists of measurements of (x, y) coordinate and head angle (ν) of 6
honey bees. The measurements are usually translated into a 4-dimensional multivariate
time series (x, y, cos(ν), sin(ν)), and modelled using a switching linear dynamical system
to capture three distinct dynamical regimes, namely, left turn, right turn and waggle
(Oh et al., 2008). We follow this strategy, and model each time series by a switching
linear dynamical system (SLDS) (Fox et al., 2009) as follows:

s1 = 1, z1 ∼ N (0, I) (17a)

st ∼ Cat(π(st−1)) ∀t = 2, . . . , n (17b)

zt ∼ A(st)zt−1 + εt, εt ∼ N (0,Q(st)−1) ∀t = 2, . . . , n (17c)

xt ∼ Bzt +ψt, ψt ∼ N (0,R−1) ∀t = 1, . . . , n, (17d)

where st can be in one of {1, . . . , S} states. We assume that Q(·) (for each state) and R

are diagonal matrices with Gamma(α, β) prior over nonzero entries, entries of A(·) (for
each state) and B originate from Gaussian distribution, and π(·) (for each state) follow
a Dirichlet distribution, i.e.,

a
(·)
·· ∼ N (0, τA

−1), b·· ∼ N (0, τB
−1) (18a)

τA ∼ Gamma(α, β), τB ∼ Gamma(α, β) (18b)

π(·) ∼ Dir(1). (18c)

We group s = {si}ni=1 and Z = {zi}ni=1. We set α = β = 0.001.

We fit two models with S = 1 (standard linear dynamical system), and S = 3,

both with a 4 dimensional latent space. We generate a posterior sample (s∗,Z∗,A(1)∗,
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Figure 4: Left: ECDF of aggregated posterior samples [agg. post.] (4× n samples) for
S = 1 and S = 3, and CDF of prior N (0, 1) at the latent (top) and observation node
(bottom). Right: segmentation of honey bee sequence 6 as observed in s∗1, . . . , s

∗
n. Black

markers indicate true change points. p-values correspond to KS test.

. . . ,A(S)∗,Q(1)∗, . . . ,Q(S)∗,B∗,R∗), and aggregate the standardized latent residuals

z̃t = (Q(s∗t )∗)0.5(z∗t −A(s∗t )∗z∗t−1) ∀ t = 2, . . . , n, (19)

and observation residuals (or innovations)

x̃t = (R∗)0.5(xobs
t −B∗z∗t ) ∀ t = 2, . . . , n. (20)

For linear dynamical system (LDS) the standard approach to model criticism is to
check that the innovations sequence is zero-mean and white (see, e.g. (Candy, 1986,
§5.1)), although this is usually carried out for known or point-estimates of the parame-
ters, not in a Bayesian setting. We use this check (extended to the SLDS case) below,
but also consider the latent residuals.

First, we focus on marginal structures z̃kt and x̃jt by pooling k = 1, 2, 3, 4 and
j = 1, 2, 3, 4 together, rather than the 4-dimensional vectors themselves as shown in
Figure 4 (left). We expect that the APSs would deviate from normality more (lower
p-value) when S = 1, compared to S = 3, and we observe this to be true for all honey
bee sequences except 2. For sequences 4–6, the latent segmentations of the SLDS in
terms of (s∗1, . . . , s

∗
n) agree with the ground truth well; we present the 6th sequence in

Figure 4 (right). For sequences 1–3, we observe that the segmentations are rather poor,
similar to the results in (Fox et al., 2009, §5).
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Figure 5: Scatterplot of bivariate aggregated posterior samples (607 × 4 samples) for
sequence 6. The black line shows the best linear fit, whereas the dotted line shows
the expected fit in the absence of (serial) correlation. The values in each plot are the
correlation (r) and respective p-value (p).

Next, we focus on the joint structures in the temporal domain by pooling, (x̃j1t, x̃j2t)
∀j1, j2 = 1, 2, 3, 4 and j1 �= j2, (z̃kt, z̃k(t+1)) ∀k = 1, 2, 3, 4, and (x̃jt, x̃j(t+1)) ∀j =
1, 2, 3, 4. We expect that this APSs would deviate from the reference distributionN (0, I2)
more for S = 1 than for S = 3. We compute the correlation coefficients, and observe the
respective p-values for S = 1 and S = 3 (Rahman, 1968). We observe that for S = 1,
the models are rejected either in the latent domain or in the observation domain except
for sequence 3, while for S = 3, the models are rejected either in the latent domain or
the observation domain for sequences 2 and 3 only. In other words, for sequences 1, 4,
5 and 6, the model improves for S = 3, whereas for sequence 2 it fails to improve, and
for sequence 3 it degrades for S = 3. These observations can again be attributed to the
poor segmentation for sequences 1-3. We show the corresponding aggregated posteriors
in the latent and observation space for sequence 6 in Figure 5. We observe that the
residuals in both latent and observation space display correlations for S = 1 while these
is reduced considerably for S = 3.

4.3 Carbon emission data

The CO2 emission dataset3 comprises monthly average atmospheric carbon concentra-
tion yi (in parts per million) between 1958 and 2017 (707 measurements after removing
missing values). Rasmussen and Williams (2006, §5.4.3) show that this time series can
be modelled well by a combination of 4 standard covariance functions involving 10 hy-
perparameters (and an additional parameter to model the additive white noise). Each
covariance function is introduced to model a specific aspect of the signal, e.g., a squared
exponential kernel to model the long term trend, a decaying periodic kernel to model
the seasonal variation, a rational quadratic kernel to model the short term irregularities,
and another squared exponential kernel to model the residual correlated noise. We show
below how model criticism and extension can be used to justify the use of covariance
functions representing similar aspects of the data.

3ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
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Following Rasmussen4 we use the measurements up to year 2004 (543) as training
data and the rest (164) as testing data. Notice that we do not use testing data for model
criticism but to show the goodness of fit visually. We remove the mean of the training
data before modelling, and use a zero mean function, i.e., m(x) = 0 or m = 0. We use
Gamma(α, β) priors over ζ and τ−1 to keep them positive. We use the GPstuff toolbox
(Vanhatalo et al., 2013) to generate MCMC samples, and initialize the sampler at
the maximum likelihood (ML) solution obtained using Gaussian Processes for Machine
Learning (GPML) toolbox5. We set the parameters α and β such that the mean of the
prior distribution is at the ML solution, and the variance is equal to the mean. We
generate a posterior sample (ϑ∗, ζ∗, τ∗} and aggregate the standardized projections

z∗ = Λ∗−1/2U∗�(y −m∗), (21)

where U∗ and Λ∗ are the eigenvectors and eigenvalues of kernel matrix K∗ such that
K∗

ij = κ(xi, xj | ζ∗) + τ∗−1δ(xi, xj), and m∗ = 0 by design.

We first model the time series with the squared exponential or Gaussian kernel,

κse(x, x
′ | ζ) = σ2

f exp

(
− (x− x′)2

2l2

)
, (22)

where l is the length scale and σ2
f is the signal variance, i.e., ζ = {σ2

f , l}. We obtain
ζML = (188, 0.30) and ζ∗ = (197, 0.29). It is also possible to model this time series with a
large length scale, i.e., ζ = (1958, 31) but this has lower marginal likelihood exp(−1198)
as opposed to exp(−753). We present the fitted data along with unstandardized and
standardized projections in Figure 6. The figure shows that the Gaussian kernel fails to
model the time series as the prediction quickly falls to the mean of the training signal
and KS-test p-value = 4 × 10−10. We observe that most of the signal strength (ci’s)
is concentrated at lower frequencies (corresponding to large eigenvalues λi∈{1,5}). The
respective eigenvectors correspond to an upward trend. Also, a relatively high strength
is observed at eigenvalues 92–93. The respective eigenvectors correspond to sinusoids
of frequency ∼1 year (see Figure 7a) which indicates a potential need of a periodic
covariance function to model this data.

To tackle this, we use the decaying periodic function to model the time series, (Ras-
mussen and Williams, 2006, §5.4.3)

κpe(x, x
′ | ζ) = σ2

f exp

(
−2 sin2(π(x− x′)/p)

l2p

)
exp

(
− (x− x′)2

2l2d

)
, (23)

where p is the period of the covariance function. Therefore, ζ = (σ2
f , p, lp, ld). We obtain

ζML = (283, 1, 5.13, 5.86), and ζ∗ = (385, 1, 4.88, 6.09). We observe that this provides
a better fit than squared exponential kernel (p-value 0.08). Although the KS-test fails
to reject the fitted model (perhaps due to lack of samples), we observe that the signal
strengths (ci’s) still deviate from their expected values. In particular, the second, fourth

4http://learning.eng.cam.ac.uk/carl/mauna/
5http://www.gaussianprocess.org/gpml/code/matlab/doc/

http://learning.eng.cam.ac.uk/carl/mauna/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Figure 6: Latent values of the Gaussian process model for CO2 emission dataset. Top:
Original and fitted signal. Training and testing sets are separated by a gray line. Mid-
dle: Unnormalized projections c∗i ’s for i = 1, . . . , n, and the respective 95% confidence

interval ±1.96λ
1/2
i . We only show values for which λ∗

i > 2τ∗−1. y-axis has been trans-
formed by sgn(y)|y|0.3 to show small values. Bottom: ECDFs of aggregated posterior
samples [agg. post.] of the normalized projections zi’s and CDF of prior distribution
N (0, 1). p-values correspond to KS-test.

and sixth projections show relatively high values compared to third, fifth and seventh.
The signal

∑
i∈{2,4,6} ciui corresponds to an upward trend, which corroborates the need

to model the trend further. See Figure 7b. Note that although the CO2 data is a time-
series, the analysis of the c-samples (see (10)) does not depend on this, and can also be
used where the input-space is multi-dimensional.

To accommodate the upward trend, we introduce a squared exponential kernel with a
relatively large length scale. However, to avoid modelling small scale variations with the
same kernel, we use combination of two squared exponential kernels with two different
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Figure 7: Weighted eigenfunctions of carbon emission dataset. The kinks in the plot
appear due to the short length scale.

length scales. Therefore, ζ = (σ2
f , p, lp, ld, σ

2
fs, ls, σ

2
fl, ll) where the last four parameters

belong to the two squared exponential kernels with small (s) and large (l) length scales.
We obtain ζML = (4.37, 1, 1.78, 74.60, 0.81, 0.92, 4132, 27.14), and ζ∗ = (2.25, 1, 1.24,
73.88, 0.32, 0.66, 4095, 32.25). We observe that this improves the fit even further, both
in terms of the testing data (visually) and in terms of unstandardized projections. The
KS-test uses more samples, and still fails to reject the model (p-value 0.55).

Model criticism of Gaussian processes in the observation space has been discussed by
Lloyd and Ghahramani (2015). However, their approach is different from the standard
posterior predictive check since the authors use hold-out data rather than using the
observed data twice. Although this approach shows if the response on hold-out data is
different for the fitted model, it does not necessarily point out how the model can be
extended.

One could generate a replicate sample from yrep ∼ P (· | ζ∗,Xobs), and compare yrep

and yobs as for a posterior predictive check. However, note that in this case yrep will be
an independent draw from the GP with parameters ζ∗ and input locations Xobs, hence
it could look very different from yobs—this is why Lloyd and Ghahramani (2015) make
use of held-out data. Also, it would be difficult to come up with a suitable discrepancy
function in this case. One could consider the χ2 discrepancy6, i.e., y�K−1y. However,
this quantity is fitted when sampling the kernel parameters ζ, and is also (as discussed
above) dominated by the noise for small eigenvalues of K. Other discrepancy measures
could be investigated, but exploring these alternatives is beyond the scope of this paper.

5 Discussion

Model criticism explores the discrepancies between a statistical model P (X,U) and ob-
served data xobs. This is often achieved by generating replicate observations Xrep ∼
P (X |xobs) from the fitted model, and investigating which aspects D(X,U) of the repli-
cated observations do not match the observed data. Instead here we have focused on

6Inspired by Gelman et al. (1996, Eq. (8))
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pulling the effect of the data back into the latent space, and investigating if the pos-
terior sample u∗ ∼ P (U |xobs) follows the prior distribution P (U), as it should do by
Statement 1 if the data were generated by the model. This is tested by aggregating re-
lated variables with the same prior distribution and comparing them with the associated
prior.

It should be noted that model criticism is not used to judge if a model is right
or wrong. On the contrary, it is widely accepted that all models are wrong but some
are useful (Box and Draper, 1987, p. 424). Model criticism aims at understanding the
limitations of the model with the hope that a better model can be found, e.g., since all
models are basically simplifications of a more complex process, model criticism inspects
if the simplification is meaningful, or if the statistical assumptions made are reasonable.
Following this principle, we have discussed four examples of model criticism in latent
space. We have shown that by analysing the distribution of the aggregated posterior,
a model can be extended so that the aggregated posteriors follow the respective prior
distributions better.
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