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ABSTRACT 

Ground-supported unanchored liquid-storage cylindrical tanks, when subjected to strong seismic 

loading may exhibit uplifting of their bottom plate, which may have significant effects on their dynamic 

behavior and structural integrity. In particular, due to uplifting, a substantial amount of plastic 

deformation develops at the vicinity of the welded connection between the tank shell and the bottom 

plate that may cause failure of the welded connection due to fracture or fatigue, associated with loss of 

tank containment. The present study focuses on the base uplifting mechanism and tank performance 

with respect to the shell/plate welded connection through a numerical simple and efficient methodology 

that employs primarily a simplified modeling of the tank as a spring-mass system for dynamic analysis, 

enhanced by a nonlinear spring at its base to account for the effects of uplifting, supported by a 

detailed finite element model of the tank for incremental static analysis. The latter model is capable of 

describing with accuracy the state of stress and deformation at different levels of lateral loading, in 

order to obtain the overturning moment-rocking angle relationship to be used in the simplified model. 

The methodology is applied in two cylindrical liquid storage tanks of different aspect ratios focusing on 
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local performance of the welded connection, towards assessing the strength of the welded connection. 

The numerical results provide better understanding of tank uplifting mechanics and strength against 

failure of the welded connection at the tank bottom. Furthermore, the proposed methodology can be 

used for efficient assessment of uplifting effects on tank structural safety, towards minimizing seismic 

risk in industrial facilities. 

1. INTRODUCTION 

Liquid containing tanks made of steel material are used in water storage and distribution systems, 

as well as in industrial plants for storage and/or process of a variety of liquids and liquid-like materials, 

including oil, liquefied natural gas, chemical fluids and wastes of various forms. In numerous practical 

applications, relatively broad aboveground liquid storage tanks are constructed unanchored, in the sense 

that their bottom plate is in simple contact with the ground, without any anchor bolts. Under strong 

lateral dynamic loading (e.g. seismic), these tanks may exhibit uplifting of their bottom plate, when the 

magnitude of the overturning moment exceeds a threshold value. Although uplifting does not 

necessarily result in tank failure, its consequences may lead to serious damage of any attached piping 

connections of the uplifted bottom plate, and possible failure of the connection between the tank shell 

and the bottom plate [1][2]. Furthermore, it may result in an increase of the axial stress acting on the 

tank wall, which may lead to occurrence of “elephant’s foot” buckling at lower uplifting sizes [3]. This 

behavior is shown schematically in Figure 1; for the direction of lateral loading shown in the sketch, 

Location 1 is the critical location of concern in the present paper, associated with tank uplifting. 
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Figure 1: Locations affected by uplifting during seismic action in an unanchored tank. 

 

The uplifting response of tank base plate is nonlinear due to continuous variation of the base 

contact area, plastic yielding of the plate material, and the effects of membrane forces associated with 

large displacements in the plate. A first attempt to understand the uplifting resistance mechanism of a 

plate has been reported, solving the simple problem of a prismatic beam uplifted at one end [4][5], 

ignoring the effect of membrane forces in the base plate; it was found that the maximum load capacity 

of the beam is reached at the stage where two plastic hinges develop: one at the uplifted end (i.e. at the 

shell-plate connection), and the second at the “sagging moment” region of the beam model [4][6], shown 

in Figure 2. An approximate solution that accounts for the effects of the membrane forces was proposed 

by Cambra [7] using simplifying assumptions regarding the magnitude of the axial and shearing forces 

in the beam based on experimental data from axially symmetric lift, static tilt and dynamic shaking 

table tests. Auli et al. [8] employed a second-order beam theory that accounts more accurately for 

membrane forces, however their methodology did not account for the effects of flexible end conditions of 

the beam nor for plastic yielding within the beam. Ishida and Kobayashi [9] used finite element models 

to solve the uplifting problem as an uplifting beam under rocking conditions. Malhotra and Veletsos [10] 

studied extensively uplifting behavior, idealizing the base plate as a uniformly-loaded semi-infinite 

prismatic beam on a rigid foundation, considering the effect of elastic end constraints, the influence of 

location 1 location 2
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the axial force on bending and the effect of plastic yielding in the beam. In a recent publication, Ahari 

et al. [11] used a tapered beam model resting on a rigid foundation to simulate base uplift of 

unanchored tanks and investigated the parameters which are affecting it. 

 

Figure 2: Locations where plastic hinges develop on the base plate; (1) at the shell-plate connection; (2) 

at the “sagging moment” region. 

 

The aforementioned beam models did not take into account the two-dimensional nature of the 

problem under consideration, neglecting the effect of hoop stresses, which develop in the base plate 

close to the junction of the bottom plate with the tank wall. A fundamental step towards understanding 

uplifting in liquid storage tanks has been the consideration of a partially-uplifted base plate model. 

Such studies have been reported in [12][13] using a combination of the finite-difference solution method 

and energy method, whereas the Ritz energy method has been employed in [14][15]. Malhotra and 

Veletsos [16] have improved the “plate model” approach computing the vertical uplift and rocking 

resistances of a circular plate to uniformly uplifting forces distributed along its boundary, presenting 

Plastic hinge 1

Base plate

Tank 
shell

weld

Plastic hinge 2
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solutions methodologies for axisymmetric vertical uplifting, as well as for asymmetric rocking uplifting, 

using a series of semi-infinite prismatic beams. 

Apart from the above analytical models, notable experimental works for the behavior of unanchored 

fluid-filled tanks have been performed in the 80’s at UC Berkeley [17][18][19][20]; they refer to shaking 

table and static tilt tests. Furthermore, Shih [21] reported scale model tests in an effort to obtain a 

better understanding of the response and the failure mechanism of the tanks. In subsequent 

publications, Natsiavas [22][23] and Natsiavas & Babcock [24] presented analytical models for 

determining the dynamic response and the hydrodynamic loads developed on unanchored liquid-filled 

tanks under horizontal base excitation. More recently, Malhotra and Veletsos [25], based on their 

previous works [10][16], investigated the effects of uplifting of the bottom plate of the tank on the entire 

tank-liquid system, for a rigid foundation using a simplified model.  

The present study examines the uplifting mechanism of tank bottom subjected to seismic loading 

and its effects on tank structural integrity, using numerical simulation tools. Two typical liquid storage 

tanks are modeled using finite elements, both anchored and unanchored, and their behavior is discussed 

considering also the relevant seismic provisions in EN 1998-4 [26]. The main purpose of the present 

study is the proposal of a simple and efficient methodology for the analysis and design of the shell-

bottom plate connection, where fracture may occur due to the development of excessive tensile strain or 

low-cycle fatigue, and lead to loss of containment [27]. More specifically, a simplified analytical model 

for dynamic analysis is developed, accounting for uplifting. This simplified numerical methodology 

enhances the model proposed in [25], and is capable of calculating the maximum local strain at the 

welded connection and assessing its ultimate strength and fatigue life. The proposed model uses the 

Stowell-Hardrath-Ohman formula for local yielding and is supported by a rigorous finite element model 

of the tank for the purpose of determining two basic uplifting parameters; the uplifting length L and 
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uplifting size w . The proposed methodology can be used as an efficient tool for conducting a 

performance-based design procedure, as described in [30][31], using the limit state capacities offered in 

[28], towards assessing tank strength and minimizing seismic risk in industrial facilities. 

2. NUMERICAL ANALYSIS 

The numerical model of unanchored tank analysis focuses on the effects of base plate uplifting, and 

consists primarily on a simplified, yet efficient, model for dynamic analysis calibrated with the use of a 

nonlinear finite element model for static analysis. The latter model is used to determine the relationship 

between the overturning moment and the uplifting angle, as well as the relationship between the 

uplifting size and length at the tank bottom. Both models are described in the following. 

2.1 Nonlinear Dynamic Analysis 

2.1.1 Model Description 

The simplified model accounts for the hydrodynamic response of the tank-liquid system. The 

cylindrical liquid storage tank has radius R  and filling height H  and is excited by a horizontal base-

ground seismic acceleration motion gX . It can be shown that the motion of the liquid-container system 

can be expressed as the sum of the so-called “convective” and “impulsive” motions, respectively [42] 

[43]. The convective term is associated with sloshing of the liquid free surface, whereas the impulsive 

term represents the liquid motion that “follows” the moving container, and accounts for container 

deformation. Due to the fact that sloshing natural frequencies are substantially lower than the natural 

frequencies of the impulsive motion, the two motions can be considered as uncoupled [25][43].  

Herein, for the sake of completeness, anchored tank modeling is briefly described first, followed by a 

detailed description of unanchored tank modeling which focuses on the calculation of local strain at the 

shell-bottom plate connection and its fatigue assessment. 
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2.1.2 Anchored Tanks 

The tank-liquid system is modeled as a spring-mass system, as seen in Figure 3. The impulsive and 

convective motion of the liquid are modeled by assuming two linear oscillators with masses Im  and Cm   

at heights Ih  and Ch  respectively. The values of frequencies ,I Cω , masses ,I Cm  and heights ,I Ch  depend 

on the tank aspect ratio [42], whereas for oil or water tanks, values of 0.5% and 5% can be considered 

for the damping ratio of the impulsive and sloshing motion Iξ  and Cξ , respectively. 

Consideration of additional sloshing modes is possible introducing additional linear oscillators, but 

their effects on the total seismic response may be not significant and they are omitted for the purposes 

of the present analysis [44]. More details on the above model for deformable steel tanks under lateral 

seismic loading can be found in the papers by Veletsos and Yang [43] and Ibrahim [42].  

 

 

Figure 3: Simplified model for anchored liquid storage tanks. 

The equations of motion have the form: 

( ) ( ) ( ) ( )22j j j j j j ga t a t a t X tξ ω ω+ + = −   ,  where j I=  or C         (1) 

In the above equation, Ia  and Ca are the impulsive and convective generalized coordinates, Ia  and Ca  

are the corresponding accelerations and Iω  and Cω  are the impulsive and convective frequencies.  

mC

mI

hIkI=ωI
2 mI

kC=ωC
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( )gX t
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The total impulsive and convective accelerations of the system are calculated considering the 

following change of variables: 

( ) ( ) ( )j j gu t a t X t= +   ,  where j I=  or C           (2) 

so that the overturning moment is calculated as follows: 

( ) ( ) ( )I I I C C CM t m u t h m u t h= +              (3)              

The maximum compressive or tensile force per unit circumferential length due to impulsive and 

convective motion is calculated from elementary structural mechanics: 

2

1.273
s s

M MN t Rt
I D

σ= = =                 (4) 

where st  is the thickness of the bottom shell course. It is noted that the contribution of tank wall and 

roof inertia on the overturning moment, as well as gravity effects (liquid and tank) should also be 

considered. 

2.1.3 Unanchored Tanks 

The basic principles of the above model for anchored liquid storage tanks are also applicable in the 

unanchored case. However, base uplifting is the main new feature that should be accounted for. More 

specifically, the impulsive motion includes tank rotation (“rocking”) due to uplifting, and is modeled by 

using an appropriate rotational spring at the tank base, shown in Figure 4. A first methodology to 

model this “spring” has been reported by Malhotra and Veletsos [25], and has been enhanced recently 

by Vathi and Karamanos [45][46][47]. A more updated version of the latter model is described in detail 

in the present paper. The key issue for accurate modeling is the relationship between the overturning 

moment M  and the “uplifting” or “rocking” angle ψ , obtained through a nonlinear static analysis, as 

of the tank using a finite element simulation described in section 2.2. 
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Figure 4: Simplified model for unanchored liquid storage tank; point O is the tank base center and 

point A is the center of the impulsive mass (“impulsive” center). 

 

Because of the bottom rotational spring, the equations of motion (1) used in the anchored case have 

to be enhanced. The model has two degrees of freedom, the horizontal and the rotational motion of the 

tank. As stated earlier, it is assumed that the convective component of response can be uncoupled from 

the impulsive motion [25][43]. The former is rather small with negligible effects on the overturning 

moment and can be neglected, whereas the latter is modeled through a mass-spring model. Equilibrium 

of inertia and “elastic” forces in the horizontal direction requires: 

0aF ku+ =                (5) 

where constant k  represents the stiffness of the oscillator, u  is the top horizontal displacement of the 

tank and aF  is the force due to uplift of the tank so that the previous equation can be written: 

( ) 0I g Im u X h kuψ+ + + =

              (6) 

where ψ  is the rotational acceleration of the tank. Setting 2
I Ik mω=  one obtains: 

2
I I I I I I gm u m h m u m Xψ ω+ + = − 

             (7) 

Furthermore, equilibrium of moments with respect to point O results in: 
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( ) 0a I I gM M m h u Xψ+ + + =

              (8) 

where aM  is the moment due to uplift of the tank, Mψ  is the moment due to the rotational spring at 

the tank base and u  is the horizontal acceleration of the tank. Therefore, 

( )I I O I I gm h u I M m h Xψψ ψ+ + = − 

             (9) 

where OI  is the rotational moment of inertia of the impulsive part of the liquid, computed with respect 

to the tank base plate according to Steiner’s theorem as follows: 

  
2 2

4 3O I
R HI m

 
= + 

 
             (10) 

and a OM I ψ=  . Setting Ihδ ψ= , equations (7) and (9) become:  

2
I I I I I gm u m m u m Xδ ω+ + = − 

             (11) 

( )2

1O
I I g

I I

Im u M m X
h h ψδ ψ

 
+ + = − 
 

 

            (12) 

The equations are nonlinear because of the nonlinear spring resistance function ( )Mψ ψ  and can be 

written in incremental form as follows: 

2
1I I I I I gm u m c u m u m Xδ ω∆ + ∆ + + ∆ + ∆ = − ∆ 

           (13) 

22 2

1O
I I g

I I

Im u c K m X
h h ψδ δ δ

 
∆ + ∆ + ∆ + ∆ = − ∆ 

 
  

           (14) 

In the above equations appropriate damping terms have been added. In addition, ( )M Kψ ψψ ψ∆ = ∆  

and Kψ  is the tangent stiffness of the ( )M ψ  function. 

In equations (13) and (14), 1 2 I I Ic mξ ω=  is the damping coefficient for impulsive motion, associated 

with a damping ratio Iξ , whereas 4
2 2 /O O Ic K I hψξ=  is the damping coefficient for the rotational 

movement of the tank, where a damping ratio Oξ  of the uplifting motion is considered.  
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The system of equations (13) and (14) is solved using Newmark’s method [48] considering the 

( )M ψ  function obtained from the nonlinear static analysis of the tank described in the next sub-

section 2.2. The solution provides the values of lateral and rotational accelerations at each time 

increment, as well as velocities and displacements. 

2.2 Nonlinear Static Analysis 

Finite element program ABAQUS Standard is used for the simulation of the structural behavior of 

the tank under static loading, assuming both anchored and unanchored conditions (Figure 5). In the 

case of unanchored tanks, the tank shell and the bottom plate are modeled with shell finite elements, 

with special attention on the annular plate of the tank. More specifically, the tank and the bottom plate 

are modeled with four-node reduced-integration shell elements (S4R). In such a case, uplifting of the 

unanchored tank is simulated with the use of appropriate contact conditions between the bottom plate 

of the tank and the ground. The type of contact employed is referred to as “hard contact”, which 

minimizes penetration of the slave surface into the master surface at the constraint locations and does 

not allow the development of tensile stress across the interface, whereas the two surfaces can be 

separated after contact at the beginning of the analysis to allow later uplifting of the bottom plate 

(Figure 5 and Figure 6). The friction coefficient between the tank base plate and the ground is assumed 

to be equal to 0.3. The ground is simulated using solid eight-node reduced-integration elements 

(C3D8R). The material of the ground is considered to be a material with density 7,500 kg/m3, Young’s 

modulus equal to 1.1×105 MPa and Poisson’s ratio equal to 0.3. Finally, the tank roof is modeled with 

the use of two-node (linear) beam finite elements (B31). In the anchored tank case, the tank shell is 

simulated completely fixed (clamped) at its bottom. 
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(a)      

 

(b)     

Figure 5: Finite element models of the two tanks under consideration, undeformed (left) and at the end 

of the analysis (right) with uplifting; (a) Tank I, (b) Tank II. 

 

(a)       

Undeformed              Deformed with uplifting 

 

(b)       

Undeformed              Deformed with uplifting 

Figure 6: Uplifting of the bottom plate for (a) Tank I and (b) Tank II. 
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In the finite element model, the material of the tank is assumed to follow a von Mises ( 2J ) 

plasticity model, with isotropic hardening. The yield stress of tank and base-plate material is equal to 

235 MPa, with Young’s modulus of E =  210,000 MPa, and hardening modulus equal to 210 MPa, 

which corresponds to 1/1000 of Young’s modulus. An elastic material has been used to describe the 

ground with Young’s modulus equal to half the Young’s modulus of steel, implying practically non-

deformable ground conditions. 

The incremental non-linear static analysis is conducted in three steps. In the first step, gravity of 

the tank is applied, whereas in the second step, hydrostatic pressure of the liquid is activated. Finally, 

in the third step, horizontal hydrodynamic loading is applied, through an incremental elastic-plastic 

analysis with large displacements. The distribution of hydrodynamic pressure applied on the tank wall 

is assumed to follow the pressure distribution solution of the hydrodynamic problem [42], for both the 

impulsive and convective component of liquid motion [26][42]. More specifically, considering a cylindrical 

coordinate system, r , ϕ , z , with origin at the center of the tank bottom and vertical z  axis, the 

distribution of hydrodynamic pressure for the impulsive motion is assumed in the following form: 

( , , , ) ( , ) cosI I IP t C HSξ ζ θ ξ ζ ρ ϕ=            (15) 

where IC  is a spatial function of the non-dimensional coordinates /r Rξ =  and /z Hζ =  of the tank 

which depends on the tank aspect ratio, ρ  is the liquid density, H  is the liquid height, R  is the tank 

radius, and IS  is the impulsive acceleration. For the convective motion, only the first mode is 

considered. 

( )
( ) ( )1

cosh 1.841
1.146 1.841 cos

cosh 1.841C CP R J S
γζ

ρ ξ ϕ
γ

=                    (16)  

where 1J  is the Bessel function of first order and CS  is the convective acceleration. In the above 

expressions, r  is taken equal to R  ( 1ξ = ) for determining the pressure on the lateral surface, whereas 

z  is taken equal to zero ( 0ζ = ) for the pressure on the bottom plate.  
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The hydrodynamic pressure distribution is applied on the inner surface of the tank shell and at the 

bottom plate, using a special-purpose load-user subroutine in ABAQUS.  

2.3 Calculation of local strain at the base plate connection 

Upon calculation of the uplifting angle ( )tψ  from the solution of equations (13) and (14), and the 

corresponding overturning moment ( )M t  using the M ψ−  relationship obtained from the static 

analysis, the uplifting displacement at the tank edge ( )w t  can be computed equal to ( )D tψ , and the 

membrane meridional compression N  is calculated from Eq.(4). Using this information, the maximum 

strain at the shell-plate connection can be estimated using an assumed-shape cosine function for the 

deflection of the base plate. More specifically, it is assumed that the plate deflects with transverse 

displacement 1w  along its radial direction in the following shape: 

1
2( ) cos 1 1 cos

2 2
w x xw x

L L
π π∆   = + − −   

   
          (17) 

In Eq.(17), x  is the coordinate along the radial direction of the base plate, with origin ( 0x = ) at the 

edge of the tank (i.e. at the wall-base plate junction) and w  is the uplift height (at 0x = ). In addition, 

the second term in the right-hand side refers to the deflection of a fixed beam of rectangular cross-

section with height bh t= , width b  and length L  fixed at both of its ends and subjected to uniform 

distributed load q pb=  along its length (due to hydrostatic pressure p  at the tank bottom), where ∆  

is the maximum value at mid-span. From structural mechanics, the value of ∆  can be calculated from 

the hydrostatic pressure p  as follows: 

41
384

pbL
EI

∆ =               (18) 

or equivalently, after some algebraic manipulations 

3

35 a

L p L
E t

  ∆   
  

              (19) 
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where ( )3 212 1aEI Ebt v = −   and at  is the thickness of the annular plate. The two terms of Eq.(17) 

are also depicted in Figure 7.  

Subsequently, the corresponding bending strain at the plate can be estimated from the bending 

curvature obtained from double differentiation of Eq.(17): 

( ) ( )2
1

22
a d w xtx

dx
ε =              (20) 

Inserting Eq.(17) into Eq.(20) one obtains the following expression for the bending strain: 

( )
2

2

2w cos 4 cos
4

at x xx
L L L

π π πε  = − + ∆ 
 

          (21) 

where the maximum strain occurs at 0x =  and is equal to: 

( ) ( )
2

max 20 4
4

at w
L

πε ε= = + ∆             (22) 

In the above equations, the uplifting length L  should be considered as a function of uplifting size 

w , as indicated in Figure 12. Assuming the following expression of the uplifting length:  

4
*w L

D D
β  =  

 
              (23) 

where *β  is a constant, one obtains: 

   ( )
2 2 *

3 3

4 2cos cos
4 35

aL t x p xx
D L Et L

π β π πε
 

= + 
 

          (24) 

and the maximum strain is 

  
2 2 *

max 3 3

4
4 35
a

a

t L p
D Et

π βε
 

= + 
 

            (25) 

or, equivalently, 

332
*

max
4

4 35
a

a

t L p L
L D E t

πε β
        = +      

        
          (26) 
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Figure 7: Schematic representation of the two terms of the assumed shape function of base plate 

deflection [Eq.(17)]. 

 

2.4 Local strain at weld toe 

Equations (17)-(26) refer to “macroscopic” strains, which do not account for the local effects on the 

strain field due to weld discontinuity. Those effects can be accounted for through an appropriate “strain 

concentration factor” SNCF  that multiplies the strain values ( )tε  to obtain a reliable estimate of 

local strain ( )tε  at the vicinity of the welded connection, which is suitable for fatigue analysis             

( SNCF ε ε= ). In the case of strong cyclic loading, these strains are in the inelastic range of steel 

material, and therefore, an elastic analysis may not be appropriate for calculating the SNCF  value. In 

the present study, Stowell-Hardrath-Ohman method is employed for calculating the local inelastic 

strains at the weld toe [49]. According to this methodology, the local (hot spot) inelastic stress and 

1
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2 2
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strain, denoted as σ  and ε  respectively, are related to the corresponding nominal values  σ  and ε  

through the following equation, written here according to the above notation: 

1in
SNCFSCF

SNCF SCF
=

− +
            (27) 

where SCF  is the elastic stress concentration factor and inSCF  ( σ σ= ) is the local stress 

concentration factor that includes inelastic effects.  

To calculate the SCF  value, a finite element model is necessary, as shown in Figure 8a. The finite 

element analysis focuses on the weld toe neighborhood (“hot spot” location), and therefore, the 

thickness of the annular base plate should be used for the base plate component in the finite element 

model. Furthermore, direct measurement of stress at the (Gauss) point nearest to the weld as obtained 

from the finite element analysis may not provide a reliable estimate of elastic stress concentration, due 

to sharp discontinuity of the stress/strain field at the weld toe. Therefore, an extrapolation of stresses 

to the weld toe from a defined region near the weld should be considered, as described in [50], and 

shown schematically in Figure 8b. The SCF  value can be calculated as the ratio of the extrapolated 

stress at the weld toe over the nominal stress value, obtained from elementary structural mechanics. 

Furthermore, to apply equation (27), a constitutive equation that relates stress and strain is 

required. Usually, a power-law equation for the cyclic stress-strain curve of the steel material is 

considered: 

nKσ ε=               (28) 

This power-law relates both the nominal stress and strain σ  and ε , as well as the local stress and 

strain σ  and ε , so that  

nKσ ε=               (29) 
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Given the nominal values σ  and ε , related by equation (28), and the value of elastic SCF , the 

system of equations (27) and (29) can be solved for the two unknowns σ  and ε , and the SNCF  value 

is determined. The local strain values ε  are used in the fatigue analysis described next. 

 

(a)  (b)   

Figure 8: (a) Finite element model for calculating the elastic stress concentration factor SCF ; (b) 

schematic representation of the extrapolation method to calculate SCF . 

 

2.5 Fatigue analysis 

The time history of bending strains ε  from seismic action is an irregular function. Therefore, the 

“rainflow cycle counting” method is employed to obtain a loading spectrum, which expresses the 

applied strain ranges iε∆  and the corresponding numbers of cycles for each range, in . Furthermore, in 

order to determine tank failure due to fatigue, an appropriate fatigue curve is necessary which provides 

the number of cycles to failure iN  for each strain range iε∆ . Finally, the values of in , iN  are combined 

to provide a fatigue damage parameter D  calculated through Miner’s rule: 

i

i i

nD
N

=∑               (30) 

where fatigue failure is assumed to correspond to a unit value. 
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3. RESULTS 

3.1 Description of Case Studies 

Two typical fixed-roof liquid storage tanks are considered and analyzed in the present study. They 

represent real cases, i.e. tanks constructed in areas of seismic activity. The tanks have been designed 

using the relevant API 650 rules, before the issue of the new version of Appendix E, in 2007 [51]. 

The first tank is a moderately-broad unanchored tank, referred to as Tank I. It is a 27.8-meter-

diameter tank with a total height of 16.5 meters. The filling height of the tank H  is equal to 15.7, 

which corresponds to an aspect ratio of the tank, ( )/H Rγ =  equal to 1.131. The tank thickness varies 

from 6.4 mm at its top course to 17.7 mm at its bottom course, and the bottom plate is 6 mm thick 

with an 8-mm-thick annular plate. It has an L120×120×12 stiffening ring at the top (wind stiffener) 

and the mass of the roof and the tank shell are 35,000 kg and 118,100 kg, respectively. 

The second tank, referred to as Tank II, is a broad 46.9-meter-diameter unanchored tank with a 

total height of 19.95 meters. The filling height of the tank H  is equal to 18.37 resulting in an aspect 

ratio, ( )/H Rγ =  equal to 0.783. The tank thickness varies from 8 mm at its top course to 22.23 mm at 

its bottom course. It has an L76×76×10 stiffening ring at its top, whereas the mass of the roof and 

tank shell are 45,863.5 kg and 301,549 kg, respectively. 

In both tanks, the contained liquid is assumed to be water ( ρ = 1000 kg/m3) and the material of 

the tank shell, the bottom plate and the roof is structural steel S235 (equivalent to A36 steel) with 

yield stress yσ =235 MPa. Despite the fact that those tanks have been constructed as unanchored, for 

the purposes of the present study, they are simulated as both anchored and unanchored. Both tanks 

have fixed truss roofs consisting of meridional and parallel L and UPN beams. The tank geometries are 

depicted in Figure 9. 
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3.2 Static Analysis Results 

Representative results from the seismic response of the two tanks with unanchored conditions are 

reported in the present section, as obtained from the finite element static analysis model.  

 

(a) (b) 

Figure 9: Tanks used for the present numerical study; (a) Tank I, (b) Tank II. 

 

The evolution of top horizontal displacement of the two tanks is shown in Figure 10, in terms of the 

overturning moment M  due to hydrodynamic loading. The maximum overturning moment is computed 

as the sum of the overturning impulsive and convective moments, at each time increment of the 

analysis. The value of u  is normalized by the liquid height H  and the value of M  is normalized by 

WH , where W  is the total weight of the contained liquid, a normalization scheme also suggested in EN 

1998-4 [26]. At the level of normalized overturning moment equal to 0.03, the slope of the curve changes 

significantly, indicating the beginning of uplifting for both tanks, and the occurrence of substantial local 

inelastic deformation. Furthermore, the results indicate a smaller sensitivity of the uplifting on the 

value of tank aspect ratio ( /H R ), than the one suggested in EN 1998-4.  

The global behaviour of the tanks is also represented in Figure 11, which shows the maximum 

vertical uplift of the simulated unanchored tanks in terms of the normalized overturning moment at the 

tank base. The dotted curves for aspect ratio /H Rγ = =  0.8, 1.0, 2.0 have been reported in EN 1998-4 

as obtained from the work of Scharf [52]. The comparison between the present finite element results and 
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those in EN 1998-4 also shows that the Scharf curves can be non-conservative, predicting smaller uplift 

than the ones obtained herein, using more advanced and detailed finite element modeling. 

For estimating the radial bending stresses within the plate, the calculation of length L  of the 

uplifted part of the tank bottom is necessary. The relationship between the length of the uplifted part 

of the base (normalized by R , the tank radius) and the overturning moment (normalized by WH , 

where W  is the weight of the tank liquid containment) is shown in Figure 12. The results indicate that 

the value of the length of the uplifted base plate is an increasing function of the value of the 

overturning moment.  

 

 

Figure 10: Normalized overturning moment M  versus normalized top horizontal displacement u , as 

obtained from the present finite element static analysis. 
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Figure 11: Maximum normalized vertical uplift of the tank w  versus normalized overturning moment 

M ; the present finite element results are compared with the corresponding curves reported in EN 1998-

4 [26]. 

 

Combining the results from Figure 10 and Figure 11 one can develop the graph of Figure 12. It is 

interesting to note that upon occurrence of uplifting, the dependence of L  on the vertical uplift w  is 

quasi linear. Comparison of the present numerical results with those included in paragraph A.9 of EN 

1998-4 [26], initially reported by Scharf [52], shows that the Scharf curves indicate a similar trend in 

uplifting behaviour, but they are somewhat conservative. Normalization of the parameters of Figure 13 

produces Figure 14, which gives the relationship between the vertical uplift and uplifted length of the 

tank in a more universal manner. 
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Figure 12: Normalized length of the uplifted part of tank base plate as a function of the normalized 

overturning moment. 

 

 

Figure 13: Length of uplifted part of the base as a function of the vertical uplift at the edge; the present 

finite element results are compared with the corresponding curves reported in EN 1998-4 [26]. 
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Figure 14: Normalized length of uplifted part of the base as a function of the normalized vertical uplift 

at the edge; the present finite element results are compared with the corresponding curves reported in 

EN 1998-4 [26]. 

 

 

 

The evolution of membrane forces with increasing overturning moment, at the uplifting side of the 

tank, is depicted in Figure 16 for both anchored and unanchored tanks. These graphs are also compared 

with the analytical formula of Eq.(31): 

2

1.273
t

MN w
D

= −              (31) 

where M  is the overturning moment, R  is the radius of the tank, and tw  is the load per unit 

circumferential length because of shell and roof dead weight acting at the base of tank shell.  

Overall, the comparison of the membrane force values obtained numerically and the predictions 

from the simple analytical formula shows a fair overall agreement (Figure 16). This indicates that the 

analytical formula can be used for obtaining reasonable estimates of the maximum force, in the course 

of a simplified dynamic analysis. 
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The relationship of the overturning moment M  and the “rocking” angle ψ  is shown in Figure 17 

and Figure 18 for the two tanks under consideration. In these graphs, ψ  is defined as the average 

rotation of the tank base due to uplifting (rocking angle), calculated by the following equation, and 

expressed schematically in Figure 15: 

w
D

ψ =               (32) 

 

Figure 15: Definition of uplifting angle ψ . 

 

The results in Figure 17 and Figure 18 show that the M ψ−  relationship can be approximated with a 
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of slope occurs. At these two locations significant plastic yielding develops. These locations are depicted 

in Figure 19(b) and Figure 20(b), for Tank I and II respectively, at various uplifting configurations.  

 

 

 

 

 

Figure 16: Membrane uplifting forces for anchored and unanchored Tanks I and II in terms of the 

overturning moment; comparison of numerical results with the analytical formula. 

 

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.00 0.02 0.04 0.06 0.08 0.10

N
/(

σ y
t s)

M/WH

anchored

unanchored

M/πR^2-wt

Tank I

tension

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.02 0.04 0.06 0.08

N
/(

σ y
t s)

M/WH

anchored

unanchored

M/πR^2-wt

Tank II

tension



Vathi & Karamanos - JLP-D-17-00027 - revised       Page 27 of 47  

 

 

 

Figure 17: Overturning moment versus base rotation subjected to lateral load static analysis (Tank I). 

 

 

 

Figure 18: Overturning moment versus base rotation subjected to lateral load static analysis (Tank II). 
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(a)  

 

(b)  

Figure 19: (a) Equivalent plastic strain at the nodes of the tank base plate in terms of the horizontal 

coordinate x for Tank I, on the inner surface of the base plate at 0.106g; (b) Deformed bottom plate of 

Tank I; the arrows (¯) show the two points of maximum equivalent plastic strain. 
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(a)  

 

(b)  

Figure 20: (a) Equivalent plastic strain at the nodes of the tank base plate in terms of the horizontal 

coordinate x for Tank II, on the inner surface of the base plate at 0.119g; (b) Deformed bottom plate of 

Tank II; the arrows (¯) show the two points of maximum equivalent plastic strain. 
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3.3 Dynamic Analysis Results 

Using the simplified dynamic model described in the previous section, Tanks I and II have been 

analyzed dynamically. The Düzce earthquake (Düzce, Turkey, 1999), with a peak ground acceleration 

PGA equal to 0.36 g, is employed as the seismic input of the seismic analyses, as shown in Figure 21. 

The two tanks have been analyzed under both anchored and unanchored conditions. 

 

Figure 21: Accelerogram of the Düzce earthquake, Turkey (1999). 

In Figure 22 the time history of the base moment M  is shown for Tank I and Tank II respectively, 

under anchored conditions. Furthermore, Figure 23 and Figure 24 refer to the time history of the 

vertical uplift w , at the two sides (right and left) of Tank I and Tank II respectively, under unanchored 

conditions. In the present case, the damping ratios, Iξ  and Oξ , are chosen equal to 5% and 10% 

respectively. The 5% value for Iξ  is typical for steel structural systems subjected to seismic loading, 

also suggested in [26]. On the other hand, there is no evidence for the value of Oξ ; the 10% value for 

Oξ  is a rather high value, which has been chosen by the authors to account for the significant energy 

dissipation expected during repeated uplifting of the tank. The time history of the overturning base 

moment M  for the two tanks under unanchored conditions is also shown in Figure 25.  
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Using the relation between the uplifting length L  and the uplifting displacement w  in equation 

(23), with *β  found equal to 1.114×10-5 for Tank I and 2.233×10-6 for Tank II, the strain histories at the 

right and left side of the two tanks are computed for the earthquake loading under consideration, as 

shown in Figure 27 and Figure 28 for Tank I and Tank II respectively. 

 

 

Figure 22: Time history of the base moment M  for anchored Tank I and Tank II subjected to Düzce 

1999 seismic action. 
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Figure 23: Time history of vertical uplift w  at the right and left side of unanchored Tank I. 
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Figure 24: Time history of vertical uplift w  at the right and left side of unanchored Tank II. 
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Figure 25: Time history of base moment M  for unanchored Tanks I and II. 
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suggested in [50], the elastic SCF value is found equal to 1.32 for Tank I and 1.23 for Tank II. In 

addition, the parameters of power-law stress-strain equation for typical steel material behavior are 

taken equal to K = 679 MPa (98.4 ksi) and n = 0.10 [53] (which is a conservative value), resulting in 

SNCF values for the two tanks equal to 3 and 2.6 respectively. 

In the present study, the linear log log Nε∆ −  fatigue curve shown in Figure 26 is used. This fatigue 

curve for values of cycles N  greater than 105 cycles ( log N > 5), i.e. high-cycle fatigue, coincides with 

the mean curve of BS 7608 [54], for Tee joint plated welded detail of Class F2 (see Table 8 of BS 7608). 

For smaller numbers of loading cycles, which are of most interest to our case, the log-log line is 

extended linearly into the low-cycle fatigue regime. It should also be noted that the left end of the curve 

( N = 1) indicates ε∆ = 5% which corresponds to static (monotonic) loading conditions, a reasonable 

value for strain limit under monotonic loading. It should be noted that alternatively, instead of using 

the simple curve of Figure 26, one may use a more elaborate low-cycle fatigue curve (e.g. Coffin-Manson 

curve), provided that adequate information on the mechanical behavior of tank material is available. 

 

Figure 26: Strain amplitude fatigue curve used in the present study plotted in a log-log scale. 

 

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8 9 10

lo
gΔ

ε

logN

Δε = 0.05Ν-0.33



Vathi & Karamanos - JLP-D-17-00027 - revised       Page 36 of 47  

Using the time history of strain in Figure 27 and Figure 28, the strain ranges iε∆  and the 

corresponding number of acting cycles in  as obtained from the rainflow counting method are shown in 

Table 1 and Table 2 for the two tanks under consideration. Furthermore, the number of cycles to failure 

iN  corresponding to iε∆  obtained from the fatigue curve of Figure 26 and together with the results for 

the fatigue damage factor, obtained from Miner’s rule, are also shown in Table 1 and Table 2. For the 

seismic input considered, the value of damage parameter D  can be equal to 20%, which corresponds to 

a significant part of total fatigue resistance. 

 

 

Figure 27: Time history of the local bending strains at the plate-shell connection at the right and left 

side of Tank I for the seismic input of Figure 21. 
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Figure 28: Time history of the local bending strains at the plate-shell connection at the right and left 

side of Tank II for the seismic input of Figure 21. 
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Table 1: Fatigue analysis of Tank I using rainflow cycle counting method. 

Right Side of Tank I Left Side of Tank I 

ε∆  ε∆  In  IN  ε∆  ε∆  In  IN  

0.0003 0.0009 19 162479 0.0003 0.0008 25 295220 

0.0009 0.0027 22 6335 0.0008 0.0023 19 10871 

0.0015 0.0046 3 1376 0.0013 0.0038 13 2333 

0.0021 0.0064 0 502 0.0018 0.0054 1 846 

0.0027 0.0082 1 236 0.0023 0.0069 2 397 

0.0033 0.0100 3 130 0.0028 0.0084 2 217 

0.0039 0.0118 2 79 0.0033 0.0099 1 131 

0.0045 0.0136 0 51 0.0038 0.0115 1 85 

0.0051 0.0154 1 35 0.0043 0.0130 0 59 

0.0057 0.0172 0 25 0.0048 0.0145 1 42 

0.0063 0.0190 0 19 0.0053 0.0160 1 31 

0.0069 0.0208 1 14 0.0059 0.0176 1 24 

0.158D =  0.140D =  

 

Table 2: Fatigue analysis of Tank II using rainflow cycle counting method. 

Right Side of Tank II Left Side of Tank II 

ε∆  ε∆  In  IN  ε∆  ε∆  In  IN  

0.0003 0.0009 44 181345 0.0003 0.0008 39 260992 

0.0010 0.0027 15 6671 0.0009 0.0023 21 10237 

0.0017 0.0045 8 1432 0.0015 0.0039 7 2225 

0.0024 0.0063 1 520 0.0021 0.0054 3 812 

0.0031 0.0081 1 244 0.0027 0.0070 1 382 

0.0038 0.0099 2 133 0.0033 0.0085 1 209 

0.0045 0.0117 1 81 0.0039 0.0101 1 127 

0.0052 0.0135 0 53 0.0045 0.0116 1 83 

0.0059 0.0153 2 36 0.0051 0.0131 0 57 

0.0066 0.0171 0 26 0.0056 0.0147 0 41 

0.0073 0.0189 0 19 0.0062 0.0162 1 30 

0.0079 0.0207 1 15 0.0068 0.0178 3 23 

0.164D =  0.200D =  
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3.4 A note on the effect of roof stiffness on uplifting 

An interesting issue on unanchored tanks refers to the effect of tank roof on uplifting behavior. For 

the purpose of examining this effect, a numerical study has been performed using finite element models 

of unanchored tanks with different aspect ratios, considering nonlinear static analysis, as described in 

section 3.2. The tanks have been modeled with and without a truss (fixed) roof, and their geometric 

characteristics are summarized in Table 3. For the tanks without a truss roof, an L-shape stiffening ring 

has been considered at the top circular section of the cylinder, referred to as “wind stiffeners”; the 

dimensions of the “wind stiffeners” were chosen according to the relevant provisions of Paragraph 5.9.6 

of API 650 standard [51]. All tanks have a total height of 12 m, a filling height of 10 m, whereas the 

diameter of the tanks ranges from 10 to 32 m, corresponding to aspect ratios ( /H Rγ = ) ranging 

between 0.625 and 2. The tank shell thickness has been designed according to the relevant provisions of 

API 650 [51]. The contained liquid is assumed to be water ( ρ = 1000 kg/m3) and the material of the 

tank shell, the bottom plate and the roof is structural steel grade S235 (equivalent to A36 steel) with 

yield stress yσ =  235 MPa. 

The results of this numerical study are shown in Figure 29 and demonstrate that the stiffness 

provided by the roof against ovalization of the tank top cross-section may have a substantial effect on 

the uplifting size of the tank. More specifically, the presence of a fixed roof leads to a decrease of the 

vertical uplift of the tanks, as shown in Figure 30 and Figure 31, which depict representative finite 

element results of the tanks under consideration. The results indicate that for a value of applied 

normalized moment M WH  equal to 0.05, the tanks with a fixed roof exhibit a 70% smaller uplift. 
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Table 3: Characteristics of the tanks used in the parametric study. 

 D  [m] H [m] TH  [m] /H Rγ =  1t  [mm] 2t  [mm] 3t  [mm] bt  [mm] 

Tank 1 10 10 12 2 6 5 5 6 

Tank 2 11 10 12 1.818 6 5 5 6 

Tank 3 12.4 10 12 1.613 6 5 5 6 

Tank 4 13 10 12 1.538 6 5 5 6 

Tank 5 14 10 12 1.43 6 5 5 6 

Tank 6 20 10 12 1 7.5 6 6 7 

Tank 7 26 10 12 0.77 9.6 7 6 9 

Tank 8 32 10 12 0.625 12 8 6 11 

 

 

 
Figure 29: Results of numerical study for unanchored tanks with different aspect ratios, modeled with 

and without a roof. 
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Figure 30: Finite element modeling of the tank with aspect ratio equal to 0.625; (a) with roof, (b) 

without roof. 

 

 

 

 

Figure 31: Finite element modeling of the tank with aspect ratio equal to 1.538; (a) with roof, (b) 

without roof. 

 

4. CONCLUSIONS 

The structural behavior of unanchored tanks exhibiting uplifting under severe dynamic (seismic) 

horizontal excitation has been examined, focusing on the response of the connection between the base 
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plate and the tank shell. A systematic methodology has been proposed for analyzing unanchored tank 

response under lateral seismic excitation, towards assessing base plate connection strength against 

failure due to excessive local strain and fatigue.  

More specifically, a nonlinear simplified model is developed and employed for the analysis of the 

tank under seismic excitation, where the tank is simulated as an equivalent spring-mass mechanical 

system. Furthermore, to determine the relationship between the overturning moment and the uplifting 

(rocking) angle, as well as the relationship between the uplifting size and length, a lateral-load static 

analysis has been performed, using a nonlinear elastic-plastic finite element model.  

The proposed model, upon calculation of the global tank seismic response, is capable of estimating 

the maximum bending strain at the plate-shell connection, through an efficient fatigue analysis of the 

connection, which considers the strain-range fatigue spectrum of the seismic action, an appropriate 

Nε∆ −  low-cycle fatigue curve, and a fatigue damage accumulation factor based on Miner’s rule.  

The above methodology has been applied on two typical liquid storage tanks and the results 

indicate a significant effect of uplifting on unanchored tank response, when compared with the case of 

anchored tanks. Finally, a numerical parametric study of eight unanchored tanks with different values of 

aspect ratios has been conducted, demonstrating that the stiffness on tank deformation provided by the 

presence of a fixed roof may have a significant influence on the uplifting size.  

The proposed methodology can be used as an efficient tool for conducting a performance-based 

design procedure, towards assessing tank strength and minimizing seismic risk in industrial facilities. 
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