

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

COORDINATING KNOWLEDGE

TO IMPROVE

OPTICAL MUSIC RECOGNITION

A thesis

submitted in partial fulfillment

of the requirements for the degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

John McPherson

The University of Waikato

2006

c© 2006 John R. McPherson

Abstract

Optical Music Recognition (OMR) is the process of automatically processing and

understanding an image of a music score. This process involves various distinct

phases to transform the image into primitive shapes, musical objects, and ultimately

into a syntactic model representing the music’s semantics. In general, OMR systems

have performed these tasks in a linear sequence, so that the output of one component

is the input to the next. However, this means that processing errors that occur in one

of the tasks propagate through the system, and often when the error is eventually

detected it is too late to reconsider the decisions leading to the incorrect classification

or information.

This thesis describes how OMR can be improved by modifying the recognition

process from a sequence of linear tasks to a collection of modules that coordinate the

information extracted from the data. Methods for data representation and control-

ling the system’s flow of execution are investigated, and a practical implementation

of such a system is described. This system has a message-passing design for provid-

ing contextual information from one module to another, such as suggesting possible

classifications for an object. These messages are used to aid decision-making and to

correct faulty decisions. This helps the system to adapt to a particular score while

processing the image, increasing accuracy.

This system is designed to aid in the research and evaluation of algorithms to

achieve the above aims; therefore it is straightforward to modify various aspects of

the system’s behaviour, such as adding support for different music symbols. Ex-

amining the implemented system’s behaviour clearly shows that this coordinated

approach can correct many errors and can even identify some objects by only using

syntactic information, based on the surrounding objects.

iv

Acknowledgements

Firstly, I must thank my supervisors David Bainbridge and Ian Witten for the advice

and support I have received from them. David never ran out of enthusiasm every

time a conversation was about music recognition problems and ideas; Ian has an

incredible breadth and depth of knowledge of computer science topics. Both of

them gave plenty of suggestions during the research and for the thesis itself.

Gwen has been wonderfully patient and supportive through my years of research

and writing; I am eternally in her debt. My time at the University of Waikato has

been enjoyable. I’ve also met many interesting people and new friends—the people

in the Digital Libraries lab, the WAND lab, and WLUG have both taught me heaps

and provided many social occasions.

I’d like to thank my family for their support, especially my sister Melinda for

her careful proof-reading as the thesis neared completion.

This research was funded in part by the Marsden Fund of the Royal Society of

New Zealand.

v

vi

Contents

List of Figures xiii

List of Tables xvii

Index of Score Figures xix

1 Introduction 1

1.1 Introduction to Music Notation . 1

1.2 The OMR Process . 4

1.2.1 Lower-Level Processing . 5

1.2.2 Higher-Level Processing . 6

1.3 Multiple Knowledge Sources in OMR 7

1.4 Aims of This Research . 10

1.5 Thesis Outline . 10

1.6 Glossary . 11

2 History and Background 15

2.1 Previous Work . 16

2.1.1 Carter . 16

2.1.2 Kato and Inokuchi . 16

2.1.3 Coüasnon et. al. 17

2.1.4 University of Leeds research group 18

2.1.5 CANTOR . 19

2.1.6 GAMERA Project/Levy Sheet Music Collection 20

2.1.7 RIEM . 21

2.1.8 Stückelberg et. al. 22

2.1.9 The MOODS Project . 24

2.1.10 Interactive Music Network . 24

vii

2.1.11 Other Systems . 25

2.1.12 Commercial Systems . 26

2.2 Notation . 26

2.2.1 Western Music Notation . 26

2.2.2 Other Notations . 29

2.2.3 Music Notation Software and File Formats 31

2.3 Related Fields . 33

2.3.1 Optical Character Recognition 33

2.3.2 Chinese Character Recognition 34

2.3.3 Document Image Analysis . 35

2.4 General Trends in OMR . 35

3 Anatomy of an OMR System 39

3.1 Musical Semantics . 39

3.1.1 Syntax versus Semantics . 40

3.1.2 Syntax . 40

3.1.3 Engraving . 42

3.2 Object Identification . 43

3.2.1 Segmentation . 43

3.2.2 Classification . 44

3.2.3 Assembly . 46

3.3 Staff Processing . 46

3.4 Text Processing . 47

3.4.1 Identifying Textual Regions 48

3.4.2 Optical Character Recognition 48

3.5 Preprocessing and Filtering . 49

3.5.1 Binarisation . 49

3.5.2 Image Cleanup and Filtering 50

3.5.3 De-skewing and Deformation 51

4 Coordination of Knowledge Sources 53

4.1 Advantages of a Coordinated Approach 53

4.1.1 Dealing with uncertainty . 54

4.1.2 Detecting and Correcting Errors 55

4.2 Knowledge Sources . 58

viii

4.3 Strategies for Coordinating Knowledge 59

4.3.1 “Top-down” versus “Bottom-up” Approaches 60

4.3.2 Frames . 61

4.3.3 Blackboard Systems . 62

4.3.4 Graph Rewriting . 63

4.3.5 Genetic Algorithms . 64

4.3.6 Discussion and Summary of Coordination Strategies 65

5 Practical Implementation 67

5.1 OMR Knowledge Coordination . 68

5.1.1 Request-based Model . 69

5.1.2 The Coordinating Process . 69

5.2 Musical Semantics and Notation-Related Issues 69

5.2.1 Implementation Details . 70

5.2.2 Unconventional Use of Notation 74

5.2.3 Syntactic Feedback for Coordination 75

5.2.4 High-level semantics . 82

5.3 Primitive Assembly . 83

5.3.1 Implementation . 83

5.3.2 Assembly Difficulties and Examples 86

5.4 Primitive Identification . 87

5.4.1 Patterns and Template matching 87

5.4.2 Compression-based template matching 87

5.4.3 Identifying Objects with Semantic Feedback 90

5.4.4 Segmentation of Objects . 92

5.4.5 Practical Issues in Object Identification 94

5.5 Text Recognition and OCR . 95

5.5.1 Musical Semantics of Text . 97

5.5.2 Example of Text Detection 98

5.6 Staff Processing/Page Layout . 98

5.6.1 Page Layout . 101

5.7 OMR System and Coordination Issues 103

5.7.1 Boundaries between System Stages 103

5.7.2 Possible Coordination Strategies 104

5.7.3 System Progress and Tolerance Levels 105

ix

5.8 Other Practical Difficulties . 106

5.8.1 Typographical and Editorial Errors 106

5.8.2 Staff System Locations . 107

5.8.3 Complex or Poor Layouts . 107

6 Evaluation 109

6.1 Measuring System Performance . 109

6.1.1 Measuring Effectiveness . 110

6.1.2 Issues in OMR Evaluation . 111

6.2 Evaluation of System Specialists . 113

6.2.1 Preprocessing/Page Layout 114

6.2.2 Staff Processing . 114

6.2.3 Object Identification . 116

6.2.4 Primitive Assembly . 120

6.2.5 Segmentation . 122

6.2.6 Text Removal . 124

6.2.7 Musical Semantics . 126

6.3 Evaluation of System Interaction . 133

6.3.1 Request Handling . 133

6.3.2 Tolerance Levels . 137

6.3.3 Flow of Execution . 139

7 Conclusions 145

7.1 Original contributions of this thesis 145

7.1.1 Primitive Identification . 146

7.1.2 Coordination of Knowledge Sources 146

7.1.3 Identification based on Assembly Knowledge 147

7.1.4 Identification based on Clustering 147

7.1.5 Run-time Pattern Adaption 148

7.1.6 Re-classification of Objects 149

7.1.7 System Design . 149

7.2 Shortcomings and Challenges . 150

7.2.1 Request Handling . 150

7.2.2 Primitive Identification . 151

7.2.3 System Evaluation . 152

x

7.3 Future work . 152

7.3.1 Priority of Requests . 153

7.3.2 OCR . 154

7.3.3 Musical Semantics . 154

7.4 Key findings . 154

7.4.1 Knowledge Coordination . 155

7.4.2 Adaptation . 155

7.4.3 Algorithm Settings and Thresholds 155

7.5 In closing . 156

Bibliography 157

A Practical Implementation 165

A.1 Resource Limits for Specialists . 165

A.2 Object Pattern Descriptions . 167

A.3 Assembly Rules . 170

xi

xii

List of Figures

1.1 A sample of Common Music Notation 2

1.2 A sample of Guitar Tablature (with corresponding WMN above) . . 2

1.3 A sample of Indian Bhatkhande notation 3

1.4 Variations in publishers’ glyphs . 5

1.5 Ornate example of Gregorian Chant 7

1.6 Generalised framework for OMR systems 8

1.7 Mozart Clarinet Concerto extract (6
8 time signature outlined) 9

2.1 The general RIEM framework . 22

2.2 The grammar-driven OMR Framework proposed by Stückelberg . . . 22

2.3 An example of Western Music Notation 26

2.4 The traditional hand-engraving process 27

2.5 A ledger line being shortened for aesthetic reasons 28

2.6 An example of White Mensural Notation 30

2.7 An example of Sacred Harp notation 31

3.1 Examples of vertical stacking for simultaneous events 41

3.2 Spacing between notes . 43

3.3 Examples of overlapping shapes . 44

3.4 Primitive objects that can vary in shape 45

3.5 Finding staff lines by projection . 47

3.6 The Chinese character for “flute”, composed of discrete glyphs . . . 48

3.7 Before and after binary thresholding 50

4.1 Sample Primitive Identification problems 56

4.2 Example of unrecognised objects (crotchet rests in the lower stave) . 57

4.3 Extract from model of proposed frame-based OMR system 62

4.4 A Blackboard System for audio transcription 63

xiii

5.1 The specialist modules in the OMR System 68

5.2 Extract showing semantic node structure 71

5.3 Semantic diagnostics . 72

5.4 Examples of unusual and difficult notation 75

5.5 Notes and note groups found by the earlier modules 77

5.6 Objects as first encountered by semantics module 78

5.7 Objects encountered after feedback requests were processed 79

5.8 Treble clefs found in clarinet concerto extract 80

5.9 Looking for quaver rests with a too low threshold 82

5.10 Tree-graph showing assembly . 85

5.11 Assembly of primitives into musical objects 85

5.12 Notes shared by two parts . 86

5.13 Quaver rests found by compression-based template matching 89

5.14 Clustered objects identified by use of semantic information 91

5.15 A barline partially removed by the typesetter. 93

5.16 Extract showing dots and noise remaining after object extraction . . 95

5.17 Sample score showing both text and musical objects off the stave . . 96

5.18 Suspected text objects . 99

5.19 Obvious peaks in staff system projection 100

5.20 Obvious deformation in staff system affecting projection 102

5.21 Using the Hough Transform for calculating skew 103

5.22 Alto (left) and Tenor (right) Clefs 104

5.23 A typographical error (missing rest) 107

5.24 Two staff systems side-by-side . 107

5.25 Examples of difficult notation . 108

6.1 Notes assembled incorrectly (first, second and fourth) 110

6.2 An error during staff-line extraction 115

6.3 Evaluation of Compression-based Template Matching 117

6.4 Objects identified after Primitive Assembly suggestions 121

6.5 Example objects created by Segmentation specialist 124

6.6 Example of detected, mis-detected and missed text objects 126

6.7 Extract of a score with syncopated rhythm 127

6.8 The time-slice offsets for the example figure 128

6.9 A note with incorrectly calculated pitch 130

xiv

6.10 An octave marking . 130

6.11 Pitch calculation: Incorrect notes coloured, correct notes outlined . . 131

6.12 An extract from Intermezzo Op. 117 number 1, by Johannes Brahms 132

6.13 A graphical representation of the tolerance step’s effect 139

6.14 Graphical representation of program execution flow (Promenade, page

1) . 141

6.15 Graphical representation of program execution flow (for a blank image)141

6.16 Graphical representation of program execution flow (Chopin) 143

A.1 Bitmaps described by sample pattern descriptions 169

xv

xvi

List of Tables

6.1 Hypothetical Cost of Different Recognition Errors 112

6.2 Primitive Identification results for Promenade 119

6.3 Modifying the number of actions allowed by the Segmentation specialist123

6.4 Performance considerations of Text Processing 125

6.5 Classification of Text Objects . 125

6.6 Calculation of time-slice offsets and durations 128

6.7 Pitch Calculation algorithm accuracy 129

6.8 (Lack of) effect of request processing order 134

6.9 OMR Resource usage and limits for several scores 136

6.10 Effect of changing the system’s maximum number of feedback requests

allowed—Promenade . 137

6.11 Effect of changing the coordinator’s “tolerance step” on Promenade 140

xvii

xviii

Index of Score Figures

Bach — Prélude from English Suite no. 1 in A BWV 806

Figure 3.4 . page 45

Figure 5.4 . page 75

Figure 5.15 .page 93

Figure 5.20 . page 102

Figure 5.25(a) .page 108

Figure 5.14 .page 91

Figure 5.17 .page 96

Brahms, J. — Capriccio (Opus 116, No. 7)

Figure 2.3 . page 26

Chopin — 24 Préludes, Opus 28

Figure 3.5 . page 47

Figure 5.18 .page 99

Figure 5.12 .page 86

Chopin, Frédéric — Scherzo 58

Figure 3.7(a) . page 50

Figure 3.7(b) . page 50

Mozart — Clarinet and Piano Concerto

Figure 3.1(a) . page 41

Figure 5.3(a) . page 72

xix

Figure 5.13 .page 89

Figure 5.23 . page 107

Figure 5.11 .page 85

Figure 5.8(a) . page 80

Figure 5.8(b) . page 80

Figure 5.9(b) . page 82

Figure 6.11 . page 131

Figure 6.6 .page 126

Mussorgsky — Promenade, from “Pictures at an Exhibition”

Figure 3.1(b) . page 41

Figure 4.1 . page 56

Figure 4.2 . page 57

Figure 5.5 . page 77

Figure 5.6 . page 78

Figure 5.7 . page 79

Figure 5.9(a) . page 82

Figure 6.13(b) . page 139

Taupin — Récit (1990)

Figure 5.4(b) . page 75

Figure 5.24 . page 107

Cappella Sistina 10 fols. 2 verso-3

Figure 1.5 . page 7

Vajra, Frank — Overdrive

Figure 1.2 . page 2

xx

Chapter 1

Introduction

Technology is becoming increasingly indispensable in many aspects of life—especially

for entertainment and leisure activities—and the potential for this trend to grow is

enormous. Imagine a violin player rehearsing alone for a duet, taking a photo of the

sheet music and having a nearby computer automatically play the accompanying

piano part. Optical Music Recognition (OMR), sometimes also called musical score

recognition or simply score recognition, is the process of automatically extracting the

musical meaning from a printed musical score. It is this process that would allow

the violinist to have a computer play the piano part of the score when the sheet

music is available but a piano and pianist are not.

This chapter gives a brief introduction to music notation, the aim of Optical Mu-

sic Recognition, and an outline of the steps taken by an Optical Music Recognition

system. This is followed by a description of some of the problems and challenges

faced by such systems, and how some of these issues can be mitigated or resolved

by designing a system to allow information to be passed backwards and forwards

so that decisions can be made using contextual knowledge. Finally, the research

described in this thesis is outlined.

1.1 Introduction to Music Notation

Music notation provides a rich description of the composer’s ideas, but ultimately

sheet music is open to some degree of interpretation by performers. Music notations

evolve; symbols are added and conventions modified as composers adapt to new

instruments and ideas.

Western Music Notation (WMN), sometimes called Common Music Notation

1

(CMN) or Western staff notation, is the notation most widely used today—an ex-

ample of WMN is shown in Figure 1.1. A score consists of staff systems containing

one or more staves; the score in this figure shows a staff system with three staves,

where the top stave is for the flute and the lower two staves are grouped together

for the piano.

More specialist music notations include guitar tablature (Figure 1.2), Gregorian

chant, Sacred Harp notation, and various Asian, African and Indian musical no-

tations (Figure 1.3). These can be roughly split into two: a group consisting of

notations that are based on a staff, and those that are not. These notations are

described further in Section 2.2.

Figure 1.1: A sample of Common Music Notation: Handel’s Sonata V for flute and
piano

Figure 1.2: A sample of Guitar Tablature (with corresponding WMN above)

The advantages of a computerised representation of a musical score are numerous.

These include commonly-cited musical-specific advantages, such as:

• the ability to automatically transpose a particular voice or part in a score—for

2

Figure 1.3: A sample of Indian Bhatkhande notation
(from Hindustani Sangeet Paddhati — Kramak Pustak Malika, by Vishnu

Bhatkhande, 1933–1936, Vol 4.)

example, clarinets read music set in B[, so music written for “C” instruments

(such as piano, flute, and stringed instruments) should be transposed up one

tone for correct reading by these performers, and similarly music written for

“B[” instruments (including many brass and woodwind instruments) should

be transposed down one tone for performance by “C” instruments. Common

transpositions for orchestral instruments include octave transpositions (both

higher and lower), B[, D, E[, and F [70];

• part extraction from a conductor’s score (which has the whole orchestra’s music

in a rather small typesetting face), or conversely generation of a conductor’s

score from the individual parts;

• converting the representation to other musical formats or notations, such as for

Braille-reading machines or for various software packages which use a variety

of file formats; and

• allowing musicians to read the music from a computer display, for example to

eliminate the need for manual page turns [37, 51];

and more generalised document-processing advantages such as:

• a form of file compression to save disk space [6];

• ease of sharing and archiving;

• increased ease of editing (using appropriate software), aiding in composition

and re-typesetting or re-publication; and

3

• automatic indexing and retrieval of information [50, 31].

1.2 The OMR Process

To extract and understand the musical meaning from sheet music, Optical Music

Recognition systems typically perform multiple levels of processing. This generalised

problem is not specific to OMR—the sheet music domain is part of a larger field

known as Document Image Analysis [7, 61]. Document Image Analysis refers to var-

ious categories of systems designed to automatically understand paper documents.

Examples include banking systems (cheque recognition), envelope and letter ad-

dress parsing, technical drawings and blueprints, circuit board diagrams, maps, and

so forth. The general process for document image analysis consists of the following

steps:

1. Acquire an image of the relevant document.

2. Preprocess to get the image into an acceptable state (for example, perform

enhancements such as colour reduction, de-skew, remove noise).

3. Locate “regions of interest”.

4. Extract features from regions of interest.

5. Perform feature analysis.

6. Generate document description.

Steps 1–4 work at the image level, on the raw image data. Steps 4, 5 and 6 work

with features, while steps 5 and 6 also use domain-specific knowledge.

Applying this model to the OMR process, the lower level routines take the image

of the music as input and perform different image processing techniques to recognise

the different musical shapes and objects. These shapes need to be further processed

to build up an internal model of the image. The higher level routines determine

the abstract “musical meaning” of the objects found by the lower level routines, by

using knowledge of music semantics. The OMR-specific aspects of this process are

now briefly described; how these aspects can be used in each step of the process is

explored in detail in Chapter 3.

4

1.2.1 Lower-Level Processing

The low-level processing phases need to recognise all the shapes (and their posi-

tions) in the image that make up the musical components. The different shapes

will depend on the notation used, as will the layout—for example, as shown in the

previous figures, music represented in WMN consists of objects superimposed on a

staff consisting of multiple horizontal lines. This process needs to account for graph-

ical details, such as varying glyphs and layout used by sheet music publishers, as

well as musical symbols that can change shape within the same piece. Figure 1.4(a)

shows a variety of bass clefs as used by different publishers, and Figure 1.4(b) shows

variations in crotchet rests. Several of each class have been generated by computer

notation software, some are hand-drawn, and there are examples of older shape

styles that look quite different to the more modern style for each class.

(a) Various Bass Clef glyphs

(b) Various Crotchet Rest glyphs

Figure 1.4: Variations in publishers’ glyphs

Ideally, the physical appearance of the input image would be completely de-

scribed so that every element on the page is classified as a graphical shape known

by the system. In practice, however, the difficulties in achieving this means that

recognition systems are far from perfect.

As well as using standard image-processing and document image analysis tech-

niques, there are music domain-specific qualities that can be examined to help im-

prove recognition quality. As an example, for music notated in WMN, the thickness

of staff lines can be used to infer the scan resolution, or might be correlated to

the brightness/darkness setting of the device when the image was acquired. There

are also less obvious qualities specific to music that might be useful for recognition;

for example, the Lilypond computer software [60] for typesetting WMN offers the

following insight:

5

Another typical aspect of hand-engraved scores is the general look of

the symbols. They almost never have sharp corners. This is because

sharp corners of the punching dies are fragile and quickly wear out when

stamping in metal.

Rules and observations about the physical appearance of music such as this can be

exploited to improve the accuracy of the recognition process.

1.2.2 Higher-Level Processing

The higher-level processing of notation determines the semantic meaning of the sheet

music. At an abstract level, the semantics of sheet music are only interpreted when

realised by a performer, and different musicians will not give identical performances.

However, as far as the OMR process is concerned, “semantics” refers to a model of

the music complete enough to faithfully re-create or perform the score such that a

person would find it to be functionally identical to the original sheet music.

This involves calculating the musical properties and syntax of the graphical ob-

jects found by the low-level processing phases, based on some set of rules for that

particular music notation such as WMN or guitar tablature notation. This process

commonly includes determining the duration and pitch of objects based on the low-

level shapes found for notes, and these attributes are affected by other objects such

as durational dots and slur or tie markings that modify the duration of the sounded

note, and key signatures and accidentals that modify the pitch. Generally, the final

step of an OMR system is to store the calculated semantics of the music into a data

file in a format that computer music-notation programs can process.

Figure 1.5 shows an extract of a Gregorian chant manuscript, written in circa

1520. A score such as this poses multiple difficulties for automated OMR: the use of

colour—the colour of the stave lines is similar to the background colour—makes it

harder to process, the use of “reverse” colour where the music and text is surrounded

by a different background colour in some regions, the presence of bleed-through of

ink from the other side of the page, and decorative images overlapping the music and

lyrics. Although these difficulties are image-related rather than music-specific, music

knowledge may be useful for correcting any deficiencies in the lower-level processing.

6

Figure 1.5: Ornate example of Gregorian Chant

1.3 Multiple Knowledge Sources in OMR

Much data about the music represented by the score can be derived by the low-level

and high-level recognition stages previously described, and this requires knowledge of

musical symbols and rules. This knowledge is applied in multiple phases to perform

those recognition tasks.

Figure 1.6(a) shows how OMR has traditionally been performed. There is a

linear sequence of operations performed, with each phase’s output being the next

phase’s input. However, this model has some limitations. Most seriously, errors

made in an early step will propagate through each of the following steps; each phase

has to try to correct errors and omissions in its input. For example, when doing

musical semantic analysis on the recognised components, an error may be detected,

7

Scanned music Staff line identification

Musical object location

Musical feature classification

Musical semanticsMusical encoded data file

Musical knowledge

Image enhancement

Image enhancement

(a) The traditional “pipeline” approach to OMR

Co−ordinator
IMAGE MUSIC REPRESENTATION

Classification
Musical Feature

Semantics
Musical

Musical Object
Location

Staff Line
Identification

(b) The “coordinated” approach to OMR

Figure 1.6: Generalised framework for OMR systems

such as a bar of music not having enough (or too many) notes in it. Because this

type of error cannot be corrected within the current context, the system is forced to

output something that it knows is not quite right. Some errors, such as a missing or

mis-detected accidental in a key signature, could conceivably be inferred correctly

in this context. For other types of errors, the semantics analysis may be able to

calculate some information about an error, but not enough to unambiguously resolve

the mistake. For instance, the expected duration of a single missing object can be

determined from the surrounding objects, but not the pitch.

A framework that allows different stages to flag errors (along with extra infor-

mation about what is wrong and what was expected), and allows the stages to be

executed multiple times, taking any new information into account such as errors

flagged by other stages has the potential to greatly increase the system’s overall

accuracy by using extra data and knowledge to fix errors. Figure 1.6(b) shows a

generalised strategy for such a system—some coordinating process is required for

deciding the execution order of the stages, as well as when to stop processing.

Another example of WMN is shown in Figure 1.7. The music is in 6
8 time,

8

Figure 1.7: Mozart Clarinet Concerto extract (6
8 time signature outlined)

meaning that each bar has six quaver beats in it although this particular example

also has a short lead-in bar. If the 6
8 time signature on one of the staves is not

recognised by the lower level routines, it could still be inferred from the surrounding

musical objects. This particular piece has multiple staves in the system, and these

should have the same time signature, so if the time signature is successfully identified

in another stave it could be assumed that the missing signature is the same. (While

some modern scores do have different time signatures in effect at the same time, the

vast majority of scores do not.) Alternatively, the time signature could be inferred

by examining the duration of the notes in the bars, although this is more problematic

because different time signatures can allow the same number of beats—6
8 time, with

six quaver beats, is the same total duration as 3
4 time (three crotchet beats), although

the former is normally sub-divided into two groups of three.

For the example in Figure 1.7, using a coordinated holistic approach means that

instead of the Musical Semantics stage finding an inconsistency, making a ‘best

guess’, and continuing, the extra semantic information about the missing object can

instead be used to re-perform the low-level identification stage. The identification

stage could limit its recognition routines to only the missing types—in this case,

types that can be used to make a time signature, or even more specifically, only

object types that can make a 6
8 time signature.

More powerful computing hardware allows an OMR system to perform much

more processing in a reasonable amount of time compared to the hardware available

to researchers in previous decades. As computers get faster and storage gets cheaper,

9

an OMR system can afford to try more things to improve the accuracy—for example

trying alternative algorithms to perform some task—rather than aiming for a one-

shot “best effort”. This behaviour, including re-evaluating decisions when faced with

contrary information about objects, is explored and evaluated in this thesis through

the development of an experimental OMR system.

1.4 Aims of This Research

The aim of the research described in this thesis is to understand how the various

components of an optical music recognition system can interact with each other,

and how various factors influence both the dynamic behaviour of the system and

the resulting accuracy of the recognised music. In particular, the use of feedback for

correcting errors will be examined. This can be broadly summarised as:

1. Determining which types of errors can be correctly detected;

2. How these errors can be represented;

3. How this data can be used by the different phases of the OMR process to

improve accuracy.

This leads to many questions. What should be done when an error is detected

but is of an indeterminate cause? How should an OMR system handle conflicting

information? The extent of these problems, and their possible solutions, is the crux

of this research.

1.5 Thesis Outline

Previous work in the field of OMR and relevant document image analysis disciplines

is reviewed in Chapter 2, with emphasis on recent research and existing systems.

This also gives an introduction to the basics of music notation, and file formats

used by computer programs for music representation. This leads into Chapter 3,

which describes the general process typically performed by OMR systems, starting

with the end goal of the process. The goal, as previously stated, is to produce a

computer representation of the musical semantics conveyed by the score, and this

chapter describes the tasks and sub-tasks required to achieve this, given an input

image.

10

Different strategies for internally representing and controlling information, and

their strengths, weaknesses and suitability for use in an OMR system, are investi-

gated in Chapter 4. This includes methods for dealing with uncertainty and con-

flicting data, especially for detecting and correcting errors in object recognition.

Chapter 5 describes a practical OMR implementation that uses some of the

strategies outlined in the preceding chapter. This includes details of how the steps

described in Chapter 3 are performed, particularly how they are used in a system that

coordinates the flow of data and provides feedback. This also discusses challenges

encountered, and methods that can be used to improve recognition quality.

The performance of the individual methods and the system performance of the

coordinated approach as a whole is evaluated in Chapter 6. This includes discussion

on evaluation strategies for measuring various aspects of the OMR implementation.

Finally, Chapter 7 summarises the key concepts of this work, discusses problems

encountered, and presents the main findings of the research.

1.6 Glossary

Bitmap A two-dimensional array of image data, corresponding to the Pixels (q.v.)

to be displayed. Pixels in a black-and-white image only need one bit per pixel

while a colour image allowing 256 values (8 bits) each of red, green and blue

requires 24 bits per pixel.

CMN Common Music Notation (or alternately Conventional Music Notation). An

alternate name for WMN.

DPI Dots per Inch. This refers to the resolution of an image produced by digital-

to-analog (or analog-to-digital) devices such as scanners and printers. 300 DPI

is sufficiently high for OMR purposes.

Engraving The process of preparing metal plates containing a score, to be used on

a printing press.

Genetic Algorithm An artificial intelligence/machine learning technique that, given

a “fitness function” to measure performance, continually finds better solutions

by combining the best solutions currently found, as well as introducing some

random variation.

11

Key Signature A series of sharps or flats describing the key for the following bars.

These are normally shown at the start of every staff, and are also found before

any bar where the key changes.

Musical Syntax A set of rules describing the interactions between a set of objects.

This refers to the order and attributes of the objects, and different music nota-

tions will have different object types that are described by different syntaxes.

Musical Semantics The abstract musical quality expressed by a score. The seman-

tics are represented by objects that are in a particular syntax.

Noise Unimportant artefacts in an image formed during the printing or digitisation

of a score. This can be caused by dirt on the paper, printed material on the

reverse side showing through, or limitations in the hardware used to capture

an image of the score.

Notation Any system for transcribing music, using a set of symbols. Different no-

tations have different sets of symbols and conventions for interpreting them.

OCR Optical Character Recognition. The process of automatically recognising let-

ters and words from an image of typed or printed text.

OMR Optical Music Recognition. Refers to the entire process of automatically

processing an image of sheet music.

Primitive A single graphical shape extracted from an image. A primitive either

forms an object in isolation, or it is a only a component of a larger object and

is not a valid object in its own right.

Primitive Assembly The process of joining two or more primitive objects into a

single object. For example, an oval and a vertical line—neither of which are

musical objects by themselves—can be joined into a note, and two notes and

a beam can be joined together into a beamed note-group.

Pixel (from Picture Element). An individual ‘dot’ in an image.

Skew Rotation of the image caused by the score not being perfectly aligned during

scanning.

Tablature Normally refers to the guitar tablature notation. Guitar tablature has six

lines (one for each guitar string), and consists of numbers super-imposed on

12

the lines, representing which fret on the guitar to play. Another instrument

that uses a tablature notation is the harp.

Template Matching Comparing two images (where one is an idealised template) on

a pixel-by-pixel basis.

Time Signature Two numbers, one above the other, describing a score’s meter: the

upper number gives the number of beats per bar, and the lower number gives

the division for each beat. These are normally found at the start of a score,

and will occur before any other bar where the score’s meter changes.

Transpose Performing or re-typesetting music at a higher or lower pitch than shown

in the score. For example, a score for a B[transposing instrument such as a

clarinet would be typeset one tone higher than it actually sounds.

WMN Western Music Notation. The predominant notation used in sheet music in

the Western hemisphere.

XOR Exclusive Or. For two tests, either one or the other—but not both—is true.

In this thesis, it refers to comparing binary bitmaps by checking if the corre-

sponding pixels in each location are both set to the same value.

XML Extensible Markup Language. An open standard that allows data to be rep-

resented in a consistent and well-structured format.

Voice For scores with multiple performers, each class of performer is called a voice.

Some scores use “split voice” with two voices on the same stave; it is common

for vocal music to have sopranos and altos on one stave (with stems up and

down respectively), and tenor (with stems up) and bass (stems down) voices

on another stave.

13

14

Chapter 2

History and Background

Computer Science is a young discipline; the first departments were introduced into

universities in the 1960s, and the earliest researchers to study the processing of

musical scores by computer were Ph.D. students at the Massachusetts Institute of

Technology in the late 1960s. Given the limited hardware available, their efforts

were targeted at small subsets of music notation—the first recognising primarily

notes within note-groups, and the second recognising object types that did not over-

lap. Since then the availability of computers, particularly the advent of personal

computers in the 1980s, has dramatically increased the number of researchers in

Computer Science. Computing hardware has seen exponential increases of process-

ing power, and this continues to increase; this, along with other hardware improve-

ments, such as flatbed scanners becoming commodity consumer add-ons, has seen

many projects undertaken in image processing and related fields such as OMR. For

document image analysis fields, some of the improvements include more faithful

image acquisition and representation—due to higher image resolution and available

memory storage—and more sophisticated algorithms, due to faster processors and

more memory storage.

This chapter focuses on advances in the OMR field, with particular attention

given to the methodologies proposed and used. The first section covers OMR sys-

tems or sub-systems, the second section gives an overview of computers and music

notation, and the third section looks at related image analysis fields that have some

similarities to OMR.

15

2.1 Previous Work

One of the most notable OMR systems was the Wabot 2 project. For this project,

undertaken in Japan during the first half of the 1980s, a robot was built that could—

among other things—play an electronic organ when sheet music was placed in front

of it. Although it could not cope with complex sheet music, it could successfully

understand chords as well as a large set of symbols. This was achieved through

the use of specialised hardware, using over 60 processors to perform template-based

matching, a relatively expensive recognition technique, over the image acquired by

a video camera.

A good overview of significant work up until the early 1990s is given by Blostein

and Baird [15]. Details are now provided for several of the more important works

in the area from the last two decades.

2.1.1 Carter

Carter [22] describes an OMR system that is notable for identifying primitives with-

out first removing the staff lines. This is achieved by using a Line Adjacency Graph

technique that examines consecutive vertical slices consisting of runs of black pixels.

Primitive shapes have a characteristic profile of vertical slices and this is how they

are classified.

2.1.2 Kato and Inokuchi

Kato and Inokuchi [44] describe a complete OMR system. This is a “top-down”

system using a “layered working memory” approach, with different layers for raw

image information, primitives, symbols composed from primitives, meaning of sym-

bols, and the final goal. These regions of memory are modified by individual modules

for primitive extraction, symbol synthesis, symbol recognition, and semantic analy-

sis. Hypotheses about objects in the symbol layer may be rejected in the primitive

layer but not the image layer. The top-most layer is the goal layer, which contains

hypotheses consisting of the ordered notes in the bar and their attributes from the

meaning layer. The semantic analysis is done at a bar level, and tests that the

beats in the bar add up correctly for the time signature. If the bar does not add

up, the goal-level hypothesis about those objects is rejected, and heuristic rules

are applied—for example, to test if any of the objects are ‘tuplets’ with a different

duration.

16

In practice, the system performs preprocessing to find barlines, and then per-

forms recognition and analysis of objects at the bar level, with a final post-processing

stage to find objects that are outside a single bar and to combine the results of each

individual bar. Symbols are identified in order of “clearness”, and these symbols

are processed first before looking for symbols of a lower quality. The top-down ap-

proach also means that musical knowledge is used during primitive extraction from

the image—for example, the system only looks for accidentals near recognised note-

heads and in key signature locations. One limitation noted about this strategy is

that top-down approach for accepting hypotheses in the final goal means that if the

current set of objects in a bar fulfills the semantic rules for a bar, no further objects

will be found for that bar, such as missing notes in another voice.

Hardware limitations of the time meant that processing a sheet of piano music

took ninety minutes, so the set of symbols recognised is restricted to a core set that

covers the majority of symbols that represent sound (notes, rests and accidentals)

as well as simple shapes such as barlines and dots.

2.1.3 Coüasnon et. al.

Coüasnon and others [26, 27] at the IRISA Institute in France describe the use of a

parser implementing an attributed grammar to build musical objects from graphical

primitives. This is done at a bar level; durational analysis is then done by comparing

objects in all staves that occur at the same time onset. Primitives such as noteheads

and stems are identified using a Kalman filter—a linear programming method for

calculating state transitions [40]—on the input image.

The grammar describes both the construction of musical objects—which they

call “constructs”—from graphical primitives (“segments”), and the relationship be-

tween constructs and “symbolics”, which are the isolated shapes that are not part of

note groups. This grammar has both a graphical component, corresponding to the

physical image, and a logical component corresponding to the syntactic meaning.

The grammar rules have attributes describing the relationship between objects—for

example, relative positions. The grammar controls the high-level recognition pro-

cess; the system tries to satisfy the first grammar rule, which leads to other rules

describing constructs, which are objects made up of other objects, and segments,

which are the primitive objects.

However, while the paper describing their prototype system says that “[i]n the

17

future, it should be possible to improve the recognition by going back to the image

level” to correct unrecognised or mis-detected notes, there is little evidence in the

literature that they continued this line of research.

2.1.4 University of Leeds research group

A group of researchers at the School of Music at the University of Leeds have been

actively researching OMR and related areas. The research group (Ng, Boyle and

Cooper) has published several papers and technical reports since the mid-1990s.

After Ng completed a doctorate in 1995 [58], the focus of his research shifted more

towards handwritten manuscript recognition [55].

They suggest using music domain knowledge to guide and improve the primitive

recognition; their method uses a priori knowledge of the time signature and key

signature. They also suggest that these could be determined by examining the

recognised primitives.

Segmentation is performed on graphical objects until the object is made entirely

of recognisable primitives. For example, horizontal and vertical cuts are used to

remove noteheads from vertical lines. The cutting method is determined by the

component’s aspect ratio, relative to the height of the gap between staff lines. The

newly segmented objects are recognised, and objects that remain unrecognised are

then segmented again. This process loops until all objects are recognised or are too

small or too solidly filled to segment again.

After segmentation, a nearest neighbour (NN) classifier is used for recognition,

which compares a set of features of each unknown object to the features for a training

set of examples. Originally, the bounding box/aspect ratio was the only feature used,

with acceptable results.

This is followed by a Reconstruction phase [53] for creating musical primitives

from the identified graphical shapes. (This process is referred to as Primitive As-

sembly in other literature, such as CANTOR and this thesis.) This algorithm looks

around recognised note heads for “complementary features” such as stems, dura-

tional dots and accents. Accidentals are looked for, and if they are near a detected

note head then further processing is performed to identify the type of accidental.

Finally, domain-level musical knowledge is used to confirm or correct the built

up model. The time signature is detected and each bar is checked to confirm it

contains the correct number of beats. Heuristic observations are also used for metric

18

correction. For example, they have observed that beamed pairs of notes often consist

of a dotted note head and a halved note head, so if the bar duration is incorrect,

and a beamed note pair has a dotted note without a halved note (or vice versa),

then that is a likely candidate for duration correction.

Related work by these researchers includes papers on automatic key signature

detection based on pitch cumulative durations [57], and meter (time signature) detec-

tion from semantic analysis based on the number of quaver beats and beat divisions

in a bar [52, 54].

2.1.5 CANTOR

Bainbridge’s CANTOR [5] was a pioneering OMR system: it was complete and

extensible, able to be configured to recognise arbitrary object shapes and to output

the semantics of the score in several musical file formats. Most prior systems were

limited to work on small subsets of Western Music Notation (WMN), had hard-wired

musical semantics processing rules, and often made assumptions about staff lines,

such as that there were always five lines per staff. While CANTOR still has some

restrictions, such as requiring the input music to be staff-based (although allowing

an arbitrary number of lines per staff), there is considerably more freedom over what

can be processed.

CANTOR consists of four main steps:

Staff line identification, which locates staff systems and staves, removes staff lines

and locates objects in the bitmap.

Primitive Recognition, which identifies basic shapes, such as slurs, noteheads,

tails, accidentals, and lines, using a specially designed programming language.

Primitive Assembly, which joins the basic primitives found into musical objects,

such as noteheads, stems and tails into a note; and

Musical Semantics, which determines musical qualities such as pitch and duration

of the musical objects found, and can output various musical file formats.

As mentioned above, CANTOR was designed to be extensible. Here, extensible

refers to the fact that one of the design goals was to research and design a system

that did not have hard-coded shapes or rules built into it: different notations can

be recognised by supplying configuration data describing these aspects of each one.

This research led to the formation of Primela—a Primitive Expression Language

for describing specific musical shapes in the Pattern Recognition stage. A set of

19

Primela descriptions can be written to describe symbols within a particular music

notation and then loaded and used at run-time, to process an image. Similarly, rule

sets are created for the Assembly and Semantics stages, so that the system can be

extended to process different music notations.

CANTOR was designed to be a feed-forward system, with the results of each

stage becoming the input of the following stage. Because of this, decisions (such

as the classification type of a particular object) can only be made in the context of

what is already known, and some detected errors cannot be automatically corrected.

For example, if it is detected that there are too many notes in one bar, the Musical

Semantics stage cannot determine exactly which note or notes are incorrect.

Although CANTOR was designed as a feed-forward system with clearly defined

and separated tasks, some semantic knowledge is used to increase the accuracy of the

Primitive Recognition stage. For example, the Primela rule provided for matching

a treble clef in WMN is based on the symbol size, but includes a proviso that the

objects must be near the start of a staff. This is technically semantic information,

although allowing such clauses before the “official” semantics parsing can greatly

improve the accuracy of the recognition.

Sample rule-sets for use with CANTOR have been written for various notations,

including WMN, Sacred Harp Notation [25], and “Plain Song” (used in 16th century

Gregorian chants). Other work on CANTOR has been done to improve the efficiency

and accuracy of various sub-routines, such as the bitmap matching [76].

2.1.6 GAMERA Project/Levy Sheet Music Collection

The GAMERA Project, which is digitising the Levy Sheet Music Collection at John

Hopkins University in Baltimore, Maryland, USA, is one of the few currently active

research groups developing OMR technology. Fujinaga’s 1997 Ph.D entitled Adap-

tive Optical Music Recognition [36] describes a system for graphical recognition of

musical shapes. The system can be trained to recognise new shapes, and it uses

a genetic algorithm to tune the set of weights for the features used for classifying

graphical objects. Due to the large amount of computation required, this training

is done ‘off-line’—that is, it must be completed over a relatively long period of time

before it can be used for recognition. After the recognition is performed using the

computed weights, the results of the run-time classification are stored for future

re-computation of the weights.

20

Later work by the project has included the syntactic and semantic parsing of the

recognised objects—this is described as Optical Music Interpretation (OMI) [28].

The input for this OMI process is a set of recognised objects with corresponding

attributes (such as size, recognised type, and position). Because the process involves

two distinct phases (AOMR and OMI), there is little scope for using feedback by

applying semantic context to the graphics recognition stage. Nevertheless, they

report good results for their data-set. The sheet music in the Levy collection is

predominantly American popular music from the late 18th through to the mid-20th

centuries.

GAMERA has evolved from the purely music recognition system described in

Adaptive Optical Music Recognition into a more generic document analysis sys-

tem [30]. For example, it has been used to recognise hand-written medieval manu-

scripts, and Kanji (Chinese characters used in Japanese writing); however, the object

recognition process does not make use of syntactic or semantic information.

2.1.7 RIEM

Portuguese researchers Ferrand and Cardoso at the Universidade de Coimbra and

Leite at the Universidade Nova de Lisboa have published several papers describ-

ing their OMR system, named “RIEM”. They propose [34, 33] an OMR system

for dealing with uncertain and missing information, and describe a system imple-

mented by using Constraint Logic Programming for representing and applying rules

and hypotheses. These papers, along with the main paper describing the RIEM

system [47] (in Portuguese) describe concepts that are similar to those discussed in

this thesis; feedback between “Interpretation” and “Recognition” modules provides

location information about possibly missing objects. Their recognition process in-

volves calculating temporal attributes, and consistency checking of object durations

between voices. The Interpretation process checks syntax, based on rules encap-

sulating Western Music Notation. Non-temporal objects are not handled by the

feedback between the interpretation and recognition; this feedback is only used to

look for temporal objects that are missing from a voice. The general architecture of

RIEM is shown in Figure 2.1.

It is unclear from these papers how many of their proposed ideas were imple-

mented into their system, and there was little evaluation of the performance of the

system’s architecture. There are no similar journal or conference publications by

21

Figure 2.1: The general RIEM framework [34]

these authors after 1999. However, Miguel Ferrand’s completed M. Phil. [35] may

have more detail than the other papers, although it is in Portuguese and not readily

available.

2.1.8 Stückelberg et. al.

Stückelberg et. al. have published a series of papers [73, 72, 71] proposing a grammar-

driven music recognition system. Using grammatical rules to describe Western Music

Notation, the probabilities of individual pixels in the image belonging to particular

types of objects can be calculated in a “top-down” manner. The grammar drives

the complete process, including the primitive recognition phases, by defining re-

gions of interest for particular primitive types that would satisfy the grammar rules.

Figure 2.2 shows a diagram representing this grammar-driven process. Features

are calculated on parts of the input image as requested by the higher-level system

components.

The Metaprocessor (Top Layer)

The Conceptual System (Intermediate Layer)

The Feature Detectors (Bottom Layer)

Raw data (scanned document to be analyzed, ...)

likelihood of perceptions

measured features

driving

attention area, parameters

Figure 2.2: The grammar-driven OMR Framework proposed by Stückelberg [73]

As an example of the ‘top-down grammar-driven’ process, once note heads and

stems have been found, secondary objects that are associated with notes—such as

22

accidentals and durational dots—are searched for, but only in the locations that the

attributed grammar describes these objects as being in relationship to notes.

At the top layer, the ‘meta-processor’ keeps track of hypotheses about object

classifications and relationships, and decides which set of hypotheses best describes

the input image. It continuously decides whether to refine a hypothesis or to try a

different hypothesis. Each hypothesis is given a probability, which will also depend

on the probability of other hypotheses (for example, “there is a treble clef at the

start of the first stave in the first staff system”).

The system assigns probabilities that a particular region contains particular ob-

jects, based on the syntax described in the grammar. For example, if the grammar

leads to a hypothesis that there could be a notegroup in a particular place, the

system would try to calculate the probabilities that there are vertical lines and note

heads in the appropriate positions. The model that results in the lowest uncertainty

rating over the whole image is accepted as the representation of the score; the gram-

mar driven approach tries to find the “most likely sequence of symbols that might

have generated the bitmap image” [72].

Primitives such as straight lines and noteheads are identified using a Hough

Transform and a “low-band filter”, which means that the image is re-sampled to

a low resolution to find solid shapes like filled noteheads. One advantage of using

a Hough Transform is that it is resilient to segmentation—shapes are still found

regardless of whether or not they are broken up or touching each other. Projections

are used to find line endings, and a “Markov Model” is used on the straight lines to

detect dashed and dotted lines. Horizontal and vertical cuts are used to locate staff

systems, measures, staves, and connected object groups. The grammar will look for

things such as durational dots only where they are allowed to be positioned relative

to the found noteheads.

One proposed advantage of this design is that primitives do not need to be

matched against pre-defined templates, only against a set of features describing an

object type. However, the design described in these published works appears to

be computationally expensive, and it seems that the model was proposed and only

partially implemented for a simple grammar as proof-of-concept.

23

2.1.9 The MOODS Project

The MOODS project, based at the Università di Firenze (University of Florence)

in Italy, is researching the use of computing technology to aid performers of music.

MOODS is an acronym for Music Object-Oriented Distributed System. A large

part of their research involves implementing digital stands for orchestras—that is,

replacing the stand that holds sheet music with a digital display, for coordinating

the display of individual parts to each instrumental voice. It allows “automated”

page turning, although the pace is controlled by a person, and cooperative visual

editing of music notation [10]. For example, the leader of a section such as “second

violins” can add performance markings to the score that goes to all of the stands

used by the members of that section.

One of their subprojects, called Object Oriented Optical Music Recognition

(O3MR), concerns the use of OMR. Several papers [48, 11] describe the exten-

sive use of projections for locating symbols on the staff systems. A neural network

is then used on the located symbol areas to identify primitive shapes. However,

other than a few published papers, the sub-project seems to have disappeared.

The principal researchers of the MOODS project are now associated with another

project, the Interactive Music Network (described below).

2.1.10 Interactive Music Network

The Interactive Music Network1 is a pan-European collaboration between various

institutions, applying technology to music. This large-scope project, set up in 2002,

covers many areas, but its main activities are listed as coordinating working groups

of experts, organising meetings and conferences, and identifying and stimulating

new business models and services. One of these working groups, the Music Imaging

group, is concerned with various aspects of music scores and manuscripts, including

OMR. Participants in this working group (or in the open workshops) have included

authors and projects previously mentioned in this chapter, including the MOODS

researchers, Kia Ng, and Bertrand Coüasnon.

This working group has produced dozens of reports and publications related to

music imaging and recognition since inception, covering topics such as overviews of

OMR products and systems, digital image acquisition (including available hardware

products, such as scanners) and best scanning practices, and discussion on archiving

1http://www.interactivemusicnetwork.org/

24

http://www.interactivemusicnetwork.org/

formats for images of sheet music. One of their publications [56] gives a general

review of music imaging, with a large section on OMR. That section gives an

overview of OMR Systems, and mentions the difficulty in comparing products. These

difficulties include:

• Products requiring input images to be in disparate file formats, or acquire an

image directly from an attached scanner.

• Many products only interface with a notation product, making standalone

evaluation of the OMR-only functionality difficult or impossible.

• For products that are not integrated into a notation editor, different output

file formats are used—there is no standard file format in use (such as NIFF,

described below).

This paper also describes their method for measuring the results of OMR systems at

3 levels: primitive-level, note-level, and score-level. This contains three images to be

processed by systems, and a questionnaire for human-evaluation of correctness [18].

The paper describes the results for three OMR systems evaluated by a group of 13

people, and the systems can be compared based on:

• “basic symbols recognition”—for example, the number of primitives correctly

identified, undetected and mis-detected.

• “symbols and relationships reconstruction”—for example, the number of notes

with correct pitch, duration, and accidentals, and correctly grouped.

2.1.11 Other Systems

ROMA

ROMA (Ancient Music Optical Recognition) is a project at the University of Lisbon,

Portugal. This project involves the OMR of hand-written Gregorian Chant notated

music (described later in this chapter), and uses a decision tree for classification of

primitives [64]. Each node in the decision tree is a separate classifier, capable of

generating and testing primitive features. Objects are clustered and classified based

on examples in a set of training data.

25

2.1.12 Commercial Systems

As well as the work that has come out of the research community, there are also

many commercial OMR systems on the market. Because they generally do not

disclose their methodologies, they are not as useful for study, although they represent

the state-of-the-art. Several of the more popular systems are Sharpeye, Midiscan,

SmartScore, and Sibelius PhotoScore.

A more comprehensive list is provided by Ng et. al. [56].

2.2 Notation

Almost all notations currently in use are mensural notations; different glyphs are

used to convey note lengths. This section gives some background to music notation

and general considerations for OMR.

2.2.1 Western Music Notation

Figure 2.3: An example of Western Music Notation

Figure 2.3 shows an example of Western Music Notation (WMN). A score in this

notation consists of staff systems, with each system consisting of one or more staves;

in this example, there are two staves per system. A system starts with a clef in

each stave, followed by a key signature in each stave (which consists of either flats

[[] or sharps []], or it may be empty). The first system also has a time signature,

26

consisting of two numbers, which describes how many beats there are per bar and

must be the same for all the staves in the system. In the example, the upper stave

has a treble clef while the lower stave has a bass clef, and both have the same key

signature, consisting of a single flat. The key signature for the example score is 2
4 ,

meaning there must be the equivalent of 2 crotchet beats per bar. As well as the

musical notes and features, the score also contains performance instructions (such

as the tempo — Allegro agitato, and the dynamic markings for volume — f) and,

especially on the first page, metadata such as the composer, title, and work number.

Western Music Notation has evolved over time from the earlier mensural no-

tations (described later), and is still evolving to account for changes such as new

constructs, new instruments and instrument capabilities; there is no definitive set

of symbols or set of rules describing those symbols. A more thorough description of

Western Music Notation can be found in many resources. For example, Stone [70] de-

scribes in detail the many rules and heuristics used by engravers for the positioning,

sizing, and spacing of objects. It is defined by its usage, based on conventions used

by composers and engravers. The physical layout of hand-engraved sheet music is

designed, foremost, to be readable to a musician reading it. Spacing and positioning

of glyphs is important—some glyphs may be moved or modified from conventional

to create enough space to aid the reader’s eye.

Figure 2.4: The traditional hand-engraving process [39]

27

Figure 2.4 shows how a skilled engraver creates sheet music plates for a print-

ing press; the mirrored and sunken image is carefully created so that after being

filled with ink and pressed onto paper, the resulting score is clear and readable.

This obviously requires much skill and experience at both typesetting and physical

engraving.

Figure 2.5: The upper ledger line is shortened for aesthetic reasons

Figure 2.5 shows an example given by the Lilypond [60] authors; ledger lines

(for notes above or below a stave) may be shortened by a typesetter to provide

extra space if needed by a nearby accidental. In this example, the upper ledger

line is shortened so that the accidental can be placed closer to the notehead, while

maintaining a sufficient gap. The shape and style of some symbols has evolved, as

well as varying slightly in appearance between different publishers, so there is no

‘definitive’ form for any particular primitive type. A brief example of both different

shapes and different styles of crotchet rest primitives and bass clef primitives was

shown in Figure 1.4.

In addition to the above customs, a skilled engraver will occasionally break with

convention (for example, unusual or innovative note layout) if it results in a more

readable score. Many of these manual tweaks by the engraver are subtle enough that

a reader will probably not even consciously notice them. In light of this, an OMR

system needs to be flexible in the shapes that it recognises and the interactions

between symbols that are accepted as valid music. These examples demonstrate

that an OMR system must be designed to be flexible in the objects it can recognise

and in calculating the semantics of those objects. Objects of the same type may

have significantly different shapes, even on the same sheet of music. However, while

semantic rules can be devised to capture the meaning of a large majority of conven-

tional scores, it is infeasible to formally create a set of rules that can cover every

scenario used by publishers and engravers [20, 21].

28

2.2.2 Other Notations

Guitar Tablature

Guitar Tablature consists of 6-line staves, representing the 6 strings on a guitar,

with digits super-imposed to indicate which fret on the guitar’s neck to use for a

particular note. Durations are implied based on the spacing between digits. As well

as notes, other symbols can appear; this includes objects that can affect notes (such

as slides, bends, tempo and dynamic changes, or pauses) and other symbols that

do not directly affect notes, such as lyrics. An example image of music in guitar

tablature notation was given in Figure 1.2.

Because of the limited set of symbols involved, performing OMR on guitar tab-

lature notated sheet music should be no harder than performing OMR on Western

Music Notation scores.

Gregorian Chant

Gregorian Chant (sometimes called Plainchant) notation was the precursor to mod-

ern Western Music Notation. It was eventually standardised on a set on symbols

conveying pitch information, drawn on a four-line staff. A large amount of Roman

Catholic church music (up until the early Twentieth century) was published in this

notation.

Different shapes are used depending on whether the melody is ascending or

descending, and dependent on the number of notes in the group in addition to

the note position on the staff showing pitch information. Flat symbols are also

occasionally used to modify a note’s pitch.

The notes do not convey durational information as rigidly as modern notation;

where a pitch is repeated or is both the last note in a group and the first note in the

following group, the notes are generally combined. Later additions to the notation

included some symbols that are used to modify notes by adding a pause or a slight

extension, or to double the note duration.

White Mensural notation

White Mensural Notation was one of the intermediate steps in the evolution from

Gregorian Chant to current-day Western Music Notation. It was predominantly in

use from circa 1400 to circa 1600, and is named due to the use of hollow noteheads.

29

Figure 2.6 shows an example of music in this notation; the top stave shows a his-

torical layout, the centre stave shows the music using a contemporary style, and the

lower stave shows the corresponding Western Music Notation representation.

�1�

·�g

Â1e 5

<

9

/
�

/

5

<

9

6

=

:

6

=

:

5

<

9

;

;

8

:e
1 Â

:g
� ·

7� 1 �
Figure 2.6: An example of White Mensural Notation

(Reproduced from Lilypond [59])

Fasola Notation

The Fasola notation has its origins in an eleventh century system where each note

is given one of six syllables, eventually simplified to the four syllables fa, sol, la and

mi. This system was popular in the colonial United States of America, and these

syllables were given different shapes in a system devised by Little and Smith, to aid in

teaching notation to unskilled singers. “The Sacred Harp” was a popular Nineteenth

century book published in America, and therefore sometimes this notation is referred

to as the Sacred Harp notation.

Each pitch has one of the shapes, and all notes at that pitch are given the same

shape. Other than note shapes, the notation is similar to Western Music Notation.

An example is shown in Figure 2.7.

Non-Western Notations

There are many other music notations in use, including various Indian notations

and other Asian notations. These are generally not staff-based, often using an

Asian script to describe the notes with syllable names. Some of these forms of music

divide an octave into a scale containing more notes than Western music, meaning

that Western notation is not capable of adequately representing it. For example,

the most widespread Indian notation (an example of which was given in Figure 1.3

30

Figure 2.7: An example of Sacred Harp notation

on page 3) consists of rows of note syllable names.

2.2.3 Music Notation Software and File Formats

There are many software packages available for notation sheet music and/or se-

quencing music; too many to list here. Manually entering and re-arranging music in

such a program is time-consuming; this is the primary motivation for OMR. This

means that an OMR system needs to create data files in an appropriate format for

the software package.

There are a myriad of computer file formats available for storing various levels

of music notation; one fairly comprehensive source lists over 60 formats [24]. While

some general purpose graphics formats (like Scalable Vector Graphics) or page de-

scription languages—such as PostScript or Portable Document Format (PDF)—can

be used for the graphical presentation of music, there are many formats written

specifically for representing some set of music features, often developed for a par-

ticular piece of software. While many formats have been developed or proposed

for music notation [67], none has become a widely used industry standard, partly

because different areas of music information retrieval need only certain aspects of

music in their representations. For example, some systems may only need enough

symbolic information for an audio representation, while this would be insufficient for

symbolic notation or graphical notation uses. Also, commercial software developers

sometimes feel it is in their best interest to not interoperate easily with competitors’

products.

31

MIDI

MIDI has become a very widely used format since being created in the early 1980s.

However, while MIDI can represent the performance of a piece of music (effectively

“play this note at this volume for this duration”), it is not adequate for storing

non-audio performance data, such as performance markings, clef, key and time sig-

natures, or other graphical information.

NIFF

NIFF was an attempt at an industry-wide standard for interchange between different

notation programs. NIFF [38] was designed in the mid 1990s by a consortium

including music software companies and university researchers. The goal was to

create a common, open format that would allow interchange of data between different

music programs. The most recent revision of the standard was in June 2002. Some

products available today can import and/or export NIFF documents. However,

NIFF did not achieve widespread adoption in the commercial software arena, and

the format specification is now unmaintained.

Guido

The GUIDO music file format [41] was first prototyped in late 1992 as part of

the SALIERI project, which was researching various aspects of music processing.

The “core” part of the GUIDO format has been stable since around 1996, and was

designed to hold enough information to be able to formulate both the audio and

notational aspects of the music it represents. Unlike NIFF, files in the Guido format

are written in plain text, meaning that the files are readable by people and editable

by hand. Similarly to the NIFF specification, Guido did not achieve widespread

support in commercial music notation systems, although it gained a limited following

in some teaching and research areas.

MusicXML

MusicXML is a format designed for interchange between computer programs. The

first released stable version of MusicXML was published in early 2004. It is sup-

ported to varying degrees (such as import-only, export-only, or both) by many of

the popular music notation software packages—both commercially-produced pro-

prietary software and open-source programs—as well as having software libraries

32

available to convert other notation formats such as the closed formats Nightingale,

Finale, MuseData, and the open formats NIFF, Guido, and Rosegarden.

2.3 Related Fields

This section discusses fields of endeavour that have similar problems and challenges

to OMR. Although each has domain-specific focal points, some techniques used may

be general enough to be of use in OMR.

2.3.1 Optical Character Recognition

Much research has been performed into Optical Character Recognition (OCR) of

image of printed text. Text has several properties that aids in OCR:

• text is arranged in horizontal rows, so there is a predictable sequence of char-

acter locations.

• English text has a fairly limited alphabet—twenty-six characters which have

upper-case and lower-case variants, along with punctuation markings and other

symbols.

• These symbols have an invariant shape; other than changing font or font size,

all instances of a particular character or punctuation should look very similar.

• In English, most symbols consist of only a single glyph. Only several symbols

such as lowercase ‘i’ and ‘j’ and some punctuation marks consist of two or

more separate glyphs.

• The characters are rendered distinctly; they do not overlap. Exceptions, such

as ligatures for character sequences like “ff” and “fi”, can be handled on a

case-by-case basis.

One difficulty in OCR is recognising texts containing multiple fonts. Simple

features are not always sufficient to distinguish between a character in both serif

and sans-serif fonts. Serifs are the small ‘hooks’ on the edges of characters: “H”

compared to “H”. The accuracy of OCR can be improved by using domain context;

for this domain (English text), sources of knowledge can include a dictionary of

known or allowed words, and knowledge about expected character frequencies such as

examining “n-grams”—singleton characters, pairs, triplets, and so on. For example,

33

“e” is the most frequent letter in English text, and “th” is the most frequent pair, and

this knowledge could be used to make better decisions when working with unknown

data. Syntax checking (sentence structure) and semantic checking (word meaning)

have been also been proposed and used to help with the classification of characters.

This requires a priori knowledge of a document’s language, although often this

can be automatically determined based on the recognised character frequencies.

However, recognising documents that are multi-lingual can be problematic.

OCR of handwritten text has also received much attention [68, 46]. Handwriting

is more difficult to recognise, due to different handwriting styles between authors, the

tendency for characters to be joined together in cursive handwriting, and different

shapes for the same character, even within the same text.

More information on OCR can be found in many collections of papers (for ex-

ample, Document Image Analysis [61], and the biennial ICDAR series [1, 42, 2]).

Relevance to OMR

Some of the low-level feature analysis of shapes used in OCR processing could be

useful for classification of symbols in OMR. The methods used for checking and

correcting symbols based on the grammatical and semantic meaning of sentences

may offer insights of how this could be done with musical symbols. However, text is

essentially a one-dimensional list of characters, so any data representation techniques

used in OCR may not “scale up” for use in OMR.

2.3.2 Chinese Character Recognition

Recognition of Chinese (and similarly, Japanese and Korean) text is problematic

because of the large number of characters. Another complication is that characters

can consist of multiple, non-touching fragments. This means extra effort is needed

to group glyphs together during classification.

As with OMR of text in Latin languages, research into OMR of Asian text

would primarily be relevant to the lower-level object recognition phases of music

recognition; again, this is due to the essentially one-dimensional aspect of characters

in forming sentences. However, there may be some applicable methods relating

to the use of object semantics for recognising characters in context based on the

surrounding objects.

34

2.3.3 Document Image Analysis

OMR is one field in the more general area of Document Image Analysis (DIA). There

are a multitude of DIA domains—some of which are specialisations of OCR—and

many of them commercially driven. Example domains include:

• address recognition on envelopes (for postal systems)

• form recognition (for archiving bureaucratic data and records)

• Geographic Information Systems (maps and aerial/topological photographs)

• weather modelling (such as infrared satellite photos of clouds)

• medical imaging (for example, 2D and 3D data from ultrasounds)

Many of the lower-level recognition techniques used in OMR are not specific to music,

and can be performed adequately by algorithms developed for other DIA fields.

These methods include any preprocessing and filtering on the raw input image—

such as thresholding to turn a greyscale image into a binary black-and-white image,

and enhancements to remove noise or correct brightness and contrast settings—as

well as general pattern recognition techniques such as template matching or feature

extraction and comparison.

Of course, these techniques should be adapted to take advantage of instances

where music domain-specific information can be exploited. Staff-lines are an obvious

cue to use for splitting the image up into separate regions and for detecting and

correcting page skew. At a higher level, rules about musical syntax can be used to

confirm primitive classifications, or used to restrict the types of primitives that may

be found in a specified region based on the previously identified objects.

2.4 General Trends in OMR

There is general agreement on the low-level processing stages used for locating staves

and objects; some common steps used by many OMR systems are:

1. Performing general image clean-ups and locating staff systems.

2. Locating objects on staff systems; typically, staff lines are located by a horizon-

tal projection and then removed, or objects are found without first removing

staff lines by using a ‘low pass filter’, projection cuts or another technique.

35

3. Using a grammar to determining musical objects from the basic recognised

primitive shapes.

In the 1990s, there were several proposals and attempts to use Artificial Intel-

ligence (AI) approaches to make more use of semantic knowledge during graphical

primitive recognition. However, these approaches seem to be computationally ex-

pensive, and only partially implemented. Generally, these approaches create internal

models from a set of training examples, and these models tend to be rather inflexible

for understanding input that does not closely resemble the training data.

Using semantic rules to drive the recognition process can arguably lead to worse

accuracy—for example, if accidentals are only searched for near noteheads, then mis-

recognising a notehead results in missed nearby objects that affect it. In contrast,

trying to independently recognise all primitive shapes first, and then using semantic

information to correct errors or confirm assignments, means that the nearby objects

could be recognised and then used to infer the missing notehead. The question is

which approach is more robust; the latter might lead to more falsely recognised

objects.

The major strengths and themes of the surveyed OMR systems are:

• extensibility—modifying pattern descriptions and grammar rules without mod-

ifying the base system. For example:

– CANTOR has external patterns that can describe arbitrary shapes, and

rules that can describe the inter-relationships of arbitrary object types.

Example patterns and rulesets have been created for different staff-based

music notations.

– GAMERA has an external database that is used for recognition (and can

be trained on arbitrary data).

• automatic learning or adaptation of patterns for primitive objects.

– GAMERA uses an AI approach for deciding which tests to perform on

primitives for classification. (However, this process requires manual clas-

sification of training data for the system to determine which tests are

appropriate for each classification type.)

• automatic inference of high-level semantic features.

36

– For example, Ng et. al.’s research into key signature and time signature

detection, based on the semantics of the recognised objects.

The final stage of an OMR system should be a conversion from the system’s

internal representation to one or more external file formats. Depending on the end-

user’s needs, this might include graphical-only formats (for printing, for example),

notation formats for other music-related software, or audio-only formats.

Support of relevant computer file formats can be problematic for an OMR system.

There is no single industry standard format that perfectly matches the requirements

of OMR, partly because different formats were invented for different purposes. It

may be possible to convert from one notational file format to another via specialised

software, but this is often imprecise, resulting in errors or loss of information. A

better solution is to design the final stages of the OMR system in a way that facili-

tates the addition of routines for converting from the system’s internal state to new

file formats.

37

38

Chapter 3

Anatomy of an OMR System

The principal goal of an OMR system is to have a computerised version of the

sheet music that encapsulates as much information about the music as possible.

Some tasks do not require reproduction of all the information found on the score—

for example, automatically creating an audio reproduction would only require note

pitch, duration and volume information, while OMR for the purpose of re-publishing

or typesetting a score would require as much notational information and performance

indications (such as fingering or breathing marks) as possible. An OMR system

should be able to support all of these tasks to be of maximal benefit.

This chapter describes the stages performed by OMR systems to achieve these

goals, and illustrates some of the points with example cases from the experimental

system. This description is given starting with the end result of the system, moving

on to the lower level tasks required to complete this main goal.

3.1 Musical Semantics

The goal of a complete OMR system is to calculate the semantics of the sheet music

so that the score may be recreated; a complete semantic model of the music can

be saved to disk and used for the desired purpose, such as score editing, music

information retrieval purposes, or computer audio synthesis. As discussed earlier in

Chapter 2, there are different computer file formats suitable for different levels of

representation. MIDI format files are adequate for a simple audio-only model, for

example.

To build a model of the musical semantics, the system must have knowledge of

the high-level rules of music notation. Different notations require different sets of

39

rules, so this stage of an OMR system should be flexible enough to allow arbitrary

notation syntaxes to be expressed. These rules determine how all the objects found

relate to each other—multi-page scores, text and systems on each page, objects in

systems, and so forth.

Applying and checking semantics is fast compared to the image manipulations

required for identification of graphical primitives—building and parsing a semantic

lattice structure that represents the relationships between musical objects takes a

fraction of a second on a modern desktop machine, even for a full page of multi-

stave music. This means that more time could be spent analysing the syntax and

semantics of the score, and there is the opportunity to use feedback to notify the

lower levels of the OMR process when an inconsistency is detected.

3.1.1 Syntax versus Semantics

Strictly speaking, musical syntax refers to the validity of the symbols with respect

to some set of rules (for example, “this type of symbol may only appear immediately

after that type of symbol”), while musical semantics refers to the particular music

expression represented by the symbols—what the symbols mean to an observer. This

is comparable to language; words such as verb, adverb, noun and adjective describe

the syntax of a sentence, while the actual expressive meaning that the sentence

evokes requires semantic knowledge of the language. In this thesis, the term musical

semantics generally refers to both the syntax of a score and semantics of the objects

described by that syntax, since both are often part of the same task in an OMR

system.

3.1.2 Syntax

For any piece of music, an OMR system needs a set of rules that describes the

attributes of the contained musical objects, and how the objects relate to each

other. A different set of rules will be needed for each notation that the input images

may use. For Western Music Notation (WMN), musical objects can be divided into

two broad groups. The first group contains those objects that are performed by

a musician (and therefore have a duration), such as notes and rests; these can be

described as “time events”. The second group contains those that affect objects in

the first group; this contains modifiers such as time signatures, key signatures and

accidentals, and performance indicators such as dynamic (volume) markings and

40

accents.

To understand the syntax, an OMR system needs to determine the temporal

order and duration of objects, as well as other attributes such as pitch. Align-

ment along a vertical axis for time events is obvious for events that occur at the

same time—even simple algorithms that use this alignment while parsing the 2-

dimensional objects is accurate for most passages of music.

Figure 3.1(a) shows each division and sub-division of time—each box in the upper

clef is half of a quaver beat. In the middle and lower clefs, each musical object should

last for a quaver beat, so it is easy to check if the detected durations at each time

segment are consistent between staves. Figure 3.1(b) shows an example where this

(a) Events occurring simultaneously are nicely aligned

(b) Simultaneously occurring events not aligned (nodes 282 and 284)

Figure 3.1: Examples of vertical stacking for simultaneous events

strategy fails. The notes shown in nodes 282 and 284 should occur at the same time,

but do not align vertically. In this case, an incorrect time slice with a duration of half

41

a beat has been created (nodes 282 and 532). Further semantic processing would

be required to correct this, although in this case it is easy to detect that a mistake

has been made somewhere in the bar, as the bar’s calculated duration is now more

than the 5 beats allowed by the time signature. However, when a bar has too many

notes for the time signature, determining where in the bar the error has occurred is

not necessarily straightforward. For this example, correctly determining the “split

voices” in the bar—the notes with stems pointing up and with stems pointing down

at the same logical time–might identify the possible cause.

3.1.3 Engraving

Music engraving is the process of determining the physical layout of sheet music in

preparation for publishing. This term is derived from when the music was man-

ually engraved—mirrored and inversed—into a metal plate for a printing press.

Automated page layout of music by a computer, sometimes referred to as au-

tomated engraving or automatic justification of music, has undergone much re-

search [60, 17, 9, 65]. As discussed in Section 2.2, there is no definitive set of

rules for WMN—music engraving is more of an art than a science.

For OMR, knowledge about engraving can be used in the recognition process—

many of the same rules can be used (in reverse) to see the relationship between

semantics and the position of objects relative to each other. For example, the hori-

zontal spacing between objects should give an indication of relative durations, while

the width of bars does not have to be consistent from one bar to the next. This

information can be used to double-check the recognised durations, and to suggest al-

ternative objects if the bar does not semantically “add up”. Intuitively, longer notes

should be given more horizontal space—Bellini and Nesi suggest using a logarithmic

scale [9].

Professional engravers do not divide the space up evenly between noteheads,

but also take into account the direction of stems. Figure 3.2 shows an example of

spacing as calculated by the Lilypond typesetting program; Figure 3.2(a) shows the

result when the noteheads for notes of the same duration are evenly spaced, while

Figure 3.2(b) demonstrates Lilypond’s algorithm accounting for the space between

the stem lines [59], as a professional engraver would endeavour to make a score more

aesthetic for readability.

42

(a) Noteheads evenly spaced (b) Spacing accounts for Stem Lines

Figure 3.2: Spacing between notes

3.2 Object Identification

Object Identification is responsible for classifying the graphical shapes on the page.

These are then processed by the Semantics stage to determine and describe the

syntax and interactions of the identified musical objects.

Object Identification is often split up into smaller stages; example tasks include

segmentation (separation of touching objects), classification of object shapes, and

assembly (joining multiple shapes into a larger musical object). These tasks may be

referred to as working with primitives—that is, low level objects that are not musical

objects in their own right, but are more practical to work with (for example, simpler

shapes that are easier for the pattern recognition routines to identify).

3.2.1 Segmentation

Symbol identification in OMR applications is made more difficult by the fact that

many symbols overlap or touch. This contrasts to Optical Character Recognition

of printed Western text, where letters infrequently overlap. When symbols overlap

or touch in a score—resulting in a single large unknown object—it is either because

some symbols are supposed to be joined in that notation, or it is accidental and

caused by careless typesetting in a printed manuscript or by poor settings during the

digitising process which captured the image. An example of the former is in Western

Music Notation, two or more quaver notes next to each other are normally joined

by a horizontal beam while single quaver notes have a tail. Accidentally touching

objects may be caused by bad brightness and contrast settings when scanning a

printed score, resulting in a darker image.

There are two approaches for recognising symbols that are part of a larger object;

either look for matching symbols regardless of connectivity, or try to fix connectivity

problems before looking for symbols. For the former, this would mean looking

for the smaller object types within the larger connected area. For the latter, this

would mean using image processing techniques (possibly including notation-specific

settings or algorithms) to split the larger objects up into the primitive components.

43

An example of the latter method uses projections to determine the various notes,

vertical lines, and beams found in connected note groups [48].

(a) Deliberately overlapping ob-
jects

(b) Four groups of ‘inadvertently’ touching objects

Figure 3.3: Examples of overlapping shapes

For the first cause of joined objects (that is, inherent to the notation), it should

be possible to determine which object types may be joined to other types, and

use one of the previous approaches to recognise those types. The second cause of

joined objects (typesetting errors and digitisation errors) is more problematic, as

this can potentially occur to objects of any type. Figure 3.3 shows examples of both

causes; Figure 3.3(a) shows a rather complicated layout with the lowest notegroup

overlapping the middle notegroup, which also touches the uppermost notegroup.

(This could be mitigated by accounting for this when looking for noteheads, vertical

stem lines, and beams.) In contrast, Figure 3.3(b) shows several objects joined into

groups due to the typesetting. While the noteheads are expected to touch other

objects, and should have recognition routines that account for this, crotchet rests

and natural symbols are expected to be ‘isolated’, and not joined to other objects.

There is also some relevant research in OCR that could be applied to OMR,

especially in the automatic segmentation of handwritten text and Asian languages

(for example, in [2]), which has been an active area of research in the last decade.

3.2.2 Classification

In general, graphical objects can be divided into two classes: those that always have

the same shape and proportion, and those that vary in appearance. Figure 3.4 shows

examples of objects that have a changing shape in Western Music Notation—slurs

(and ties) and decrescendo markings may cover an arbitrary number of notes.

44

Figure 3.4: Primitive objects that can vary in shape

For Western Music Notation, examples of the former class include digits, text,

noteheads, rests, and accidentals, while examples of the latter class include note-

group beams, slurs and ties, crescendo/decrescendo markings, and note stems.

Some features that could be used for comparing objects to known, ideal example

objects include:

• the size of the object’s bounding-box

• the ratio of black-to-white pixels in the bounding-box

• the maximum and minimum width-to-height ratios

• horizontal and vertical projections

• Hough Transforms

• template bitmap match, including variations such as weighted template match

• connectivity analysis (checking whether a path of black pixels exists between

two particular points)

• vectorisation or thinning algorithms

• the ‘moment’ of a bitmap, which can be used to measure the distribution of

pixels or the centre of mass.

This creates a multi-dimensioned feature vector of values for each graphical ob-

ject. These vectors can be compared for similarity to the vectors of ideal templates

by using the multiple nearest neighbour (k-NN) method. This is used by both

Ng [55] and Fujinaga [36]; the latter also makes extensive use of the bitmap moment

as one of the main features for comparison. Decision trees are another method that

can be used for classifying objects based on a set of different tests. Popular algo-

rithms for implementing these include ID3 and C4.5 [77]. These rely on examples

45

being used as training data to build the decision tree before being used on new,

unknown objects.

These techniques have varying levels of effectiveness for poor quality input im-

ages. For example, if an image is scanned at a low resolution, or with too much

brightness, single musical objects might be broken up into multiple graphical ob-

jects separated by some white space. Ideally, the identification process will be able

to account for this, either by having recognition routines that are invariant to noise,

or by attempting to repair or enhance the input image before performing object

recognition.

3.2.3 Assembly

Sometimes it is easier to recognise individual components of a musical object sep-

arately, then join them together afterwards. In this thesis, the term Primitive As-

sembly is used to describe this. For example, recognising noteheads and vertical

lines separately and then assembling them into a note is arguably more robust than

trying to recognise all possible chord arrangements in the image.

In some cases, there is an arbitrary separation between assembly and semantics—

for example, joining durational dots, accidentals, and accents to noteheads could

each be viewed as being either an assembly or a syntactic/semantic action. Another

example is differentiating between a semibreve (a hollow notehead that has a dura-

tion of four beats) and a minim (a hollow notehead attached to a stem line that has

a duration of two beats); assembly joins noteheads to any possible stem lines, but

calculating the durational meaning of that is probably a semantic quality.

3.3 Staff Processing

The majority of OMR systems remove staff lines, with their later identification

routines accounting for any damage that this procedure may have caused. Of course,

not all music notations involve the use of staff lines, so an extensible OMR system

must not rely on staff lines being present.

The consensus is to perform a horizontal projection—projecting the x-axis onto

the y-axis—to determine the peaks corresponding to the long horizontal lines. In-

cidentally, this method can also be used to detect small angles of skew. Figure 3.5

shows this for an extract of a page of sheet music that was scanned in slightly

off-centre. Figure 3.5(b) shows the projection, with peaks corresponding to the

46

(a) Staff system as scanned (slightly skewed)

(b) Horizontal projection of skewed staff system

(c) Horizontal projection of de-skewed staff system

Figure 3.5: Finding staff lines by projection

horizontal runs of black pixels. Figure 3.5(c) shows more pronounced peaks of the

projection after the extract was rotated to remove its skew.

Although most implementations extract the staff lines, some earlier work did

not, notably the Line Adjacency Graph method used for OMR by Carter [22]. This

is a method for identifying primitives based on consecutive vertical runs of pixels,

and therefore is able to ignore the long horizontal staff lines.

3.4 Text Processing

A complete OMR system needs to locate and identify any text on the score. Text, like

musical notes, is needed to help convey the composer’s intentions to the performers

for realisation. Text can even be an integral part of a music notation, such as the

fingering numerals that appear in tablature notations.

In Western Music Notation, common uses of text are:

• performance-only instructions — for example: dynamics, tempo, fingering

47

hints.

• note and score modifiers (such as ‘octave’ markings, repeat marks, coda mark-

ings).

• metadata — identifying features of the score, such as title, composer, editor,

and publisher.

• instrument names (for multi-part and multi-voice scores, useful for aligning

staves on systems, as well as being metadata).

• lyrics for vocal scores.

3.4.1 Identifying Textual Regions

Text has some properties that helps to identify regions of interest — for Western

languages, bounding boxes of characters are generally squarish and roughly the

same size, in a horizontal line, and divided into words (that is, sequences with small

inter-box spacing, with larger space between words). Asian languages have similar

properties that help identify characters — the bounding boxes of Asian characters

are generally square and the same size, and are in rows or columns with even spacing

between characters. One complicating factor is that many characters are composed

of a number of smaller non-touching glyphs, so lots of small objects rather than one

large object might be initially outlined. An example of this is shown in Figure 3.6.

Figure 3.6: The Chinese character for “flute”, composed of discrete glyphs

3.4.2 Optical Character Recognition

For text in Western alphabets written in regular rows, it is fairly straightforward

to identify the height, as there are four common vertical points: the baseline, the

x-height, the caps-height, and the descender depth. There has been much work in

the field of OCR; for example, see the ICDAR conference series [1, 42, 2].

Asian languages (sometimes referred to as “CJK” text, for Chinese, Japanese

& Korean) require different recognition strategies to Latin-based texts, because of

48

different characteristics. The size of the alphabets are much greater, with thousands

of characters. The characters are much more complicated than letters in Western

alphabets, composed of many strokes that form many different geometric shapes.

These characters can contain several non-touching components, while Latin texts

only have simple accents or dots above certain characters. Asian text recognition is

an active field or research [42, 19].

As well as text needing to be identified because it is an integral component

of a score, many of the recognition techniques used may be transferable to music

object recognition. For example, methods that can process the extra complexity of

CJK text may be useful recognising musical objects that are similarly composed of

multiple smaller components.

The use of OCR with the music recognition process is further explored in Chap-

ter 5.

3.5 Preprocessing and Filtering

In image analysis domains, acquired images are typically “preprocessed” to correct

defects before the main recognition routines are performed. This section describes

some common transformations performed on the raw input.

3.5.1 Binarisation

Although binary (black and white) images are easier to process (for example, for

finding object edges), greyscale and colour images contain more visual information.

Curves, corners, and diagonal lines look more smooth with greyscale or colour im-

ages; binary images suffer from aliasing, sometimes described as a “staircase effect”.

Each pixel in a binary image can be in either of two states—black or white—while

in a greyscale image, each pixel can typically be assigned a value between 0 and 255.

Converting from a colour image to a greyscale image, or from either of those

to a binary image, requires thresholding. Figures 3.7(a) and 3.7(b) show the result

of thresholding a scanned image from greyscale into a binary image. The resulting

image has noticeable dots, sometimes called “speckle” or “salt and pepper” noise,

that require further processing (normally called de-speckle) to prevent them from

interfering with the object recognition process.

Because of colour variations, and changes in brightness while scanning, it is

possible that what is an acceptable threshold in one region of the image results in

49

(a) Portion of a scanned image

(b) Image after Binary Thresholding from grey to black-and-white

Figure 3.7: Before and after binary thresholding

unacceptable quality in other regions of the page. One solution is adaptive thresh-

olding [79], where a threshold for any particular area is based on the surrounding

region.

3.5.2 Image Cleanup and Filtering

Most of the preprocessing steps performed on scores during OMR processing are

general document image analysis techniques, and not specific to OMR. A brief

overview of several common preprocessing actions is now given.

• ‘Pixel sampling’ can be used to reduce the image to a preferred resolution—

that is, reduce the image size. This technique might not be necessary if the

main processing routines are flexible enough to cope with arbitrarily sized

images.

• Background noise in the image can be reduced or eliminated by performing a

50

‘de-speckle’ routine. The simplest form of this is to merely remove all objects

that are smaller than some threshold, such as nine pixels in area.

• Various algorithms can be used to correct an image if the brightness and

contrast settings at capture time resulted in an image being too light or too

dark.

• Correction for page skew and deformation introduced when the image was

captured. Methods for performing this are described in detail below.

These techniques are well known, and described in many sources, for example in the

document image analysis area [19, 66, 61].

3.5.3 De-skewing and Deformation

De-skewing refers to the process of rotating the input image to account for any

skew introduced by the digitalisation process. Although a person manually placing

a sheet of paper onto a scanner can get an image with only a few degrees of skew,

image processing algorithms will perform more accurately if there is as little skew

as possible.

Coping with skewed input images is not music-specific, and there has been much

research in the document image analysis fields into different techniques for detecting

and removing skew [4]. However, OMR may be able to take advantage of unique

qualities of a particular notation. For example, Western Music Notation uses staff

systems consisting of parallel horizontal lines, which can easily be used to detect

any skew; common methods for doing this include horizontal projections and Hough

Transform [62], and both of these are described later in Chapter 5.

Deformation, such as distortion introduced when scanning from a tightly bound

book, is harder to detect and correct, partly because the deformation is not nec-

essarily uniform for the whole page. This can be detected by examining the long

horizontal stave lines for slight curvature. The CANTOR system [5] corrected cur-

vature such as this (once it is accurately determined) by performing a shearing

operation to move each vertical column of pixels up or down, and calculating the

amount of deformation in three locations in case it was more deformed at one end

than the other.

51

52

Chapter 4

Coordination of Knowledge

Sources

The preceding chapter discussed the general tasks performed by a theoretical OMR

system, and outlined some of the techniques used to perform these tasks. The

aim of such a system is to have an internal representation of the music’s syntax

and semantics, as well as any metadata about the music, in a computerised form

which can then be used for other purposes. Each processing task can be thought

of as adding knowledge about the representation of the music, contributing to the

internal state of the system.

Intuitively, having more information available should lead to more accurate

decision-making. This chapter describes different methods for controlling the in-

teractions between the various specialised stages, representing knowledge in a way

that facilitates the interactions, and dealing with uncertain and contradictory data.

Making better use of information calculated by these tasks will improve the quality

of the OMR process.

4.1 Advantages of a Coordinated Approach

The aim of using a coordinated methodology in an OMR system is to improve the

accuracy of the system’s output. This should be achieved by the system modifying

both its data and behaviour as better information becomes available. Such a system

should:

• allow knowledge sources to examine and modify any object (or data about an

object); and

53

• keep a history of decisions, so that they may later be undone (and possibly

redone) as new information is uncovered.

In addition, there are other desirable qualities that a recognition system in general

should have; for the work described here, extensibility is important. That is, the

system should have flexibility in accepting and representing a priori knowledge (such

as rules describing pattern shapes or notation syntax) so that rules can be easily

changed to accommodate new object types or music notations. Also, this research

has another aim; examining the behaviour of such a system. This means that the

ability to see what the system is doing should be taken into account.

4.1.1 Dealing with uncertainty

Attaching a certainty rating to classifications rather than having a simple model

with only single Boolean (true or false) decisions has a number of advantages:

1. This allows a system to store alternate hypotheses at the same time, instead

of only one.

2. Related to the previous point, this is useful when trying to decide whether

or not to change the state of an object when given new information, as the

system can check which classification makes the most ‘sense’.

3. Having some sort of certainty rating allows the system to decide if it is making

progress towards its goals, based on whether the internal state is becoming

more or less ‘certain’ overall.

These advantages come at the expense of increased complexity in model design and

program runtime. The third point requires uncertainty to be quantitively measurable

so that different states can be compared to see which is ‘better’.

The different knowledge sources can be used to help confirm hypotheses made

by other sources. For example, the lower-level graphical recognition routines find

vertical lines, the musical syntax rules will determine that some of these vertical

lines appear to be barlines (based on their height and position on the stave), and

musical semantics can determine if a detected barline is in the right place for a

barline based on the notes and bars before it having the correct duration for the

current time signature. Each of these different steps should be reducing uncertainty;

both for the individual objects, and consequently for the system’s total uncertainty.

54

Another example is accidentals being next to noteheads; the knowledge that a

detected accidental and a nearby detected notehead are syntactically valid (and that

the accidental makes semantic sense) is worth more than merely knowing there is

one of each object in a particular place on the page, and this knowledge should be

reflected somehow in terms of how “complete” the system’s internal model of the

music is.

4.1.2 Detecting and Correcting Errors

A coordinated approach could help correct some errors made by the individual OMR

components that require extra contextual information to resolve. Some examples of

how this could work are now demonstrated.

Low-Level Errors

There are some common mistakes that are often made by the low-level processing

phases when looking for and extracting musical shapes from the staff system. These

mistakes include segmentation of objects due to poor image quality (for example,

broken staff lines or vertical lines), objects touching due to poor image quality, and

objects broken or joined to other objects caused by the system failing to completely

remove the horizontal staff lines.

The higher-level phases can often indicate where missing objects should be, and

can sometimes indicate or narrow down the types of objects. This information can be

used to modify the unrecognised objects currently there—for example, by breaking

larger unknown objects apart, in an attempt to fix objects that are joined together

by faulty staff-line removal or by the image being too dark when acquired. Similarly,

another modification that could be made is to join two nearby unknown objects to

create a new object. This will repair an object that was split into distinct parts by

a poor image acquisition process or by the staff-line removal process.

Figure 4.1 has two examples of flats between stave lines that were damaged dur-

ing staff line processing/removal and split into two separate shapes. As described

later in this thesis, the OMR system developed for this research is able to successfully

use feedback to repair the bottom-right flat, coloured blue, and correctly identify it

although the top-left flat, coloured red, is not identified. Another problem demon-

strated by this example is that after an object is broken into two or more pieces, one

of those parts might be incorrectly classified as another object type; here, part of a

55

broken flat may be recognised as a short vertical line. Syntactic knowledge is able

to rule out a vertical line being in that position, causing the shape to be eventually

merged with its nearby shapes as described.

Figure 4.1: Sample Primitive Identification problems caused by low-level processing
errors (identified flats are outlined)

Mis-classified and Un-classified Objects

Document recognition systems make classification mistakes when objects look similar

to other object types, when objects look too different from the expected shapes, or

when objects of an unknown type are encountered. The knowledge from other parts

of the system should be used where possible to prevent and correct mis-classified

objects.

Figure 4.2 shows the semantic state for a bar in a score where the OMR system

has no low-level pattern descriptions for crotchet rests, so no musical objects were

found at the start of the lower stave. The syntactic rules that create and parse

the lattice expect to have notes or rests for every beat in the bar, and complain

about not having any notes or rests leading the lower stave. For the node labelled

456, the syntactic parsing calculated that there are objects missing for two beats,

until the first following node with a duration (node 102). Theoretically the duration

of node 456 could be anywhere above zero up to and including two beats. Based

on the calculated node durations for the upper stave, the suggested durations of

objects missing from the lower stave are a quaver beat (to match node 99), one beat

56

(to match nodes 99 + 100), or two beats (to match nodes 99 + 100 + 101). The

suggestions made by the syntax processing for a missing object at node 456 based

on these possible durations are ‘crotchet rest’, ‘full notehead’, ‘hollow notehead’ and

‘quaver rest’.

Figure 4.2: Example of unrecognised objects (crotchet rests in the lower stave)

Higher-Level Errors

Errors in the higher-level representation of the music objects are specific to the

syntax and semantics of each particular notation. For example, in WMN, it is

straightforward to detect bars where the duration of the notes does not match the

detected time signature, but harder to determine what the cause of this is. Droet-

tboom [28] used a set of seven algorithms to change the durational assignments of

objects in bars with an incorrect duration:

• changing the duration of a rest of that is the only object in the stave;

• swap the duration for whole bar/half bar rests, since they have the same

primitive shape;

• remove durational dots (and assume they were background noise instead);

• assume that nearby barlines are actually stems, and see if they can be joined

to noteheads;

• assume that a barline was missed and truncate the bar;

57

• change the duration of notes if they mismatch in vertical alignment; and

• add rests to the end of the bar until the durations match.

Recall that the GAMERA system has a clear separation between the recognition

of musical primitives and the semantic interpretation, so there is little opportunity

to provide feedback for graphical re-examination of objects. These steps describe

a course of action for trying to correct bad data, but testing these hypotheses by

re-performing recognition on the affected objects may lead to better accuracy.

Another possibility for using semantic knowledge to detect errors is the use of

machine learning techniques to examine note pitches and durations. For example,

this might include detecting repeated themes or phrases with incorrect notes in

them, using the note pitches to predict or check the key signatures, or comparing

the note durations to the time signatures [54, 52]. Taking this idea further, the

musical genre could be automatically calculated [49], based on note characteristics

as well as document and staff-level metadata such as instrument names or even

the composer or artist, and this knowledge applied to other rules that depend on

the style of music, such as predicting the likelihood that an “odd” note or chord

progression is in character. This could be done on a statistical basis, similar to how

works of art such as texts or paintings can be examined to determine if they were

created by a famous master, or merely by an impostor using a similar style.

4.2 Knowledge Sources

If OMR is now approached as a process that adds information about the semantics

of the sheet music to some ‘internal state’—instead of a series of transformations

taking inputs and output—it makes sense to think of each phase as a “knowledge

source”, or a “specialist”.

As well as the tasks described in Chapter 3—Image Preprocessing and Page Lay-

out, Text Identification, Object Identification, Semantic Parsing, and so on—there

can be further examination of the internal state at different times to find more in-

formation that can be used when forming or testing hypotheses. For example, often

the syntactic and semantic properties of musical objects could be used to predict

semantics of nearby primitive shapes; the use of accidentals in Western Music Nota-

tion is strongly influenced by the key signature currently in effect, and accidentals

with certain characteristics (such as the combination of pitch and accidental type)

58

are unlikely to appear.

Some examples of information that do not directly relate to the musical semantics

of an object, but could be invaluable in recognising musical objects include:

• image quality—by analysing the input image, properties such as the scan res-

olution and scan quality (for example, brightness and noise levels) could be

automatically determined, and these properties would influence the low-level

graphical routines (for example, differentiating between legitimate dots and

background noise).

• heuristic or problem-specific knowledge rules to pick up or work around com-

monly detected errors. For example, if a recognition system incorrectly iden-

tifies dots because parts of ledger lines are leftover after noteheads and stems

are removed, there could be a specific syntax rule to ignore these.

• analysis of the higher-level musical semantics—for example, theme detection,

genre classification [49], key and time signature calculation [55, 52] from the

pitch distribution and durations of notes.

Similarly, an OMR system could have specialists that solely apply domain knowl-

edge to fix mistakes caused by limitations in other specialists. For example, after

performing object identification there may still be a large number of unknown ob-

jects, such as objects that are unrecognised due to touching other objects or broken

into separate objects due to a poor quality starting image. A new specialist could be

used to create new unknown objects by merging or breaking up these unrecognised

objects so that the identification step gets further attempts to classify them. This

is explored further in the following chapter.

4.3 Strategies for Coordinating Knowledge

Now that some of the possible knowledge sources and the types of information that

they calculate have been described, strategies for representing and controlling this

knowledge and the sources are investigated.

There are several important tasks to be performed by the controlling component

of an OMR system. It must decide which knowledge is potentially most useful, and

choose which knowledge source can benefit from a piece of information. It needs

to decide when no further processing can be done (or at least, will affect the final

59

result), and detect or prevent loops in the system’s state. Also, the method used to

represent knowledge “facts” (the system’s state) is dependent on the strategy chosen.

The knowledge coordination strategy must also deal with conflicting information to

some extent, although the knowledge specialists themselves should work out conflicts

for their own music-specific areas of expertise.

An overview of methodologies used in the general field of diagram analysis is

given by Blostein, Lank and Zanibbi [14]. Several frameworks that have been pro-

posed or implemented for OMR systems are now described.

4.3.1 “Top-down” versus “Bottom-up” Approaches

A framework for a processing system such as an OMR system can be viewed as either

“top-down” or “bottom-up”. A “top-down” approach refers to a system that takes

a holistic approach to a problem, breaking the problem into smaller and smaller

sub-problems as needed until an acceptable solution is reached. For the problem of

OMR, a top-down approach means that the system has a model of what is a valid

score, and tries to fulfill those syntax rules, which themselves have syntax rules, and

so on. Such a system would try alternate tree structures that fulfill the rules, and

an evaluation function would find the best solution; this might be judged on least

number of errors, or rules might be given scores so that one is used in preference

over others. A simple partial demonstration might be:

A Score consists of Staves

A Staff consists of Bars

Each Bar consists of a barline, followed by OptionalSignatures, followed by

TimeEvents

An OptionalSignature consists of an OptionalClef, an OptionalKeySignature,

and an OptionalTimeSignature
...

(and so on)

Rules (in italics) are made up of other rules or terminal symbols. These rules might

be applied to make sense of the set of graphical primitives that have been recognised

by another part of the system. Alternatively, a more top-down strategy would be

using these rules to control the graphical recognition phase. For example, if the

system is looking for a note in a particular place, and it then recognises a vertical

line in that region, it could look for noteheads in the region where the rules would

60

allow noteheads to be joined to stems.

Top-down approaches are generally computationally expensive; examples of top-

down methods include Probabilistic Models and grammar-driven approaches, and

OMR systems using these methods were described in Chapter 2. However, they are

increasingly used in the artificial intelligence community because these models are

believed to behave more like a person’s thought process and are generally better

for learning or prediction tasks. For these approaches to be effective they often

require training—learning from a set of examples so that the model can make better

predictions when processing the input data.

Contrary to a top-down approach, a “bottom-up” approach generally focuses on

the details first, and then builds them up into larger and larger components. This is

sometimes called a “data-driven” approach, as the focus is on the data as it moves

through various stages of processing. For music semantic processing, this would be

the opposite of the example given above—noteheads and stems would be joined into

notes, then notes and beams or tails joined to form notegroups, then notegroups

joined together into bars, and so on. In a bottom-up system, the rules are applied

to existing objects, rather than using rules to predict objects. CANTOR (described

in Chapter 2) is a prime example of an OMR system that follows this model.

4.3.2 Frames

Frames are an artificial intelligence method for representing knowledge, and have

been used in many domains—of relevance for OMR, frames have been used in com-

puter vision and natural language processing tasks.

Each frame stores knowledge about a scenario or object—this knowledge is a list

of attribute values, and actions that point to other frames to represent change in the

state. Frames also use these links to other frames for inheritance. Rules for logical

inference are then written, incorporating domain knowledge for a particular domain

or application.

Stückelberg et. al. [73] propose using frames to represent syntactic rules and

hypotheses. The frames encode information representing hypotheses on object inter-

relationships. Hypotheses are linked together, and these are examined to find good

sets of hypotheses. Part of the musical syntax captured by the system is shown in

Figure 4.3.

61

Score Page StaffSystem

Part InstrumentStaff InstrumentMeasure

Instrument

NoteHolder StaffSegment

RegularStaff PercussionStaff

Measure

2

StaffGroup BigBarline

Barline

SystemBar

GroupMeasure

DoubleStaffSingleStaff Accolade

1-2

1-2

1-2

1-2

1-2

1-2

Figure 4.3: Extract from model of proposed frame-based OMR system (figure from
Stückelberg et. al. [73])

4.3.3 Blackboard Systems

A Blackboard System is based around the idea of people in a meeting using a

shared blackboard to explore and expand ideas. The system has a global memory (a

blackboard) with various knowledge sources adding to and modifying the data stored

on it. The blackboard has multiple ‘layers’, with higher layers storing higher-level

information. Each knowledge source uses one level for its input objects, and one level

for its output. A controlling process decides on the order in which the knowledge

sources take their turn to process and modify the layers of the blackboard, and when

to finish processing.

Blackboard-based systems have been used for image analysis [45]; their use for

diagram analysis is described by Blostein et. al. [14] and a blackboard-based OMR

system by Kato and Inokuchi is described in Chapter 2. Also in the Music Informa-

tion Retrieval field, Bello and Sandler [12] describe the use of a blackboard system

for converting digitised audio music into a symbolic representation, and this work

was expanded on as part of the OMRAS project [63].

Figure 4.4 shows the blackboard consisting of storage areas for information about

tracks—based on the frequencies of the processed audio signal input and their mag-

nitudes, and “partials” and “notes” which are used internally by the knowledge

sources for the system to eventually produce symbolic data as output. The system’s

scheduler is responsible for deciding which type of information is needed and calling

the appropriate knowledge source.

62

tracks

partials

notes

Scheduler

KS

KS

KS

Actions

Segmentation Peak selection

Output

Signal

Preconditions

STFT

Figure 4.4: A Blackboard System for audio transcription showing the knowledge
sources modifying a shared blackboard. (figure from Bello and Sandler [12])

4.3.4 Graph Rewriting

A graph consists of nodes representing data or objects, and a set of links between

nodes representing inter-relationships. Graphs can be tree-like structures with a

hierarchy that does not form loops between nodes, or lattices with links between any

arbitrary nodes. Graph rewriting is the process of replacing a subset of a graph’s

nodes and links with a new set of nodes and links, based on rewrite rules. There are

different mechanisms for applying the rewriting rules such as event-driven rewriting

and graph grammars, as well as different notations for representing the rules. Also,

the order that rules are applied in may be significant.

Graph grammars are widely used in document image analysis domains and have

been used in OMR [8, 5], although the use of graph rewriting in OMR [32] has been

much less common. Difficulties recognised by Blostein et. al. [16] in applying graph

rewriting include:

• the difficulty for developers to understand rewriting expressions and to follow

the transformations during the computation process; and

• the lack of standard algorithms, software tools and implementations making

use of graph rewriting.

The processing cost of parsing a graph and looking for sets of nodes (and their

links, which may have individual attributes) that match any of the rewriting rules

63

has been considered prohibitive in the past, but like many processor-intensive tasks

of the past this is now much less of an issue.

4.3.5 Genetic Algorithms

Genetic Algorithms are well suited for problem classes where there is no simple

algorithm for calculating answers or where the possible solution search space is

prohibitively large or multi-dimensional, and finding a ‘good’ solution is acceptable

rather than one single correct answer.

Genetic algorithms are an attempt to emulate nature’s survival-of-the-fittest be-

haviour of passing DNA from one generation to the next. The main idea is to

somehow encode the system’s internal state as a sequence of attributes or decisions

(analogous to DNA), and to determine a fitness function that can rank different

sequences in terms of overall quality. Then, starting with a pool of random solu-

tions (where each solution is a sequence of decisions), the fitness function chooses

the best ones, and new solutions are generated by pairing the best ones at random

and swapping some parts of the sequences. The process then iterates with the new

sequences added to find the best solutions to pass on to the next generation, and

so on. Also, some new solutions can be created by having a small probability of

random mutation of some part of a solution’s sequence.

When applying a genetic algorithm to a problem, the difficulty is finding a good

representation for mapping a particular domain’s internal state onto a sequence. For

OMR, each individual solution might be a sequence that encodes the musical type

of every graphical object extracted from the score. This could be represented as a

list of numbers where each object type has a number (for example, “treble clef”=1,

“crotchet rest”=2, and so on for each type) and the first number in the list refers

to the first object found, the second number refers to the second graphical object

found, and so forth.

The fitness function would have to calculate how well each individual sequence

(representing a set of object type assignments) makes syntactic/semantic sense for

the whole score.

Although genetic algorithms have been used for a wide variety of problems, in-

cluding use in many graphical recognition and document analysis domains, there is

little published research on their use for high-level purposes in optical music recog-

nition. However, genetic algorithms have been used in music recognition for object

64

classification, for example in the GAMERA system (as described in Chapter 2) and

Yoda, Yamamoto and Yamada[80]. Alander [3] gives an extensive list of publications

describing the use of genetic algorithms for image processing.

4.3.6 Discussion and Summary of Coordination Strategies

The rise of “object-oriented programming” has mostly replaced the concept of a

blackboard system with a globally shared area of memory. Object-orientation is a

more flexible paradigm which allows more fine-grained control over how data can be

shared between different objects.

Similarly, the use of frames has become less widely used as object-oriented pro-

gramming has become more popular; in many ways, object-orientation follows a

similar approach to storing data by allowing objects to have arbitrary attributes,

inter-object links, and different functions that operate on different types of objects.

Graph rewriting is not a widely used technique, and its use depends to a large

extent on data representation issues; graph rewriting makes more sense if a graph

is used as the primary method for storing all information within a system. For

OMR purposes it may simply be easier and less resource-intensive to recreate a

syntactic graph when updated information is calculated, rather than the using the

complexity of modifying the graph via graph rewriting. This has the disadvantage

that any information that might be calculated about the graph structure itself is

lost; keeping track of changes to the graph may be useful as higher-level knowledge

(for example, finding common recognition mistakes based on similar changes made

at different parts of the graph at different times).

Genetic algorithms generally require a lot of computing resources to calculate

fitness values for solutions, as well as iterating through many generations until a

solution of acceptable accuracy is reached. Also, determining an efficient genetic

representation of the problem can be challenging. These types of algorithms are not

really appropriate for controlling the OMR process, although they may be useful

within knowledge sources for certain tasks that have many possible solutions that

are difficult to evaluate. An example is the GAMERA system’s use of a genetic

algorithm for finding a good set of attributes and attribute weightings to use in the

recognition module’s decision tree.

65

66

Chapter 5

Practical Implementation

The previous chapters have described the individual tasks and sub-tasks performed

by an Optical Music Recognition (OMR) system, and investigated methods for treat-

ing those tasks as distinct knowledge sources that can work together to improve the

accuracy of the process as a whole. Providing more contextual information when

making decisions means that a higher recognition accuracy can be achieved. A vari-

ety of approaches for coordinating knowledge sources (and knowledge) in an optical

music recognition system were described.

The design decisions of a system play a factor in choosing an approach. A

major goal of the work described in this thesis is to discover how different types of

knowledge from different knowledge sources can be used to improve the recognition

process, and which types of knowledge are more useful. For example, is feedback

from the assembly stage more useful than syntactic feedback? Does the style of music

represented in the score affect the usefulness of various types of information? The

design of such a system should allow measurement and evaluation of its performance,

rather than using a design that may give better results but is essentially a “black-

box” that cannot have its internal functionality and behaviour examined.

Another important goal of this system is to be easily extensible; allowing new

primitive types and syntax to be recognised should not require modification of the

system’s “core” algorithms. This chapter discusses practical considerations for per-

forming OMR tasks—and controlling the interaction between those tasks—in a co-

ordinated fashion, and provides empirical examples of difficulties in the automatic

recognition of printed music.

67

5.1 OMR Knowledge Coordination

An OMR system was developed for the purposes of investigating methods of rep-

resenting data and knowledge, and coordinating the knowledge sources that are

generating and processing the data. A primary design goal was to facilitate the

development of algorithms in one section of the program without affecting the re-

mainder of the system. This led to a modular design, with a global state that any

specialist module can inspect and modify. Of course, different specialists will only

be interested in relevant parts of the state—for example, low-level image processing

methods are generally not interested in accessing the high-level syntactic structures.

This design is similar to the blackboard systems described in Chapter 4.

The typical tasks performed by an OMR system, described in Chapter 3, are

implemented as separate modules which are independent of each other, and these

tasks have been split into modules as shown in Figure 5.1. Although independent, to

communicate with each other these modules need to agree on common data struc-

tures for knowledge representation, the message passing interface, and the names

and formatting of messages.

Co−ordinator
IMAGE MUSIC REPRESENTATION

Staff Processing

Page Layout

Primitive Assembly

Semantics/Analysis
Musical

Text Processing

Primitive Identification

Primitive
Segmentation

Figure 5.1: The specialist modules in the OMR System

The behaviour of the system has aspects of both bottom-up and top-down design:

initially, processing occurs in a bottom-up manner as low-level features are extracted

and processed and then further refined by rules to create higher-level objects, but

then attributes of a top-down approach become apparent as predictive rules are used

to re-check areas and objects that do not meet the expectations of those rules.

68

5.1.1 Request-based Model

Each specialist registers (with the coordinator) a list of request names that it can

process. This means that specialists do not need to know anything about each other,

as long as they use the same names for generating and receiving requests. For exam-

ple, the Primitive Identification specialist registers that it can handle any requests

called ‘find primitive of type’, ‘identify unknown objects’ and ‘reclassify objects’.

Any other specialist which determines that there is a missing primitive of a partic-

ular type, or creates new unidentified objects, or decides that objects are classified

incorrectly, can generate a request with the respective name—along with identifying

details such as a list of relevant objects, or a relevant area of the image—and the

coordinating process will give the Primitive Identification specialist the request to

process.

5.1.2 The Coordinating Process

In the designed system, the coordinator is not responsible for testing hypotheses; the

coordinator is responsible for the flow of execution. Execution stops when none of the

specialist knowledge sources wants more information, or when there are no specialists

willing or able (based on resource limits such as elapsed time) to satisfy a request for

more information. An example configuration file specifying these resources limits is

given in Appendix A.1.

Also in this implementation, the specialists have little overlap between them in

terms of functionality. The fitness of the information is judged by the specialist

modules that follow it. For example, the basic geometric shapes that are detected

by the Primitive Identification specialist must be joined together in certain ways

only. These assembled objects can be checked for correctness to see if they follow a

proper music notation.

5.2 Musical Semantics and Notation-Related Issues

The methods used to model the semantic structure of scores in Western Music

Notation are now described, including some of the problems faced by this process

in practice. These problems include the vagueness of the notation, innovative use of

musical symbols by composers, and typesetting errors made by publishers. This is

followed by a discussion on the system’s use of feedback from the musical semantics

69

specialist.

5.2.1 Implementation Details

The musical syntax of the objects found during OMR is calculated and checked by

the Musical Semantics specialist. For practical reasons the bulk of the work is per-

formed by a program written in the Perl programming language, which has several

strengths such as object-orientation and pattern-matching that make it suitable for

parsing and scanning. The musical semantics phase of the OMR process is much

quicker than the low-level graphical tasks, so any potential increase in time resulting

from the use of the Perl interpreter is negligible.

Because different music notations can have vastly different rule-sets describing

how objects interact, separate rules must be encoded into the program for each music

notation that the OMR system is to recognise. The remainder of this discussion is

based on the rules written for Western Music Notation scores.

To understand the structure of the score, a two-dimensional graph—a lattice—is

created from the recognised objects. As well as nodes existing for each object that

has a duration—that is, noteheads and rests—nodes are created in several other

circumstances:

1. where a node with a duration does not have a matching node in another stave

in the same staff system, “empty” nodes are created in that timeslice;

2. nodes are created for objects that do not themselves have a duration, but affect

those objects that do;

3. nodes are created for ease of navigating the lattice; and

4. barlines cause nodes to be created in each stave in the staff system, mostly for

practical purposes.

These different classes are named; nodes that are for objects with a duration are

called primary nodes. The first type listed above (called “timefill” nodes) is a special

type of primary node as it has a duration but no corresponding object. The second

type consists of nodes for objects such as clefs, time signatures and accidentals, and

these are called secondary nodes. Barlines are also considered to be in this class,

even though they do not directly affect the performance in the way that the other

object types do. In the CANTOR system, Bainbridge [5] refers to these two classes

70

as primary atomic and secondary atomic node types. The third type, for navigation

and processing purposes, is for nodes referred to as divider nodes and these are used

to link staff systems and staves to each other.

The lattice is built by first joining the objects of primary node types (notes and

rests) on each stave into chains, followed by the insertion of the secondary objects on

each stave into the appropriate chain. Each system then vertically joins the primary

nodes across the staves, inserting empty timefill nodes and divider nodes between

the staves as required.

The Musical Semantics specialist also examines the set of vertical lines that have

not been assembled into larger objects to see which have the characteristics of bar-

lines, and re-classifies them and inserts them into the lattice. Vertical lines which

are not assembled into other objects and are not re-classified as barlines are flagged

for re-examination as the rules do not syntactically allow isolated vertical lines. This

eventually results in requests being generated for each of these objects to be exam-

ined for a different classification. In practice, this may result in a vertical line being

added back into a larger object that it was originally extracted from; this sometimes

happens with flat ([) symbols that have vertical lines identified and removed from

them but later have the line put back in before it is eventually recognised as a flat.

The lattice now contains all the relevant objects, and it is parsed to calculate

duration information, such as the offset between consecutive timeslices, and to check

that the total duration of each bar is consistent with the time signature in effect.

Figure 5.2: Extract showing semantic node structure

Figure 5.2 shows a graphical representation of the semantic-level understanding

71

by the OMR system. This shows the primary nodes for the notes, rests and their

associated timefill nodes for each timeslice—linked vertically—that has no note or

rest in another stave. The secondary nodes link the clefs and signatures to the

primary nodes in the lattice, and divider nodes are used to vertically separate notes

between the staves for each timeslice, link the beginning of each stave to its system,

and to link systems together. This figure shows that the full bar rest in the lower

stave of the first system semantically occurs on the first beat—at the same instance

as the first note in the upper stave—despite being typeset in the middle of the bar.

(a) An Extract From a Semantic Lattice

1 new timesig (node 128) is the same as the old one (system 2 stave 1)
2 warning: staves have conflicting timesigs! (this id=127 has 5/4, other has 6/4)
3 moving rest (node 98) to bar start node (453)
4 should remove timeslice: 98 458
5 Bad/missing object between node 453 (calculated 4/1) and timefill node 463
6 possible missing object for node 463
7 could be crotchet rest,full notehead
8 Bad/missing object between node 453 (calculated 4/1) and timefill node 465
9 possible missing object for node 465

10 could be crotchet rest,full notehead
11 (ee) bar starting with 95: has 6/1, timesig = 5/4
12 bar ended by node 373
13 missing object for node 467
14 could be crotchet rest,full notehead,hollow notehead,quaver rest
15 missing object for node 469
16 could be crotchet rest.,full notehead.,quaver rest
17 missing object for node 471
18 could be crotchet rest,full notehead

(b) Diagnostic Output relevant to the nodes in Figure 5.3(a)

Figure 5.3: Semantic diagnostics

72

Figure 5.3(b) shows an extract of the diagnosed problems during the system’s

construction of the syntactic lattice for the score extract shown in Figure 5.3(a).

These are not necessarily errors, but are caused by regions of the lattice where the

calculated structure does not reflect the semantic rule set for a particular notation—

in this case, Western Music Notation. These messages are now categorised and

described.

Durational errors

In the time signature at node 128, the “digit 5” object was mis-recognised as a

“digit 6”, and this is the cause of two diagnostic warnings: Line 1 warns that the

time signature is the same as the time signature in effect for the previous bar time

signature, which is probably (but not necessarily) a mistake, while line 2 warns

that the two time signatures in the bar (nodes 128 and 127) on the separate staves

disagree. When a time signature changes, it normally (in traditional scores, almost

always) changes to an identical value in each stave in the staff system. These two

observations combined present enough evidence to ignore the 6
4 signature in the top

stave and use the other stave’s 5
4 time signature for the whole system from this point

until the next time signature.

Another durational error causes the messages on lines 5–10; the semibreve rest

is determined to be worth four beats rather than stretching out for the entire bar, so

the system thinks there are missing objects on the remaining beats. The following

assembly error results in an extra beat, which is why an object is thought to be

missing from both nodes 463 and 465.

Assembly errors

The beam in the quaver group is not detected correctly, so nodes 99 and 100 are

seen as two crotchets, rather than two quavers. This causes the diagnostic warning

on line 11 that the bar (with six beats) does not match the time signature (five

crotchet beats).

Undetected Object errors

In the figure, neither crotchet rest is recognised; node 467 is determined to be

missing an object with a duration or either 1
2 , 1, or 2 beats, based on the durations

of the detected objects in the upper stave. This is shown on lines 13 and 14 of the

73

diagnostic output, followed by similar warnings for nodes 469 and 471.

Other messages

Lines 3 and 4 are informational messages only, related to rearranging the nodes so

that a full bar rest is moved to the front of the bar, and any timeslice created for it

is removed if the timeslice now has no objects in it.

5.2.2 Unconventional Use of Notation

The Musical Semantics part of Chapter 3 discussed the problem of finding a set of

formal rules to represent a notation such as Western Music Notation that is defined

by common usage rather than with clear-cut rules. It is impossible to program an

OMR system that can represent every possible use of a notation. Often, professional

musicians would not notice anything out of the ordinary while reading some instances

of unusual notation.

Byrd [20, 21] has detailed odd or convention-breaking use of Western Music

Notation, as well as cataloging many extremities that do not break conventions but

are never-the-less atypical. One example given of a common rule being broken is

a time-signature change part-way through a bar that only affects one stave in the

system; this is done by J. S. Bach in his “Goldberg Variations”.

Figure 5.4 shows some examples of slightly unorthodox use of Western Music

Notation that may pose problems for OMR. Figure 5.4(a) shows a passage of piano

music to be played using both hands and drawn over both staves. Consequently, no

rests are given in the stave with no notes, even though the lower stave in the whole

second bar contains no notes.

The passage shown in Figure 5.4(b) has three beats per bar. In the upper stave,

the first notegroup has durational dots for two of the hollow noteheads (making their

duration the full three beats of the bar), while the un-dotted third hollow notehead

has only two beats, leading into the beat provided by the following crotchet note.

Such a construct would typically be notated as ‘split voice’ by convention, with two

separate notes—one with the stem up, and one with the stem down. The composer

notated similar groups both with and without split voices through-out the score, as

can be seen at the beginning of the following bar.

In Figure 5.4(c), the chords at the start of the bar occur simultaneously with the

following starting note of each beamed group, despite appearing to be a completely

74

separate group on a separate beat. To handle this, an OMR system would need

rules for this situation, using some contextual semantic knowledge such as the time

signature in effect to determine that the currently calculated semantics are incorrect.

(a) A passage without rests on the unused stave.

(b) Bad voice grouping. (c) Notes played simultaneously at four dif-
ferent horizontal positions.

Figure 5.4: Examples of unusual and difficult notation

5.2.3 Syntactic Feedback for Coordination

As mentioned earlier, determining the semantics of a score is difficult because there

is no set of well-defined rules that can be used to determine what is or is not valid

Western Music Notation syntax. The previous section discussed some recognition

difficulties due to notation misuses and complexity. One practical step to take that

can minimise the effect of some of these problems—as well as limitations of other

parts of the OMR system—is to have a separate set of rules to specifically pick up

and correct some commonly occurring errors. Baumann [8] says that: “. . . typical

preprocessing errors can be handled by special rules.”

Earlier in the section, Figure 5.3(b) showed some of the errors and warnings

that the Musical Semantics specialist gave when the set of recognised objects did

not fully match the rules created for understanding Western Music Notation. These

observations are used to provide contextual feedback to the other specialists in the

system, so that they may be able to identify a missing object or correct a misclas-

sification and improve the system state. Four specific types of errors recorded and

used for system requests are:

75

• incorrect bar duration;

• incorrect object duration;

• missing object; and

• incorrect object classification.

These requests also contain extra information where relevant, such as the approx-

imate location of any missing or incorrect object, the calculated and expected at-

tribute values (such as duration), and possible alternate classifications for existing

or missing objects.

Another attribute of each request is a tolerance value that suggests how loosely

thresholds and settings should be applied to tests when servicing this request. The

Musical Semantics specialist increases the tolerance level on its requests, using the

system’s default tolerance increment step, each time it is called. This is to help

resolve persistent errors that remain after several calls to the specialist, although

the setting would also apply to any generated requests caused by a new internal

state.

Durational Errors in Primary Nodes

For the first staff system of Mussorgsky’s “Promenade” (shown in Figure 5.5), the

Musical Semantics module detects five errors in the lattice created from the objects

found by the earlier modules, although two of these errors are really part of the same

problem.

1. The first bar has a detected time signature in the lower stave but not the

upper.

2. The second bar contains 7 (detected) beats, but the time signature says it

should only have 6.

3. The third bar has a (detected) time signature in the lower stave but not the

upper.

4. The second-to-last beat in the lower stave of the third bar corresponds to two

beats in the upper stave.

5. The third bar contains 6 beats, but the time signature says it should only have

5.

76

Points 4 and 5 are both really different symptoms of the same cause—the beam was

not successfully detected and/or attached to the stems for the quaver notegroup in

the third bar. This figure shows the detected notes and notegroups; the group in the

first bar was detected correctly, but not the group in each of the second and third

bars. While an incorrect bar duration is easily detected in isolation, the corrective

action to take is difficult to determine. Often, further information such as that in

point 4 can be taken in context to help narrow down where in a bar an error is

(possibly) likely to be resolved.

Figure 5.5: Notes and note groups found by the earlier modules

Secondary Node Errors

Figure 5.6 shows the digits (and the digits assembled into time signatures) found by

the previously executed specialists. The rules encapsulated in the semantic parsing

code check that whenever a time signature occurs, there is one at the same time in

every stave in the system. If any are missing, this is recorded and the detected time

signature is used. The Musical Semantics specialist then issues a request stating that

there is an object missing in that particular vicinity, of type “timesig” or either of

the digits making up the found time signature. It is necessary to explicitly state the

low-level primitive types because this specialist does not have a distinction between

primitive objects and the assembled higher-order objects (such as “time signature”).

In this particular instance, the modules that perform the lower-level object recog-

nition routines use this extra contextual information to look for “4”s and “5”s in

the approximate area given by the Musical Semantics specialist. “timesig” was also

given as a type to look for, but the Primitive Identification module does not have

77

(a) Found digits (4 in yellow, 5 in black, 6 in dark grey)

(b) digits paired into time signatures

Figure 5.6: Objects as first encountered by semantics module

78

(a) Found digits (4 in yellow, 5 in black, 6 in dark grey)

(b) digits paired into time signatures

Figure 5.7: Objects encountered after feedback requests were processed

79

a rule for objects of that type. Because this context was provided, the patterns

that look for “4”s and “5” were re-run but with lower thresholds for matching. For

these two examples, the pattern’s template graphical data was allowed to be scaled

by more than normally permitted to match the size of the object’s graphical data.

Figure 5.7 shows the corrected data after the contextual feedback was successfully

used.

As another example, Figure 5.8(a) shows the treble clefs found in an extract of a

Mozart Clarinet Concerto. The clef on the second stave was found, but not on the

first. The undetected clef is then broken up as erroneous objects (a notehead and a

horizontal beam) are found within it. However, one of the specialist modules—the

Segmentation specialist—joins unrecognised objects together to create new objects

and joins the leftover parts of the clef back into a single object.

(a) Detected treble clefs (first time)

(b) Detected treble clefs (after use of feedback)

Figure 5.8: Treble clefs found in clarinet concerto extract

The Musical Semantics specialist has a rule that says every stave must begin

with a clef, and issues a request to look for all clef types that it knows about in

that general vicinity. Given the extra context that there might be a clef there,

the Identification specialist relaxes the rules for all the specified clef patterns, and

successfully identifies the object created from the leftover pieces.

The objects removed from the original clef are not determined to be invalid, as

can be seen on inspection of Figure 5.8(b). Further development of the semantic

80

rules may lead to these classifications being removed and the objects added back

into the clef object.

Pitch Errors

It is difficult for an OMR system to reliably detect if a note has been assigned

an incorrect pitch; while a person listening to music may hear notes that sound

wrong, it is hard to quantify this when working with symbolic data rather than the

frequencies in audio data. It may be possible to find notes that are discordant based

on the pitch frequency counts and other chord progressions in the score, but may

be subjective and almost certainly composer- and/or score-specific.

The system can detect when a note has an accidental that is not required due to

the key signature already in effect, but this is no guarantee that either the accidental

or the key signature is incorrect. However, this information can be used to request

that the accidental be double-checked.

Other Errors

As mentioned above, the Musical Semantics specialist becomes more tolerant in its

requests with subsequent executions. Although the aim of this is to help recognise

objects that did not quite match their idealised description and remain unclassified,

this can lead to problems in some circumstances. For example, in Figure 5.9(a), due

to some minor issue, the quaver rest in the lower stave could not be matched. The

semantic analysis detected a missing object with a duration of 1
2 a beat, causing

the primitive identification specialist to look for a quaver rest. Each time that this

was unsuccessful, a new request would eventually be generated, resulting in a larger

radius being searched, and at a lower tolerance threshold.

Figure 5.9(b) shows a similar situation—in this case, the manuscript publisher

has accidentally omitted a rest from the lead-in bar. Each time that the semantics

specialist complains that the lower-levels did not find an object of the correct dura-

tion in that general vicinity, it suggests that there might be a missing quaver rest (or

object of similar duration). If each subsequent request is given greater importance

and scope, the result is that the lower level specialists look in a larger and larger

area, with lower and lower thresholds, until eventually the p dynamic marking is

identified as the object that the system assumed to be missing.

In both of these cases, the recognition error was made by the Primitive Iden-

81

tification specialist, but was caused in part by the Musical Semantics specialist

persistently suggesting a missing object with increasing tolerance levels.

(a) Promenade

(b) Mozart

Figure 5.9: Looking for quaver rests with a too low threshold

5.2.4 High-level semantics

Examining the musical meaning of the lattice created by the Musical Semantics

specialist may reveal information that can be used to improve the accuracy of the

recognition. For example, the distribution of the note pitches and accidentals might

be useful for predicting the key signature in effect.

Detecting common motifs in a score, for example on the basis of relative pitch

changes and/or rhythms, might be useful for detecting mistakes, although care must

be taken not to be too over-zealous as variations of a repeated theme are commonly

used by composers. Repeated rhythms can be found in several ways; one such

method is to generate an auto-correlation of the score’s notes to calculate regions of

82

self-similarity [69].

Pitch and duration distribution can also be used to predict—with various rates

of accuracy—the musical genre (such as pop, rock, classical, baroque, and so on) [49,

13, 74], although genre identification is a more abstract piece of metadata, and less

useful for identification purposes. However, further investigation may show that

allowing genre-specific rules for identifying patterns and describing object charac-

teristics may improve recognition quality.

5.3 Primitive Assembly

Primitive Assembly is the process of joining graphical primitives together into musi-

cal objects. Some primitive types are also musical objects without needing assembly,

while other simple shapes must be built up into larger groups before becoming a

music object. Of course, what constitutes a musical object is going to be notation

specific. In this OMR system, Primitive Assembly is a distinct specialist knowledge

source from Primitive Identification, rather than having one knowledge source re-

sponsible for identifying musical features directly from the image. The major reason

for this is extensibility; having separate low-level graphical shapes and rules for com-

bining those shapes into objects is more expressive, and should facilitate creation of

rules to represent multiple music notations.

5.3.1 Implementation

Primitive Assembly is implemented in a fairly basic manner in the OMR system. In

line with the goal of being easily extensible, assembly is controlled by a modifiable

file with a straightforward syntax:

• objects of two different types can be joined together into a new type.

• objects of two different types can be joined, but the new object retains the

dimensions and graphical shape of the first object.

• a temporary type, consisting of all objects of multiple types, can be set up.

The joining operators take a list of clauses that the objects must meet for the

rule to be applied to them.

83

For example:

1 # set up a temporary type made up of a set of other types

2 digits E {digit_4, digit_5, digit_6}

3

4 timesig = digits + digit_4

5 where $1 is_above(5,15) $2

6 and $1 lhs_difference(-10,10) $2

A “temporary type” is one that is only used while performing assembly, and these

types are forgotten when the specialist has finished while the other rules result in

permanent objects being created from the assembled primitives that are used by the

remainder of the OMR system. In the assembly rules given here, digit 4, digit 5

and digit 6 refer to object types generated by the Primitive Identification specialist,

but temporary type rules may also refer to object types created earlier by previous

assembly rules; this relies on the fact that the order that rules appear is significant.

The rule on lines 4–6 create a new object type, called “timesig”. Any object created

by this rule will consist of one object of type digit 4, digit 5 or digit 6, and one

object of type digit 4, where:

• both objects have not already been assembled,

• the first object is above the second by some specified number of pixels, and

• they are horizontally aligned, within some tolerance.

The same rules are also used in a predictive manner if one of the object types

in the rule is found and nearby unknown objects would fulfill the rule as a different

object type. After applying the rules to assemble the primitives, the rules are tested

using unknown objects and requests are made with suitable suggestions. Using the

example rules above, an unknown object that is directly above a digit 4 not already

assembled could be any of the primitive types made up by the temporary digits, and

a request would be generated asking for that unknown object to be re-examined to

see if it is a digit 4, digit 5, or digit 6 object.

Complicated structures must be built up by a sequence of these joining rules,

since each rule only joins objects of two types. Appendix A.3 shows the assembly

rules used by the OMR system for Western Music Notation. Figure 5.10 shows a

notegroup and the corresponding object that would be built-up by applying these

rules.

84

notegroup

beam (filled note)+

filled notegr stem up

filled note stem up

vertical line full notehead dur dots

full notehead dot

full notehead dur dots

full notehead dot

filled note stem up

vertical line full notehead

Figure 5.10: Tree-graph showing assembly

Figure 5.11: Assembly of primitives into musical objects

Figure 5.11 shows some of the results after primitive objects are assembled into

larger musical objects for the first staff system of Mussorgsky’s Promenade. Some

of the assembly rules shown in this example include:

• a “bass clef curl” is joined by two dots (in the appropriate positions) to create

a “bass clef” object.

• durational dots are added to full noteheads.

• a full notehead is added to a vertical line to create a note (stem up) or a note

(stem down).

• a note (either stem up or stem down) is joined with other noteheads to create

a chord (stem up, or stem down, respectively).

• a beam and multiple chords (and notes) will be joined to create a notegroup

85

Key signature assembly is actually done by the musical semantics specialist, since

that specialist performs pitch calculations, and accidentals ([s and]s) are only part

of a key signature in certain places. Incidentally, this explains why the top stave’s

leading flats were not assembled into a key signature; a recognition error resulted

in a notehead being found in the treble clef object, and the syntax rules only allow

key signatures at the start of a stave, before any notes.

5.3.2 Assembly Difficulties and Examples

The assembly rules join objects together into new objects based on conditions such

as their relative positions and distances. So far, these distances have been calculated

heuristically, but what works well for some scores may not work very well for other

scores. This is partly mitigated by using tolerance thresholds so that these distance

conditions are relaxed as the system spends more time looking for objects, but this

behaviour will not correct objects that were incorrectly joined together.

Figure 5.12: Notes shared by two parts

Figure 5.12 shows a challenging extract of double-staved piano music that has

two voices on each stave: two of the notes are shared between voices, and ideally

an OMR system’s internal model should be able to represent this. The assembly

rules used in the implemented system do not allow for this possibility; either the

model should be flexible enough to allow one notehead to belong to two notes, or

a work-around for the problem could be used by creating a duplicate notehead for

each note. Because the system only assigns the notehead to one notegroup, the

semantics will be wrong if the output is used for graphical or score-related purposes,

86

although any audio interpretation will be unaffected.

5.4 Primitive Identification

The Primitive Identification specialist classifies all the unknown objects on the page

after the staff lines and suspected text have been removed from the image, as detailed

in Chapter 3. This specialist uses several methods for identifying objects. These are

now described.

5.4.1 Patterns and Template matching

The main method for identifying objects is to compare each unknown object in

turn to pattern description rules. These patterns allow a set of rules to describe a

primitive type both by the primitive’s bounding box and with a graphical template.

Other settings are used for controlling the scaling of the object (so that the pattern

can be used on arbitrary-sized staff systems), and whether the pattern describes a

primitive type that needs to be extracted from a larger shape or if the primitive type

is normally detached from other primitives. Appendix A.2 has several examples of

these pattern descriptions. There can be different patterns for the same primitive

type, allowing a set of patterns to cover a variety of symbol shapes. This can help, for

example, recognise symbols that differ between publisher, or have alternate forms.

When comparing primitives to the graphical template, the OMR system uses

“XOR” bitmap template matching, which is a simple method for comparing each

pixel in relative positions of two bitmaps. This can be thought of as superimposing

one bitmap over the other, and counting how many identical pixels there are. The

pattern description includes a threshold level for what proportion of pixels must

match. Because this is a slow process, a common optimisation is to stop the com-

parison if there are too many pixel mismatches after a certain percentage (normally

between 20% and 50%) of the bitmap has been tested. Wijaya [76] discusses several

other optimisations that can be used with better accuracy, such as sampling (so that

not all pixels need to be tested at first) and calculating weighted errors (where some

pixel mismatches are considered worse than others).

5.4.2 Compression-based template matching

Compression-based template matching [43] compares two bitmaps by calculating

how well one predicts the other. In the field of compression, the term entropy is

87

used to describe how much data would need to be transmitted to completely recreate

an object. For an image composed of only two colours, each pixel can be encoded

with 1 bit, as one of two choices. Many standard image formats do this — for

example, the Portable Bitmap (PBM) image format uses a 0 to indicate a black

pixel, and a 1 to indicate a white pixel. However, by taking into account the relative

proportions of black pixels and white pixels, one pixel can be encoded, on average,

by less than one bit.

As a rudimentary example, if an image had lots of black pixels, a ‘1’ could be

used to represent three black pixels in a row, ‘00’ to represent a single white pixel,

and ‘01’ used to represent a single black pixel. A single ‘1’ bit encodes 3 pixels, so

on average, it takes less than one bit to represent one pixel.

The entropy of a pixel is calculated by the equation

Information = − log2 probability(colour)

For example, if a pixel is just as likely to be either black or white—50% for both—

then we need − logbase2 0.50 = 1 bit to represent either case. If say 90% of the pixels

seen have been black, and we assume that the probability that the next pixel is

black is also 90%, then it will take − logbase2 0.90 ≈ 0.152 bits to confirm that, or

− logbase2 0.10 ≈ 3.322 bits to represent the fact that this pixel is actually white.

For the purposes of bitmap template matching, each pixel in one bitmap is

predicted based on the proportion of white and black pixels seen in the ‘context’ of

the surrounding pixels for the same pixel position in the other bitmap. If the two

bitmaps are very similar in size and shape then these predictions are more likely

to be correct, and can be encoded with relatively few bits. On the other hand, if

the bitmaps are dis-similar then the predictions will be incorrect more frequently,

requiring more bits to represent each incorrectly predicted pixel. The quality of the

match is measured by the average number of bits per pixel needed over the entire

bitmap.

Compression-based template matching as implemented in the OMR system is

used to compare unknown objects against already classified primitives. This is in

addition to the pattern description rules mentioned above. This acts as a form of

adaptation; the set of templates used to identify unknown objects changes dynami-

cally as the system progresses. An example of compression-based template matching

being used adaptively is shown in Figure 5.13. The quaver rests shown in black were

88

(a) Objects matched against original ‘crotchet rest’ objects using compression-based template matching.
(Original objects in black)

(b) (c)

Figure 5.13: Quaver rests found by compression-based template matching. (b) shows
a quaver rest from the smaller top stave (with dimensions of 14×26 pixels); (c) shows
a quaver rest from the larger stave (22×39 pixels)

identified using the standard pattern descriptions. The rests shown in red were

matched against one of these ‘original’ rests, the rests shown in blue matched one

of the red rests, and the rest shown in green matched against one of the blue rests.

Due to the smaller staff height of the top stave, some of its objects vary in shape

and proportion to the same objects on the larger staves. These shapes are differ-

ent enough that the näıve XOR bitmap matching fails to match them against the

pattern template at the same threshold that the larger objects match against. The

two top stave rests were found on a subsequent run of the identification specialist,

presumably because they were checked against existing objects before the objects

that they matched against were identified.

Adaption is a desirable feature for any recognition system, as the shapes of

objects used in the current page are the best indicator of similar objects in the

same document, as opposed to matching shapes against a set of pattern descriptions

created a priori. Compression-based template matching is used for two purposes in

the system: for comparing unknown bitmaps to bitmaps from classified objects, and

for comparing unknown bitmaps to other unknown bitmaps. Both of these purposes

are described below.

89

Comparing to Known Objects

As implemented in the OMR system, an unknown bitmap is classified as being the

same type as a known bitmap if there is relatively little entropy required to calculate

each of them from the other. Experimentally, an average of 0.4 bits per pixel or less

was determined to be a good cut-off point for matches, as suggested by Inglis and

Witten [43].

Comparing to Other Unknown Objects

It is advantageous to realise that several unknown objects appear to be graphically

similar or identical, even if they are (as yet) unclassified. By storing this information,

a knowledge specialist may be able to use this extra context to make an educated

inference that could not be otherwise calculated. This is now explored further.

5.4.3 Identifying Objects with Semantic Feedback

Higher-level specialists, such as Primitive Assembly and Musical Semantics, can

provide a list of possible types for unknown objects based on the known surrounding

objects, using the specialist’s internal rules for how objects relate to each other. This

information can then be used when trying to classify objects.

The OMR system uses compression-based template matching to group unknown

objects into clusters of similar shapes, and then examines each cluster to see the

list possible types suggested for each object by other specialists. Based on those

suggestions, the clustering algorithm decides which, if any, of the suggested types

will be assigned to all the objects in that cluster. Factors that influence whether or

not to assign the type include:

• the number of unknown objects in the cluster,

• the proportion of objects in the cluster which have that type as a suggestion,

• the number of (and certainty assigned to) different suggested types, and

• whether there is a rule describing the suggested type, or if it is a previously

unknown type that the Primitive Identification specialist has no knowledge of.

The idea behind the fourth point is to bias decisions in favour of suggested types

that are not currently recognised. If there are recognised objects assigned with that

type, then the assumption is that the Primitive Identification specialist should be

90

able to match other unknowns of that type, for example by using compression-based

template matching to compare them to the existing classified objects. Perhaps more

importantly, this also means that objects can be classified as types that exist in the

musical semantic rules but do not have primitive description patterns written for

them.

For example, if there are six objects in a cluster of similarly shaped unknown

primitives, and they all have the same suggested classification (and no other offered

alternate types), then it makes sense to accept the suggested type for those objects.

If there are several competing suggested types, or types that are only suggested for

a minority of the objects in the cluster, then the above factors must be weighed up

to decide which (if any) suggested type should be given to the objects.

(a) Missed crotchet rests shown in semantic lattice (near
nodes 428, 432, 451 and 455)

(b) Classified crotchet rests after compression-based template match-
ing clustering

Figure 5.14: Clustered objects identified by use of semantic information

91

Figure 5.14 gives a practical example of this. The Musical Semantics specialist

detects that there are objects missing from its lattice, shown in Figure 5.14(a),

and calculates a list of possible objects based on the durations in the relevant time

segments. (This was described in more detail in Section 5.2.3.) When the Primitive

Identification specialist receives a request to identify unknown objects, the possible

types for each object, based on the semantic feedback, is taken into account. This

specialist detects that there are four unknown objects that are very similar in size

and shape, and that all have “crotchet rest” as a suggested possible classification.

It then makes a decision to classify them as this type, as shown in Figure 5.14(b).

It is important to note that, in the example given here, the Primitive Identi-

fication specialist has no knowledge of the ‘crotchet rest’ primitive type. There is

no pattern description rule describing the graphical appearance; the knowledge that

there is a musical object type called a ‘crotchet rest’ that has a base duration of one

beat is represented by the syntactic rules that describe Western Music Notation.

But once this information was attached to objects, even as an uncertain classifica-

tion, another specialist was able to use it to make a decision with the benefit of this

extra context.

5.4.4 Segmentation of Objects

An OMR system needs to correctly account for objects that are either

• deformed because they overlap or touch other objects; or

• broken up into separate, non-touching pieces.

Both of these problems can be caused by poor typesetting or be introduced during

image re-production (such as photocopying or scanning). Computer-typeset scores

are generally much worse than hand-crafted manuscripts for typesetting problems,

since experienced engravers try very hard to ensure pages are readable. To recognise

touching and overlapping objects, there are two approaches that could be used:

1. use patterns and algorithms that are designed to match against only part of an

object. (In this implementation, notehead recognition uses this technique to

extract shapes from larger objects, rather than only comparing against isolated

objects.)

2. perform pre- and post-processing on unrecognised objects to determine where

92

they may be overlapped; thinning algorithms can find ‘weak’ points to break

up large objects.

The first method has the advantage of being more robust but is generally much

slower, as it requires every pattern to be matched against many possible offsets

inside the larger object. The second method has the disadvantage of not having any

context for deciding which weak points are due to image or typesetting quality and

which are inherent in the graphical shape.

Figure 5.15: A barline partially removed by the typesetter.

Sometimes segmentation can be deliberate—Figure 5.15 shows an example where

a barline has been partially removed by the typesetter to make room for a perfor-

mance instruction. While this does not pose a problem for a musician reading a

score, segmentation such as this may confuse an OMR system. In this particular

case, two vertical lines may be found instead of one, but they may not be recog-

nised as barlines if barlines are classified as vertical lines that begin and end on the

appropriate stave lines.

Segmentation of objects can be due to poor image quality, but is sometimes

also caused by the some of the image processing steps during OMR. The OMR

system developed for this research has a Segmentation specialist tasked with modi-

fying unrecognised objects so that the Identification specialist has a better chance of

recognising objects that were previously deformed. The main task of this specialist

is to join two nearby unknown objects into a new larger object, and then generate

a request asking for any newly created objects to be processed by the Identification

specialist. From observation, segmentation of objects due to staff line removal is

almost always vertical and not horizontal. This knowledge could be used to im-

prove the process of joining objects together again, by using different thresholds for

93

distances in each direction.

5.4.5 Practical Issues in Object Identification

If a specialist suggests that an object is classified incorrectly then the object may be

reset back to being classified as “unknown”. For a Western Music Notation example,

vertical lines that do not make syntactic sense—that is, they are neither a barline

or part of a note—are returned to an “unknown” classification, due to a request by

the Musical Semantics specialist indicating that the current classification of those

particular objects is incorrect. Sometimes vertical lines are extracted from objects

that are not initially identified, such as from the stem of flats ([).

When an object was mis-identified and extracted from a larger object (as some

patterns are, notably full- and hollow-noteheads), then it should be inserted back

into the larger object. This can cause difficulty in putting objects back together

again if some of the leftover fragmented components were themselves joined together

into new, larger unknown objects. The system amalgamates previously fragmented

objects when one fragment is re-classified to “unknown”: this is only done if the

parent object and sibling objects (that is, the leftovers after the object was removed

from the parent) are flagged as “unknown”, even if the siblings have since been

joined into larger objects by the segmentation specialist. This is only possible if the

larger object that a sibling is now part of has not itself been classified.

Noise versus Dots

Many objects are found that meet the pattern description rules’ criteria to be classi-

fied as a “dot”. Dots are used for different purposes in Western Music Notation, so

it may require semantic information to determine the meaning (if any) of a dot. For

example, dots are used as part of the bass clef object, they can follow a notehead as a

durational (augmentation) dot, and dots can also be used above or below noteheads

as a staccato marking.

Many dots are also found in the leftover parts of the image after the extraction

process for other primitives. Figure 5.16 shows several areas where the extraction of

identified objects such as noteheads and vertical lines has left behind small fragments

of images, and these may be mistaken for small dots. Although these fragments

appear different to the legitimate dots in the figure, there are often a variety of

shapes and sizes of legitimate dots that look similar to some of these noise fragments.

94

Figure 5.16: Extract showing dots and noise remaining after object extraction

A simple technique to overcome this problem is to modify the primitive identification

extraction process so that small objects left over that would meet the criteria to be

dots are instead marked as noise, so that only completely disjoint dots are further

processed to be identified by the dot pattern rules.

Droettboom [28] deals with the problem of extraneous dots affecting note dura-

tion when examining bars that have a duration inconsistent with the time signature.

One of the methods used for correcting the bar is to remove a durational dot from

a note that has one, and test if that corrects the bar’s duration.

5.5 Text Recognition and OCR

The Page Layout specialist uses a flood-fill [62]—sometimes called “connected com-

ponents” analysis—to group the black pixels on the page into objects, and marks

large objects as possible staff systems. The Text Processing specialist looks at

the remaining objects marked as “unknown”—initially, all objects that are not large

enough to potentially be staff systems as determined by the Page Layout specialist—

and uses some basic heuristics such as minimum size and minimum aspect ratio to

determine which objects are likely to be textual. In addition, suspected text charac-

ters are assumed to be more likely to be text if they are horizontally close to other

suspected text characters. Fujinaga [36] makes a distinction between suspected text

objects that are near others and those that are not. This increases the chance

that characters that are part of a text region but unrecognised are still flagged as

“unknown text”, rather than reverted to being “unknown” objects and then being

incorrectly identified by the musical object primitive recognition routines. The rea-

son for this is that some objects that are not on a staff system might appear to

be text, but are not. Examples of text that might not be near other text includes

bar numbers, fingering directions, and dynamic markings, while examples of objects

95

Figure 5.17: Sample score showing both text and musical objects off the stave

that might be mistaken for text (based on the loose filtering by position and size)

include short phrase markings such as ties and pauses, accents, ledger lines, and

notes that are not physically joined to the staff system (for example, due to broken

stems, or split voice with stems pointing away from the stave). Figure 5.17 shows

this problem for objects located off the stave system, with both text objects (digits,

dynamic markings such as f, psfz and “dim.”, and the “trill” mark) and musical

objects (including dots, notes, rests, ledger lines, and tie/slur markings).

Performing OCR on the suspected text objects should more accurately identify

which are text and which happen to be non-text objects that are outside the staff

system areas, leaving these to be processed by the music primitive recognition stages.

This may still not be enough if some musical objects in a particular notation look like

text. For example, in Western Music Notation, the flat symbol [can look similar

to a lowercase “b”. In other notations, text may actually be used for notational

purposes—recall the Indian Bhatkhande notation example in Figure 1.3 (page 3). It

may be possible to use semantics to find falsely classified objects; an object identified

as a text character that seems to be out of place could be given to the musical

Primitive Identification specialist to test whether it also looks like a musical object.

However, this line of investigation was not pursued.

It is also expected that performing text-removal will result in a net performance

gain for the whole OMR process, as there are fewer unknown objects for the later

stages to do multiple passes over for making suggestions.

96

The lack of a high performing open source OCR implementation prevented fur-

ther efforts into exploring the use of textual semantics in this OMR system, although

this situation may improve in the future. While preliminary tests show that the

primitive recognition routines could be adapted for recognising text glyphs, a text-

specific process, taking advantage of structure and properties unique to text, should

give better recognition results. Examples of text properties for Western alphabets

include the baseline, the x-height, the caps-height, and the descender-depth for each

font, as well as language detection. For Latin-based alphabets, the language can

often be inferred from the character frequencies and combinations, and this can be

used for spell-checking and limiting the range of valid characters (such as accented

characters).

5.5.1 Musical Semantics of Text

Any text on a score often affects the semantics of the music. This means that not

correctly identifying text or understanding the text’s meaning affects the music.

Several examples are:

• Identifying which digits are for grouping and tuplets, and which are perfor-

mance suggestions such as fingering numbers. The first bar of Figure 5.18 has

both triplets (marked with a “3” enclosed by a slur) and fingering suggestions

(marked with a “3” and a “5”).

• Implied phrasing, where the musician understands that an instruction contin-

ues to take effect. This is often explicitly marked by “simile” or “. . . ”. In

Figure 5.18, the notes in the first bar have triplet markings, and a musician

understands that the remainder of the piece is performed with triplets despite

the lack of explicitly drawn markings or instructions to this effect. This means

that each group of three notes is performed in the space of two notes. Because

tuplet markings affect the duration of the notes, not identifying tuplets leads

to bar durations not agreeing with the time signature.

• Instrument names for staves in orchestral or group music scores. This can be

important for aligning staves between sheets when some staves are inserted or

removed from pages. Typically, the first page of a conductor’s score lists all

the instruments, and staves are dropped for instruments that do not play a

passage or movement in the subsequent pages.

97

• Lyrics need to be correctly associated with the appropriate note for timing

and duration information.

5.5.2 Example of Text Detection

Figure 5.18 shows the result of the text region detection on a piece by Chopin. The

suspected staff systems are greyed out, and the objects in black are suspected text

objects. Most of the non-system objects pass the above heuristics for classification

as possible text; the objects (coloured medium grey) that are excluded by these

rules are either too small—such as some dashes and dots—or have an unacceptable

aspect ratio, such as some slurs and system braces.

This demonstrates some obvious problems with the simplistic text detection.

Firstly, some musical objects that are not touching part of a system are flagged

as potential text because they have the similar size or shape as real text. Rests

and notes in split voice are particularly likely to be detached from the system.

Secondly, some small objects that are excluded may be needed for OCR; text includes

punctuation and accented and dotted letters. Fujinaga [36] includes small objects

as text if they are very close to other detected text. Thirdly, it is not uncommon for

consecutive characters to be touching, resulting in a wider bounding box. This may

mean that they form one large object that has an aspect ratio or size that excludes

it from being flagged as possible text. Lastly, text on different parts of the page

may be in different sized fonts, so any size thresholds may be too limiting. Carter

used a size relative to the inter staff-line gap for lyrics in sacred harp notation [23].

As mentioned earlier in this section, the “x-height” of a line of text is easy to

calculate, so this could be used to identify lines of text at once rather than individual

characters.

5.6 Staff Processing/Page Layout

To find staff lines, the system performs a horizontal projection (as described in

Section 3.3) and then calculates which peaks in the projection correspond to staff

lines. The algorithm used for removing staff lines while leaving the super-imposed

objects intact is based on Bainbridge’s “track wobble” method from the CANTOR

system [5]. To remain flexible so that different music notations may be recognised,

the system does not assume that staves may only have five staff lines (as in Western

Music Notation). Instead, the number of staff lines is calculated based on the gaps

98

Figure 5.18: Objects suspected of being text (in black). Excluded objects in grey.

99

Figure 5.19: Obvious peaks in staff system projection

100

between them; small gaps are assumed to be between lines on the same staff, while

large gaps are assumed to be gaps between staves on the same staff system.

The OMR system identifies the staff lines by first finding the longest peak in

the projection, and then finding all the peaks that are longer than some threshold

relative to the longest peak. If this threshold is too high, then some staff lines will

not be found, especially if the image is very slightly skewed. If the threshold is

too low, then erroneous staff lines will be found where peaks are caused by other

objects. Also, the length of the longest peak in the projection is used as a measure

of the skew; if the longest peak is less that 65% of the staff system’s width, then it is

assumed that the system is skewed. If 1
5 or more of the staff systems are determined

to be skewed, then the staff processing specialist generates a request for the page to

be rotated to remove skew.

Figure 5.19 shows a projection of a completely de-skewed staff system. Because

there are many long beams at the same vertical position, there are several long peaks

in the projection for the corresponding horizontal line. These may be mistaken for

stave lines. Figure 5.20 shows an extract with a deformed staff system; it appears

that the typesetter made an error in aligning the lower stave of the top staff system.

Also, the image was scanned in with a small amount of skew, and the projection

shows both of these problems. The short peaks of the projection compared to the

system width are symptomatic of skew in the image, while the even shorter peaks

in the lower stave of the first system are caused by the staff lines being non-parallel

to the staff lines of the upper stave and lower staff system.

Like the other parts of the OMR system, the Staff Processing specialist tries

to be more tolerant with its threshold settings as the system execution advances.

To achieve this, the specialist gradually reduces the percentage of the longest peak

required for other peaks to be identified as staff lines. On the most tolerant setting,

peaks that are only 20% of the width of the longest peak are assumed to be staff

lines, but this looseness is only tried after multiple attempts to identify suitable staff

systems have failed.

5.6.1 Page Layout

To correct the image for any skew due to the image not being scanned in completely

straight, a Hough Transform is used to find long lines. Each pixel in the input image

can lie on many possible lines, and each potential line—at every angle between 0

101

(a) Non-parallel staff lines in the upper system

(b) Horizontal projection of staff systems

The staves are not parallel; the inter-stave gap is marked in the first staff system.

Figure 5.20: Obvious deformation in staff system affecting projection

degrees and 180 degrees—through that point is recorded. If many pixels are on the

same potential line then the transformed point for that line will have more votes,

shown as a dark spot in Figure 5.21(b). The pixels that lie on the marked line

in Figure 5.21(a) are represented by one position in the transformed data, marked

with a cross in Figure 5.21(b). This marked line is identified by its distance from the

origin, and the angle of the perpendicular line. There are a series of dark spots at

90 degrees in the transformed data, corresponding to the long horizontal staff lines

in the image. It is this area of the transformed data that has the strongest points

and these points indicate the skewed angle, if skew is present.

The Hough Transform is a robust method for calculating the angle of skew for

the input score image. This can be processor-intensive, so several steps are taken:

1. The transform is only done on the largest single object found on the score,

rather than on the whole score. The assumption here is that a staff system

will be the largest found.

2. The algorithm was used in two stages—firstly, using a coarse resolution to find

102

(a) Sample Image for Hough Transform

distance
from origin

angle to origin

0

-l
0° 180°

+l

(b) Graphical Representation of Hough Transform Data

Figure 5.21: Using the Hough Transform for calculating skew

the general skew angle, and then at a finer resolution of only twenty degrees.

5.7 OMR System and Coordination Issues

So far, this chapter has discussed implementation details and issues for the various

specialists in the OMR system. However, there are some observations that are either

not about any particular specialist, or affect all the specialists. These points—as

well as issues that relate to the coordination of these specialists and their data as a

whole—are now examined.

5.7.1 Boundaries between System Stages

Some processing or generation of information could arguably be the responsibility

of more than one knowledge source. For example, in Western Music Notation, there

are several cases where some objects are specialisations of other objects; a commonly

occurring case is that some vertical lines are barlines. Which specialist should be

responsible for determining which are barlines and making this assignment—is this

semantic, syntactic, or primitive information? Similarly, alto clefs and tenor clefs

have exactly the same appearance, as shown in Figure 5.22; the only difference is

where they are located on the staff.

103

Figure 5.22: Alto (left) and Tenor (right) Clefs

Technically, it does not really matter to the system which specialist assigns a

particular value to an object; an OMR system using a coordinated approach should

be flexible enough that where individual pieces of information comes from does not

affect the overall system recognition quality.

Although the specialists in the implemented system were designed to have min-

imal overlap in functionality, only minor modifications would be needed to support

this. One possibility is to have multiple specialists able to handle the same types

of requests, and have a strategy for choosing which specialist should handle each

instance one a request-by-request basis. This is now further explored.

5.7.2 Possible Coordination Strategies

This system could be extended to allow competing knowledge sources (such as dif-

ferent pattern recognition modules), although this would require new coordination

strategies. Possible methods for dealing with the different conclusions from each

competing specialist include:

• the use of a voting mechanism between the different specialists. For example,

each Primitive Identification specialist could be asked: “Do you think this

object is a treble clef?”. Alternatively, the specialists could rank a list of

likely classifications and the coordinating process combines these lists and

weighs up each entry (possibly based on each specialist’s history of accuracy)

to determine the most likely classification;

• trying each alternate hypothesis from each competing specialist, and testing

which leads to the most accurate representation of music at the end (for ex-

ample, based on the number of detected errors and unrecognised objects); or

• having a preferred order for competing specialists to be used, so an alternate

one is only used if the preferred specialist made a detectable mistake or was

unable to process a particular object.

104

• choosing the least-recently used specialist that provides the functionality, so

that each is chosen in turn for subsequent requests of the same type.

5.7.3 System Progress and Tolerance Levels

The coordination module is responsible for passing the execution to each specialist

as required to service requests. One potential problem with the current design of

this system is the possibility of the system performing a loop, where a specialist

generates a request which is serviced but does not change anything, so that the

system’s internal state does not change and the specialist generates an identical

request when it is next called, and so on. There are several techniques used to

minimise this effect. Firstly, the coordinator has resource limits on each specialist,

and these can be configured on a per-specialist basis by the operator. For example,

by default each specialist is only allowed to receive five requests while processing

the score, and only five requests made by each specialist will be serviced by the

coordinator. In addition, by default each specialist will not be given any requests

for servicing if it has already used up sixty seconds of processor time. However,

typically the Primitive Identification specialist is configured to allow many more

requests—experimentally, two hundred was found to be adequate—since it is the

only specialist that can service the majority of the requests. The second technique

used to help prevent the system getting into a loop is for specialists to detect if no

progress is being made, and to increase their tolerance level so that they are looser

when applying thresholds.

Specialists can detect whether or not progress is being made by examining the

objects that are within their area of expertise. For example, the Primitive Assem-

bly specialist calculates its state based on the possible types it has calculated for

unknown objects, and it keeps track of its state each time it is called. Similarly,

the Musical Semantics specialist calculates its state from the warnings and errors it

generated when parsing the semantic lattice. When one of these specialists detects

that it is in an identical state to one that it has previously been in, it relaxes the

tolerance levels on each request it generates.

When identical requests are repeatedly made, something needs to be done dif-

ferently to change the system’s state. Some specialists perform different actions

depending on how often they are called. For example, the Staff Processing specialist

becomes more tolerant each time it is asked to find staff systems, because it only

105

performs this task if there are no suitable systems found. Alternatively, a request

that has been generated many times should have a lower chance of being selected,

since little progress is being made, and processing should be given to other requests

that may make changes to the current state. The implemented system only counts

identical states rather than identifying previously generated requests.

The general behaviour of this system is to start with restrictive threshold values,

and become more tolerant over time as more information about objects is calculated.

When suggested classifications for an unknown object are tested, the thresholds are

loosened since those classifications did not adequately describe the object’s shape

at the current tolerance levels. When an object is detected as being incorrectly

classified, it is re-examined by the Primitive Identification specialist with that clas-

sification blacklisted from consideration. A possible alternate strategy that could

be investigated is to make the testing use more restrictive thresholds, rather than

excluding types from being tested.

5.8 Other Practical Difficulties

Various difficulties with some scores were encountered during the development and

testing of the system. These include problems due to accidental omissions or mis-

takes by the composer, carelessness by the typesetter, and complex or uncommon

notational constructs. Several of these are now described, illustrated with example

input score fragments to demonstrate the problems.

5.8.1 Typographical and Editorial Errors

It is not uncommon for published scores to have minor typographical errors in

them—often a seasoned performer or music reader will not even notice a minor

omission. Figure 5.23 shows one of these simple omissions that was encountered

earlier in this chapter: the lowest stave is missing a quaver rest in the lead-in bar.

Ideally, an OMR system would be able to detect situations like this; in this case, a

missing rest will not affect the audio semantics as rests are generally added where

there is no obvious alternative. However, this situation could cause an error if the

system is too broad in its search and decides that another object is the missing

object, as demonstrated in Figure 5.9(b).

106

Figure 5.23: A typographical error (missing rest)

Figure 5.24: Two staff systems side-by-side. The added outline shows that the
second is slightly higher than the first.

5.8.2 Staff System Locations

A page of music may have staff systems horizontally side-by-side. Obviously, it is

important that systems are processed in the correct order when determining the

musical syntax. Figure 5.24 shows an example of two systems next to each other,

where the second system is marginally closer to the top of the page than the first. A

näıve algorithm that processes systems in order from the top of the page will get this

wrong. Both the vertical and horizontal positions of systems need to be examined

to calculate the correct order.

5.8.3 Complex or Poor Layouts

Key signatures are composed of multiple accidentals, although all the accidentals

are of the same type. The pitch of these accidentals must be in a particular order:

Figure 5.25(a) shows a bar that has a key signature with two flats (B[major),

107

followed by a chord that has accidentals. The upper two accidentals in this chord

happen to be at the pitches that would be in the correct order for a key signature

with four flats (A[major), and with relaxed tolerances in effect, the lack of any

object between the key signature and these flats can result in the flats being assigned

to the key signature rather than to the notes. In this particular case, the system

notices that the key signatures do not match between the staves, although that is not

necessarily an error if one stave is for a transposing instrument. A musician reading

this score uses the horizontal space between the key signature and the accidentals as

a visual cue, as well as the context provided by the key signatures in the other staff

and previous staff systems, and an OMR system should use the same information

to interprete these symbols correctly. The Musical Semantics specialist should err

on the side of caution when constructing the key signature, and only become more

tolerant of distances if it improves the internal semantic state.

(a) Key signature requiring context to unam-
biguously classify

(b) Transposing Clef

Figure 5.25: Examples of difficult notation

Figure 5.25(b) shows a transposing treble clef; in this case, the figure 8 means

that the notes should be played one octave lower than they are typeset in the score.

The figure sometimes appears on top of the clef instead, which means that the notes

should be transposed upwards instead of downwards. This needs to be correctly

accounted for, or the pitch calculation for the notes will be wrong.

108

Chapter 6

Evaluation

The previous chapters have demonstrated how an OMR system can be designed

to detect and correct some errors, and have shown that some types of errors are

easier to correct than others. Given extra information, it is relatively straightfor-

ward to determine a classification for a previously unrecognised object because it is

obvious that an unclassified object is wrong. It is harder to detect and correct mis-

classified objects. The main way this is achieved is via feedback from the higher-level

specialists—Primitive Assembly and Musical Semantics where they have detected

inconsistencies—to the lower-level Primitive Identification specialist, which makes

use of the classifications suggested by them. In some cases, objects can be success-

fully identified based only on suggested types from the Semantics processing, even

for types that are completely unknown to the Identification specialist.

This thesis has described many of the practical decisions and considerations that

were made when implementing the various stages of an OMR system. The behaviour

of the specialist modules, their interactions, and the effect of the different types of

knowledge introduced by them is now measured. The tasks are demonstrated by

studying the system’s behaviour in-depth for several input scores.

6.1 Measuring System Performance

For musical scores, there are different levels of re-construction that are acceptable

end goals, resulting in various trade-offs to be considered. Some people may be

happy with just the pitch and duration information required for audio playback

(disregarding score notation details and performance markings), while others may

be after just textual metadata and lyrics (such as for a traditional music library).

109

Someone compiling a large corpus may be satisfied with less accurate reconstructions

of the scores if the processing time can be significantly reduced.

While it is fairly straightforward to test the accuracy of the operations involving

purely symbolic data (that is, low-level graphical manipulations and primitive as-

sembly), the evaluation and comparison of high-level information “is still a largely

unsolved problem” [29]. As with other document image analysis domains (such as

mathematical equation recognition, topological map recognition, and electronic cir-

cuit diagrams), part of the problem is that modelling the semantics of the domain

is complex enough that multiple representations may be semantically equivalent.

The level of human perception required to evaluate the semantics makes it difficult

to formalise rules describing them for automation, or for comparing the semantic

similarity of two different states.

Figure 6.1 shows an assembly error where notes are assigned to the wrong stems,

forming chords in the upper voice instead of assigning the lower note to the lower

voice (except for the first note, shared between voices). In such a case the audio

semantics would not be changed since the correct notes would still be played, but

the notational semantics are incorrect since the notes are located in the wrong voice.

Figure 6.1: Notes assembled incorrectly (first, second and fourth)

6.1.1 Measuring Effectiveness

The OMR system described here is composed of individual specialists that are con-

trolled by a coordinating process. The performance of the specialists’ actions needs

to be measured so that the coordinating process can calculate which specialists

should be run next, as well as determining when an acceptable state has been reached

for processing to finish. To determine whether or not some action is improving the

system’s internal representation of the musical score, the following qualities should

be measured:

• the effect that processing a request (or set of requests) makes.

110

• a “goodness” or “completeness” rating for the output from every specialist.

• the difference in “completeness” between two outputs from the same specialist.

• finding good thresholds and tolerance levels for various algorithms.

• the amount of time used by each specialist, including time spent processing

their requests.

Unfortunately, the completeness of a particular internal system state can be

difficult to quantify. Turning the problem around, an acceptable indicator may be

to determine the number of obviously incomplete items, by quantifying:

• the number of unknown or unaccounted for objects.

• how much extra processing each specialist would do if it were given the current

state as input.

• some measure of the total certainty of all the detected objects.

6.1.2 Issues in OMR Evaluation

Evaluating the calculated semantics of music is difficult; there can be multiple ways

to represent the same music, meaning that there is no single correct representa-

tion. Comparing an audio representation to a notational representation requires the

interpretation of either one or both instances. Even comparing two instances in

the same form raises problems. For audio representations, it is difficult to compare

two sounds and quantify how similar they are: comparing the timbre of different

instruments, changing volume levels, and timing variations are subjective qualities.

Comparing the semantics of visual notation faces similar problems in deciding how

closely two scores match; although they may represent identical audio and perfor-

mance instructions, there are many ways for them to differ visually. Examples of

this include:

• the direction of note stems;

• the location of secondary objects such as slurs or other performance directions

(above or below the note);

• the use of different glyphs or symbols (for example, using “]]” instead of the

“x” symbol for double-sharps).

111

• transposition of notes, such as changing clef rather than using many ledger

lines above or below a stave;

• the horizontal spacing of objects, which is important for page layout features

such as the bars on a system, and page turns.

Measuring the severity of different errors can be problematic; for example, sec-

ondary semantic objects (such as key signatures) can affect a large number of primary

objects (notes and rests). Getting a time signature wrong will result in an incorrect

number of beats in each bar that follows, causing erroneous additions or subtractions

of time events. A wrong key signature will result in incorrect semantics for every

note at any of the signature’s mis-detected pitches, even when the note was iden-

tified on the correct stave or ledger line. An incorrect clef will result in every note

on that stave being assigned a wrong pitch. However, despite the audio semantics

being wrong for many notes, this is only due to a single error, and the semantics are

arguably “more correct” than if the key signature and clef were identified correctly

but each note was identified incorrectly.

There have been several proposals for visual evaluation of notation by people.

One method that has been proposed [5] for evaluating the notation visually is to

measure the number of changes to the primitives in a hypothetical music notation

editor. Different errors could be measured—for example, Table 6.1 shows some

typical errors that could be corrected, and an associated “cost” for each correction.

This means that a missing accidental or incorrect key signature is only counted as

one mistake, rather than as one mistake for every subsequent note that was assigned

an incorrect pitch due to the mistake.

Type of error hypothetical edit Cost
Note was assigned wrong pitch modify 0.5
Note was assigned wrong duration modify (tails/dots) 0.5 each
Missed time event insert and assign time 1
Erroneous time event remove 1
Accidental not correctly assigned insert 1
Key signature mis-detected insert or remove accidentals 1 each
Clef missed insert 2
Time signature unrecognised insert 2

Table 6.1: Hypothetical Cost of Different Recognition Errors

Evaluating the results of different OMR systems introduces extra difficulties;

these generally use incompatible and proprietary file formats, and interface directly

with a music notation program. While many of these systems can export scores

112

to the MIDI format, this format is only capable of representing pitch, volume and

durational data, and of little use for evaluating notational information. The In-

teractive Music Network compared several OMR systems by getting volunteers to

visually compare the notation of the reconstructed scores [18, 56], as mentioned in

Chapter 2 (Section 2.1.10). This was done by measuring fourteen points evaluating

symbol identification and symbol relationships. These are:

• notes with correct pitch and duration;

• association of accidentals with notes;

• recognition of rests;

• grouping beamed notes;

• time signatures;

• key signatures;

• symbols (such as accents, trills, and performance markings);

• grace notes;

• slurs, ties and bends;

• durational (augmentation) dots;

• clefs;

• recognition of irregular note groups (tuplets);

• number of barlines/bars; and

• number of staves.

6.2 Evaluation of System Specialists

Evaluating individual specialists is problematic, as often the information calculated

by one specialist is used for decision-making by another specialist. As discussed

earlier, it is also difficult to quantitively measure semantics. For the lower-level

processing specialists, it is straightforward to measure the accuracy of the graphical

processing and identification routines. For the higher-level specialists, the effect of

their feedback requests on the identification routines can be measured.

113

Strengths and weaknesses of the system can be found by examining the effect

of various settings on the amount and quality of feedback, both on a per-specialist

basis, and a total system basis. One important quality to measure is robustness:

how much degradation of the input image can be recovered from? This helps to

determine the limits of the system.

The system has a setting that defines how much to loosen tolerance values when

a specialist is told to ‘be more tolerant’ in its tests; a smaller value will result in

the tolerance value changing slowly, while a larger value may lead to more drastic

changes in rule matches. The effect on system performance of changing exactly how

much to loosen the tolerance each time can be measured.

Another important setting controls the amount of feedback allowed (both per-

specialist and system-wide). The behaviour and performance of the specialists are

now examined in detail, in the general order that they are first called.

6.2.1 Preprocessing/Page Layout

The system uses a Hough Transform to detect any page skew if the score was scanned

in at an angle. In some instances, it was difficult to measure the true skew angle for

input scores because the staff lines and systems on the image were not completely

parallel. In most cases during testing, the algorithm calculated the angle to within

one degree of what was perceived to be “straight”.

In several instances, the de-skew algorithm completely failed. For one image, the

input score image was ninety degrees from upright, and the de-skew algorithm ro-

tated the image ninety degrees clockwise instead of ninety degrees counter-clockwise,

resulting in an upside-down score. For situations like this, more document analysis

would be required, perhaps by studying any text on the page. For another score,

the input image had a large border around the sheet of music, so the transform was

performed on that instead of a staff. The longest lines found in this object were

running down the page, so these were assumed to be staff lines and the image was

rotated to ninety degrees, causing the rest of the OMR system to fail to find the

staff systems.

6.2.2 Staff Processing

The major cause of the Staff Processing specialist failing to locate all staff systems

and extract the staff lines is too much skew or deformation of the input image. As

114

discussed in Chapter 3 (Section 3.3), a horizontal projection of the staff system is

used to locate the long horizontal stave lines. For deciding which peaks in the projec-

tion correspond to stave lines, the threshold is 50% of the system’s width, although

this threshold will be made more tolerant if the specialist is called repeatedly (which

would indicate that there is a problem finding error-free staves or staff systems).

Figure 6.2: An error during staff-line extraction

Figure 6.2 shows an example of the Staff Processing specialist failing to com-

pletely remove all the staff lines in a system, leaving one staff line behind. This

results in a single, large graphical object linked by this line, rather than a set of

isolated graphical objects. The detected staff lines are greyed out, text objects are

coloured, and the unknown objects are outlined and in black. While this is not a

critical failure, it results in degraded performance for the Primitive Identification

specialist in several ways:

• primitive patterns that are defined as ‘isolated’ types, such as rests and ac-

cidentals that should not be joined to other primitives, will not be matched

(unless or until the object is broken up at a later stage by other primitives

being removed, or explicitly broken up by another specialist).

• primitive patterns that are allowed to be joined to other primitives, such as

note heads and stems, will take much longer to process the object because of

its size—the graphical routines will take time to scan over the mostly empty

space.

115

6.2.3 Object Identification

The OMR system’s object identification routines are rather näıve. For example, the

template matching used for comparing objects to the primitive pattern descriptions

does a straightforward pixel to pixel comparison, when more sophisticated matching

routines could be used, such as Compression-based Template Matching [78] or a

non-template method such as a decision tree of multiple features.

The reason for this design decision is because the focus is on the coordinated

systemic approach correcting mistakes. However, it would be a good idea to test

results against a better identification specialist and see if the coordination still has a

positive effect or if the effect is merely due to the poor recognition in the first place.

When given semantic feedback about possible types in an area, there are several

actions that can occur to match unknown objects to the possibly missing objects:

• näıvely assign this possible type to all the nearby unknown objects, with the

certainty inversely proportional to the number of nearby objects and the num-

ber of possible types.

• cluster unknown objects of the suggested type, and check if they have the

same physical features. For example, if ten different objects have been given

the same suggested type, and those ten objects are very similar in appearance,

then this could be used as evidence in favour of the suggested classification.

For an example of the first possible action, if there is only one suggested missing

object type in a region and there is only one nearby candidate unknown object

then it seems more beneficial to assign this classification to the object, as opposed

to (say) having three or four different possible types that have been suggested by

the semantic analysis for an area that has several unknown objects. The suggested

classifications can then be tested by the Primitive Identification specialist for types

that have primitive descriptions, or they could even be accepted outright, depending

on how conservative the system’s settings are.

Compression-based Template Matching

As well as being used for clustering unknown objects, Compression-Based Template

Matching (CBTM) is used for comparing unknown objects that do not match any

of the pattern descriptions to already-classified objects.

116

CBTM, as implemented in this system, provides a form of adaptation in the

patterns. Since each run of matching unknowns can test against objects found in the

previous runs, the set of identified objects may become more and more divergent from

the original templates described in the user-supplied patterns. Figure 6.3 shows that

the majority of objects matched by CBTM were correct; most of the false positives

were parts of objects fragmented by staff line processing that were similar enough to

“dots” to match an existing object of that type. For the column labelled “Correct”

in Figure 6.3(a), this means that the matched (previously unknown) object has

the same graphical shape as the template (previously recognised) object. That is,

the evaluation is on whether the two bitmaps were successfully identified as being

the same type of object, not whether the object type was identified correctly, for

instances where the known object was mis-classified. The majority of errors in the

evaluated scores are for objects that look like dots. These results suggest that CBTM

should either not be used for very small objects, or should use different threshold

settings based on the object’s size and shape.

Score Matches Correct Common Errors
Promenade 55 49 (89.1%) 5×dot (see Figure 6.3(b))
Clarinet Concerto 129 80 (62.0%) 37×dot (see Figure 6.3(c))

(a) CBTM bitmap statistics

(b) Some of the erroneous matches (left: dots, right: rectangular rest)

(c) Dots found due to bad staff line removal

Figure 6.3: Evaluation of Compression-based Template Matching

Recognition Rates

An example of Primitive Identification performance is now given. The performance

is affected by the other specialists, but this section gives an indication of how the

Primitive Identification specialist fits into the system. More comprehensive data on

117

the number and types of identified primitives is provided later in this chapter.

Table 6.2 shows the number of classified objects for several primitive types at

different points in time. This shows the changing recognition rates as the system

progresses through the different specialists and re-evaluates decisions based on new

contextual information. The system’s behaviour depends significantly on various

configuration settings; these results are for a configuration set that was heuristically

found to give acceptable performance. The following definitions are used as column

headings in the table:

Time is how many times any specialist has performed an action since the processing

started. This value increases each time control passes to another specialist, so

an arbitrary number of feedback requests may have been processed between

two listed time points; only actions that resulted in a change to the state at

the previous time are listed.

Wrong means an object of a different type was incorrectly identified as this type.

Irrelevant means a minor mistake was made (such as a leftover sliver from a vertical

line is recognised as another vertical line), but did not modify an object enough

to prevent it from being correctly recognised.

Missed means an object of this type was recognised as a different type, or was

unidentified.

Ignored means that an object of this type was correctly identified, but later (incor-

rectly) re-classified—for example, based on syntactic information suggesting

that this classification was wrong.

The table shows that the number of recognised vertical lines fluctuates over time.

This is due to conflicting information generated by different specialists; because

vertical lines should either be part of a note, or a barline, the Musical Semantics

specialist says that any vertical lines that are not part of a note (nor a barline) were

incorrectly identified and should be re-recognised as “something else”. Figure 6.1

(on page 110) shows one of the causes of this—an assembly error has assigned a

notehead to the wrong vertical line, creating a chord and leaving a vertical line

unassigned when it is clearly a stem. Because this vertical line is not part of a note,

and is not a barline, the Primitive Identification specialist is asked to re-classify it,

as anything other than a vertical line. If it is re-classified back to “unknown”, it

118

Hollow Note Head

Time Identified Unidentified
Correct Wrong Missed Ignored

4 0 0 11 0
6 7 0 4 0

13 9 0 2 0
16 10 0 1 0

final

Flat

Time Identified Unidentified
Correct Wrong Missed Ignored

4 8 1 35 0
8 9 1 34 0

23 29 1 14 0
47 30 1 13 0

final

Vertical Line

Time Identified Unidentified
Correct Wrong Irrel. Missed Ignored‡

4 160 42 92 0 0
6 160 42 94 0 0

23 136† 0 15 0 8
47 140 11 37 0 4
71 135 0 20 0 9
90 135 0 20 5 4

105 140 20 27 0 4
128 136 0 21 4 4

† At this point, 16 vertical lines were (correctly) renamed by the syntax processing
to a new ‘barline’ type.
‡ The majority of ‘ignored’ vertical lines are the result of syntactic rules not allowing
note heads to belong to two voices, so the second (correctly identified) vertical line
was thought to be erroneous.

Table 6.2: Primitive Identification results for Promenade

119

may then later be joined to nearby unknown objects by the Segmentation specialist

to create a new object, and this new object may be partially or wholly matched

against one of the vertical line pattern descriptions.

The score images used while testing and evaluating the OMR system were gen-

erally acquired at a resolution of 300 DPI. While the primitive pattern descriptions

were designed to be scaled to an arbitrary staff height, the system performed poorly

on a low resolution image. It was tested with an image that had a resolution of 122

DPI, and because of their small size, many noteheads were identified as large dots

and many note beams were classified as rectangular rests.

6.2.4 Primitive Assembly

The Primitive Assembly specialist uses a configured ruleset to join some primitive

types into musical objects. As described in Chapter 5, these rules are also used in

a predictive manner to suggest types for unknown objects that would pass any of

the rules if they had the appropriate classification. This can result in hundreds of

suggestions, mostly for the large number of small unknown objects that are merely

fragments left over after legitimate objects have been identified and extracted from

the image. A closer inspection of these suggestions and the effect they have on

system performance is now given.

Figure 6.4 shows the objects identified after the Primitive Assembly specialist

has made suggested classifications for unknown objects based on the assembly rules.

These are the results for the first time that this specialist is called while the system is

processing the first page of Promenade by Mussorgsky; the following times Primitive

Assembly is called, there are fewer suggestions because there are fewer suitable

objects still left unidentified. In this figure, four objects—three hollow noteheads

and one full notehead— were tested and identified as one of the types suggested by

the assembly (shown in black), and seven unknown objects were correctly identified

as types that were not suggested for them, shown in blue. These objects were

identified despite not having the correct type suggested in the request because they

were matched to objects that had not been found when the Primitive Identification

specialist was previously called; for example, the hollow notehead shown in blue

was matched to one of the hollow noteheads that was just classified earlier in this

same processing run, based on suggested types. There are also several objects that

classified incorrectly. There are five full noteheads, shown in red, that were identified

120

Figure 6.4: Objects identified after Primitive Assembly suggestions

121

as the type suggested by the Primitive Assembly specialist, but the suggestions were

wrong. This is due to the beams not being identified, and the primitive assembly

rules suggesting that an unknown object that is touching a vertical line could be a

notehead.

6.2.5 Segmentation

The Segmentation specialist modifies the set of objects that are persistently unrecog-

nised by joining nearby objects together to create new objects that will hopefully

be recognised by the Primitive Identification specialist. There must be a limit on

the number of times that the specialist joins nearby unknown objects together, oth-

erwise it would be possible to chain objects together to create new objects that

are unlikely to be legitimate; the main reason for this specialist’s creation was to

repair segmentation caused by staff line processing. There are two actions that the

Segmentation specialist can perform after it has created new objects by joining old

objects:

1. Immediately generate a request for the new objects to be recognised; or

2. Leave the items as “unknown” objects and leave them for other specialists to

use semantics or other information to identify them in context.

The tunable settings for this specialist are the maximum number of times that the

Segmentation specialist performs its default action (of joining objects together),

and the maximum number of times that the specialist can request that the new

unknown objects are immediately processed for identification. By requesting imme-

diate processing of the new objects, execution passes to the Primitive Identification

specialist before control is given to the Segmentation specialist again. Restricting

this behaviour means that control will pass on to the higher-level specialists, such

as Primitive Assembly.

Table 6.3 shows the effect of increasing the number of times that the Segmenta-

tion specialist will merge nearby objects together into new objects. At first, increas-

ing the maximum execution count results in several of the newly formed objects

being successfully identified. Further increases in the maximum execution count

result in decreased accuracy, with more objects being mis-identified. In this table,

the following column headings may need more explanation:

Allowed means the maximum number of times that the Primitive Segmentation

122

specialist was allowed to perform its default action, which is to join nearby

unknown objects into a new, larger unknown object.

Destroyed means that the newly combined object subsequently either: i) was itself

joined to another object to create another new object, ii) had a matched object

extracted from it, so new objects were created from the remnants, or iii) had

one of the object’s components removed and reverted back into its original

object.

For example, the third row shows that when the specialist was allowed to be called

twice and allowed to generate four requests (to the Primitive Identification special-

ist), it created thirty eight new objects. Of those, twenty nine could not be recog-

nised, four were broken up or themselves joined into new objects, four were correctly

identified (for objects that had previously been segmented), and one of those new

objects was wrongly identified. With this setting, the system finished processing

with 247 unknown objects, which includes the 29 newly joined objects that were

unrecognised. This table shows that the Segmentation specialist can reduce the

number of unknown objects by joining nearby objects together and correctly recog-

nise some fragmented objects. Increasing the number of times that objects may be

joined together leads to more correctly identified primitives. However, this comes at

the expense of finding more incorrectly identified primitives.

Allowed Final Joined Objects
Calls Unknown Created Destroyed Identified Unidentified Mis-identified

0 267 0 – – – –
1 249 32 3 3 25 1
2 247 38 4 4 29 1
3 246 39 4 4 30 1
4 245 40 4 4 31 1
5 244 41 4 4 32 1
6 235 82 28 5 46 3
7 235 92 31 5 53 3
8 230 119 44 5 67 3
9 218 131 45 5 77 4

10 198 151 45 5 97 4

Results for processing the first page of Promenade. The Segmentation specialist is
allowed to generate four requests, while the other specialists are not allowed to

generate any.

Table 6.3: Modifying the number of actions allowed by the Segmentation specialist

Figure 6.5(a) show some examples of unknown objects joined together by the

segmentation specialist being correctly reconstructed and identified (although sev-

123

eral other flats fragmented by the staff line removal were joined back together but

not successfully recognised). Figure 6.5(b) shows some objects that were formed by

the Segmentation specialist and remained unknown. The two small lines in the top

right were joined into a new object that was identified as a ‘small dot’. By allowing

the Segmentation specialist to run multiple times, such objects may themselves be

joined to form new unknown objects; several of the objects in this figure (including

one of the successfully identified flats) consist of at least three distinct unknown

objects.

(a) Correctly identified joined objects

(b) Incorrectly identified or joined objects

Figure 6.5: Example objects created by Segmentation specialist

6.2.6 Text Removal

There is a measurable performance increase to the OMR system due to the removal

of characters by the Text Processing specialist. This performance increase is due

to less processing time being spent performing Primitive Identification on the set of

unknown objects. When Text Processing is not performed, any text in the image

is treated as unknown objects. As discussed earlier, the Text Processing specialist

does not go as far as to perform Optical Character Recognition to identify individual

characters, but classifies objects as ‘text’.

Table 6.4 shows that identifying textual regions results in a nearly 6% reduction

in the total processing time (including the time spent performing text removal).

These results are for the first page of Promenade by Mussorgsky, running on a

124

1100MHz Athlon CPU, and all CPU processing times are in seconds.

Without Text Processing
Run 1 Run 2 Run 3 Run 4 Run 5 Average

Prim. Identification 31.32 31.29 31.29 31.29 31.30 31.298s
Total processing time 44.72 44.56 44.57 44.61 44.58 44.608s

With Text Processing
Text processing 0.25 0.25 0.24 0.24 0.24 0.244s
Prim. Identification 28.41 28.42 28.4 28.42 28.4 28.410s
Total processing time 42.01 42.05 41.97 42.08 42.03 42.028s

Table 6.4: Performance considerations of Text Processing

Score Correct† Missed Objects Incorrect
Promenade 210 (95.02%) 11 (4.98%) 4
Mozart Clarinet Concerto 33 (89.19%) 4 (10.81%) 5

† Touching characters that only formed one single graphical shape are counted as
one.

Table 6.5: Classification of Text Objects

The algorithm used for deciding if an object is textual is fairly robust, despite

being rather simplistic. Table 6.5 shows the accuracy of this algorithm for several

scores. “Missed” text objects are text characters that the Text Processing specialist

did not classify as text, while those counted as “Incorrect” are non-text objects

that were incorrectly flagged as text (such as musical objects that are not physically

touching a staff system). These errors might be corrected with further processing

by a full Optical Character Recognition implementation. For example, the objects

falsely labelled as possible characters would not be recognised as text by OCR so

the system could re-classify them as unknown musical objects for the Primitive

Recognition specialist, while all unknown objects could also be run through OCR

to see if they are really text or lyrics.

Figure 6.6 shows the detected (in black) and missed (in red and outlined) text

objects for an extract of the first page of Mozart’s Clarinet Concerto. The two

noteheads were detected as text because they are not attached to the staff system

(partly due to the de-skew algorithm and the thinness of the stem line in the original

image) and because being near another suspected text object (each other) increased

the certainty that they were textual objects. The p dynamic markings were de-

tected as suspected text objects but because they were not near other suspected

text objects, they remained classified as “unknown”.

Incorporating OCR as another knowledge source means that these possible clas-

sifications could be checked, resulting in higher accuracy for confirming or rejecting

125

Figure 6.6: Example of detected, mis-detected and missed text objects

objects on the page as being text.

6.2.7 Musical Semantics

Although the OMR system was designed to be extensible, with flexibility in express-

ing Musical Semantic rules to allow arbitrary music notations to be represented,

only rules for Western Music Notation have been implemented. Consequently, all

the evaluation of the Musical Semantics specialist and its interaction with the rest

of the OMR system described here is for this notation.

For Western Music Notation, the Musical Semantics specialist calculates the

musical attributes of the (possibly assembled) musical primitive objects, and then

creates a two-dimensional lattice linking the objects to represent their interactions.

This can introduce different types of errors:

• Calculating incorrect attributes for the primitives (such as pitch or base du-

ration).

• Lattice-creation errors (for instance, when deciding which notes should occur

simultaneously).

• Incorrectly identified or missed primitives leading to inconsistencies or syntax

errors in the lattice (such as the wrong number of notes in a bar).

Duration Calculation

The Musical Semantics specialist calculates the duration of primitives and assembled

objects by first assigning a base duration for an object type, and then applying any

126

modifiers such as durational dots, or beams and quaver tails.

In the OMR system, the Primitive Assembly specialist is responsible for assigning

these modifiers to the objects (for example, by creating a “hollow notehead dur dots”

object composed of the relevant objects). The semantic rules then examine the base

objects that have been assigned durations, and determines whether any of the modi-

fying types have been joined to the object in this manner. This means that any errors

in the calculation of an object’s duration is almost certainly an error in Primitive

Assembly or Primitive Identification.

The Musical Semantics specialist joins the individual objects together and checks

the inter-relationships for consistency; for example, to find simultaneously occurring

notes, and to ensure that bars have the same number of beats as dictated by the

time signature.

(a) Input image (b) Semantic Lattice for extract

Figure 6.7: Extract of a score with syncopated rhythm

The extract in Figure 6.7 shows a bar with a syncopated rhythm. Moving from

left-to-right, each position that has a node for a time event (either a note or a

rest), empty “time-fill” nodes are inserted into the other staves that do not have a

corresponding event, and the vertical set of nodes at that horizontal position (for all

staves in the system) is referred to as a “timeslice”. All events in the same timeslice

occur simultaneously.

To check consistency between staves (for multi-stave scores), the offset from the

start of the bar is calculated for each non-empty node. The duration between two

consecutive timeslices is not merely the shortest duration that occurs in the first

timeslice; in the example above, the fourth timeslice (the second chord in the upper

stave) occurs one beat after the third timeslice (the lowest note in the lower stave),

not one and a half beats. For each node, the ‘potential bar offset’ is the offset of the

stave’s previous non-empty time event plus its duration. The bar offset assigned to

127

the whole timeslice is the minimum ‘potential bar offset’ of each node in the timeslice.

Table 6.6 walks through this calculation for the example figure. For each timeslice,

the possible offset from the previous nodes in each of the upper and lower staves is

calculated, and the lesser of the two—underlined—is the correct assignment. The

sum of the offset and duration for the last non-empty node should be the same in

every stave—this is used to check the consistency of the calculated object durations

in the bar. Figure 6.8 shows these calculated offsets for each timeslice.

Timeslice (upper stave offset, lower stave offset) assigned offset

1 0

2 minimum{ 0 + 3, 0 + 3
2 } 11

2

3 minimum{ 0 + 3, 3
2 + 1

2 } 2

4 minimum{ 0 + 3, 2 + 3
2 } 3

5 minimum{ 3 + 1, 2 + 3
2 } 31

2

(end of bar) minimum{ 3 + 1, 31
2 + 1

2 } 4

(The offset for an event is calculated by the sum of the previous event’s offset and
duration).

Table 6.6: Calculation of time-slice offsets and durations

0 1.5 2 3 3.5 4

Figure 6.8: The time-slice offsets for the example figure

Pitch Calculation

Pitch calculation of notes is performed by a relatively simple algorithm: the average

gap between staff lines is used to determine how far the middle of the notehead is

from the lowest staff line in the stave, and it is assumed that pitch is only dependent

on this. Any key signatures and accidentals are then applied to this ‘base’ pitch to

get the final pitch.

128

After correcting mis-detected clef primitives (and excluding any unrecognised

notes), Table 6.7 shows that most notes have the correct base pitch calculated (that

is, ignoring the effect of any key signatures and accidentals).

Input Score False Noteheads Correct Pitches Incorrect Pitches
Clarinet Concerto 23 298 (97.8%) 10†
Promenade 2 256 (100%) 0
† excludes a badly detected note (see the second-to-last bar in Figure 6.11)

Table 6.7: Pitch Calculation algorithm accuracy

Reasons that this algorithm can calculate pitches incorrectly include:

1. primitive identification errors, leading to noteheads being given the wrong

dimensions.

2. the image being slightly skewed or distorted, so that towards the edge of the

page, the calculated position of the bottom staff line in the stave becomes

further away from the actual position.

3. ledger lines being badly typeset or positioned, resulting in a badly positioned

note head.

Figure 6.9 gives a closeup of a note that has been assigned the wrong pitch due to the

first reason listed above; the pattern has also matched some of the space under the

note, resulting in a larger perimeter and moving the centre of the detected notehead

downwards. Since the algorithm uses the position of the note’s centre, it has been

judged to be closer to the gap between stave lines rather than being on the middle

stave line. This could be improved by using a better method for calculating the

centre of the notehead rather than merely using the halfway points of the width

and height; for example, the average position of all the black pixels, or “first-order

bitmap moment” mentioned in Chapter 3.

As well as the failures in the algorithm listed above, another reason for pitches to

be calculated incorrectly is the use of notation-specific symbols that modify pitches

in some way. Figure 6.10 shows a construct that transposes notes. The notes

directly under the “8” and the horizontal line are meant to be played one octave

(eight notes) higher, but were drawn on the stave for space and readability reasons.

The transposition remains in effect until the loco marking (which literally means

“in place”). Constructs such as this will require extra semantic rules and processing

(including Optical Character Recognition to understand the semantics of the text)

to correctly calculate the pitches of the affected notes.

129

Figure 6.9: A note with incorrectly calculated pitch

Figure 6.10: An octave marking

130

Figure 6.11: Pitch calculation: Incorrect notes coloured, correct notes outlined

131

Figure 6.11 graphically shows the calculated pitches for Mozart’s Clarinet and

Piano Concerto. All detected noteheads are outlined and incorrectly found note-

heads are filled in red, while noteheads with an incorrectly calculated pitch are filled

in blue. The cluster of incorrect notes in the top right appears to be caused by slight

page deformation and skew. Most of the other pitch calculation errors are due to

the primitive identification recognising a notehead in a slightly offset or larger (or

smaller) area than the notehead physically occupies.

Lattice Creation Errors

The lattice is created by first creating and linking nodes for objects on a per-stave

basis, and then linking the nodes between each system’s staves based on alignment

(as discussed in Section 3.1). This process will introduce errors in several circum-

stances:

1. notes that should be played simultaneously are not aligned (as shown in Fig-

ure 3.1(b) on page 41);

2. some barlines were not recognised, leading to multi-part staff systems having

an inconsistent number and duration of bars between parts.

The graph structure needs to be modified to correct such mistakes; this requires

explicit support from the semantic rules created for each music notation.

For problems of the first type, the side-by-side notes often belong to different

voices (for example, one voice with stems drawn upwards, and one voice with stems

drawn downwards) so this may be a useful indicator for any semantic rules attempt-

ing to detect this error. Figure 6.12 contains another example of this—the chord at

the start of the bar occurs at the same time as the first quaver in the notegroup.

This is one of a set of difficult examples given by Byrd [20].

Figure 6.12: An extract from Intermezzo Op. 117 number 1, by Johannes Brahms

132

Problems of the second type could be eased by assuming that there should be

a barline at the appropriate position in the staves that do not have a matching

barline. However, a better ‘overall’ approach would be for the system to use the

extra knowledge that there should be barlines in those positions to re-examine that

area, and alternately to double-check that the unmatched barline really is a barline

and not merely a wayward or otherwise mis-detected vertical line.

Other Semantics

Some preliminary work on using the distribution of base pitches (that is, the calcu-

lated pitch disregarding accidentals and key signatures) to predict the key signature

showed some promise. However, it was not accurate enough to warrant continued

development, and did not differentiate between ‘major’ and ‘minor’ key signatures.

If the key could be indicated by the pitch distribution, this information could be

exploited to look for missing accidentals in any incorrect key signatures. The weight-

ings used to calculate the key signature from the cumulative durations for each pitch

appear to be genre-specific, as most classical pieces were classified correctly, although

this may be caused by the weighting algorithm being developed using the classical

scores as the test images.

6.3 Evaluation of System Interaction

The previous sections have evaluated the effect of each specialist in relative isolation.

This section explores the interaction between the specialists and measures various

characteristics of the coordinating process.

6.3.1 Request Handling

After a specialist has performed an action, it may have created requests for several

reasons: to suggest alternative classifications for objects, or for any detected prob-

lems that it is not directly responsible for or capable of handling. The coordinating

process is responsible for deciding which, if any, requests are to be accepted for

further processing, and determining their order of acceptance.

Order of Service

Requests are assigned a priority on creation, based on the severity of the problem

that the generating specialist has encountered.

133

Normally, the coordinator will choose outstanding requests for service in order

of priority, until either all requests have been served, or each specialist has reached

its maximum allowed requests served. Table 6.8 shows that when the maximum

total number of requests performed system-wide is limited to 200, the number of

primitives and assembled primitives were identical, regardless of whether the coor-

dinator always chose the request with the highest priority, or always chose requests

randomly. The semantics of both processing runs were also identical.

Coordinator Request Strategy:
Highest Choose

Objects Eventually Found Priority Randomly
barline 16 16
bass clef† 3 3
bass clef curl 3 3
composite 454 454
crotchet rest 4 4
digit 4 24 24
digit 5 12 12
digit 6 12 12
dot 61 61
filled note stem down† 36 36
filled note stem up† 109 109
filled notegr stem down† 15 15
filled notegr stem up† 51 51
flat 31 31
full notehead 244 244
hollow note stem down† 5 5
hollow note stem up† 3 3
hollow notehead 9 9
hollow notehead dur dots† 5 5
hough horizontal 21 21
keysig† 6 6
noise 1060 1060
notegroup† 11 11
quaver rest 1 1
rect rest 5 5
staff line 40 40
staff system 4 4
text 214 214
timesig† 24 24
treble clef 4 4
unknown 385 385
vertical line 155 155

† denotes objects created by Primitive Assembly. Results for the first page of
Promenade, by Mussorgsky.

Table 6.8: (Lack of) effect of request processing order

134

This seems counter-intuitive. The explanation for this is that after a specialist

has performed its default action and generated a set of requests, all of those requests

will be processed until the global maximum number of requests have been serviced.

It seems likely that in general, each request targets a specific area or problem and

does not overlap with other requests so their order does not matter, and that multiple

requests for the same area or problem cause the same resolution, so again order does

not matter. This table also seems to demonstrate that after 200 requests have been

processed, any further requests have little effect on the state.

This may also indicate a weakness with the allocation of request priorities. A

request is assigned a priority when generated, based on how much the specialist

thinks that the system’s internal state will be improved if the request is serviced.

For example, if the Staff Processing specialist finds several skewed staff systems,

it will generate a “de-skew” request with a priority of 50 (out of 100), but will

give the request a higher priority of 90 if 2
3 or more of the systems are skewed.

If no staff systems at all are found, a request is generated with a priority of 100.

However, the numbers given to particular requests are somewhat arbitrary, and a

more careful consideration of these priorities may affect the behaviour of the system

when choosing and servicing requests.

Maximum Number of Requests

The coordinator will not pass on requests to individual specialists that have reached

their maximum number of actions performed. (However, specialists may still perform

more actions than this limit if it is the result of execution continuing from the

previous specialist.) Similarly, specialists also have a maximum number of generated

requests that will be considered. Finally, requests may also be rejected if a specialist

has passed a limit on the amount of CPU time the specialist had already used.

Table 6.9 shows the limits and resource usage of the OMR process for several

input scores. The third table (for Chopin’s Scherzo) shows that the OMR system

performed a CPU-intensive function in the Page Layout specialist (that did not occur

for the other listed score). This was the de-skew algorithm determining the skew

angle, rotating the page, and deleting all previously found objects from the system’s

internal state; a de-skew on the input page was requested by the Staff Processing

specialist, which determined that several of the detected staff systems were skewed,

leading to poor recognition of the staff lines. (See Section 6.3.3 for a more detailed

135

analysis of the order of requests for this score.)

Promenade page 1—maximum of 50 requests accepted by coordinator:
Specialist Called (Max) CPU (Max) Reqs Made Accepted (Max)
Page Layout 1 (5) 2.04 (20) 0 0 (3)
Text Processing 1 (5) 0.12 (20) 0 0 (3)
Staff Processing 1 (5) 0.52 (20) 0 0 (3)
Prim Identification 51 (200) 25.21 (300) 0 0 (3)
Prim Segmentation 9 (5) 0.05 (20) 7 3 (3)
Prim Assembly 6 (5) 1.34 (20) 6 3 (3)
Musical Semantics 3 (5) 3.96 (20) 84 44 (100)
File Output 1 (5) 0.03 (20) 0 0 (3)

Promenade page 1—maximum of 150 requests accepted by coordinator:
Specialist Called (Max) CPU (Max) Reqs Made Accepted (Max)
Page Layout 1 (5) 1.89 (20) 0 0 (3)
Text Processing 1 (5) 0.11 (20) 0 0 (3)
Staff Processing 1 (5) 0.50 (20) 0 0 (3)
Prim Identification 107 (200) 30.84 (300) 0 0 (3)
Prim Segmentation 13 (5) 0.08 (20) 10 3 (3)
Prim Assembly 10 (5) 2.45 (20) 10 3 (3)
Musical Semantics 7 (5) 10.41 (20) 184 100 (100)
File Output 1 (5) 0.03 (20) 0 0 (3)

Chopin’s Scherzo—no limit on number of requests accepted by coordinator:
Specialist Called (Max) CPU (Max) Reqs Made Accepted (Max)
Page Layout 2 (5) 114.16 (90) 0 0 (3)
Text Processing 2 (5) 0.32 (90) 0 0 (3)
Staff Processing 2 (5) 2.06 (90) 2 1 (3)
Prim Identification 108 (200) 128.84 (300) 0 0 (3)
Prim Segmentation 9 (5) 0.15 (90) 4 4 (4)
Prim Assembly 5 (5) 2.90 (90) 5 3 (3)
Musical Semantics 2 (5) 27.36 (90) 348 100 (100)
File Output 1 (5) 0.06 (90) 0 0 (3)

(Time is CPU seconds on an Athlon 1800MP.)

Table 6.9: OMR Resource usage and limits for several scores

Table 6.10 shows the effect of changing the maximum number of feedback re-

quests that the coordinator will allow to be serviced. The results of modifying the

maximum number of requests is difficult to quantify, because the final state is also

dependent on the limits of the individual specialists, which each have their own

maximum number of requests created and received.

Often there will be a series of requests that each make a small (or no) modi-

fication, followed by a single request that has a much larger impact (illustrated in

the following subsection). For example, some specialists generate a request for each

fairly trivial suggestion for an alternative object type, and some specialists generate

a request that causes another specialist to process or modify its complete internal

136

Max. requests: 0 5 10 15 20 25 30 35 40 . . . 200
Object Type Number Identified

bass clef† 0 3 3 3 3 3 3 3 3 3
bass clef curl 0 3 3 3 3 3 3 3 3 3
crotchet rest 0 0 0 0 0 0 4 4 4 4

digit 4 24 24 24 24 24 24 24 24 24 24
digit 5 12 12 12 12 12 12 12 12 12 12
digit 6 12 12 12 12 12 12 12 12 12 12

filled note stem down† 36 36 36 36 36 36 36 36 36 36
filled note stem up† 108 108 108 108 108 108 108 108 108 109

flat 9 10 30 30 30 30 31 31 31 31
full notehead 242 243 243 243 243 243 243 243 243 244

hollow notehead 0 10 10 10 10 10 10 10 10 10
keysig† 2 2 7 7 7 7 8 8 8 8

quaver rest 1 1 1 1 1 1 1 1 1 1
timesig† 24 24 24 24 24 24 24 24 24 24

treble clef 4 4 4 4 4 4 4 4 4 4
vertical line / 279 281 154 154 154 154 189 189 189 155

barline 16 16 16 16 16 16 16 16 16 16
Processing Time (secs) 19.0 24.1 27.3 27.2 27.3 27.5 32.1 31.9 32.3 . . . 46.3
† denotes objects created by assembly.

Table 6.10: Effect of changing the system’s maximum number of feedback requests
allowed—Promenade

state (such as a request to re-process all unknown objects, or to perform a de-skew

on the input image).

Limiting the system’s maximum number of requests also favours requests gen-

erated by the earlier specialists, since they have the first chance to have all of their

requests serviced.

6.3.2 Tolerance Levels

The tolerance step is a coordinator setting describing how much the specialists’

thresholds for various tests should be loosened. The idea is that if a task is repeatedly

requested, the threshold for that test should be lowered. The tolerance step is merely

how much the threshold is lowered by each time. Specialists use a tolerance between

0 and 100, with 100 being most tolerant. For example, the Primitive Identification

specialist will classify more unknown objects as primitive types if the limits in the

pattern descriptions are not applied so tightly, and the Primitive Assembly specialist

will join primitives together even if they are slightly further apart than the rules

normally allow.

A larger increase in the threshold tolerances means that an object that is un-

recognised because it did not match the relevant pattern description may be more

137

likely to match an incorrect pattern rather than the sensible one. For example, an

unrecognised flat that is just under the thresholds when compared to the pattern for

flat objects may be matched as a natural (\) rather than a flat ([) if the thresholds

are greatly increased the next time the classification algorithms are run. Smaller

increases may help match such an unrecognised object against the correct pattern

template without unduly increasing the chance of matching some other pattern type,

especially if it was previously just under the required threshold to match against the

correct type. On the other hand, if the rate of change in the tolerance is too small,

then the object may not be recognised before the Primitive Identification specialist

has reached its maximum resource limits and is not run again.

Experimentally, the best results were achieved with a tolerance step of 5%. How

each specialist modifies its behaviour to account for the tolerance is defined on a per-

specialist basis—it does not automatically mean that maximum distances or pixel

counts are increased by that percentage, for example. However, the effect of this

setting on the system behaviour is inter-dependent on the other system settings, such

as the per-specialist and global request limits, so a different configuration of these

factors may mean that a different tolerance step setting leads to better performance.

Table 6.11 shows the effect of changing the default step between 2 and 20 on

primitive and assembled objects. Increasing the rate of change in the tolerance

level results in more objects being recognised, at the expense of making more clas-

sification errors. This table is summarised graphically for several object types in

Figure 6.13(a). As the default step increases, recognition performance becomes

more volatile; for example, several flats that were unrecognised when the system

runs with low tolerance steps are recognised when using a higher step, but several

flats that were previously recognised are now unidentified or misidentified as other

object types. The obvious stand-out feature of this graph is that the number of rect-

angle rests found jumps dramatically when the tolerance step is 10. This is because

most of the short, horizontal lines (such as ledger lines and accent markings) were

determined to match a rectangle rest. Figure 6.13(b) shows the rectangle rests found

on the first staff system when using this setting. The three larger matches (shown

in red) matched the pattern template, while those in other colours were matched

to identified rests by compression bitmap template matching on subsequent calls to

the Primitive Identification specialist. This peculiarity does not happen at the other

tolerance step levels because it is a side-effect of another object being recognised and

138

#
fo

un
d

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20
tolerance step

rect rests

3 3 3 3 3

3

3 3 3 3 3

3

flats

+ +
+

+
+ + + + + + +

+
keysigs

2 2 2 2 2 2 2 2 2 2 2

2

hollow noteheads

× × × × × × × × × × ×

×

(a) The tolerance step’s effect on recognition of several object types

(b) Rectangular rests found with too low tolerance thresholds

Figure 6.13: A graphical representation of the tolerance step’s effect

removed from a larger object, and the leftover piece of the bitmap that first matches

a rectangle rest object is a different size depending on the tolerance step. After

evaluation, this particular problem was solved by creating a new pattern that would

recognise horizontal bars such as ledger lines and the stress accents shown in the

figure instead of leaving them as unrecognised objects that might be mis-classified

as another object type.

6.3.3 Flow of Execution

The order that specialists are processed in is now examined. Of course, the behaviour

of the OMR system for any particular input score is determined by the configuration

settings specifying global and per-specialist resource limits and variables. These set-

tings control things such as the maximum number of times a specialist may process

requests from other specialists and the maximum number of times the specialist will

perform its default action when control is passed to it.

Figure 6.14 shows a graph of the order that the coordinator passes control to the

139

Tolerance Step 0 2 4 6 8 10 12 14 16 18 20
Object Type Number Identified

bass clef† 3 3 3 3 4 4 4 4 4 4 4
bass clef curl 3 3 3 3 4 4 4 4 4 4 4
composite‡ 453 455 443 457 440 444 452 456 458 459 468
crotchet rest 4 4 4 4 4 4 4 4 4 4 0
digit 4 24 24 24 24 24 24 24 24 24 24 24
digit 5 12 12 12 12 12 12 12 12 12 12 12
digit 6 12 12 12 12 12 12 12 12 12 12 12
dot 60 60 62 61 62 62 62 63 65 63 67
filled note stem down† 36 36 36 36 36 36 37 37 37 37 37
filled note stem up† 108 108 108 109 109 110 108 109 108 108 108
filled notegr stem down† 15 15 16 15 16 16 15 15 16 16 16
filled notegr stem up† 50 50 50 51 51 51 53 53 53 54 54
flat 31 31 26 30 26 26 28 27 27 26 27
full notehead 242 244 247 245 246 248 249 249 250 251 267
hollow note stem down† 5 5 5 5 5 5 5 5 5 5 5
hollow note stem up† 3 3 4 4 4 4 4 4 4 4 4
hollow notehead 9 9 11 10 11 11 11 11 11 11 11
hollow notehead dur dots† 5 5 5 5 5 5 5 5 5 5 5
hough horizontal 21 21 21 21 21 22 23 23 23 23 23
keysig† 8 7 6 7 7 7 8 8 8 8 8
natural 0 0 1 0 1 1 0 0 0 0 1
noise 1053 1054 1014 1058 1021 1021 1022 1027 1029 1031 1045
notegroup† 11 11 11 11 11 12 13 13 13 13 13
quaver note stem up† 0 0 0 0 0 1 1 1 1 1 1
quaver rest 1 1 1 1 1 1 1 1 1 1 1
quaver tail down 0 0 0 0 0 1 1 1 1 1 1
rect rest 5 5 6 5 6 59 9 10 10 9 62
semi quaver rest 0 0 0 0 0 0 0 0 1 2 2
staff line 40 40 40 40 40 40 40 40 40 40 40
staff system 4 4 4 4 4 4 4 4 4 4 4
text 214 214 214 214 214 214 214 214 214 214 214
timesig† 24 24 24 24 24 24 24 24 24 24 24
treble clef 4 4 4 4 4 4 4 4 4 4 4
unknown 393 394 327 386 318 267 328 333 334 335 271
vertical line / 154 154 155 156 156 157 156 160 159 159 161

barline 16 16 16 16 16 16 16 16 16 16 16

† denotes objects created by assembly.
‡ “composite” objects are those objects left over when a partial match is made within
it and the content becomes fragmented into new objects. The composite object itself
no longer contains any graphical data.

Table 6.11: Effect of changing the coordinator’s “tolerance step” on Promenade

140

Layout
Page

Processing
Text

Processing
Staff

Identification
Prim

Segmentation
Prim

Assembly
Prim

Semantics
Musical

Output
Final

time

�� �� �� �� �� �� �� ��

�� ..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

pp ..]]]]]]]]]]]]
pp ..]]]]]]]]]]]]
pp ..]]]]]]]]]]]]

..]]]]]]]]]]]]
oo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
oo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
oo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

oo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
oo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
oooooooooooooooooooooooooooooooo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

oooooooooooooooooooooooooooooooo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
oooooooooooooooooooooooooooooooo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

oooooooooooooooooooo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

Figure 6.14: Graphical representation of program execution flow (Promenade, page
1)

Layout
Page

Processing
Text

Processing
Staff

Identification
Prim

Segmentation
Prim

Assembly
Prim

Semantics
Musical

Output
Final

time

�� �� �� �� �� �� �� ��

�� ..]]]]]]]]]]]]
..]]]]]]]]]]]]

oo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

oo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

oo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

oo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]

Figure 6.15: Graphical representation of program execution flow (for a blank image)

141

various specialists for the Promenade score. The solid arrows represent progression

through the specialists’ natural order, while the dotted lines represent requests pass-

ing contextual information between specialists. This shows that generally, requests

are performed in batches until either all the requests generated by a specialist’s

action are completed or the specialist has reached its maximum generated requests

count. For this particular processing run, every generated request was for providing

contextual information about primitives to the Primitive Identification specialist.

The first six requests, generated by the Primitive Segmentation and Primitive As-

sembly specialists, are generic requests to process all new objects created since the

last time the specialist was run; the later requests are for processing specific objects

or specific regions of interest.

When given a completely blank input image, the system behaves as shown in

Figure 6.15. The Staff Processing specialist generates a request when it cannot

detect any systems on the page. In contrast, the Text Processing specialist does

not consider the lack of unknown objects for testing to be an error, and does not

generate a request. This request is handled by the Page Layout specialist which

performs various actions to try to correct any problems with the page—these actions

include rotating the page to remove any skew, and joining objects together in case

the image is poor quality and the systems are too fragmented to be detected. For a

blank image, of course, none of these actions will make any difference, so there is a

loop while the Staff Processing specialist keeps generating requests for “locate staffs”

and the Page Layout specialist keeps modifying the original image, until one of the

limits are reached. In this particular processing run, the Page Layout specialist

reached its default limit for number of processing calls (five) and the coordinating

process rejected further requests that it would have handled.

Figure 6.16 shows a call trace graph for the OMR processing of Scherzo 58 by

Chopin, corresponding to the third summary displayed in Table 6.9. This input

image is of a lower quality, and the graph shows requests made for functions such

as “de-skew page” that are performed by the lower-level specialists. The de-skew

function is based on the computationally expensive Hough Transform, and the Page

Layout specialist exceeds its allowed CPU time after just one request, meaning any

further requests to the Page Layout (for example, if the de-skew algorithm calculated

the incorrect rotation angle) will be rejected.

These traces do not show any qualities about the requests, such as duration of

142

Layout
Page

Processing
Text

Processing
Staff

Identification
Prim

Segmentation
Prim

Assembly
Prim

Semantics
Musical

Output
Final

time

�� �� �� �� �� �� �� ��

�� ..]]]]]]]]]]]]
..]]]]]]]]]]]]

oo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

pp ..]]]]]]]]]]]]
pp ..]]]]]]]]]]]]
pp ..]]]]]]]]]]]]
pp ..]]]]]]]]]]]]

..]]]]]]]]]]]]
oo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
oo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
oo ..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

oo ..]]]]]]]]]]]]
..]]]]]]]]]]]]

..]]]]]]]]]]]]
..]]]]]]]]]]]]

Figure 6.16: Graphical representation of program execution flow (Chopin)

execution or number of affected objects, other than the order that the specialists

are called in. However, they demonstrate that the normal behaviour of the system

is for the majority of requests to be from the higher level specialists to the Primitive

Identification specialist. Requests to the lower level specialists are only made if

objects or staff systems cannot be found, typically due to skew in the image.

143

144

Chapter 7

Conclusions

This research has explored methods for coordinating the various stages of the Optical

Music Recognition process and demonstrated that contextual knowledge can be used

to automatically correct mistakes and improve recognition accuracy. This chapter

summarises the research performed, and outlines the main findings.

7.1 Original contributions of this thesis

An analysis of the literature has shown that while there have been proposals for—and

several implementations of—the use of musical domain knowledge in some areas of

OMR process, there has been little work using this knowledge throughout the entire

system for decision-making and correcting mistakes.

In this thesis, methods for introducing contextual feedback into the OMR process

were investigated, and several were implemented for further study. This raised some

challenges, and offered insights that were further expanded for the implementation of

a complete OMR system. The development of this system required the investigation

and development of methods for the different knowledge sources (specialists) to pass

messages containing information to each other. Each specialist needs different types

of information, so the messaging sub-system needed to be flexible enough to represent

diverse messages.

The usefulness of the feedback requests from the Primitive Assembly and Musical

Semantics stages has been examined, as well as the effect that these have on the

primitive identification rates. The previous chapters have discussed how the system’s

behaviour can be controlled by modifying the criteria used to decide when to stop

processing feedback requests and by automatically modifying thresholds used when

145

performing tests on objects. This thesis has shown that using feedback in an OMR

system to provide extra context for decision-making greatly increases the recognition

rates.

7.1.1 Primitive Identification

Primitive Identification is the central component of the OMR process. As well

as lowering thresholds for testing hypotheses about an object’s classification, this

thesis has described several innovative aspects of musical primitive identification.

The Primitive Identification specialist uses contextual information in different ways:

• preventing an object from being assigned particular classifications, or limiting

matches to particular types, based on musical knowledge about surrounding

objects;

• related to the previous point, re-testing and re-classifying objects’ assigned

types based on conflicting information; and

• the ‘clustering’ algorithm for inferring the classification of similarly-shaped

unknown objects.

Evaluation of the implemented OMR system showed that the Primitive Identi-

fication specialist is the main destination for contextual messages from other parts

of the system. These requests contain information about the system’s current state,

as determined by other specialists applying music-specific domain knowledge. Ex-

amples of this domain knowledge include information about how primitive shapes

are joined into musical objects, and syntactic rules describing a particular music

notation. These messages are used to provide extra information about possible clas-

sifications when testing and re-testing objects. In many cases, this process results

in corrections and improvements to the set of classified objects, leading to a more

accurate representation of the score.

7.1.2 Coordination of Knowledge Sources

The OMR process as implemented in systems such as CANTOR [5] and AOMR [36]

is a linear step of distinct stages, with little scope for feedback between the various

phases. While musical domain knowledge is often embedded in the recognition

rules—such as looking for particular object types (such as clefs) in locations where

they typically appear (the start of every staff normally has a clef)—and this improves

146

the recognition accuracy, coordinating the different phases in such a way as to allow

feedback offers many advantages.

The research described in this thesis has led to the investigation and implementa-

tion of an OMR system designed around the idea of coordinating various knowledge

sources. This system has some similarities in design and function to Kato and

Inokuchi’s system, described in Chapter 2. Their blackboard approach uses layers

of memory for storing hypotheses, with separate layers for various low-level (such

as graphical information) and higher-level (such as musical note attributes) types of

information, and their “top-down” methodology drives the recognition process on a

bar-by-bar basis. In contrast, this thesis describes a system with a less structured

separation between different parts of the global memory, meaning any specialist can

access and modify any object. This uses a bottom-up approach, with the focus on

the data as it moves through the various phases, although top-down methods based

on assembly and syntax rules are also used for error correction and object prediction.

7.1.3 Identification based on Assembly Knowledge

The assembly rules used for joining graphical primitive shapes into larger musical ob-

jects are also used for suggesting classifications for unknown objects. Any unknown

object that would satisfy a rule’s conditions if it were classified as the appropri-

ate object is then flagged for further examination. For example, a rather crucial

assembly rule is the one for joining noteheads and vertical lines into note objects

(with a set of conditions describing the relative positions and distances between the

primitive objects). In this example, an unknown object that would satisfy the rule

if it were a notehead is marked as a possible notehead. Similarly, it might be in the

correct location relative to a notehead to satisfy the rule if it were a vertical line, in

which case it would be marked as a possible vertical line. This extra information is

then taken into account—for example, by lowering pattern-matching thresholds for

those possible classifications—at some later stage when the Primitive Identification

module next processes this object.

7.1.4 Identification based on Clustering

The experimental OMR system has demonstrated that objects can be successfully

classified solely on the basis of syntactic feedback, even for object types that are not

previously known to the object identification routines. This is currently based on

147

syntactic knowledge of the interaction allowed between object types, and the system

allows syntax rules for arbitrary types, not just for types known to the low-level

graphical routines in earlier parts of the system.

The clustering algorithm was described in Chapter 5 (Section 5.4.3). It uses

semantic information for object classification suggestions, and uses Compression-

Based Template Matching (CBTM) for identifying similar shapes. While it has

been shown that this can successfully identify some types of objects, this process

needs more investigation to improve its accuracy and robustness.

7.1.5 Run-time Pattern Adaption

Because of the vast variation in symbol shapes used by different publishers, an

OMR system should have a flexible recognition process that can adapt for each

input score. The OMR system described here adapts its behaviour during object

recognition/classification in several different ways.

Adaption of Pattern Conditions

Objects are compared against the pre-defined pattern templates with increasing

tolerance as extra context is calculated for the possible classifications of remaining

unknown objects. This means that primitive shapes that closely match one of the

pattern templates are identified first, and the remaining unknown objects are later

tested against the patterns with the template rules more relaxed.

For instance, a pre-defined pattern description might specify a minimum and

maximum size, and specify a bitmap shape along with a minimum percentage of

pixels that must match between an unknown object and this shape to be accepted.

(Example pattern descriptions are provided in Appendix A.2.) The rules can be

relaxed—for example, increasing and decreasing the maximum and minimum al-

lowed dimensions, respectively—if the semantic processing has identified possible

classifications for an unknown object, or if the system is trying to reduce the num-

ber of remaining unknown objects with the possible trade-off of having some objects

incorrectly classified.

Adding New Templates

As well as the set of patterns initially loaded into the system when it starts up,

unknown objects are also compared against recognised objects. This means that

148

the set of templates used for recognition adapts—at run-time—to better suit each

individual input image, rather than (or as well as) static primitive descriptions that

try to ‘match all’ objects of a particular type. This still requires a set of initial

pattern descriptions so that examples of each type are found in the input score.

Because of the variation in primitive shapes and symbols used by different score

typesetters and publishers, it may be difficult to have a starting set of descriptions

that works for all scores using the same notation.

The identification of previously unknown object types via clustering (mentioned

above) is also helpful for introducing example templates for object types that do not

have starting pattern descriptions, or are not similar enough to any existing pattern

descriptions.

7.1.6 Re-classification of Objects

Few OMR systems will change the classification of an object, once assigned; Kato

and Inokuchi’s system is a significant exception to this observation. For example, in

their system, primitives that fail the consistency rules (such as a rule stating that

a quaver tail must be attached to exactly one stem) are put back into the image.

Similarly, semantic information can reject hypotheses (based on the durations of

objects in the bar) for the objects in the symbol layer. The OMR system described

in this thesis performs similar actions. Impossible or unlikely combinations (as

allowed by the assembly and syntax/semantic rules) may result in an object being

re-assigned to an alternative type or even set back to unclassified (“unknown”).

7.1.7 System Design

The system implemented as part of the research described here has shown the via-

bility of a modular, message-passing design for the purpose of OMR. The modular

design means that each specialist function of the system can be modified or even com-

pletely replaced by another module that uses different algorithms, without affecting

the rest of the system. The specialists need only agree on the name and format

of the messages that are passed between them for requests. An arbitrary number

of specialists can be added to the system, so this could lead to the development of

specialist modules that have very specific purposes, such as heuristically correcting a

particular type of error that only occurs for a certain set of input scores. This model

leads to reuse of code and can help shorten development times when developing and

149

testing new algorithms.

7.2 Shortcomings and Challenges

As the whole, the system behaves in a conservative manner, preferring to leave

something unrecognised and assume a specialist using contextual feedback will find

the correct classification later, rather than taking a “best guess” at a classification

and assuming that any incorrect classifications will be discovered and fixed at a later

stage. Similarly, this means that the system is better at using feedback to classify

remaining unknown objects rather than using the feedback to re-evaluate incorrectly

classified objects. This is partly because of the nature of the different errors; it is

easy to pinpoint where an unrecognised object is, but difficult to pinpoint the exact

location of a recognition error (for example) that causes a bar to have an incorrect

number of beats.

7.2.1 Request Handling

The current model does not really allow forward-flow of information, or “what-if”

scenarios. For example: “Would changing this classification improve the semantics

accuracy?” In the current model, this can only be done by actually making the

change, and hoping that the change will be reverted at a later stage if it is not the

best decision.

Request Priority

There is difficulty in deciding which requests are more important than others. As

implemented, the priority levels attached to requests for various problems and notices

were chosen heuristically.

Better methods for determining importance and priority may be uncovered; how-

ever, recall that evaluation of the system demonstrated that with the currently as-

signed request priorities there was no difference in the final object classifications

when requests were chosen for servicing randomly rather than in order of priority.

It is possible that the order that requests are served in only matters if not all the

requests will be eventually serviced, due to resource limitations.

150

7.2.2 Primitive Identification

There are several limitations of the primitive identification/classification routines as

implemented in the OMR system. This is partly because the system originally imple-

mented a näıve classification scheme, based on a simple “XOR” bitmap comparison,

with the system’s focus on using knowledge from different parts of the recognition

process. While this has been useful for identifying sources of musical knowledge and

investigating methods for using this information for contextual decision-making, a

more practical OMR system should expend more effort in the initial recognition

stages to try to minimise classification errors.

Tolerance Threshold

There needs to be a balance in how tolerant to be when looking for matches. Being

too tolerant can result in too many false matches. Conversely, being more strict

while matching objects to pattern descriptions will result in fewer legitimate objects

being correctly classified, depending on how much they vary from the described

idealised object.

The approach taken by this OMR system is to start off with a conservative thresh-

old, and become increasingly more tolerant with further processing when comparing

unknown objects to the templates, especially when given extra context about possi-

ble classifications (for example, based on syntactic information). However, this will

eventually become too tolerant and start incorrectly matching objects — for exam-

ple, large objects of types that do not have pattern descriptions remain unrecognised

until the other parts of the system offer enough suggestions for objects that would

fit in that position, resulting in erroneous primitives being extracted from the large

object. One possibility is to make the tolerance partially dependent on factors such

as the size of the unknown object. Another strategy is to be less tolerant for patterns

that match and extract primitives from larger objects, and only be more tolerant

for objects that are ‘isolated’ and identified in their entirety.

Classification Techniques

Due to the developed system’s focus on the interactions between the specialists,

rather than focusing on the best possible recognition by the Primitive Identification

specialist, there is an over-reliance on bitmap matching in the primitive pattern

description rules. Using more sophisticated features that can be calculated from

151

the primitive bitmaps will improve the flexibility and accuracy of the pattern de-

scriptions. Fujinaga’s GAMERA system [36] used over a dozen different features,

and required the use of a genetic algorithm to calculate which features should be

measured for different primitive types, based on training examples.

The image processing field offers many different types of qualities that can be

calculated about a bitmap image. Further work could be done to see if any are

particularly suited for music recognition (although this will be dependent on the

music notation used in the input scores).

7.2.3 System Evaluation

The Primitive Identification stage uses the majority of the processing time, mostly

due to the reliance on template bitmap matching, which is processor intensive. The

system uses a modest amount of memory, so the development and use of techniques

that use less processing time—possibly with the trade-off of using more memory—

should be investigated.

Evaluating the performance of the system can be difficult. Messages involve two

specialists, and the resolution of a request depends on the behaviour of the receiving

specialist, so it is hard to give credit to an individual specialist for noticing an error

and suggesting possible resolutions. While human evaluation has been proposed

and used for comparing the similarity of two scores, automatically comparing and

quantifying the differences between two semantic representations of the same score

is a largely unsolved problem.

7.3 Future work

As always, ever-increasing computer power in the future will allow an OMR system

to perform more tests, using more complex algorithms. Introducing more tests will

provide more contextual information, and this extra information may require more

complex procedures for decision-making.

The modular design means that the various specialists could be replaced or sup-

plemented by new modules with similar functionality without requiring modification

to the remainder of the system. For example, the low-level pattern recognition rou-

tines for locating graphical primitives could be replaced with a more sophisticated

sub-system, such as that described by Fujinaga [36]. Another example is the possi-

bility of adding specialists for very specific behaviour, such as correcting a problem

152

with the recognition that only occurs on input images with some particular charac-

teristic (such as one composer or publisher who uses an innovative layout or graphical

symbol).

Another possibility opened up by the modular design is to have multiple special-

ists that perform identical or overlapping functions, although using different algo-

rithms. For example, there may be multiple specialists that can perform primitive

identification tasks, or assembly tasks. This would require a coordinating process

that could take advantage of the extra capabilities, such as using each specialist in

some order for matters left unresolved or unrecognised by the previous specialist, or

this could be more advanced and get the opinion of all the specialists for that task

and somehow have methods for weighing up and resolving conflicting suggestions.

Automatic recognition of musical scores is a long way from approaching the

accuracy of a musician reading a score—human perception is much more powerful

than today’s computer algorithms. More methods of user input into an OMR system

may lead to improved performance. Machine Learning techniques could allow a

user to correct some mistakes with the system keeping track of the corrections and

using that information during decision-making at a later stage (either within the

same processing batch, or for completely different scores). Audio playback as well

as graphical manipulation of a score would help the user locate some recognition

errors.

A more robust model for calculating tolerances, thresholds, and object certainty

values is needed. The use of genetic algorithms and other numerical techniques

would require more accurate numbers, as these numbers are used by a fitness func-

tion to evaluate whether or not one set of possible classifications is better than

another. While the system described here also uses the classification certainties to

some extent, such as when re-classifying an object that is syntactically incorrect,

they are not as critical to the decision-making as they are when used in these other

algorithms.

7.3.1 Priority of Requests

As discussed in the previous section, evaluation has shown that in the current im-

plementation, prioritising requests had little effect on the system’s performance or

recognition accuracy. Further effort could be spent investigating either a better

evaluation of how urgent each request is in terms of the seriousness of the observed

153

problem, or other methods for calculating priority of requests, such as assigning an

expected cost of carrying out the request for example, in terms of processing time

or other system resources.

7.3.2 OCR

Semantic meaning of text on scores is very important for document metadata, per-

formance notes, lyrics, and multi-instrument scores. Document metadata (such as

title, composer, date, publisher, and so on) is necessary for searching and retriev-

ing digital scores from a document repository. Recognising this text automatically

requires Optical Character Recognition (OCR) to convert the bitmaps of text into

computer-understandable text codes.

Although there are many proprietary OCR systems, there remains a lack of high-

quality open source OCR engines available that could be tailored for use or inclusion

in an OMR system. Further work on this could involve improving or modifying one

of the existing open source OCR programs for this purpose.

7.3.3 Musical Semantics

Work in the field of music information retrieval has demonstrated that genre can

often be determined from an audio recording or (less accurately) from symbolic

data. Calculating the genre of a score (whether from the symbolic musical data, or

based on other features of the score such as title, instruments and composer/artist

metadata) may mean that genre-specific knowledge can be exploited for that image.

Higher-level examination of the musical semantics may be useful for correcting

some recognition and attribute errors. For example, common motifs and themes or

durational patterns may be found and used to find similar passages that have a few

differences; these differences could be inspected to carefully check for recognition,

assembly, or pitch recognition errors. The effectiveness of this technique might be

determined by the genre and style of the music in the score.

7.4 Key findings

The broad aim of this research was to determine how the data and methods used

in an OMR system could be better coordinated to improve the system’s accuracy.

More specifically, does a coordinated approach offer advantages over currently used

methods? How can extra information about a score be used to modify the system’s

154

behaviour to increase performance? Which type of errors can be automatically

detected, and how can information about them be used to correct mistakes?

7.4.1 Knowledge Coordination

The research described here has clearly shown that using a coordinated approach

for representing and using knowledge can automatically correct many errors and im-

prove the recognition process for OMR. This was achieved by designing and imple-

menting a system that used a message-passing framework that allowed contextual

information about musical objects to be passed between the specialist knowledge

sources. These messages are in a structured form that allows specialists to use ar-

bitrary request types. Requests will only be serviced if another specialist registers

that type as one that it can process, and the coordinating process decides that the

request message should be allowed.

As well as the messages, information is also attached to the objects, and the

specialists can directly access and modify the image information, the musical object

information, and the syntactic structure that describes the inter-relationships of the

objects. Although all the information is accessible by any specialist, in practice

each specialist only modifies information at the one or two levels involved in its data

manipulation.

7.4.2 Adaptation

An OMR system can give more accurate results by adapting, at run-time, to the par-

ticular score it is processing. The approach found most flexible during this research

is to use pattern templates (along with a coordinated approach providing contextual

feedback) to find initial objects, and then use those found objects to help identify

remaining unknown objects. For example, this means that the pattern descriptions

only need to match one of the flats in the score and then that object can be used to

match all the similarly-shaped flats, rather than the patterns being broad enough

to match many slight (and not-so-slight) variations in the shape of glyphs used by

different composers and score publishers.

7.4.3 Algorithm Settings and Thresholds

Decision-making throughout the OMR process involves performing many tests. For

example, there may be multiple algorithms available for a particular task and the

155

specialist chooses one based on some criteria. The Primitive Identification specialist

calculates how well a graphical shape compares to a primitive pattern description

and whether or not it matches close enough to set a classification. The Assembly and

Semantics specialists have thresholds for determining relationships between objects

based on relative positions and proximity. Almost all these decisions involve using

parameters to decide if something reaches a particular threshold or not. These

settings should not be hard wired into the process, but they should be modifiable—

either tunable by the person running the system, or dynamically modified by the

system itself during processing.

This research has shown that an effective strategy for music recognition is to start

the processing with conservative values for these variable settings and become more

tolerant as more contextual information is provided. This means, for example, that

atypical objects that are not correctly accounted for because they appear different to

other objects of the same type are eventually classified—whether it is with the use of

extra contextual information, or adaptation of the patterns to match the unknown

object to one of the already classified objects.

7.5 In closing

The research presented in this thesis offers compelling evidence that many mistakes

made during the OMR process can be automatically corrected by making more

use of contextual knowledge during decision-making. The thesis has described and

demonstrated methods that achieve improved accuracy: in the individual recognition

methods that use the extra context, in the system that coordinates these individual

methods, and in the representation of musical knowledge in a format useful to those

methods.

Following this line of research will lead to better OMR systems that can infer

much more information about the music being recognised. Adding more methods for

calculating extra contextual knowledge about the musical data extracted from the

score will mean improved understanding of the input document and better recogni-

tion accuracy. Advances in OMR will lead to better systems that are of practical

use to people: publishers and composers wanting to edit or tidy up a composition,

and performers who want to listen to or play along to scores that they have available

as sheet music.

156

Bibliography

[1] Proceedings of the Third International Conference on Document Analysis and

Recognition, ICDAR ’95, Montréal, Canada, August 1995. IEEE. 2.3.1, 3.4.2,

8, 26

[2] Proceedings of the Fifth International Conference on Document Analysis and

Recognition, ICDAR ’99, Bangalore, India, 1999. IEEE. 2.3.1, 3.2.1, 3.4.2, 48,

72

[3] Jarmo T. Alander. Indexed bibliography of genetic algorithms in optics and

image processing. Report 94-1-OPTICS, University of Vaasa, Department of

Information Technology and Production Economics, 1995. 4.3.5

[4] A. Amin, S. Fischer, A. F. Parkinson, and R. Shiu. Comparative study of skew

detection algorithms. Journal of Electronic Imaging, 5:443–451, oct 1996. 3.5.3

[5] David Bainbridge. Extensible Optical Music Recognition. PhD thesis, University

of Canterbury, Christchurch, New Zealand, 1997. 2.1.5, 3.5.3, 4.3.4, 5.2.1, 5.6,

6.1.2, 7.1.2

[6] David Bainbridge and Stuart Inglis. Musical image compression. In Proceedings

of the IEEE Data Compression Conference, pages 209–218, Snowbird, Utah,

1998. IEEE. 1.1

[7] Henry S. Baird, Horst Bunke, and Kazuhiko Yamamoto, editors. Structured

Document Image Analysis. Springer-Verlag, 1992. 1.2, 15, 44

[8] S. Baumann. A simplified attributed graph grammar for high-level music recog-

nition. In Proceedings of the Third International Conference on Document Anal-

ysis and Recognition [1], pages 1080–1083. 4.3.4, 5.2.3

[9] P. Bellini and P. Nesi. Automatic justification and line-breaking of music sheets.

International Journal of Human-Computer Studies, 61:104–137, 2004. 3.1.3

157

[10] P. Bellini, P. Nesi, and M. B. Spinu. Cooperative visual manipulation of music

notation. ACM Transactions on Computer-Human Interaction, 9(3):194–237,

sep 2002. 2.1.9

[11] Pierfrancesco Bellini, Ivan Bruno, and Paolo Nesi. Off-Line Optical Music Sheet

Recognition, chapter 2. IRM Press, July 2004. 2.1.9

[12] Juan Pablo Bello and Mark Sandler. Blackboard system and top-down pro-

cessing for the transcription of simple polyphonic music. In Proceedings of the

COST G-6 Conference on Digital Audio Effects, Verona, Italy, December 2000.

4.3.3, 4.4

[13] Adrian C. Bickerstaffe and Enes Makalic. MML classification of music genres. In

16th Australian Conference on AI, volume 2903 of Lecture Notes in Computer

Science, pages 1063–1071, Perth, Australia, 2003. Springer-Verlag. 5.2.4

[14] D. Blostein, E. Lank, and R. Zanibbi. Treatment of diagrams in document

image analysis. In M. Anderson, P. Cheng, and V. Haarslev, editors, Theory and

Applications of Diagrams, volume 1889 of Lecture Notes in Computer Science,

pages 330–344. Springer Verlag, 2000. 4.3, 4.3.3

[15] Dorothea Blostein and Henry S. Baird. A critical survey of music image analysis.

In Baird et al. [7], pages 405–434. 2.1

[16] Dorothea Blostein, Hoda Fahmy, and Ann Grbavec. Practical use of graph

rewriting. Technical Report 95-373, Department of Computing and Information

Science, Queen’s University, Ontario, Canada, January 1995. 4.3.4

[17] Dorothea Blostein and Lippold Haken. Justification of printed music. Commu-

nications of the ACM, 34(3):88–99, March 1991. 3.1.3

[18] Ivan Bruno, P. Beliini, and P. Nessi. Assessing optical music recongition tools.

Technical report, The Interactive-Music Network, 2nd MusicNetwork Open

Workshop, July 2003. 2.1.10, 6.1.2

[19] H. Bunke and P. S. P. Wang, editors. Handbook of Character Recognition and

Document Image Analysis. World Scientific, 1997. 3.4.2, 3.5.2, 46, 68

[20] Donald Byrd. Music notation software and intelligence. Computer Music Jour-

nal, 18(1):17–20, 1994. 2.2.1, 5.2.2, 6.2.7

158

[21] Donald A. Byrd. Music Notation by Computer. PhD thesis, Indiana University,

1984. 2.2.1, 5.2.2

[22] Nicholas P. Carter. Automatic Recognition of Printed Music in the Context of

Electronic Publishing. PhD thesis, University of Surrey, Surrey, United King-

dom, 1989. 2.1.1, 3.3

[23] Nicholas P. Carter. Segmentation and preliminary recognition of madrigals

notated in white mensural notation. In O’Gorman and Kasturi [61]. 5.5.2

[24] Gerd Castan. Music notation formats. Internet Web Site, 2004. http://www.

music-notation.info/. 2.2.3

[25] Niann-Tsuu Chiang. Optical music recognition: Processing the sacred harp.

Master’s thesis, School of Computing and Mathematical Sciences, University of

Waikato, New Zealand, July 1998. 2.1.5

[26] Bertrand Coüasnon and Jean Camillerapp. A way to separate knowledge from

program in structured document analysis: Application to optical music recogni-

tion. In Proceedings of the Third International Conference on Document Anal-

ysis and Recognition [1]. 2.1.3

[27] Bertrand Coüasnon and Bernard Rétif. Using a grammar for a reliable full

score recognition system. In Proceedings of the Internation Computer Music

Conference, Banff, Canada, September 1995. 2.1.3

[28] Michael Droettboom. Selected research in computer music. Master’s thesis,

The Peabody Institute of the John Hopkins University, Baltimore, Maryland,

USA, April 2002. 2.1.6, 4.1.2, 5.4.5

[29] Michael Droettboom and Ichiro Fujinaga. Symbol-level groundtruthing envi-

ronment for OMR. In Fifth International Conference on Music Information

Retrieval [75], pages 497–500. 6.1

[30] Michael Droettboom, Karl MacMillan, and Ichiro Fujinaga. The gamera frame-

work for building custom recognition systems. In Symposium on Document Im-

age Understanding Technologies, pages 275–286, Greenbelt, Maryland, USA,

April 2003. 2.1.6

159

http://www.music-notation.info/
http://www.music-notation.info/

[31] Jon W. Dunn and Constance A. Mayer. Variations: A digital music library

system at Indiana University. In Proceedings of the Fourth ACM Conference

on Digital Libraries, Berkeley, California, 1999. ACM. 1.1

[32] Hoda Fahmy and Dorothea Blostein. A graph grammar for recognition of music

notation. Machine Vision and Applications, 6(2):83–99, 1993. 4.3.4

[33] M. Ferrand, J. A. Leite, and A. Cardoso. Hypothetical reasoning: An ap-

plication to Optical Music Recognition. In M. C. Meo and M. V. Ferro, edi-

tors, APPIA-GULP-PRODE’99 Joint Conference on Declarative Programming,

pages 367–381, L’Aquila, Italy, September 1999. 2.1.7

[34] M. Ferrand, J. A. Leite, and A. Cardoso. Improving optical music recognition

by means of abductive constraint logic programming. In P. Barahona and J. J.

Alferes, editors, Progress in Artificial Intelligence, 9th Portuguese International

Conference on Artificial Intelligence, volume 9, pages 342–356. Springer-Verlag,

September 1999. 2.1.7, 2.1

[35] Miguel Ferrand. Reasoning Under Uncertainty: Applications to Automatic

Recognition and Interpretation of Printed Music. M.Phil, Dept. Engenharia

Informatica, Universidade de Coimbra, September 2000. 2.1.7

[36] Ichiro Fujinaga. Adaptive Optical Music Recognition. PhD thesis, McGill Uni-

versity, Canada, 1997. 2.1.6, 3.2.2, 5.5, 5.5.2, 7.1.2, 7.2.2, 7.3

[37] Christopher Graefe, Derek Wahila, Justin Maguire, and Orya Dasna. Designing

the muse: A digital music stand for the symphony musician. In Proceedings of

the CHI ’96 Conference on Human factors in computing systems, page 436,

Vancouver, Canada, 1996. ACM. 1.1

[38] Cindy Grande and Alan Belkin. The development of the notation interchange

file format. Computer Music Journal, 20(4):33–43, 1997. 2.2.3

[39] Karl Hader. Aus der Werkstatt eines Notenstechers. Waldheim–Eberle Verlag,

Vienna, Austria, 1948. 2.4

[40] Simon Haykin, editor. Kalman Filtering and Neural Networks. Adaptive and

Learning Systems for Signal Processing, Communications, and Control. John

Wiley & Sons, New York, USA, 2001. 2.1.3

160

[41] Holger H. Hoos and Keith A. Hamel. The guido music notation format version

1.0 specification part 1: Basic guido. Technical Report TI 20/97, Fachbereich

Informatik, Technische Universität Darmstadt, 1997. 2.2.3

[42] IEEE. Proceedings of the Fourth International Conference on Document Anal-

ysis and Recognition, ICDAR ’97, Ulm, Germany, 1997. IEEE. 2.3.1, 3.4.2,

73

[43] Stuart Inglis and Ian H. Witten. Compression-based template matching. In

J. A. Storer and M. Cohn, editors, 1994 Data Compression Conference, pages

106–115, Utah, USA, 1994. IEEE, IEEE Press, Los Alamitos, CA, USA. 5.4.2,

5.4.2

[44] Hirokazu Kato and Seiji Inokuchi. A recognition system for printed piano music

using musical knowledge and constraints. In Baird et al. [7], pages 435–455. 2.1.2

[45] Dennis Koelma and Arnold Smeulders. A blackboard infrastructure for object-

based image interpretation. In E. Backer, editor, Computing Science in The

Netherlands, pages 136–147, Amsterdam, 1994. CWI. 4.3.3

[46] A. Kundu. Handwritten word recognition using hidden markov model. In Bunke

and Wang [19], pages 157–182. 2.3.1

[47] J. A. Leite, M. Ferrand, and A. Cardoso. Riem - a system for recognition

and interpretation of music writing. Technical Report RI-DEI-001-98, Dept.

Engenharia Informática, Universidade de Coimbra, 1998. 2.1.7

[48] S. Marinai and P. Nesi. Projection based segmentation of musical sheets. In

Proceedings of the Fifth International Conference on Document Analysis and

Recognition [2], pages 515–518. 2.1.9, 3.2.1

[49] Cory McKay and Ichiro Fujinaga. Automatic genre classification using large

high-level musical feature sets. In Fifth International Conference on Music

Information Retrieval [75], pages 525–530. 4.1.2, 4.2, 5.2.4

[50] Rodger J. McNab, Lloyd A. Smith, David Bainbridge, and Ian H. Witten. The

New Zealand Digital Library MELody inDEX. D-Lib Magazine, May 1997. 1.1

[51] J. R. McPherson. Page turning — score automation for musicians. B.Sc Honours

thesis, University of Canterbury, New Zealand, 1999. 1.1

161

[52] K. Ng, R. Boyle, and D. Cooper. Domain knowledge enhancement of optical

music score recognition. Technical Report ESRRS-1997-01, University of Leeds,

1997. 2.1.4, 4.1.2, 4.2

[53] K. C. Ng and R. D. Boyle. Recognition and reconstruction of primitives in

music scores. Image and Vision Computing, 14(1):39–46, February 1996. 2.1.4

[54] K. C. Ng and D. Cooper. Enhancement of optical music recognition using

metric analysis. In Proceedings of Colloquium on Musical Informatics, volume

XIII, pages 189–192, L’Aquila, Italy, September 2000. 2.1.4, 4.1.2

[55] Kia Ng. Music manuscript tracing. In D. Blostein and Y.-B. Kwon, editors,

Graphics Recognition. Algorithms and Applications, volume 2390 of Lecture

Notes in Computer Science, pages 330–342. Springer-Verlag, 2002. 2.1.4, 3.2.2,

4.2

[56] Kia Ng, Jerome Barthelemy, Bee Ong, Ivan Bruno, and Paolo Nesi. Coding

images of music sheets. Technical Report DE4.7.1, The Interactive-Music Net-

work, February 2004. Project IST-2001-37168. 2.1.10, 2.1.12, 6.1.2

[57] Kia Ng, Roger Boyle, and David Cooper. Key signature detection using note

distribution. Technical Report 95.23, School of Computer Studies, University

of Leeds, UK, 1995. 2.1.4

[58] Kia C. Ng. Automated Computer Recognition of Music Score. PhD thesis,

School of Computer Studies, University of Leeds, 1995. 2.1.4

[59] Han-Wen Nienhuys and Jan Nieuwenhuizen. Lilypond, a system for automated

music engraving. In Processings of the XIV Colloquium on Musical Informatics,

pages 167–172, Firenze, Italy, May 2003. 2.6, 3.1.3

[60] Han-Wen Nienhuys, Jan Nieuwenhuizen, et al. GNU Lilypond: The music

typesetter, 2.4 edition, 2004. http://www.lilypond.org. 1.2.1, 2.2.1, 3.1.3

[61] Lawrence O’Gorman and Rangachar Kasturi, editors. Document Image Analy-

sis. IEEE Press, 1995. 1.2, 2.3.1, 3.5.2, 23

[62] Theodosios Pavlidis. Algorithms for Graphics and Image Processing. Computer

Science Press, Rockville, MD, 1981. 3.5.3, 5.5

162

[63] Jeremy Pickens, Juan Pablo Bello, Giuliano Monti, et al. Polyphonic score re-

trieval using polyphonic audio queries: A harmonic modeling approach. Journal

of New Music Research, 32(2):223–236, June 2003. 4.3.3

[64] João Caldas Pinto, Pedro Vieira, and João M. Sousa. A new graph-like classi-

fication method applied to ancient handwritten musical symbols. International

Journal on Document Analysis and Recognition, 6(1):10–22, July 2003. 2.1.11

[65] Gary M. Rader. Creating printed music automatically. IEEE Computer,

29(6):61–68, June 1996. 3.1.3

[66] John C. Russ. The Image Processing Handbook (3rd edition). CRC Press, 1999.

3.5.2

[67] Eleanor Selfridge-Field, editor. Beyond MIDI: The handbook of musical codes.

MIT Press, 1997. 2.2.3

[68] M. Shridhar and F. Kimura. Segmentation-based cursive handwriting recogni-

tion. In Bunke and Wang [19], pages 123–156. 2.3.1

[69] Lloyd Smith and Richard Medina. Discovering themes by exact pattern match-

ing. In Proceedings of the Second Annual International Symposium on Music

Information Retrieval, pages 31–32, Bloomington, Indiana, USA, October 2001.

5.2.4

[70] Kurt Stone. Music notation in the twentieth century: A practical guidebook.

W.W. Norton, New York, 1980. 1.1, 2.2.1

[71] Marc Vuilleumier Stückelberg and David Doermann. Model-based graphics

recognition. In Chhabra and Dori, editors, Graphics Recognition (GREC ’99)

Third International Workshop: Selected Papers, volume 1941 of Lecture Notes

in Computer Science, pages 121–132. Springer-Verlag, 1999. 2.1.8

[72] Marc Vuilleumier Stückelberg and David Doermann. On musical score recog-

nition using probabilistic reasoning. In Proceedings of the Fifth International

Conference on Document Analysis and Recognition [2]. 2.1.8, 2.1.8

[73] Marc Vuilleumier Stückelberg, Christian Pellegrini, and Mélanie Hilario. An

architecture for musical score recognition using high-level domain knowledge.

In Proceedings of the Fourth International Conference on Document Analysis

and Recognition [42]. 2.1.8, 2.2, 4.3.2, 4.3

163

[74] George Tzanetakis. Manipulation, Analysis and Retrieval Systems for Audio

Signals. PhD thesis, Princeton University, June 2002. 5.2.4

[75] Universitat Pompeu Fabra. Fifth International Conference on Music Informa-

tion Retrieval, Barcelona, Spain, October 2004. 29, 49

[76] Kadir Wijaya. Extending cantor: An optical music recognition system. Master’s

thesis, School of Computing and Mathematical Sciences, University of Waikato,

New Zealand, February 1999. 2.1.5, 5.4.1

[77] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, 2nd edition, June 2005. 3.2.2

[78] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes.

Morgan Kaufmann, San Francisco, CA, USA, 2nd edition, 1999. 6.2.3

[79] Sue Wu and Adnan Amin. Automatic thresholding of gray-level using multi-

stage approach. In Proceedings of the Seventh International Conference on

Document Analysis and Recognition, Edinburgh, Scotland, August 2003. IEEE.

3.5.1

[80] I. Yoda, K. Yamamoto, and H. Yamada. Automatic construction of recogni-

tion procedures for musical notes by genetic algorithm. In Proceedings of IAPR

Workshop on Document Analysis Systems, pages 203–209, Kaiserslautern, Ger-

many, October 1994. 4.3.5

164

Appendix A

Practical Implementation

A.1 Resource Limits for Specialists

Configuration file controlling per-specialist and global coordinator settings:

[global]

####### coordinator settings

mostly for experimentation purposes - we can load .mus files

and skip some of the initial steps

starting_specialist = 4

how much should specialists change by when told to "try harder"?

default_tolerance_step = 5

max_total_reqs_processed = 200 # coordinator variable

####### default limits for specialists (can be overrided below)

if this isn’t specified, the global default is 5

#max_reqs_submitted = 3

if this isn’t specified, the global default is 5

#max_reqs_received = 12

default global setting per specialist is 60 seconds of cpu time

max_cpu = 90 # in seconds

165

[Staff Processing]

[Prim Identification]

this specialist is the target of most requests...

max_reqs_received = 200

max_cpu = 300 # in seconds

[Prim Segmentation]

this limits the number of times prim seg. will do its default action.

max_reqs_created = 4

max_reqs_submitted = 4

[Musical Semantics]

max_reqs_submitted = 100

[Final Output]

166

A.2 Object Pattern Descriptions

This appendix gives a sample of some of the pattern descriptions used by the Primi-

tive Identification specialist. The patterns that contain templates have the bitmaps

shown in Figure A.1.

1 # ORDER IS IMPORTANT! Objects will be tested in the order that appears

in these files!

primitive

5 name ‘‘quaver_rest’’

this primitive description is relative to a staff of the following

height, and will be scaled during matching

staff_height 84

is this object type expected to be part of a larger object and

10 # needs to be extracted, or are all these objects "stand-alone"?

isolated_only yes

pattern { bbox (20, 38), (25, 42) }

if a pattern is given an origin point, the pattern will only

match if the origin point is set to a black pixel.

15 pattern origin (5,5) {

template pattern is based on examples in ‘‘Promenade’’

template threshold 85 size (22,39) {

main dot

polygon filled (0,2) (2,0) (8,0) (11,4) (12,10) (8,13) (0,10) (0,2)

20 # stem

polygon filled (14,11) (21,2) (21,8) (10,38) (6,37) (17,12) (14,11)

}

}

primitive

25 name ‘‘semi_quaver_rest’’

staff_height 86

isolated_only yes

pattern origin (15, 2) {

template threshold 80 size (30,57) {

30 polygon filled (11,0) (7,5) (10,11) (22,13) (18,28)

167

(10,29) (12,26) (8,21) (4,21) (0,24) (0,30) (8,33)

(15,31) (7,56) (12,56) (29,0) (20,10) (18,3) (11,0)

}

}

35

primitive

name ‘‘rect_rest’’

staff_height 72

isolated_only yes

40 pattern {bbox (20,10), (26,15) } # filter on size

pattern origin (12,6) {

template threshold 85 size (23,11) {

polygon filled (0,0) (22,0) (22,10) (0,10) (0,0)

}

45 }

primitive

name ‘‘flat’’

staff_height 86

50 isolated_only yes

pattern { bbox (20, 51), (23, 57) }

pattern {

template size (20,51) {

polygon filled closed (0,0) (0,50) (2,50) (2,0) # stem

55 polygon filled closed (3,49) (17,41) (19,33) (14,28)

(3,30) (3,33) (9,31) (12,35) (11,40) (3,46)

}

}

slightly smaller/pointier curve

60 primitive

name ‘‘flat%sharper’’

staff_height 86

isolated_only yes

pattern { bbox (20, 51), (23, 57) }

168

quaver rest semi quaver rest rect rest flat flat (sharper) natural

Figure A.1: Bitmaps described by sample pattern descriptions

65 pattern {

template size(20,51) {

polygon filled closed (0,0) (3,0) (3,50) (0,50)

polygon filled closed (3,50) (19,44) (19,37) (7,32)

(3,34) (8,36) (14,39) (9,45) (3,47) (3,50)

70 }

}

primitive

name ‘‘natural’’

75 staff_height 84

isolated_only yes

pattern { bbox (18, 55), (21, 68) }

pattern {

template size (18, 55) {

80 polygon filled closed (0,0) (0,36) (3,36) (3,0)

polygon filled closed (14,20) (14,54) (17,54) (17,20)

polygon filled closed (4,33) (4,36) (12,36) (11,33)

}

}

169

A.3 Assembly Rules

The following listing is the default set of rules for performing primitive assembly of

scores in the Western Music Notation. Lines starting with a ‘#’ are comments, and

are ignored by the OMR system.

1 # ORDER MATTERS!

set up a temporary type made up of a set of other types

timesig_top E {digit_2, digit_3, digit_4, digit_5, digit_6, digit_7, digit_8}

5 timesig_bottom E {digit_2, digit_4, digit_8}

assignment

#

newobject = obj1 + obj2 [conditions]

10 #

creates a new object that is the two other objects combined

#

#

newobject = obj1 <- obj2 [conditions]

15 #

creates a new object that has both as children, but only the

same dimensions and graphic data as the first object.

timesig = timesig_top + timesig_bottom

20 # $1 refers to the object of the 1st type being tested, $2 for

the object of the 2nd type.

minimum and maximum distances (in pixels) - either minimum or both

values may be omitted

where $1 is_above(5,15) $2

25 # this rule compares the left-hand-side edges of both objects

and $1 lhs_difference(-10,10) $2

full_notehead_dur_dots = full_notehead <- dot

where $1 is_left_of(8,15) $2

30 # bottom of 1st object may not be above top of 2nd object

170

and $1 !is_above $2

top of 1st object may not be below bottom of 2nd object

and $1 !is_below $2

35 hollow_notehead_dur_dots = hollow_notehead <- dot

where $1 is_left_of(8,15) $2

and $1 !is_above $2

and $1 !is_below $2

40 full_notehead_types E {full_notehead, full_notehead_dur_dots}

hollow_notehead_types E {hollow_notehead, hollow_notehead_dur_dots}

notes on left-hand-side of stem up

45 filled_note_stem_up = vertical_line <- full_notehead_types

where $1 is_right_of(-5,5) $2

within 20 pixels from top of notehead

and $1 is_above(-20, 20) $2

50

add notes on right-hand-side of stem up

need to make sure noteheads aren’t too close to top of stem

filled_notegr_stem_up = filled_note_stem_up + full_notehead_types+

where $1 touches(-5,5) $2

55

notes on right-hand-side of stem down

filled_note_stem_down = vertical_line <- full_notehead_types

where $1 is_left_of(-5,5) $2

within 20 pixels from top of notehead

60 and $1 is_below(-20,20) $2

add notes on left-hand-side of stem down

filled_notegr_stem_down = filled_note_stem_down

+ full_notehead_types+

171

65 where $1 touches(-5,5) $2

where $1 is_right_of(-5,5) $2

and $1 !is_above(2) $2

and $1 !is_below(2) $2

70

hollow_note_stem_up = vertical_line + hollow_notehead_types+

where $1 is_right_of(-5,5) $2

and $1 !is_above(2) $2

75 and $1 !is_below(2) $2

hollow_note_stem_down = vertical_line + hollow_notehead_types+

where $1 is_left_of(-5,5) $2

and $1 !is_above(2) $2

80 and $1 !is_below(2) $2

need to be able to join both types to horizontal with

different rules...

filled_note E {filled_notegr_stem_up,

85 filled_notegr_stem_down,

filled_note_stem_up, filled_note_stem_down}

notegroup = hough_horizontal + filled_note+

where $1 touches(5) $2

90

this could be tighter for vertical limits...

bass_clef = bass_clef_curl <- dot+

where $1 is_left_of(3,10) $2

95 and $1 !is_above $2

and $1 !is_below $2

172

	List of Figures
	List of Tables
	Index of Score Figures
	Introduction
	Introduction to Music Notation
	The OMR Process
	Lower-Level Processing
	Higher-Level Processing

	Multiple Knowledge Sources in OMR
	Aims of This Research
	Thesis Outline
	Glossary

	History and Background
	Previous Work
	Carter
	Kato and Inokuchi
	Coüasnon et. al.
	University of Leeds research group
	CANTOR
	GAMERA Project/Levy Sheet Music Collection
	RIEM
	Stückelberg et. al.
	The MOODS Project
	Interactive Music Network
	Other Systems
	Commercial Systems

	Notation
	Western Music Notation
	Other Notations
	Music Notation Software and File Formats

	Related Fields
	Optical Character Recognition
	Chinese Character Recognition
	Document Image Analysis

	General Trends in OMR

	Anatomy of an OMR System
	Musical Semantics
	Syntax versus Semantics
	Syntax
	Engraving

	Object Identification
	Segmentation
	Classification
	Assembly

	Staff Processing
	Text Processing
	Identifying Textual Regions
	Optical Character Recognition

	Preprocessing and Filtering
	Binarisation
	Image Cleanup and Filtering
	De-skewing and Deformation

	Coordination of Knowledge Sources
	Advantages of a Coordinated Approach
	Dealing with uncertainty
	Detecting and Correcting Errors

	Knowledge Sources
	Strategies for Coordinating Knowledge
	``Top-down'' versus ``Bottom-up'' Approaches
	Frames
	Blackboard Systems
	Graph Rewriting
	Genetic Algorithms
	Discussion and Summary of Coordination Strategies

	Practical Implementation
	OMR Knowledge Coordination
	Request-based Model
	The Coordinating Process

	Musical Semantics and Notation-Related Issues
	Implementation Details
	Unconventional Use of Notation
	Syntactic Feedback for Coordination
	High-level semantics

	Primitive Assembly
	Implementation
	Assembly Difficulties and Examples

	Primitive Identification
	Patterns and Template matching
	Compression-based template matching
	Identifying Objects with Semantic Feedback
	Segmentation of Objects
	Practical Issues in Object Identification

	Text Recognition and OCR
	Musical Semantics of Text
	Example of Text Detection

	Staff Processing/Page Layout
	Page Layout

	OMR System and Coordination Issues
	Boundaries between System Stages
	Possible Coordination Strategies
	System Progress and Tolerance Levels

	Other Practical Difficulties
	Typographical and Editorial Errors
	Staff System Locations
	Complex or Poor Layouts

	Evaluation
	Measuring System Performance
	Measuring Effectiveness
	Issues in OMR Evaluation

	Evaluation of System Specialists
	Preprocessing/Page Layout
	Staff Processing
	Object Identification
	Primitive Assembly
	Segmentation
	Text Removal
	Musical Semantics

	Evaluation of System Interaction
	Request Handling
	Tolerance Levels
	Flow of Execution

	Conclusions
	Original contributions of this thesis
	Primitive Identification
	Coordination of Knowledge Sources
	Identification based on Assembly Knowledge
	Identification based on Clustering
	Run-time Pattern Adaption
	Re-classification of Objects
	System Design

	Shortcomings and Challenges
	Request Handling
	Primitive Identification
	System Evaluation

	Future work
	Priority of Requests
	OCR
	Musical Semantics

	Key findings
	Knowledge Coordination
	Adaptation
	Algorithm Settings and Thresholds

	In closing

	Bibliography
	Practical Implementation
	Resource Limits for Specialists
	Object Pattern Descriptions
	Assembly Rules

