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Abstract: Robotic kiwifruit harvesting systems are currently being 
introduced to improve the reliability and farming yields of kiwifruit 
harvesting operations. Machine learning is widely used to carry out the 
visual detection tasks required of such systems. This paper specifically 
compares two types of machine learning algorithms: the multivariate 
alternating decision tree and deep learning based kiwifruit classifiers. 
The purpose of the study is to investigate the cost of implementation 
against the classification performance. Thus, discussion is centred 
around computational cost and its impacts on the overall system 
architecture. We found that the traditional decision tree classifiers can 
achieve comparable classification performance at a fraction of the cost 
and complexity, providing robust and cost-effective instrument design.  

Keywords: classification, decision tree, deep learning, precision 
agriculture, vision 

I.  INTRODUCTION 
Kiwifruit is New Zealand’s largest horticultural export with 

an income of NZ$2.23 billion between 2016-2017. This number 
is projected to double by 2025 [1]. With such a high economic 
value, New Zealand farmers are invested in precision 
agricultural technologies for targeted harvesting of ripe 
kiwifruit to maximize their profitability. In particular, 
agricultural industry is facing a growing shortage of manual 
labour, thus creating keen commercial interest in automated 
inspection and robotic harvesting systems [2]. Pattern 
recognition algorithms are proving performant for automatic 
recognition of kiwifruit. One of the most successful techniques 
is the Deep Neural Network (DNN), especially those based on 
the Convolution Neural Network (CNN) construct, offering 
some of the highest accuracies in classification tasks. While 
DNN is indeed capable of providing more accurate detection 
solutions, it does come at a high cost of implementation and 
lack of comprehensibility in the classification model (as 
elaborated in Table 1). Comprehensibly is an important aspect 
of classification when the system is targeted for visual detection 
applications. For example, in a medical application [3], a 
comprehensible model not only helped to automatically detect 
a condition, but it also provided medical experts with insights 
on the relationship between disease phenotype and affliction.  

Decision trees are among the most popular comprehensible 
machine learning models, with the multivariate alternating 
decision tree [14] exhibiting good classification performance 
while also providing transparency. Table 1 presents the 
comparison of DNN and ADTree. This paper extensively 
compares the use of the DNN and ADTree specifically on 
kiwifruit detection. The reason for this particular comparison is 

to extend the discussion beyond just accuracy and speed, typical 
in many detection studies. Specifically, we also consider the 
benefit of classification insights easily obtained from 
transparent machine learning models. It is anticipated that a 
comprehensible system could lead engineers to either (1) 
choose better measurement techniques that not only perform 
detection but can also withstand the rigors of the farming 
environment; or (2) to improve the design of kiwifruit detection 
instrumentation that maximizes detection rates while keeping 
down the cost. 
Table 1: Comparisons between Deep Neural Network and Alternating 
Decision Trees 

Performance 
Indicator 

DNN ADTree 

Accuracy Very high if appropriate 
architecture has been 
adopted and tuned 
appropriately 

Very high if good 
classification features 
are available 

Computational 
requirement 

Extremely high. 
Impractical without 
GPU assisted 
computation 

Low. Can be executed 
smoothly on a normal 
desktop machine with 
16GB RAM 

Comprehensibility Current research focus. 
No generally accepted 
and practical 
comprehension 
framework yet exists. 

Interpretable model 
[14]. Focused discussion 
provided in Section IV 
of this paper 

Ease of use Very easy. Seamless 
integration between 
automatic feature 
learning and 
classification. 

Moderate. Automatic 
feature and tree 
structure selection. 
Requires handcrafted 
features to be supplied. 

II. VISUAL OBJECT DETECTION 
Visual detection of an object from a given image can be 

generally divided into two tasks: (a) localisation and (b) 
classification. Localisation aims to estimate the probable 
location of the object. Classification, on the other hand, assesses 
the category of the localised object. Depending on the chosen 
method, localisation and classification could either be 
performed independently of each other, or share a large portion 
of the information processing pipeline. In the context of this 
paper, the scope of discussion is restricted to classification.  

A. Deep Neural Network (DNN)  
1) The rise of DNN in machine vision (in brief) 

Since 2017, Deep Neural Network, specifically those based 
on Convolutional Neural Network (CNN), have become the de 



facto reference point for machine intelligence. The sudden 
paradigm shift towards DNN is often attributed to its 
spectacular success during the ImageNet Large Scale Visual 
Recognition Competition [4]. The ImageNet challenges require 
the object detection model to correctly identify about a 
thousand object classes from more than millions of images with 
wide ranging degrees of difficulties. Below is a very succinct 
overview of the DNN development in machine vision; how it 
captured the attention of machine vision researchers and 
subsequently caused the paradigm shift of the entire field in the 
span of only a few years.  

Alexnet [5], an 8-layer network which was considered one 
of the deepest at that time, won the 2012 ImageNet competition. 
Two years later, another two methods were introduced: DNN 
VGGNet [6] (19 layers) and GoogleNet [7] (22 layers, new 
inception architecture). Both these models are much deeper 
than anything that came before. More importantly, they offer 
almost human-level detection performance on the ImageNet 
dataset and therefore represented a triumph of the modern 
computational technology. In 2015, a 152-layer ResNet [8] set 
the milestone in machine vision technology by surpassing 
human performance on the ImageNet dataset. 

These remarkable achievements have turned DNN into the 
de facto reference point of visual processing tasks. 
2) Some challenges of DNN adoption in practice 

The success of DNN along with the open availability of 
good development tools have prompted many engineers and 
data scientists to apply DNN solutions in their domain as the 
first option. The biggest advantage of DNN-based solutions is 
that a highly accurate black-box solution can be found without 
the need to learn about image feature extraction and various 
statistical learning algorithms as along as the appropriate 
development tools and computational infrastructure are used.  

There are several considerations that have impeded the 
wider adoption of DNN. The first consideration is data 
availability. DNN requires large amount of data to constrain the 
model. This is because over-learning will occur in a model that 
has large degrees of freedom unless the learning is regularized 
by using an even larger amount of training data in order to 
sufficiently estimate all the free parameters. (Table 2)   
Table 2: Approximate number of free parameters and typical number of 
arithmetic operations to process one image 

Architecture Parameters Operations 
Alexnet 60×106 3×109 
GoogleNet 4×106 3×109 
VGG19 138×106 40×109 
ResNet 60×106 24×109 

There are two direct consequences to this data requirement. 
First, the required amount of data is simply not available in most 
applications. Second, even if the data is available, the task of 
large-scale training-sample labelling is a non-trivial 
undertaking. This mission requires funding, together with 
meticulous resource planning. Transfer learning [9] partially 
addresses this data availability problem. It works by keeping the 
localisation layers obtained from large-data training (which can 
be achieved using Alexnet, for example). Then the user only 
has to tune the classification layer according to the 

specifications of their application. This therefore allows 
detection to be achieved with a much smaller sample size. 
Transfer learning essentially transforms the posterior feature 
extraction model obtained from large-data training into the 
prior of the small-data problems. It works as long as the domain 
of the new problem does not differ too greatly from the training 
data. However, the overlap in the problem domain is sometimes 
difficult to ascertain objectively. In the case of kiwifruit 
classification, it is unclear from the outset that a DNN such as 
Alexnet, that was trained on more than a million images to 
classify 1000 categories of objects with cluttered background, 
provides a good prior model to the much simpler task of 
detecting kiwifruit in a mostly leafy background.  

Furthermore, the superior performance of DNN in 
ImageNet may be partly attributed to the availability of high-
quality high-resolution images, and the performance degrades 
significantly on lower quality real-life images [10]. This is not 
necessarily true with algorithms that rely on carefully 
engineered image features. Another equally important 
consideration is the life-cycle cost of DNN-based systems. 
Table 2 shows the typical arithmetic operation count to classify 
an image. It is a few orders of magnitude higher than the 
traditional methods. Thus, DNN-based systems generally 
require the use of dedicated computing infrastructure such as 
Graphics Processing Unit (GPU) enabled processors. In 
summary, designing a DNN-based system requires extensive 
data labelling, combined with largescale GPU-grade computing 
infrastructure, training and tweaking.  

B.  Feature extraction & alternating decision tree 
classification  
If the intent is solely to classify objects, black-box 

classifiers such as DNN and support vector machines may be 
sufficient. However particularly for visual detection systems, it 
is often beneficial to extract knowledge on how the 
classification was made in order to improve the human 
understanding of an object’s optical properties. Decision trees 
are inherently transparent, and are often a good choice for 
applications such as visual kiwifruit detection. 
1) Image feature extraction 

Given a particular data set, DNNs automatically identify 
what to learn and how to learn it. Their ability to abstract 
features from the given input-output data pair is a wonder of 
modern computation. Unfortunately, to date, there is no reliable 
methodology to extract the abstracted image features from 
DNN except through running the entire DNN. As a comparison, 
traditional image features are used herein by transforming the 
input image into several representations that each highlight 
different aspects of the image characteristics. Each 
representation is then passed through standard feature 
extraction modules such as sub-block statistics, inter-
representation statistics [11], local binary pattern (LBP) [12] 
and histogram of oriented gradients (HOG) [13]. 
2) Alternating decision tree classifier 

For the reasons stated above, we chose a tree-based 
classification algorithm. Specifically, we chose the multivariate 



ADTree [14] as the decision tree classifier. Decision trees use 
an information organization structure that is amenable to human 
interpretation. The multivariate ADTree introduced by Sok et. 
al. [14] is a type of decision tree that has a performance that is 
comparable to other types of classifiers such as support vector 
machines while maintaining comprehensibility. It does not 
require fine tuning of hyper-parameters because it reduces the 
classification error through statistical boosting. Fig.  1 is a 
graphical representation of the decision tree and alternating 
decision tree respectively.  
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Fig.  1: Comparison between general decision tree and ADTree. For ADTree, 
it can have more than one decision node under the prediction node to support 
boosting 

The ADTree structure alternates between layers of 
prediction nodes and decision nodes starting from a root 
prediction node. Unlike the decision tree whereby prediction 
nodes hold the predicted classification result, the ADTree 
prediction node contains real-valued prediction for the decision 
test outcome. Instead of a single path from the root node to 
reach one of the leaf nodes that contains the prediction on the 
class label for general decision tree, ADTree enables one or 
more paths to be traversed from the root prediction node to the 
terminal prediction node(s). The distinction between this and 
the “normal” decision tree is that the decision tree only allows 
one path to be transversed. The final ADTree prediction is made 
by summing all the traversed prediction values. A positive sum 
indicates positive class and vice versa. 

This model is completely transparent to the user, whereby 
the decision rule that contained in the decision node (from Fig.  
1) is an explicit linear model that allows the user to gain an 
understanding on how the features interact to arrive at the 
classification decision.  

III. EXPERIMENTAL RESULTS 

A. Methodology and Images 
In the following experiments, two DNN architectures, 

Alexnet and GoogleNet, were chosen as the benchmark. 
Alexnet was chosen because it is the simplest architecture while 
GoogleNet was chosen due to its relatively high efficiency 
among the deeper and more powerful DNN. During our 

experiments, we found that GoogleNet did not perform 
significantly better than Alexnet, thus it was concluded that 
there was no need to evaluate even deeper models such as 
ResNet.  

Over 100 colour images of kiwifruit in the orchard were 
taken with the image resolution of 1920×1200 pixels, and under 
various weather conditions typically encountered by the fruit 
harvesters. From these images, over 4,715 samples of kiwifruits 
were hand-annotated and another 37,720 background samples 
were extracted randomly from the images.  

Fig.  2 shows an example of the images collected. The 
labelled boxes are examples of conditions whereby accurate 
detection of the kiwifruits can become challenging, e.g. colour 
distortion, occlusion and objects at the boundary. Compared to 
an earlier investigation [15], this dataset presents a more 
realistic variation of lighting typically encountered in real-life. 
Wijethunga et. al. [15] investigated a purely image processing 
technique and detection using hand-crafted colour statistics to 
detect kiwifruits.  

 
Fig.  2: An example of the image used in this investigation. Some of the 
challenging scenario are: (a) colour distortion due to harsh lighting; (b) 
incomplete fruit, occlusion by other objects; (c) incomplete fruit, boundary 
cut-off 

We find that colour statistics alone are insufficient for 
reliable discrimination between the subtle differences in the 
shades of green and brown of the fruit, branches and leaves. 
Furthermore, the colour analysis tended to be distorted by the 
lighting condition. Hence additional discriminating features via 
analysis of the available colour and texture was included to 
increase the detection robustness. 

B. Classification Accuracy 
The proposed method for colour and texture analysis and 

classification is tested on the kiwifruit classification problem  
using eight-fold cross validation. The cross-validation results in 
Fig.  3 indicate that all three classifiers have comparable 
classification performance. All classifiers can be characterised 
by precision-sensitivity tradeoff[16]. The results in Fig.  3 show 
that ADTree has a slightly higher sensitivity at the expense of 
lower precision compared to the tested DNNs. That means 
ADTree is slightly better than the tested DNNs in reducing false 
negatives but produces a slight increase in false positives. A 
similar trend can be observed on the recognition of the 

a 

b 

c 



background. Fig.  4 shows the precision-sensitivity trade-off 
curve of the best and median models for ADTree, Alexnet and 
GoogleNet taken from the eight-fold cross-validation results. 
The markers indicate the default operating point for each of 
classifier chosen by the learning algorithm. From this figure, it 
can be seen that GoogleNet performs better than Alexnet for the 
kiwifruit images in this experiment. It also shows that ADTree 
is tuned to higher sensitivity at the expense of precision while 
DNN does the opposite.  

 

 
Fig.  3: Classification performance, true positive fraction:fraction of positive 
samples classified as positive; positive predictive value:fraction of true positive 
from the samples classified as positive. The horizontal lines in the box and 
whisker plot are respectively: maximum, 3rd quartile, median, 1st  quartile, 
minimum. 

The difference in the precision-sensitivity tradeoff between 
DNN and a simpler model like ADTree seen in Fig.  4 can be 
explained by the differences in the training method and 
samples. Models like ADTree are determined completely by the 
samples provided, therefore the quality of the training sample 
has a significant effect on the model’s performance. On the 
other hand, the DNN that uses transfer learning have their 
feature extraction layers fixed. The fine-tuning of classification 
layer has relatively little impact on the overall performance. 

The higher sensitivity of the DNN suggests that its feature 
extraction layers have learned features that can identify 
miscellaneous background objects from the ImageNet dataset. 
This prior knowledge was carried over by the DNN into this 
study, and could help with the identification of non-target 
objects hence leading to lower false positive fraction. On the 

other hand, the ADTree model was built solely on the provided 
100+ images. This limited its capability of building a reliable 
statistical model for the background objects because some 
objects only appear once or twice in the entire training set. This 
shortcoming in the statistical model could be overcome by 
using a more sophisticated cross-domain transfer learning 
paradigm [17], which would be a topic of interest for further 
extension of this research. 

 
Fig.  4: Precision-Sensitivity(Recall)  trade-off between different classification 
models. Only the best and the median performers from the 8 models 
undergoing cross-validation test are presented in this graph. 

C. Processing Speed 
The time taken to evaluate each classifier model is an 

important performance metric and directly impacts the 
feasibility of implementing the classification technique in real-
time, out in the farming environment. Parallelism and the use 
of GPU can significantly reduce the computational time if 
correctly implemented. Standard DNN implementations make 
use of single precision floating-point arithmetic, GPU and 
parallel processing to reduce the evaluation time. action 
between parallel threads causes nonlinear scaling of 
computational speed with respect to the number of available 
computational cores. This makes the direct comparison 
between different algorithms almost impossible. Therefore, for 
the purpose of this discussion, all GPU and parallel processing 
was disabled.  
Table 3: The average execution time per image per CPU core ± 2 standard 
deviation (≈ 95% interval). “Single pass” column refers to approximate time 
required to evaluate all 42435 image samples 

Classifier Average time Single pass  
ADTree-Optimised 0.064±0.003s 0.7 hours 
ADTree-Unoptimised 0.091±0.009s 1.0 hours 
AlexNet 0.245±0.001s 2.9 hours 
GoogleNet 0.624±0.001s 7.3 hours 

The execution time statistics presented in Table 3 are 
obtained using single CPU core only. ADTree-Unoptimised in 
Table 3 refers to an unoptimised ADTree that generates an 
ADtree based on all the presented 8,850 image features using 
double precision arithmetic; whereas ADTree-Optimised 

represents the same ADTree using single precision arithmetic 
and part of the unused image features removed via sparsity in 
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its learning paradigm. Note that for this experiment, there is no 
optimisation done on standard features like HOG and LBP. 
Table 3 shows ADTree-Optimised can be expected to be an 
order of magnitude faster than the already optimised DNN.  

DISCUSSION ON MODEL COMPREHENSIBILITY 

D. Interpreting the ADTree 
Fig.  5 shows the structure of ADTree-Best, which is the best 

performing optimised ADTree of the 8-fold cross validation 
experiment. The ADTree-Best only uses four decision nodes 
(refer to  Fig.  5), which are T1-T4. The conditions in the 
prediction nodes (P1-P9) represents different subsets of the 
training data as partition by the ADTree learning algorithm.  

Table 4 shows the number of image features out of the 
presented 8,850 feature set that each decision node uses in the 
ADTree-Best classifier. In total, ADTree-Best uses just 508 
features, which is fewer than 6% of the 8,850 image features. 
Hence a full optimisation could be even faster than that reported 
by ADTree-Optimised that was reported in Table 3. Since the 
ADtree is a transparent model, we are able to extract the type of 
feature that the classifier considers as useful for visual 
detection. By studying Decision node T1, we can identify the 3 
features that it used (refer to Table 4). In this case, the features 
were (1) Grayscale/Brightness (Feature1), (2) Colour 
Likelihood (Feature2) and (3) Hue (Feature3). This knowledge 
is useful since further investigation can be performed to study 
why the ADTree classifier considered these features to be 
important for Decision node T1.  
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Fig.  5: The tree structure of ADTree-Best, the best performing ADTree 

Table 4: Feature size is the number of image features with non-zero 
coefficients, sparsity is the percentage of non-zero coefficient. 

Decision nodes Features used out of the 
original 8,850 feature 

set 

Sparsity 

T1 003 0.03% 
T2 312 3.52% 
T3 112 1.27% 
T4 104 1.17% 

Overall 508 5.94% 

Following the examination, it was found that T1 could 
distinguish kiwifruit based on pixel brightness (Feature1) in the 

kiwifruit-green colour (Feature2) and with strong reddish hue 
(Feature3). This is similar to human comprehension, except 
that the ADTree built the mathematical equation based on the 
training data. It is obvious, from the above examination, that T1 
performs the task of colour analysis. However, when we studied 
the prediction at P2, we found that it contains some background 
samples that received a positive score from T1 due to colour 
distortion caused by strong sunlight.  Fig.  6 shows an example 
of photo that has bright and reddish hue due to glare. Therefore, 
if we use only colour analysis to distinguish between kiwifruit 
and background (i.e. what T1 is doing), it will result in a 
misclassification. This explains why the “purely colour 
analysis” kiwifruit detector reported in [15] failed to handle this 
problem adequately. 

 
Fig.  6: An example of colour distortion due to harsh lighting. 

 
Fig.  7: Samples of occluded kiwifruits that are detected by T1 but eventually 

rejected by the texture analysis branch T2-T4. Most of these samples are 
being rejected by DNN as non-target. 

ADTree supplements T1 with a few texture analysis 
branches T2-T4 to compensate for the misclassification from 
T1. T2-T4 branches are added in parallel to T1, and in the 
ADTree, this means that it follows an independent line of 
reasoning in the decision making. As discussed in Section 2, the 
“normal” decision tree only allows one path is to be transversed. 
However, the ADTree transverses all parallel paths. T2-T4 are 
dominated by LBP texture features and HOG edge statistics 
features. The texture analysis, while correcting some colour 
analysis misclassifications, reduces the recall of occluded fruits 
as shown in Fig.  7. These occluded fruits have been identified 
using colour analysis but rejected by texture analysis that is 
meant to compensate for false positives that is caused by sensor 
saturation. The quantitative and qualitative evidences show that 
inherent trade-off between colour analysis and texture analysis 
exists that cannot be resolved easily through purely 
computational means.  This information is not readily available 
if the classification is done using a blackbox model like DNN. 
It highlights an opportunity to reduce the classifier complexity 
and improve accuracy. An optical filter (e.g. infrared-cut filter) 
can be added to the camera to reduce the colour distortion. Such 
reduction in complexity not only reduces acquisition cost, it is 
likely to reduce the engineering maintenance and operational 
costs too.  



E. Processors  
Real-time human detection technology [13] similar to the 

ADTree reported above has been known to run at 30 frames per 
second (FPS) on the Raspberry Pi. On the other hand, the 
processors that are capable of evaluating DNN are relatively 
expensive. For example, 5 FPS has been reported on powerful 
GPU processor like TITAN or K40 which is about 10-30 times 
more expensive than a typical Raspberry Pi processor. 
Integrating these GPU-processors into a generic embedded 
system with maximum clock speed of 1.2-1.5GHz is also 
challenging. Attempts to run GoogleNet on a generic Raspberry 
Pi (1.2GHz, quad-core) system has achieved the speed of less 
than 0.1 FPS [18]. Optimised CNN-DNN design (e.g. 
SquuzedNet, MobileNet) can improve the speed around 10 fold 
(still less than 1 FPS) at the expense of degrading classification 
performance [19]. These observations are consistent with the 
10-fold difference in speed reported in the previous section.  

The speed of 1 FPS that leads to lower classification 
performance would either cause cases of missed harvesting of 
kiwifruit, or worse, result in a system that will be too slow to be 
deployed in the field. Either way, this negatively impacts the 
harvesting yield and therefore profit margins. Thus, DNN still 
remains impractical for high volume visual detection work. 
Apart from needing more expensive processors, the additional 
information processing capability required to run a DNN 
increases the power consumption. This leads to larger and more 
complicated power and thermal management systems which 
add substantially to the system cost, negatively impact the 
system mobility and may be incompatible with outdoor 
operation. On the overall, the slight difference in the 
classification performance reported above does not seem to 
justify the adoption of DNN that runs at one-tenth of the speed 
or cost far more to build. 

IV. CONCLUSION 
This paper compares the visual classification performance 

of kiwifruit images between standard Deep Neural Network 
(DNN) and a decision tree classifier with independent feature 
generation and classification algorithm in order to assess the 
performance and cost of implementation. In the context of 
kiwifruit detection and harvesting, the results of this paper leads 
to the recommendation that the adoption of DNN-based object 
recognition technology will have high accuracy but will require 
a very powerful backend information processing server cluster. 
Furthermore, it is expected that high-speed wireless 
communication is needed in order to achieve near-real time 
implementation. The system price must include this cost, 
including the cost of lower harvesting yield per hour and 
maintenance/servicing of the system in the farming 
environment.  

Alternatively, the adoption of traditional visual recognition 
models such as decision tree allows for real-time recognition 
with lower system cost. However, this cost could come at the 
cost of lower accuracy of detection. The most cost-effective 
way forward is to improve the decision tree classifier precision 
through the use of custom-made image features and more 

sophisticated training methodologies such as transfer learning. 
This should therefore be the direction of future research. 
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