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Objective: Mean speed of responding is the most commonly used measure in the assessment of reaction
time (RT). An alternative measure is intraindividual variability (IIV): the inconsistency of responding
across multiple trials of a test. IIV has been suggested as an important indicator of central nervous system
functioning, and as such, there has been increasing interest in the associations between IIV and brain
imaging metrics. Results however, have been inconsistent. The present seeks to provide a comprehensive
evaluation of the associations between a variety of measures of brain white matter integrity and
individual differences in choice RT (CRT) IIV. Method: MRI brain scans of members of the Lothian Birth
Cohort 1936 were assessed to obtain measures of the volume and severity of white matter hyperintensities, and
the integrity of brain white matter tracts. CRT was assessed with a 4 CRT task on a separate occasion. Data
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were analyzed using multiple regression (N range � 358–670). Results: Greater volume of hyperintensities
and more severe hyperintensities in frontal regions were associated with higher CRT IIV. White matter tract
integrity, as assessed by both fractional anisotropy and mean diffusivity, showed the smallest effect sizes in
associations with CRT IIV. Associations with hyperintensities were attenuated and no longer significant after
controlling for M CRT. Conclusions: Taken together, the results of the present study suggested that IIV was
not incrementally predictive of white matter integrity over mean speed. This is in contrast to previous reports,
and highlights the need for further study.

General Scientific Summary
Variability in speeded cognitive test performance has been argued to be a potential early marker of
cognitive decline and progression into mild cognitive impairment in aging. Evidence as to the
robustness of the relationship, and the potential neurological underpinnings is varied. Our results
suggest that average speeded performance, not variability, may be more reliably related to various
measures of the brain. These findings are in contrast to much of the extant literature, highlighting the
need for further research.

Keywords: white matter hyperintensities, diffusion tensor imaging, reaction time, intraindividual
variability, cognitive aging

Supplemental materials: http://dx.doi.org/10.1037/neu0000483.supp

Speed of information processing and reaction time (RT) have
been studied as integral parts of human cognitive capacities since
the 19th century (Cattell & Galton, 1890), with interest persisting
over the subsequent years (Deary, 2000; Diehl, Hooker, & Sliwin-
sky, 2015). It has been proposed that speed of basic information
processing represents a fundamental and tractable element of hu-
man general cognitive abilities (Jensen, 2006), which has led to a
huge degree of interest in studying its neurological basis (Eckert,
2011; Penke et al., 2010, 2012). Processing speed has also been
suggested to be a key capacity in the study of cognitive aging
(Madden, 2001; Salthouse, 1996). Classically, RT studies have
focused on some measure of central tendency, or average speed
over trials. More recently however, focus has switched to how
speed of responding may vary across a set of trials (Hultsch,
MacDonald, & Dixon, 2002). Within-individual variability in RT
is correlated with average RT, but debate remains as to which is
the most fundamental, and whether they share neuroanatomical
correlates.

Intraindividual variability (IIV) in cognitive assessment indexes
the consistency of a person’s responses across a short period of
time. In the context of an RT task, IIV is the amount of trial-to-trial
variability. It provides a complement to the more widely used
mean (or other index of central tendency) RT across a number of
trials. IIV is a trait-like characteristic of an individual, in that
people more variable on one cognitive task are also more variable
on different tasks, and those more variable within a testing occa-
sion are also more variable across occasions (Hultsch, MacDonald,
Hunter, Levy-Bencheton, & Strauss, 2000). IIV is significantly
correlated with higher level cognitive functioning; for example,
with general mental ability (Deary, Der, & Ford, 2001; Rabbitt,
Osman, Moore, & Stollery, 2001), with less variable people tend-
ing to have higher cognitive ability. There is a growing interest in
IIV due, in part, to its predictive value. IIV predicts change in
cognitive abilities over time (Lövdén, Li, Shing, & Lindenberger,
2007; MacDonald, Hultsch, & Dixon, 2003; Nilsson, Thomas,
O’Brien, & Gallagher, 2014) and mortality (Deary & Der, 2005a).

Furthermore, IIV differentiates between groups of different neu-
rological health statuses, for example, mild cognitive impairment
(MCI) versus no-MCI (Dixon et al., 2007), and dementia versus no
dementia (Hultsch et al., 2000). People with MCI or dementia are,
on average, slower and more variable, and there is some evidence
that IIV has predictive value over and above that of RT mean
(Dixon et al., 2007; Hultsch et al., 2000).

IIV increases with age from young adulthood (see Dykiert, Der,
Starr, & Deary, 2012; Hultsch, Strauss, Hunter, & MacDonald,
2008, for reviews). The mechanisms underpinning this age effect
are not well understood. The simplest explanation for the increased
IIV is that it is driven by general slowing that occurs with age. In
other words, as mean RT increases, so does the IIV. However, a
number of researchers have argued that the increasing of IIV is the
primary phenomenon which, in turn, leads to an increased mean
RT. Several theories have been proposed as possible mechanisms
of IIV; for example, higher frequency of attentional blocks (Bunce,
Warr, & Cochrane, 1993) or lapses of intention (West, Murphy,
Armilio, Craik, & Stuss, 2002), which are related to poorer exec-
utive functioning. The lapses or blocks lead to very long RTs on
trials on which they occur, thus increasing the overall IIV. Natu-
rally, these long RTs also lead to an increase in mean RT.

A primary focus of research examining the biological basis of
RT and IIV has been on the brain. Life-course changes in IIV
(decrease in childhood, relative stability in adulthood and an
increase in older age) closely map onto the maturation and degen-
eration of the brain across the life span (MacDonald, Nyberg, &
Bäckman, 2006). Specifically, accumulating evidence from recent
imaging studies has highlighted brain white matter and its integrity
as potentially important for RT.

Table 1 summarizes the results from a number of recent studies
which have considered the associations between IIV in a RT task
and metrics derived from brain imaging. A few generalities may be
taken from the content of Table 1. First, across modalities, there is
some evidence that the effects of IIV may be independent of mean
RT (e.g., Jackson, Balota, Duchek, & Head, 2012; Walhovd &
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Fjell, 2007). Second, in studies focused on brain volume measures,
there has been some consistency in effects located in the frontal
white matter (Bunce et al., 2007; Haynes et al., 2017; Lövdén et
al., 2013). Studies focused on white matter connectivity have also
found support for the importance of frontal associations (Fjell,
Westlye, Amlien, & Walhovd, 2011; Moy et al., 2011).

Although these results, on face value, suggest a consistency of
effects observed across studies, the issue of whether RT variability
is related to white matter (WM) micro- and macrostructure is far
from resolved. There is much heterogeneity in the studies de-
scribed here, in particular with reference to the RT tasks on which
intraindividual variability is calculated; the measures of WM in-
tegrity adopted; and the size, age, and make-up of the samples.

Variability in cognitive performance is not a unitary concept.
Even the same measure, for example individual standard deviation,
may represent qualitatively different aspects of human perfor-
mance, depending on the task or the timescale from which it was
derived. For example, there are different components to different
tasks, such as perceptual, motor, reasoning, decision making, or
inhibition of irrelevant response. Variability in some of these
components might have different neural underpinnings. Variability
in CRT, which is a relatively simple task requiring only a minimal
amount of cognitive processing (a selection and execution of an
appropriate response) may not be readily comparable to variability
in a task, which might still use RT as its “score” but requires more
complex cognitive operations (e.g., inhibition of an irrelevant
response or performing operations in WM). Consistent with this
notion, there are reports of different IIV-WM integrity associations
from tasks of different difficulty (e.g., Bunce et al., 2007; Deary et
al., 2006; Fjell et al., 2011; Haynes et al., 2017; Mella et al., 2013).
Of note is that both higher and lower associations have been
reported for more complex tasks. Further, Fjell et al. (2011)
demonstrated that associations of IIV and measures of WM integ-
rity differed, not only in magnitude but also in spatial distribution
in the brain, depending on whether congruent (less demanding) or
incongruent (more demanding) trials were selected for the calcu-
lation of IIV. Given these findings we propose that the question of
whether there is a relationship between WM micro/macrostructure
needs to be addressed by a series of studies focused on specific RT
tasks.

A second important consideration is the size and structure of the
samples used in the extant research. The problem of low power in
studies with small samples is generally accepted, insofar as under-
powered studies are less likely to detect a true effect (i.e., they are
more likely to produce false negatives). However, two issues
associated with small samples that are underappreciated are that
(a) even the effects that are found to be significant, are less likely
to reflect a true effect and (b) the effect sizes of significant results
are more likely to be overestimated (Button et al., 2013). Sample
sizes of studies reviewed in Table 1 vary from 25 to 526. For
reference, a sample size required to achieve 80% power to detect
a small (r � .1) or medium (r � .3) correlation at � � .05 would
be 782 and 84, respectively. This is clearly an oversimplification
of the process of appropriate power calculations, however consider
in light of these estimates, none of the studies reviewed were
sufficiently powered to detect a small effect and more than half
had insufficient power to detect a moderate effect. Finally, and as
noted above, age plays an important role in the relationship be-
tween RT IIV and brain integrity. Fjell et al. (2011) found that theT
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association between white matter microstructure and IIV increases
with age, with stronger associations found among older partici-
pants (age �52 years) than younger participants (age �52 years).
Moy et al. (2011) found that effects for radial diffusivity (RD) and
mean diffusivity (MD) were no longer significant after controlling
for age (range � 20–66� years in their sample). Given the
potential complexity of the relationship with age, birth cohort
studies may be particularly useful as they provide built in control
for age effects.

In the current study, we seek to provide a comprehensive as-
sessment of the associations between a variety of volumetric and
connective brain imaging metrics and variability in a single task
(CRT task) in a large birth cohort, thus minimizing the influence
of test comparison, age effects and small sample estimate incon-
sistency.

Method

Participants

Participants in the current study were from the Lothian Birth
Cohort 1936 (LBC1936), a longitudinal study of cognitive aging.
The study sample consists of surviving members of the Scottish
Mental Survey 1947, most of whom were tested on an IQ-type test
at school at approximately age 11 years. The LBC1936 partici-
pants were mostly resident in Edinburgh and its surrounding area
(i.e., the Lothians, Scotland) at recruitment to Wave 1 of the study
at about age 70 years. Study protocols for initial recruitment and
subsequent waves of data collection, including brain MRI, are
reported in detail elsewhere (Deary, Gow, Pattie, & Starr, 2012;
Deary et al., 2007; Wardlaw et al., 2011).

The LBC1936 sample consisted of 1,091 participants in Wave 1
(age M � 69.5 years, SD � 0.8), of whom 866 participants
returned in Wave 2 (age M � 72.5 years, SD � 0.7). Of these, 855
were invited to undertake MRI, of which 728 initiated MRI pro-
tocol. For the current study, we retained only those participants for
whom quantitative estimates of WMH volume were available.
Reasons for absence of WMH data included the use of shortened
sequencing protocol with some participants who were uncertain or
anxious, termination of scan prematurely due to issues such as
claustrophobia, poor quality data due to movement artifacts, and a
number of other health and safety reasons (for discussion of some
of these issues see Sandeman et al., 2013). The resultant total study
sample comprised 671 participants (see Table 2 for sample demo-
graphics). All data used in the current cross-sectional study come
from Wave 2 of testing.

CRT Variability and Mean

CRT mean and variability were measured using a portable
device designed for the U.K. Health and Lifestyle Survey (Cox,
Huppert, & Whichelow, 1993). The box includes a high-contrast
LCD display and five response keys labeled 1, 2, 0, 3, 4 arranged
in a shallow arc. In the four CRT task, participants placed their
second and middle fingers of each hand on the buttons labeled 1,
2, 3, and 4. Participants were presented with a number (1, 2, 3, or
4) on the LCD screen and had to press the corresponding button as
quickly as possible. The test consisted of a total of 48 trials: eight
practice trials and 40 test trials. Within the test trials, each of the

numbers (1, 2, 3, and 4) appeared 10 times in a random order. The
time between trials varied randomly from 1 s to 3 s across all trials.

The box provides the mean and standard deviation of both the
correct and incorrect responses; however, only data from the
correct responses were available for the current study. Deary and
Der (2005b) reported the test–retest reliability of M CRT and SD
CRT based on a sample of 49 adults (age M � 37.1 years, SD �
11.4). M CRT had a test–retest stability of 0.92, whereas for SD
CRT the test–retest reliability was 0.73.

In the current analyses, our primary variable of interest is SD
CRT. However, for comparison purposes with previous studies, we
also report results for models in which the dependent variable is
the coefficient of variability (CV; CV � SD CRT/M CRT). As is
expected, these three variables show moderate to high positive
correlations (M CRT and SD CRT: r � .62; M CRT and CV CRT:
r � 0.16; SD CRT and CV CRT: r � 0.86).

Image Acquisition

Wardlaw et al. (2011) provide full details of the brain imaging
protocol. In brief, participants underwent whole brain structural
and high angular resolution 2-mm isotropic voxel diffusion MRI (7
T2- and 64 diffusion-weighted (b � 1,000 s/mm2) axial single-
shot spin-echo echo-planar imaging volumes) on a GE Signa
Horizon HDxt 1.5T clinical scanner (General Electric, Milwaukee,
WI), using a self-shielding gradient set (maximum gradient
strength 33 mT/m) and an eight-channel phased-array head coil.
The structural MRI included axial T2- (1-mm � 1-mm � 2-mm
voxels), T2�- (1-mm � 1-mm � 2-mm voxels) and FLAIR-
weighted (1-mm � 1-mm � 4-mm voxels) scans, and a high
resolution T1-weighted volume scan (1-mm � 1-mm � 1.3-mm
voxels) acquired in the coronal plane. All sequences were collected
with contiguous slice locations, whereas the acquisition parameters
for the T2-, T2�-, FLAIR and diffusion MRI protocols, that is,
field-of-view (256 mm � 256 mm in all cases), imaging matrix,
slice thickness and location, were chosen to allow easier coregis-
tration between scans.

Quantitative White Matter Hyperintensity (WMH)
Volumes

Prior to image segmentation, all structural scans were coregis-
tered using FLIRT, a linear automatic registration tool from the
FMRIB Software Library (http://www.fmrib.ox.ac.uk/fsl). We
used a validated multispectral image processing tool, MCMxxxVI
(Valdés Hernández, Ferguson, Chappell, & Wardlaw, 2010; Ward-
law et al., 2011; http://sourceforge.net/projects/bric1936) for seg-
mentation of brain tissue volumes from the four structural scans,
that is, T2-, T1-, T2�- and FLAIR-weighted MRI, to measure:
intracranial volume (all soft tissue structures inside the cranial
cavity including brain, dural, cerebrospinal fluid and venous si-
nuses); total brain volume (the actual brain tissue volume without
the superficial or ventricular cerebrospinal fluid); cerebrospinal
fluid (all cerebrospinal fluid inside the cranial cavity including the
ventricles and superficial subarachnoid space); and WMH vol-
umes. MCMxxxVI does not distinguish hyperintense and hypoin-
tense areas of cerebromalacea due to old cortical/subcortical in-
farcts or lacunes from WMH and cerebrospinal fluid, respectively.
Therefore, these areas were masked out from the respective binary
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masks by thresholding in FLAIR sequences using a region-growing
algorithm from Analyze 10.0 (http://www.analyzedirect.com/
Analyze). Where stroke lesions were confluent with WMH, the
boundary between the two was determined by evaluation of the
WMH in the contralateral hemisphere and neuroradiological knowl-
edge. Brain tissue volumes were measured blind to participant infor-
mation. For the current study, we use the total WMH volume (cm3)
after first residualizing for overall brain size (intracranial volume,
cm3).

Qualitative White Matter Lesion Location

Qualitative visual ratings of the intensity and location of WMH
were scored using the Wahlund scale based on the FLAIR and
T2-weighted scans (Wahlund et al., 2001). Hyperintensities were
rated both bilaterally and as an overall score in the frontal, parieto-
occipital and temporal lobes, as well as the basal ganglia and
infratentorial regions. Hyperintensities were rated on a four-point
scale: for basal ganglia: 0 � no hyperintensities; 1 � one focal

Table 2
Sample Demographics and Descriptive Statistics for Variables

Variable N M SD Skew Kurtosis

Reaction time measures
M CRT (m/s) 670 645.15 86.30 .76 1.11
SD CRT (m/s) 670 138.99 36.88 .87 1.09
Coefficient of variability CRT 670 .21 .04 .72 .97

Quantitative imaging
White matter hyperintensity volume (cm3) 671 12.08 12.84 2.26 7.88
White matter hyperintensity residual 671 .00 1.00 2.29 8.07
WMT gFA 649 �.01 .91 .36 .27
WMT gMD 649 �.01 .92 .23 �.14

Tractography
Genu corpus callosum (FA) 628 .41 .05 �.08 �.15
Splenium corpus callosum (FA) 645 .49 .07 �.36 .63
Arcuate fasciculus (FA) 547 .44 .04 �.33 .61
Anterior thalamic radiation (FA) 531 .32 .03 �.15 .21
Rostral cingulum (FA) 612 .41 .04 �.39 .49
Uncinate fasciculus (FA) 535 .33 .03 �.15 .03
Inferior longitudinal thalamic radiation (FA) 643 .39 .04 �.23 �.06
Genu corpus callosum (MD) 628 769.45 66.08 .41 1.02
Splenium corpus callosum (MD) 645 977.31 174.66 .77 1.21
Arcuate fasciculus (MD) 547 652.53 45.80 1.24 4.48
Anterior thalamic radiation (MD) 531 755.19 55.96 .39 �.03
Rostral cingulum (MD) 612 649.51 40.18 .37 .66
Uncinate fasciculus (MD) 535 762.01 46.65 .19 .05
Inferior longitudinal thalamic radiation (MD) 643 771.78 84.24 1.51 3.56

Age (years) 671 72.49 .71 .00 �.86

0 1 2 3

Wahlund rating
Frontal 671 10 482 145 34
Parieto-occipital 671 36 446 150 39
Temporal 671 577 86 8 0
Infrattentorial 671 576 81 13 1
Basal ganglia 671 559 88 23 1

n %

Sex 671
Male 356 53.1%
Female 315 46.9%

Yes (n) % No (n) %

Health covariate
Blood pressure 671 330 49.2% 341 50.8%
Diabetes 671 69 10.3% 602 89.7%
Cholesterol 671 283 42.2% 388 57.8%
Cardiovascular disease 671 182 27.1% 489 72.9%
Blood circulation 671 114 17.0% 557 83.0%
Stroke 671 46 6.9% 625 93.1%

Note. Both white matter tract integrity general fractional anisotropy factor (WMT gFA) and white matter tract
integrity general mean diffusivity factor (WMT gMD) are regression-based factor scores, standardized to mean
of 0 and standard deviation 1. CRT � choice reaction time; FA � fractional anisotropy; MD � mean diffusivity.
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hyperintensity; 2 � more than one focal hyperintensity; 3 �
confluent hyperintensities; for other regions: 0 � no hyperinten-
sities; 1 � focal hyperintensity; 2 � beginning confluence hyper-
intensity; 3 � diffuse involvement of the entire region) by Zoe
Morris, a trained neuroradiologist. This process results in an or-
dered categorical variable. On inspection of the score distribution
(see Table 2), it became clear there were very low frequency cells
which would be problematic for the estimation of the association
beta coefficients. As such, we created binary variables for each
area by combining 0 and 1 and 1 and 2 scores from the original
scale.

For the current analysis, we used the overall Wahlund ratings
rather than considering the left and right hemispheres individually.
Correlations between left and right hemispheres were moderate to
high for all lobes and regions (frontal lobe � .86; parieto-occipital
lobe � .89; temporal lobe � .64; basal ganglia � .72; infratento-
rial region � .88).

Tract Segmentation

The diffusion MRI data were preprocessed using FSL tools
(FMRIB, Oxford, UK; http://www.fmrib.ox.ac.uk) to extract the
brain, remove bulk patient motion and eddy current induced arti-
facts, and generate parametric maps of fractional anisotropy (FA).
Underlying connectivity data were generated using BedpostX/
ProbTrackX with the default settings of a two-fiber model per
voxel, and 5,000 probabilistic streamlines with a fixed separation
of 0.5 mm between successive points (Behrens, Johansen Berg,
Jbabdi, Rushworth, & Woolrich, 2007).

Twelve tracts of interest were identified using probabilistic
neighborhood tractography, a novel approach for automatic and
reproducible tract segmentation (Clayden, Storkey, & Bastin,
2007), as implemented in the TractoR package for fiber tracking
analysis (Clayden et al., 2011; http://www.tractor-mri.org.uk).
Briefly, this method works by segmenting the same fasciculus-of-
interest across a group of subjects from single seed point tractog-
raphy output by modeling how individual tracts compare to a
predefined reference tract in terms of their length and shape
(Clayden et al., 2007). In practice, multiple native space seed
points are placed in a cubic neighborhood of voxels (typically 7 �
7 � 7) surrounding a seed point transferred from the center of the
reference tract, which is defined in standard space, with the tract
that best matches the reference chosen from this group of ‘candi-
date tracts’. Tracts assessed were the genu and splenium of corpus
callosum, and bilateral anterior thalamic radiations, rostral cingu-
lum bundles, arcuate, uncinate and inferior longitudinal fasciculi.
Tract masks generated by probabilistic neighborhood tractography
were overlaid on the FA parametric maps and tract-averaged
values of these biomarkers, weighted by the connection probabil-
ity, determined for each tract in every participant.

To ensure that the segmented tracts were anatomically plausible
representations of the fasciculi of interest, a researcher (i.e., Su-
sana Muñoz Maniega) visually inspected all masks blind to the
other study variables and excluded tracts with aberrant or truncated
pathways. In general, probabilistic neighborhood tractography was
able to segment the 12 tracts of interest reliably (see Clayden,
Storkey, Muñoz Maniega, & Bastin, 2009) in the majority of
participants, with tracts that did not meet quality criteria, such as
truncation or failing to follow the expected path, ranging from

0.3% for the splenium of corpus callosum to 16% for the left
anterior thalamic radiation, with a mean of 5%. (Failures in tract
segmentation are typically caused by underlying tractography er-
rors in BedpostX/ProbTrackX resulting from finite image resolu-
tion, small registration mismatches in the component diffusion
MRI volumes and measurement noise.)

From the point of view of substantive investigations, the 12
tracts represent a good balance between projection (anterior tha-
lamic radiation), commissural (genu and splenium of the corpus
callosum) and association (arcuate fasciculus, rostral cingulum,
uncinated fasciculus & inferior longitudinal thalamic radiation)
fibers which connect a wide variety of brain regions. In the current
study, we used FA and MD data for each of the 12 tracts to
compute a metric of overall white matter integrity following Penke
et al. (2012).

Confirmatory factor analytic models were fit using full infor-
mation maximum likelihood estimation to account for the small
proportions of missing data in Mplus 7.4 (Muthén & Muthén,
1998–2012). A single general integrity factor was modeled, with
all 12 tracts loading on it. Separate models were fit for FA (gFA)
and MD (gMD). Values for the left and right hemispheres of each
tract were allowed to correlate in order to account for the local
dependence. Regression based factor scores were estimated from
these models and used in subsequent analyses.

Both models showed good fit to the data (gFA: 	2 � 101.48,
df � 49, p�.001; CFI � .98; TLI � .97; RMSEA � .040;
SRMR � .033; gMD: 	2 � 193.43, df � 49, p�.001; CFI � .94;
TLI � .93; RMSEA � .066; SRMR � .041) suggesting the
suitability of the models. The general factors accounted for 9.5%
to 47.7% (gFA) and 3.3% to 51.8% (gMD) of the variance in the
individual tracts. Factor score determinacies, which provide a
metric of score reliability, were high for both models. Determina-
cies are reported for each missing data pattern. For gFA, the
complete case determinacy was 0.915, with the lowest determi-
nacy 0.812. For gMD, the complete case determinacy was 0.925,
with the lowest determinacy of 0.791.

In addition, and for information, we also ran models using the
hemispheric tract average for each of the tracts listed above.

Health Covariates

Participants were asked a series of questions on their medical
history by an interviewer, which were responded to with simple
Yes/No answers. The questions asked whether participants had a
history of cardiovascular disease, hypertension (being treated for),
high cholesterol, diabetes, blood circulation problems (being
treated for), or stroke. In all statistical analyses (see next section),
these variables were included as individual binary covariates. This
was done to provide some statistical control for any shared vari-
ance between presence of disease, imaging metrics and speeded
performance.

Statistical Analyses

We built two regression models for each of our predictor vari-
ables of interest, WMH, general white matter integrity FA and
MD, and Wahlund ratings of white matter lesion severity and
location. In addition to the primary imaging variables of interest,
we also include results from analyses using the hemispheric aver-
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ages (or single values for the genu and splenium of the corpus
callosum) for each white matter tract as predictors of speed vari-
ability in place of the general FA and MD variables.

In the first model (Model 1), we included age, sex, health
covariates and the brain integrity measure of interest. We chose to
include age as, despite the use of a birth cohort and thus a narrow
age range, both RT and white matter are sensitive to effects of age.
Correlations between age and the focal RT and white matter
variables are provided in the online supplemental material. In the
second model (Model 2), we additionally included M CRT. Here
we were interested in the extent of attenuation of any main effects
after controlling for average RT.

The primary focus of this study was in prediction of SD CRT as
a measure of variability. However, for completeness and following
reviewer comments, given the exploratory nature of the study, we
also estimate models using both M CRT and the CV CRT as
dependent variables. In the analyses of M CRT, the second stage
models include SD CRT in the second step. Results for assumption
checks for all models are included in the online supplemental
material.

To assess the robustness of our findings, a number of sensi-
tivity analyses were conducted. First, to assess the influence of
outlying values, we reran our final models using robust regres-
sion using the Huber method as implemented in the rlm function
in the MASS package in R (Venables & Ripley, 2002). Second,
we reran our final models on the basis of subsets of the full data
set—those individuals with a history of cardiovascular disease
(CVD) or stroke (n � 214) and those with a history of neither
(n � 457).

Results

Descriptive statistics are shown in Table 2. The frequency of the
Wahlund ratings indicates that hyperintensities are primarily lo-
cated, and have greater severity, in the frontal and parieto-occipital
regions. As often observed in aging samples, the most commonly
reported medical problems were hypertension and high choles-
terol.

Results of regression diagnostic tests suggested no evidence of
multicollinearity, heteroscedasticity, nonindependence of errors,
nonnormality of model residuals, or influential observations (see
the online supplemental material). Reaction time variables often
display high levels of skew and kurtosis; however, this problem is
usually less severe in CRT compared with simple RT. As can be
seen in Table 2, in our study SD CRT was relatively normally
distributed. As such, we did not deem it necessary to rerun models
using the log transform of RT, as is often reported in the literature.

Table 3–8, display the standardized regression coefficients for
models including WMH volume, gFA, gMD, Wahlund ratings,
individual tract average FA and individual tract average MD,
respectively. In order to facilitate comparisons across models, each
table contains results from all models with SD CRT, M CRT, and
CV CRT as the outcome variables of interest. Given the large
number of models and tests in this exploratory study, p values are
reported for completeness, but we refrain from interpreting indi-
vidual effects based on these (for the full model results tables, see
Tables S2 through S18 in the online supplemental material).

Across all models, the variance accounted for by age, sex, health
covariates and the focal brain imaging variables was small, ranging
from 2.6% to 4.8% variance explain for SD CRT, with ranges of
3.3% to 5.4% and 0.9% to 3.9% variance explained for M CRT and
CV CRT respectively. As expected given the strong positive cor-
relation between M CRT and SD CRT, the addition of M CRT to
models predicting SD CRT increased variance explained to be-
tween 36.0% and 41.1%. Similarly, and again as expected, when
SD CRT was added to models predicting M CRT, variance ex-
plained increased to between 36.6% to 41.7%. (See Tables S2
through S18 in the online supplemental material for full results of
model F-test variances explained.)

Covariate Effects

For age and sex, the direction of the effects indicated that female
participants and those who were older had higher SD CRT, and
thus were more variable in performance, whereas men and older
participants had higher M CRT, indicating they were slower on

Table 3
Standardized Beta Coefficients for Models 1 and 2 Predicting SD CRT, M CRT and CV CRT
from WM Hyperintensity Volume
(n � 670)

SD CRT M CRT CV CRT

Model 1 Model 2 Model 1 Model 2 Model 1

Predictors 
 p 
 p 
 p 
 p 
 p

Sex �.117 .003 �.143 �.001 .043 .266 .115 �.001 �.176 �.001
Age (years) .076 .048 �.001 .969 .125 .001 .077 .011 .010 .798
High blood pressure �.011 .790 .000 .994 �.018 .660 �.011 .726 �.005 .901
Diabetes .031 .422 �.015 .627 .075 .056 .055 .072 �.010 .797
High cholesterol .035 .392 �.001 .979 .058 .158 .036 .261 .001 .973
Cardiovascular disease .079 .047 .062 .048 .028 .480 �.021 .502 .086 .031
Blood circulation .077 .044 .052 .084 .040 .290 �.007 .809 .071 .063
History of stroke .055 .160 .046 .131 .014 .723 �.020 .512 .058 .134
WM hyperintensity volume .106 .006 .019 .536 .140 �.001 .074 .015 .047 .224
M CRT .620 �.001
SD CRT .619 �.001

Note. CRT � choice reaction time; CV � coefficient of variability; WM � white matter.
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average across trials. Of the health covariates, all effects sizes were
small (absolute 
 range � .00 to .11), with effects generally
indicating that those who have a history of a medical condition
were both more variable and have a higher M CRT.

Main Effects

Across models, WMH volume demonstrated consistently larger
effects (
 range � .05 to .14), with the direction of the effects
indicating the increased WMH volume was associated with greater
variability and higher average CRT. The largest effects across
models were seen with the white matter tract variables. Of the
general measures, the largest effect was for gFA predicting M CRT
(
 � 0.15). Considering the specific tract averages, the strongest
effects were seen for both FA and MD in the genu of the corpus
callosum, particular with M CRT.

However, these effects were in the opposite direction to that
which might be expected. Positive associations between FA and
SD CRT (
 � 0.14) and M CRT (
 � 0.17) suggest that higher

values of FA are associated with higher average reaction time and
greater variability, with opposite effects and interpretation for MD
(
 � �0.08 and �.022, respectively). Finally, of the models
including the Wahlund ratings, the largest effects were seen for
ratings in frontal regions (
 range � .06 to .15), indicating those
with greater severity of lesion in this region were both more
variable and had higher M CRT.

Comparison Across SD CRT, M CRT, and CV CRT

Across all models, the largest effects were seen for the coeffi-
cients predicting M CRT, indicating that the imaging variables
were more strongly associated with average performance than
variability. However, it is important to note that in absolute terms
these effects were still small, and thus the difference in the coef-
ficients predicting SD CRT, M CRT, and CV CRT were also small.

The difference in coefficients from Model 1 to Model 2 for both
SD CRT and M CRT provide information on the degree to which
the effects of the imaging variables on SD CRT and M CRT are

Table 4
Standardized Beta Coefficients for Models 1 and 2 Predicting SD CRT, M CRT, and CV CRT
from General Fractional Anisotropy (gFA; n � 647)

SD CRT M CRT CV CRT

Model 1 Model 2 Model 1 Model 2 Model 1

Predictors 
 p 
 p 
 p 
 p 
 p

Sex �.114 .004 �.142 �.001 .044 .264 .115 �.001 �.173 �.001
Age (years) .087 .026 .004 .902 .133 .001 .079 .010 .019 .626
High blood pressure �.012 .775 .003 .935 �.023 .574 �.016 .624 �.004 .930
Diabetes .033 .415 �.016 .617 .077 .053 .057 .068 �.011 .793
High cholesterol .043 .313 �.002 .948 .072 .089 .045 .170 .004 .922
Cardiovascular disease .071 .079 .068 .034 .006 .883 �.038 .229 .090 .027
Blood circulation .076 .051 .057 .060 .030 .441 �.017 .571 .078 .046
History of stroke .061 .127 .051 .101 .015 .698 �.022 .474 .065 .104
gFA .056 .150 �.039 .212 .152 �.001 .117 �.001 �.017 .658
M CRT .627 �.001
SD CRT .618 �.001

Note. CRT � choice reaction time; CV � coefficient of variability.

Table 5
Standardized Beta Coefficients for Models 1 and 2 Predicting SD CRT, M CRT, and CV CRT
from General Mean Diffusivity (gMD; n � 647)

SD CRT M CRT CV CRT

Model 1 Model 2 Model 1 Model 2 Model 1

Predictors 
 p 
 p 
 p 
 p 
 p

Sex �.113 .005 �.143 �.001 .047 .238 .118 �.001 �.173 �.001
Age (years) .089 .024 .005 .874 .135 .001 .080 .010 .019 .624
High blood pressure �.006 .890 �.001 .971 �.007 .860 �.004 .908 �.005 .896
Diabetes .032 .434 �.014 .656 .073 .070 .053 .090 �.010 .805
High cholesterol .040 .344 .000 .990 .065 .125 .040 .228 .005 .909
Cardiovascular disease .073 .071 .066 .038 .012 .775 �.034 .284 .089 .028
Blood circulation .076 .051 .058 .060 .030 .446 �.018 .562 .078 .046
History of stroke .063 .112 .050 .110 .022 .587 �.018 .568 .064 .107
gMD .022 .577 �.031 .317 .084 .031 .071 .021 �.013 .736
M CRT .623 �.001
SD CRT .623 �.001

Note. CRT � choice reaction time; CV � coefficient of variability.
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attenuated by the inclusion of other CRT summary variable.
Across models, the inclusion of either SD CRT or M CRT resulted
in attenuations to the effects of the focal imaging variables. The
magnitudes of these attenuations varied. Fractionally larger atten-
uations were evident in models predicting SD CRT when M CRT
was added as a predictor than the reverse specification. However,
these differences were marginal. Many coefficients that were near
zero in the original models (Model 1 across tables) showed varied
attenuations in magnitude and direction of effect, fluctuating
around zero.

Sensitivity Checks

To assess the sensitivity of our results, we reran all final models
using robust regression (see Tables S19 through S21 in the online
supplemental material.) The pattern of results was identical to the
main models with respect to the direction, magnitude, and associated
inferential statistics.

Next, we considered whether those individuals with a history of
CVD or stroke drove the observed effects in the total sample. Param-
eter estimates were compared for the final models in which the sample

Table 6
Standardized Beta Coefficients for Models 1 and 2 Predicting SD CRT, M CRT, and CV CRT
From Wahlund Ratings (n � 670)

SD CRT M CRT CV CRT

Model 1 Model 2 Model 1 Model 2 Model 1

Predictors 
 p 
 p 
 p 
 p 
 p

Sex �.117 .003 �.144 �.001 .042 .274 .115 �.001 �.176 �.001
Age (years) .085 .026 .002 .960 .135 �.001 .082 .006 .015 .689
High blood pressure �.003 .940 .006 .846 �.015 .712 �.013 .682 .003 .932
Diabetes .025 .525 �.019 .533 .071 .068 .056 .069 �.017 .669
High cholesterol .031 .448 .000 .992 .051 .215 .032 .327 .001 .977
Cardiovascular disease .087 .029 .066 .035 .033 .403 �.020 .517 .092 .021
Blood circulation .079 .038 .054 .074 .041 .283 �.008 .793 .075 .053
History of stroke .059 .135 .046 .137 .020 .601 �.016 .611 .060 .129
Wahlund frontal .149 .002 .058 .126 .147 .002 .055 .145 .099 .040
Wahlund parieto-occipital �.063 .183 �.073 .049 .016 .728 .055 .137 �.098 .039
Wahlund temporal .024 .543 �.008 .794 .053 .188 .038 .231 .002 .964
Wahlund infrattentorial .062 .117 .024 .435 .061 .123 .023 .467 .041 .309
Wahlund basal ganglia �.060 .152 �.015 .653 �.073 .081 �.036 .275 �.031 .463
M CRT .620 �.001
SD CRT .616 �.001

Note. CRT � choice reaction time; CV � coefficient of variability.

Table 7
Standardized Beta Coefficients for Models 1 and 2 Predicting SD CRT, M CRT, and CV CRT From Tract Average FA (n � 358)

SD CRT M CRT CV CRT

Model 1 Model 2 Model 1 Model 2 Model 1

Predictors 
 p 
 p 
 p 
 p 
 p

Sex �.076 .188 �.097 .039 .035 .546 .080 .089 �.116 .046
Age (years) .069 .209 .004 .933 .111 .044 .070 .116 .012 .821
High blood pressure �.013 .824 .016 .733 �.049 .398 �.041 .377 .017 .767
Diabetes .000 1.00 �.015 .746 .025 .657 .025 .583 �.01 .862
High cholesterol .036 .531 �.001 .983 .062 .276 .041 .373 .000 .998
Cardiovascular disease .047 .404 .030 .511 .029 .607 .001 .978 .034 .553
Blood circulation .109 .047 .092 .037 .028 .612 �.036 .411 .111 .044
History of stroke .063 .244 .039 .377 .041 .445 .004 .926 .052 .340
Genu corpus callosum .144 .027 .043 .422 .172 .008 .087 .099 .061 .349
Splenium corpus callosum .026 .637 .064 .155 �.064 .248 �.080 .077 .072 .198
Arcuate fasciculus .017 .799 .028 .608 �.019 .785 �.029 .601 .049 .476
Anterior thalamic radiation �.113 .097 �.031 .576 �.139 .041 �.072 .190 �.052 .447
Rostral cingulum �.098 .148 �.054 .320 �.073 .278 �.016 .775 �.084 .217
Uncinate fasciculus .015 .834 .035 .544 �.034 .633 �.043 .457 .040 .573
Inferior longitudinal thalamic radiation .015 .817 .026 .631 �.018 .791 �.027 .619 .016 .812
M CRT .591 �.001
SD CRT .589 �.001

Note. CRT � choice reaction time; CV � coefficient of variability; FA � fractional anisotropy.
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was split into a sample without history of either CVD or stroke (n �
456) and those with a history of either condition (n � 214; see Tables
S22 through S24 in the online supplemental material).

Again, the pattern of results was largely similar to the main
analyses. For each model, for each outcome, effect sizes were
generally smaller due. However, the direction of effects and the
relative size of effects were broadly consistent. Taken collec-
tively, the results of the sensitivity checks indicated the patterns
of results were generally robust of individual influential cases
and were not driven by those within the sample with a history
of CVD.

Discussion

In the full sample, WMH volume was positively associated with
SD CRT; people with larger WMH volume were more variable in
CRT responses. Ratings of hyperintensity severity in frontal lobes,
but not in other brain areas, were positively associated with SD
CRT. Neither FA nor MD estimates of general white matter tract
integrity were significantly associated with SD CRT. Across all
models, when M CRT was included in the models, an attenuation
of effects for white matter variables was observed. Therefore, in
the current sample, there were no incremental effects of various
metrics of white matter on CRT variability over and above the
average effects of CRT speed. Across all models, the variance
explained by white matter measures was small (Range � 0.9% to
4.8%).

To investigate the relationships of the imaging measures with
different dependent measures derived from the CRT test, we reran
our models using both CV CRT and M CRT as the dependent
variable. With CV CRT as the dependent variable, the association
of the frontal hyperintensity ratings remained, as did ratings of
hyperintensities in the parieto-occipital region. However, the di-
rection of these effects differed, specifically in the case of the
parieto-occipital association, lower ratings of hyperintensities were

associated with greater CRT variability. The counter intuitive
direction of this effect suggests this may be a chance finding. It
should be noted here that, although frequently used, CV CRT is a
crude measure of IIV adjusted for mean and a number of issues
associated with its use and interpretation have been raised (see,
e.g., Hultsch et al., 2008, for discussion).

When models were reestimated using M CRT as the dependent
variable, associations were found with WMH volume, gFA and
gMD. These relationships were found to be independent of SD
CRT. Given the large number of statistical tests reported in the
current study, it is perhaps more informative to consider the
magnitude of the standardized effects. The coefficients from
the various imaging metrics are larger in magnitude when predict-
ing M CRT when compared with SD CRT (see Table 3 through
Table 8). Only in the case of Wahlund ratings (Table 6) are the
standardized effects approximately equal.

Taken together, the results of the present study suggest that
various metrics of WM integrity show limited associations with
either SD CRT and M CRT when both variables are included in the
models. Put differently, imaging metrics are not incrementally
predictive of either SD or M CRT when the other RT measure is
controlled for. This is in contrast to some previous reports sug-
gesting that IIV’s association with WM integrity is largely inde-
pendent of mean RT speed (Bunce et al., 2007; Fjell et al., 2011;
Moy et al., 2011).

The results support findings from earlier work linking white
matter integrity and information processing speed in the current
sample. For example, Valdés Hernández et al. (2013) showed that
WMH load is associated with both general cognitive ability and
with information processing speed in old age. Using diffusion
tensor MRI indicators of white matter tract integrity rather than
hyperintensities, Penke et al. (2012) showed that the association
between the integrity of white matter tracts and general cognitive
ability was fully mediated by the speed of basic information

Table 8
Standardized Beta Coefficients for Models 1 and 2 Predicting SD CRT, M CRT, and CV CRT From Tract Average MD (n � 358)

SD CRT M CRT CV CRT

Model 1 Model 2 Model 1 Model 2 Model 1

Predictors 
 p 
 p 
 p 
 p 
 p

Sex �.103 .083 �.125 .010 .037 .530 .097 .043 �.152 .012
Age (years) .081 .148 .008 .861 .123 .027 .076 .092 .021 .708
High blood pressure �.014 .803 .011 .820 �.042 .460 �.034 .465 .012 .842
Diabetes .008 .890 �.013 .781 .034 .536 .030 .507 �.006 .918
High cholesterol .032 .573 �.001 .976 .056 .317 .038 .409 �.001 .981
Cardiovascular disease .050 .381 .024 .599 .043 .443 .014 .756 .031 .588
Blood circulation .102 .062 .089 .044 .021 .692 �.038 .388 .106 .054
History of stroke .072 .180 .038 .389 .058 .274 .016 .706 .053 .330
Genu corpus callosum �.082 .236 .047 .404 �.218 .002 �.170 .002 .031 .655
Splenium corpus callosum �.025 .653 �.037 .404 .021 .698 .035 .422 �.040 .472
Arcuate fasciculus .038 .608 .005 .935 .056 .447 .034 .571 .014 .849
Anterior thalamic radiation .172 .018 .031 .604 .238 .001 .138 .019 .073 .316
Rostral cingulum �.077 .296 �.049 .408 �.046 .524 �.002 .977 �.064 .385
Uncinate fasciculus .008 .914 �.028 .638 .061 .405 .056 .342 �.021 .777
Inferior longitudinal thalamic radiation �.052 .413 �.037 .466 �.024 .697 .006 .910 �.049 .441
M CRT .594 �.001
SD CRT .581 �.001

Note. CRT � choice reaction time; CV � coefficient of variability; MD � mean diffusivity.
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processing. However, neither of the previous studies in the current
sample have considered CRT variability.

As outlined in the introductory paragraphs, there remain some
differences in the methodologies applied across studies—for ex-
ample, the specific WMH measures, composition of the samples,
and different RT tests—which make drawing meaningful direct
comparisons, difficult. More importantly, many of the previous
studies were underpowered. Comparing our results to those studies
with comparable sample sizes, for example Haynes et al. (2017;
see Table 1), similar patterns of results are seen. Specifically, the
effects of interest are largely small, and when models are esti-
mated, including both metrics of average RT and variability in RT,
effects are attenuated and drop below nominal alpha thresholds.

Our study is one of the largest-sampled studies to consider SD
CRT, M CRT, and CV CRT alongside multiple different metrics
brain white matter. Though exploratory in nature, such an ap-
proach can be advantageous in an area where current findings
contain inconsistencies. For example, our study is one of few large
studies to address the issue of whether the association between
frontal WMH and CRT IIV might be explained by the shared
association of these two variables with mean RT. The current study
does not resolve the question of whether variability or average RT
performance is more strongly related to fundamental measures of
the brain. However, we hope that others will follow in adding
further evidence from adequately powered studies to help resolve
the existing inconsistencies in the results. Such studies would
benefit from both more extensive and detailed proxy behavioral
measures of speed, and more biologically derived metrics of brain
activation. Some investigations of this type have been carried out
and they provide interesting insights. For example, studies of
blood oxygen-level-dependent signal variability in the brain
suggested that, at least within the brain itself, IIV and mean
signal are distinct quantities (Garrett, Kovacevic, McIntosh, &
Grady, 2011).

Moreover, contrary to the general consensus regarding RT IIV,
it appears that as far as brain signals are concerned, greater - not
smaller - variability may be advantageous, representing greater
adaptability from moment to moment (Garrett et al., 2011, 2013;
McIntosh, Kovacevic, & Itier, 2008). This underlines the complex-
ity of the topic and warrants further research into more nuanced
aspects of variability.

The effects noted in the current study are generally small.
However, the current sample is sufficiently large and the measures
sufficiently reliable that we judge that these effect sizes are un-
likely to have been much biased on the basis of features of the
study, and we judge that the estimates presented here are robust.
Of course, the practical question of the importance of such small
effects for an individual’s daily functioning remains; however,
small effects can have importance at the population level.

The analyses also suggested a number of covariates to be
significant predictors of the various measures of CRT (SD CRT, M
CRT, and CV CRT). Specifically, in a majority of models, sex was
a significant covariate with the direction of the effect suggesting
that women were more variable in performance than men. Inter-
estingly, given the narrow age range of the current sample (birth
cohort), age had a significant effect on CRT measures. In the case
of predicting SD CRT this was true only in the models without M
CRT. In predicting M CRT, age remained a significant covariate
after the inclusion of SD CRT. Collectively, this pattern of results

suggests that in the current sample, at least, age is primarily
associated with overall M CRT and not variability. Although it
may seem surprising given the narrow range of age, and thus low
variance, to see significant effects, speeded performance has been
shown to be sensitive to the effects of aging. On a practical note,
the significant effects also validate the inclusion of age as a
covariate in our models.

This study provided a systematic exploratory investigation of
the association between white matter integrity and RT IIV in a
large sample of older adults. Sample sizes are often small in
neuropsychological studies (but see Anstey et al., 2007; Bunce et
al., 2007; Haynes et al., 2017, for notable exceptions), which can
exacerbate the problem of unreliable, unreproducible results.
Greater number of large, adequately powered studies are needed to
clarify the effects. Another strength of the present study is the use
of multiple measures of white matter integrity, providing a com-
prehensive look at the associations with RT IIV and speed. It
should be noted that we considered only the volume and location
of WMHs, and white matter tract integrity and that it is known that
as the brain ages and in the presence of increasing degrees of
WMHs, the integrity of normal appearing white matter becomes
increasingly nonnormal. Future studies should include measures of
the tissue integrity of the whole brain, which may provide some
additional insight into the associations between integrity and the
average and variability in speeded test performance.

The RT measures used in the present study were calculated from
40 trials, which is a modest number by comparison with some
other studies investigating RT variability in relation to white
matter integrity. Even though 20 trials have previously been shown
to be an adequate number for this type of investigation (Bunce et
al., 2013), we know that the reliability of both IIV and mean RT
increases, and perhaps more importantly, the discrepancy in reli-
abilities between the two measures decreases, with the larger
number of trials (Schmiedek, Lövdén, & Lindenberger, 2009).
Therefore, having more trials from which mean RT and IIV are
calculated is highly encouraged in future studies in this field.

In conclusion, we found little evidence that white matter integ-
rity explains variance in SD CRT over that explained by the M
CRT. The results suggest that the association between WMH load
and CRT variability might be secondary to the association of
WMH with average CRT. At least in the case of CRT and in the
cross-sectional analysis of the current sample, neither WMH load
nor white matter tract integrity appear to be strong candidates to
explain age differences in CRT IIV. Further investigations into
putative causes of increased CRT in older adults are required.

References

Anstey, K. J., Mack, H. A., Christensen, H., Li, S.-C., Reglade-Meslin, C.,
Maller, J., . . . Sachdev, P. (2007). Corpus callosum size, reaction time
speed and variability in mild cognitive disorders and in a normative
sample. Neuropsychologia, 45, 1911–1920. http://dx.doi.org/10.1016/j
.neuropsychologia.2006.11.020

Behrens, T. E., Johansen Berg, H., Jbabdi, S., Rushworth, M. F. S., &
Woolrich, M. W. (2007). Probabilistic diffusion tractography with mul-
tiple fibre orientations: What can we gain? NeuroImage, 34, 144–155.
http://dx.doi.org/10.1016/j.neuroimage.2006.09.018

Bunce, D., Anstey, K. J., Christensen, H., Dear, K., Wen, W., & Sachdev,
P. (2007). White matter hyperintensities and within-person variability in

655REACTION TIME VARIABILITY AND WHITE MATTER INTEGRITY

http://dx.doi.org/10.1016/j.neuropsychologia.2006.11.020
http://dx.doi.org/10.1016/j.neuropsychologia.2006.11.020
http://dx.doi.org/10.1016/j.neuroimage.2006.09.018


community-dwelling adults aged 60–64 years. Neuropsychologia, 45,
2009–2015. http://dx.doi.org/10.1016/j.neuropsychologia.2007.02.006

Bunce, D., Bielak, A. A., Cherbuin, N., Batterham, P. J., Wen, W.,
Sachdev, P., & Anstey, K. J. (2013). Utility of intraindividual reaction
time variability to predict white matter hyperintensities: A potential
assessment tool for clinical contexts? Journal of the International Neu-
ropsychological Society, 19, 971–976. http://dx.doi.org/10.1017/
S1355617713000830

Bunce, D. J., Warr, P. B., & Cochrane, T. (1993). Blocks in choice
responding as a function of age and physical fitness. Psychology and
Aging, 8, 26–33. http://dx.doi.org/10.1037/0882-7974.8.1.26

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J.,
Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small
sample size undermines the reliability of neuroscience. Nature Reviews
Neuroscience, 14, 365–376. http://dx.doi.org/10.1038/nrn3475

Cattell, J. M., & Galton, F. (1890). Mental tests and measurements. Mind,
15, 373–381. Retrieved from https://www.jstor.org/stable/2247264

Clayden, J. D., Muñoz Maniega, S., Storkey, A. J., King, M. D., Bastin,
M. E., & Clark, C. A. (2011). TractoR: Magnetic resonance imaging and
tractography with R. Journal of Statistical Software, 44, 1–18. http://dx
.doi.org/10.18637/jss.v044.i08

Clayden, J. D., Storkey, A. J., & Bastin, M. E. (2007). A probabilistic
model-based approach to consistent white matter tract segmentation.
IEEE Transactions on Medical Imaging, 26, 1555–1561. http://dx.doi
.org/10.1109/TMI.2007.905826

Clayden, J. D., Storkey, A. J., Muñoz Maniega, S., & Bastin, M. E. (2009).
Reproducibility of tract segmentation between sessions using an unsu-
pervised modelling-based approach. NeuroImage, 45, 377–385. http://
dx.doi.org/10.1016/j.neuroimage.2008.12.010

Cox, B. D., Huppert, F. A., & Whichelow, M. J. (1993). The health and
lifestyle survey: Seven years on. Aldershot, UK: Dartmouth.

Deary, I. J. (2000). Looking down on human intelligence. New York, NY:
Oxford University Press. http://dx.doi.org/10.1093/acprof:oso/
9780198524175.001.0001

Deary, I. J., Bastin, M. E., Pattie, A., Clayden, J. D., Whalley, L. J., Starr,
J. M., & Wardlaw, J. M. (2006). White matter integrity and cognition in
childhood and old age. Neurology, 66, 505–512. http://dx.doi.org/10
.1212/01.wnl.0000199954.81900.e2

Deary, I. J., & Der, G. (2005a). Reaction time explains IQ’s association
with death. Psychological Science, 16, 64 – 69. http://dx.doi.org/10
.1111/j.0956-7976.2005.00781.x

Deary, I. J., & Der, G. (2005b). Reaction time parameters, intelligence,
ageing and death: The West of Scotland Twenty-07 study. In J. Duncan,
L. Phillips, & P. McLeod (Eds.), Measuring the mind: Speed, control
and age (pp. 115–136). New York, NY: Oxford University Press.
http://dx.doi.org/10.1093/acprof:oso/9780198566427.003.0005

Deary, I. J., Der, G., & Ford, G. (2001). Reaction times and intelligence
differences: A population-based cohort study. Intelligence, 29, 389–399.
http://dx.doi.org/10.1016/S0160-2896(01)00062-9

Deary, I. J., Gow, A. J., Pattie, A., & Starr, J. M. (2012). Cohort profile:
The Lothian Birth Cohorts of 1921 and 1936. International Journal of
Epidemiology, 41, 1576–1584. http://dx.doi.org/10.1093/ije/dyr197

Deary, I. J., Gow, A. J., Taylor, M. D., Corley, J., Brett, C., Wilson, V., . . .
Starr, J. M. (2007). The Lothian Birth Cohort 1936: A study to examine
influences on cognitive ageing from age 11 to age 70 and beyond. BMC
Geriatrics, 7, 28. http://dx.doi.org/10.1186/1471-2318-7-28

Diehl, M., Hooker, K., & Sliwinsky, M. J. (2015). Handbook of intrain-
dividual variability across the life span. New York, NY: Taylor &
Francis.

Dixon, R. A., Garrett, D. D., Lentz, T. L., MacDonald, S. W., Strauss, E.,
& Hultsch, D. F. (2007). Neurocognitive markers of cognitive impair-
ment: Exploring the roles of speed and inconsistency. Neuropsychology,
21, 381–399. http://dx.doi.org/10.1037/0894-4105.21.3.381

Dykiert, D., Der, G., Starr, J. M., & Deary, I. J. (2012). Age differences in
intra-individual variability in simple and choice reaction time: System-
atic review and meta-analysis. PLoS ONE, 7(10), e45759. http://dx.doi
.org/10.1371/journal.pone.0045759

Eckert, M. A. (2011). Slowing down: Age-related neurobiological predic-
tors of processing speed. Frontiers in Neuroscience, 5, 25. http://dx.doi
.org/10.3389/fnins.2011.00025

Fjell, A. M., Westlye, L. T., Amlien, I. K., & Walhovd, K. B. (2011).
Reduced white matter integrity is related to cognitive instability. The
Journal of Neuroscience: The Official Journal of the Society for Neu-
roscience, 31, 18060 –18072. http://dx.doi.org/10.1523/JNEUROSCI
.4735-11.2011

Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The
importance of being variable. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience, 31, 4496–4503. http://dx.doi
.org/10.1523/JNEUROSCI.5641-10.2011

Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S., Linden-
berger, U., McIntosh, A. R., & Grady, C. L. (2013). Moment-to-moment
brain signal variability: A next frontier in human brain mapping? Neu-
roscience and Biobehavioral Reviews, 37, 610–624. http://dx.doi.org/
10.1016/j.neubiorev.2013.02.015

Haynes, B. I., Bunce, D., Kochan, N. A., Wen, W., Brodaty, H., &
Sachdev, P. S. (2017). Associations between reaction time measures and
white matter hyperintensities in very old age. Neuropsychologia, 96,
249–255. http://dx.doi.org/10.1016/j.neuropsychologia.2017.01.021

Hernández, M. C., Ferguson, K. J., Chappell, F. M., & Wardlaw, J. M.
(2010). New multispectral MRI data fusion technique for white matter
lesion segmentation: Method and comparison with thresholding in
FLAIR images. European Radiology, 20, 1684–1691. http://dx.doi.org/
10.1007/s00330-010-1718-6

Hultsch, D. F., MacDonald, S. W., Hunter, M. A., Levy-Bencheton, J., &
Strauss, E. (2000). Intraindividual variability in cognitive performance
in older adults: Comparison of adults with mild dementia, adults with
arthritis, and healthy adults. Neuropsychology, 14, 588–598. http://dx
.doi.org/10.1037/0894-4105.14.4.588

Hultsch, D. F., Strauss, E., Hunter, M. A., & MacDonald, S. W. (2008).
Intraindividual variability, cognition, and aging. In W. S. Stuart, F. I. M.
Craik, & T. A. Salthouse (Ed.), The handbook of aging and cognition
(3rd ed., pp. 491–556). New York, NY: Psychology Press.

Hultsch, D. F., MacDonald, S. W., & Dixon, R. A. (2002). Variability in
reaction time performance of younger and older adults. The Journals of
Gerontology Series B: Psychological Sciences and Social Sciences, 57,
101–115.

Jackson, J. D., Balota, D. A., Duchek, J. M., & Head, D. (2012). White
matter integrity and reaction time intraindividual variability in healthy
aging and early-stage Alzheimer disease. Neuropsychologia, 50, 357–
366. http://dx.doi.org/10.1016/j.neuropsychologia.2011.11.024

Jensen, A. R. (2006). Clocking the mind: Mental chronometry and indi-
vidual differences. Amsterdam, the Netherlands: Elsevier.

Lövdén, M., Li, S. C., Shing, Y. L., & Lindenberger, U. (2007). Within-
person trial-to-trial variability precedes and predicts cognitive decline in
old and very old age: Longitudinal data from the Berlin Aging Study.
Neuropsychologia, 45, 2827–2838. http://dx.doi.org/10.1016/j
.neuropsychologia.2007.05.005

Lövdén, M., Schmiedek, F., Kennedy, K. M., Rodrigue, K. M., Linden-
berger, U., & Raz, N. (2013). Does variability in cognitive performance
correlate with frontal brain volume? NeuroImage, 64, 209–215. http://
dx.doi.org/10.1016/j.neuroimage.2012.09.039

MacDonald, S. W., Hultsch, D. F., & Dixon, R. A. (2003). Performance
variability is related to change in cognition: Evidence from the Victoria
Longitudinal Study. Psychology and Aging, 18, 510–523. http://dx.doi
.org/10.1037/0882-7974.18.3.510

MacDonald, S. W., Nyberg, L., & Bäckman, L. (2006). Intra-individual
variability in behavior: Links to brain structure, neurotransmission and

656 BOOTH ET AL.

http://dx.doi.org/10.1016/j.neuropsychologia.2007.02.006
http://dx.doi.org/10.1017/S1355617713000830
http://dx.doi.org/10.1017/S1355617713000830
http://dx.doi.org/10.1037/0882-7974.8.1.26
http://dx.doi.org/10.1038/nrn3475
https://www.jstor.org/stable/2247264
http://dx.doi.org/10.18637/jss.v044.i08
http://dx.doi.org/10.18637/jss.v044.i08
http://dx.doi.org/10.1109/TMI.2007.905826
http://dx.doi.org/10.1109/TMI.2007.905826
http://dx.doi.org/10.1016/j.neuroimage.2008.12.010
http://dx.doi.org/10.1016/j.neuroimage.2008.12.010
http://dx.doi.org/10.1093/acprof:oso/9780198524175.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198524175.001.0001
http://dx.doi.org/10.1212/01.wnl.0000199954.81900.e2
http://dx.doi.org/10.1212/01.wnl.0000199954.81900.e2
http://dx.doi.org/10.1111/j.0956-7976.2005.00781.x
http://dx.doi.org/10.1111/j.0956-7976.2005.00781.x
http://dx.doi.org/10.1093/acprof:oso/9780198566427.003.0005
http://dx.doi.org/10.1016/S0160-2896%2801%2900062-9
http://dx.doi.org/10.1093/ije/dyr197
http://dx.doi.org/10.1186/1471-2318-7-28
http://dx.doi.org/10.1037/0894-4105.21.3.381
http://dx.doi.org/10.1371/journal.pone.0045759
http://dx.doi.org/10.1371/journal.pone.0045759
http://dx.doi.org/10.3389/fnins.2011.00025
http://dx.doi.org/10.3389/fnins.2011.00025
http://dx.doi.org/10.1523/JNEUROSCI.4735-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.4735-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.5641-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.5641-10.2011
http://dx.doi.org/10.1016/j.neubiorev.2013.02.015
http://dx.doi.org/10.1016/j.neubiorev.2013.02.015
http://dx.doi.org/10.1016/j.neuropsychologia.2017.01.021
http://dx.doi.org/10.1007/s00330-010-1718-6
http://dx.doi.org/10.1007/s00330-010-1718-6
http://dx.doi.org/10.1037/0894-4105.14.4.588
http://dx.doi.org/10.1037/0894-4105.14.4.588
http://dx.doi.org/10.1016/j.neuropsychologia.2011.11.024
http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.005
http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.005
http://dx.doi.org/10.1016/j.neuroimage.2012.09.039
http://dx.doi.org/10.1016/j.neuroimage.2012.09.039
http://dx.doi.org/10.1037/0882-7974.18.3.510
http://dx.doi.org/10.1037/0882-7974.18.3.510


neuronal activity. Trends in Neurosciences, 29, 474–480. http://dx.doi
.org/10.1016/j.tins.2006.06.011

Madden, D. J. (2001). Speed and timing of behavioural processes. In J. E.
Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th
ed., pp. 288–312). San Diego, CA: Academic Press.

McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased brain
signal variability accompanies lower behavioral variability in develop-
ment. PLoS Computational Biology, 4(7), e1000106. http://dx.doi.org/
10.1371/journal.pcbi.1000106

Mella, N., de Ribaupierre, S., Eagleson, R., & de Ribaupierre, A. (2013).
Cognitive intraindividual variability and white matter integrity in aging.
Scientific World Journal, 2013, 1–16. Article ID 350623. http://dx.doi
.org/10.1155/2013/350623

Moy, G., Millet, P., Haller, S., Baudois, S., de Bilbao, F., Weber, K., . . .
Delaloye, C. (2011). Magnetic resonance imaging determinants of in-
traindividual variability in the elderly: Combined analysis of grey and
white matter. Neuroscience, 186, 88–93. http://dx.doi.org/10.1016/j
.neuroscience.2011.04.028

Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus User’s Guide.
Seventh Edition. Los Angeles, CA: Author.

Nilsson, J., Thomas, A. J., O’Brien, J. T., & Gallagher, P. (2014). White
matter and cognitive decline in aging: A focus on processing speed and
variability. Journal of the International Neuropsychological Society, 20,
262–267. http://dx.doi.org/10.1017/S1355617713001458

Penke, L., Maniega, S. M., Bastin, M. E., Valdés Hernández, M. C.,
Murray, C., Royle, N. A., . . . Deary, I. J. (2012). Brain white matter tract
integrity as a neural foundation for general intelligence. Molecular
Psychiatry, 17, 1026–1030. http://dx.doi.org/10.1038/mp.2012.66

Penke, L., Muñoz Maniega, S., Murray, C., Gow, A. J., Hernández, M. C.,
Clayden, J. D., . . . Deary, I. J. (2010). A general factor of brain white
matter integrity predicts information processing speed in healthy older
people. The Journal of Neuroscience: The Official Journal of the Society
for Neuroscience, 30, 7569–7574. http://dx.doi.org/10.1523/JNEURO-
SCI.1553-10.2010

Rabbitt, P., Osman, P., Moore, B., & Stollery, B. (2001). There are stable
individual differences in performance variability, both from moment to
moment and from day to day. The Quarterly Journal of Experimental
Psychology, 54, 981–1003. http://dx.doi.org/10.1080/713756013

Salthouse, T. A. (1996). The processing-speed theory of adult age differ-
ences in cognition. Psychological Review, 103, 403–428. http://dx.doi
.org/10.1037/0033-295X.103.3.403

Sandeman, E. M., Hernandez, M. C., Morris, Z., Bastin, M. E., Murray, C.,
Gow, A. J., . . . Wardlaw, J. M. (2013). Incidental findings on brain MR
imaging in older community-dwelling subjects are common but serious
medical consequences are rare: A cohort study. PLoS ONE, 8, e71467.
http://dx.doi.org/10.1371/journal.pone.0071467

Schmiedek, F., Lövdén, M., & Lindenberger, U. (2009). On the relation of
mean reaction time and intraindividual reaction time variability. Psy-
chology and Aging, 24, 841–857.

Valdés Hernández, M. C., Booth, T., Murray, C., Gow, A. J., Penke, L.,
Morris, Z., . . . Wardlaw, J. M. (2013). Brain white matter damage in
aging and cognitive ability in youth and old age. Neurobiology of Aging,
34, 2740–2747.

Valdés Hernández, M. C., Ferguson, K. J., Chappell, F. M., & Wardlaw,
J. M. (2010). New multispectral MRI data fusion technique for white
matter lesion segmentation: Method and comparison with thresholding
in FLAIR images. European Radiology, 20, 1684–1691. http://dx.doi
.org/10.1007/s00330-010-1718-6

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S
(4th ed.). New York, NY: Springer. http://dx.doi.org/10.1007/978-0-
387-21706-2

Wahlund, L. O., Barkhof, F., Fazekas, F., Bronge, L., Augustin, M.,
Sjögren, M., . . . the European Task Force on Age-Related White Matter
Changes. (2001). A new rating scale for age-related white matter
changes applicable to MRI and CT. Stroke, 32, 1318–1322. http://dx
.doi.org/10.1161/01.STR.32.6.1318

Walhovd, K. B., & Fjell, A. M. (2007). White matter volume predicts
reaction time instability. Neuropsychologia, 45, 2277–2284. http://dx
.doi.org/10.1016/j.neuropsychologia.2007.02.022

Wardlaw, J. M., Bastin, M. E., Valdés Hernández, M. C., Maniega, S. M.,
Royle, N. A., Morris, Z., . . . Deary, I. J. (2011). Brain aging, cognition
in youth and old age and vascular disease in the Lothian Birth Cohort
1936: Rationale, design and methodology of the imaging protocol.
International Journal of Stroke, 6, 547–559. http://dx.doi.org/10.1111/j
.1747-4949.2011.00683.x

West, R., Murphy, K. J., Armilio, M. L., Craik, F. I., & Stuss, D. T. (2002).
Lapses of intention and performance variability reveal age-related in-
creases in fluctuations of executive control. Brain and Cognition, 49,
402–419. http://dx.doi.org/10.1006/brcg.2001.1507

Received December 28, 2013
Revision received May 22, 2018

Accepted May 25, 2018 �

657REACTION TIME VARIABILITY AND WHITE MATTER INTEGRITY

http://dx.doi.org/10.1016/j.tins.2006.06.011
http://dx.doi.org/10.1016/j.tins.2006.06.011
http://dx.doi.org/10.1371/journal.pcbi.1000106
http://dx.doi.org/10.1371/journal.pcbi.1000106
http://dx.doi.org/10.1155/2013/350623
http://dx.doi.org/10.1155/2013/350623
http://dx.doi.org/10.1016/j.neuroscience.2011.04.028
http://dx.doi.org/10.1016/j.neuroscience.2011.04.028
http://dx.doi.org/10.1017/S1355617713001458
http://dx.doi.org/10.1038/mp.2012.66
http://dx.doi.org/10.1523/JNEUROSCI.1553-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.1553-10.2010
http://dx.doi.org/10.1080/713756013
http://dx.doi.org/10.1037/0033-295X.103.3.403
http://dx.doi.org/10.1037/0033-295X.103.3.403
http://dx.doi.org/10.1371/journal.pone.0071467
http://dx.doi.org/10.1007/s00330-010-1718-6
http://dx.doi.org/10.1007/s00330-010-1718-6
http://dx.doi.org/10.1007/978-0-387-21706-2
http://dx.doi.org/10.1007/978-0-387-21706-2
http://dx.doi.org/10.1161/01.STR.32.6.1318
http://dx.doi.org/10.1161/01.STR.32.6.1318
http://dx.doi.org/10.1016/j.neuropsychologia.2007.02.022
http://dx.doi.org/10.1016/j.neuropsychologia.2007.02.022
http://dx.doi.org/10.1111/j.1747-4949.2011.00683.x
http://dx.doi.org/10.1111/j.1747-4949.2011.00683.x
http://dx.doi.org/10.1006/brcg.2001.1507

	Reaction Time Variability and Brain White Matter Integrity
	Method
	Participants
	CRT Variability and Mean
	Image Acquisition
	Quantitative White Matter Hyperintensity (WMH) Volumes
	Qualitative White Matter Lesion Location
	Tract Segmentation
	Health Covariates
	Statistical Analyses

	Results
	Covariate Effects
	Main Effects
	Comparison Across SD CRT, M CRT, and CV CRT
	Sensitivity Checks

	Discussion
	References


