
MagnetDroid: security-oriented analysis for bridging privacy
and law for Android applications

Emanuele Uliana and Kostas Stathis

Department of Computer Science

Royal Holloway University of London

UK

Emanuele.Uliana.2016,Kostas.Stathis@rhul.ac.uk

Robert Jago

School of Law

Royal Holloway University of London

UK

robert.jago@rhul.ac.uk

ABSTRACT
MagnetDroid is a novel artificial intelligence framework that inte-

grates a security ontology, a multi-agent organisation, and a logical

reasoning procedure to help build a bridge between the worlds

of Android application analysis and law, with respect to privacy.

Our contribution helps identify violations of the law by Android

applications, as well as predict legal consequences. The resulting

implementation of MagnetDroid can be useful to privacy-concerned

users in order to acknowledge problems with the privacy of the

applications they use, to application developers/publishers to help

them identify which problems to fix, and to lawyers in order to

provide an additional level of interpretation for any court when

considering the privacy of Android applications.

CCS CONCEPTS
• Security and privacy; •Computingmethodologies→Multi-
agent systems; • Applied computing→ Law;

KEYWORDS
Android, Intelligent Agents, Law, Logic Programming, Ontologies,

Privacy, Security.

ACM Reference Format:
Emanuele Uliana and Kostas Stathis and Robert Jago. 2019. MagnetDroid:

security-oriented analysis for bridging privacy and law for Android appli-

cations. In Seventeenth International Conference on Artificial Intelligence and
Law (ICAIL ’19), June 17–21, 2019, Montreal, QC, Canada. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3322640.3326729

1 INTRODUCTION
In our modern data-driven world, most, if not all the information

regarding a specific individual or group can be recorded through

data. Therefore, data must assume a central role when characteris-

ing the concept of privacy, not in an abstract philosophical sense,

but from a modern and pragmatic point of view. It is not far-fetched

to say that today privacy of individuals is asymptotic to the privacy

of their data. As data, by their own nature, are made to be stored,

processed, and exchanged, it is natural to identify security as a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6754-7/19/06. . . $15.00

https://doi.org/10.1145/3322640.3326729

necessary condition for their privacy. In particular, no data can

be (remain) private if the storage system, the processing routines,

and the exchanging infrastructure(s) are not secure enough with

respect to the state-of-the-art of known attacks.

While this is true in general, we choose to focus our attention on

a specific subset of the global data environment, namely, mobile op-

erating systems (OSs), and, more specifically, Android applications.

Android, by far the most popular mobile OS[2], comes with its own

security model[4]. However, such security model, while lowering

some of the risks identifiable in a mobile OS threat model, leaves

significant security decisions in the hands of developers, users,

and third parties (e.g., servers applications exchange data with). In

practice, this contributes to the existence of an entire ecosystem of

• vulnerable applications which expose the data of their users

to higher risks;

• malicious applications whose only purpose is to trick their

users or perform activities behind their back, enhancing the

probability of misuse of private data.

Society has responded to the issue of vulnerable/malicious applica-

tions in the same way it managed vulnerable and malicious software

for non-mobile operating system. From the technological point

of view, vendors patch vulnerabilities, and third parties develop

analysis tools to be able to identify vulnerabilities, and malicious

behaviours.

From the legal point of view, countries have introduced rules and

regulations on data protection (e.g, in the UK the Data Protection
Act 2018 (which implements the GDPR[17]), and The Network and
Information Systems Regulations 2018) which aim to discourage

carelessness (of developers) and maliciousness (of attackers), and

to punish them, when applicable, in case of incidents.

The general problem with those approaches is that they hardly

inter-operate, and sometimes attempt to pursue conflicting goals,

such as in the long standing conflict between end-to-end encryption

and state-mandated backdoors in cryptographic primitives [21]. The

problem can be further exemplified by the fact that, usually, Android

application analysis tools do not care about (factor in) the law. One

reason is that the security of an application does not depend on

the law. Another reason lies in the fact that the developers of those

tools, usually, are not that knowledgeable about the legal position.

Also, the law can often reference vague technological concepts

(e.g., confidentiality) without defining them, leaving the door open

to (sometimes conflicting) interpretations by different courts. This

uncertainty, which is already a potential problem for the developers

of Android applications, does not make the legal issues attractive

for developers of analysis tools either.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/219839802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3322640.3326729
https://doi.org/10.1145/3322640.3326729

ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada E. Uliana et al.

The goal of our work is to contribute towards bridging the gap

between technology and law by providing a technology-guided

interpretation of a subset of the Data Protection Act 2018 and The
Network and Information Systems Regulations 2018 in the context

of Android applications. The contribution of our work is that we

identify necessary conditions for the gap to be bridged, i.e., unity

on the technological side, and a model for the law. In particular,

we propose an Android Security Ontology (ASO), and a procedure

to aggregate heterogeneous reports from different Android appli-

cation analysis tools under a common syntax/semantics which

enables logical reasoning. We also propose a multi-agent platform

to preform the aforementioned procedure. We propose a model of

a subset of the Data Protection Act 2018 and The Network and Infor-
mation Systems Regulations 2018 which enables logical reasoning as

well. We explore logical reasoning techniques in order to develop a

knowledge-based procedure which, given the previous results, is

able to detect incompatibilities of Android applications with what

the law prescribes in terms of security, and attempts to foresee the

legal consequences of violations and incidents.

In Section 2 we discuss the background surrounding our work,

as well as the state-of-the-art and its limitations. In Section 3.1 we

describe the Android Security Ontology. In Section 3.2 we describe

the flow to generate a technological knowledge base from an Android

application and a set of application analysis tools. In Section 4 we

describe our model (i.e., legal knowledge base) of the Data Protection
Act 2018 and The Network and Information Systems Regulations 2018.

In Section 4.2 we describe how to use the technological knowledge
base and the legal knowledge base to derive incompatibilities and

predict legal consequences. In Section 5 we show an example of our

work in a practical scenario. In Section 6 we explain the limitations

of our work, together with planned directions for future work.

2 BACKGROUND AND EXISTINGWORK
Bridging the worlds of technology and law in the context of Android

requires an understanding of how each view manages the problems

of vulnerable and malicious applications. Ideally, we would like to

gather the results on the technological side, and use an aggrega-

tion of them as a technological knowledge base. Security researchers

have ported the same strategies that proved successful with non-

mobile software. In particular, they have extended the two main

approaches (static and dynamic analysis) to work with mobile ap-

plications. The static approach leverages (source or machine) code

analysis of a software program to discover behavioural patterns,

while the dynamic approach executes the program in a (real or

emulated) monitored environment in order to trigger and record

notable behaviours.

Related works on Android application analysis. Among the rele-

vant work on application analysis of Android applications, we can

cite Babelview[31], Androguard[14], MalloDroid[18], FlowDroid[6],

Apposcopy[19], and Dexpler[7] as examples of static analysis. On

the other hand, DroidScope[45], CopperDroid[38], PuppetDroid[20],

TaintDroid[16], DroidTrace[47], Andlantis[10], and IntelliDroid[44]

mainly employ dynamic analysis. There have been attempts to

bridge the two families of approaches, such as SMV-HUNTER[35],

Andrubis[25], and Andrototal[26]. Static and dynamic analysis have

their own pros and cons[15], and some of them are peculiar and

unique to mobile OSs.[15] However, the number of unique Android

applications is raising at a fast pace[2], and a certain degree of

automation is needed in order to be able to analyse the raw amount

of applications in a reasonable time. Here we encounter the first

problem: usually the analysis tools are standalone, and their re-

ports have arbitrary syntax and semantics. In other words, there

is no underlying common ontology. The reports are mainly meant

for humans to read, as natural language is mainly featured. For

this reason, they are not easily understood by automated software

programs. It is hard and demanding to automatically aggregate

different reports from different tools, in order to merge the infor-

mation they provide. This is a problem for us, because, if we want

a technological knowledge base comprising a significant variety

of security issues, we have to aggregate reports deriving from the

analysis of a certain application with different tools. Aggregation

of heterogeneous sources of information has been attempted in the

past by means of leveraging agent platforms, as discussed by Ishii

et al [22]. As our problem is very specific, we cannot reuse existing

agent frameworks. However, we agree that a multi-agent platform

is a suitable component for our needs.

Related works on ontologies for Android. On the subject of specify-

ing ontologies in the context of Android, we can cite: Android goes

Semantic: DL Reasoners on Smartphones[46], A Power Consump-

tion Benchmark Framework for Ontology Reasoning on Android

Devices[40], A linguistic mobile decision support system based on

fuzzy ontology to facilitate knowledge mobilization[28], A user

profile ontology based approach for assisting people with dementia

in mobile environments[34], A smart indoor navigation solution

based on building information model and google android[33], An-

droid Based Effective and Efficient Search Engine Retrieval System

Using Ontology[24], and Privacy protection for smartphones: an

ontology-based firewall[41]. Unfortunately, none of those captures

the relevant security concepts we expect to find inside the reports

generated by application analysis tools. In light of this, one of our

contributions is to create a custom Android Security Ontology (ASO)

which then can be used as a guide to aggregate heterogeneous

reports.

Related legal background. In legal terms, the provisions regard-

ing data protection (e.g., the Data Protection Act 2018 [1], and The
Network and Information Systems Regulations 2018 [3]) are relevant

to our needs. We can identify a twofold approach to data protection.

On one side, we have law with a prescriptive function (LPF, or pre-
scriptive law from now on) which mainly enumerates obligations

for parties (e.g., developers) with respect to some properties (e.g.,

data confidentiality, data integrity, data authenticity) which are left

open to interpretation. On the other side, we have law with a con-
sequence function (LCF, or consequential law from now on) which

details the triggered consequences should certain events (e.g., data

leaks) happen. It is important to note that the consequences only

apply after the incident has happened, not if there is the potential

(i.e., all the conditions are met) for the incident to happen. As the

law is written in natural language, it is even harder to understand

for an automated system. Moreover, since the law is always sub-

ject to a certain degree of interpretation by lawyers during court

cases, its formulation is not at all automation-friendly. We need to

MagnetDroid ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada

model the relevant rules and regulations in order to create a legal
knowledge base suitable for our purposes.

3 MAGNETDROID FRAMEWORK
In order to address the issues identified in Section 2, we discuss:

• an Android Security Ontology to specify a common syntax/se-

mantics for analysis tools reports;

• a general architecture for retrieving, translating, and aggre-

gating reports in the form of a multi-agent platform;

• a model of a subset of the Data Protection Act 2018 and The
Network and Information Systems Regulations 2018;

• a reasoning procedure to use the results of the previous

points to discover incompatibilities between the analysed ap-

plication(s) and the LPF, as well as predict legal consequences

derived from the LCF.

3.1 Android Security Ontology (ASO)
As anticipated in Section 2, we would like to re-use existing Android

application analysis tools in order to produce reports of security

problems. However, running analysis tools on a specific application

usually results in a collection of heterogeneous documents which

are hard to automatically post-process. For this reason, our ASO
1

guides the translation and aggregation procedure which produces

a final report wrapping a so called technological knowledge base.
Our ASO is a tree-like structure where each node is a concept

related to the security of Android applications, and each parent-

children relation is either a partition of the parent into its compo-

nents (e.g., permissions into protection_normal, protection_signature,
dangerous, spacial), or a link from a more general concept (e.g., net-
work_activity) to a more specific one (e.g., observed_protocols). The

root is android_application, and its immediate children are assets,
risks, threats, vulnerabilities, behaviours, and features. The leaves

consist of fine-grained concepts that we expect to find in reports

such as broken_tls, meaning the use of insecure parameters with the

network communication protocol TLS [5]. The structure of internal

and leaf nodes is shown in Figure 1.

Each leaf may contain one or more state variables. Each state vari-

able is a container for structured information on a very specific

aspect of the security of Android applications, plus some custom

indexes and classes which help characterising the severity of the

problem (if any), and its impact under two different mindsets:

• credulous: an optimistic view such that problems are not

really considered unless they have an immediate and cata-

strophic effect on the entire user-app-provider environment.

• skeptical: a pessimistic view that treats every discovered

problem/vulnerability as if it intrinsically had an immediate

and catastrophic effect on such environment.

The motivation for the multiple mindsets lies in one of the practical

uses for ASO, namely the creation of a technological knowledge

base (described in Section 3.2) which enables logical reasoning

(described in Section 4) together with a legal knowledge base (also

described in Section 4). In particular, it transcends the bounds of

technology, as it is rooted in the concept of interpretation of the

1
For a detailed demo see https://dicelab.co.uk/aso.html.

Figure 1: A diagram illustrating the internal structure of nodes,
leaf nodes, and state variables.

law. Depending on the interpretation, problems may be considered

relevant:

• only if even the most optimistic (i.e., credulous) view recog-

nises them as important;

• as soon as the most pessimistic (i.e., skeptical) view recog-

nises them as important.

Therefore, we capture this twofold interpretation by separating our

mindset into two. In order to measure each mindset numerically,

we make use of two pairs of index-class. In particular, the credulous
approach is represented by the minimal impact index, and the

minimal impact class, while the skeptical approach is represented

by the maximal impact index, and the maximal impact class. The

meaning of those indexes, and their usage is detailed in Section 3.2,

and Section 4.

The absolute relevance index, and the absolute relevance class,

on the other hand, represent how much weight (i.e., consider im-

portant/relevant) a state variable carries in absolute terms. The

absolute index and class are an intrinsic property of the state vari-

able, and, as such do not change depending on the current_state

value of the variable. The structure of state variables is depicted in

Figure 1.

The importance of the structure of ASO is that it offers us a

guide for translating tool reports whose format is often arbitrary. In

this way, we can use ASO as a common and systematic format for

reports, which is currently lacking. We will see later in Section 3.2,

that the translation of a report consists of an instantiation of ASO,

by means of selecting a meaningful value for every field (except the

static ones e.g. id, name, possible_states, and the absolute indexes

and classes) of each state variable. In addition, the value to assign

ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada E. Uliana et al.

to each field of a particular state variable is selected in accordance

with the content(s) of the report to translate.

It is possible that the report does not cover the subject a state

variable refers to. In this case, ASO provides the reserved value

UNASSIGNED as a backup strategy. Also, ASO supports an addi-

tional reserved value named CONFLICTING. We will see later in

Section 3.2 that this value is mainly useful during the aggregation

of translated documents, in case an unsolvable conflict is found. Its

internal structure has been crafted so to keep track of the disagree-

ment in case a solution is found in the future (e.g., by means of a

manual validation). The aforementioned internal structure, as well

as the trivial structure of UNASSIGNED are shown in Figure 1.

3.2 MagnetDroid: creating the technological
knowledge base

The ASO can be used as a guide to translate and aggregate reports

from Android application analysis tools. We present a multi-agent

framework to produce and collect raw reports from available anal-

ysis tools, perform the translation and aggregate the translated

reports to produce a so called final report to wrap our technological
knowledge base. Our agent architecture, inspired by GOLEM [11]

consists of an environment containing a pre-specified set of agents,

each assigned with a specific role to play in the system (see Sec-

tion 3.2.1). Our agents are characterised by a body that wraps a

set of sensors for the agent to perceive the environment, a set of

actuators for the agent to change the environment, and a mind
for the agent to decide which action(s) to execute next. The mind

is characterised by reasoning procedures (as in the architecture

proposed by the KGP model of agency [23]), so that it is able think

which action is best to perform, when confronted with multiple

alternatives. In this context, the agent mind is in a perpetual cycle

whose steps are

(1) perceive(), which fetches any new perception available

from the sensors;

(2) revise(), which revises the internal state and beliefs of the

mind, when new sensing information is received;

(3) decide(), which determines the next action to execute in

the environment;

(4) execute(), which triggers the execution by propagating to

the body the action decided.

Each agents has its own implementation of the four steps, and it

own pool of available actions (see Section 3.2.1). In the current

version of MagnetDroid, the decision process follows the teleo-

reactive programming paradigm [29, 32], which allows the agent to

exhibit behaviours defined as a set of condition-action rules, each

set being indexed by the implicit goal that the behaviour achieves.

Such behaviours have the form:

G : {C1 → A1;C2 → A2; · · · ;Cn → An }

where G is the goal that the behaviour achieves, Ci with 1 ≤ i ≤ n
being the conditions of the rules, while Ai are the actions that need

to executed. At each cycle step, one of these rules succeeds, only if

the conditions are satisfied in the internal state of the agent, and

then the action is executed. The listing below shows the cycle of a

WorkerAgent (discussed in Section 3.2.1) and illustrates how the

top-level decide() is formulated as a teleo-reactive behaviour:

public void p e r c e i v e () {

f e t c h P e r c e p t s () . s t ream () . f o r E a c h (th i s : : s t o r e P e r c e p t s) ;

}

public void r e v i s e () {

i f (! th i s . i s A n a l y s i s S t a r t e d) {

th i s . i s A n a l y s i s S t a r t e d = c h e c k F o r A n a l y s i s S t a r t e d () ;

}

i f (th i s . i s A n a l y s i s S t a r t e d && ! th i s . i s A n a l y s i s F i n i s h e d) {

th i s . i s A n a l y s i s F i n i s h e d = c h e c k F o r A n a l y s i s F i n i s h e d () ;

}

e l se i f (th i s . i s A n a l y s i s F i n i s h e d && ! th i s . i s R e p o r t R e a d y) {

th i s . r e p o r t R e a d y = checkForRepor tReady () ;

}

}

public MagnetDroidAct ion d e c i d e () {

i f (th i s . i s R e p o r t R e a d y) {

return new S e n d R e p o r t T o C o o r d i n a t o r A c t i o n (th i s . r e p o r t) ;

}

e l se i f (th i s . i s A n a l y s i s F i n i s h e d) {

return new R e t r i e v e R e p o r t A c t i o n () ;

}

e l se i f (! th i s . i s A n a l y s i s S t a r t e d) {

return new S t a r t A n a l y s i s A c t i o n (th i s . apk) ;

}

e l se {

return manageToolExecut ion () ;

}

}

public void e x e c u t e (MagnetDroidAct ion a c t i o n) {

sendToBody (a c t i o n) ;

}

3.2.1 The flow of the phases. In order to use our multi-agent frame-

work to translate and aggregate reports from Android application

analysis tools, we designed a flow consisting of 3 distinct phases:

(1) Phase 1: parallel analysis.
(2) Phase 2: translation.

(3) Phase 3: aggregation.

Figure 2 depicts a schematic visualisation of the phases.

Figure 2: A diagram of the phases from the APK and the tools to
the final report.

MagnetDroid ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada

Collecting the reports. In Phase 1: parallel analysis, we have a

CoordinatorAgent which is given an APK (essentially a zip file

containing the Android application), and the knowledge of the set

of available analysis tools. The CoordinatorAgent dispatches a

set of WorkerAgents, one for each available tool, in order to run

each tool on the APK, provide the necessary inputs (if applicable),

and retrieve the generated report.

Parsing the raw reports. Phase 2: translation is divided in two

sub-phases: parsing and ASO instantiation. During the first half, a

highly specialised ParsingAgent receives a report from the Coor-

dinatorAgent. Immediately, it attempts to classify it as either a

narrative or factual report. Narrative refers to the fact that time is

featured and important in the report. In particular, the report itself

is characterised by a series of events with either explicit, or implicit

(i.e., the ordering) timestamps. Factual, on the other side, means

that time is not featured and that it is irrelevant, as the report is

essentially a collection of facts about the analysed application. More

often than not, the class of a report depends exclusively on the tool

used to produce it. Therefore, the ParsingAgent guesses the class

based on the name of the tool. Then, the ParsingAgent polishes

the report by removing unnecessary information that is useless

for the translation (e.g., welcome messages and unreasonably ver-

bose debug messages). This step varies in complexity depending

on the nature of the report (narrative vs. factual), and ultimately,

on the tool which produces the report in the first place. Section 5

shows an example of what a narrative and a factual report look

like. The ParsingAgent abstracts from narrative reports an or-

dered sequence of event occurrences, which we represent here in a

logic-based format of Prolog (where capitalised names of arguments

denote variables and names starting with lower case letters denote

constants):

happens_a t (Timestamp_1 , E v e n t 1 _ i n f o) .

. . .

happens_a t (Timestamp_N , EventN_ in fo) .

where Timestampi orders the occurrence of the description con-

tained in an Eventi_in f o, which in turn contains information about

the content of a report (and 1 ≤ i ≤ N). Likewise, the ParsingA-

gent abstracts from factual reports a non-ordered collection of

facts represented as

h o l d s _ i n (Rep or t Id , F a c t 1 _ i n f o) .

. . .

h o l d s _ i n (Rep or t Id , F a c t N _ i n f o) .

where ReportId is the identifier of the report and Facti_in f o is

a piece of relevant information about the application and/or its

behaviour during the analysis phase.

Instantiating the ASO. When the ParsingAgent has completed

its task, it passes the polished report to a highly-specialised Trans-

latingAgent which is responsible for the second half on the trans-

lation, namely instantiating ASO. The TranslatingAgent has a

perfect knowledge of ASO, and is able to interpret the contents of a

polished report produced by a specific ParsingAgent. The Trans-

latingAgent iterates through every leaf of ASO, and, for every

leaf, for every state variable, checks within the polished report for

useful information in order to assign a value to the relevant fields

of the state variable. In case such information does not exist within

the polished report, the special value UNASSIGNED is assigned

instead.

Aggregating the reports. After all the reports have been trans-

lated, the TranslatingAgents report back to the Coordinator-

Agent, which now dispatches an AggregatingAgent with the

task to aggregate the translated reports, initiating Phase 3: aggre-
gation. Since the translated reports are nothing else than instan-

tiations of ASO, they share common syntax and semantics, and,

therefore, it is much easier to define an automated procedure to

aggregate the information contained in each of them. The aggrega-

tion procedure loops through the branches of ASO, and, for every

translated report, fetches the state variables, and tries to merge

them. During such process, a conflict arises when, for a specific

field of a specific state variable, different translated reports disagree

on the value, or one of the values is, CONFLICTING itself. If there

is no reasonable way to derive an agreed value from the conflicting

values, we have an unsolvable conflict. Otherwise, if a value com-

patible with all the disagreeing values can be derived, that becomes

the agreed value, and the conflict vanishes.

The result of the aggregation is the final report, which contains

our technological knowledge base. In practice, it is an instantiation

of ASO containing all the relevant information from the original

raw reports combined.

3.2.2 The technological knowledge base. From the final report we

are able to explicitly render the technological knowledge base by

means of translating state variables into statements expressed in the

logic-based language Prolog. In particular, statements are generated

to keep track of the parent-child relations, and to bind state variables

to leaves.

In case the actual value of a state variable is UNASSIGNED, the

variable is not translated to Prolog. If, however, reports provide

conflicting values for the same state variable, the label CONFLICT-
ING is used for the value, and the variable is included in the final

report purely to avoid data loss, since further analysis in the future

may lead to a solution of the conflict.

On top of assertions representing instances of state variables in

the ASO tree-hierarchy, the technological knowledge base comprises

rules which link state variables to the high-level properties of data

confidentiality, data integrity, and data authenticity. These rules

represent what we call violations. The following listing shows a

practical example of a violation rule which, in case of success,

indicates that the application uniquely identified by App uses an

insecure protocol with notable implications [27] on the privacy of

the transmitted data:

v i o l a t e d (d a t a _ c o n f i d e n t i a l i t y (App , Repor t) , s k e p t i c a l , r u l e 1) :−

a s o _ r o o t (Report , RootID , _ , _ , _) ,

c h i l d _ o f (Report , MetadataID , RootID) ,

a n c e s t o r _ o f (Report , MetadataID , RootID) ,

s t a t e _ v a r (Report , AppHashID , MetadataID , appHash , App , _ , _ , _ , _ , _ , _ , _) ,

a n c e s t o r _ o f (Report , T ls ID , RootID) ,

s t a t e _ v a r (Report , SSLID , TLSID , " s s l 3 . 0 " , observed , _ , _ , _ , _ , _ , Mxii , _) ,

Mxi i > 5 .

v i o l a t e d (d a t a _ c o n f i d e n t i a l i t y (App , Repor t) , c r e d u l o u s , r u l e 2) :−

a s o _ r o o t (Report , RootID , _ , _ , _) ,

c h i l d _ o f (Report , MetadataID , RootID) ,

a n c e s t o r _ o f (Report , MetadataID , RootID) ,

s t a t e _ v a r (Report , AppHashID , MetadataID , appHash , App , _ , _ , _ , _ , _ , _ , _) ,

a n c e s t o r _ o f (Report , T ls ID , RootID) ,

s t a t e _ v a r (Report , SSLID , TLSID , " s s l 3 . 0 " , observed , _ , _ , _ , Mi i i , _ , _ , _) ,

M i i i > 9 .

ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada E. Uliana et al.

p u r p o s e _ o f (r u l e 1 , " I n s e c u r e ␣ SSL3 . 0 ␣ d e t e c t e d ␣ under ␣ the ␣ s k e p t i c a l ␣ approach ") .

p u r p o s e _ o f (r u l e 2 , " I n s e c u r e ␣ SSL3 . 0 ␣ d e t e c t e d ␣ under ␣ the ␣ c r e d u l o u s ␣ approach ") .

Each of the two violation rules above detect the use of an insecure

protocol by exploring the ASO tree from the root to the leaf node

related to TLS, and then looking at the value of the state variable

related to SSL3.0. If such value is observed, SSL3.0 has been observed

at least once by at least one tool during Phase 1: parallel analysis.
The two rules differ by means of the approach they take to inter-

pret the final report. In particular, the first rule adopts the skeptical

mindset, where even with an average (i.e. 5) maximal impact in-

dex (Mxii) the violation is triggered. The second rule, on the other

hand, adopts the credulous mindset where, unless there is a high

value (i.e. 10) for the minimal impact index (Miii) the violation is

not triggered. The labels skeptical and credulous are used in the

parameters of the rules, as well as rule labels rule1 and rule2 to

uniquely identify such rules. The rule labels are then associated

with their purpose, in this case the detection of an insecure pro-

tocol under the different mindsets, which can be used as a form

of shallow explanation if a violation is detected. The underscore

denotes an anonymous variable, meaning that we are not interested

in the names of the arguments/parameters in these positions.

We are now in a position to describe if a property of an applica-

tion related to privacy is satisfied, such as data confidentiality, if all

violations in the knowledge base finitely fail.

s a t i s f i e d (Proper ty , MindSet) :− \+ v i o l a t e d (Proper ty , MindSet , _) .

‘\+’ in the rule above is Prolog’s negation, known as negation-

as-failure [12]. We can now use the above rule to check that an

application is compliant to a number of properties as follows:

c o m p l i a n t (P r o p e r t i e s , MindSet) :−

f o r a l l (member (Proper ty , P r o p e r t i e s) , s a t i s f i e d (Proper ty , MindSet)) .

The f orall/2 Prolog predicate will ensure that each member Property
in the list of Properties that we need to check is satisfied in the

specific MindSet . For example, to check for the privacy properties

of an application called ’a1’ say, under the skeptical mindset, we

specify the query:

?− c o m p l i a n t ([

d a t a _ c o n f i d e n t i a l i t y (a1) ,

d a t a _ i n t e g r i t y (a1) ,

d a t a _ a u t h e n t i c i t y (a1)

] , s k e p t i c a l) .

The query will use the rules above (and check all the remaining

skeptical rules that describe the logical representation of the tech-
nological knowledge base) to identify whether these properties are

satisfied, and report it to the user.

4 USING MAGNETDROID WITH THE LAW
After modelling the technological side, in order to use our techno-
logical knowledge base to construct a bridge between technology

and law, we need to build a similar model of the law itself. Across

the world, laws are written in natural language, which entails no-

table problems for any perspective reasoning. In particular, the

same sequence of letters (i.e., word) may be used with different

meanings (i.e., ambiguity). It is also possible that some concepts

are mentioned, but not adequately defined or referenced. Moreover,

contradictions between different legislative instruments are a limit-

ing possibility. For these reasons, usually lawyers apply a process of

interpretation which can lead to inconsistent results starting from

the same premises (i.e., same facts, same rules, different lawyers,

different outcomes). As a specification in natural language is a bar-

rier, an abstraction can simplify the problem. Section 4.1 explains

our process of abstraction of a model.

4.1 Modelling the law
For simplicity, we only focus on a subset of the Data Protection
Act 2018 and The Network and Information Systems Regulations
2018. We are interested in ss66(1) and (2) of chapter 4 of the for-

mer, and s1(3)(g) of the latter. Our model first clusters legal the

rules into 2 different classes: law with prescriptive function, and

law with consequential function. The former comprises those legal

provisions that specify obligations for parties. The latter comprises

those legal provisions that specify consequences for parties, given

some other conditions. We create a tree-like structure, similar to

ASO with law as the root, and prescriptive and consequential as its

immediate children. The parent-children relations have the same

range of meanings of those in ASO. The children of prescriptive and

consequential are the leaves of the tree.

Prescriptive. Each child of prescriptive represents a specific “pre-

scription” which we identified as relevant for and compatible with

the context of privacy and security of Android applications. In

particular, it is characterised by a set of Prolog rules whose right

sides specify conditions for the truth of the left sides which, in

turn, specify obligations.
2

We manually created those rules from

the aforementioned articles. For example, we track that a vendor of

an application is obliged to secure it for proper use.

Consequential. On the other hand, each child of consequential
tracks the potential consequences of events (e.g., incidents such as

data leaks) that we identified as relevant for and compatible with the

context of privacy and security of Android applications. Much like

each consequential leaf, it is characterised by a set of Prolog rules

whose right sides specify conditions, i.e., what must hold for the left

sides to become true, while the left sides specify the consequences.

It is important to note that, in practice, the consequences only

apply after one or more events have taken place, not if there is

the possibility of them happening. However, for our purposes of

predicting consequences, we treat the conditions as if they are

bound to hold at some point in the future, therefore allowing us to

present the users of our system with a warning type of result in

the form of potential consequences.

4.2 The legal knowledge base and post-analysis
Our legal knowledge base consists of a set of Prolog rules derived

from our model of the law, both prescriptive and consequential.

In the prescriptive case we represent obligations that need to be

fulfilled and linked to our technological knowledge base for concepts

that are potentially abstract in the law. This means that we will

need to introduce technological concepts, for example the notion

of mindset, as we have seen in Section 3.2.

In order to exemplify the legal knowledge base, consider the

situation where we need to express that a vendor of an application

2
A schematic representation of the model of both the prescriptive and consequential

branches is available at https://dicelab.co.uk/law.html.

MagnetDroid ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada

is obliged to secure it for proper use [1]. We represent this in our

framework as:

f u l f i l s (o b l i g e d (Vendor , s e c u r e (App)) , MindSet) :−

c o m p l i a n t ([

d a t a _ c o n f i d e n t i a l i t y (App) ,

d a t a _ i n t e g r i t y (App) ,

d a t a _ a u t h e n t i c i t y (App)

] , MindSet) .

As mentioned before, we have parameterised the fulfilment of the

obligation with the mindset of the compliance checking. The rule

is an example of how to link a legal model regarding security to the

technological aspects of confidentiality, integrity and authenticity.

As those concepts are not conclusively defined in the law, in order to

perform reasoning, we need to include the technological knowledge
base, so to provide a more comprehensive knowledge base. This is

an instance of MagnetDroid acting as a bridge between technology

and the law.

In the consequential case, on the other hand, we have condition

and consequences, whose relation is captured by Prolog rules. For

example, to express that a fine is issued if a data leak is observed,

we use the following rule:

i s s u e (f i n e (App) , MindSet) :− l e a k (App , MindSet) .

Note that the concept of leak is not explained, nor referenced in

the subset of the law we consider. Therefore, once again, we need

to refer to the technological knowledge base in order to find a proper

definition.

Once we have the union of both knowledge bases, we are able

to perform reasoning. In general, we are interested in two classes

of findings. First, we want to find obligations that are not fulfilled

(vs. the prescriptive law). Second, we want to predict consequences,

given specific conditions (i.e., consequential law).

Recalling the fulfils(...) rule from the legal knowledge base

- prescriptive, we are now able to perform reasoning, as the techno-

logical knowledge base contains rules (see Section 3.2) that allow

us to calculate the truth value of data_confidentiality(...),

data_integrity(...) and data_authenticity(...). If we find

that the truth value for all of the previous is true, then the body

(right side) of the fulfils(...) rule evaluates to true. Conse-

quently, the left side evaluates to true as well, indicating that App

fulfils the obligation. Alternatively, if the body of the fulfils(...)
rule evaluates to false, then App does not fulfil the obligation.

Recalling the issue(...) rule from the legal knowledge base -

consequential, we are now able to perform reasoning, as the tech-

nological knowledge base contains rules that allow us to calculate

the truth value of leak(...). In particular, one of such rules is

represented in the listing below:

l e a k (App , MindSet) :−

v i o l a t e d (d a t a _ a u t h e n t i c i t y (App , Repor t) , MindSet , _)

If violated(...) evaluates to true, then leak(...) is true as

well, which, in turn, causes issue(...) to evaluate to true. In this

case, we say that there are the conditions for the issuance of a fine.

Alternatively, if violated(...) evaluates to false, the propagation

of the truth value causes issue(...) to evaluate to false, meaning

that the conditions for the issuance of the fine are not met.

5 CASE STUDY
In order to study the applicability of our proposals, we perform

preliminary tests of the flow of the phases (see Section 3.2) on

two different APKs. The first is a calculator
3
, while the second is

a custom-build application which performs some dangerous be-

haviours, such as sending data via an HTTP POST in plaintext

(i.e., unencrypted and to an unauthenticated endpoint). We use

Bettercap, AndroTotal, and MalloDroid as the available tools. Bet-

tercap, among its functionalities, allows us to intercept the net-

work traffic between two endpoints. AndroTotal provides us with

(mainly) signature-based results regarding the maliciousness of

an application, according to a pool of anti-malware. MalloDroid

searches for misconfigurations within the code of the application

with respect to the usage of HTTPS. The following listing shows a

snippet of the raw report from Bettercap, edited in order to contain

only the meaningful information for the translation. The narra-

tive nature of the report is implied by the timestamp of the event

net.sniff.leak.http.

1 9 2 . 1 6 8 . 1 . 1 1 7 / 2 4 > 1 9 2 . 1 6 8 . 1 . 3 >> [1 4 : 1 0 : 2 1] [ne t . s n i f f . l e a k . h t t p]

h t t p l o c a l POST example . com M o z i l l a / 5 . 0 (X11 ; Android arm ; rv : 6 3 . 0)

Gecko / 2 0 1 0 0 1 0 1 F i r e f o x / 6 3 . 0

Method : POST

URL : /

Headers :

Host : example . com

User−Agent : M o z i l l a / 5 . 0 (X11 ; Android arm ; rv : 6 3 . 0)

Gecko / 2 0 1 0 0 1 0 1 F i r e f o x / 6 3 . 0

Form :

mgtxt => Thi s message w i l l be i n t e r c e p t e d .

sendbtn => Send

nmtxt => U . N . Owen

a c t i o n => send

while Figure 3 offers a visualisation of a subset of the translated

report (i.e., a subset of the instantiated ASO).

Figure 2 depicts a schematic visualisation of the phases.

Figure 4 shows a visualisation of a subset of the raw report from

AndroTotal (in the form of a screenshot of a web page for presenta-

tion reasons), while Figure 5 represents a visualisation of a subset

of its translated form.

After the aggregation, the relevant subsection of the technological

knowledge base we derive from the the final report is the following:

% s t a t i c p a r t o f t h e knowledge ba s e .

r o o t (Report , root ID , andro id_app , n u l l , C h i l d r e n I D s) :−

node (Report , root ID , andro id_app , n u l l , C h i l d r e n I D s) .

c h i l d (Report , NodeID , Pa r en t ID) :−

node (Report , NodeID , _ , Parent ID , _) .

c h i l d (Report , NodeID , Pa r en t ID) :−

l e a f (Report , NodeID , _ , Parent ID , _) .

a n c e s t o r _ o f (Report , NodeID , Ances tor ID) :−

c h i l d (Report , NodeID , Ances tor ID) .

a n c e s t o r _ o f (Report , NodeID , Ances tor ID) :−

node (Report , NodeID , _ , Parent ID , _) ,

a n c e s t o r _ o f (Report , Parent ID , Ances tor ID) .

v i o l a t e d (d a t a _ c o n f i d e n t i a l i t y (App , Repor t) , s k e p t i c a l , r u l e 1) :−

r o o t (Report , RootID , _ , _ , _) ,

c h i l d (Report , MetID , RootID) ,

c h i l d (Report , BehID , RootID) ,

c h i l d (Report , NetworkID , BehID) ,

c h i l d (Report , Prot ID , NetID) ,

c h i l d (Report , HttpID , Pro t ID) ,

c h i l d (Report , Post ID , HttpID) ,

s t a t e _ v a r (Report , AppHashID , MetID , app_hash , App , _ , _ , _ , _ , _ , _ , _) ,

s t a t e _ v a r (Report , V i s i t e d I D , Post ID , v i s i t e d _ s e r v e r s ,

_ , H i s to ry , _ , _ , _ , _ , Maii , _) ,

Mai i > 5 ,

\+ H i s t o r y == [] .

3
package name: com.android2.calculator3

ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada E. Uliana et al.

Figure 3:A subset of the translated report generated from the origi-
nal report fromBettercap. Redundant or uninteresting information
is either omitted or replaced by omissis.

Figure 4: A visualisation of the report from AndroTotal

% from th e f i n a l r e p o r t

node (r e p o r t I D , root ID , andro id_app , n u l l , [behID , f e a t I D , metID , . . .]) .

node (r e p o r t I D , behID , behav iour s , root ID , [netID , . . .]) .

node (r e p o r t I D , netID , n e t w o r k _ a c t i v i t y , behID , [prot ID , . . .]) .

node (r e p o r t I D , prot ID , p r o t o c o l s , netID , [ht tp ID , . . .]) .

node (r e p o r t I D , ht tp ID , " PLAIN_HTTP " , prot ID , [hpost ID , . . .]) .

l e a f (r e p o r t I D , hpost ID , " PLAIN_HTTP_POST " , h t tp ID , [v i s i t e d I D , . . .]) .

node (r e p o r t I D , f e a t I D , f e a t u r e s , root ID , [mal ic ID , . . .]) .

l e a f (r e p o r t I D , mal ic ID , known_mal ic iousness , f e a t I D , [response ID , . . .]) .

l e a f (r e p o r t I D , metID , metadata , root ID , [appHashID , . . .]) .

s t a t e _ v a r (r e p o r t I D , appHashID , metID , app_hash , a c t u a l _ h a s h ,

[a c t u a l _ h a s h] , 1 0 , c r i t i c a l , 1 0 , c r i t i c a l , 1 0 , c r i t i c a l) .

s t a t e _ v a r (r e p o r t I D , v i s i t e d I D , hpost ID , v i s i t e d _ s e r v e r s , " example . com " ,

Figure 5: A subset of the translated report generated from the orig-
inal report from AndroTotal. Redundant or uninteresting informa-
tion is either omitted or replaced by omissis.

[" example . com "] , 1 0 , c r i t i c a l , 5 , average , 1 0 , c r i t i c a l) .

s t a t e _ v a r (r e p o r t I D , response ID , mal ic ID , a n d r o t o t a l _ r e s p o n s e , benign ,

[ben ign] , 1 0 , c r i t i c a l , 1 0 , c r i t i c a l , 1 0 , c r i t i c a l) .

from which, through reasoning, we are able to derive that our test

app violates the property of data confidentiality. Plugging this result

into the legal knowledge base, and performing additional reasoning

shows that our test application does not fulfil one of the obligations

(the very same data confidentiality).

Interpreting the results. Using the technological knowledge base

we derived that the property of data confidentiality does not hold

for our test application. We have used the technological knowledge

base to determine the truth value of one of the concepts introduced,

but not explained by the law. Then, we propagated this finding to the

legal knowledge base, and we found that, because of that, our test

application does not comply with one of the relevant obligations.

We have, in other words, found an incompatibility between what

the law prescribes, and one of the behaviours of our test application.

6 CONCLUSIONS
In our work, we have identified a gap between security-based

technology-powered privacy consideration for Android applica-

tions and the relevant law. We have built a bridge between these

two worlds that analyses these considerations using logical reason-

ing. Our approach has proposed an Android Security Ontology, a

multi-agent platform that translates and aggregates reports from

existing Android application analysis tools, and an aggregating

procedure that allows us to create what we call a technological
knowledge base. We can then use this knowledge base and link it to

the relevant legal provision. This allowed us to draw conclusions

about the privacy implications of an Android application under a

specific interpretation.

MagnetDroid ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada

We exemplified our approach with a specified model of a subset

of the Data Protection Act 2018 and The Network and Information
Systems Regulations 2018, in order to create a suitable legal knowl-
edge base. We then performed logical reasoning in Prolog in order to

find violations of prescriptive law, and predict legal consequences

that may arise from security problems with respect to Android

applications. In particular, we chose a calculator application, and

a custom-built application which exhibits some of the behaviours

we are interested in. We performed queries aimed at detecting the

violation of data confidentiality under the skeptical mindset, which,

in turn, we used to perform queries aimed at detecting violations

of the prescriptive law.

Our work has application in three possible scenarios. The first

one involves developers using MagnetDroid to avoid unnecessary

vulnerabilities in the applications they build. Here our system can

provide shallow explanations of the violations. The second one

involves users of applications leveraging MagnetDroid to become

aware of the vulnerabilities/maliciousness of the applications they

use, along with the legal consequences such violations may have. Fi-

nally, the third one involves legal professionals using MagnetDroid

to establish technology-based interpretation of facts in specific

incidents involving private data of Android users.

MagnetDroid is a proof of concept prototype that integrates a

number of complex technologies. Tools from the information secu-

rity community, distributed agent platforms with a specific agent

model and symbolic reasoning techniques based on computational

logic. However, in developing the prototype and its use we have

identified a number of areas for future work.

• ASO and its application on specific tools. Strictly speaking

the notion of ontology in ASO as presented in this work

is more like an information model because it lacks a for-

mal naming and definition of the categories, properties and

relations between the concepts, data and entities that sub-

stantiate it. However, we have kept the ontology term here,

as we envisage that future implementations of ASO (e.g. in

OWL) would make the acronym more accurate. In addition,

the translation of raw reports into instantiations of ASO is

not provably lossless, and it is currently limited to specific

versions of specific tools. As a next step we plan to develop

an ASO-compatible API for perspective Android application

analysis tools developers which would specify a format, the

syntax, and the semantics of an ASO-compatible report. Such

step would allow us to completely skip the translation of the

reports, and to immediately perform the aggregation of the

retrieved reports. An ASO-compatible API for tool writers

as a future work is inspired by existing similar technologies,

e.g., the X.509[13] standard which specifies the format of

certificates to be used for authentication of remote parties.

It does not matter who the subject the certificate refers to

is, or who the issuer is (as long as it is trusted): a software

receiving a certificate is able to immediately understand its

syntax and semantics without any translation needed.

• Inconsistencies from tools and interpretation of the law. Our

work in this paper was based on existing Android appli-

cation analysis tools as the source of the raw reports we

translated and aggregated. In doing so, we found that we

always inherited the corresponding accuracy, precision, and

recall from these tools. One aspect of our framework that

mitigated for such cases was the CONFLICTING mechanism.

As the conflicting information is likely the result of a mis-

take by one or more tools, discarding conflicting information

allowed us to “discard” the erroneous information, wherever

it was. Conflicts may also arise from the open-textured na-

ture of the law, which for the AI and law literature is not a

new problem (e.g. [9]). It has been suggested that this type

of problem is best dealt with using argumentation-based

techniques (e.g. [8]) and a whole area of work has been ini-

tiated in this direction as a result (e.g. [30, 42]). In addition,

multi-agent platforms that are argumentation-based exist

too (e.g. [39]), as well as agent models where argumenta-

tion drives an agent’s internal operation (e.g. [43]). Dialogue

games are often used in practice to implement these tech-

niques in interactive systems (e.g. [36, 37]).

• Overfitting to the law. Our model of the law is derived by

means of selecting a subset of a pair of Acts in a single juris-

diction, and performing a manual work of translation from

natural language to the tree representation. The creation of

the model can be refined in at least two ways: selecting a

broader range of rules and regulations, and using natural

language processing techniques in order to automate the

process of building the model tree.

Dealing with the all of the above issues has opened up important

areas that will be the focus of our work for the future.

ACKNOWLEDGMENTS
The authors would like to thank Claudio Rizzo and Roberto Jordaney

for inspiring some of the ideas in this work, and Benedict Wilkins

and Joel Clarke for commenting on a previous version of the paper.

The authors would also like to thank the anonymous referees for

their valuable comments and helpful suggestions. The first author

has been supported by a grant from The Magna Carta Doctoral

Centre for Individual Freedom at Royal Holloway University of

London.

REFERENCES
[1] [n.d.]. 2018 UK Data Protection Act. https://www.legislation.gov.uk/ukpga/

2018/12/contents/enacted Available at https://www.legislation.gov.uk/ukpga/

2018/12/contents/enacted.

[2] [n.d.]. Android Market Share. https://www.statista.com/statistics/

266136/global-market-share-held-by-smartphone-operating-systems

Available at https://www.statista.com/statistics/266136/

global-market-share-held-by-smartphone-operating-systems.

[3] [n.d.]. The Network and Information Systems Regulations 2018. http://www.

legislation.gov.uk/uksi/2018/506/made Available at http://www.legislation.gov.

uk/uksi/2018/506/made.

[4] [n.d.]. Security | Android Open Source Project. https://source.android.com/

security Available at https://source.android.com/security.

[5] [n.d.]. The Transport Layer Security (TLS) Protocol Version 1.3. https://tools.

ietf.org/html/rfc8446 Available at https://tools.ietf.org/html/rfc8446.

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[7] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012.

Dexpler: converting android dalvik bytecode to jimple for static analysis with

soot. In Proceedings of the ACM SIGPLAN International Workshop on State of the
Art in Java Program analysis. ACM, 27–38.

[8] Trevor Bench-Capon. 1997. Argument in Artificial Intelligence and Law. Artificial
Intelligence and Law 5, 4 (Dec 1997), 249–261.

https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
http://www.legislation.gov.uk/uksi/2018/506/made
http://www.legislation.gov.uk/uksi/2018/506/made
http://www.legislation.gov.uk/uksi/2018/506/made
http://www.legislation.gov.uk/uksi/2018/506/made
https://source.android.com/security
https://source.android.com/security
https://source.android.com/security
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada E. Uliana et al.

[9] Trevor Bench-Capon and Marek Sergot. 1989. Towards a Rule Based Representa-

tion of Open Texture in Law. In Computing Power and Legal Reasoning, Charles

Walter (Ed.). Greenwood Press, Chapter 6, 39–60.

[10] Michael Bierma, Eric Gustafson, Jeremy Erickson, David Fritz, and Yung Ryn

Choe. 2014. Andlantis: Large-scale Android dynamic analysis. arXiv preprint
arXiv:1410.7751 (2014).

[11] Stefano Bromuri and Kostas Stathis. 2008. Situating cognitive agents in GOLEM.

Engineering environment-mediated multi-agent systems (2008), 115–134.

[12] Keith L. Clark. 1977. Negation as Failure. In Logic and Data Bases, Symposium on
Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977.
(Advances in Data Base Theory), Hervé Gallaire and Jack Minker (Eds.). Plemum

Press, New York, 293–322.

[13] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC 5280. RFC Editor. http://www.rfc-editor.org/rfc/rfc5280.txt

http://www.rfc-editor.org/rfc/rfc5280.txt.

[14] Anthony Desnos et al. 2011. Androguard. URL: https://github. com/androguard/an-
droguard (2011).

[15] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012.

A survey on automated dynamic malware-analysis techniques and tools. ACM
computing surveys (CSUR) 44, 2 (2012), 6.

[16] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.

TaintDroid: an information-flow tracking system for realtime privacy monitoring

on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[17] 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of

27 April 2016 on the protection of natural persons with regard to the processing

of personal data and on the free movement of such data, and repealing Directive

95/46/EC (General Data Protection Regulation). Official Journal of the European
Union L119 (4 May 2016), 1–88. http://eur-lex.europa.eu/legal-content/EN/TXT/

?uri=OJ:L:2016:119:TOC

[18] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd

Freisleben, and Matthew Smith. 2012. Why Eve and Mallory love Android: An

analysis of Android SSL (in) security. In Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 50–61.

[19] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-

based detection of android malware through static analysis. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 576–587.

[20] Andrea Gianazza, Federico Maggi, Aristide Fattori, Lorenzo Cavallaro, and Ste-

fano Zanero. 2014. Puppetdroid: A user-centric ui exerciser for automatic dynamic

analysis of similar android applications. arXiv preprint arXiv:1402.4826 (2014).

[21] Lance J Hoffman. 2012. Building in big brother: the cryptographic policy debate.
Springer Science & Business Media.

[22] Hideaki Ishii and Roberto Tempo. 2014. The PageRank problem, multiagent

consensus, and web aggregation: A systems and control viewpoint. IEEE Control
Systems 34, 3 (2014), 34–53.

[23] Antonis C. Kakas, Paolo Mancarella, Fariba Sadri, Kostas Stathis, and Francesca

Toni. 2008. Computational Logic Foundations of KGP Agents. J. Artif. Intell. Res.
(JAIR) 33 (2008), 285–348.

[24] S Karthika, S Gunanandhini, and Mr A Vijayanarayanan. 2013. Android Based

Effective and Efficient Search Engine Retrieval System Using Ontology. IJREAT
International Journal of Research in Engineering & Advanced Technology 1, 1

(2013).

[25] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick

Fratantonio, Victor Van Der Veen, and Christian Platzer. 2014. Andrubis–1,000,000

apps later: A view on current Android malware behaviors. In Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), 2014 Third
International Workshop on. IEEE, 3–17.

[26] Federico Maggi, Andrea Valdi, and Stefano Zanero. 2013. AndroTotal: a flexible,

scalable toolbox and service for testing mobile malware detectors. In Proceedings
of the Third ACM workshop on Security and privacy in smartphones & mobile
devices. ACM, 49–54.

[27] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites:

exploiting the SSL 3.0 fallback. Security Advisory (2014).

[28] Juan Antonio Morente-Molinera, Robin Wikström, Enrique Herrera-Viedma, and

Christer Carlsson. 2016. A linguistic mobile decision support system based on

fuzzy ontology to facilitate knowledge mobilization. Decision Support Systems 81

(2016), 66–75.

[29] Nils J. Nilsson. 1994. Teleo-reactive Programs for Agent Control. J. Artif. Int. Res.
1, 1 (Jan. 1994), 139–158.

[30] H. Prakken and G. Sartor. 1997. A Dialectical Model of Assessing Conflicting
Arguments in Legal Reasoning. Springer Netherlands, Dordrecht, 175–211.

[31] Claudio Rizzo, Lorenzo Cavallaro, and Johannes Kinder. 2018. BabelView: Evalu-

ating the Impact of Code Injection Attacks in Mobile Webviews. In Research in
Attacks, Intrusions, and Defenses, Michael Bailey, Thorsten Holz, Manolis Stamato-

giannakis, and Sotiris Ioannidis (Eds.). Springer International Publishing, Cham,

25–46.

[32] Pedro Sánchez, Bárbara Álvarez, Ramón Martínez, and Andrés Iborra. 2017. Em-

bedding statecharts into Teleo-Reactive programs to model interactions between

agents. Journal of Systems and Software 131 (2017), 78–97.

[33] Ferial Shayeganfar, Amin Anjomshoaa, and A Min Tjoa. 2008. A smart indoor

navigation solution based on building information model and google android. In

International Conference on Computers for Handicapped Persons. Springer, 1050–

1056.

[34] Kerry-Louise Skillen, Liming Chen, Chris D Nugent, Mark P Donnelly, and Ivar

Solheim. 2012. A user profile ontology based approach for assisting people with

dementia in mobile environments. In Engineering in Medicine and Biology Society
(EMBC), 2012 Annual International Conference of the IEEE. IEEE, 6390–6393.

[35] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur

Khan. 2014. Smv-hunter: Large scale, automated detection of ssl/tls man-in-

the-middle vulnerabilities in android apps. In In Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSSâĂŹ14. Citeseer.

[36] Kostas Stathis. 2000. A Game-based Architecture for Developing Interactive Com-

ponents in Computational Logic. Journal of Functional and Logic Programming
2000, 5 (March 2000).

[37] Kostas Stathis and Marek Sergot. 1996. Games as a Metaphor for Interactive

Systems. In People and Computers XI, Martina Angela Sasse, R. Jim Cunningham,

and Russel L. Winder (Eds.). Springer London, London, 19–33.

[38] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.

CopperDroid: Automatic Reconstruction of Android Malware Behaviors.. In

NDSS.

[39] Francesca Toni, Mary Grammatikou, Stella Kafetzoglou, Leonidas Lymberopoulos,

Symeon Papavassileiou, Dorian Gaertner, Maxime Morge, Stefano Bromuri, Jarred

McGinnis, Kostas Stathis, Vasa Curcin, Moustafa Ghanem, and Li Guo. 2008.

The ArguGRID Platform: An Overview. In Grid Economics and Business Models,
Jörn Altmann, Dirk Neumann, and Thomas Fahringer (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 217–225.

[40] Edgaras Valincius, Hai H Nguyen, and Jeff Z Pan. 2015. A Power Consumption

Benchmark Framework for Ontology Reasoning on Android Devices.. In ORE.

80–86.

[41] Johann Vincent, Christine Porquet, Maroua Borsali, and Harold Leboulanger.

2011. Privacy protection for smartphones: an ontology-based firewall. In IFIP
International Workshop on Information Security Theory and Practices. Springer,

371–380.

[42] Douglas Walton. 2005. Argumentation methods for artificial intelligence in law.

Springer Science & Business Media.

[43] Mark Witkowski and Kostas Stathis. 2004. A Dialectic Architecture for Compu-

tational Autonomy. In Agents and Computational Autonomy, Matthias Nickles,

Michael Rovatsos, and Gerhard Weiss (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 261–273.

[44] Michelle Y Wong and David Lie. 2016. IntelliDroid: A Targeted Input Generator

for the Dynamic Analysis of Android Malware.. In NDSS, Vol. 16. 21–24.

[45] Lok-Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing

the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis.. In

USENIX security symposium. 569–584.

[46] Roberto Yus, Carlos Bobed, Guillermo Esteban, Fernando Bobillo, and Eduardo

Mena. 2013. Android goes Semantic: DL Reasoners on Smartphones.. In Ore.
Citeseer, 46–52.

[47] Min Zheng, Mingshen Sun, and John CS Lui. 2014. DroidTrace: A ptrace based

Android dynamic analysis system with forward execution capability. In Wireless
Communications and Mobile Computing Conference (IWCMC), 2014 International.
IEEE, 128–133.

http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

	Abstract
	1 Introduction
	2 Background and existing work
	3 MagnetDroid Framework
	3.1 Android Security Ontology (ASO)
	3.2 MagnetDroid: creating the technological knowledge base

	4 Using MagnetDroid with the law
	4.1 Modelling the law
	4.2 The legal knowledge base and post-analysis

	5 Case study
	6 Conclusions
	Acknowledgments
	References

