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Abstract. Jitter in an electronic signal is any deviation in, or displacement of, the signal in time. This

paper investigates on decomposition of two types of jitter, namely, periodic and random jitter in noisy

signals. Generally, an oscilloscope generates an eye diagram by overlaying sweeps of different seg-

ments of a long data stream driven by the reference clock signal. We use the fast Fourier transform

with time lag correlation of the signal since we do not have a clock reference signal and apply this

technique to simulated noisy signals. We separately injected a random jitter (of known amount), peri-

odic jitter (with known frequency and amount), and both together to various modulation frequencies

of sinusoidal signals. The approach is validated by several experiments with numerous values in jitter

parameters.When we separately inject random jitter (5 ps) and periodic jitter (5 ps at 4.37 MHz) to the

signal, we obtained the results (4.52± 0.25 ps) and (4.93± 0.04 ps at 4.40± 0.04MHz), respectively.

Introduction

The variation in the time of a regular clock signal from its nominal reference is called jitter [1]. In

a signal with jitter, the zero-crossing transitions of the cycles are seen to vary in time from the ideal

clock timing. Jitter can be characterised, depending on the type of jitter, by parameters such as the

amplitude and frequency of the jitter. Jitter amplitude is a measure of the typical time displacement in

units of time. If the jitter values are repetitive then the frequency of the repetition is of interest. The time

displacement of a digital signal is equivalent to variations in the signal’s phase. Controlling jitter is a

valuable task because jitter can degrade performance of electronic systems. Measurement of jitter can

be performed in the time-domain or frequency-domain. In the time-domain, various techniques and

tools such as histogram, bathtub and spectral testing methods are used each with limitations [2–4]. The

accuracy of these techniques can only be guaranteed if the jitter measurement is carried out on real-

time measuring instruments such as time interval analyzers or high-speed sampling oscilloscopes with

very large memory depth to acquire sufficient data. In addition, all these instruments use a sampling

clock signal to trigger the time measurement unit to perform the period measurement. Jitter can also be

analyzed in the frequency-domain by using the Fourier transform. Then, the energy of the resulted jitter

spectrum can be used to calculate the jitter components by application of one of several techniques

[5–8]. Some require a jitter-free sampling clock signal (or reference signal) to perform spectral analysis

on the signal.As an example, the fast Fourier transform (FFT) and time lag correlation (TLC) functions

have been used by Pang et al. (2009) [7] to measure jitter in simulation experiments.

In this paper, we are concerned with measurement of random jitter (RJ) and periodic jitter (PJ) in

simulated noisy sinusoidal signals by using FFT and TLC functions. We do not use a reference clock

signal and the method is implemented on simulated noisy signals.

Jitter

Jitter can be considered as consisting of two components: random and deterministic. Random jitter

includes all jitter that is random in nature. Typically it as Gaussian distributed, because most noise

or jitter in an electrical circuit is caused by thermal noise, which has a Gaussian distribution. Since



this type of jitter is not bounded, it is characterized by its standard deviation (STD) or root-mean-

square (RMS). Deterministic jitter is that component of jitter that can be predicted from prior values.

Deterministic jitter is linearly additive and has a non-Gaussian probability density function. It can be

characterized by a peak-to-peak value. This type of jitter can be further divided into several types,

namely, periodic jitter, bounded correlation jitter and data dependent jitter which includes duty cycle

distortion and inter symbol interference [1]. We are concerned only with random jitter and periodic

jitter in this paper.

Method and Materials

For an ideal signal, the cycle period T is defined by the time difference between two consecutive zero

crossing points at rising edges of the signal. The jitter δtn (see Fig. 1) is the deviation in time of the
zero crossing at the nth rising edge. Let tn be the actual time of the nth rising edge, then the nth cycle
period is Tn = tn − tn−1. The jitter is then given by δtn = T + δtn−1 − Tn.
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Fig. 1: Jitter definition.

Let the ideal (reference) sinusoidal signal frequency f and amplitude A be

r(t) = A sin (2πft). (1)

We assumed zero phase shift and background offset of the signal. The signal with jitter is then,

s(t) = A sin (2πf(t+ δt(t))), (2)

where δt(t) is the jitter in the signal at time t. In this study, we are only concerned with RJ and PJ in
the signal. Let,

δtRJ (σ
RJ
) = ε σ

RJ
, (3)

where ε is a random variable which is a function of time and σRJ is the RMS of the RJ.

Periodic jitter may consist of different frequencies in the signal and these follow the superposition

rule. From a signal perspective, periodic jitter is the same as any periodic signal in terms of frequency



and phase, but its amplitude is jitter in units of timing. The PJ consisting of L different frequencies,

is [1],

δtPJ (A
PJ
, f

PJ
) =

L∑
l=1

A
(l)

PJ
cos(2πf

(l)

PJ
t), (4)

where A
(l)

PJ
and f

(l)

PJ
are the amplitude and frequency of the lth component of the PJ, respectively. In

this paper, we consider a single frequency only. Then, the total jitter with RJ and a single PJ is given

by

δtTJ (t) = ε σ
RJ

+ A
PJ
cos(2πf

PJ
t), (5)

and the signal with jitter is,

s(t) = A sin (2πf(t+ ε σ
RJ

+ A
PJ
cos(2πf

PJ
t))). (6)

Finally, we take the Fourier spectrum of the total jitter in Eq. (5) by using the discrete Fourier transform

(DFT) as

F
(δt)
k =

N−1∑
n=0

δtTJ
n (t) e−i 2πnk

N , k = 0, 1, . . . , N − 1, (7)

where F
(δt)
k is the DFT of the kth sample of the jitter in the samples size of N .

Jitter calculation

A combination of TLC functions and spectrum of the total jitter is used to decompose the jitter

parameters, and jitter calculation is performed by considering the energy of the spectrum. Since the

autocorrelation function of a variable is only a function of its time lag and not the absolute time, a

more general quantification of the jitter is possible by means of the TLC function of the jitter Cδt(m)
with itself overm successive time lags with a sample size of N , namely, [9]

Cδt(m) = lim
N→∞

1

N

N∑
n=1

(δtn+m δtn) , m ∈ Z∗ (8)

For a signal with random jitter only, Eq. (8) with Eq. (3), simplifies to [4]

Cδt(m) =

{
σ2

RJ
m = 0

0 otherwise.
(9)

Likewise, for a signal with single periodic jitter only, Eq. (8) with Eq. (4), simplifies to [4]

Cδt(m) =

{
A2

2
m = 0

A2

2
cos

(
2πf

PJ

m
f

)
otherwise.

(10)

To determine σ2
RJ

from Cδt(0) of a signal containing both PJ and RJ, one must find the periodic jitter
component first. That can be done with the DFT. Figure 2 is an example of the spectrum of the total

jitter F
(δt)
k , against its frequency f (δt) (i.e., index k), when injecting both RJ and PJ into the signal.

Each point of the spectrum is the square root of energy of that frequency component of the signal.

The PJ appears as a clear high peak at its frequency f
PJ
. The RJ is spread evenly throughout the

spectrum. The line F
(int)
k is the interpolated level of the RJ across that part of the spectrum that the PJ

contributes to. This needs to be subtracted from the PJ peak to be able to estimate the energy of the PJ.

Then, the other jitter parameters A
PJ

and σ
RJ

can be calculated by measuring the energy of the total

jitter spectrum where the frequencies contain the signal’s energy.
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Fig. 2: An example of a spectrum of the total jitter.

This spectrum measures the distribution of energy values as a function of frequency. In the frequency-

domain, the energy of a spectral line is calculated by taking the square of the FFT magnitude [10].

Thus, the total energy is given by

E (δtTJ ) = 2

N/2−1∑
k=0

|F (δt)
k |2, (11)

where we calculate the summation over one-half the spectrum (because it is symmetric) and multiply

by 2. The total jitter is given by

δtTJ =
√

2E (δtTJ ), (12)

where the factor
√
2 is the conversion of the RMS of a sinusoid to its amplitude. The energy of the

periodic jitter is in its peak only, therefore

E (δtPJ ) = 2
kr∑

k=kl

(
|F (δt)

k |2 − |F (int)
k |2

)
, (13)

where kl and kr are the left and right indices of the interpolated level of the spectrum, respectively
(see Fig. 2). The amplitude of the PJ is

A
PJ

=
√

2E (δtPJ ). (14)

Hence by Eqs. (11) and (13), the RMS of the RJ is

σ
RJ

=
√
E (δtTJ )− E (δtPJ ) =

√√√√2

N/2−1∑
k=0

|F (δt)
k |2 − 2

kr∑
k=kl

(
|F (δt)

k |2 − |F (int)
k |2

)
. (15)



Simulation setup

We experimented on five simulated signals with various frequencies (i.e. fi = i × 10 MHz, i =
1, . . . , 5) and with unit amplitude (i.e. A = 1) throughout the experiments. First, we generated the
relevant ideal time-domain signals for each frequency of fi. These signals were acquired by sampling
with the frequency rate of Fs = 8 GSa/s. The number of cycles (number of jitter samples),N

cal
i for the

five corresponding frequencies fi are given by,

N cal
i =

fi Ns

Fs

, i = 1, . . . , 5, (16)

whereNs = 216, is the number of samples used in the acquired time-domain signals. These calculated
number of cycles are not always integer values, therefore spectral leakage appeared in the spectrum

of the jitter signal. In order to obtain the spectrum of the total jitter, we chose the number of jitter

samples to the nearest integer Ni by taking the floor of N cal
i for each simulated signal. Next, the

signal with jitter was constructed by injecting a known quantity of jitter for the corresponding time-

domain signal. Then, both signals (with and without jitter) were aligned with respect to the first zero

crossing point of rising edges and then, the zero crossing points at rising edges for both signals were

obtained by using linear interpolation. After that, we calculated the jitter for each cycle by obtaining

the corresponding time differences between these zero crossing points of the signal with and without

jitter for each experimental simulation. Then, we obtained the spectrum of the total jitter to extract the

corresponding jitter parameters for each simulation. In order to control the uncertainties of the results,

we used 20 data sets for each simulation setup and obtained the total jitter spectrum for each data set.

Finally, we obtain the mean spectrum of the total jitter after taking the magnitude of the spectrum for

each data set of the relevant simulation setup.

We consider three types of simulation setup in this study as listed in Table 1. The numerated

amount of random jitter, periodic jitter and both types are separately injected into each simulated

signal corresponding to the frequency fi. We choose the jitter amounts of two, four, six, eight and ten

times the lowest value (5 ps) for each of σ
RJ

and A
PJ
, for the setup denoted as SET. A and SET. B,

respectively (see Table 1). In addition, we select a specific value for the frequency of the periodic jitter

as f
PJ

= 4.37 MHz throughout the simulations. The combination of these two types of jitter values are

chosen as for the setup denoted in SET. C. In addition, by using Eq. (16), the number of jitter samples

for each signal frequency are also included.

Table 1: Three types of simulation setup

Simulation Signal frequency No. of cycles Injected jitter parameters

setup # fi [MHz] N cal
i Ni RJ ∼ (σ

RJ
) and PJ ∼ (A

PJ
, f

PJ
)

10 81.92 81

SET. A : RJ only 20 163.84 163 σ
RJ

= {5, 10, 20, 30, 40, 50} [ps]

SET. B : PJ only 30 245.76 245 A
PJ

= {5, 10, 20, 30, 40, 50} [ps]

SET. C : RJ with PJ 40 327.68 327 f
PJ

= 4.37 [MHz]

50 409.60 409

Results and Discussion

The spectrum of the total jitter when injecting both RJ and PJ together (denoted as SET. C) for two

different values of RMS σ
RJ

and A
PJ

for the five simulated signals corresponding to the frequency fi
are shown in Fig. 3.
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Fig. 3: Spectrum of total jitter when injecting the RJ and PJ as (a) σ
RJ

= 5 ps, A
PJ

= 5 ps, f
PJ

= 4.37

MHz and (b) σ
RJ

= 50 ps, A
PJ

= 50 ps, f
PJ

= 4.37 MHz, for setup denoted as SET. C in Table 1.

In order to illustrate the results in the same plot we padded the amplitude by zeros at the end of

first four simulated signals (i.e., for the signal of fi = 10, . . . , 40 MHz), to the length of the number

of bins of the spectrum of the 50 MHz signal, i.e., 409 (see Table 1). By comparison, we noted that

the amplitude level of the spectrum in Fig. 3(b) is approximately 10 times that of Fig. 3(a). It clearly

seems the frequency of the PJ (at 4.37 MHz) is slightly deviated as 4.40± 0.04MHz. We expect this

is due to the mismatch between the sampling frequency and the number of cycles (see Table 1) that

leads to spectral leakage in the jitter signal. Furthermore, when the spectral leakage presents from a

larger signal (amplitude) component, it may significantly overshadow other smaller signals making

them difficult to detect [11]. Therefore, the spectrum cannot represent the exact frequency f
PJ

of the

PJ, and the energy of the signal is leaked to adjacent bins. As a result, the amount of the A
PJ

of each

signal for the similar experiment is not given the same injected value (see Fig. 3).

We compare the actual and measured jitter amounts for each of three simulation setups, separately.

Figures 4 and 5 show the comparison of the measured and actual jitter values with different amounts

(see Table 1) for 10 and 50 MHz signals for simulations SET. A and SET. B, respectively.

Actual random jitter σ
RJ

 (ps)

0 5 10 15 20 25 30 35 40 45 50

M
e

a
s

u
re

d
 r

a
n

d
o

m
 j

it
te

r 
σ

R
J
 (

p
s

)

0

5

10

15

20

25

30

35

40

45

50

Y = 0.9484 X + [-0.3934]

1-to-1 curve

random jitter

fitted curve

(a)

Actual random jitter σ
RJ

 (ps)

0 5 10 15 20 25 30 35 40 45 50

M
e

a
s

u
re

d
 r

a
n

d
o

m
 j

it
te

r 
σ

R
J
 (

p
s

)

0

5

10

15

20

25

30

35

40

45

50

Y = 0.9578 X + [0.0512]

1-to-1 curve

random jitter

fitted curve

(b)

Fig. 4: Comparison of the actual and measured random jitter in the signal of frequencies, 10 MHz (a)

and 50 MHz (b), on the simulation setup denoted as SET. A in Table 1.

In addition, 1-to-1 curve and the fitted curve through the data points with the relevant linear regres-

sion for the measured jitter amounts is also included in each simulation results in the figure. The slope

and intercept of this expression are good indicators for the accuracy and offset error, respectively, of
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Fig. 5: Comparison of the actual and measured periodic jitter at 4.37 MHz of the signals, fi = 10MHz

(a) and fi = 50 MHz (b), on the simulation setup denoted as SET. B in Table 1.

the measured jitter parameters. When these two values are closer to one and zero, respectively that

indicate the matching of the actual and measured amounts in each simulation. For SET. A, the devi-

ation between the measured and actual values increases (see Fig. 4) when the random jitter amount

increases, and note that the offset errors are −0.3934 and 0.0512 for 10 MHz and 50 MHz signals,

respectively. We believe this is due to the presence of more zero-crossings with a 50 MHz signal. Sta-

tistical uncertainty is reduced due to larger sample size. For the case of PJ (SET. B), the jitter extraction

in the absence of any other noise is accurate with very small measurement uncertainty for both fPJ

and APJ .

Similarly for SET. C (both RJ and PJ), on a 50MHz signal, Fig. 6 shows a strong linear relationship.

Fig. 6(a) compares the varies of the PJ with fixed σ
RJ

= 5 ps while Fig. 6(b) compares the varies of the

RJ with fixedA
PJ

= 5 ps at 4.37 MHz.Among these two plots, the offset error in Fig. 6(b) is relatively

larger [0.3165] than the same in Fig. 6(a) [0.2807]. We believe, it is because the PJ affects a particular

frequency while the RJ affects all frequencies of the signal with spreading of the energy through whole

jitter signal. Therefore, the effect of the RJ on the calculation of PJ is less than the effect of the PJ on

the calculation of RJ, when we inject the same amount of each. The measured and actual PJ with fixed

RJ is closer (slope is 0.9745) than the measured and actual RJ with fixed PJ (slope is 0.9404).
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Fig. 6: Comparison of the actual and measured of periodic jitter with fixed σ
RJ

= 5 ps (a) and random

jitter with fixed A
PJ

= 5 ps at 4.37 MHz (b), for the signal fi = 50 MHz, separately, for setup denoted

as SET. C in Table 1.



Conclusion

We have investigated an efficient method to extract the periodic and random jitter in simulated noisy

signals. First, we aligned the ideal and jittery signals with respect to first zero crossing point of rising

edges of two signals. Then, by using an interpolation technique, we obtained the exact zero crossing

points at rising edges for each signal. Next, the total jitter is obtained in time domain by calculating

the TLC for each cycle and obtaining the spectrum of the same. Finally, by calculating the energy of

the frequency spectrum, we extracted the jitter parameters of the signal. We experimented on various

frequencies of signals with different values for the parameters of the RJ and PJ. The experimental

results show a reasonable accuracy in the jitter measurements. As examples, when we inject only a

RJ of RMS values, 5 and 50 ps, our approach was given the values of 4.52 ± 0.25 and 45.23 ± 2.44
ps, respectively. Furthermore, if we inject only the PJ of 5 and 50 ps, separately, at the frequency 4.37

MHz, the calculated parameters were given as 4.93 ± 0.04 ps and 49.31 ± 0.46 ps, respectively, at
the frequency of 4.40 ± 0.04 MHz. If RJ is a large fraction of the total jitter then it can be difficult

to separate the PJ accurately. In future work, we plan to use this method for the extraction of jitter

components in real-time applications where we have no access to a reference clock signal. This may

support to increase the accuracy and precision of the measurements in the system.
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