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ABSTRACT 
 

Chronic kidney disease (CKD) is a global health problem associated with increased 

risk of mortality and development of end-stage renal disease (ESRD). Cardiovascular 

diseases are the leading cause of morbidity and mortality even before the development 

of ESRD. The main purpose of this thesis is to elucidate pathophysiological 

mechanisms causing cardiac injury in patients with CKD. The specific aims were: 1) 

To examine the effects of two weeks of high NaCl diet on left ventricular (LV) 

morphology and serum levels of cardiac troponin-T (cTnT) in rats with adenine-

induced chronic renal failure (ACRF). 2) To determine the effects of ACRF on cardiac 

morphology and function and to examine mechanisms causing cardiac abnormalities. 

3) To identify early, sub-clinical, cardiac abnormalities by echocardiography in 

patients with CKD stages 3 and 4 and to investigate mechanisms that might cause these 

alterations. Paper 1. Rats with ACRF showed statistically significant increases in 

arterial pressure (AP), LV weight and fibrosis, and serum cTnT levels compared to 

controls. Two weeks of high-NaCl intake augmented the increases in AP, LV weight, 

fibrosis, and serum cTnT concentrations only in ACRF rats and produced LV injury 

with cardiomyocyte necrosis, scarring, and fibrinoid necrosis of small arteries. Paper 

2. Cardiac function was assessed both by echocardiography and by LV catheterization. 

ACRF rats developed LV hypertrophy and showed signs of LV diastolic dysfunction 

but systolic function and cardiac output were preserved. Paper 3. In a cohort of patients 

with CKD stages 3 and 4, and matched controls, we performed comprehensive 

investigations including echocardiography and assessment of coronary flow velocity 

reserve (CFVR) in response to adenosine. CKD patients had normal systolic function 

but showed signs of LV diastolic dysfunction without fulfilling criteria for heart failure 

with preserved ejection fraction. In addition, CKD patients had significantly reduced 

CFVR versus controls suggestive of coronary microvascular dysfunction (CMD). In 

conclusion, ACRF rats developed LV hypertrophy and diastolic dysfunction while 

systolic performance was preserved. High-NaCl diet in rats with ACRF produced 

severe LV injury and aggravated increases in serum cTnT levels, presumably by 

causing hypertension-induced small artery lesions leading to myocardial ischemia. 

These results support the hypothesis that a high dietary intake of NaCl has deleterious 

effects on LV integrity in patients with kidney failure. Patients with CKD stages 3 and 

4, without a diagnosis of heart disease, showed signs of LV diastolic dysfunction and 

a relatively large proportion had CMD suggesting that microvascular abnormalities 

may have a pathogenic role in the development of heart failure in this patient group.  
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SAMMANFATTNING PÅ SVENSKA 

Kronisk njursvikt är en sjukdom som är både vanlig och allvarlig. De flesta 

patienter dör till följd av kardiovaskulära händelser innan de har hunnit 

utveckla terminal njursvikt.  

Målet med denna avhandling är att studera mekanismer bakom hjärtskada hos 

patienter med kronisk njursvikt. Studie 1 och 2 är baserade på en 

djurexperimentell modell på råttor med adenin-orsakad njursvikt. Studie 3 

baseras på patienter med kronisk njursjukdom.  

Studie 1: Efter två veckor med högt saltintag, utvecklade råttor med njursvikt 

högre blodtryck, hjärtförstoring och mycket höga nivåer av TnT vilket 

indikerar skada av hjärtmuskelceller. Hjärtat visade uttalade skador med 

ärromvandling och väggförtjockning av små kärl. Studie 2: Hjärtultraljud 

visade att råttor med njursvikt hade hjärtförstoring och att vänster kammares 

relaxationsförmåga var nedsatt men att pumpfunktionen var intakt. Studie 3: 

Patienter med måttligt nedsatt njurfunktion visade tecken på avvikande 

fyllnadsförmåga i hjärtat medan hjärtats pumpförmåga var välbevarad. 

Patienter med njursvikt hade dessutom tecken på mikrovaskulär dysfunktion i 

hjärtat.  

Försämrad relaxation av vänster kammare och hjärtförstoring verkar vara de 

första tecknen på hjärtskada vid nedsatt njurfunktion. De uttalade kardiella 

skadorna efter två veckor av högt saltintag indikerar att salt kan vara skadligt 

för patienter med njursvikt. Sannolikt skadar högt saltintag hjärtat genom att 

orsaka ett kraftigt förhöjt blodtryck. Det är möjligt att en försämrad 

mikrocirkulation i hjärtat hos patienter med kronisk njursjukdom kan bidra till 

utveckling till hjärtsvikt.
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1. INTRODUCTION 

More than 11% of the adult population worldwide have chronic kidney disease 

(CKD)[1] and are facing an increased risk of end-stage renal disease (ESRD), 

cardiovascular (CV) disease and death [2]. Cardiovascular diseases are the 

leading cause of morbidity and mortality in patients with CKD [3, 4]. Already 

when glomerular filtration rate (GFR) falls below approximately 60 

ml/min/1.73m2 there is a graded and inverse relationship between kidney 

function and CV morbidity and mortality [4, 5]. 

                

The main purpose of this thesis was to elucidate pathophysiological 

mechanisms that cause cardiac injury in patients with CKD. 

 

1.1 The kidneys 

The kidneys are mainly responsible for maintaining a stable internal 

environment for optimal cellular function (homeostasis). The nephron is the 

structural and functional unit of the kidney and a healthy adult has about 1 

million nephrons per kidney (figure 1). Each nephron consists of a capillary 

tuft called glomerulus, Bowman's capsule, and the tubular system. In the 

glomerular capillaries, plasma water is filtered across the capillary wall (the 

blood-urine barrier) and the primary urine is collected by Bowman’s capsule 

and passed on to the tubule.   

 

About 20-25% of cardiac output passes through the renal circulation 

producing about 150-180 liters of glomerular filtrate (primary urine) per day. 

In the tubular system almost all of the filtered water and electrolytes are 

reabsorbed while waste products are retained in the urine and excreted.  

 

The flow rate at which fluid is filtered across all the glomerular capillaries is 

called glomerular filtration rate. GFR is used as a measure of kidney function 

and in clinical practice it is expressed in the unit ml/min per 1.73 m2 of body 

surface area. It is usually measured by clearance techniques. A small 

exogenous marker that is freely filtered, and neither reabsorbed, nor secreted, 

by the tubules after filtration, is injected intravenously and a blood test is 

taken after a certain time in order to analyse the remaining level of the 

exogenous marker in the blood. Both chromium-51 labelled ethylene diamine 

tetra-acetic acid (51Cr-EDTA) and iohexol are commonly used filtration 

markers. An easier, faster but less accurate method to evaluate kidney 

function is to estimate GFR (eGFR) by measuring endogenous filtrations 
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markers, such as creatinine or cystatin c, in the blood. In daily clinical practice 

eGFR is used more often due to its simplicity. Normally young adults have a 

GFR of approximately 125 ml/min/1.73 m². With increased age GFR falls 

gradually and at 80 years of age GFR is around 70 ml/min/1.73 m². 

The glomerular capillary wall is a living ultrafiltration membrane and acts as 

the blood-urine barrier. It permits water and small solutes to pass readily into 

Bowman’s space, while normally rejects albumin and other large proteins with 

great efficiency. Thus the presence of albumin in the urine (albuminuria) 

indicates a possible injury in the glomerular capillary wall [6]. 

 
Figure 1. The kidney and the nephron. With the kind permission of 

www.unckidneycenter.org 

 

1.1.1 Endocrine functions of the kidney  

 

The kidneys produce several vital hormones, e.g.  erythropoietin, 1,25- 

dihydroxyvitamin D3 and renin. Erythropoietin is essential for the production 

of red blood cells in the bone marrow. In ESRD erythropoietin synthesis is 

insufficient and this leads to renal anemia. 1,25- dihydroxyvitamin D3 (active 

form of vitamin D) is responsible for calcium and phosphate balance and 

promotes bone health.  

 

http://www.unckidneycenter.org/
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Renin is an enzyme that is produced by the juxtaglomerular cells of the 

afferent arterioles of the kidneys. By catalyzing the conversion of 

angiotensinogen to angiotensin I, renin activates the renin-angiotensin-

aldosterone system (RAAS). The RAAS has multiple functions but its main 

role is to maintain arterial blood pressure (BP) and extracellular fluid volume. 

In addition, the RAAS acts to preserve GFR. Renin release, and the activation 

of the RAAS, is stimulated by hypotension, hypovolemia and decreased GFR. 

Angiotensin II, which is the main effector peptide of the RAAS, causes 

vasoconstriction (increased peripheral resistance) and triggers aldosterone 

synthesis and its secretion from the adrenal glands [7]. Aldosterone stimulates 

tubular sodium and water reabsorption and potassium secretion. In addition, 

angiotensin II increases thirst and stimulates tubular water reabsorption 

through the release of antidiuretic hormone [7].  

 

To maintain a normal GFR the kidneys are dependent on an appropriate renal 

perfusion pressure and blood flow. As the heart is the center of the circulatory 

system, a continuous communication between the kidneys and the heart is 

essential. This occurs at multiple levels including the central nervous system, 

the sympathetic nervous system, the RAAS, antidiuretic hormone, and the 

natriuretic peptides. 

 

 

1.1.2 Kidney innervation 
 

The kidneys are innervated with efferent and afferent nerves to communicate 

with the central nervous system. Major structural components of the kidneys, 

such as blood vessels, juxtaglomerular cells and tubules are innervated 

forming a two-way neural path to transmit sensory and sympathetic signals 

from and to the kidneys [8]. Stimulation of the renal sympathetic efferent 

nerves causes renin release, sodium reabsorption, and reduced renal blood 

flow. Elevated afferent renal sensory nerve signaling increases sympathetic 

outflow to the skeletal muscle vasculature, the kidneys, and the heart, thereby 

increasing peripheral vascular resistance and BP.  
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1.2 Chronic Kidney Disease 

 

1.2.1 Definition and staging 

Chronic kidney disease is defined as either kidney damage or decreased 

kidney function for a period longer than three months regardless the cause.  

Kidney damage refers to pathological findings, either on renal biopsy, imaging 

studies, or abnormal markers such as increased rates of urinary albumin 

excretion (UAE) or abnormalities on urinary microscopy (e.g. erythrocyte 

casts). Decreased kidney function refers to a GFR below 60 ml/min/1.73 m². 

This cutoff value represents a reduction by more than half of the normal value 

of 125 ml/min/1.73 m² in young men and women, and is associated with the 

onset of laboratory abnormalities characteristic of kidney failure and with a 

higher risk of complications of CKD [9].  

The Kidney Disease: Improving Global Outcomes (KDIGO) guidelines 

recommend CKD classification based on cause, GFR category, and 

albuminuria category (CGA). Both the classification based on GFR (Table 1) 

and albuminuria (Table 2) are used to guide management, including 

stratification of risk for progression and complications of CKD. Designations 

5D and 5T indicate end-stage renal disease patients who undergo chronic 

dialysis (5D) treatment or have undergone kidney transplantation (5T). 

 

Table 1.  GFR stages. 

Stage GFR (ml/min per 1.73 m2)  Description 

G1 ≥90 Normal or high 

G2 60 to 89 Mildly decreased 

G3a 45 to 59 Mildly to moderately decreased 

G3b 30 to 44 Moderately  to severely decreased 

G4 15 to 29 Severely decreased 

G5 <15 Kidney Failure 
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AER= albumin excretion rate; ACR= albumin-to-creatine ratio 

 

1.2.2   Epidemiology 

The prevalence of CKD stages 3-5 is between 1-6 % in European countries 

whereas in Scandinavia it is considered to be around 3.3-4.5%. Meanwhile, in 

the USA it varies from 5-12 % [10]. According to the Swedish Renal Registry 

there were approximately 4000 patients receiving dialysis in Sweden by the 

end of 2017 and around 6000 were living with a functional kidney transplant. 

Furthermore, the annual uptake of new patients on dialysis has been stable 

during the latest 20 years and is about 1000 patients per year. 

Globally, the major causes of CKD in adults are diabetes and hypertension.  

Other common causes are glomerulonephritis and autosomal dominant 

polycystic kidney disease. 

 

1.2.3 Clinical Manifestations  

The early stages of CKD usually proceed with no symptoms, even though 

hypertension is common. Anemia and disorders of calcium and phosphate 

balance are less common and become more pronounced in the advanced stages 

of CKD [11]. Eventually, systemic manifestations due to accumulation of 

metabolic waste products (uremia) develop when GFR declines below 15 

ml/min/1.73m2 and ESRD is established (Figure 2). Nausea, vomiting, weight 

loss, pruritus, mental changes and fatigue are common uremic symptoms. As 

GFR declines below 6-8 ml/min/1.73m2 kidney replacement therapy with 

dialysis or transplantation becomes a necessary life sustaining intervention. 

 

Table 2.  Albuminuria categories 

 

Category AER (mg/24 hours) 
 

ACR (mg/mmol)  Description 

A1 <30 <3 Normal  

A2 30-300 3-30 Moderate 

increased 

A3 >300 30 Severely 

increased 
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Figure 2. Chronic kidney disease 

 

1.2.4 Mortality  

Cardiovascular events are the main cause of death among CKD patients and 

increases as kidney function declines (figure 3). It appears to be twice as high 

in patients with CKD stage 3 and three times higher at stage 4 than in 

individuals with normal kidney function. Also albuminuria, already at the 

upper end of the normal range, increases CV risk independently of eGFR [4, 

5] Moreover, sudden cardiac death (SCD) is the most common cause of death 

among patients with ESRD comprising approximately 25% of all-cause 

mortality[12].  

 

Traditional CV risk factors such as smoking, obesity, hypertension, 

hyperlipidemia and diabetes cannot completely explain the increased CV risk 

in CKD [2, 5]. 

 

1.3 Why is the risk of cardiovascular events increased in 
chronic kidney disease? 

1.3.1 Spectrum of cardiovascular diseases in CKD 

 
A wide spectrum of CV diseases has been associated with CKD. The risk of 

heart failure is practically doubled in patients with eGFR below 60 mL/min 

per 1.73 m2 compared to a healthy population. The risk is similarly increased 

       100 
      GFR 
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2
) 
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for stroke, peripheral artery disease, coronary heart disease, and atrial 

fibrillation [4, 13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Cardiovascular risk and kidney function. The risk for cardiovascular events 

increases as renal function declines and further clinical signs associated to GFR 

appears (bold letters)  

 

1.4 Coronary heart disease in CKD 

Chronic kidney disease is associated with a high burden of coronary artery 

disease [14]. In patients with acute coronary syndromes (ACS) ≈40% of 

patients with non-ST-elevation myocardial infarction (NSTEMI), and 30% of 

those with ST-elevation myocardial infarction (STEMI) have CKD [15].  
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Furthermore, patients with more severe CKD have worse prognosis regardless 

the type of myocardial infarction (MI) [15]. Chronic kidney disease is the third 

strongest predictor of death after a MI and is only exceeded by cardiogenic 

shock and congestive heart failure [14, 16].    

 

In clinical practice the diagnosis of ACS is based on ECG abnormalities and 

the levels of specific biomarkers of myocardial injury such as cardiac 

troponin-T (cTnT) and troponin-I (cTnI).  

Increased serum levels of cardiac troponins are frequently observed in CKD 

patients even in the absence of acute coronary syndrome [17, 18]. Chronically 

elevated, stable, cTnT levels are associated with an increased risk of CV 

events and mortality [19-21]. Elevated serum levels of cTnT in asymptomatic 

CKD patients  are  partially explained by reduced renal clearance [22] but the 

underlying mechanisms are not fully understood. 

 

 

1.5 Heart Failure and CKD 
 

1.5.1 Heart failure; definition, terms and diagnosis 

  
According to the European Society of Cardiology heart failure (HF) is a 

clinical syndrome characterized by typical symptoms (e.g. breathlessness, 

ankle swelling and fatigue) that may be accompanied by signs (e.g. elevated 

jugular venous pressure, pulmonary crackles and peripheral oedema) caused 

by a structural and/or functional cardiac abnormality, resulting in a reduced 

cardiac output and/or elevated intracardiac pressures at rest or during stress.  

 

Heart failure is categorized further based on left ventricular (LV) ejection 

fraction (EF) (LVEF). Patients with adequate LVEF (>50%) are considered 

to have HF with preserved EF (HFpEF), whereas patients with LVEF<40% 

have HF with reduced EF (HFrEF). Heart failure with mid-range EF 

(HFmrEF) refers to patients with EF ranging from 40-49%.   

 

Left ventricular diastolic dysfunction is the hallmark of HFpEF. Left 

ventricular diastolic dysfunction is characterized by increased LV stiffness 

that impairs relaxation and leads to increased filling pressures.  

 

Echocardiography is currently the most commonly used technique for 

diagnosing different types of HF. Systolic dysfunction is identified by 

estimation of global EF and regional wall motion. Diastolic dysfunction can 

be diagnosed indirectly based on signs of impaired LV relaxation, reduced 
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restoring forces and increased diastolic stiffness. For an exact determination 

of diastolic dysfunction LV catheterization is required [23]. Current evidence 

suggests that up to 30–50% of patients with HF have HFpEF [24]. 

Interestingly, patients with HFpEF have as high mortality rates as patients 

with HFrEF [24].  

 

Natriuretic peptides are used widely as a tool in the detection and evaluation 

of HF. B-type natriuretic peptide (BNP) and N-terminal pro b-type natriuretic 

peptide (NT-proBNP) are produced in the cardiac ventricles in response to 

distention and stretching of the ventricular wall. Small amounts of a precursor 

protein, pro-BNP, are continuously produced. Pro-BNP is cleaved by the 

enzyme corin to release the active hormone BNP and an inactive fragment, 

NT-proBNP, into the blood. The release of BNP is increased in HF in response 

to high ventricular filling pressures and stretching of the ventricular wall. The 

main physiological actions of BNP are to reduce LV afterload by reducing 

systemic vascular resistance and to decrease preload by exerting natriuretic 

effects.  

 

 

1.5.2 Heart failure and chronic kidney disease 

 
The risk of developing heart failure (HF) increases considerably as GFR 

declines and CKD progresses [25, 26]. Interestingly, one community-based 

study found that CKD was  a risk factor for  HFpEF  , but not for HFrEF [27]. 

Remarkably, HF patients face higher mortality risk regardless their EF, if 

CKD coexists [28]. In a longitudinal study where CKD patients were 

subjected to repeated echocardiographic examinations, it was found that EF 

declined as patients progressed to ESRD [28].  These findings support the 

hypothesis that patients with CKD initially develop HFpEF and that EF may 

decline as patients develop ESRD.  

 

Both BNP and NT-proBNP levels in plasma may be elevated in CKD patients 

as both these peptides are partially cleared by the kidneys [29]. Nevertheless, 

NT-proBNP is used more widely, as it circulates at higher plasma 

concentrations and has a longer plasma half-life compared to BNP. When 

interpreting plasma concentrations of BNP and NT-proBNP in patients with 

CKD it is important to consider that increased levels may result from both 

reduced renal clearance, and fluid retention, in addition to impaired cardiac 

function. Hence, increased levels of natriuretic peptides in patients with CKD 

are difficult to interpret, and can be present even in the absence of HF.  
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1.6 Cardiorenal syndromes (CRS) 
 

Cardiorenal syndromes are a group of disorders that are the result of the 

bidirectional interaction between the heart and the kidneys where acute or 

chronic dysfunctions of one organ induce acute or chronic dysfunctions of the 

other [30].  

The different interactions that can occur led to the classification of CRS that 

was proposed by Ronco and colleagues in 2008 (Table 3) [31, 32]. Here the 

chronic renocardiac syndrome (CRS type 4) will be discussed as only this 

syndrome was investigated. 

 

1.6.1 Chronic renocardiac syndrome (CRS type 4) 

Chronic renocardiac syndrome is defined as progressive morphological or 

functional cardiac abnormalities secondary to CKD. In real life it is often 

difficult, or impossible, to know which abnormality that developed first as 

CKD and HF share many risk factors, e.g. hypertension and diabetes.   

Table 3.  Types of CRS. 

Type Primary event  Secondary disturbance 

Type 1 or    

acute CRS 

Acute HF Acute kidney injury 

   

Type 2 or 

chronic 

CRS 

Chronic HF Progressive kidney injury (CKD) 

   

Type 3 or     

acute CRS 

Acute kidney injury Acute cardiac disorder (HF) 

   

Type 4 or 

chronic 

CRS 

Primary CKD Cardiac dysfunction (coronary 

disease, HF, or arrhythmia) 

   

Type 5 or 

secondary 

CRS 

Acute or chronic 

systemic disorders 

Both cardiac and renal 

dysfunction 
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As kidney function deteriorates the activity of the sympathetic nervous system 

(SNS) and renin angiotensin aldosterone system (RAAS) becomes 

maladjusted. Data indicate that activation of the RAAS, renal afferent 

stimulation, reduced nitric oxide (NO) concentrations and increased oxidative 

stress all contribute to sympathetic activation [33]. This results in numerous 

adverse consequences, e.g. a reduction of myocardial β-adrenergic receptor 

density, vasoconstriction, and renal sodium retention. Simultaneously,  the 

RAAS causes vasoconstriction, excessive sodium reabsorption and 

extracellular fluid volume expansion [34]. Moreover, angiotensin II acts as a  

growth factor in the left ventricle and in the arterial wall through binding in 

specific receptors that are present in the heart [7] On the other hand, 

aldosterone, is known to promote cardiac fibrosis and cell death through 

inflammatory and oxidant signaling [35].  

 

1.6.2 Hypertension and volume overload 
 

More than 80% of CKD patients have hypertension [11] most likely due to an 

inappropriate activity of the sympathetic nervous system and the RAAS in 

combination with endothelial dysfunction and sodium retention [36]. 

 

Hypertension increases LV afterload, i.e. the pressure against which the heart 

must work to eject blood during systole. The LV adapts to the increased 

workload by developing LV hypertrophy (LVH). Moreover, hypertension 

contributes to remodeling and atherosclerosis of both small and large arteries. 

Increased stiffness of large arteries, including the aorta, is common in CKD 

[37] and can enhance LV afterload by elevating central aortic systolic 

pressure. Increased afterload leads mainly to concentric LVH (increased wall-

to-lumen ratio). Volume overload on the other hand leads to eccentric 

hypertrophy where LV cavity size increases more than wall thickness.  

 

 

1.6.3 Mineral metabolism and calcifications  
 

Dysregulated mineral metabolism characterized by increased plasma levels of 

phosphate, parathyroid hormone (PTH), and fibroblast growth factor 23 

(FGF23), and decreased levels of calcium and 1,25-dihydroxyvitamin D, is 

common in CKD patients even with moderately reduced GFR[11]. It is 

believed that reduced renal excretion of phosphate and elevated levels of 

FGF23 and PTH develop early in CKD. A consistent association between 

elevated FGF23 levels and CV events and LVH has been shown [38, 39].  

https://en.wikipedia.org/wiki/Systole
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Patients with kidney failure often have arterial media calcifications consisting 

of calcium-phosphate deposits [3, 40, 41]. Studies have shown direct effects 

of increased calcium and phosphate levels on vascular smooth muscle cells 

(VSMCs) leading to osteogenic differentiation and the formation of 

calcifications [42]. These media calcifications lead to increased stiffness of 

aorta in CKD patients and increased LV afterload as it is mentioned above.  

 

 

1.6.4 Dyslipidemia 
 

Renal dyslipidemia develops as GFR falls below 60 ml/min/1.73m2 and is 

characterized by elevated levels of apoB-containing and apoC-containing 

lipoproteins  [43]. The increase in apoC-III-containing, triglyceride-rich, 

lipoproteins is the hallmark of renal dyslipidemia. [44]. ApoC-III is a powerful 

inhibitor of lipoprotein lipase (LPL) resulting in impaired lipolysis. The 

prolonged presence of lipoproteins in the circulation, make them accessible 

for modifications that can further increase their atherogenecity [44]. 

 

 

1.6.5 Anemia 
 

Anemia can be a burden for heart function through increased cardiac stress. 

Besides tachycardia and increased stroke volume it may reduce renal blood 

flow and cause fluid retention, adding further stress to the heart [45, 46].  Long 

term anemia regardless its cause, may result in LVH and progressively in HF 

[46]. As oxygen transportation capacity is reduced, anemia may also 

contribute to cardiac hypoxia in itself.    
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1.7 KNOWLEDGE GAP 

Despite the scientific progress made during the past years in the understanding 

of the pathophysiology of cardiac injury in CKD, there are still questions to 

be answered.  

How does HFpEF develop in CKD? Can we establish an experimental model 

to investigate this? 

What are the initial cardiac abnormalities that occur before patients with CKD 

develop symptomatic heart disease? 

Does a high NaCl intake cause cardiac injury in patients with kidney failure? 
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2. AIM 

The overall aim of this thesis was to elucidate pathophysiological mechanisms 

that cause cardiac injury in patients with CKD.  

The specific aims were: 

 

I. To examine the effects of two weeks of high NaCl diet 

on LV morphology and serum levels of cTnT in rats with 

adenine-induced chronic renal failure (ACRF). 

 

 

II. To determine the effects of chronic renal failure on 

cardiac morphology and function in rats and to establish 

an experimental model of HF in CKD. 

 

 

III. To identify early, sub-clinical, abnormalities in cardiac 

morphology or function in patients with CKD stages 3 

and 4 by echocardiography and to elucidate mechanisms 

causing these alterations.  
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3. METHODS 

A combination of experimental animal studies (I, II) and clinical 

investigations in patients were performed (III). A brief overview of the 

methods used in this project follows. Detailed descriptions of materials and 

methods can be found in the manuscripts.    

All studies were approved by the regional ethics committee in Gothenburg, 

Sweden. All the participants in the clinical investigations gave their written 

consent. 

 

3.1 Experimental studies 

 

 

Adenine induced chronic renal failure (ACRF)  

 
To establish chronic renal failure in rats we developed a model of ACRF. We 

used male Sprague-Dawley rats weighing    300g. No female rats were studied, 

because we wanted to exclude any influence of the estrous cycle on our 

experiments. Adenine was administered by adding it to the chow. The adenine 

concentration was gradually reduced in order to prevent reductions in body 

weight that occur otherwise (figure 5) [47]. Control rats were pair-fed, i.e. they 

received the same amount of normal chow as ACRF rats had consumed.   

 
Adenine is one of the four nucleobases used in the nucleic acid of DNA. It is 

primarily converted to harmless adenosine by an enzyme called adenine 

phosphoribosyltransferase (APRT) widely expressed in mammalians cells 

(figure 4). However, in situations of adenine excess, adenine degrades to 2,8-

dihydroxyadenine (DHA) via the enzyme xanthine oxidase (XO). DHA is 

freely filtered through the glomeruli and due to its low solubility at the 

physiological urine pH it precipitates in renal tubules resulting in tubular 

obstruction and injury and finally causes renal failure.    
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Adenine

8-hydroxyadenine 

2,8 
dihydroxyadenine 

(DHA)

      

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 4. Metabolism of adenine. DHA causes renal failure through its precipitation 

in renal tubules.  

 

Adenine induced renal failure versus 5/6 nephrectomy 
 

The ACRF model has several advantages compared to the widely used method 

of 5/6 nephrectomy. No surgery is needed thereby reducing the risk of 

perioperative complications. Rats subjected to 5/6 nephrectomy typically 

develop only a  modest decrease in GFR and consequently secondary 

metabolic changes such as alterations in mineral and bone metabolism are not 

as pronounced as in ACRF rats [48, 49]. In addition, severe hypertension is a 

characteristic feature of most 5/6 nephrectomy models [49, 50] which makes 

it more difficult to distinguish whether cardiovascular abnormalities are 

primarily caused by high blood pressure or reduced kidney function. 

 

Feeding protocols  

 

Study I 

 
Rats either received chow-containing adenine or were pair-fed an identical 

diet without adenine [controls (C)]. Approximately 10 weeks after the 

beginning of the study, rats were randomized to either remain on a normal 

Xanthine Oxidase (XO) 

Adenosine 

Adenine 

phosphoribosyl 

transferase (APRT) 
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NaCl diet (NNa; 0.6%) or to be switched to high-NaCl chow (HNa; 4%) for 2 

weeks, after which acute experiments were performed (figure 5). 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic presentation of the feeding protocol and study groups. Figure 

from paper I. 

 

Study II 

Male Sprague-Dawley rats received either chow containing adenine or were 

pair-fed an identical diet without adenine (controls, C). After 9-13 weeks the 

experiments were performed (figure 6). 

 

 

 

 

Figure 6. Feeding protocol in study II.  

C-NNa 0.6% 

C-HNa 4% 

Control (C, pair-fed) 

ACRF-HNa 4% 

ACRF-NNa 0.6% 

ACRF 

Week 0 5 3 

Adenine 0.5% 0.3% 0.15% 

Week 0 

Start 

8-10 

NaCl 

Intervention 

10-12 

Acute 

experiments 

Control  

(C, pair-fed) 

Week 0 5 3 

Adenine 0.5% 

 

0.3% 0.15% 

 

 
ACRF 
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Measurements and tests (I, II) 

Kidney function and arterial pressure measurements (I) 

Glomerular filtration rate was measured by renal 51Cr-EDTA clearance. Two 

consecutive 20-min renal clearance periods were performed under anesthesia, 

after a 45-min equilibration period. For induction and maintenance of 

anesthesia, isoflurane concentrations of 5 and 1.5% (vol/vol), respectively, 

were used. Rats were killed by an overdose of pentobarbital sodium after the 

second clearance period, and the heart and kidneys were immediately excised 

and weighed. 

During the experiment arterial pressure (AP) and heart rate were recorded 

continuously via a polyethylene catheter in the femoral artery using the data 

acquisition program Biopac MP 150 (Biopac Systems, Santa Barbara, Calif., 

USA).  

Biochemical analyses (I, II) 

Plasma concentrations of creatinine and electrolytes were determined by a 

Modular P800 Cobas C 701/502 analyzer. Plasma BNP-32 concentrations 

were measured by a commercially available ELISA kit in duplicate and the 

values were averaged. cTnT was measured using the Elecsys hs-cTnT 

immunoassay.  

 

LV histology (I, II) 

An investigator blinded to the treatment group performed all assessments. 

Using routine techniques, 3-μm-thick transverse sections were prepared and 

stained with hematoxylin and eosin, picrosirius red (analysis of fibrosis), von 

Kossa (assessment of calcifications), or Miller's elastin. LV calcification was 

scored semi quantitatively as either present or absent. 

Cardiomyocyte hypertrophy was determined on sections stained with 

fluorescein isothiocyanate (FITC)-conjugated wheat germ agglutinin (WGA, 

Vector Laboratories, Burlingame, CA, USA) to delineate the cell membrane, 

and with 4′, 6´-diamidino-2-phenylindole (DAPI, Vectashield mounting 

medium, Vector Laboratories, Burlingame, CA, USA) to visualize cell nuclei. 

The cell diameter was measured through the cell nuclei and was used as a 
measure of cell size. 
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Proliferating cells were detected on paraffin-embedded sections by 

immunohistochemistry using a mouse monoclonal anti-proliferating cell 
nuclear antigen (PCNA) antibody. 

Apoptotic cells were detected in situ on paraffin-embedded sections by the 

terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

method using the ApopTag peroxidase in situ apoptosis detection kit 

according to the manufacturer’s instructions (Merck KGaA, Darmstadt, 

Germany). To verify that TUNEL-positive cells were apoptotic we examined 

if these cells also expressed cleaved caspase-3 by double 

immunohistochemistry staining on the same section. 

 

Morphometric analysis of LV fibrosis (I, II) 

Images of sections stained with picrosirius red were derived using an Olympus 

BX60 microscope (camera Olympus DP72) and the imaging software cellSens 

(Olympus). The imaging software BioPix iQ 2.0 (BioPix, Gothenburg, 

Sweden) was used to objectively measure general and perivascular fibrosis. 

 

Western blotting of the LV (II) 

Western blotting was carried after tissue homogenization and protein 

preparation according to routine techniques. The primary antibodies employed 

were rabbit anti-collagen-1 alpha-1 (COL1A1), rabbit anti-intercellular 

adhesion molecule-1 (ICAM-1), rabbit anti-vascular cell adhesion molecule-

1 (VCAM-1), rabbit anti-sodium-calcium exchanger-1 (NCX-1) and rabbit 

anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH), all from Santa 

Cruz Biotechnology, Texas, USA). Additional primary antibodies were rabbit 

anti-monocyte chemotactic protein-1 (MCP-1, Nordic Biosite AB, 

Stockholm, Sweden), and rabbit anti-bone morphogenetic protein-4 (BMP4) 

and mouse anti-sarcoplasmic reticulum Ca2+-ATPase (SERCA2), both from 

Abcam, Cambridge, UK. 

 

Echocardiography (II) 

Echocardiography was performed while rats were anesthetized with 

isoflurane. A high-frequency 12-MHz phased-array transducer (P12-5, Philip 

Medical System, Best, The Netherlands) connected to an ultrasound system 

(HDI 5000 ATL, Philip Medical System) was used as previously described 

[51] .  
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LV pressures (II) 

Under isoflurane anesthesia two ultra-miniature fiber optic pressure sensors 

(Samba preclin 420, sensor diameter 0.42 mm, Harvard Apparatus Ltd., 

Edenbridge, Kent, UK) were placed through the right femoral artery and left 

carotid artery in the distal abdominal aorta at the level of the aortic bifurcation, 

and in the ascending aorta immediately above the aortic valve. After a 15 min 

equilibration period, baseline recordings of aortic BPs were performed during 

5 minutes. Subsequently, the proximal aortic pressure sensor was gently 

inserted into the LV for recording of pressure with a sampling frequency of 

1000 Hz. The data were collected and analyzed by the Biopac MP 150 system 

using the data acquisition software AcqKnowledge. Left ventricular pressure 

variables were derived by post-processing of the data using the built-in 

routines in AcqKnowledge. Left ventricular end-diastolic pressure was 

determined by identifying the peak of the second derivative of the pressure 

curve during each pressure waveform. Results were derived from all pressure 

waveforms during 4-6 consecutive respiratory cycles (corresponding to 

approximately 25-40 pressure waveforms) for each animal and average values 
are presented. 

 

3.2 Clinical study (III) 

Subjects and protocol 

Patients were recruited from the Nephrology outpatient clinic at the 

Sahlgrenska University Hospital, Gothenburg, Sweden, between February 

2009 and December 2011.  

Inclusion criteria were >18 years of age, and an estimated GFR (eGFR) of 15 

to 59 ml/min/1.73m2 according to the MDRD formula since at least 3 months 

(i.e. CKD stages 3 and 4). Exclusion criteria were previous organ 

transplantation, ongoing immunosuppressive medication, inflammatory 

systemic disease, endocrine disease aside from diabetes mellitus or substituted 

hypothyroidism, expected survival less than 12 months, expected need of renal 

replacement therapy (RRT) within 12 months, and pregnancy or current breast 

feeding. Overall, 122 patients were recruited. Of these 24 had a diagnosis of 

heart disease and were excluded. Of the remaining 98 patients, 91 accepted to 

undergo echocardiographic examinations and were included in the study. 

Forty-seven healthy individuals, matched for age and gender were recruited 

through an advertisement in local newspapers. Of them, 41 approved of 

echocardiographic examinations and were included as controls. 
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Hemodynamic assessments 

Ambulatory blood pressure (ABP) was recorded during 24 hours. Nocturnal 

dipping of ambulatory systolic blood pressure (ASBP) was calculated as 

(nighttime ASBP - daytime ASBP) / daytime ASBP and expressed in percent.   

Carotid-femoral pulse wave velocity (cfPWV), digital reactive hyperemia, 

and ankle-brachial index (ABI) were measured under standardized conditions 

in the morning after an overnight fast.  

Carotid-femoral pulse wave velocity, an indirect measure of aortic stiffness, 

was calculated by measuring the distance between the femoral and carotid 

pulse, using the suprasternal notch as reference measure point, divided by the 

pulse transit time between the two locations. SphygmoCor software was used. 

Digital reactive hyperemia was analyzed by EndoPAT2000, to assess 

endothelial function as previously described [52]. Reactive hyperemic index 

(RHI) was calculated as the mean flow response post-occlusion using the non-

occluded arm as a reference. Ankle-brachial index was measured using a 

Doppler probe and a sphygmomanometer. The mean of the indices for the 

posterior tibial artery and dorsalis pedis artery for each foot was calculated 

and the average value of the left and right foot was determined.   

 

    

Echocardiography  

All examinations were performed by the same physician according the 

recommendations of the American Society of Echocardiography (ASE). Left 

ventricular hypertrophy (LVH) was defined as LVMI >115 g/m2 in men or 

>95 g/m2 in women [53]. Left ventricular hypertrophy was further classified 

as either concentric (RWT >0.42) or eccentric (RWT ≤0.42) [53]. Subjects 

with normal LVMI but RWT >0.42 were considered to have concentric 

remodeling. In subjects with normal EF, LV diastolic dysfunction was 

evaluated according to the guidelines by the ASE and based on the following 

variables and cut-offs: E/e´ >14, septal e´ velocity <7 cm/s or lateral e´ <10 

cm/s, TR peak velocity >2.8 m/s, and LAVI >34 mL/m2 [54].  

To evaluate the coronary circulation we assessed coronary flow velocity 

reserve (CFVR) [55]. This gives an integrated measure of coronary 

microvascular function and was determined by the ratio of left anterior 

descending artery (LAD) blood flow velocity during maximum vasodilation 

to resting blood flow velocity [56]. Flow velocity at rest and during adenosine 

infusion (140 μg/min/kg) was measured over approximately 5 minutes by 

pulsed Doppler from the mid to distal part of LAD [57]. Measurements of 

CFVR were carried out on 49 CKD patients and 33 healthy controls who 

accepted to receive adenosine. Doppler echocardiography for assessment of 
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CFVR has been validated against positron emission tomography based 

measurements [56]. A CFVR <2.5 was considered abnormal and compatible 

with coronary microvascular dysfunction (CMD) based on prior studies [58, 

59].  

 

Statistics  

Statistical analyses were performed using the SPSS Statistics Data Editor 

(IBM SPSS Statistics for Windows, Version 17.0, 20.0 and 22.0. Armonk, 

NY, USA). Reported values are means and standard deviations (SD) for 

continuous data and proportions (%) for categorical variables. Statistical 

significance was set at the level of p<0.05.  

 

Study I; analyses were performed using two-factorial ANOVA. The degree of 

correlation between variables was analyzed by determining the Pearson 

correlation coefficient (r).  

 

Study II; differences between means were analyzed using paired or un-paired 

Student’s t-test. Chi-square test was used for categorical data. 

  

Study III; correlations between continuous data were calculated using 

Pearson’s or Spearman´s test when appropriate. The Mann-Whitney U-test 

was used for comparing differences in continuous data between groups. 

Differences in frequencies were analyzed using Fisher´s exact test.  

Univariate regression analyses were designed to evaluate the relationship 

between clinical characteristics and measures of cardiac function. Only 

continuous variables that showed a statistically significant correlation with the 

dependent variable were included in regression models. Similarly, only 

categorical variables that were significantly different in the dependent variable 
were included in regression models.  
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4. REVIEW OF RESULTS 

4.1 Experimental studies (I, II) 

Study II 

Kidney function and general characteristics (Table 4) 

Plasma concentrations of creatinine and potassium were clearly elevated in 

ACRF rats. Left ventricular weight was significantly elevated in ACRF rats 

whereas there were no statistically significant differences between groups in 

body weight or right ventricular weight. 

BW, body weight; LVW, left ventricular weight; *** P<0.001. 

 

LV morphology and function by echocardiography (Table 5) 

Stroke volume (SV) and cardiac output (CO) were significantly elevated in 

ACRF rats vs. controls. Thickness of the LV anterior wall was significantly 

elevated in ACRF rats vs. controls indicating LV hypertrophy. 

Rats with ACRF showed a significant decrease in e, and an increase in a, 

resulting in a marked decrease in the e/a ratio, vs. controls (table 6). In 

addition, the E/e ratio was significantly elevated in ACRF rats indicating LV 

diastolic dysfunction. 

 

 

 
 

Table 4. Organ weights and blood analyses 12-13 weeks after study start. 

 Controls (n=10) A-CRF (n=10) 

BW (g)           359 ± 19          343 ± 19  

LVW/tibia (mg/mm)           22.5 ± 2.2          29.5 ± 2.4*** 

P-creatinine (µmol/L)           33 ± 5          323 ± 107 *** 

P-potassium (mmol/L)           4.2 ± 0.3           6.3 ± 0.7 *** 
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EF, ejection fraction; LVEDd, left ventricular end diastolic diameter; LVESd, left 

ventricular end systolic diameter; LA, left atrium; LV, left ventricle. * P<0.05, ** 

P<0.01; *** P<0.001. 

 

E, early diastolic filling velocity; e, early diastolic tissue velocity; a, diastolic tissue 

velocity at atrial contraction; IVRT, isovolumetric relaxation time; and s, systolic 

tissue velocity. * P<0.05, ** P<0.01; *** P<0.001. 

Table 5. Echocardiographic data 9 weeks after study start.  

 Controls (n= 10) A-CRF (n=10) 

Heart rate (bpm) 

Stroke volume (ml) 

346 ± 23 

0.43 ± 0.07 

350 ± 27 

0.61 ± 0.23* 

Cardiac output (ml/min) 149 ± 24 211 ± 66* 

EF (%) 82 ± 4 88 ± 6 

LVEDd (mm) 7.98 ± 0.47 7.90 ± 0.39 

LVESd (mm) 4.24 ± 0.49 3.65 ± 0.77 

LA diameter (mm) 3.54 ± 0.41 4.80 ± 0.75*** 

LV anterior wall thickness (mm) 1.41 ± 0.09 1.89 ± 0.35*** 

Table 6. Echocardiographic indices of diastolic function and tissue-Doppler 

velocities 9 weeks after study start. 

      Controls (n=10)                A-CRF (n=10) 

e (cm/s)             7.2 ± 1.4                5.7 ± 0.6 ** 

a (cm/s)             5.5 ± 1.4                7.9 ± 1.6 ** 

e/a             1.4 ± 0.5                0.8 ± 0.3 ** 

E/e              13.3 ± 2.5                17.8 ± 2.9** 

IVRT (ms)              19.7 ± 1.5                20.5 ± 4.6 

s (cm/s)             8.7 ± 1.3                 8.8 ± 1.3 
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Left ventricular and aortic pressures  

Systolic pressure, and pulse pressure, in the ascending aorta were significantly 

elevated in ACRF rats vs. controls. Both LV end-diastolic pressure (LVEDP) 

and LV systolic blood pressure (LVSBP) were significantly elevated in ACRF 

rats vs. controls (table 7). Maximal rates of LV pressure change during systole 

(dp/dt max), and diastole (dp/dt min) were both significantly increased in 

ACRF rats vs. controls. 

LVEDP, left ventricular end diastolic pressure; LVSBP, left ventricular systolic blood 

pressure; LVDBP, left ventricular diastolic blood pressure; dp/dt max, maximal rate 

of pressure increase in the left ventricle ; dp/dt min, minimal rate of pressure increase 

in the left ventricle. * P<0.05, ** P<0.01, ***P<0.001. 

 

Left ventricular histology (Table 8)  

 

Cardiomyocytes in the LV of ACRF rats had an increased diameter compared 

to controls (figure 7). Likewise, the number of PCNA-positive and TUNEL-

positive cells were increased in the LV of ACRF rats. Most of the PCNA –

positive cells were identified in the perivascular interstitium and were most 

likely no cardiomyocytes.   TUNEL-staining and cleaved caspase-3 co-

localized in cardiomyocytes clearly indicating that these cells were 

undergoing apoptosis. No difference regarding fibrosis was seen between the 
groups.  

 

 

Table 7. Left ventricular pressures 12-13 weeks after study start. 

 Controls (n=10) A-CRF (n=8) 

Heart rate (bpm) 353 ± 25 342 ± 24 

LVEDP (mmHg) 8 ± 1 15 ± 5*** 

LVSBP peak (mmHg) 125 ± 6 138 ± 10** 

LVDBP min (mmHg) -1.7 ± 0.9 -3.2 ± 2.5 

dp/dt max (mmHg/s) 7428 ± 624 9529 ± 2331* 

dp/dt min (mmHg/s) -9615 ± 890 -10637 ± 746* 
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 Figure 7.  Left panels show LV tissue from pair-fed controls and right panels from 

rats with A-CRF. Upper panels show immunofluorescence staining with FITC-

conjugated WGA (green) to delineate the cell membrane, and with DAPI (light blue) 

to visualize cell nuclei. Lower panels display longitudinally organized 

cardiomyocytes without immunostaining. Cardiomyocytes from A-CRF rats had an 

increased diameter indicating hypertrophy. Magnifications were x20. Figure from 

paper II. 

 

 

PCNA, proliferating cell nuclear antigen. * P<0.05; ** P<0.01 

 

 

Table 8.  Left ventricular histology 10 weeks after study start. 

 Controls (n=10) A-CRF (n=10) 

Cardiomyocyte diameter (μm) 14.58 ± 0.96 17.36 ± 2.17 ** 

Number of PCNA  positive cells 8.30 ± 5.17 41.40 ± 35.29 ** 

Perivascular fibrosis/diameter (μm) 80.7 ± 14.9 88.5± 16.9 

General fibrosis, % 2.25± 0.56 2.35 ± 0.91 

Number of TUNEL positive cells (%) 0.34 ± 0.22 1.57 ± 1.20** 
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Study I 

Effects of high-NaCl intake on arterial pressures  

ACRF rats had higher blood pressure than controls, while high NaCl intake 

increased blood pressure only in ACRF rats (figure 9).  

 

 
Figure 9. Main effects and between-factors interaction from two-factorial ANOVA 

are presented. # P<0.01 adenine vs. controls, ¤ P<0.05 interaction. 

 

Effects of high-NaCl intake on Cardiac weights, left ventricular fibrosis, 

serum levels of cardiac troponin-T and BNP-32 (Table 9) 

ACRF as well as high NaCl intake produced marked increases in cTnT levels. 

Compared to group C-NNa, serum levels of cTnT were elevated 

approximately 6-fold in group ACRF-NNa and 24-fold in group ACRF-HNa 

(figure 10). 
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Figure 10. Main effects and between-factors interaction from two-factorial ANOVA 

are presented. * P<0.01 adenine vs. controls, ¤ P<0.01 interaction. 
 

Both general and perivascular LV fibrosis were significantly elevated in 

ACRF rats versus controls (table 9). There were statistically significant 

between-factor interactions as a consequence of high NaCl intake producing 

increases in fibrosis only in ACRF rats. 

There was a positive correlation between LV general fibrosis and cTnT levels 

in ACRF rats (r = 0.81, p < 0.01). In addition, cTnT concentrations were 

significantly correlated with systolic arterial pressure (r = 0.69, p < 0.01).  

 



                                                                                                                                                                                                                    Pavlos Kashioulis                                                                                                                                                                                                                                         

35 

 

Table 9. Cardiac weights, left ventricular fibrosis and BNP-32.   

 
C-NNa 

(n=9) 

C-HNa 

(n=10) 

ACRF-NNa 

(n=10) 

ACRF-HNa 

(n=8) 

ANOVA effects: 

Adenine            NaCl intake          Interaction 

LVW, g/kg BW 2.33±0.24 2.25±0.12 3.24±0.35 3.54±0.40 P<0.001 ns P<0.05 

RVW, g/kg BW 0.54±0.09 0.56±0.09 0.66±0.08 0.71±0.13 P<0.001 ns ns 

LV fibrosis, % 2.9±0.9 2.5±0.6 3.4±1.4 10.7±5.1 P<0.001 P<0.001 P<0.001 

LV PV fibrosis, 

µm2/µm  

76±15 50±7 83±12 90±11 P<0.001 P<0.05 P<0.001 

BNP 32, pg/ml 545 ± 116 1.061 ± 117 1.034 ± 160 1.314 ± 121 P<0.01 P<0.001 ns 

Main effects and between-factors interaction from two-factorial ANOVA are presented  LVW, left ventricular weight; RVW, right 

ventricular weight; BW, body weight; LV, left ventricle; and PV, perivascular.
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LV histology 

In ACRF rats that had received 2 weeks of high-NaCl (4%) chow (ACRF-

HNa), the LV showed focal areas with inflammatory cell infiltration, fibrosis, 

necrotic cardiomyocytes, and perivascular erythrocytes, indicating 

hemorrhages (figure 11).  

 

 

 

 

 

 

 

 

 

 

Figure 11. LV histology. Sections were stained with hematoxylin and 

eosin.Magnification x10 and x 20 as indicated. Figure from paper I. 

A large proportion of the cells within the inflammatory infiltrate in ACRF-

HNa rats were positive for CD68 using immunochemistry, indicating that these 

cells were macrophages/monocytes (figure 12).  

In ACRF-HNa rats, arteries from non-injured areas of the myocardium showed 

alterations characterized by thickening of the medial layer (figure 13b). In 

myocardial areas with severe focal tissue injury, arteries (arrow) demonstrated 

fibrinoid necrosis with destruction of the internal elastic lamina and 

pronounced occlusion of the vessel lumen (figure 13c). 

 

 

C-NNax10 ACRF-HNax10 

 ACRF-NNax10 ACRF-HNax20 
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Figure 12. Immunohistochemistry identifying CD68-positive cells (monocytes and 

macrophages) in the LV of pair-fed controls (C) and rats with ACRF on a normal 

(0.6%; NNa) or high-NaCl (4%; HNa) diet. Magnificationx2. Figure from paper I.

  

 

 

 

 

 

 

 

 

 

Figure 13. LV arteries from pair-fed controls on normal (0.6%) NaCl diet (C-NNa; a) 

and rats with ACRF subjected to 2 weeks of high-NaCl (4%) diet (ACRF-HNa; b, c) 

Sections were stained with Miller's elastin. Magnification×60. Figure from paper I 

A. C-
NNa 

B. ACRF-HNa 

C. ACRF-HNa 

A. C-NNa 

 C-NNa  ACRF-HNa 

 ACRF-HNa 

 ACRF-HNa NEG CONTROL  ACRF-NNa 
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4.2 Clinical Study 

Study III 

General characteristics of study population 

The primary cause of CKD was glomerulonephritis in 32% of patients, diabetic 

kidney disease in 20%, hypertension in 14%, autosomal dominant polycystic 

kidney disease in 9%, renovascular disease in 6%, and other causes in 19%.  

 

 

Hemodynamic variables  

Ambulatory blood pressure during 24 h, daytime or nighttime was not 

significantly different between the groups. However, nocturnal dipping of 

ASBP and ankle branchial index were significantly reduced in CKD patients.  

 

 

Left ventricular morphology and function by echocardiography 
(table 10) 

Ten CKD patients (11%), but no controls, met the criteria for LVH (p=0.027 

between groups) even though there was no statistically significant difference 

between groups in LVMI. In the CKD group, 7 patients had eccentric LVH 

and 3 had concentric LVH. In addition, 10 CKD patients (11%) had concentric 

LV remodeling. No difference between the groups were seen in heart rate, 

cardiac output or cardiac index. 
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Table 10. Left ventricular morphology and function.  

   CKD  

(n= 85-91) 

Controls          

(n=39-41) 

LV RWT  0.37±0.06* 0.32±0.05 

Maximal septal wall thickness, 

mm  

 8.6±2.7 (n=75)* 7.5±1.8 (n=39) 

LV ejection fraction (Simpson), 

% 

 64±7 (n=68) 65±5 (n=39) 

LV diastolic volume/BSA, ml/m²  68.3±15.3 (n=70) 63.1±8.9 (n=39) 

LV stroke volume, ml  85.4±16.9* 76.9±13.3 

LV stroke volume/BSA, ml/m²  43.4±6.5* 40.5±5.3 

Left ventricular ejection fraction according to Simpson, LV diastolic volume and 

maximal septal wall thickness were measured in a subset of patients using contrast 

enhancement (see Methods). Abbreviations: CKD = chronic kidney disease; LV = 

left ventricle; RWT = relative wall thickness; BSA = body surface area. * P< 0.05 

 

Regression analyses in patients with CKD showed independent associations 

between nighttime ASBP (B=0.067, p=0.001), cfPWV (B=0.241, p=0.01) and 

BSA (B=2.947 p=0.047) with maximal septal wall thickness.  

 

Doppler measures and indices of diastolic function (table 11) 

Left ventricular tissue velocities e´, a´, and s´ were significantly elevated in 

CKD patients vs. controls. There was no statistically significant difference 

between groups in E, E/e´ or E/A. However, pulmonary vein flow velocity 

during atrial contraction was significantly elevated in patients with CKD. Only 

one patient with CKD met the criteria for LV diastolic dysfunction according 

to the ASE guidelines criteria but no control.  
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Table 11. Doppler measures and indices of diastolic function. 

   CKD  

(n= 82-91) 

Controls  

  (n=38-41) 

LV s´ mean, cm/s  9.3±1.8** 8.1±1.3 

LV e´ mean, cm/s  9.7±2.5* 8.7±2.1 

LV a´ mean, cm/s   11.1±2.4** 9.4±2.1 

A, m/s  0.72±0.18* 0.61±0.13 

LV IVRT, ms    85±16* 78±15 

LAVI, ml/m²  36.3±9.7* 33.2±9.7 

LA-RA area, cm²  4.0±2.5** 1.8±1.9 

Abbreviations: CKD = chronic kidney disease, LV = left ventricle; s´ = systolic 

tissue velocity; e´ = early diastolic tissue velocity; a´ = late (atrial) diastolic tissue 

velocity; A = late (atrial) diastolic transmitral flow velocity; IVRT = isovolumic 

relaxation time; LAVI = left atrial volume index; LA = left atrium; RA = right 

atrium; In the LV tissue velocities were measured at the mitral annulus.* P< 0.05, 

**P<0.001. 

 

Regression analyses in CKD patients showed that NT-proBNP (B=0.013, 

p=0.001) and LV diastolic volume/BSA (B=0.367, p<0.001) were 

independently associated with LAVI. Moreover,   24 h urinary Na excretion 

(B=0.008, p=0.013) and heart rate (B=0.042, p=0.022) were independent 

predictors of LV s´. Only age (B=-0.130, p<0.001) and LVMI (B=-0.029, 

p=0.026) showed independent associations with LV e´.  

 

LAD blood flow velocity and CFVR 

Baseline flow velocity in LAD was significantly elevated in CKD patients. 

However, in response to adenosine CFVR was significantly reduced in CKD 

patients. The number of subjects with a CFVR <2.5, indicating CMD, were 3 

controls (9%) and 21 CKD patients (43%) (p=0.001).   

 

Using a regression model including medical history of diabetes, age, 24 h 

ASBP and PASP, we found no variable that was significantly associated with 

baseline LAD flow velocity in CKD patients. Age (B=-0.027, p=0.015) and 24 
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h ASBP (B=-0.024, p=0.01) were independently associated with CFVR in 

CKD patients applying a regression model that also included TNI and LVMI. 

When baseline LAD flow velocity was added to this model only age    

(B=-0.023, p=0.011) and baseline LAD flow velocity (B=-3.927, p<0.001) 

were independently associated with CFVR. 



Cardiac abnormalities in chronic kidney disease 

42 

 

5. DISCUSSION 

 Experimental model of ACRF 

Rats with ACRF developed both CKD‐associated metabolic abnormalities and 

cardiovascular alterations similar to humans with kidney failure. The main 

advantage of this model, compared to clinical studies in humans, is the ability 

to study the effects of kidney failure on the heart in the absence of 

comorbidities. Furthermore, the model enable us to perform advanced 

histological examinations of the heart which had been difficult in humans. The 

model of ACRF in rats was first applied in 1986 [60] and has been modified 

since then. Rats with ACRF (study I, II) had more advanced kidney disease 

(GFR approximately 10% of control values) compared to CKD patients (study 

III). The experimental and human studies in the current thesis complemented 

each other in the matter of our main question as we could study how the heart 

is affected at moderate CKD (CKD stages 3-4) and when severe kidney failure 

is established (animal studies).  

  

Clinical study 

Cardiac abnormalities in patients with CKD stages 3-4 (study III) 

Even though the echocardiographic criteria for LV diastolic dysfunction are 

well defined, the diagnosis of HFpEF is still not easy to make. Four 

echocardiographic variables have to be calculated: e′, E/e′ ratio, LAVI, and 

peak TR velocity [54]. Diastolic dysfunction is present when more than 2 of 

these variables are abnormal. In our study, patients with CKD stages 3 and 4, 

without a prior diagnosis of heart disease, had normal EF but significantly 

elevated IVRT and increased LAVI and LA-RA area, similarly to patients with 

HFpEF. Moreover they had significantly elevated levels of NT-pro-BNP. 

However they did not meet the criteria for LV diastolic dysfunction or HFpEF 

[54]. Patients with CKD showed significant increases in both LV e´ and RV e´ 

compared to healthy controls. Most likely these changes were caused by 

systemic factors. Velocity e´ is known to be preload dependent [61]. Therefore, 

hypervolemia with increased preload, which is common in patients with renal 

insufficiency [62], could explain the increased tissue velocities. In support of 

this, CKD patients had also increased s´ velocities in both the LV and RV. We 

believe that the observed increase in LV e´velocities, regardless the cause, may 

complicate the diagnosis of HFpEF in patients with CKD. In addition the 

interpretation of  plasma concentrations of NT-proBNP in patients with CKD 

is difficult , as increased levels can result from reduced renal clearance [29]. It 
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is possible that the current criteria for LV diastolic dysfunction and HFpEF 

may not be fully applicable to CKD patients. LV catheterization could be an 

alternative diagnostic approach but this procedure is not without risks and is 

also time and resource consuming. Magnetic resonance imaging has been 

shown to be an alternative diagnostic tool in the diagnosis of HFpEF [63].  

 

 

Coronary flow velocity reserve 

 

During recent years CFVR has increasingly been used to assess coronary 

microvascular function.  Existing data [64, 65] indicate that CMD is an early 

feature of atherosclerosis and can predict future CV events and death. CFVR 

can be measured invasively using an intracoronary Doppler flow wire but this 

is associated with certain risks and increased costs [66]. Hence, noninvasive 

echocardiography with Doppler is to prefer. We interpret the significantly 

reduced CFVR of CKD patients in our study as a sign of CMD. This is 

interesting considering that CMD may contribute to the development of 

HFpEF [67]. CKD is associated with inflammation, dyslipidemia and 

increased oxidative stress and all these mechanisms can impair endothelial 

function [68] and  produce CMD. However, the mechanisms causing CMD in 

patients with CKD need to be investigated further. We believe that our findings 

should be interpreted with some caution. LAD flow velocity at baseline, prior 

to adenosine, was significantly elevated in patients with CKD suggesting an 

increased metabolic demand [69]. We observed a negative correlation between 

baseline LAD flow velocity and CFVR in CKD patients suggesting that 

individuals with a high baseline flow velocity were unable to increase flow 

further in response to adenosine. Hence, in our study the reduced CFVR in 

CKD patients may not only have reflected CMD. 

  

Experimental studies 

 

Cardiac abnormalities in severe renal failure  

 
In contrary to CKD patients (study III), ACRF rats (study II) developed signs 

of HFpEF. They had LV diastolic dysfunction but preserved systolic function. 

Velocity e´ was significantly reduced and the E/e´ ratio elevated compared to 

controls suggesting increased diastolic filling pressures. We confirmed 

significantly elevated LVEDP by invasive pressure recordings. Rats with 

ACRF also had increased left atrial diameter, indicative of chronic diastolic 

dysfunction [70]. As ACRF rats did not have increased LVEDd, the increase 

in LV filling pressure was most likely explained by decreased compliance of 

the LV. 
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The elevated CO found in ACRF rats was presumably not caused by 

hypervolemia. LVEDd was not elevated. However, ACRF rats tended to have 

a reduced LVESd compared to controls suggesting increased contractility. In 

addition, LV dp/dt max was significantly increased in ACRF rats supporting 

this interpretation. Possible explanations for the increased contractility could 

be the anemia seen in ACRF rats [47] and sympathetic activation that has been 

shown in chronic renal failure [71]. Anemia is a known cause of hyperdynamic 

circulation through increased cardiac output [72], reduced blood viscosity and 

general vasodilation  [73]. As Converse et al have shown, CKD patients have 

elevated sympathetic nerve activity mediated by an afferent signal arising in 

the failing kidneys [71]. This overactivity may contribute to increased inotropy 

and elevated stroke volume.  
 

Rats with ACRF had clear LVH. Both decreased LV compliance and diastolic 

dysfunction are linked to LV hypertrophy [74]. Different animal models of 

LVH, have shown impairments in cytosolic calcium handling in 

cardiomyocytes during diastole that may slow relaxation [74, 75]. Our group 

has shown that rats with ACRF have a decreased relaxation rate in thoracic 

aortas associated with altered intracellular Ca2+ handling in vascular smooth 

muscle cells [76]. However, in study II we could not see any association 

between diastolic dysfunction and altered expression in the LV of proteins 

involved in cytosolic Ca2+ handling. Moreover, we could not find any 

connection between diastolic dysfunction and LV fibrosis. We believe that 

LVH in ACRF rats is mainly caused by hemodynamic mechanisms. 

Hypertension results in elevated LV afterload and consequently LVH. Possible 

non-hemodynamic factors could also have an additive effect e.g. aldosterone 

[77, 78] and fibroblast growth factor-23 [79], which both are elevated in the 

ACRF model [47, 80]. In study III most of the CKD patients had a history of 

hypertension but only minor abnormalities on the echocardiogram. This 

finding is not surprising given the fact that CKD patients had a very well-

controlled blood pressure during the study period. 

Besides hypertrophy, cardiomyocytes in ACRF rats had increased apoptosis. 

This has been shown also in earlier studies of experimental CKD [81, 82] but 

the underlying mechanisms are still undefined. There was also, a noticeable 

increase of PCNA-positive cells compared to controls indicating increased 

proliferation. As these cells were localized mainly in the microvascular 

interstitium we believe that most of these cells were fibroblasts or leukocytes. 

This finding corroborates our results in study III where we detected CMD in 
patients with CKD.  
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The effects of high NaCl-diet on the heart in kidney failure 

ACRF rats on normal NaCl diet had elevated cTnT levels compared to controls 

and a relatively normal LV histology. However, two weeks of high-NaCl diet 

led to dramatically increased levels of cTnT and severe LV injury.  

Histological examinations revealed focal areas in the LV with pronounced 

interstitial inflammatory cell infiltration, fibrosis, necrotic cardiomyocytes and 

perivascular erythrocytes indicating hemorrhages. Moreover, myocardial 

arteries showed wall thickening and fibrinoid necrosis with luminal narrowing.   

Similar findings as in ACRF-NNa rats were found in CKD patients, where 

levels of cTnT are usually elevated without any clinical signs of myocardial 

injury [18, 83].  There is a vivid discussion whether this TnT elevation is due 

to decreased renal clearance or increased release from the myocardium. Studies 

have shown that elevated TnT has a low specificity for MI in patients with 

reduced GFR [84] and therefore the interpretation of TnT levels in CKD 

patients can be difficult. As hsTnI shows better specificity for this patient 

group [84] maybe this marker should be preferred in clinical practice. In 

agreement with this, our patients with CKD had significantly increased levels 

of TnT, but not hs-TnI, compared to controls. Still, hs-cTnI  has lower 

specificity for CKD patients than for healthy controls and the right cut off value 

for CKD patients has not yet been defined [85, 86]. Nevertheless, it is helpful 

to know that troponin levels are usually stable in a patient with CKD without 

acute coronary syndrome [87]. Chronic, stable, mildly elevated levels of TnT 

can be explained by reduced renal clearance [88]. Therefore, when acute 

NSTEMI is suspected and elevated troponin levels are found, a second 

measurement after some hours, is helpful to distinguish between infarction and 

other causes of chest pain. 

Completely different pathophysiological mechanisms seem to be responsible 

for the pronounced TnT elevation found in ACRF-HNa rats. Light microscopy 

of the LV revealed abnormal small arteries in areas of myocardial injury with 

marked medial thickening, fibrinoid necrosis and luminal narrowing, findings 

typical for malignant hypertension. Thus, we believe that hypertension-

induced arterial lesions caused myocardial ischemia and hypoxic injury. The 

marked hypertension that ACRF- HNa rats had, together with increased LV 

afterload, likely increased tissue oxygen demand leading to even worse 

myocardial hypoxia. Similar abnormalities in LV histology have been found 

in salt-loaded, malignant hypertensive, double transgenic rats harboring human 

renin and angiotensinogen genes [89], even though the pathophysiology of 

hypertension between our model and double transgenic rats is different [90]. 

Interestingly similar findings to ours have also been shown in experimental 
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models of CKD without hypertension [91]. Although our results indicate that 

high NaCl caused cardiac injury via hypertension we cannot rule out a 

contribution from other, non-hemodynamic, mechanisms. 

The salt-loading that was performed in our experimental model was 

pronounced and corresponded to a 7-fold higher NaCl intake compared to 

controls. The reason for the marked NaCl challenge was that we wanted to test 

whether NaCl-loading had the potential to cause cardiac injury. Our purpose 

was not to determine the dose-effect relationship. The fact that control rats with 

intact kidney function had normal TnT levels during NaCl-loading suggests 

that the dietary challenge was not extreme. The inability of ACRF rats to 

handle a salt load, probably led to malign hypertension and secondary cardiac 

injury. This is an interesting finding as a similar risk may apply to patients with 

CKD.     
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6. CONCLUSIONS AND FUTURE 
PERSPECTIVES 

Patients with CKD stages 3 and 4, without a prior diagnosis of heart disease, 

displayed abnormalities in LV diastolic function without fulfilling the criteria 

for LV diastolic dysfunction. We hypothesize that the observed increase in LV 

e´ velocity in CKD patients might reduce the ability to detect early stages of 

LV diastolic dysfunction and lead to underdiagnosis of HFpEF in the CKD 

population. Our results highlight the difficulties in diagnosing HFpEF in 

patients with CKD.  Interestingly, patients with CKD had a reduced CFVR 

indicating CMD. It is possible that CMD may be involved in the pathogenesis 

of HFpEF in patients with CKD. This is a field for further investigation.  

ACRF rats, having more advanced kidney disease, developed LV hypertrophy 

and diastolic dysfunction with preserved EF. These abnormalities resemble LV 

dysfunctions in patients with HFpEF. LV hypertrophy and diastolic 

dysfunction seem to be the primary cardiac abnormalities that develop as 

kidney function declines.  

Rats with ACRF had elevated serum levels of cTnT. Two weeks of high-NaCl 

diet enhanced the increase in serum cTnT concentrations and caused LV injury 

most likely through hypertension-induced small artery lesions and myocardial 

ischemia. Having demonstrated its resemblance to patients with CKD, the 

ACRF model could be used in future studies for examining the 

pathophysiology of cardiac injury, elevated serum cTnT and heart failure in 

CKD.  

In addition, our results support the hypothesis that a high dietary intake of NaCl 

can have deleterious effects on LV integrity in patients with kidney failure. It 

would be interesting to examine whether a reduced NaCl intake, or a reduced 

dialysate sodium, could prevent cardiac disease and preserve cardiac function 

in CKD patients. In addition, it would be appealing to investigate if cardio-

protective effects of a reduced NaCl intake is mediated only via hemodynamic 

mechanisms or if non-hemodynamic factors are also involved.  

The main goal still remains; to reduce cardiovascular mortality in patients with 

CKD. There is an urgent need for treatments that can protect the heart.  
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