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Abstract. Fuzzy risk analysis plays an important role in mitigating the levels of harm of a risk. In real world scenarios, it is a big
challenge for risk analysts to make a proper and comprehensive decision when coping with risks that are incomplete, vague and
fuzzy. Many established fuzzy risk analysis approaches do not have the flexibility to deal with knowledge in the form of
preferences elicitation which lead to incorrect risk decision. The inefficiency is reflected when they consider only risk analyst
preferences elicitation that is partially known. Nonetheless, the preferences elicited by the risk analyst are often non-
homogeneous in nature such that they can be completely known, completely unknown, partially known and partially unknown. In
this case, established fuzzy risk analysis methods are considered as inefficient in handling risk, hence an appropriate fuzzy risk
analysis method that can deal with the non-homogeneous nature of risk analyst’s preferences elicitation is worth developing.
Therefore, this paper proposes a novel fuzzy risk analysis method that is capable to deal with the non-homogeneous risk analyst’s
preferences elicitation based on grey numbers. The proposed method aims at resolving the uncertain interactions between
homogeneous and non-homogeneous natures of risk analyst’s preferences elicitation by using a novel consensus reaching
approach that involves transformation of grey numbers into grey parametric fuzzy numbers. Later on, a novel fuzzy risk
assessment score approach is presented to correctly evaluate and distinguish the levels of harm of the risks faced, such that these
evaluations are consistent with preferences elicitation of the risk analyst. A real world risk analysis problem in fiber industry is
then carried out to demonstrate the novelty, validity and feasibility of the proposed method.
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1 Introduction

Incomplete and vague real-world information has often been characterised by decision makers’ preferences
elicitation (or behaviour) over a specific decision making situation (Niwas & Garg, 2018). In decision making on
fuzzy risk analysis, the risk analysts’ preferences elicitation are usually described in the form of linear or
nonlinear membership function values (Garg, 2016; Garg, 2018). The membership function value plays a crucial
role where it explicitly and effectively represents subjective and fuzzy preferences elicited by the risk analysts, so
that more informed and better decisions are reached.

In order to define a formal basis with risk analysts’ preferences elicitation using membership function value,
several established concepts that are concerned with this matter are introduced. Among others are type-1 fuzzy sets,
rough sets and type-2 fuzzy sets. Type-1 fuzzy sets represent the risk faced using membership function that is
monotonic increasing and decreasing (Derelli, 2011). Rough sets on the other hand, express the membership
function value of the risk faced using rough membership function (Du & Hu, 2017). While, type-2 fuzzy sets (Jana
& Ghosh, 2018) define the membership function value of the risk faced using another fuzzy set which includes the
Footprint of Uncertainty (Wallsten & Budescu, 1995; Yaakob et al., 2015). Unfortunately, the aforementioned
established concepts have weaknesses. The type-1 fuzzy sets are insufficient to model perception as they are unable
to cope with the increasing level of imprecision when preferences elicitation is used on a decision situation (John &
Coupland, 2009). Meanwhile, the rough set representations are said to be incomplete because there are some well-
defined values that belong to the considered risk situations are missing and not defined. At the same time, type-2
fuzzy sets are unable to clarify the incorporation of one fuzzy set with another fuzzy set (Yang & John, 2012) in
fuzzy risk analysis due to the fact that the membership value of the considered risk needs a representation that can
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express both possible values of type-2 fuzzy sets. More importantly, this value is a single value as defined in fuzzy
sets.

Apart from the aforementioned limitations, there is another major weakness of the established concepts that is
worth noting. It is the flexibility towards risk analysts’ preferences elicitation. As far as the literature on fuzzy risk
analysis problems is concerned, the preferences elicited by the risk analysts are not restricted to be homogeneous or
similar in nature. This is because the preferences elicited by risk analysts can also be non-homogeneous. This matter
has been thoroughly discussed in Yang & John (2012), where the nature of preferences elicited by decision makers
can be homogeneous, non-homogeneous and both simultaneously. As in the real world risk analysis scenarios, the
preferences elicited by a risk analyst are often depending on the actual knowledge of the risk analyst, whether the
risk is completely known, completely unknown, partially known or partially unknown. The variations of knowledge
expressed by the risk analyst indicate that preferences elicited by the risk analyst are actually non-homogeneous in
nature. Nonetheless, this matter has not received high attention and consideration by the established fuzzy risk
analysis methods when they only take into account the partially known risk analyst’s preferences elicitation in their
risk evaluations. This situation indicates that established fuzzy risk analysis methods are in need of better
incorporation of flexible methodology into modelling complex decision making in fuzzy risk analysis
processes. Furthermore, the presence of non-homogeneous preferences elicitation along with the homogeneous ones
makes the established fuzzy risk analysis methods to be having low transparency level, and therefore unable to track
the performance of a risk problem. The inefficiencies mentioned above justify the motivation for this study.

In the literature, there is a concept called grey number. This concept has successfully served as an alternative
methodology that complements the uncertainty in systems with partial information (Deng, 1989; Liu et al., 2000;
Lin et al., 2004; Liu & Lin, 2006). Grey number aims at redefining the membership or characteristic function value
that is unclear in traditional crisp sets and fuzzy sets (Liu et al., 2000; Deng, 1982). A grey number is defined as a
number with an unknown position within clear lower and upper boundaries (Liu et al., 2000; Deng, 1982). Based on
the wide applications of grey numbers, such as (Haq & Kannan, 2007) in supply chain management model,
forecasting (Lin & Lee, 2007), software effort estimation model (Huang et al., 2008), grey-TOPSIS in subcontractor
selection (Lin et al., 2008) and contractor’s selection (Zavadskas et al., 2009), grey numbers can be expressed in
various forms namely grey numbers, white numbers and black numbers. The multiple forms of grey numbers as
indicated in the aforementioned applications signify that grey numbers are actually non-homogeneous in nature.
However, the actual capability of grey numbers that acknowledge the presence of non-homogeneous nature in
decision makers’ preferences elicitation have not thoroughly been discussed in the literature. Most of the case
studies covered in the literature focus only on one form of grey numbers.

The main reason grey number receives limited attentions from the researchers is due to the fact that grey numbers
and intervals shared some common aspects (Deschrijver & Kerre, 2003). In fact, interval-valued fuzzy sets
conceptually solve the issue related to decision makers’ preferences elicitation in the case of fuzzy sets. Nevertheless,
this understanding is a misconception, as grey numbers have special features which intervals do not have. In
addition, the interval-valued fuzzy sets concept is inconsistent with respect to the epistemic uncertainty of an
interval representation. Furthermore, grey sets provide better coverage when dealing with partial information than
interval-valued fuzzy sets (Yang & John, 2012). Thus, the capability of grey numbers to describe non-homogeneous
preferences elicited by decision makers is different from the interval-valued fuzzy sets and worth investigating.

Since, the relationship between non-homogeneous grey numbers’ forms and non-homogeneous risk analyst’s
preferences elicitation looks significant, hence this paper proposes for the first time a novel fuzzy risk analysis
method that has the flexibility to deal with the non-homogeneous risk analyst’s preferences elicitation based on grey
numbers. The proposed method aims at resolving the uncertain interactions between homogeneous and non-
homogeneous natures of the risk analyst’s preferences elicitation by using a novel consensus reaching approach that
involves transformation of grey numbers into grey parametric fuzzy numbers. Later on, a novel fuzzy risk
assessment score approach is presented to correctly evaluate and distinguish the levels of harm of the risks faced,
such that these evaluations are consistent with human intuition. Then, a validation of the proposed method is
presented along with real world risk analysis problem in Fiber industry to demonstrate the novelty, validity and
feasibility of the proposed methodology.

The rest of the paper is structured as follows. Section 2 introduces the theoretical preliminaries related to this
study. Section 3 presents the proposed fuzzy risk analysis method. Section 4 covers the theoretical validation of the
proposed fuzzy risk analysis method. Section 5 shows the application of the proposed fuzzy risk analysis method
on real world risk analysis problem in Fiber industry. Finally, a conclusion is given in Section 6.
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2 Theoretical Preliminaries
In this section, basic concepts of grey numbers, degree of greyness and parametric fuzzy numbers are reviewed.
These concepts are adopted to develop the proposed fuzzy risk analysis method that is later presented in Section 3.

2.1 Grey Number

Definition 1: (Deng, 1982) A grey number, AG , is a number with clear upper and lower boundaries but has an
unknown position within the boundaries. Mathematically, a grey number for the system is expressed as

     gtgggGA , (1)

where t is information about g while g and g are the upper and lower limits of information t respectively.

Definition 2: (Yang & John, 2012) For a set UA  , if its characteristic function value of each x with respect to A,

 xgA
 , can be expressed with a grey number,      


  1,0,

1
Daaxg

n

i iiA  , then A is a grey set, where  1,0D is

the set of all grey numbers within the interval  1,0 .

In the literature on grey numbers, if the value of the characteristic function is completely known or completely
unknown, then it is called as the white number or black number respectively. In other words, characteristic function
value 1 refers to the element is a white numbers and 0 is a black number. Likewise, any values in  1,0 are
considered as the grey numbers. Without loss of generality of Yang & John (2012), the white sets, black sets and
grey sets are defined as follows.

Definition 3: (White Sets).

For a set UA , if its characteristic function value of each x with respect to A,   nixg
iA ...,,2,1,  , can be

expressed with a white number, then A is a white set.

Definition 4: (Black Sets)

For a set UA , if its characteristic function value of each x with respect to A,   nixg
iA ...,,2,1,  , can be

expressed with a black number, then A is a black set.

Definition 5: (Grey Sets)

For a set UA , if its characteristic function value of each x with respect to A,   nixg
iA ...,,2,1,  , can be

expressed with a grey number, then A is a grey set.

The following Table 1 presents comparison between white number, black number and grey number.

Table 1. Comparison between white number, black number and grey number.

Number Description Value Form

0 Black Number Numerical
[0 , 1] Grey Number Interval
1 White Number Numerical
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2.2 Degree of Greyness

In Yang & John (2012), methods to determine the degree of greyness of an element and a set are introduced. These
methods are crucial to measure the significance of interval to the unknown number represented by a grey number.

Definition 6: (Degree of greyness of element) (Yang & John, 2012)

Let U be the finite universe of discourse, x be an element and Ux . For a grey set UA  , the characteristic
function value of x with respect to A is      1,0Dxg A .

Then, the degree of greyness,  xgA
 , of element x for set A can be expressed as

    ggxg A
 (2)

Definition 7: (Degree of greyness of a set) (Yang & John, 2012)

Let U be the finite universe of discourse, A be a grey set and UA  . ix is element relevant to A and
Uxi  ni ..,,2,1 and n is the cardinality of U.

Then, the degree of greyness of set A, *
Ag , can be defined as

 
n

xg
g

n

i iA
A
  1*



(3)

It is worth pointing out here that equation (3) can be expressed in term of fuzzy set expression (Yang & John, 2012),
given by

      nnAAA xxgxxgxxgA   ...2211 (4)

2.3 Parametric Fuzzy Number

The parametric fuzzy number is introduced as an extension of fuzzy number (Ma et al., 1999). It represents
information in the combined-form of left fuzziness and right fuzziness that can be defined as the following triangular
and trapezoidal parametric fuzzy numbers.

Definition 8: (Ma et al., 1999) A trapezoidal parametric fuzzy number A is represented by the following equation (5)
given by

(5)

where  AA yxA , with A and A represent the left fuzziness and right fuzziness respectively.

   

























otherwise

yxyifxy
yxxif

xxifxx

yxx

AAA
A

AA

AA

AAA
A

AA

AAAAA

0

1
,,,











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If AA yx  , then A is a triangular parametric fuzzy number given as the following definition.

Definition 9: (Ma et al., 1999) A triangular parametric fuzzy number A is represented by the following equation (6)
given by

(6)

3 Method Formulation

As mentioned in the introduction section, the presence of non-homogeneous nature of risk analyst’s preferences
elicitation in fuzzy risk analysis is crucial and worth acknowledging. This study aims at dealing with the complex
interaction of the non-homogeneous nature of risk analysts’ preferences elicitation in fuzzy risk analysis using grey
numbers. Grey numbers are more flexible than type-1 fuzzy sets, rough sets and interval-valued fuzzy sets in
managing the non-homogeneous nature of risk analyst’s preferences elicitation. This is because their value forms (i.e.
numerical value form and interval value form) allow the non-homogeneous risk analyst’s preferences elicitation that
are completely known, completely unknown, partially known and partially unknown, to be consistently represented.
Therefore, a novel fuzzy risk analysis method that is developed from the grey number perspective and structure of
fuzzy risk analysis (Jana & Ghosh, 2018; Du & Hu, 2017; Sen et al., 2016) is proposed for the first time here. The
proposed method first resolves the uncertain interactions between homogeneous and non-homogeneous natures of
risk analyst’s preferences elicitation by using a novel consensus reaching approach that transforms grey number
forms into grey parametric fuzzy numbers. Later on, a novel fuzzy risk assessment score approach is presented to
correctly evaluate and distinguish the levels of harm of the risks faced, such that these evaluations are consistent
with human intuition. It is worth mentioning that the structure of fuzzy risk analysis is given as Figure 1. Since, the
grey parametric fuzzy number is introduced for the first time here and in the literature, its definition is given as
follows.

Definition 10: A grey parametric fuzzy number, gA , given as

 
ggggg AAAAAg hyxA ;,,,  with    

gg AAg yxA ,
1
 ,

gA as the left fuzziness,
gA as the right fuzziness and

 1,0
gAh as the height of grey parametric fuzzy number. The representation of gA is given as follows.

It is worth noting here that, the representation of grey parametric fuzzy number given above is consistent with
Definitions 8-9. The introduction of height,  1,0

gAh in Definition 10, complements the confidence level of the

risk analyst on the risk faced (Bakar & Gegov, 2014; Bakar & Gegov, 2015; Chutia & Gogoi, 2017).

Without loss of generality of the mentioned structure and grey numbers’ forms, details on the proposed fuzzy
risk analysis method are given as follows.

   






















otherwise

xxxifxx

xxifxx

xx
AAA

A

AA

AAA
A

AA

AAAA

0

,,












   


























otherwise

yxyif
xy

yxxifh

xxif
xx

hyxx

ggg
g

gg

ggg

ggg
g

gg

gggggg

AAA
A

AA

AAA

AAA
A

AA

AAAAAA

0

;,,,












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Fig. 1: Structure of Fuzzy Risk Analysis in the presence of grey numbers.

Step 1: Transform all preferences elicited by risk analyst for
kiCF ,

 and
kiCL ,

 (in the form of grey numbers), into grey

parametric fuzzy numbers, *
,kiCF and *

,kiCL respectively.

Based on Definition 3-5 and Table 1, the following procedures are applied.

1) If  1,0
,


kiCF and  1,0
,


kiCL are numerical values, then
kiCF ,

 and
kiCL ,

 are transformed into grey

parametric fuzzy numbers, *
,kiCF and *

,kiCL respectively using the transformation

function,
kiki CCm LFmQ
,,

,,  given as follows.

*
,,,

:
kikikiC CCF FFQ 

and
*

,,,
:

kikikiC CCL LLQ 

2) If  1,0
,


kiCF and  1,0
,


kiCL are interval values, then
kiCF ,

 and
kiCL ,

 are transformed into grey

parametric fuzzy numbers, *
,kiCF and *

,kiCL respectively using the transformation

function,
kiki CCn LFnQ
,,

,,  , given as follows.

  *
,,

1,0:
kikiC CF FQ 

and
  *

,,
1,0:

kikiC CL LQ 

where nkni ,...,2,1,,...,2,1  .

Hence, both *
,kiCF and *

,kiCL in Step 1 can be defined in the form of triangular grey parametric fuzzy numbers as














 *

,
*

,
*

,
*

,,*
,

*
,

*
,

*
,,

;,,,;,, **
kiCkiCkiCkiCkikiCkiCkiCkiCki FLLLCFFFFC hxLhxF  and trapezoidal grey parametric fuzzy

numbers as ,;,,, *
,

*
,

*
,

*
,

*
,,

* 







kiCkiCkiCkiCkiCki FFFFFC hyxF  





 *

,
*

,
*

,
*

,
*

,,
;,,,*

kiCkiCkiCkiCkiCki LLLLLC hyxL  respectively.

Subject Matter: iC
Risk Assessment,

iCR

Criteria kiC ,

Risk Analyst’s Preferences Elicitation:
Probability of failure,

kiCF ,


Severity of loss,
kiCL ,


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Step 2: Compute the consensus reaching score for each subject matter iC as

 

 









 n

k
C

n

k
CC

i

ki

kiki

L

LF
C

1

*

1

**

,

,,

(7)

In Step 2, equation (7) is an often used established aggregation method to assess the degree of risk. Nonetheless,
since the subject matter iC is in the form of grey parametric fuzzy number, hence the following steps are proposed
and carried out.

Step 3: Calculate the horizontal component value for iC as

       
   














iiiiii

iiiiii

iiiiiii
CCCCCC

CCCCCC
CCCCCCC xxyy

xxyy
yyxxH






3
1

and the vertical component value for iC as

   
   














iiiiii

iiiiiii

i
CCCCCC

CCCCCCC
C xxyy

xxyyw
V




1

3

where  1,0
iCH and  1,0

iCV .

In this step, both values of  1,0
iCH and  1,0

iCV represent the a centroid point (center of gravity) for each

iC under consideration. Note that, the centroid point plays the role as the mean for iC .

Step 4: Obtain the spread value for iC as

   
iiiiii CCCCCC VxyS  

For this step, the spread value,
iCS , represents the standard deviation for each iC under consideration.

Step 5: Evaluate the risk assessment score value for all iC under consideration as

 
iiii CCCC SVHR  1 . (8)

Risk assessment score value descriptions:

If    xCxCRR jiCC ji
then,

If    xCxCRR jiCC ji
 then,

If    xCxCRR jiCC ji
then,
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The main reason horizontal, vertical and spread components are utilised in this risk analysis methodology is because
these components are often used to determine the consistency and dispersion of risk in the literature. In this case,
any iC with greater centroid point and smaller spread, is classified as more consistent and less disperse than those
with smaller centroid point and higher spread.

4 Method Validation

This section theoretically validates the proposed fuzzy risk assessment method in accordance to steps involved
as given in Section 3. Since, the validation is assessed from the theoretical perspective, hence both grey numbers and
grey parametric fuzzy numbers utilised in this section are defined to be more generic than those in Section 3. Thus,
without loss of generality of Section 3, the following validation applies.

Step 1

As transformation of grey sets into grey parametric fuzzy sets is one of the novel contributions of this study, the
following property is presented. It has to be noted that, the property is consistent with Yang & John (2012).

Let U be the finite universe of discourse, A be a grey set and UA  . x is an element and  xgUx A
 , is the

characteristic function value of x with respect to A,  xgA
 is the degree of greyness of  xgA

 and *
Ag is the degree

of greyness for A.

Property: A is a grey parametric fuzzy set if and only if 0* Ag and    1,0 xg A for any Ux

Proof 1: If A is a grey parametric fuzzy set, then 0* Ag and    1,0 xg A for any Ux

Let A be a grey parametric fuzzy set expressed as

      nnAAA xxxxxxA   ...2211 (9)

where  xA is the membership value for A with    1,0xA .
When      1,0  xgx AA , then the following is obtained based on equation (3).

              
0

...2211* 



n

xxxxxx
g nAnAAAAA
A


(10)

where      1,0  xgx AA for any Ux (proven).

Proof 2: If 0* Ag and    1,0 xg A for any Ux , then A is a grey parametric fuzzy set.

Let A be a grey set expressed as

      nnAAA xxgxxgxxgA   ...2211

Based on Definition (2),    1,0
iA xg where ni ...,,2,1 , is a single grey number. Thus, the following can be

proven as
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              
0

...2211* 





n

xgxgxgxgxgxg
g

nAnAAAAA
A . (11)

If      1,0  xgx AA , then equation (11) is defined as

      nnAAA xxxxxxA   ...2211 (proven).

With respect to grey numbers and grey parametric fuzzy numbers, the validation on both numerical forms are given
as follows.

Let AG and A be the grey number and membership value for grey parametric fuzzy number A respectively, where

  1,0DGA and  1,0A .

1)  1,0
Ag is a numerical value.

Property 1: If AAG  , then   1,0: DUA .

Proof: AAG  , implies that   1,0DG AA 

hence,   1,0: DUA (proven). (12)

It is worth noting here that, equation (12) is consistent with equation (8) to equation (10).

2)  1,0
Ag is an interval value

Property 2: If membership interval,   ggt , , then   1,0: DU .

Proof:   AA ggt , implies that   1,0Dt

For continuous grey numbers, tGA  , any unknown value of AG within t indicates that   1,0DGA . Thus,
when AAG 

then   1,0: DUA (proven).

Step 2

No validation is required for this step as the aggregation technique is adopted from the literature.

Step 3-5

As Step 3-5 are interrelated, the validation for these steps are conducted concurrently. This validation consists of
properties that distinguish a grey parametric fuzzy number with other grey parametric fuzzy numbers under
consideration. Thus, without loss of generality of Wang & Kerre (2001a, b) and Bakar & Gegov (2014, 2015), the
validation process is as follows.
Let AG and BG be any grey parametric fuzzy numbers.

Property 1: If AG ≽ BG and BG ≽ AG , then BA GG  .

Proof:
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AG ≽ BG implies that
BA GG RR  and BG ≽ AG implies that

AB GG RR  , thus
AB GG RR  which is BA GG  .

Property 2: If AG ≽ BG and BG ≽ CG , then AG ≽ CG .

Proof:

AG ≽ BG implies that
BA GG RR  and BG ≽ CG implies that

CB GG RR  , thus
CA GG RR  which is AG ≽ CG .

Property 3: If  BA GG and BA GG ofsiderighttheonis , then AG ≽ BG .

Proof:

 BA GG and BA GG ofsiderighttheonis implies that
BA GG RR  , thus AG ≽ BG .

Property 4: The order of BA GG and are not affected by other grey parametric fuzzy numbers under comparison.

Proof:

The ordering of BA GG and are completely determined by
BA GG RR and respectively, thus the ordering of

BA GG and are not affected by other grey parametric fuzzy numbers under comparison.

5 Fuzzy Risk Analysis in Fiber Industry

In order to illustrate the applicability and validity of the proposed fuzzy risk analysis method in a realistic
scenario, this study experiments the initial step in the process of vehicles’ dashboard production, which is the risk
assessment on the fibers’ mechanical properties. In this step, the risk analyst is responsible in ensuring that the fibers
used are not risky in nature such that the fibers used complement the vehicles’ dashboards production so that high
level of durability and quality of dashboards are produced (Montignies et al., 2010; Mantovani et al., 2017).

In the automotive sector, the durability and quality elements of a dashboard are important for a vehicle because
they concern with the drivers and passengers safety. This purpose makes the risk assessment on fibers’ mechanical
properties in the vehicles’ dashboard production is significant and challenging. This is because fibers comprise of
three mechanical properties namely density, elongation at break and tensile strength (Trabelsi et al., 2018; Sarfarazi
et al., 2018), where all of them contribute significantly towards the vehicles’ dashboards production through the
following explanations.

1. Density – low density fibers indicate that the vehicles’ dashboards produced are not heavy, thus low
processing costs are incurred.

2. Elongation at break – high elongation at break fibers indicate that the vehicles’ dashboards produced are
flexible.

3. Tensile strength – fibers with high tensile strength, high tensile modulus and high elongation at break
indicate that the vehicles’ dashboards produced are good and tough.

Based on the details given, the structure of risk assessment on fibers’ mechanical properties in the vehicles’
dashboard production is illustrated as Figure 2. It is worth mentioning here that fibers, iC , under consideration for
the risk assessment are Asbestos (mineral-based fiber) as 1C , Mohair (animal-based fiber) as 2C and Hemp (plant-
based fiber) as 3C . All of these fibers are examined on their mechanical properties based on two risk assessment
criteria namely probability of failure and severity of loss (Jana & Ghosh, 2018; Du & Hu, 2017; Sen et al., 2016;
Liang et al., 2019).
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Fig. 2. Structure of risk assessment on fibers’ mechanical properties in the vehicles’ dashboard production process.

Although, the criteria considered in this risk assessment are consistent with established research works, the
examinations are not easy to experiment as descriptions in Figure 2 are conveyed in the form of preferences elicited
by the risk analyst as tabulated in Table 3. It is worth mentioning here that all information given in Table 3 is the
actual risk analyst’s preferences elicitation based on the nature of each fiber under consideration from the material-
based perspective, given as Table 2.

Table 2. Actual numerical value on each fiber mechanical properties under consideration.

Table 3. Risk analyst’s preferences elicitation on fibers’ mechanical properties (actual).

Fiber 1iC (gcm-3) 2iC (%) 3iC (MPa)

1C 1.45 1.43 620-850
2C 1.49 0.35 70-230
3C 1.48 1.60 550-900

Fiber Mechanical
Property

Preferences Elicitation (Actual)

Severity of Loss Probability of Failure

1C (Asbestos)
11C 11CL = [0.10, 0.18]

11CF = 0.18

12C 12CL = [0.63, 0.80]
12CF = [ 0.41, 0.58]

13C
13CL = 0.07

13CF = [0.63, 0.80]

2C (Mohair)

21C 21CL = 0.10
21CF = 0.98

22C
22CL = [0.63, 0.80] 22CF = [0.63, 0.80]

23C
23CL = 0.02 23CF = [0.58, 0.65]

3C (Hemp)

31C
31CL = [0.10, 0.18]

31CF = [0.17, 0.22]

32C
32CL = 0.63

32CF = [0.78, 0.92]

33C
33CL = 0.07

33CF = [0.63, 0.80]

Mechanical Property 1

Density, 1iC

Probability of failure,
1iCF

Severity of loss,
1iCL

Fiber iC
Risk Assessment,

iCR

Mechanical Property 2

Elongation at Break, 2iC
Probability of failure,

2iCF

Severity of loss,
2iCL

Vehicles’ Dashboard Production

Mechanical Property 3

Tensile Strength, 3iC

Probability of failure,
3iCF

Severity of loss,
3iCL
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In order to apply the proposed fuzzy risk analysis method, all information related to risk analyst’s preferences
elicitation in Table 3 is expressed in the form of grey numbers, as given in the following Table 4.

Table 4. Risk analyst’s preferences elicitation on fibers’ mechanical properties in the form of grey numbers.

It is worth noting here that, all preferences elicited by the risk analyst in Table 2 on both severity of loss,
ijCL and

probability of failure,
ijCF , 3,2,1, ji , are expressed in the form of grey numbers,

ijCL and
ijCF  , 3,2,1, ji

respectively as in Table 3. The indifference in terms of the actual preferences elicited by the risk analyst in Table 3
and their respective grey numbers’ representations in Table 4, indicates that grey numbers are capable to give
correct representations to the risk assessment criteria such that the representations are consistent with the actual
preferences elicited by the risk analyst. Thus, without loss of generality of the proposed fuzzy risk analysis method,
the risk assessments on fibers’ mechanical properties in the vehicles’ dashboards production are as follows.

Step 1:

The transformation of each criterion for the risk assessment into grey parametric fuzzy number, defined as
Definition 10, is given in Table 5, so that a consensus form for the risk analyst’s preferences elicitation in Table 4
are achieved.

Table 5. Descriptions of risk analyst’s preferences elicitation on fibers in the form of grey parametric fuzzy numbers.

Fiber Mechanical
Property

Preferences Elicitation (Grey Number)

Severity of Loss Probability of Failure

1C (Asbestos)

11C
11CL = [0.10, 0.18]

11CF = 0.18

12C
12CL = [0.63, 0.80]

12CF  = [ 0.41, 0.58]

13C
13CL = 0.07

13CF  = [0.63, 0.80]

2C (Mohair)

21C
21CL = 0.10

21CF  = 0.98

22C
22CL = [0.63, 0.80]

22CF  = [0.63, 0.80]

23C
23CL = 0.02

23CF  = [0.58, 0.65]

3C (Hemp)

31C
31CL = [0.10, 0.18]

31CF  = [0.17, 0.22]

32C
32CL = 0.63

32CF  = [0.78, 0.92]

33C
33CL = 0.07

33CF  = [0.63, 0.80]

Fiber Mechanical
Property

Preferences Elicitation (Grey Parametric Fuzzy Number)
Severity of Loss Probability of Failure

1C
11C *

11CL = (0.10, 0.18, 0.06, 0.05; 1.0) *
11CF = (0.10, 0.18, 0.06, 0.05; 0.9)

12C *
12CL = (0.63, 0.80, 0.05, 0.06; 1.0) *

12CF = (0.41, 0.58, 0.09, 0.07; 0.7)

13C *
13CL = (0.0, 0.02, 0.00, 0.05; 1.0) *

13CF = (0.63, 0.80, 0.05, 0.06; 0.8)

2C
21C *

21CL = (0.10, 0.18, 0.06, 0.051.0) *
21CF = (0.98, 1.00, 0.05, 0; 0.85)

22C *
22CL = (0.63, 0.80, 0.05, 0.06; 1.0) *

22CF = (0.63, 0.80, 0.05, 0.06; 0.95)

23C *
23CL = (0.0, 0.02, 0.00, 0.05; 1.0) *

23CF =(0.41, 0.58, 0.09, 0.07; 0.9)

3C

31C *
31CL = (0.10, 0.18, 0.06, 0.05; 1.0) *

31CF = (0.22, 0.36, 0.05, 0.06; 0.95)

32C *
32CL = (0.63, 0.80, 0.05, 0.06; 1.0) *

32CF = (0.78, 0.92, 0.06, 0.05; 0.8)

33C *
33CL = (0.0, 0.02, 0.00, 0.05; 1.0) *

33CF = (0.63, 0.80, 0.05, 0.06; 1.0)
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Step 2:

The consensus reaching scores for all fibers in the form of grey parametric numbers are calculated and tabulated in
Table 6. The score represents the aggregated risk assessment evaluation for each respective fiber under
consideration.

Table 6. Consensus reaching score on risk assessment for each fiber under consideration.

Fiber Risk Assessment Evaluation
1C 1C = (0.17, 0.46, 0.07, 0.25; 0.7)

2C 2C = (0.30, 0.70, 0.10, 0.30; 0.85)

3C 3C = (0.31, 0.68, 0.09, 0.20; 0.8)

Step 3-4:

The horizontal, vertical and spread components for all fibers are computed and presented in Table 7.

Table 7. The horizontal, vertical and spread components for all fibers under consideration.

Fiber
Component

Horizontal Vertical Spread
1C 1CH = 0.3975

1CV = 0.3135
1CS = 0.1592

2C 2CH = 0.7266
2CV = 0.3810

2CS = 0.3357

3C 3CH = 0.7029
3CV = 0.3498

3CS = 0.3811

Step 5:

The risk assessment score for all fibers are calculated and given in Table 8.

Table 8. The risk assessment score for all fibers under consideration.

From Table 8, it can be concluded that by using the novel fuzzy risk analysis method, the most risky fiber is 2C ,
followed by 1C and 3C . Thus, with respect to the vehicles’ dashboard production, the most suitable fiber to be used
is the Hemp (plant-based fiber) because it has the lowest risk assessment score as compared to Asbestos (mineral-
based fiber) and Mohair (animal-based fiber).

Analysis of Results

As to conform the proposed fuzzy risk analysis method is feasible and valid, previous results obtained under this
section are validated with the combined assessments of actual numerical value on fiber mechanical properties and
their influence towards vehicles’ dashboard production. For this purpose, information tabulated in Table 2 is utilised
as the benchmark for this analysis.

Fiber Risk Assessment Score
1C 1CR = 0.1048

2C 2CR = 0.1839

3C 3CR = 0.1522
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Expert Opinion

Based on Table 2, all of the fibers examined are having almost equal density values. Thus, all fibers under
consideration are investigated on their durability and quality based on elongation at break and tensile strength values.
According to Trabelsi et al. (2018) and Sarfarazi et al. (2018), durable fibers are those having high elongation at
break and tensile strength values. In this experiment, 2C is considered as the least durable fiber because it has the
lowest elongation at break and tensile strength values as compared to 1C and 3C . This situation indicates that 2C is
the most brittle fiber among those fibers under consideration and therefore is the least suitable material for
dashboard of a vehicle.

For 1C and 3C , both are having almost equal tensile strength value but differ in terms of elongation at break value.
Based on Table 2, 3C is having a slightly higher elongation at break value than 1C , thus 1C is less durable than 3C .
Therefore, based on these observations, the correct ranking order for each fiber under consideration in terms of
suitability as vehicles’ dashboard such that the ranking result is consistent with the durability perspective of a
dashboard is 2C  1C  3C . This also concludes that the correct risk ordering for each fiber under consideration
such that the ranking result is consistent with the fibers’ mechanical properties and their suitability in dashboard
production is 2C  1C  3C .

Methods Performance

Table 9 (a). Evaluation of risk assessment by risk analysis methods under consideration.

Risk Analysis Method 1iC 2iC 3iC Risk Assessment
Chutia & Gogoi (2017) 0.0512/0.1428 0.1428/0.0997 0.0997/0.0512 2C  3C  1C
Liang et al. (2019) 0.2260 0.4094 0.4245 3C  2C  1C

The proposed method 0.1048 0.1839 0.1522 2C  1C  3C

As clarified in the previous analysis, the correct risk ordering for each fiber under consideration such that the result
is consistent with the fibers’ mechanical properties and their suitability in dashboard production is 2C  1C  3C .
Based on Table 9 (a) and (b), only the proposed method obtains the correct risk ordering for all fibers under
consideration such that the ranking result is consistent with the fibers’ mechanical properties and their suitability in
dashboard production, i.e. 2C  1C  3C . This is due to the fact that the proposed method evaluates fiber with the
highest combined value of centroid point and spread as the most risky fiber ( 2C  1C  3C ).
For Chutia & Gogoi (2017), the method calculates risk for each fiber under consideration as 2C  3C  1C , where

the risks are assessed based on the combination of value and ambiguity. However, the risk evaluations obtained are
incorrect for this experiment when 3C is considered to be greater than 1C , even if 3C is having a much lower
elongation at break value than 1C . In this case, combined value of centroid point and spread approach used by the
proposed method is more efficient than the combined value and ambiguity approach by Chutia & Gogoi (2017) as
the latter unable to give correct risk evaluation for 3C and 1C . Thus, risk evaluation by Chutia & Gogoi (2017)
method is considered to be incorrect such that the risk result is inconsistent with the fibers’ mechanical properties
and their suitability in dashboard production.
Meanwhile for Liang et al. (2019), the method evaluates risk for each fiber under consideration based on

defuzzified value as 3C  2C  1C . Unlike Chutia & Gogoi (2017) and the proposed method, this method evaluates

3C as the most risky fiber than 2C and 1C , even if 3C is the most durable fiber because it has the highest elongation
at break value and tensile strength. Not only that, this method assesses 2C as less risky than 3C even if 2C is brittle
than 3C . In this respect, combined value of centroid point and spread approach used by the proposed method is more
efficient than the defuzzified value approach by Liang et al. (2019). Hence, risk evaluation by Liang et al. (2019)
method is also considered to be incorrect such that the risk result is inconsistent with the fibers’ mechanical
properties and their suitability in dashboard production. Thus, based on these empirical evaluations, the proposed
method outperforms established fuzzy risk analysis methods under consideration.
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Table 9 (b). Consistency Evaluation of risk assessment by risk analysis methods under consideration.

Correct Risk Order: 2C  1C  3C

Risk Analysis Method Consistency
Chutia & Gogoi (2017) Inconsistent
Liang et al. (2019) Inconsistent

The proposed method Consistent

6. Conclusion

In this paper, a novel fuzzy risk analysis method based on grey numbers has successfully developed. The main
motivation of this study is to deal with the presence of non-homogeneity in the preferences elicited by the risk
analyst, which is neglected by the established fuzzy risk analysis methods. To appropriately deal with the non-
homogeneous preferences elicitation by the risk analyst, this study first resolves the uncertain interactions in
preferences elicited in the form of grey numbers by means of a novel consensus reaching method that transforms
grey numbers into grey parametric fuzzy numbers. Later on, the transformed grey parametric fuzzy numbers are
aggregated and assessed using the novel consequence steps in Section 3. All novelties presented in this paper are
theoretically validated. To ensure the applicability and validity of the proposed fuzzy risk analysis method in a
realistic scenario, a real world risk analysis problem in Fiber industry is conducted and resolved. With respect to the
performance analysis conducted, the proposed fuzzy risk analysis method outperforms other established fuzzy risk
analysis methods. The main advantage of the proposed fuzzy risk analysis method is that it not only has the
capability to resolve the uncertain interactions between homogeneous and non-homogeneous natures of risk
analyst’s preferences elicitation, but is also efficient in giving correct risk evaluation in real world decision making
problems such that the evaluation results are consistent with the preference elicitation of the risk analyst.

For future research, further investigations on computation of grey numbers from the perspective of the
intuitionistics fuzzy sets (Kaur & Garg, 2018; Garg & Rani, 2018; Garg & Singh, 2018; Singh & Garg, 2018) are to
be carried out. These efforts will address the incomplete and vague real-world information in a more flexible and
accurate way.
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