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Abstract

Relay attacks are passive man-in-the-middle attacks during which an attacker is
extending the communication distance of two genuine devices by relaying com-
munication messages between them, without the legitimate user’s consent. In the
field of smart cards, distance bounding protocols have been proposed as an effective
countermeasure. For smartphones, distance bounding protocols may not work due
to the multitude of hardware vendors and background processes. Instead, sensing
the natural ambient environment has been proposed. However, previously proposed
solutions may not be applicable in scenarios where industry imposed time constraints
apply, e.g. in the cases of EMV contactless payments and transport ticketing, where a
transaction should typically complete within 300–500ms.

In this thesis, the applicability of the natural ambient sensing as a Proximity and
Relay Attack Detection (PRAD) mechanism in time-restricted contactless transactions
(up to 500ms) is initially investigated. The use of an Artificial Ambient Environment
(AAE) is proposed as a potentially more effective PRAD mechanism. Infrared light
and vibration have been examined as AAE actuators.

Furthermore, two PRAD techniques that are not based on the ambient environ-
ment are proposed. First, comparing subsequent button press and release timings,
performed by the genuine user on the smartphone during a transaction, and recorded
by both transaction devices simultaneously. Finally, in order to protect against relay
attacks initiated through a malicious application, installed on the user’s smartphone,
a repackaged application detection technique is proposed, based on similarity com-
parison of application names and icons. Repackaged applications have been found
in the past to be responsible for the distribution of as much as 86% of all Android
malware.

The effectiveness of all the proposed techniques has been empirically evaluated
through field trials. Analysis of the collected data, using threshold- and/or ma-
chine learning-based techniques, indicates the high effectiveness of all the proposed
solutions as PRAD mechanisms.
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Chapter 1

Introduction

Relay attacks [54, 55, 159] are passive man-in-the-middle attacks, aiming to
extend the physical distance of devices involved in a transaction beyond
their operating environment. Contactless smart cards [71–73, 97], as well
as mobile phones [54, 55, 108, 130–132], are susceptible to relay attacks.

Using such attacks, an attacker can gain unauthorised access to services and facilities
that a genuine user is eligible for, like payments and access to buildings.

As an example, in a relay attack on a payment transaction, one way of extending
the operating distance between two transaction devices is by using equipment that
masquerades as legitimate devices to both the payment terminal and instrument
device (i.e. the client device — e.g. a smart card or a mobile phone that is used for the
completion of the payment transaction), as shown in Figure 1.1. At present, additional
security mechanisms like fingerprint scanning and Personal Identification Number
(PIN) entry may also be required in order to perform a contactless mobile transaction
for a payment, transport ticketing, and similar services. However, even the use of
PINs and biometrics cannot prevent relay attacks (see the Mafia fraud attack [36]).

Figure 1.1: Overview of a Relay Attack

For contactless smart cards, distance bounding protocols [57, 128, 151] and
variants of such [72] have been proposed as an effective countermeasure against relay
attacks. This is still an active research domain, with new attacks and countermeasures
emerging [19, 36, 74]. At the current state of the art, however, these are not easily
transferable to Near Field Communication (NFC)-enabled phones, due to their high
sensitivity to time delays [34, 68, 156].

In recent years, a number of proposals suggest the use of ambient sensing as an
alternative Proximity and Relay Attack Detection (PRAD) mechanism against the
off-the-shelf attacker [68, 106, 139, 152, 157, 158]. Such proposals rely on the collection
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of data over a period of time from both transaction devices, using ambient sensors
(e.g. the temperature sensor), and subsequently comparing the collected data for
similarity.

Specific scenarios susceptible to relay attacks, like EMV contactless payments and
transport ticketing, have industry-imposed time limits regarding the completion of
a contactless transaction. In the case of EMV the limit is 500ms [50, 81, 149], and in
the case of transport ticketing typically between 300 and 500ms [49, 150]. It has been
forecasted that by 2020 the amount of NFC payments performed using services such
as Android Pay and Apple Pay will exceed 760 million per year [92], while by that time
NFC-based mobile ticketing users will reach 375 million [93]. In addition to these,
other applications exist that depend on proximity and transaction time, particularly in
the realm of the Internet of Things (IoT), such as takingmedical equipment inventories
in operating theatres. The domain of sensor networks is another closely-related area
where the communication time and the proximity of sensors can be of paramount
importance.

Certain types of relay attacks on mobile devices may not rely on the use of
masqueraded equipment on both ends of the transaction (i.e. the transaction terminal
and the transaction instrument). For example, a relay attack that uses a malicious
application has been demonstrated [131]. Such relay attack scenarios require different
prevention approaches. Researchers have found that approximately 86%of allAndroid
malware is distributed through repackaged applications [171], thus, preventing the
installation of such applications can act as an effective countermeasure.

The main goal of this thesis is to evaluate the effectiveness of previously proposed
PRAD techniques for mobile devices and propose alternatives and/or enhancements
that can potentially improve the detection/prevention of relay attacks. The aim is to
prevent the opportunistic, off-the-shelf attacker, from being capable of performing
relay attacks on such devices. In the course of this thesis, both parties involved in a
transaction are regarded as trusted (the transaction devices and/or operators do not
cooperate with an attacker who is attempting a relay attack).

1.1 Motivation and Challenges

Previously proposed PRAD techniques on mobile devices do not take into consid-
eration industry-imposed time restrictions, therefore may not be suitable in such
scenarios. Moreover, the best Equal Error Rate (EER) (i.e. the optimal trade-off between
false positives and false negatives) reported by previous works is approximately 9%,
meaning that 9% of genuine transactions would be detected as relay attacks and 9%
of relay attacks would be accepted as genuine transactions. Therefore, they may not
be suitable for security-critical applications, or applications that require a high level
of reliability (e.g. mobile payments, which have to complete fast in order for the next
customers to be served). Furthermore, in the presence of a context-manipulating
attacker, many of the previously proposed techniques may fail [137]. Finally, many
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of the previously proposed solutions do not focus on relay attacks that are initiated
through a malicious application (similar to [131]).

Previously proposed solutions were initially evaluated (Chapter 3) under industry-
specific timing restrictions (up to 500ms transaction time). High EERs that may
not be sufficient for security-critical applications were perceived. More specifically,
evaluating only the effectiveness of sensing the natural ambient environment as a
means of establishing proximity evidence between two communicating devices, the
best (lowest) EER was 9.2%, using the Pressure sensor (see Chapter 3). In the presence
of an attacker, therefore evaluating the effectiveness of sensing the natural ambient
environment as a relay attack detection mechanism, the best EER was 17.9%, using
the Gyroscope sensor (Chapter 3). Similar results have also been demonstrated on
iOS-based devices in the presence of an attacker [66]. Alternative solutions, suitable
for such scenarios, are proposed as part of this thesis (Chapters 4, 6, 7, 8). The aim
of the proposed techniques is to improve the performance of PRAD techniques in
the field of smartphones against the off-the-shelf attacker, while being effective in
time-constrained scenarios (like EMV payments).

1.2 Contributions

The main contributions of this thesis are:

• Evaluation of the natural ambient environment as a PRAD mechanism for
transactions with a limited time-frame (up to 500ms):

– A test-bed was implemented to evaluate various sensors on Android
devices.

– The ambient sensor measurement data analysis was evaluated under
industry specifications.

– The effectiveness of ambient sensors as a proximity detection mechanism
was empirically evaluated.

The experimentation and analysis carried out as part of this thesis showed that
none of the sensors were individually suitable to be deployed as a proximity
detection mechanism for NFC-based mobile transactions.

• Artificial Ambient Environment (AAE)-Based PRAD: A novel approach of
PRAD is proposed, based on the generation of an AAE through peripherals
of the devices involved in a transaction. One or both transaction devices are
responsible for generating and/or measuring the AAE. The AAE is based on
randomly generated sequences or streams. The captured data of one transaction
device is compared for similarity against the captured or generated data of the
other transaction device. A generic framework for generation and measurement
of the AAE is proposed. In addition, this generic framework defines the
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methodology of how two devices can ascertain whether they are in proximity to
each other. Two AAE actuators have been investigated in terms of effectiveness
and applicability, namely, infrared light and vibration:

– Infrared light as an AAE actuator:

∗ Taking the generic framework, an evaluation test-bed was designed
and built using infrared as an AAE actuator.

∗ The effectiveness of using infrared as an AAE actuator was empirically
evaluated against six distinct relay attack scenarios. The experimental
results indicate a high success rate in both proximity and relay attack
detection.

– Real-world applicability of the infrared light-based AAE PRAD:

∗ Potential applications of infrared light as a PRAD mechanism for
contactless transactions in mobile payments, physical access control,
and transportation are described.

∗ A scheme for relay attack resilient continuous Two-Factor Authentica-
tion (2FA) for host-based services authentication is proposed.

∗ Protocols that follow industry standards (where applicable) for the
integration of the PRAD technique are proposed. The security of all
the protocols has been verified using the Scyther tool [39].

∗ The performance of each of the aforementioned cases has been evalu-
ated through practical implementation. The results indicate that the
performance cost is low.

– Vibration as an AAE actuator:

∗ Vibration as an AAE actuator (Section 6.2): The sensing of short (up
to 500ms) random vibration sequences, generated by one or both
transaction devices, is proposed as a means of PRAD.

∗ Evaluation of the proposed solution: An evaluation test-bed was
implemented in order to assess the effectiveness of the proposed
solution. A total of 36,000 transactions were analysed using different
vibration modalities, ambient sensors, and potential attack techniques.
The results indicate high effectiveness of the proposed solution and
resilience against relay attacks when using certain sensors (namely,
gyroscope, linear acceleration, and rotation vector).

• Force Sensing-Based PRAD:

– A novel approach for PRAD, based on sensing the sequence and timings of
subsequent virtual button presses and releases by the transaction devices,
is proposed. Virtual buttons are displayed by the smartphone involved in
the transaction. The user is called to press on them and both transaction
devices are responsible for recording the order of the pressed buttons,
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as well as the duration of: (a) each button press and (b) between two
subsequent button presses. The recorded values from the two transaction
devices are then compared for similarity in order to establish proximity
assurances.

– Two evaluation frameworks were deployed for evaluating the proposed
solution as a proximity detectionmechanism and as a relay attack detection
mechanism, by subjecting it against a set of volunteers that tried to attack
the scheme.

• Host-Based PRAD: In order to prevent repackaged applications from being
installed on a target smartphone that could potentially be used to perform a
host-based relay attack (similar to [131]):

– A method for detecting repackaged applications is proposed, initiated on
the client side prior to an application’s installation. The target application
is being checked against a database of legitimate applications hosted by
a Trusted Third Party (TTP). If the target application does not exist in
the legitimate application’s database, its name and icon are compared
for similarity against those of other, legitimate applications. These two
elements characterise an application to the user prior to its installation, so
an attacker may not alter them, in order to deceive the user.

– Experimental evaluation demonstrated that the proposed mechanism is
both effective and efficient in detecting repackaged applications.

• The source code and the collected data for all the work presented in this
thesis has been made available where necessary and possible. It can be found
at https://www.dropbox.com/sh/6tqbw2xjuqznmf5/AADPRaEO2cWr-UpS2ALe
FwBra?dl=0.

1.3 Thesis Outline

The outline of this thesis is as follows:
Part I: Background

• Chapter 2: In this chapter, background information and the literature review
are being discussed.

Part II: Natural Ambient Environment-Based Relay Attack Detection

• Chapter 3: In this chapter, the effectiveness of previously proposed PRAD
solutions for smartphones is being evaluated in time-restricted scenarios of up
to 500ms (e.g. EMV).

Part III: Artificial Ambient Environment-Based Relay Attack Detection

https://www.dropbox.com/sh/6tqbw2xjuqznmf5/AADPRaEO2cWr-UpS2ALeFwBra?dl=0
https://www.dropbox.com/sh/6tqbw2xjuqznmf5/AADPRaEO2cWr-UpS2ALeFwBra?dl=0
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• Chapter 4: In this chapter, the concept of the AAE is introduced. The use of
infrared light as an AAE actuator is being evaluated.

• Chapter 5: In this chapter, the applicability of infrared light as an AAE actuator
is discussed through evaluation on different simulations of real-life scenarios.

• Chapter 6: In this chapter, the use of vibration as an AAE actuator is being
evaluated.

Part IV: Non-Ambient Environment-Based Relay Attack Detection

• Chapter 7: In this chapter, an alternative approach to using the ambient environ-
ment as a PRAD technique is proposed. Instead, timed touches and releases on
the smartphone’s display, performed by the user, are used. The touch durations
and their sequence are also measured by the transaction terminal through
force-sensitive resistors.

• Chapter 8: In this chapter, the focus is on mitigating the risk of relay attacks that
might be initiated by a malicious application. The aim is to detect and prevent
the installation of potentially repackaged applications that attempt to resemble
genuine applications (e.g. banking applications) to attract more victims and
deploy this type of attack on a larger scale. The detection technique is based on
application name and icon similarity with genuine applications.

• Chapter 9: Concluding remarks, discussion, and comparison of the proposed
techniques are presented in this chapter.
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Part I

Background
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Chapter 2

Relay Attacks in Contactless
Transactions

2.1 Introduction

The main goal of this chapter is to introduce the reader to the concept of relay attacks,
summarise the related literature, and provide an overview of technologies that are
used throughout this thesis. This thesis focuses mainly on relay attack detection on
smartphones, where traditional distance bounding protocols that are applicable in
the field of smart cards may not be as effective. Android devices are used to evaluate
the proposed solutions, since the Android Operating System (OS) is open-source
and provides rich Application Programming Interfaces (APIs) for controlling various
hardware and other components. Thus, initially, the basics of the Android OS are
described (Section 2.2).

An overview of relay attacks is provided afterwards (Section 2.3). Three are the
main types of relay attacks that are commonly discussed in the literature (Mafia
Fraud Attack, Distance Fraud Attack, and Terrorist Fraud Attack). The three types are
explained and the most prominent countermeasures in the fields of smart cards and
smartphones are explained. It is worth noting that in the field of smartphones the
focus of the solutions that have been proposed is mainly on the Mafia Fraud Attack.
The relevant literature regarding relay attack detection mechanisms for smart cards
and mobile devices is also provided (Section 2.4).

Another type of relay attacks that does not fit the exact definition of the other
three types and is relevant to smartphones has also been demonstrated [131]. This
type of relay attack relies on malware capable of hĳacking information from a
user’s smartphone without the user’s consent/knowledge. It has been reported
that approximately 86% of malware distribution is performed through repackaged
applications [171]. In Chapter 8, a repackaging detection approach is proposed that
can assist in the mitigation of this type of relay attack. The specifics of Android
application repackaging are discussed and the related literature is listed (Section 2.5).
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2.2 The Android Operating System

In this section, an overview of the Android OS is provided. It is followed by a short
overview of Android applications and Host-based Card Emulation (HCE).

2.2.1 What is Android

Android is an OS developed by Google and is mainly targeting mobile devices
(smartphones). As of June 2018, it is the most popular OS, holding over 41% of the
whole OS market share [142] and more than 85% of the mobile device OS market
share [143].

Android is open-source and uses the Linux kernel at its core [12]. Other major
components of the OS are depicted in Figure 2.1. Android provides APIs for accessing
a multitude of hardware components (e.g. Bluetooth, WiFi). Device vendors can
choose the hardware components that an Android device uses. Different devices may
be using different components (e.g. processors), and certain components may not be
available on certain devices (e.g. certain ambient sensors). However, the Android
guidelines require certain components to be present on all devices (e.g. a touchscreen),
and strongly recommend others [5].

Applications are also supported by the Android OS. A user is capable of
downloading and installing them on their devices, using application stores and other
methods. The next section provides an overview of Android applications.

2.2.2 Android Applications

Android applications come in .apk or .xapk containers (basically .zip files). These
containers include the application’s bytecode, resources, assets, and libraries, as well
as a folder (named META-INF) that holds the signature(s), generated by the developer,
on different elements (e.g. classes and resources) of the respective application. Each
application has to be signed using the private key(s) of the developer. The developer
needs to safeguard the private key(s), since in order for an application to be updated
it has to be signed using the same private key(s) as the already installed version’s.

Each Android application has a package name that is used by the operating system
as the differentiator factor between applications. If an application that is about to be
installed shares the same package name with an already installed one, Android will
perceive it as an update attempt on the last.

Android applications until Android 4.4 used to run in the Dalvik Virtual Machine
(DVM), which is the equivalent of the Java VirtualMachine (JVM). Dalvikwas replaced
by Android Runtime (ART) in Android 5.0 [11, 12]. The languages that Android
officially supports are Java, Kotlin, and C++ [62], however using C++ is discouraged
by Google, except in special cases, like game engines [63].

Various sources for installing applications on a device exist. For example, appli-
cations can be downloaded from the Google Play Store, or a third-party application
store. A user can also install an application file directly on their device via USB, if the
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Figure 2.1: The Android Software Stack1

appropriate setting is enabled by the user, or by selecting an application file that is
located in the device’s storage.

Updating Installed Applications

As already mentioned, in order for an application to be installed on a device, it has
to be signed with the developer’s private key(s). The differentiation factor being
used by the operating system in order to distinguish applications is the application’s
package name. If an application that is about to be installed shares the same package
name with an already installed one, Android will perceive it as an update attempt
of that application. If the private key(s) used to sign the new version do not match
the already installed one’s, the operating system will refuse to install it. However, no

1Source: https://developer.android.com/guide/platform/

https://developer.android.com/guide/platform/
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actions are being taken to prove the authenticity of an application when it is installed
for the first time.

2.2.3 Android Host-based Card Emulation

The Android OS includes support for NFC [34]. NFC is a short-ranged contactless
communication channel (up to 10cm), based on the ISO-14443 standard [87]. NFC has
opened smartphone platforms to a range of application domains, particularly those
previously based on smart cards.

Android’s HCE allows NFC-enabled devices to act as contactless smart cards
without relying on a dedicated Secure Element (SE). It was first introduced in Android
4.4 (API 19) [7] and is used by mobile applications to perform transactions through
NFC, such as banking and transport-related. Its ability to emulate contactless smart
cards facilitates interoperability with existing card—reader infrastructures based on
NFC [80]. Using HCE, application developers do not have to have write access to an
SE (which is typically not publicly available) in order to make their application widely
available.

(a) SE-based (b) HCE-based

Figure 2.2: Card Emulation Using SE and HCE

When an SE is used, typically all of the data received by the NFC controller is
routed directly to the SE (Figure 2.2a). In the case of HCE, however, data is directed to
the device’s CPU, which is responsible for handing it to the corresponding application
via the operating system (Figure 2.2b). In both SE- and HCE-based deployments, data
is passed to an application based on an Application ID (AID), as stipulated in the
ISO/IEC 7816-4 specification [23].

Naturally, because HCE is software-based, it cannot provide the level of tamper-
resistance that a hardware SE can [113]. Device storage may only be protected by
the security mechanisms of the operating system, such as application sandboxing [2].
Therefore, it is not recommended that critical transactions, like mobile payments and
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high-security access control, to be based entirely on HCE [80, 123]. In such scenarios
an SE- or TEE-based solution would be more appropriate for safeguarding critical
information.

Android devices do not always contain an SE or TEE. In order to make HCE more
widely accessible, cloud-based storage that acts as a remote SE is one proposed solution.
However, Internet connectivity is typically required and achieving authentication via
a remote cloud platform can be challenging. Various proposals have been made to
enhance the security of HCE, some of which are being used by stakeholders. Such
methods include verification of the user and/or the hardware (e.g. using PINs or
biometrics), limitations to transaction amounts, tokenised payments, operating system
checks, and white-box cryptography [78].

In case an SE is available on thedevice, a combination ofHCEandSE canbeused. In
this scenario, HCE can allow developers to build applications that run on the Android
space instead of the SE, while using the additional security that the SE provides to
store secrets and/or perform sensitive tasks (e.g. encryption/decryption). In this
approach, the security is improved compared to a solely HCE-based solution, but
lacks when compared against an SE-only approach. However, application developers
would not require write access to the SE, as various cryptographic functions of the SE
are available to the developers through API calls [9].

The use of an SE may be able to protect against many types of software and
hardware attacks better than HCE. Relay attacks, however, can be effective against
both, unless the appropriate countermeasures have been applied. This type of attack
is discussed in the following section.

2.3 Relay Attacks

As already discussed, relay attacks aim to extend the operating distance of commu-
nicating devices beyond their intended operating environment. A wide range of
applications can be affected by relay attacks, like contactless transactions and access
control.

Typically, some form of relay equipment is required by an attacker to perform
such attacks, but this depends on the type of the relay attack. For example, in the case
of an NFC-based contactless payment using a smartphone as a payment instrument,
an attacker may use a pair of a malicious (masqueraded) payment terminal and
a malicious payment instrument as the relay equipment. The malicious payment
terminal would have to be presented to a legitimate user (smartphone owner) and the
malicious payment instrument to a distant (e.g. located at a different city) legitimate
payment terminal operator. The legitimate payment terminal will initiate a transaction
when the malicious payment instrument appears in its vicinity (<3cm distance in
the case of an EMV payment [51]). The malicious payment instrument would then
have to passively relay the first Application Protocol Data Unit (APDU) (i.e. the
communication unit between a card and a reader) to the malicious payment terminal,
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which is co-located with the legitimate payment instrument at a distant location
(i.e. >3cm distance). The APDU would then be passed to the legitimate payment
instrument through NFC, leading to the initiation of a transaction between the two
legitimate devices. The relaying process should be repeated by both malicious devices
for all the APDUs that are exchanged during the course of the transaction. Thus,
the purpose of the relay equipment used by the attacker is to passively relay the
exchanged communication messages between the legitimate devices, without being
detected. For the attack to be successful, all data communicated during a transaction
should be relayed between the malicious devices, as shown in Figure 1.1. If the attack
is successful, the attacker may have paid for goods, using the legitimate user’s account.
This type of relay attack is known as the Mafia Fraud Attack.

Three types of relay attacks are commonly discussed in the literature [36]:

1. Mafia Fraud Attack

2. Distance Fraud Attack

3. Terrorist Fraud Attack

In all three types, a transaction is considered to be performed between a prover P,
and a verifierV. In a payment transaction, the prover would be the device used for
the payment (e.g. a smart card), and the verifier the Point Of Sale (POS).

In the case of the Mafia Fraud Attack, both parties involved in a transaction are
considered to be honest. During this attack, an attacker relays the communication
between the two parties, without their consent. For example, masqueraded relay
equipment may be used by the attacker in order to relay the messages (as described
above). This type of relay attack was introduced by Desmedt et al. [44] and is based
on the Chess Grandmaster problem [32]. Figure 2.3 demonstrates this attack. VA
denotes the malicious verifier and PA the malicious prover.

P VA PA V
Proximity Relay Proximity

Figure 2.3: Mafia Fraud Attack

In the case of the Distance Fraud Attack (also known as ‘Wormhole Attack’ in
the field of sensor networks [83]), the prover is at the same time the attacker. The
goal is for the malicious prover to convince the verifier that the distance between the
two parties is shorter than in reality [20]. This can be achieved, for example, by the
prover transmitting the communication messages ahead of time. Figure 2.4 depicts
this attack.

Finally, in the case of the Terrorist Fraud Attack [43], the prover is again also the
attacker, however the communication is purposely relayed to a remote malicious
prover, which is in proximity to the verifier. Figure 2.5 depicts this type of relay attack.

Another type of relay attack that has been demonstrated (see [131]) assumes a
trusted verifier, but the prover is unknowingly untrusted. For example, an attacker
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P PA V

Figure 2.4: Distance Fraud Attack

P PA PA V
Relay Proximity

Figure 2.5: Terrorist Fraud Attack

may have compromised the prover device. This attack contains elements of both the
Mafia Fraud Attack and the Terrorist Fraud Attack and can be considered to be a
separate type. This type of attack is discussed in greater detail in Section 2.5.1 (under
‘Threats to the User’).

Relay attacks on Radio-Frequency Identification (RFID) andNFC have beenwidely
studied and demonstrated in the literature [54, 55, 72, 97, 99, 120, 130–132, 159, 161].
In [161] for example, the authors demonstrate that NFC-enabled Android devices
can be used as off-the-shelf relay devices, without even requiring firmware and/or
hardware modifications.

Since the main focus of this thesis is on contactless transactions like contactless
payments, in the following chapters the prover and verifier will be referred to as
Transaction Instrument (e.g. the contactless smart card or smartphone that is used
for the payment) and Transaction Terminal (e.g. the POS), respectively. In the course
of this thesis, the term ‘relay attack’ mainly refers to the Mafia Fraud Attack, unless
stated otherwise. The attacker is considered to be of opportunistic nature, with access
to off-the-shelf equipment and components, and is attempting to successfully relay
the communication between two transaction devices without being detected. Even
though some of the proposed solutions might be able to protect against other types of
relay attacks, this is not the main scope of this thesis (except in Chapter 8).

2.4 Relay Attack Detection

Relay attack detection and prevention requires information regarding the coexistence
of the devices involved in the transaction. In the field of smart cards, distance
bounding protocols have been proposed as an effective countermeasure. However,
distance bounding protocols that are available for smart cards may not work in the
field of smartphones. Several alternative methods have been proposed regarding
relay attack prevention in the field of smartphones. Many of these methods have
demonstrated that using the environmental (ambient) sensors that are present in
modern smartphones can provide sufficient information regarding the co-existence of
the devices.
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2.4.1 Smart Card Distance Bounding

The first distance bounding protocol was proposed by Brands and Chaum in 1993, and
was based on timing the response of a challenge bit sent between the communicating
parties (timed challenge-response) [20]. In their proposal, the verifier and the prover
first generate a random bit-string each. The verifier transmits a random bit to the
prover and the prover responds with the corresponding random bit that it has
generated. The time required for the round-trip (time required to send the random
bit and receive the response from the prover) is measured by the verifier. Moreover,
both the verifier and the prover store the received bits. After the completion of the
distance bounding protocol, the prover transmits a Message Authentication Code
(MAC) or a digital signature of the received and transmitted bit-strings to the verifier.
The verifier can detect whether the two communicating devices are within some
acceptable distance by checking whether the correct response bits were received
within some acceptable time-frame. This technique focuses on Mafia Fraud Attacks,
and both the verifier and the prover are considered to be trusted.

The authors also provide in the same work a variation of their protocol for
scenarios where the verifier does not trust the prover, therefore they also focus on
Distance Fraud Attacks. In their second protocol, the prover first transmits the hash
of a random bit-string to the verifier and replies to the verifier’s challenge with bits
that are produced by XOR-ing each challenge bit with the corresponding bit of the
prover’s bit-string. Upon completion of the challenge-response process, the prover
transmits the bit-string to the verifier. An untrusted prover will not be able to transmit
a correct response bit to the verifier before a challenge bit has been received with
higher probability than guessing it. With this work, the authors set the theoretical
basis for distance bounding protocols.

In 2005, Hancke and Kuhn proposed the first distance bounding protocol specific
for RFID devices, based on ultra-wideband pulse communication [57]. As in the work
of Brands and Chaum, timing of the round-trip of bits is used in this work as well.
Their protocol assumes that the two communicating devices (verifier and prover) are
trusted, therefore it focuses on Mafia Fraud Attacks.

In [70], Hancke used improvised wideband pulses to achieve distance bounding
for RFID. A prototype implementation was presented and the effectiveness was
measured to be 1m against Mafia Fraud Attacks and 11m against Distance Fraud
Attacks.

In [126], the authors proposed an RFID distance bounding system that allows the
implementation of distance bounding protocols. Practical implementation demon-
strated effectiveness against all three types of relay attacks (Terrorist Fraud Attack up
to 4.5m, and Mafia and Distance Fraud Attacks up to 0.41m).

In the field of smartphones, distance bounding might not be an effective counter-
measure. In [59], the authors implemented distance bounding protocols on Android
smartphones. However, they noticed irregularities in the protocol execution time (the
authors report this observation in [101]). The exact causes could not be identified by
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them, but it is reported that, for example, irregularities existed between when a device
had just booted and when it was left running for some time. The authors state that
these irregularities could possibly exist due to background processes that are using
the device’s resources. A similar observation was made by Umar et al. [156], who
demonstrated that the round-trip timing of the same APDU, transmitted multiple
times using NFC, is not constant on smartphones. The authors also noticed that in
the case of smart cards the round-trip time deviation is much shorter. This could also
be related to the multi-process nature of smartphones, since the processing power is
not evenly distributed. Moreover, different devices use different processors, versions
of the operating system, and may contain a different set of installed applications.
Depending on these attributes, the round-trip time of a challenge-response in a
distance bounding protocol may vary not only among different devices, but also
among the same device model, based on the amount of installed applications and
the resources required by those. Also, it may vary on a single device, based on
the amount of background processes and the tasks that these are performing. For
these reasons, distance bounding protocols may not be applicable in the field of
smartphones. Sensing the natural ambient environment in order to gather proximity
evidence information is an alternative approach that has been proposed by a number
of researchers.

2.4.2 Natural Ambient Environment

Using this approach (the natural ambient environment) to prove the co-existence of
two transaction devices, first, both transaction devices have to measure some element
of the natural ambient environment that is surrounding them, using some ambient
sensor (e.g. the temperature sensor) over some period. The captured values are then
compared for similarity either by a TTP or by one of the transaction devices. If the
similarity between the two measurements is within some certain acceptable threshold,
the devices are considered to be within close proximity.

An ambient sensor measures a particular environmental property of its immediate
surroundings, such as temperature, light, humidity, and sound; a wealth of such
sensors are deployed in modern smartphones and tablets. Figure 2.6 illustrates a
generic approach for deploying ambient sensing as a proximity detection mechanism
for mobile payments (between a smartphone and a payment terminal), with the
following variations:

1. Independent Reporting. Both the smartphone and payment terminal collect
sensor measurements independently of each other and transmit these to a
trusted authority (depicted as solid lines in Figure 2.6). The authority compares
the sensor measurements, based on some predefined comparison algorithm
with set margins of error (threshold), and decides whether the two devices are
within proximity to each another.
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Figure 2.6: Generic Deployment of Mobile Sensing for Proximity
Detection

2. Payment TerminalDependent Reporting. This set-up involves the smartphone
encrypting the sensor measurements with a shared key between smartphone
and trusted authority, and transmitting the encrypted message to the payment
terminal (shown as double-dot-dash lines in Figure 2.6). The payment terminal
sends its own measurements and the smartphone’s to the trusted authority for
comparison.

3. Payment Terminal (Localised) Evaluation. The smartphone transmits its mea-
surement to the payment terminal, which compares it with its own measure-
ments locally; the payment terminal then decides whether the smartphone is in
proximity.

It is worth noting that using the natural ambient environment to detect relay
attacks does not guarantee the same level of security as distance bounding protocols.
The aim of using the natural ambient environment is mainly to protect against
the off-the-shelf, opportunistic attacker. This approach, however, mostly concerns
transactions performed using mobile devices, on which distance bounding protocols
might not be applicable. Moreover, mobile devices are vulnerable to a multitude of
other attacks [164], therefore their use in security critical scenarios should be avoided.

Related Works

Bellow are identified and summarised key pieces of related work that have suggested
using natural ambient sensing as a PRAD mechanism.

Ma et al. [106] explored the use of Global Positioning System (GPS) location data
for determining the proximity of two mobile phones. A ten-second recording window
was used in which GPS data was collected every second, which was subsequently
compared across various devices. The work reported a high success rate in identifying
co-located devices.
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Halevi et al. [68] demonstrated the use of ambient sound and light for proximity
detection. The authors analysed sensormeasurements—collected for 2 and 30 seconds
duration for light and audio respectively— using a range of similarity comparison
metrics. Extensive experiments were performed in different physical locations with a
high success rate in detecting proximate devices.

Varshavsky et al. [158] used the shared radio environment of devices —the
presence of WiFi access points and associated signal strengths— as a proximity
detection mechanism for secure device pairing. The approach was considered to
produce low error rates and, while it did not focus on contactless mobile transactions,
their techniques and methodologies may still be applicable.

Urien et al. [157] suggested using ambient temperature with an elliptic curve-based
RFID/NFC authentication protocol to determine whether two devices are co-located
before creating a secure channel. The proposal combines the timing channels in
RFID, used traditionally in distance bounding protocols, in conjunction with ambient
temperature. The work, however, was not implemented and has no experimental data
to evaluate its effectiveness.

Mehrnezhad et al. [116] proposed the use of an accelerometer to provide proximity
assurances of a mobile device with a payment terminal. The scheme requires the user
to tap the terminal twice in succession, before comparing the sensor data from the
device and the terminal for similarity. It is difficult to deduce the total time it took
to complete a transaction entirely, but the authors provide a recording time range of
0.6–1.5 seconds.

Truong et al. [152] evaluated four different sensors using a recording duration of
10–120 seconds. While the results were positive, the long sampling duration renders
it unsuitable for various smartphone-based contactless transactions, like contactless
payments and transportation ticketing-related transactions.

Additional work by Jin et al. [89] showed that a smartphone’s magnetometer can
be used to establish proximity assurances. This approach requires more than 500ms;
the authors do not claim that magnetometers can provide an effective relay attack
detection mechanism.

Shrestha et al. [139] used a number of ambient sensorswithin specialised hardware,
known as Sensordrone, for proximity detection. The work was not evaluated using
the ambient sensors available on commodity handsets, did not provide the sampling
duration, and states that data from each sensor was collected for a few seconds.

As mentioned in Chapter 1, industry-imposed requirements apply on certain
applications, likeEMVpayments and transportation ticketing, that require transactions
to complete within a 300–500ms time-frame. Table 2.1 summarises past work, using
sensor sampling durations to determine their suitability for NFC-based mobile phone
transactions in banking and transportation. ‘Unlikely’proposals have sample durations
so large that they may not be adequate for mobile-based services that substitute
contactless cards, while those with reasonably short durations are labelled ‘More
Likely’. However, even schemes denoted as ‘More Likely’ may not be suitable, as
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Table 2.1: Related Work in Sensor-based PRADMechanisms.

Paper Sensor(s) Used Sample Duration Contactless Suitability

Ma et al. [106] GPS 10 seconds Unlikely
Halevi et al. [68] Audio 30 seconds Unlikely

Light 2 seconds More Likely
Varshavsky et al. [158] WiFi (Radio Waves) 1 second More Likely
Urien et al. [157] Temperature N/A –
Mehrnezhad et al. [116] Accelerometer 0.6 to 1.5 seconds More Likely
Truong et al. [152] GPS Raw Data 120 seconds Unlikely

WiFi 30 seconds Unlikely
Ambient Audio 10 seconds Unlikely
Bluetooth 12 seconds Unlikely

Jin et al. [89] Magnetometer 4.5 seconds More Likely
Shrestha et al. [139] Temperature (T) Few seconds Unlikely

Precision Gas (G) Few seconds Unlikely
Humidity (H) Few seconds Unlikely
Altitude (A) Few seconds Unlikely
HA Few seconds Unlikely
HGA Few seconds Unlikely
THGA Few seconds Unlikely

no proposal is evaluated under the time constraints stipulated by the banking and
transport sectors. In these sectors, the goal is to serve people as quickly as possible to
maximise customer throughput; time is critical in determining whether a transaction
is successful and, indeed, permitted. Here, an optimal transaction duration is up to
500ms rather than seconds.

Ambient sensing has also been used in various user-device authentication, key
generation and secure channel schemes [94, 136]. These applications typicallymeasure
the environment for longer periods of time (>1 second) and, generally speaking, their
primary goal is not proximity detection of a device with a terminal. As such, these
are omitted from the discussion.

In Chapter 3, the effectiveness of using the natural ambient environment as a PRAD
mechanism in short transactions of up to 500ms is investigated. Ambient sensors
widely available on Android devices were examined. Using threshold and machine
learning-based analyses, it was concluded that the proximity evidence provided by
data collected in a 500ms time-frame might not be sufficient for use with applications
like EMV payments. Similarly, Haken et al. [66] demonstrated that using sensors
available on the Apple iOS platform, insufficient evidence regarding the co-existence
of two devices can be collected in 500ms. Finally, in [138] and [137], Shrestha et al.,
raised concern that many of the proposed solutions might be insecure in the presence
of an attacker with context manipulating capabilities.

Relay attacks, however, do not always assume that the communication parties
are trusted. A relay attack, for example, has been demonstrated, which is performed
through a malicious application installed on a user’s device [131]. In this occasion,
assuming that a user is genuine and has no interest in performing a relay attack
on their device, the challenge for the attacker is to compromise that user’s device.
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A popular method that attackers may use to distribute malicious functionality is
through repackaging genuine applications. This topic is discussed in the following
section.

2.5 Application Repackaging

Repackaged applications pose a serious threat to the Android ecosystem and can be
used in order to perform various types of attacks, including a variation of relay attacks
(discussed in previous sections). In the past, they have been found to be responsible
for approximately 86% of the Android malware distribution [171].

In the context of this thesis, repackaged applications are defined as applications
that impersonate a genuine application by slight modifications/variations to the
genuine application’s artwork and/or changes to its source code in a way that the
repackaged application looks and/or feels like the genuine application. The main
objective of a repackaged application is to mimic a genuine application so it can
target novice users that gravitate towards the popularity/functionality of the genuine
application. In this definition, applications that infringe the potential intellectual
property of the original application and present themselves as unique/different
applications, are not included.

2.5.1 Threats to the Android Ecosystem

Major threats posed by application repackaging can be separated into those concerning
the application developer and those concerning the user.

Threats to the Developer

Developers are given the opportunity to gain financial profit through their applications.
Repackaged applications pose a threat to them in various ways.

• Unauthorised redistribution: An attacker can redistribute an application, signed
using their own private key, and possibly sell it in an application store, without
the original developer’s permission.

• Advertisements: Potential revenue from an application might be redirected to the
attacker, as they might have altered the developer’s account with their account,
thus receiving the advertisement revenue. More specifically, Android applica-
tions can include advertisements that are linked to a user’s account, typically the
developer’s. The linked account is credited based on the advertisement clicks
or impressions. An attacker can alter the advertisement package and replace
it with theirs. In this way, the profit from users who install the repackaged
application will be going to the attacker instead of the original developer [61].
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• Cracking (Piracy): Application repackaging might distribute pirated copies of
a genuine paid application, by bypassing any implemented verification and
validation mechanisms.

Threats to the User

Repackaged applications that aim to harm the user may achieve their goal in different
ways.

• Trojan horse: A repackaged application could act as a Trojan horse. Malicious
code can be implanted in the original application, capable of intruding the
platform’s security and/or the user’s privacy. For example, repackaging an
application that requires permissions to access the Internet and the device’s
storage can allow an attacker to steal the user’s images.

• Denial of upgrade: An Android application should be signed using the same
private key as the version that is already installed in order to get updated. A
repackaged application will not be updated by a genuine application’s update,
since the signatures will not match. Therefore, the user will not be able to
upgrade once a repackaged application has been installed. Not being able
to update an application can pose a threat. An attacker, for example, can
take advantage of a known vulnerability in an application by re-signing and
distributing the unpatched version of the application. This way, the user will
be unable to upgrade to the newer, patched version, without uninstalling the
already installed application first.

• Variation of Mafia/Terrorist Fraud Attack: An untrusted user (prover) is usually
described in the definition of a Terrorist Fraud Attack, who is cooperating
with the attacker either willingly, or after being threatened. In the case of a
Mafia Fraud Attack, the attacker typically uses some relay equipment, while
the user (prover) is considered to be trusted. In the field of smartphones, an
attack is also applicable that combines elements from both, in which the user
is considered to be legitimate but the device has been compromised by the
attacker. While the architecture of the attack, as well as the attacker’s access to
the user’s resources, remain the same as in a traditional Terrorist Fraud Attack,
the user is unknowingly cooperating. Amalicious application is used in order to
retrieve the relevant information from the user’s device. Such an attack has been
demonstrated in [131]. Repackaged applications can be used for the distribution
of such applications.

2.5.2 Related works

AndroGuardwas proposed by Desnos and Gueguen [45]. Their proposal is based on
Control FlowGraphs, used tomeasure the similarity between decompiled applications.
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Crussell et al. proposed DNADroid that uses Program Dependency Graphs to
detect similar applications [41]. The authors claim that their system produces a low
false positive rate. However, the authors state that advanced obfuscation techniques
can go undetected. To increase the system’s performance, they only compare the
application in question against applications with similar names.

Zhou et al. used Fuzzy Hashing for repackaging detection [170]. This method
is based on generating a hash of the application by breaking it down into small
chunks and combining their hashes. They also remove string operands that can
easily be altered from the instructions prior to hashing, in order to prevent common
obfuscation techniques. They have created an application called DroidMOSS. They
state that although their system is very robust, detection may fail if big chunks of
code have been added to the original application.

Another solution, proposed byHanna et al., introduces the idea of FeatureHashing
for the detection of similar applications [75]. The main goal of this approach is to
detect pirated applications and applications that use already known malicious code.
For this purpose, a tool called Juxtapp was created, that according to the authors is
resilient to some amount of obfuscation.

Hu et al. [82], proposed MIGDroid, which makes use of method invocation
graph-based static analysis as a means for repackaging detection. The aim of their
proposals is to detect repackaged applications injected with malware, complementing
prior solutions. High effectiveness of the solution was reported, with 1,260 malware-
contaminated repackaged applications being detected.

Zhauniarovich et al. [167] proposed detection of repackaged applications based
on the contents of the .apk file. Their method showed results similar to those of
techniques that involve code analysis. SHA1 is used for the comparison of all the
files between different applications. A repackaged application with slight changes on
many files might go undetected. The authors propose a combination of their method
with code analysis in order to overcome this issue.

In [48], the authors statistically extracted data-flow features based on API calls
triggered by user interactions with the application’s interface. According to the
authors, very high detection rate was achieved, comparative to the state-of-the-art at
the time of publication. Even though the primary goal of this technique is malware
detection rather than repackaging detection, the authors reported some effectiveness
in detecting repackaged applications as well.

Other methods have also been developed that do not have as primary goal
repackaging detection, but may detect it in many occasions [24, 91, 160, 168]. A
framework capable of measuring the obfuscation resilience of algorithms used in
repackaging detection programswas also proposed in 2013 byHuang et al. [84]. Other
researchers have also proposed methods for detection of repackaged applications as
well, or have investigated the subject [40, 135, 166].

In [134], the authors used the Kullback-Leibler Divergence metric to detect
repackaged applications. Based on smali opcode [65] (i.e. disassembled Android Java
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code) that can be common on both genuine and repackaged applications, a population
distribution is built for genuine and potentially repackaged applications. The authors
report high detectability of repackaged applications.

Aldini et al. [3] proposedPICARD,which is a collaborative approach to repackaging
detection, by generating contracts based on the analysis of the behaviour of an
application, at runtime. Certain application behaviours are not only categorised
in terms of being known or unknown, but also in their likeliness to occur. Their
approach is suggested to be complementary to static analysis tools.

In [147], the authors base their detection technique on code heterogeneity analysis.
Machine learning is used to classify code regions based on their behavioural features.
The authors report a very low false negative rate and a low false positive rate.

Due to the computational complexity of many methods that have been proposed,
these methods are only meaningful on an application store level. For this reason,
Zhou et al. [169] proposed client side initiated repackaging detection, with AppInk.
Their method uses application watermarking in order to confirm the authenticity of
an application. In order to achieve that, a few additional steps have to be taken by the
developer in order to embed the watermark.

Sun et al. [145] proposed detection of visually similar Android applications by
comparing Android layout files of genuine and potentially repackaged applications.
Two approaches were proposed, a server-based and a client-based. The server-based
approach calculates the distance between the tree of the layout files of genuine
and potentially repackaged applications. The client-based approach is based on
generation of hashes of the layout tree. The authors state that it is not as accurate
as the server-based approach, but its aim is to provide protection for users who
do not rely on application stores for installing applications on their devices. High
detectability is reported, however the authors do not take into consideration layouts
that are generated dynamically, for example through Java code.

In order to tackle this issue, Malisa et al. [110] used Graphical User Interface
(GUI) crawling techniques to capture screenshots of applications, which were then
compared for similarity. High detectability rate of perceptually similar applications
was detected in this case as well. Their approach was later evaluated through a
large-scale field trial, and they implemented a detection system capable of estimating
the deception rate [109].

Chen et al. [26] proposed MassVet. Their technique combines repackaging and
malware detection by first looking for applications with similar user interface as the
suspected application and then looking for differences between the subject and the
visually similar applications. The effectiveness was found to be higher than popular
anti-malware software and was even capable of detecting potential zero-day malware.

In [100], the authors use text and image similarity detection techniques to detect
visually similar applications based on their names, icons, descriptions, and screenshots.
Their aim is to detect camouflaged applications, meaning applications that try to
imitate genuine applications in terms of style. The authors report high effectiveness of
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their solution, which was capable of detecting potentially camouflaged applications
on the Google Play Store.

In order to achieve both accuracy and scalability, Chen et al. [25] proposed the use
of the centroid of dependency graphs to calculate the similarity between fragments
of code of two applications. The authors report high effectiveness in providing both
accuracy and scalability.

2.6 Summary

This chapter’s main goal is to introduce the reader to concepts and technologies
that are discussed in forthcoming chapters. Initially, an overview of the Android
OS is provided, with focus on Android HCE and Android applications. The most
commonly discussed types of relay attacks are then listed and described. Relay attack
detection and prevention methods in the fields of smart cards and smartphones are
then discussed. Finally, Android application repackaging is explained and the related
literature is given.
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Part II

Natural Ambient
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Detection
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Chapter 3

Natural Ambient Sensing for
Detecting NFC Relay Attacks

3.1 Introduction

In the previous chapter it was mentioned that NFC has opened smartphone platforms
to a range of application domains, particularly those based previously on smart cards.
Through card emulation, users may use their smartphones in a range of payment,
transport and access control applications — leading to the deployment of services
such as Google Pay and Apple Pay. The Android platform also provides HCE, which
enables any application to take advantage of card emulation mode via NFC. Deloitte
estimated that 5% of the 600–650 million NFC-enabled mobile phones were used at
least once a month to make a contactless payment globally in 2015 [31]. In the same
year, 12.7% of smartphone users in the USA were actively using contactless mobile
payments according to Statista, while the value of such transactions is projected to
grow to $114 billion (USD) by the end of 2018 [144]. Similar trends are being observed
in other domains where mobiles are used to deliver smart card-type services, like
transportation and access control [1].

However, contactless transactions are vulnerable to relay attacks. As discussed in
the previous chapter, such attacks on contactless smart cards have been extensively
studied in related literature [47, 53, 72, 97] and were quickly shown to be applicable
to NFC-enabled smartphones [54, 55, 159]. In a range of past proposals, the sensors
found on smartphones have been suggested as a strong countermeasure against relay
attacks [68, 106, 139, 152, 157, 158].

In this chapter, an empirical study that evaluates smartphone sensors as a PRAD
mechanism under the practical time constraints stipulated by EMV (500ms time-frame)
is performed in two stages. Initially, the focus is on proximity detection, by using
data from the natural ambient environment. Legitimate data was collected from
two devices which were in proximity (<3cm) with each other. Both devices were
recording data from some predefined sensor over a period of 500ms. The goal of this
part of the study was to attempt, based on the collected data, to establish proximity
evidence, so that the co-location of the devices is implied.
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During the second stage of the study, the focus was on assessing the effectiveness
of the natural ambient environment for relay attack detection. Legitimate data was
collected from two devices that were in close proximity (<3cm) to each other, while
two devices, placed 1.5m apart, assisted in the collection of illegitimate data.

In both parts, two-fold evaluation was conducted, firstly, based on similarity
threshold analysis and, secondly, on machine learning. It is neither evaluated nor
claimed that similar results will be produced in other deployment scenarios where
distance bounding and transaction time limits are not as stringent. It should be
considered that the transaction time limit and operating distance are not set arbitrarily,
but rather in compliance with industry-wide requirements, as stipulated by EMV and
transport specification bodies.

3.2 Approaches and Evaluation Metrics

In previous work (e.g. [68, 116, 139, 152, 158]), two approaches have been used
predominately for sensing-based PRAD mechanisms:

• Threshold-based Similarity: the use of time and frequency domain similarity
metrics, such as Mean Absolute Error (MAE), Pearson’s Correlation Coefficient,
and Coherence. A single threshold is generated, that aims to separate all
legitimate transactions from illegitimate ones using a particular similarity
metric. The transaction is accepted if the metric result falls within this pre-set
threshold of the maximum allowed dissimilarity.

• Machine Learning: the use of well-known classification algorithms, such as Naïve
Bayes, Support Vector Machines (SVMs), and Random Forests. The classifier is
trained on a set of feature vectors with corresponding binary labels (legitimate
or relayed transaction), which are collected beforehand. The trained model is
used to classify subsequent transaction data streams as legitimate or relayed.

Standard binary classification evaluation metrics have been applied to mea-
sure the effectiveness of a particular scheme, namely classification accuracy [68],
f-scores2 [139, 152] and EER [116]. F-scores and EERs involve the computation of
false positives/acceptances (the number of relayed transactions accepted erroneously)
and false negatives/rejections (the number of legal transactions rejected). F-scores
account for precision, the correct positive results divided by the number of all positive
results, and recall, the number of correct positive results as proportion of the number
of positive results that should have been identified (see Eq. 3.1). The EER —used
extensively in biometrics, e.g. fingerprint recognition [111]— is found by calculating
the False Acceptance Rate (FAR) and False Rejection Rate (FRR), shown in Eq. 3.2, over
a range of thresholds, and finding the rate at which FAR � FRR. Alternatively, some
authors have opted to present the FAR and FRR results alone [158]. Finally, accuracy

2Also known as the F1-score or F-measure.
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represents the correct identification of positive and negative transactions in the test
set (Eq. 3.3), but does not clearly illustrate the number of false positives and negatives.

F-scores andaccuracyhavebeenused toprimarily evaluatemachine learning-based
relay attack detection, e.g. [139, 152], while EERs have been employed for threshold-
based similarity approaches [116] to find an acceptance threshold that, broadly
speaking, balances usability (false rejection rate) with security (false acceptance rate).
The EER is used as a common evaluation metric for assessing the performance of
machine learning and threshold-based approaches across a variety of similarity
metrics.

Fscore �
2TP

2TP + FP + FN
(3.1)

FAR �
FP

FP + TN
FRR �

FN
FN + TP

(3.2)

Accurac y �
TP + TN

P + N
(3.3)

3.3 Effectiveness for Proximity Detection

In the first stage of the study, the effectiveness of ambient sensors to determinewhether
two devices are in proximity to one another (irrespective of whether a relay attack is
in action) was evaluated. A field trial was conducted in which sensor data from 1,000
transactions per sensor was collected from 252 users at four different locations on
the university campus. Two devices were used for the data collection: a Transaction
Terminal (TT), and a Transaction Instrument (TI). Data was collected for 500ms upon
the initiation of the NFC-based transaction (i.e. when the two devices were brought
within proximity to each other), and stored locally (in an SQLite database) for later
evaluation (Figure 3.1). More detailed information is provided in the following
sections.

The collected data was subjected to the two analyses discussed in Section 3.2
—threshold-based similarity and machine learning-based— to determine whether
data from legitimately co-located devices can be distinguished from non-proximate
pairs.

3.3.1 Test-bed Architecture

To empirically evaluate each sensor, an experimentation test-bed was developed.
Two applications were implemented and installed on a pair of Android devices:
one emulating the transaction terminal TT and the other acting as the transaction
instrument TI (a smartphone). When the devices come sufficiently close, an NFC
connection is established and both begin recording data using a specified sensor.
After collecting measurements for 500ms, each device stores the recorded data in a
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TT TI

1) sensor|transaction ID
recordSensor() recordSensor()

validateReceivedData()

2) sensor|transaction ID
saveMeasurement()validateReceivedData()

saveMeasurement()

Figure 3.1: Measurement Recording Overview (Proximity)

local database. During field trials, one mobile phone was fixed in a position, as a
terminal, and the second mobile phone was free of any restriction.

Figure 3.1 shows this in more detail. Bringing the two devices together (< 3cm)
causes the TT application to send the first message to TI over NFC, stating which
sensor it uses in the transaction and a unique transaction ID. After this message is
received by TI, both applications initiate the process to record a sensor for 500ms.

After collecting the measurements, TI validates the data it received from the
terminal —whether the transaction ID and chosen sensor match that of the terminal
(shown inmessage one in Figure 3.1)— and returns an acceptance or rejectionmessage
accordingly. This validation process ensures that both devices were recording
data from the same sensor. Finally, TT performs the same process, ensuring that
both devices used the same transaction ID and recorded from the same sensor.
The measurement is rejected in the event that devices recorded data for differing
transaction IDs or sensors. Upon validation, the devices save the measurements
in their local databases. The database is designed to hold measurements for each
transaction, which are used in the off-line analysis of each sensor.

Data Collection Framework

Each sensor was tested in four different locations around the university —the lab,
cafeteria, dining hall and library— to account for the influence of different physical
locations on sensor measurements. A field trial was conducted in each location with
252 participants that carried out a varying number of transactions. Each participant
used TI andwas given free reignwith how they interactedwith TT for each transaction,
i.e. they could tap it once, hold it extremely close without touching, or tap and hold it
to the device. This is to closely replicate the conditions in which they would conduct
a regular contactless transaction. The data collection at each of the locations was
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collected over an eight hours period (0900–1700hours) with irregular gaps between
transactions over the course of four days.

Four devices were used in the experiments, forming two TT–TI pairs. The
first pair consisted of two Nexus 9 tablets, while the second pair comprised two
Android smartphones: a Nexus 5, assuming the role of the transaction terminal, and
a Samsung Galaxy S5 mini (SGS5 mini), which acted as the transaction instrument.
The availability of the sensors on each device is listed in Table 3.1.

Table 3.1: Sensor Availability

Sensors Nexus 9 (1) Nexus 9 (2) Nexus 5 SGS5 mini

TI–TT Pair: Nexus 9 (1)→ Nexus 9 (2)
Accelerometer 3 3 3 3

Bluetooth ∗ ∗ ∗ ∗
GRV† 3 3 ∗ 3

GPS ∗ ∗ ∗ ∗
Gyroscope 3 3 3 3

Magnetic Field 3 3 3 3

Network Location 3 3 3 3

Pressure 3 3 3 7

Rotation Vector ∗ ∗ ∗ ∗
Sound 3 3 3 ∗
WiFi ∗ ∗ ∗ ∗

TI–TT Pair: SGS5 mini→ Nexus 5
Gravity ◦ ◦ 3 3

Light ∗ ∗ 3 3

Linear Acceleration ◦ ◦ 3 3

Proximity 7 7 3 3

Unsupported
Relative Humidity ‡ ‡ ‡ ‡
Ambient Temperature ‡ ‡ ‡ ‡

3: Working properly. 7: Not present on device. ∗: Technical limitations.
‡: Evaluated using Samsung Galaxy S4. ◦: Returned only zero-values.
† Geomagnetic Rotation Vector.

Initially, 100 transactions were performed for each sensor, in order to assess the
quality of the sensor data. Some sensors, such as Bluetooth, GPS, Rotation Vector,
and WiFi —although present on the devices— returned no or very few data points
within the 500ms time-frame (≥99% sensor failure). Two sensors, for humidity
and temperature, are relatively uncommon among Android devices and none of
the tested devices contained them. For completeness, two Samsung Galaxy S4
(SGS4) smartphones were used, containing these sensors, to include in the evaluation.
However, for these sensors, measurements were recorded for less than 6% of the
transactions, in the 500ms time-frame. Consequently, having failed to record any
data points in such a large number of cases, these sensors were omitted from
subsequent analysis. A minimum of 1,000 transactions were recorded for each sensor
— comprising measurement pairs, for which both TT and TI have valid sensor data.
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Listing 3.1: Sample XML Record

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF-8’’?>
2 <measurements>
3 ....
4 <measurement>
5 <id>6</id>
6 <timestamp>60</timestamp>
7 <data0>-0.32935655</data0>
8 <data1>6.2396774</data1>
9 <data2>-7.558329</data2>
10 </measurement>
11 ....
12 </measurements>

The Android OS returns data captured by a sensor in time intervals set by
the application. To prevent unnecessary power consumption, however, the OS
returns sensor values to the application only when the values have changed from
the past measurement. Note that the sound sensor (microphone) captures data in
a continuous, uninterrupted stream; in this instance, the applications converted the
recorded amplitudes into sound pressure levels (in decibels) before storing the values
in their respective databases. For Bluetooth, the OS returns data every time a new
Bluetooth device is discovered nearby; with WiFi, this is after the device has scanned
and detected the presence of nearby access points. Details regarding each of the
sensors is available in Appendix A [8].

The recorded sensor measurements were stored in XML form in each database.
A new child element was created, containing the sequence ID of the measurement,
the timestamp (initialised to zero at the start of the transaction), along with the data
for each returned measurement. A sample XML record can be found in Listing 3.1.
The sequence ID of each measurement, the date and time the transaction occurred,
the location in which it was captured, and the transaction ID were also stored in the
database.

The transaction ID is a random 7-byte string, generated by the terminal, and is used
to link themeasurements of each device, in order to produce a TT–TI pair. Occasionally,
the NFC connection was disrupted, primarily when the devices were moved apart
before the transaction was completed. To address this, the transaction ID was used
in conjunction with the sensor type to detect and exclude these measurements prior
to analysis. After completing the field trials, the databases were extracted from the
devices via USB and transferred to the computer running the analysis software.

3.3.2 Analysis Approach

The analysis approach that was followed is described in this section. As already
mentioned, both threshold- and machine learning-based analyses were performed.
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Threshold-based Analysis

Initially, it was ensured that data with the same transaction ID and sensor used are
regarded. Transactions that did not exist on both devices (due to failure of one of the
transaction devices to validate the {ID |sensor} tuple) were discarded. This occurred
in some occasions, as already explained, for example when a user was pulling the
devices before the transaction could be completed. In this occasion, device TI could
not send message 2 (see Figure 3.1) to device TT, leading the former to not storing the
transaction data, due to an incomplete transaction fault. To compare (TT i , TI i), the
similarity of, or distance between the two was measured. For each sensor, the EER
and associated threshold, t, were computed using six time- and frequency-domain
similaritymeasures, including those used in previouswork. These are listed forthwith.
Each metric was applied directly onto the sensor data collected during the field trials.

• Time domain metrics:

– Mean Absolute Error (MAE), Eq. 3.4

– Pearson’s correlation coefficient [116], Eq. 3.5

– Maximum cross-correlation [68, 152], Eq. 3.6

– Euclidean distance [152], Eq. 3.7

• Frequency domain: coherence [116], Eq. 3.8.

• Both domains: time-frequency distance [68, 152], Eq. 3.9.

MAE(A, B) � 1
N

N∑
i�1
|Ai − Bi | (3.4)

corr(A, B) �
∑N

i�1((Ai − µA)(Bi − µB))√∑N
i�1 (Ai − µA)2

∑N
i�1 (Bi − µB)2

(3.5)

Where µA represents the arithmetic mean of A.

Mcorr(A, B) � max(cross_correlation(A, B)) (3.6)

d(A, B) �

√√√ N∑
i�1
(Bi − Ai)2 (3.7)

CAB( f ) �
|GAB( f )|2

GAA( f ) · GBB( f )
FAB �

∑
f

CAB( f ) (3.8)
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Where GAA is the auto-spectral density of A and GAB is the cross-spectral density
of signals A and B (left). The similarity is found by the sum of the magnitudes of
coherence values at all frequencies (right).

Di f f (A, B) �
√

Dtime(A, B)2 + D f req(A, B)2 (3.9)

Where Dtime(A, B) � 1 −Mcorr(A, B) and D f req(A, B) � | |FFT(A) − FFT(B)| |, in
which | |FFT(A) − FFT(B)| | is the Euclidean norm of the FFTs of signals A and B.

Certain sensors —the accelerometer, gyroscope, magnetic field, rotation vector,
and GRV sensors— produce a vector of values comprising x, y and z components. In
these instances, the vector magnitude (Eq. 3.10) was used in order to produce a single,
combined value prior to the computation of the metrics.

M �

√
x2 + y2 + z2 (3.10)

The similarity metrics listed above were computed for each successful transaction.
As legitimate pairs (those collected during field trials) were considered (TT i , TI i),
while illegitimate pairs were considered (TT i , TI j). An ideal similarity metric, V ,
would produce V(TT i , TI i) < t (where t is the threshold) and V(TT i , TI j) > t for all
possible pairs. The illegitimate pairs were constructed by exhaustively matching each
TT i with every TI j measurement belonging to another transaction (i , j).

For the analysis, a Python applicationwas developed for threshold-based similarity
learning using the Numpy [162], SciPy [90], Matplotlib [85] and Pandas [115] Python
packages for metric implementations, graph plotting and CSV data processing.

Machine Learning-based Analysis

Formachine learning, theWeka [56] packagewas employed. Simple distance functions
give equal weight to each measurement obtained from the sensors. To address this,
machine learning is considered to perform the discrimination between legitimate and
illegitimate transactions more effectively, through modelling non-linear interactions
between measurements. The conducted experiments apply the same evaluation
strategy as the first method, but the threshold is based on the probability estimate
output by the learned classification model, i.e. the estimated probability that a
transaction is legitimate. Moreover, to avoid optimistic bias in the error estimate when
applying machine learning, it is necessary to perform a train-test experiment. More
specifically, the full set of transaction pairs is split into a training set and a test set.
The machine learning algorithm is applied to the training set to build a classification
model that can output class probability estimates. Once the model has been built, it is
applied to obtain probability estimates for the test set. Moreover, instead of using
a single train-test split, 10-fold cross-validation repeated 10 times is used. This is a
standard estimation technique from machine learning that generates 100 different
train-test splits based on shuffled versions of the data. The learning algorithm is run
100 times on the 100 training sets, to build 100 models, and these 100 models are
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evaluated on the corresponding test sets. Performance estimates from the 100 test
sets are averaged to obtain a final performance estimate.

Five different machine learning algorithms that induce different types of classifi-
cation models from data were used, namely, Random Forest, Naïve Bayes, Decision
Tree, Logistic Regression, and SVM. A Random Forest [21] is an ensemble classifier
comprising a large number of decision trees induced in a semi-random manner from
bootstrap samples of the original dataset. In the experiments, the default parameters
for the RandomForest classifier in the Weka software were used. It generates an
ensemble of 100 decision trees from the training data. The other machine learning
algorithms that were evaluated are (a) Simple Naïve Bayes classifier, which assumes
conditional independence of the attributes given the classification, and models the
data for each class using a Gaussian distribution with a diagonal covariance matrix,
(b) Logistic Regression, which assumes that the log-odds of the class probabilities
are linearly related to the attributes, (c) Decision Trees grown using the C4.5 decision
tree learning algorithm [125], and (d) SVMs optimised with the Sequential Minimal
Optimisation (SMO) algorithm [124]. For the SVMs, the complexity parameter C
and the width of the Radial Basis Function (RBF) kernel γ were tuned using a grid
search by optimising Area Under the Receiver Operating Characteristic (AUROC) as
estimated using internal cross-validation on the training data.

It is worth noting that additionally, as part of the analysis in Chapter 7, Weka
was benchmarked against the popular Python library scikit-learn [133]. Almost
identical results were produced by both Weka and scikit-learn, when using the
same algorithms and configuration parameters.

Pre-processing

In the rare event that the sensor values exceeded the maximum permitted transaction
time (500ms), such values were discarded prior to computing the similarity, for
both analyses. Moreover, any sensor values on device A (can be either TI or TT)
that were recorded after the maximum time recorded by device B (denoting the
communicating device of A) were also discarded. This was to prevent undefined
results when computing metrics such as MAE; calculating |Ai , j − Bi , j | is undefined
when Ai , j has no corresponding datapoint on device B, i.e. Bi , j .

Related to this was the issue of irregular sampling rates; usually, sensor values of
device A did not map to exactly the same times as those recorded on B. That is, Ai ,3

may have been collected at 15ms from the start, while Bi ,3 was recorded at 22ms. This
time discrepancy will have some impact on the results, particularly if the number of
recorded datapoints is small and the time difference is large. Hence, to mitigate this,
linear interpolation was performed on both sets of datapoints to establish a consistent
sampling rate of 10ms before computing either similarity metric.



64 Chapter 3. Natural Ambient Sensing for Detecting NFC Relay Attacks

Table 3.2: Threshold-based EERs for each sensor with Mean Absolute
Error (MAE), Pearson’s CorrelationCoefficient (PCC),MaximumCross-
Correlation (C-Corr), Euclidean Distance (ED), Coherence (Coh) and
Time-Frequency Distance (T-FD). Best result for each sensor shown in

bold.

Sensor MAE PCC C-Corr ED Coh T-FD

Accelerometer 0.434 0.458 0.501 0.498 0.542 0.501
GRV† 0.384 0.486 0.500 0.442 0.524 0.498
Gravity 0.429 0.424 0.498 0.501 0.506 0.498
Gyroscope 0.443 0.441 0.493 0.498 0.548 0.499
Light 0.488 0.496 0.545 0.502 0.471 0.546
Linear Acceleration 0.496 0.426 0.494 0.507 0.507 0.500
Magnetic Field 0.323 0.384 0.537 0.337 0.568 0.536
Pressure 0.270 0.492 0.601 0.283 0.503 0.601
Rotation Vector 0.498 0.466 0.501 0.278 0.500 0.273
Sound 0.417 0.488 0.481 0.338 0.518 0.481

Proximity excluded due to insufficient unique values.
† GRV: Geomagnetic Rotation Vector sensor.

3.3.3 Results

The results for the threshold-based and machine learning analyses are presented in
Tables 3.2 and 3.3 respectively. Note that the proximity sensor was excluded from the
analysis. On some Android devices, proximity sensors return the precise distance at
which an object is located from the sensor, whereas others return a binary value for
whether an object is close to/far from the sensor (within 5cm)3. The test-bed devices
returned only binary values. Virtually every transaction contained ‘far’ values, as
the devices were tapped back-to-back and the sensor was located on the front of

Table 3.3: Estimated EERs for Machine Learning Algorithms (obtained
by repeating stratified 10-fold cross-validation 10 times. Best result for

each sensor shown in bold.)

Sensor Random Naïve Logistic Decision Support
Forest Bayes Regression Tree Vector Machine

Accelerometer 0.626 ± 0.024 0.509 ± 0.026 0.526 ± 0.023 0.500 ± 0.0 0.498 ± 0.025
GRV 0.435 ± 0.021 0.447 ± 0.024 0.474 ± 0.031 0.500 ± 0.0 0.489 ± 0.036
Gravity 0.874 ± 0.018 0.579 ± 0.020 0.579 ± 0.024 0.500 ± 0.0 0.500 ± 0.026
Gyroscope 0.683 ± 0.027 0.499 ± 0.024 0.543 ± 0.024 0.500 ± 0.0 0.511 ± 0.025
Light 0.576 ± 0.026 0.515 ± 0.024 0.533 ± 0.025 0.500 ± 0.0 0.508 ± 0.024
Linear Acceleration 0.603 ± 0.025 0.507 ± 0.027 0.543 ± 0.023 0.500 ± 0.0 0.500 ± 0.021
Magnetic Field 0.292 ± 0.021 0.319 ± 0.020 0.322 ± 0.020 0.415 ± 0.015 0.398 ± 0.046
Pressure 0.103 ± 0.010 0.107 ± 0.010 0.287 ± 0.013 0.092 ± 0.054 0.319 ± 0.045
Proximity 0.499 ± 0.031 0.537 ± 0.069 0.476 ± 0.188 0.500 ± 0.0 0.543 ± 0.254
Rotation Vector 0.276 ± 0.046 0.563 ± 0.243 0.596 ± 0.233 0.500 ± 0.0 0.513 ± 0.243
Sound 0.288 ± 0.019 0.314 ± 0.022 0.310 ± 0.021 0.347 ± 0.136 0.411 ± 0.041

3Android Developers (Use the proximity sensor): http://developer.android.com/guide/topics
/sensors/sensors_position.html#sensors-pos-prox

http://developer.android.com/guide/topics/sensors/sensors_position.html#sensors-pos-prox
http://developer.android.com/guide/topics/sensors/sensors_position.html#sensors-pos-prox
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the device. Consequently, this returned identical values in almost all cases when
applying the similarity metrics described previously, e.g. MAE � 0, which impeded
threshold-finding. Machine learning was able to capture the rare times in which the
sensor returned ‘close’ values, like when the user covered the device with their hand
during the transaction. While the machine learning results are included, the issues
identified mean they should be treated with caution. Other technical challenges
existed elsewhere; the Rotation Vector sensor, for example, returned significant
numbers of zero values on the test-bed devices, which likely distorted the results
of the analysis, while sound was capable of capturing values for only half of the
permitted 500ms time-frame.

The results indicate that no sensor in either analysis can satisfactorily distinguish
between proximate and non-proximate device data pairs. Some sensors provide
virtually no discrimination and perform similarly to a random classifier, e.g. the
accelerometer (43.4–49.8% EER) and the linear acceleration (42.6–50.0%). Other
sensors provide better discrimination, e.g. the magnetic field (29.2–32.3%) and the
pressure (9.2–27.0%), but still fall short of acceptable performance. Even in the best
case —the pressure sensor using the Decision Tree classifier— the EER was 9.2%.
By definition of the EER, this implies that approximately 9.2% of both legitimate
and illegitimate transactions would be rejected and accepted respectively. Rejecting
almost 1-in-10 legitimate transactions in a high throughput scenario, such as mobile
ticketing in a subway system, is likely to cause user annoyance in practice. As such, it
is difficult to recommend any single sensor in the analysis as an effective proximity
detection method.

3.4 Effectiveness for Relay Attack Detection

The first evaluation focused only on proximity detection, rather than using data from
relay attacks. Further field trials were conducted in order to expand the analysis, in
which data was collected from two devices that were genuinely in proximity and a
third device that was located 1.5m/5ft away. The third device was co-located with a
fourth device, which was not collecting data. This replicated a relay attack in which
an adversary launches the attack on a nearby victim, such as in a shop queue. The
aim was to determine whether sensor data from the illegitimate device pair —the
terminal and the device 5ft away— could be distinguished from a genuine (legitimate)
pair, i.e. the terminal and the device in proximity.

3.4.1 Test-bed Framework: Theoretical Model

A test-bed environment was designed and developed, that captures both legitimate
and illegitimate pairs of sensormeasurements under real-world conditions. A genuine
pair of measurements comprises two devices that are physically in close proximity
to each other (<3cm), while an illegitimate pair is from two devices that are not
physically in close proximity, which for the course of this study was considered to
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Figure 3.2: Overview of Test-bed — Trial Data Collection Platform

be 5ft (1.5m) — emulating a reasonable distance for pickpocketing, for example, at
a busy supermarket. To achieve this, a test-bed of four devices was developed, as
per Figure 1.1, that records sensor measurements on both the legitimate terminal
and device, and an emulated victim phone at distance (all three devices measure the
ambient sensor values at approximately the same time). To avoid any discrepancies
introduced because of the dependence of ambient sensors on location and time, these
pairs were collected concurrently.

Figure 3.2 shows the data collection setup. The Transaction Terminal (TT), as in
the previous stage (Section 3.3), is a static device and is used as a reference point for
the two pairs. The Transaction Instrument (TI′) is a mobile phone in close proximity
to TT. The ambient sensor measurement pair TT–TI′ is referred to as the genuine
pair. Another mobile phone, at a 5ft (1.5m) distance from TT, is referred to as the
Transaction Instrument (TI), and is co-located with the Transaction Terminal (TT′).
The ambient sensor measurement pair TT–TI is referred to as the illegitimate pair.
The rationale for setting up the test environment in this manner is to collect ambient
sensor values from proximate and distant devices almost simultaneously. If, for
a transaction ‘Ti’, the genuine pair is uniquely identified (and accepted) then the
ambient sensor is considered effective. However, if the illegitimate pair is accepted
(whether uniquely or along with the genuine pair) then the relay attack on that ‘Ti ’ is
successful. The reasoning is that if two devices at 5ft (1.5m) apart measure ambient
sensors independently and the illegitimate pair is indistinguishable from a genuine
pair, then the attacker can successfully relay messages between these two devices
without being detected.

At a point in time a user taps TI′ to TT; at approximately this point, TI is also
tapped against TT′ and the ambient sensor measurements are initiated. Thus, at
approximately the same time, three separate ambient sensor measurements for the
three devices are collected (TT′ does not record any sensor values). Overall, for an
ambient sensor to be effective, a Trusted Authority (e.g. a TTP) responsible for the
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PRAD should be able to distinguish the genuine pair from the illegitimate pair. To
evaluate each ambient sensor’s effectiveness for proximity detection and to detect relay
attacks, the collected datawere analysed using threshold- andmachine learning-based
analyses, as in the previous stage (Section 3.3).

3.4.2 Test-bed Architecture and Data Collection Platform

As mentioned in Section 3.4.1, four devices were used in the data collection phase,
TT, TI′, TT′, and TI. During the experimental phase, the devices TT and TI′ were
placed at a distance of 5ft from the devices TT′ and TI. When TI′ was brought in close
proximity to TT, an NFC connection between the two devices would be established,
initiated by TT, indicating the beginning of a transaction. As already mentioned,
according to the EMV standard, TT and TI′ should be in proximity, less than 3cm
apart. During the analysis process, the pair TT–TI′ represented the genuine devices,
where no relay attack was involved (genuine pair). The pair TT–TI represented the
genuine devices, where a relay attack was active (illegitimate pair — the two devices
were not in proximity). So, device TI′ had a double role, acting as both a genuine, and
a relay device. Figure 3.3 depicts the experimental setup.

Figure 3.3: Test-bed Scenarios

Three SGS4 (GT-I9500) Android devices running Android 5.0.1 were used in the
experimental phase for data collection. This specific device was found to include a
large variety of sensors, covering the majority of sensors supported by the Android
platform [8], excluding the Geomagnetic Rotation Vector. A Nexus 5 Android device
was used as TT′, which was not collecting sensor data. Table 3.4 lists the available
sensors on the SGS4 device, the ones used in the experiments, and the rational behind
excluding some. For the majority of excluded sensors, no values could be captured
in the 500ms time-frame in the initial tests. Based on initial testing, for less than
5% of the 500ms transactions any data is being returned by the Bluetooth, GPS,
Network Location, and WiFi sensors on the SGS4 device. Furthermore, during the
initial evaluations of Ambient Temperature and Relative Humidity sensors, it was
discovered that insufficient data was returned by these sensors during 500ms for any
meaningful proximity analysis. The proximity sensor on the SGS4, like in the case of
the devices used in the proximity evaluation stage, returns only a true or false value
when the sensor, located on the front of the device, is covered or uncovered. Hence,
it could not be used effectively in the experimental phase. Lastly, the sound sensor,
i.e. the microphone, of the specific device was tested; it was found that this could
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Table 3.4: Sensor Availability for the Samsung Galaxy S4

Sensor Supported Used Reason

Accelerometer 3 3 -
Gravity 3 3 -
Gyroscope 3 3 -
Light 3 3 -
Linear Acceleration 3 3 -
Magnetic Field 3 3 -
Rotation Vector 3 3 -
Ambient Temperature 3 7 Insufficient values in time-frame.
Bluetooth 3 7 Insufficient values in time-frame.
GPS 3 7 Insufficient values in time-frame.
Relative Humidity 3 7 Insufficient values in time-frame.
Network Location 3 7 Insufficient values in time-frame.
Pressure 3 7 Insufficient for data collection.
Proximity 3 7 Insufficient values in time-frame.
Sound 3 7 Insufficient values in time-frame.
WiFi 3 7 Insufficient values in time-frame.
GRV† 7 7 Not present. Used Rotation Vector instead.

†Geomagnetic Rotation Vector

not initiate and record values within 500ms. Finally, after the initial analysis, seven
sensors were selected, and the others were discarded.

An overview of the measurement recording process across the four devices is
presented in Figure 3.4. Three Android applications were developed. Devices TI′

and TI were running the same application, and HCE was used to achieve NFC
communication with TT and TT′ respectively. The application for device TT included
two connection interfaces. For the first interface —used for the NFC connection with
the device TI′— device TT was set to NFC reader mode, allowing it to interact with
discovered NFC tags. For the second interface —used for connection with the device
TT′ over WiFi— device TT would broadcast a UDP packet in the local network. In
both, the message transmitted on the NFC or wireless channel included the sensor to

TT TI′ TT′ TI
NFC: 1) sensor
|transaction ID WiFi: sensor

|transaction ID NFC: 1) sensor
|transaction ID

recordSensor()

NFC: 2) sensor
|transaction ID

recordSensor() recordSensor()

NFC: 2) sensor
|transaction ID

saveMeasurement() saveMeasurement()validateReceivedData()

saveMeasurement()

Figure 3.4: Measurement Recording Overview (Relay Attack)
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be measured in that transaction and a random 7-byte transaction ID. The transaction
ID was generated by device TT and used in the analysis phase in order to uniquely
identify each transaction across the devices. In real-world scenarios, device TI′ would
act as the device communicating with TT′. However, since the scope of this chapter is
to evaluate the effectiveness of the ambient environment as an anti-relay mechanism,
device TT was responsible for sending the information across the WiFi channel for
greater transaction synchronisation.

Lastly, the application running on device TT′ featured a broadcast listener for UDP
packets from TT. Devices TT and TT′ were connected to the same wireless hotspot,
created for the requirements of the experiment. Upon receiving a packet from device
TT, device TT′ would be able to initiate a transaction with device TI, upon tapping
the latter to the former. After the initiation of a transaction, devices TT, TI′, and
TI would start recording data using some predefined sensor for 500ms. As already
mentioned, on the Android operating system, data captured by a sensor is returned
to an application in time intervals set by the application. The rate at which data was
polled from the sensors was set at the highest available, which was the same across
all three devices.

Following the recording time period, devices TI′ and TI would send a response
message, containing the transaction ID and sensor used to TT and TT′, respectively.
Device TT would then validate the received data. In case of inconsistencies, data
would not be stored for the specific transaction. The three devices would store the
recorded data in a local SQLite database, along with the transaction ID, sequence
number, timestamp and the pre-defined location in which the recording took place.
Separate database tables were used for each sensor. The recorded data was stored
in XML format (as shown in Listing 3.1). During the data analysis phase, only
transactions that existed in all three databases, based on their transaction ID and the
ambient sensor that was used, were considered. The rest of the transactions were
disregarded. A total of 400 transactions were collected for each sensor, distributed in
2 distinct locations on the university campus.

3.4.3 Transaction Data Analysis

In line with the framework discussed previously, a two-fold evaluation was conducted,
using the sensor data collected during field trials.

Analysis Approach and Results

Once more, the EERs were computed to determine optimal similarities/thresholds
where the rate of false acceptances (FAR) is equal to the rate of false rejections (FRR)
for each tested sensor. The following notions of true accepts (TAs) and rejects (TRs),
false accepts (FAs) and rejects (FRs) are defined for each evaluation (threshold- and
machine learning-based):
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Evaluation 1 (threshold-based). TA: the legitimate transaction instrument–
terminal pair (i.e. TI′–TT) is accepted correctly. TR: the distant instrument–terminal
pair (i.e. TI–TT), is rejected correctly. FA: the distant instrument–terminal pair (i.e.
TI–TT) is wrongly accepted as a legitimate transaction. FR: the legitimate transaction
instrument–terminal pair (i.e. TI′–TT) is rejected incorrectly.

Evaluation 2 (machine learning-based). For the machine learning experiments,
the same definitions as in Evaluation 1 are used. As already indicated above, the
estimated probability of being legitimate is used instead of a similarity score when
the threshold for EERs is determined. When training and testing each machine
learning model, the individual differences |Ai , j − Bi , j | are used as attributes (also
called features or independent variables) that describe each pair of transactions. Each
example for training and testing the machine learning model thus has 49 numeric
features (corresponding to 490ms sampled at 10ms intervals). An example is labelled
as positive if it corresponds to a legitimate transaction and as negative otherwise.
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Figure 3.5: Light Sensor FAR-FRR Curves With MAE

In this occasion as well, a threshold is the maximum permitted difference in
similarity before a transaction is rejected; conversely, a transaction is accepted if the
similarity between sensor measurements is within this threshold. Ideally, a chosen
threshold should reject all illegitimate transactions, namely those between the distant
instrument (TI) and the terminal (TT), while accepting all legitimate transactions
between the legitimate transaction instrument (TI′) and terminal (TT). The EERs and
associated thresholds for each sensor are calculated for all of the similarity metrics
described in Section 3.3.2. Figure 3.5 shows the FAR/FRR graph produced for 100
different thresholds using the Light sensor with MAE. By inspection, the point at
which FRR and FAR intersect (FAR=FRR) has a corresponding EER of approximately
37% for this sensor and metric.
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Table 3.5: Threshold-based EERs (using the metric abbreviations in
Table 3.2)

Sensor MAE PCC C-Corr ED Coh T-FD

Accelerometer 0.494 0.477 0.590 0.468 0.507 0.590
Gyroscope 0.521 0.455 0.535 0.495 0.528 0.489
Magnetic Field 0.444 0.473 0.470 0.433 0.487 0.470
Rotation Vector 0.330 0.472 0.327 0.670 0.534 0.509
Gravity 0.521 0.490 0.401 0.289 0.503 0.362
Light 0.367 0.488 0.444 0.372 0.505 0.437
Linear Acceleration 0.482 0.536 0.503 0.506 0.443 0.493

In this part of the study, the sensor selection was limited to the best performing
sensors from the first analysis (Section 3.3), i.e. those which successfully and consis-
tently captured values within the 500ms time limit over 1,000 transactions, which were
also present on the SGS4 devices that were used during the experiments. Additionally,
based on the initial investigations, sensors that are largely uncommon on commodity
handsets in the current market, like the pressure sensor, were eliminated. The same
analysis techniques were used, as described in Sections 3.2 and 3.3 for proximity
detection —threshold-based analysis with the same similarity measures, and the
same machine learning algorithms— using the EER evaluation metric. In the machine
learning-based analysis, when the data is split into training and test sets, it is ensured
that two transactions with the same ID (i.e. a legitimate and a fraudulent transaction
that were recorded simultaneously) are either both in the training set or both in the
test set, to avoid potential bias. The results for the threshold-based and machine
learning analyses of this study can be found in Tables 3.5 and 3.6 respectively.

Similar to the previous part of the study (Section 3.3), some sensors provided poor
discriminatory power; the magnetic field sensor, for instance, gave EERs of 36.1% and
43.3% in the analyses. Some sensors provided greater discriminatory power, e.g. the
gyroscope (17.9% EER with Random Forest) and the rotation vector sensor (27.7%,
also with Random Forest). These EERs, however, are still too high to recommend
as an effective PRAD in high throughput situations. Based on this evaluation, the
tentative conclusionwas reached, that sensing the transaction devices’ natural ambient
environment may not be a suitable PRAD mechanism under industry-specified time
constraints.

3.5 Analysis Equipment

The analysis of both parts of the study (proximity detection and relay attack detection)
was conducted on a Fedora machine with a quad-core Intel i5–4690k (3.7 GHz) and
16GB of RAM. The analysis application was developed in Python, using the Pandas
andNumPy libraries for data loading and numerical computation. TheWekamachine
learning software was used to run the machine learning experiments on a cluster
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Table 3.6: Estimated EER for Machine Learning Algorithms (obtained
by repeating 10-fold cross-validation 10 times)

Sensor Random Naïve Decision Logistic Support
Forest Bayes Tree Regression Vector

Machine

Accelerometer 0.277±0.052 0.474±0.047 0.358±0.059 0.483±0.050 0.454±0.126
Gyroscope 0.179±0.041 0.354±0.059 0.228±0.049 0.356±0.055 0.288±0.045
Magnetic Field 0.361±0.055 0.400±0.053 0.389±0.063 0.421±0.061 0.385±0.053
Rotation Vector 0.285±0.052 0.327±0.055 0.317±0.073 0.353±0.050 0.325±0.050
Gravity 0.499±0.046 0.488±0.043 0.494±0.057 0.484±0.043 0.486±0.156
Light 0.361±0.059 0.369±0.058 0.293±0.149 0.407±0.054 0.351±0.054
Linear Acceleration 0.307±0.050 0.484±0.048 0.392±0.057 0.502±0.049 0.397±0.058

of 10 Ubuntu Linux computers with Intel Core i7–2600 CPUs and 16 GB of RAM.
Multi-threading was used for training random forests and performing parameter
optimisation for support vector machines. Generating all performance estimates
using 10-times 10-fold cross-validation took less than two hours. The vast majority of
this time was used to obtain performance estimates for the support vector machines.

3.6 PRAD Evaluation Outcome

The presented results provide a basis for quantifying the effectiveness of various
mobile sensors as a PRAD mechanism in NFC-based mobile transactions. In the first
part, the effectiveness of natural ambient sensing as a device proximity indicator was
assessed, while in the second the focus was on relay attack detection. Threshold- and
machine learning-based evaluation was performed for both parts.

For thefirst part (proximitydetection), using threshold-based analysis, the Pressure
sensor performs relatively better with an EER of 0.27, while the Rotation Vector has
a 27.3% possibility of a success — one of the highest in the analysis. Similarly, for
the second part (relay attack detection), again using threshold-based analysis, the
Gravity outperformed the rest of the sensors, with an EER of 0.289. Not only does the
EER imply the potential success of the attack, but also the potential of a legitimate
transaction being denied. The Gravity EER indicates that almost 29% of relay attacks
would be accepted and 29% legitimate transactions would be denied. Denying more
than 1-in-4 legitimate transactions would invariably cause annoyance issues for users
in practice. From this analysis, it is difficult to recommend any of the sensors for a
single-sensor deployment for high security applications, such as banking, using the
similarity detection techniques that were used in this chapter. Such sensors might be
appropriate for low-security access control, but it is recommended that a thorough
analysis of the sensors and their performance in the chosen domain is performed
prior to deployment.

The next evaluation applied machine learning classifiers. For the first part
(proximity detection), the Pressure sensor with Decision Tree performs significantly
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better, with an estimated EER of 0.092. This illustrates that the Pressure sensor may
have potential as a proximity detection mechanism, but still the detection accuracy
(more than 9% of legitimate transactions would be rejected) is not high enough to
provide sufficient security in a real-world deployment. In the second part (relay attack
detection), Gyroscope presented the best results, with an EER of 0.179. Again, it is
difficult to recommend using this or any other of the evaluated sensors for relay attack
detection, with any of the threshold- and machine learning-based algorithms that
were used in this chapter.

One reason that past work achieved different results could be due to the signifi-
cantly larger sampling durations (see Section 2.4.2). The sampling duration imposed
in the experiments was in line with the performance requirements of an EMV applica-
tion, i.e. 500 milliseconds. Transportation is another major application for contactless
smart cards; in this domain, the recommended transaction duration is far lower,
between 300–500 milliseconds. The 500 millisecond limit in the experiment was thus
an upper bound of the recommendations of two significant application areas where
contactless mobile phones may be utilised.

3.7 Summary

Proximity and Relay Attack Detection (PRAD) is an important element for many
contactless and wireless technologies. In this chapter, it has been illustrated that
the viability of PRAD mechanisms can be largely dependent on the time constraints
mandated by industry requirements. Contactless payment transactions for example
—whether smart card- or smartphone-based—must adhere to <3cm for proximity
and up to 500ms for transaction duration, as stipulated by the EMV specifications.
The claim that natural ambient environments can provide a robust PRAD, as stated
by some previous literature, was evaluated under industry-specified time constraints.
This was evaluated for both proximity detection (Section 3.3) and as a relay attack
detection mechanism using a test-bed that reflected an actual attack (Section 3.4). The
results of the two-part evaluation are presented using six similarity metrics, used
previously and several widely-used machine learning classifiers. The investigation
aimed to analyse and evaluate a range of sensors present in modern off-the-shelf
mobile devices, and to determine which sensors, if any, would be suitable as an
anti-relay mechanism for NFC-based smartphone transactions. A total of 17 sensors
accessible through the Google Android platform were shortlisted, before limiting
the investigation to those which are widely-available and displayed promise in the
initial trails. In existing literature, only 13 sensors have been suggested as an effective
proximity detectionmechanisms, as listed in Table 2.1. Some sensors are only available
in specialised ambient sensor hardware and, in almost all instances, no relay attack
data was collected to determine their effectiveness against such attacks. In the
first part of the study (proximity detection), 10 sensors were successfully evaluated
through analysis of collected data, representing a genuine transaction and a malicious
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transaction. In the second part (relay attack detection), 7 sensors were successfully
evaluated based on data collected from an actual relay attack emulation. In many
cases the results were far from what was claimed in past literature; the initial results
indicate that natural ambient environments might provide a poor PRAD for time-
critical domains such as banking and transport. As such, it is strongly recommend
that any PRAD proposal should be evaluated based on the operating restrictions of
the suggested deployment application.
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Chapter 4

Preventing Relay Attacks Using
Infrared Light

4.1 Introduction

As discussed in the previous chapters, the use of the natural ambient environment as
a means of PRAD may not be sufficient for various time-constrained (up to 500ms)
contactless transactions. Protecting such transactions against relay attacks, however, is
crucial, since time-constraints exist in monetary transactions (e.g. EMV and transport-
related transactions), aswell as in access control. Failing to protect against relay attacks
may have consequences such as money loss and unauthorised access to buildings
and facilities.

In this chapter, a framework for generating and measuring an Artificial Ambient
Environment (AAE) as a means of PRAD is initially proposed. According to the
framework, both transaction devices are responsible for generating (based on the
device’s peripherals) and/or measuring the AAE. Comparison of the captured values
should provide adequate proximity information to the devices for the AAE to be
effective, in case these are genuinely in proximity to each other. At the same time, it
should be hard for an attacker to reproduce/relay the AAE at a distant location.

The use of infrared light as an AAE actuator is also investigated. This approach
requires one of the transaction devices to emit a random sequence over an infrared
blaster (emitter) and the other device to capture this sequence. The transaction devices
only emit or capture the infrared signals for certain time after the initiation of the
transaction, such that an attacker would have to relay the sequence at a remote location
in near real-time, otherwise bits would be lost, leading to the detection of the attack.
Experimental evaluation demonstrated high effectiveness of using infrared as an AAE
actuator for PRAD. Using six distinct relay attack approaches (based on off-the-shelf
equipment), relaying the sequence in a timely manner could not be achieved.

Initially, the generic framework for the generation of an AAE is discussed (Sec-
tion 4.2). The use of infrared light as an AAE actuator is then investigated in
Sections 4.3 and 4.4. The effectiveness of the proposed PRAD mechanism, using
infrared light as an AAE actuator, is also evaluated in the same sections through the
six distinct test-beds that were deployed.
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4.2 Artificial Ambience as a means of PRAD

In this section, the theoretical foundation of the AAE framework is described and
analysed.

4.2.1 Proposed Framework

As already discussed, ambient sensors in smartphones measure a particular envi-
ronmental or physical property of the immediate surrounding of the smartphone,
like the light intensity, the ambient sound, or the device’s acceleration. Existing
literature, listed in Chapter 2, argues that two devices, measuring some attribute
of their surrounding environment over a period of time through the use of some
ambient sensor(s), can provide proof of proximity.

Themajority of previous work however does not comply with the EMV transaction
requirement to complete in 500ms [51, 112, 146, 149]. In Chapter 3, it was concluded
that data captured in up to 500ms by any ambient sensor commonly found on off-the-
shelf smartphones may not provide sufficient proof of proximity information to be
used in critical applications, like EMV contactless payment transactions.

As an alternative approach, the generation of AAEs by using the smartphone’s
peripherals, like the speaker or the phone’s vibration, is proposed. The aim is to
increase the irreproducibility of the ambient environment, in order to thwart the relay
attacks and establish strong proximity proof.

Figure 4.1: Framework Architecture

The AAE works as follows. During an NFC (or other — e.g. WiFi, Bluetooth,
etc.) transaction, one (unidirectional) or both (bidirectional) devices involved in the
transaction are responsible for generating (be actuators) and/or measure (be sensors)
the AAE, forming a second communication channel (Figure 4.1 depicts an example
of using infrared as an AAE actuator). This second channel, referred to as Artificial
Ambience Channel (AAC), should be operating in parallel to the primary channel (i.e.
NFC, WiFi, Bluetooth, etc.) for some predefined time.

Smartphones available on the market are not the same in performance capabilities,
OS, and/or available ambient sensors. Depending on a device’s capabilities, the two
devices involved in a transaction can negotiate the tuple {A ,S ,TSent ,M} to be used
in the transaction. A denotes the AAE actuator to be used in the transaction. S
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denotes the sensor which should measure the AAE. TSent (where TSent ≤ 500ms in
the case of EMV contactless payments, for example), denotes the time for which the
AAE should be active. Finally,M denotes whether the AAE generation should be
unidirectional or bidirectional.

Upon the completion of the AAE measurement by the devices involved in the
transaction, a comparison between the measured and/or the transmitted data should
take place either by one or both devices, or by a TTP. Transmission of the captured
measurement should be done in a secure manner, for example integrated in the
transaction protocol running on the NFC channel (for on-device verification), or
through a secure network channel (for verification by third party). Such an integration
is beyond the scope of this chapter.

During the comparison phase, only data exchanged through the AAC while the
AAE was active should be regarded (TReceived , where TReceived is equal to TSent plus,
potentially, some acceptable threshold). Thus, during a relay attack, AAE information
should have to be successfully relayed by the attacker within the TReceived time-frame,
or they will be discarded from the comparison phase.

For an AAE generation method to be successful, the result of the comparison
should provide adequate proof of proximity. Therefore, the AAE should be difficult
to be accurately replicated by an attacker during a relay attack.

In this chapter, only the properties of the AAC channel are investigated. This is to
empirically establish whether AAE can provide an effective proof of proximity as a
relay attack countermeasure. To investigate the proposed solution, test-beds were
developed using off-the-shelf and custom-built hardware.

Architecture Requirements

In order for a generated AAE to be suitable for relay attack detection, the following
requirements should be met:

• The generation of the AAE should be based on some random streams/sequences.

• The AAE generation and the establishment of proximity evidence should be
easy for a genuine pair.

• The generated AAE should be hard to relay to/reproduce at a remote location,
without detection.

Candidate Architecture

Peripherals widely available on smartphones that can potentially be used to generate
an AAE are:

1. Infrared,

2. Camera’s flash light,
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3. Vibration,

4. Speaker (sound),

5. Bluetooth,

6. Device’s display, and

7. Camera

In this chapter, the focus is on infrared emitters, that are widely available on
different smartphones4, mainly for allowing users to control home equipment, like
televisions [6].

4.3 Infrared as an AAE Actuator

Infrared is a form of electromagnetic radiation with a wavelength outside of the
visible spectrum for the human eye. Infrared emitters exist on a wide range of
modern smartphones and their main purpose is for controlling home equipment
(e.g. televisions). During the evaluations, Android handsets were used, as Android
provides an API for emitting infrared signals [6].

In this section, the architecture and deployment of the test-bed for the evaluation
of infrared as an AAE actuator and its effectiveness against six different relay attack
techniques are described.

4.3.1 Test-bed Architecture — Infrared

Figure 4.2 depicts the architecture of the test-bed for the evaluation of infrared as
an AAE actuator. Two scenarios were regarded. First, a transaction between the
transaction instrument (smartphone) TI, and the transaction terminal TT′ (referred to
as TI–TT′). This scenario aims to evaluate the proximity detection capabilities of the
framework, and no relay is involved between the pair. Second, a transaction between
the mobile device TI, and the transaction terminal TT (referred to as TI–TT). In this
scenario, the pair TT′–TI′ is attempting to relay the infrared-based AAE. Figure 4.3
shows a more clear representation of the devices involved in the two scenarios.

Proximity Scenario

In the first scenario, upon the initiation of the transaction, TI begins emitting a
sequence consisting of 500 random pre-generated bits through its infrared emitter.
The transaction terminal, TT′, captures the emitted sequence. After the completion of
the transaction, the emitted and captured bits are compared for similarity by a TTP
(during the course of the experiments, a laptop running the comparison software
acted as the TTP). The comparison step can also potentially be performed by one of

4Available devices with infrared emitters: http://www.akshatblog.com/list-of-android-smar
tphones-with-ir-blaster/

http://www.akshatblog.com/list-of-android-smartphones-with-ir-blaster/
http://www.akshatblog.com/list-of-android-smartphones-with-ir-blaster/
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Figure 4.2: The Evaluation Framework

the devices involved in the transaction, as already mentioned in Section 4.2, but this
is out of the scope of this chapter (further investigation in Chapter 5).

The infrared emitter is technically a Light-Emitting Diode (LED) that emits elec-
tromagnetic radiation at the infrared spectrum. In order to emit the 500 bits through
it, the bits first have to be converted to pulses and pauses. After experimentation, one
bit was set to be represented by a 200µs pulse (emission) or pause (no emission). Al-
though infrared at 38.4kHz frequency (used during the experiments) can theoretically
emit one bit per 13µs, the available mobile devices used in the experiments could
effectively emit one bit in no less than 200µs.

Sub-sequences of ones and zeros from the random 500-bit sequence are encoded
into pulse and pause durations (e.g. a sub-sequence of two consecutive ones would
be encoded to a 400µs pulse, a sub-sequence of three consecutive zeros, to a pause
of 600µs, and so on). The 500-bit sequence requires 100ms of emission through

Figure 4.3: Test-bed Scenarios of the Infrared-based AAE PRAD
Evaluation Framework
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Figure 4.4: Time Representation of Bit-Sequence ‘1101110011’

the infrared emitter (TSent � 100ms). Figure 4.4 represents the conversion of the
bit-sequence ‘1101110011’ into pulse and pause timings.

An infrared receiving diode capable of sensing infrared radiation is attached to
the transaction terminal and accessed through software in order to time the pulse
and pause sequences. The terminal listens for infrared signals for the whole period
of the transaction. Intercepted pulse and pause timings are then decoded into a
bit sequence. In case the data comparison should take place on one of the devices
involved in the transaction, the infrared listening period can be reduced according
to the requirements of the desired transaction protocol. However, integrating the
proposed framework in a particular protocol is beyond the scope of this chapter, and
is investigated in the next chapter.

As mentioned in Section 4.2, some time may be required before an AAE actuator
can be initialised. In the case of the Android devices that were used in the experiments,
it was concluded through analysis of experimental results that time xi was required
before a device could start emitting infrared, and time x j was required for the process
to shut down, after the emission had stopped. Since low level access through API calls
is not possible (it is not provided by the Android infrared API), these delays could not
accurately be calculated. Modifying the Android OS was also not an option, as after
careful inspection of the OS’s source code it is believed that both delays are caused by
the proprietary infrared drivers of the devices. Because of the infrared Android API,
it was only possible to know the total time of the infrared emission process (referred
to as TAAE). However, after analysis of 150 runs of the infrared emission process, x j

was calculated to be equal to 28 ± 2ms on an SGS5 mini device (SM-G800F, running
Android 5.1.1). Therefore, since TAAE can be measured by an application, and TSent

and x j are known, Eq. 4.1 provides xi .

xi � TAAE − TSent − x j (4.1)

More specifically, in order to measure x j , the infrared emitting smartphone was
connected through a USB cable to the infrared receiving computer. Immediately after
the infrared emission process, the smartphone would log an event message, which
was received by the computer through the USB interface. Through a shell script that
was written, the computer would calculate the time passed between receiving the last
infrared bit through an infrared receiver that was attached to it, and receiving the log
event from the smartphone. This way, a single clock was used (that of the computer),
so the time could accurately be calculated (no clock synchronisation between the
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two devices —emitting smartphone and receiving computer— was required). Even
though xi could also be estimated in a similar fashion, it was found to bemore variable
between transactions, possibly due to background processes and system load (similar
issue to NFC-based distance bounding on smartphones, as described in [101]).

During the comparison phase, any data received by the transaction terminal prior
to time xi (compared to the initiation of the transaction) or after time xi +TSent should
be discarded (however some extra threshold might be required in some occasions).
This time-frame is referred to as TReceived . This aids towards the avoidance of relay
attacks through replaying chunks (an attacker having captured the whole sequence,
or large chunks, emitted by the legitimate mobile device and replaying it towards a
remote transaction terminal). Taking into account the 4ms window (equivalent to 10
bits), introduced by x j :

xi − 2ms ≤ TReceived ≤ xi + TSent + 2ms (4.2)

The runtime of TReceived is thus TSent + 4ms. The 4ms window can potentially be
eliminated by enhancements in theAndroidAPI and the device drivers. Asmentioned
earlier, this is not possible without access to the driver source code. Figure 4.5 depicts
more clearly the basic concept of the process on the two channels.

Figure 4.5: Infrared as an AAE Actuator

Relay Scenario

In the second scenario shown in Figure 4.3, the same principles apply. The difference
is that in this case the malicious pair TT′–TI′ is introduced. The malicious terminal
TT′ is capturing infrared signals emitted by the genuine mobile TI, forwards them
to TI′, which re-emits them towards TT. The challenge for the attacker is to be able
to correctly relay bits in no more than 200µs (the length of one bit) from the time of
receiving them. Delay in emission of a few bits will lead to introduction of new bits,
since pauses or pulses will last longer. Also caching for longer than the 4ms window
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explained above will cast the attack detectable, since not enough bits will be captured
within the time frame TReceived . Caching however may cause an overhead, since it
requires data to be pushed in and popped from a buffer, that may render it inefficient
for such short time-frame. Moreover, as already mentioned, the 4ms time-frame may
be reduced by enhancing the Android API and device drivers, making the attack even
harder for the attacker.

4.3.2 Data Collection

During the experiments, four devices were used. Device TT′ was acting as both a
legitimate and a relay terminal. Thus, at the same time it was saving the captured
infrared signals and relaying them towards device TI′ (except in Test-bed 6, described
in Section 4.3.3, where it was only capturing data and not relaying). A more thorough
comparison was possible this way, by juxtaposing data captured by TT′ and TT against
the same bit-sequence, emitted by device TI during a single transaction. On both
devices, captured infrared pulse and pause timings (in µs) were saved in different
log files for each transaction, along with the time (in µs) at which the first bit was
received, compared to the initiation of the transaction. Device TI was appending
the random bit stream, along with time TAAE, in a .csv file. Calculation of xi (as
per Eq. 4.1), and subsequently of the bounds of TReceived were thus possible. These
.csv files were used during the evaluation phase, described in Section 4.4. After the
completion of a transaction, device TI would generate a new random-bit sequence, to
be used in the next transaction.

All the devices involved in the experiments were connected to a single, dedicated
WiFi network. The indication of the transaction initiation was performed through a
network broadcast, transmitted by TI. Assessment of the primary channel (e.g. NFC)
is out of the scope of this chapter. However, in certain scenarios, like in an NFC
initiated relay, further tapping on both TT′ and TT simultaneously might be required
in order to ensure the maximum efficiency of the attacker. Such task may be hard to
accomplish, even in a controlled environment. Initiating the transaction through a
network broadcast satisfies this requirement.

In the next section, different test-bed variant deployments that were used to
evaluate the proposal are discussed.

4.3.3 Deployed Test-beds with Relay Attack Variants

In order to assess the effectiveness of the framework against relay attacks, six different
variants of the test-bed were deployed, based on potential relay attack configurations.

In all experiments, an SGS5 mini (SM-G800F, running Android 5.1.1) was used
as device TI. Raspberry Pi 3 computers (4×1.2GHz CPU and 1GB RAM), running
Raspbian Jessie were used as devices TT′ and TT. The Raspberry Pi (RPi) was a good
candidate for acting as a terminal device, as it is equipped with 40 General Purpose
Input Output (GPIO) pins, making it possible to easily build prototypes. In the case
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of the device TT′, except from listening for infrared signals, it was also relaying them
towards device TI′ (except in Test-bed 6 described below, where no data was being
relayed between the devices TT′ and TI′).

Test-bed 1: Mobile Based

In the first scenario, a mobile device (SGS4 — GT-I9505, running Android 5.0.1) was
used as device TI′. Timings of detected infrared pulses and pauses were transmitted
from TT′ to TI′ through the WiFi channel. In the case of a pulse, TI′ would use the
ConsumerIrManager class (Android infrared API) [6]. In the case of a pause, TI′would
wait for the indicated time before emitting the next available pulse.

Test-bed 2: RPi Based (no caching)

Using a mobile device for infrared emission was proven to be inefficient, due to severe
delays at emitting any data via the infrared emitter (further discussion in Section 4.4).
A custom-built RPi-based relay device was used as device TI′ in this scenario instead.
An infrared emitting LED was connected to the GPIO pins of the RPi, and controlled
by a program written in the C language (for performance reasons), using the GPIO
access C libraryWiringPi [79]. Device TT′ was used for relaying infrared data to TI′

through the wireless network. Unlike in the previous scenario, whenever an infrared
state alteration was perceived (switch from pulse to pause, or the opposite), TT′would
send a UDP packet to TI′. The application built for TI′ would listen for UDP packets
from TT′, and upon packet arrival it would switch the state of the attached infrared
LED, attempting to replicate the sequence emitted by TI.

The same libraries and programming tools as in this scenario were also used in
test-beds 3 and 4.

Test-bed 3: RPi Based (caching — TI′ side)

Because there are inconsistencies in the packet delivery time through the network,
using the method described in Test-bed 2, extra bits might be introduced or subtracted
from the infrared sequence emitted by TI′, depending on the delay of subsequent
packets. In order to reduce the number of packets that have to be transmitted, therefore
reducing the number of potential added/removed bits, an attacker can cache data and
relay in chunks. As mentioned in Section 4.3.1, due to x j , an attacker has a window of
approximately 4ms, during which data can be cached.

In this scenario, TT′ would transmit pulse and pause timings upon alteration of
the perceived infrared state. Upon receiving by TI′, the pulse–pause timings would
be pushed in a stack (array), and 4ms after the arrival of the first packet TI′ would
initiate emitting them. Using a timer, TI′ then re-emits the received infrared sequence
by altering the state of the infrared emitter as per the timings received by TT′.

Delays in the network may cause inconsistencies in the delivery time between
two packets. In order to minimise the amount of inconsistencies in the bit stream,
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delays were handled. In case the next packet arrives while the data received by the
previous packet is still being emitted, its data was cached by TI′ and emitted after the
completion of the current instructions. In case the next packet is delayed, the state of
the infrared would not change until new instructions arrived.

Test-bed 4: RPi Based (caching — TT′ side)

In this scenario, TT′ cached infrared state alterations for 4ms before forwarding to TI′.
Although this scenario is similar to the previous, the amount of generated network
traffic, which was concluded to be a bottleneck to the relay process, was reduced,
since data packets were relayed in 4ms buckets instead of per infrared state alteration.
The cached information forwarded to TI′ indicate the pulse–pause sequence timings
that should be emitted by TI′, in µs. The same method as in the previous scenario
was used for emitting the infrared sequences, caching data that arrived early and
altering the state of the infrared LED when the stack is empty.

Test-bed 5: Infrared Extender Based

Wireless remote control extenders are available on the market. These are devices
that come in pairs and convert infrared signals to radio-waves (receiver side) and
back to infrared (emitter side). The typical use of such devices is to control infrared
remote controlled home equipment from a distance (e.g. from another room). This is
achieved by repeating or relaying infrared sequences emitted by the remote control.

Marmitek Powermid XL, a relaying wireless remote control extender, was used
during the evaluation phase. According to the manufacturer, the range of the product
is up to 100m (free field) or up to 25m (through walls). After inspection of the
product’s circuit, the receiving device appears to be applying current to an antenna
through an infrared receiving diode. Therefore, the circuit remains open when no
infrared is detected, and it closes, making it emit at 433.39MHz frequency, when pulses
at the infrared spectrum are detected. On the other side, when the receiving antenna
captures a signal at 433.39MHz, a circuit is closed, powering three infrared emitters.
The productwas successfully tested for controlling home appliances (desktop speakers
and television) from a distance.

Test-bed 6: Random Generation Based

In the last test-bed scenario, a different random sequence was generated and emitted
by a second device. The same device as in Test-bed 1 was used as TI′, which was
listening for broadcasts regarding transaction initiation as well. Upon receiving a
broadcast, it would initiate emission of a pre-generated infrared sequence, in a similar
way as TI.

Although in the course of this thesis it is assumed that Android’s random number
generator is secure, this scenario was assessed mainly for reference reasons.
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4.4 Results and Evaluation

The evaluationmethodology, the results, and thediscussion of the results are presented
in this section.

4.4.1 Data Analysis Methodology

The evaluation was conducted in two phases. During the first phase of evaluation, 50
transactions were performed in the lab for each of the test-beds. After the completion
of each experimental phase, data from the RPis and the mobile device used as TI was
transferred to a laptop (2×2.7GHz Intel i7 CPUand 8GBofRAM, running Fedora 24OS)
for analysis. The transfer was accomplished through SSH and USB cable, respectively.
A program, written in Java, would then convert the captured pulse–pause sequence
timings, recorded by TT′ and TT, of each transaction into streams of bits. Only bits
captured within time TReceived were regarded. Translation of pulse–pause timings into
bits was accomplished by inverting the methodology described in Section 4.3.1. For
this, time TAAE of each transaction was also given as an argument to the program. The
dwdiff [69] program was used for the comparison of the bit streams. This tool uses
the GNU diff utility in order to detect the longest common sub-sequences between
two lines (in this scenario each bit stream corresponded to one line), and based on
that, calculates the similarity percentage.

Prior to selecting dwdiff as the comparison method, 72 well known algorithms
that are effective for binary similarity were examined (listed in [28, 30, 60, 76, 77, 86,
141, 148, 154]). A Python program was developed, capable of running the Binary
Similarity Calculator found in [118], and storing the corresponding results for later
evaluation. After exploring the effectiveness of the algorithms with 50 measurements
from each test-bed, most of the algorithms reported high accuracy in detecting the
similarity. Tables 4.1 and 4.2 list the output of the various algorithms for a single
measurement (in this example, the measurement is taken from Test-bed 5). Many of
the algorithms do not return the percentage similarity, but rather some ‘similarity
weight’. For this reason, their results might need to be rescaled, if one of these is used.
This can be achieved by using methods similar to the one proposed in [148]. In the
tables, the similarity between the devices that are in proximity is first listed, and then
between the distance devices (where a relay attack is taking place). Finally, in the last
column, for reference reasons, since many algorithms do not return the percentage
similarity, the comparison of the emitted infrared sequence against itself is reported
(i.e. the result when there is a perfect match between two 500-bit sequences). Since the
performance of various algorithms was high (genuine and relayed transactions could
effectively be distinguished), the dwdiff was used for convenience and performance
reasons in this chapter. However, this does not imply that this is the only, or the best
method.
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Table 4.1: Performance of Various Binary Similarity Algorithms

Algorithm TI–TT′ TI–TT TI–TI

Ample — 1.03 —
Anderberg 3 0.48 0.00 0.48
Austin-Colwell 0.94 0.52 1.00
Baroni-Urbani-Buser 1 0.99 0.57 1.00
Baroni-Urbani-Buser 2 0.98 0.15 1.00
Braun-Blanquet 0.98 0.53 1.00
Cohen 0.98 0.03 1.00
Cole 1 1.00 0.02 1.00
Cole 2 0.97 0.09 1.00
Consonni-Todeschini 1 1.00 0.90 1.00
Consonni-Todeschini 2 0.74 0.12 1.00
Consonni-Todeschini 3 0.89 0.87 0.90
Consonni-Todeschini 4 1.00 0.88 1.00
Consonni-Todeschini 5 1.00 0.02 1.00
Cosine, Driver-Kroeber, Otsuka, Ochiai 1 0.99 0.68 1.00
Dennis 10.65 0.23 10.73
Dice, Sorensen, Gleason 0.99 0.66 1.00
Dice, Wallace, Post-Snĳders 1 0.98 0.87 1.00
Dice, Wallace, Post-Snĳders 2 1.00 0.53 1.00
Dispersion 0.25 0.01 0.25
dwdiff 0.99 0.61 1.00
Eyraud 3.94 0.22 4.01
Fager-McGowan 1 -129.01 -212.32 -129.00
Fager-McGowan 2 -1.01 -99.82 1.00
Fager-McGowan 3 0.96 0.65 0.97
Faith 0.75 0.49 0.76
Forbes 1, Margalef 1.92 1.02 1.92
Forbes 2 1.00 0.09 1.00
Fossum 490.39 227.52 498.08
Gilbert-Wells 0.65 0.02 0.65
Goodman-Kruskal 0.98 -0.50 1.00
Gower 0.01 0.01 0.01
Hamann 0.98 0.06 1.00
Harris-Lahey 492.05 125.27 500.00
Hawkins-Dotson 0.98 0.31 1.00
Inner Product 496.00 264.00 500.00

table continues in Table 4.2
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Table 4.2: Performance of Various Binary Similarity Algorithms (con-
tinuation)

Algorithm TI–TT′ TI–TT TI–TI

Intersection 256.00 225.00 260.00
Jaccard 2W, Czekanowski, Nei-Li 0.99 0.66 1.00
Jaccard 3W 0.99 0.74 1.00
Jaccard, Tanimoto 0.98 0.49 1.00
Johnson 1.98 1.39 2.00
Kulczynski 1 64.00 0.95 —
Kulczynski 2 0.99 0.70 1.00
Maxwell-Pilliner 0.98 0.04 1.00
McConaughey 0.98 0.39 1.00
Michael 1.00 0.06 1.00
Mountford 0.50 0.01 —
Pearson 1, Chi-squared 484.24 0.77 500.00
Pearson 2 0.70 0.04 0.71
Pearson 3 0.04 0.01 0.04
Pearson-Heron 1 0.98 0.04 1.00
Pearson-Heron 2 1.00 0.09 1.00
Peirce 1.00 0.50 —
Peirce 1 0.98 0.03 1.00
Peirce 2 0.98 0.06 1.00
Rogers-Tanimoto 0.98 0.36 1.00
Russell-Rao 0.51 0.45 0.52
Savage 0.02 0.47 0.00
Scott 0.98 -0.10 1.00
Simpson 1.00 0.87 1.00
Sokal-Michener, Simple Matching 0.99 0.53 1.00
Sokal-Sneath 1, Anderberg 1, AntiDice 0.97 0.32 1.00
Sokal-Sneath 2, Gower-Legendre 1.00 0.69 1.00
Sokal-Sneath 3 124.00 1.12 —
Sokal-Sneath 4(3), Rogot-Goldberg, Anderberg 2 0.99 0.52 1.00
Sokal-Sneath 5(4), Gower 2, Ochiai 2 0.98 0.20 1.00
Sorgenfrei 0.98 0.46 1.00
Stiles 9.57 6.35 9.59
Tarantula — 1.03 —
Tarwid 0.32 0.01 0.32
Yule 1 1.00 0.11 1.00
Yule 2 1.00 0.06 1.00
van der Maarel 0.98 0.31 1.00
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Table 4.3: Similarity Percentage Between Sent and Received Bits

Test-bed 1 Test-bed 2 Test-bed 3 Test-bed 4 Test-bed 5 Test-bed 6

Genuine Pair 98.86% 98.78% 98.34% 98.20% 98.28% 98.32%
Relay Pair 3.70% 44.72% 22.30% 30.76% 81.94% 69.56%

In the second evaluation phase, an additional 450 transactions were performed,
using the best performing test-bed (Test-bed 5). The same evaluation procedure was
followed.

4.4.2 Evaluation of the Results

Regarding the genuine transaction pair (TI–TT′), the similarity between the emitted
and the received bit streams was in all scenarios, except in nine cases, either 98% (in
17% of all transactions) or 99% (in 81% of all transactions). In these nine cases, a
portion of the data was captured by TT′ in the TReceived time-frame. The reason for the
delay of TI in emitting the data is not clear, but it may be related to the extensive use
of the device during the experiments. However, some amount of failure is acceptable
by the smart card industry [127].

For the evaluation of the proposed solution, a threshold of 98% similarity between
the captured and emitted streams was set, based on the evaluation results of the
genuine pair. According to the experimental results, the false negative rate would
therefore be less than 2%.

The average similarity percentages for the genuine pair (TI–TT′) and the relay
pair (TI–TT) for 50 runs for each test-bed are presented in Table 4.3. Test-bed 5 is
an exception, as the average occurs from analysis of 500 runs. Figure 4.6 presents
the similarity percentage of fifty individual transactions, for all test-beds (randomly
chosen in the case of Test-bed 5).

The true negative rate, while maintaining the threshold at 98%, was 100%. None
of the assessed relay methodologies were capable of exceeding this threshold during
the experiments.

In Test-bed 1, the mobile device was incapable of relaying a significant amount of
data in the given time-frame. In many occasions no data was relayed. Similar to the
device TI, the relay mobile device required time xi before it could initiate the infrared
emission.

In Test-bed 2, due to inconsistencies in the network packet transmission time, extra
bits were frequently introduced or deducted from the bit stream. For example, for two
subsequent infrared state alterations (i.e. the infrared emitter switching on while it
was off, or the opposite), in case of a delay in the transmission of the second network
packet, comparatively to the arrival of the first packet, extra bits would be introduced
until the arrival of that packet. Similarly, if the transmission delay of a third packet
was shorter than that of the second, bits would be deduced in the time-frame between
the second and third packets.
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Figure 4.6: Test-bed Performance

Higher result consistency was noticed in Test-beds 3 and 4, compared to Test-bed
2, although the overall performance was lower. In these scenarios, caching was
causing an overhead. Moreover, in contrast to Test-bed 2, in these scenarios pause to
pulse switching (and the opposite) were based on relayed signal timings instead of a
single network packet. The overhead imposed due to the previous caused detectable
delays in relaying bits in the magnitude of microseconds. Finally, the 4ms caching
window proved to be insufficient for caching, relaying and replaying signals. Test-bed
4 performed better than Test-bed 3, but although less than half the network packets
were required in comparison to Test-bed 3, Test-bed 4 had to cache data on both sides
of the relay, which led to suboptimal increase in the overall performance.

The highest performance was observed in Test-bed 5. Almost 52% of the captured
relayed bit streams exceeded 90% similarity upon comparison with the emitted
bit stream, almost 10% of which reached the maximum observed similarity of
94%. However, white noise interference captured by the antenna of the infrared
extender was causing significant bit irregularities in certain relayed streams, leading
to inconsistencies in the reproducibility of the results. Even though this technique
produced a relatively high similarity, all the relayed transactions were detected, since
the threshold of 98% was not reached in any case.

Finally, Test-bed 6 was the second best performing test-bed, even though in
this test-bed, instead of signal relaying, a different random sequence than the one
produced by TI was emitted by TI′. In the design of a random number generator
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the major concern is the unpredictability of pseudo-random sequences and not the
percentage similarity. In any pseudo-random sequence there is a chance that two
random numbers have high similarity, but not the same sequence.

Other methods of attacking this system might exist, like relay via fibre optic
cable or utilising the infrared range (for few metres), but due to their difficulty in
concealment and distance limitations, as well as the high expense associated with
them, they were not investigated any further.

4.4.3 Applicability and Feasibility in Real-World Scenarios

In order to integrate this solution in a real-world scenario, extra hardware would
be required on the transaction terminal side. An infrared receiver would have to
be installed and covered to avoid interference from remote devices. The transaction
instrument would also require to be equipped with an infrared emitter. As already
mentioned, many smartphones come with such emitters, and Android provides an
API for accessing them.

As long as the smartphone’s emitter is directed towards the terminal’s infrared
receiver (within a 30 degree angle), and is not blocked by a phone case or other
barriers, the user is not required to perform any additional steps. The lack of such
emitters on many devices might affect the feasibility of deploying this solution in a
large scale, while it might be more relevant to scenarios where devices are provided to
the users (e.g. a company providing devices to its employees). Potential implications
that may arise due to the extra positioning requirements (for example on people with
motor difficulties) should also be considered before deployment. Moreover, some
overhead will be added to the total transaction time. However, as will be discussed
in Chapter 5, the proposed solution can effectively be used to establish proximity
evidence in various 500 and 300ms transaction scenarios, even when the comparison
of the collected data is performed by the transaction devices.

4.5 Summary

Previous works have claimed that sensing the ambient environment and comparing
the measurements can be used as a proximity detection method between two devices.
However, the effectiveness of this technique in certain types of transactions that
require to be completed in short time-frames (≤ 500ms), like banking and transport
related transactions, has been argued.

In this chapter, the generation of AAEs as a means of PRAD in smartphone-based
contactless transactions with short timing restrictions is proposed. Out of a list of
AAEs that was provided in Section 4.2.1, the proposed solution was evaluated by
using infrared as an AAE actuator. Six distinct ways of attacking the system were
designed, built, and evaluated. The experimental results showed that infrared has a
high success rate for relay attack detection, as well as for proximity detection. None
of the attack methods were capable of evading the proposed framework.
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Chapter 5

Infrared Light for Proximity
Critical Scenarios

5.1 Introduction

In the previous chapter, the use of infrared as an AAE actuator was discussed. In
this chapter, the applicability of using infrared light as an AAE actuator in real-
life scenarios in which relay attacks are relevant, is investigated. Moreover, the
architectural enhancements, limitations, and requirements regarding the deployment
in a large scale are discussed. The areas that have been investigated are (a) contactless
transactions (mobile payments, physical access control, and transportation ticketing)
(Section 5.2) and (b) continuous Two-Factor Authentication (2FA) for host-based
services authentication (Section 5.3). Further possible scenarios are discussed in
Section 5.4.

Protocols that follow industry standards (where applicable), for the integration of
the proximity detection technique, are proposed and undergone mechanical formal
verification, using Scyther. The performance of each of the aforementioned cases has
also been measured through practical implementation.

5.2 Use Case: NFC-based Contactless Transactions

In this section, the potential of using infrared as an AAE actuator to provide PRAD
in popular contactless NFC transactions (payments, transportation, access control,
and others with similar time restrictions and requirements) is investigated. Modern
NFC-enabled smartphones are capable of performing smart card-like contactless
transactions. Domains that benefit from this type of transactions include contactless
payments, physical access control, and transport ticketing. This way of performing
transactions is convenient for the users, but due to security implications, restrictions
are usually imposed by the operators. For example, contactless payments are currently
limited to £30 per transaction in the UK [46, 155].

These limitations apply in contactless transactions in general, including smart
cards. However, smartphones are susceptible to more security threats. They may not
contain secure storage, their operating system is much larger than that of a smart card,
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therefore more prone to security flaws due to larger amount of coding errors [114],
and users have control over the software installed on a device.

Among the possible attacks [164] on contactless transactions is the relay attack.
As already mentioned, in order to protect against relay attacks, the coexistence of the
devices involved in a transaction should be able to be proven. In the previous chapter,
the use of infrared as an AAE actuator was described and assessed. The aim of this
chapter is to investigate whether the detection can take place during the course of the
transaction.

5.2.1 Threat Model

In a contactless transaction scenario, an attacker performing a relay attack can use a
legitimate user’s identity without authorisation. Unauthorised access to services that
the legitimate user is entitled to can therefore be granted. For example, an attacker
can perform a payment using the legitimate user’s account, or get unauthorised access
to buildings.

For the attack to take place, a relay pair should be operated by an attacker
(Figure 1.1). A relay transaction instrument TI′, presented as a legitimate transaction
instrument, should be tapped to a legitimate transaction terminal (TT) and initiate
a transaction. Simultaneously, the attacker should tap the relay device TT′ to a
legitimate payment instrument (TI). This can be achieved either by masquerading
TT′ and presenting it to the legitimate user as a legitimate transaction terminal, or by
tapping it without the user’s consent.

For a successful attack, the communication messages should be relayed between
the devices TI and TT, through the relay pair. As already mentioned, according to
the EMV standards, a transaction should be completed within a time frame of 500ms.
Similarly, in the case of transport related transactions, a time restriction of 300–500ms
is usually imposed [150]. Therefore, the relay equipment should be capable of relaying
all the communication data between the legitimate device pair (TT–TI) in a timely
manner.

In the course of this chapter, the attacker requires no prior interaction or knowledge
of neither TT nor TI; the attacker is of opportunistic nature and has only control
over the devices TT′ and TI′. However, the potential implications if TT or TI are
compromised are out of the scope of this chapter, since a relay attack may not be
necessary to achieve the same goals under these circumstances. The focus is primarily
on the issue of genuine devices requiring proximity assurance in order to conduct
a legitimate transaction. Finally, the attacker only has access to off-the-shelf relay
equipment.

5.2.2 Candidate Integration Architecture

The anti-relay mechanism should be optimised in order to detect relay attacks during
the time-frame of the transaction, as imposed by industry standards. In order for the
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proposed solution to be introduced to the existing infrastructure, an infrared receiver
should be available on payment terminals. Moreover, payment instruments should
be equipped with infrared blasters (emitters).

Since infrared light has a range of a few metres, a denial of service attack can be
achieved (for example, an attacker can emit random infrared signals from a distance).
Even though this is not a relay attack, the objective of the adversary may still be
attained. A protective cover around the infrared sensor can effectively prevent such
attacks, by blocking infrared light out of the range required for the payment process
from reaching the infrared sensor.

In order for the bit-sequence comparison to take place, three pieces of information
are required:

1. The random-bit sequence generated and emitted by TI.

2. The time required for TI to emit the information through infrared (xi — see
Section 4.3.1).

3. The infrared sequence captured by TT.

The second element is required because a delay (initialisation time) was noticed
before device TI could start emitting infrared. As mentioned in Section 4.3, after
analysis of Android’s source code, it was concluded that it is likely for that latency
to be induced due to the infrared driver of the device. Since the source code of the
driver is not publicly available, this delay is being considered, as it was not possible to
reduce it (further discussion in Section 5.2.5). However, since the total emission time
(500 bits — 100ms, since each bit is represented by a 200µs pulse or pause) and the
total initialisation time are known or can be calculated, it is possible to find the time
(relative to the initiation of the transaction) when device TI started emitting infrared.
Any infrared signals received by device TT prior to the initiation of the emission or
after its completion are discarded by the comparing party.

The average total infrared emission process time by device TI was measured to be
226.66ms, by performing 300 runs of the experiment, using an SGS5 mini (SM-G800F)
device, running Android 5.1.1. In order for the relay attack detection method to be
performed during the time of the transaction, the similarity comparison between
the transmitted and the captured bit-sequence has to be performed by one of the
devices involved in the transaction. The required data should be transferred through
a secure channel, in this occasion encrypted through the NFC channel that is running
in parallel.

In order to accelerate the relay attack detection technique, TI can encrypt and
transfer the random-bit sequence to TT, through the NFC channel, in parallel to the
infrared emission process. Since the two devices are considered trusted, the security
of the system is maintained. Once the emission of the infrared is complete, the time
required for the process to complete is also transferred in a secure manner from device
TI to device TT. Device TT discards any bits received outside the emission time-frame
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and proceeds with the comparison of the emitted and received bits. The wdiff [58]
program is responsible for the comparison process. The wdiff program was used
instead of the dwdiff, which was used in Chapter 4, because it produced the exact
same results, but its performance was found to be slightly better. If the computed
similarity is greater or equal to 98%, device TT responds with an approval message
to device TI. Contactless transactions tend to use either public, or symmetric key
cryptography, hence the integration of the PRAD mechanism was evaluated against
these scenarios.

Public Key-based Protocol

In mobile payments and physical access control, public key cryptography is usually
recommended for use in related protocols, according to EMV [52] and NIST [107],
respectively. The protocol messages used for the secure exchange of the required data
between the two devices are listed in Protocol 1. A mechanical formal verification
of the protocol has been performed, using the Scyther tool, against all automatic
Scyther claims, except the secrecy of data sent in plain text. The verification script can
be found in Appendix B. No attacks were detected through the mechanical formal
verification. Note that resilience against relay attacks of the protocol itself cannot
be verified through Scyther. The tool is only used to prove that data marked as
Secret or SKR in the scripts, will not be revealed to an adversary, assuming that the
cryptographic functions are perfect.

Protocol 1 Public-key Based Protocol
1: TT → TI : CertAuth(TT)| |IDTT | |nTT

2: TI → TT : EPKTT {IDTI | |IDTT | |nTI | |nTT | |K | |IRseq}
| |SSKTI [K | |nTT]| |CertAuth(TI)

3: TI → TT : EK{IDTI | |IDTT | |nTI | |nTT | |IRtimin g}
4: TT → TI : EK{IDTI | |IDTT | |nTI | |nTT | |approval | |SSKTT [nTI]}

– Message 1: Device TT sends to device TI its public key certificate CertAuth(TT),
its ID IDTT , and a random nonce nTT .

–Message 2: TI verifies the received certificate. If it is genuine, device TI encrypts,
using the public key of device TT, its ID (IDTI), the ID of device TT (IDTT), the random
nonces nTI and nTT , a session key K, and the random-bit sequence that is emitted
through the infrared channel (IRseq). The aforementioned encrypted message, along
with the RSA public key certificate of device TI, and a signature on K and nTT —using
the private key of device TI— are sent to device TT.

– Message 3: Device TI sends to device TT, IDTI , IDTT , nTI , nTT , and the time
required until it was capable of emitting infrared signals (IRtimin g). The data is
encrypted with the session key K. This message is separated from the previous for
performance reasons, as IRtimin g is available after the infrared sequence is emitted,
during which time IRseq can be sent.
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– Message 4: If the certificate of device TI, as well as the signature from Message
2 are verified, device TT proceeds to compute the emitted and captured infrared bit
similarity. Device TT takes a decision and responds with an approval or rejection
message. The decision message, along with IDTI , IDTT , nTI , nTT , and a signature
on nTI —using the private key of device TT— are sent to device TI. The message is
encrypted using the session key K (as in Message 3).

Symmetric Key-based Protocol

In the field of smart ticketing, protocols are often based on symmetric key cryptography.
For example, theMIFARE Plus card [117], and the Calypso ticketing system [22]. In the
case of the MIFARE Plus card, in order for the security of the system to be maintained
in case the key of a card is compromised, each card uses a different key. The terminal
contains a master key, fromwhich the symmetric key of a card/smartphone is derived
through a process called symmetric key diversification [4]. The card provides the
Unique Identification number (UID), the Application ID (AID), and the System
Identifier (SID) to the terminal. This information is used as input to the diversification
process in order for device TT to generate the key stored in device TI.

In a smartphone-based transaction, a dynamic element should also be included
in the diversification process, possibly provided by the scheme operator. Without a
dynamic element, a device with a compromised key might not be able to be used for
this type of transaction again. Replacing the device in such scenarios is expensive.
However, developing a diversification process that takes as input dynamic elements
is out of the scope of this thesis.

A symmetric key-based protocol was designed (Protocol 2) and undergone
mechanical formal verification, using Scyther, against all automatic Scyther claims.
The verification script can be found in Appendix C. No attacks were detected through
the mechanical formal verification. For the verification of this protocol, Scyther
Compromise was used [37], which supports all the protocols that are available for
the regular version of the program. The SKR function that is used in the verification
script, and is not standard for the regular Scyther version. In the script, it is treated as
equivalent of the Secret claim of the regular version, but further marks the variables as
session keys [38]. In this occasion as well, resilient against relay attacks is not implied.

Protocol 2 Symmetric-key Based Protocol
1: TI → TT : Key Diversification Information
2: TT → TI : EK{IDTT | |nTT}
3: TI → TT : EK{IDTI | |IDTT | |nTI | |nTT | |IRseq}
4: TI → TT : EK{IDTI | |IDTT | |nTI | |nTT | |hash[IRseq]| |IRtimin g}
5: TT → TI : EK{IDTI | |IDTT | |nTI | |nTT | |hash[IRseq]| |approval}

–Message 1: Device TI sends the information used by the diversification algorithm
in order for device TT to generate the symmetric key K. A symmetric key compromise
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in a MIFARE card scenario requires replacement of the card, as the diversification
data is static. Replacing a mobile device in such scenarios is very expensive and
impractical. Therefore, the diversification information in this scenario includes the
Device ID and a dynamic ID that can change in case the original key is compromised.

–Message 2: Device TT sends its ID (IDTT) and a random nonce (nTT) to device TI.
The message is encrypted using the symmetric key K, which is pre-shared between
the two devices.

–Message 3: TI responds with its ID (IDTI), the ID of the terminal (IDTT), random
nonces nTI and nTT , and the random-bit sequence that is emitted through infrared
(IRseq). The message is encrypted using key K.

– Message 4: Upon completion of the emission of the random-bit sequence
through infrared, device TI sends the emission initiation time (IRtimin g) to device
TT. The message also contains the identities and the random nonces generated by
the two devices, as well as the hash of IRseq. The last element is provided so that
an attacker is not capable of flipping the message order of messages 2 and 3. This
message is also encrypted using the key K.

– Message 5: Using the provided IRseq and IRtimin g, device TT returns a
rejection or approval message to device TI. The approval, along with IDTI , IDTT , nTI ,
nTT , and a hash on IRseq are sent encrypted with key K to device TI.

5.2.3 Evaluation Framework

In order to evaluate the performance of the protocols and the proposed architecture,
working prototypes were built. In all scenarios, a laptop running Fedora 25 was used
as device TT, with an i7–2620M CPU at 2.70GHz processor and 8GB of RAM. Device
TI was represented by an SGS5 mini (SM-G800F) device, running Android 5.1.1. The
device is regarded to be of low specifications. Two applications were built for each
device, one for the evaluation of each of the two protocols. Both protocols are relevant
in the case of contactless transactions, since public key cryptography is suggested in
the cases of contactless payments and physical access control, while symmetric key is
usually suggested in the case of transportation ticketing.

An NFC-reader (ACS ACR1281-C1) was attached to device TT. The applications
for device TT were developed in Python, using the pyscard library [16], in order to
control the NFC-reader. Android applications were developed in Java, using HCE in
order to control the NFC adapter of the device.

Raw infrared data captured during the experimental phase of Chapter 4 was used
for the emulation of infrared emission/capture. In order to further weigh potential
impact on the performance of the system, device TI was emitting infrared signals
during the time of the transaction. The performance impact of capturing infrared
data is minimal. A Raspberry Pi with an infrared receiver connected to its GPIO pins
was used to measure the system load when receiving infrared signals. The liblirc
library [102] was used, and the performance burden on the device was negligible.
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Public Key Based

In the first scenario, which applies in domains that require the use of public key
cryptography in contactless transactions, 2048-bit RSA was used. Each device
contained a public key pair, used for the transaction.

Upon the establishment of the session key, AES 128-bit encryption, using the
CBC mode and PKCS5 padding, was used. All the keys and nonces were randomly
generated, using the SecureRandom Java class on device TI and the Randommodule of
the pycrypto Python library [104] on device TT.

The bit-similarity comparison between the captured and transmitted infrared
sequence was performed by device TT, upon receiving the third message. Bits
captured outside the time-frame during which device TI was transmitting were
discarded. The wdiff tool was then called through the check_outputmodule of the
subprocess Python library. The similarity percentage was returned to the application
running on device TT. The approval flag was finally sent as part of the last message to
device TI, based on that percentage (0x01 if the similarity percentage was equal or
exceeded the threshold of 98%, otherwise 0x00).

Symmetric Key Based

Similar to the public key-based scenario, 128-bit AES, CBCmode, with PKCS5 padding
was used in the symmetric key-based scenario as well. The bit-similarity comparison
was performed upon receiving the fourth message, by device TT, in the same way
as in the public key-based scenario. The key diversification code, according to the
document AN10922 [4], was integrated by modifying the implementation in [17].
Finally, SHA256 was used as the hashing algorithm.

5.2.4 Results

Each of the protocols was executed 100 times in order to estimate the performance of
the system and evaluate the applicability in contactless transaction scenarios. The
performance measurements can be found in Table 5.1. The measurements were taken
by device TT and represent the round trip time (i.e. the time between device TT starts

Table 5.1: Results of Contactless Transactions (in ms)

Protocol 1 Protocol 2 Protocol 2 (300b)

min max avg min max avg min max avg

Diversification - - - 30.2 42.4 39.0 28.1 50.5 38.8
Round Trip 1 116.1 169.4 152.2 26.6 81.5 32.6 21.9 40.9 27.6
Round Trip 2 95.7 135.5 109.4 146.6 201.5 194.7 95.5 115.2 109.0
Round Trip 3 52.1 133.7 70.1 24.4 32.1 27.2 24.6 38.0 28.6

Bit Similarity 3.8 5.9 4.3 3.8 5.2 4.5 3.5 5.2 4.1
Total 304.9 395.4 331.8 284.3 299.7 293.5 193.8 215.0 204.0
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generating a message and the response that comes from device TI is processed). Since
the clocks of the two devices cannot be perfectly synchronised, practically measuring
the timing of each individual message was not feasible. In the first message of each
protocol, the timing of the SELECT command (APDU) is also included.

The last column lists the results of the second protocol with lower number of bits
emitted (300 bits), for better integration with transport related contactless transactions,
which require a time restriction of 300–500ms (further discussion in Section 5.2.5). The
minimum and maximum observed timings in the 100 protocol runs and the average
running time are listed for each of the protocol messages. The time required for the
diversification process, the comparison of the transmitted and captured bit-streams,
and the total protocol running time are also listed.

5.2.5 Discussion

The results indicate that the running time of the first protocol are within the timing
bounds that EMV requires. Even though the infrared emission lasts 100ms, the
average total emission time was approximately 227ms. The aforementioned emission
time refers to the time between requesting the infrared sequence emission from
the operating system, until the completion of the process. As already discussed in
Section 4.3, after inspection of the Android Open Source Project’s (AOSP) source
code [10], it was concluded that this delay is imposed either by the proprietary infrared
drivers, or by modifications on Android’s source code by Samsung. Since access to
the source code of these components is not available due to their proprietary nature, it
was not possible to investigate the problem further. However, it was possible to emit
infrared signals, using an infrared LED attached to the GPIO pins of a Raspberry Pi,
controlled by a program written in the C language, with negligible delay. Therefore,
it is believed that this delay can be confined. An average extra performance cost
of approximately 57ms and 82ms was measured in the public and symmetric key
scenarios respectively, in the case of 500 bits.

It should be stressed that the measured performance is an indicator of the per-
formance cost of NFC contactless transactions, using the proposed solution. An
additional barrier was the multitude of EMV and physical access control implementa-
tions, as well as the limited available information regarding major transport ticketing
protocols. However, industry standards like the EMV specifications were used as
guidelines for developing and delivering a robust solution.

In a real-world scenario, more information is exchanged between the devices as
part of the transactions, that is not covered by the protocols presented in this chapter.
Real-world applications, after the establishment of a secure channel between the
devices involved in a transaction, would require to transfer the random-bit sequence
and the total emission time, in order for the similarity comparison to be performed.

Since some transportation ticketing transactions require to be completed within
300–500ms, as mentioned earlier, the performance of the second protocol might not
be optimal for some slower devices. Therefore, the experiment was repeated with
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a reduced number of random bits. A total of 300 randomly generated bits were
generated in the second experimental round, constituting an emission time of 60ms.
The probability of an attacker guessing the random sequence, assuming its true

random nature, is 1
2300 . The average performance of the protocol run was improved,

with potential to successfully be integrated into such protocols. The average total
emission time, caused due to the abovementioned delay in the emission, was 137ms.
An average extra performance cost of approximately 32ms was introduced due to the
issue.

5.3 Use Case: Continuous Two-Factor Authentication

In order to add an extra layer of security, access to websites, services, or systems, may
require an extra verification step in addition to the login credentials. This second layer
of security is often referred to as Two-Factor Authentication (2FA). A widely adopted
2FA technique is the use of a One Time Password (OTP), which can be sent to the
user via SMS message, generated by an application on the user’s device, or other
means. In the case of host-based 2FA, hardware tokens, like smart cards or OTP
generators, are often used. Upon the successful completion of the login credentials,
users are typically requested to proceed by providing the 2FA information in order
to successfully complete the login process. Access to a service that provides 2FA
functionality is only granted upon successful completion of both authentication steps.

Using an OTP as a second factor usually requires input of the OTP once per session.
Depending on the system settings, a session may last for several months without
requesting an OTP again (e.g. access to a website). Continuous authentication is not
achieved in this case. Moreover, being able to provide the OTP to the service does not
imply the user’s physical presence close to the device. Shoulder surfing attacks can be
used for example by attackers in order to compromise the OTP and login in a remote
location [27], as the expiration time of these passwords can be several seconds long.

In the case of smart cards, an extra cost is associated, and distance bounding
protocols may not be applicable in this scenario. The multi-process nature of the host
(e.g. a server or a personal computer to which a user wishes to login to), the operating
system and its configuration, and the hardware variability do not assist towards this
direction (potentially a similar issue as the one described in [156] will exist).

A 2FA model is hence proposed, based on the principle of infrared as a proximity
detection method, capable of providing continuous authentication, while eliminating
the risk of attacks, like shoulder surfing and relay attacks. In this scenario, the secure
primary channel is established over WiFi or Bluetooth between devices TT and TI
(a personal computer and a smartphone, respectively). The second channel is the
infrared channel, as described in the previous sections. Further discussion on the
architecture can be found in Section 5.3.2.
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5.3.1 Threat Model

Since relay attack detection is based on the comparison of data captured by both
devices TT and TI, both devices should be trusted. In case device TT is not trusted,
captureddata can bemanipulated or delayed, which can lead to a false proximity result.
In the case of awebsite, which can be accessed frommultiple devices/locations, device
TT cannot be considered trusted. By requiring some trusted execution environment,
like Intel SGX [35], trust in device TT can be obtained. However, even though a relay
attack might not be applicable in this scenario, an attacker in the vicinity to device
TI can successfully login using a computer (e.g. a Raspberry Pi), which is controlled
locally or remotely. Therefore, this technique is only applicable in scenarios where
logging in to a service can be achieved through a single, trusted device, like a user
login to an operating system and other host-based services.

Similar to contactless transactions, in order for an attacker to perform a relay attack,
a relay pair TT′–TI′ is required. The goal of the attacker is to be able to successfully
relay infrared signals in a timely manner. Since the same design principles described
in Section 4.2.1 are used, an attacker has a very limited window for caching infrared
signals and replaying them at a remote location.

5.3.2 Candidate Integration Architecture

The generic architecture of the proposed system is depicted in Figure 5.1. When
a user logs in to a system that supports the proposed solution, a communication
initiates with an underlying service, responsible for the 2FA process. In order to
provide continuous authentication, the service is called periodically (e.g. every 15
seconds). Whenever the service is called, it communicates with device TI through a
WiFi or Bluetooth channel in a secure manner (i.e. using a secure protocol). Device
TI must be running an application capable of communicating with the service. The
application running on device TI should be linked to the service that device TT is
attempting to login to (e.g. by prior login of the user to the mobile application).

Depending on the settings of the service, the underlying service can be called
periodically and request from device TI to provide an authentication token, in the

Figure 5.1: Architecture of Two-Factor Authentication
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form of random infrared bits. If the authentication is unsuccessful, an action is taken.
Actions can vary according to the requirements of the service. For example, the active
session on device TT can be discontinued.

Since the success of the authentication transaction depends on the orientation of
the two devices (i.e. whether the infrared blaster is aligned with the infrared receiver),
less drastic measures might be taken instead. For example, permission escalation can
be used to restrict access to certain critical actions and directories.

Either of the two protocols described in Section 5.2.2 can be used for the establish-
ment of the secure channel, depending on the requirements and the implementation.
For example, a symmetric key can be shared during the setup process by asking
the user to scan a barcode. The key can be periodically updated, but this is out of
the scope of this chapter. In multi-user environments, such keys can be generated
through symmetric key diversification. Public key cryptography might be a better
option for logging user access in such scenarios.

5.3.3 Evaluation Framework

The same devices described in Section 5.2.3 were used in this scenario as well as
devices TI and TT. Instead of an NFC adapter, two alternate primary communication
channels were examined; WiFi and Bluetooth.

In order to evaluate the applicability and performance of the proposed architecture,
a working prototype was built. An application was developed in Java, representing
the application that requires 2FA as part of the authentication process. In order for a
user to remain logged in, the successful completion of the 2FA had to be achieved.
Otherwise, a failure message was displayed and access to certain components of the
application was restricted. The 2FA service was called every 15 seconds, in order to
provide continuous authentication assurance.

Four Android and four Python applications were built for TI and TT, respectively,
in order to assess all the possible combinations. Namely, both protocols described in
Section 5.2.2 were implemented for each of the two primary channel options (WiFi
and Bluetooth) applicable to this scenario. In the case of WiFi, the two devices were
connected to the same wireless network, while in the case of Bluetooth, a pairing
between the devices had to be established before the initiation of the 2FA process.
The pairing was performed through the Python applications, using the PyBluez
library [95].

Upon initialisation of the application requiring 2FA, a call towards the underlying
service was triggered. The service, written in Python, would then establish a
connection to device TI in the case of Bluetooth. In the case of WiFi, no session was
required, since the communication was performed through UDP packets. Device TT
would then request from device TI to initiate a transaction through the established
Bluetooth Radio Frequency Communication (RFCOMM) channel, or a UDP packet.
Upon transmission of the message, device TT would begin listening for infrared
signals through an infrared receiver, as in Section 5.2. Upon receiving the message,
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device TI would start emitting infrared signals through its infrared blaster. Infrared
data captured during the experimental phase of Chapter 4 was used in this case as
well. The communication would proceed in parallel through both channels. Using the
wdiff tool, device TTwould compute the similarity between the emitted and captured
infrared sequences. If the similarity threshold was reached, upon completion of the
protocol the Python service would allow access to certain elements of the application.

5.3.4 Results and Discussion

The results of 100 protocol runs over WiFi and 100 over Bluetooth are presented in
tables 5.2 and 5.3, respectively. For each protocol, the minimum, maximum, and
average running times are listed.

Table 5.2: Results of 2FA —WiFi (in ms)

Protocol 1 Protocol 2

min max avg min max avg

Diversification - - - 2.6 5.2 2.7
Round Trip 1 21.7 98.0 30.3 6.2 67.9 8.6
Round Trip 2 131.5 252.6 201.2 162.1 277.3 224.2
Round Trip 3 16.8 62.1 22.6 6.3 18.2 7.9

Bit Similarity 4.0 6.9 4.7 3.9 10.6 4.6
Total 246.3 305.2 254.2 238.4 297.3 243.3

Table 5.3: Results of 2FA — Bluetooth (in ms)

Protocol 1 Protocol 2

min max avg min max avg

Diversification - - - 2.6 3.5 2.7
Round Trip 1 74.3 182.2 116.9 52.1 153.9 76.9
Round Trip 2 123.2 200.6 175.2 129.0 262.3 209.9
Round Trip 3 54.5 144.7 70.7 35.4 154.3 57.2

Bit Similarity 3.9 5.7 4.6 3.8 13.5 4.6
Total 323.6 440.1 362.8 306.2 426.2 346.8

The results indicate the effectiveness of the proposed solution. The overhead of
the process was minimal, and the effectiveness high. From a usability perspective,
the setup process needs to be completed once, and thereafter the user only has to
place device TI to be facing towards device TT. In order to enhance the security of
the system, the user may be required to unlock the device in order for the process to
initiate.

A usability concern may rise when the user needs to use device TI to make or
receive a call, while using device TT. A temporal suspension of the continuous
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authentication process can be applied in this occasion, in case an initial login using
both factors has already been completed.

An attacker with access to device TT can further use techniques in order to
compromise the system. For example, modify the security parameters by externally
plugging the hard drive to a computer. Disk encryption can assist towards the
prevention of such attacks.

Finally, since no time restrictions apply in this scenario, the natural ambient
environment may be used as a potential alternative, instead of generating an AAE and
using infrared as the actuator. However, manipulation or prediction of the natural
ambient environment might be possible. For example, if the room temperature is used
to detect proximity, a heater or an air-conditioner can be used in order to alter the
values to the attacker’s benefit. In case of ambient sound, an attacker can compromise
the system by following the habits of a legitimate user. For example, when a user
is watching a television show, the attacker can produce the same ambient sound
(by tuning to the same television channel), and successfully authenticate. Attacks
on using the sound as a proximity detection mechanism have been described and
demonstrated in previous works [94, 140]. Finally, in the case of light, an attacker can
cover the light sensor of device TT when device TI is in the pocket of the legitimate
user, and gain access to the system. Therefore, using the natural ambient environment
may not effectively protect under certain circumstances, like in the presence of an
attacker with context manipulating capabilities.

5.4 Other Scenarios

Other scenarios, that are either not in compliance with the context of this chapter
(Section 5.4.1), or are covered by the aforementioned scenarios (Section 5.4.2), are
described in this section.

5.4.1 2FA for Logging In to Web Services

An attacker who has the ability to place a device in the vicinity of TI may be able to
successfully login, using the standard procedure. Although this is not a relay attack,
as no data is being relayed between devices TI and TT, access to the legitimate user’s
account can be achieved. In scenarios where a relay attack is not of concern, infrared
emission can operate as a 2FA provider, without requiring device TT to be trusted.
For example, if an attacker has compromised the credentials of a user, but does not
have access to the vicinity of device TI. Since the main objective of this chapter is to
provide anti-relay capabilities in real-world scenarios, and the aforementioned case
does not fit this context, it is listed as a future work direction.

As a note, it should be stressed that in such scenario the authenticationmust not be
performed by device TT, but by the service provider or device TI. Since device TT is
not trusted, the overall architecture of the system in this occasion should be modified.
The resulting architecture should be similar to the architecture of Sound-Proof, as
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described by Karapanos et al. in [94]. In their proposal the use of ambient sound
is employed in order to provide device proximity proof and use it as a means of
zero-effort 2FA. The work is mostly focused on usability, and potential security
problems have been discussed by both the authors and by Shrestha et al. in [140]. It is
believed that most of the discussed security threats can be eliminated by replacing
sound with a randomly generated infrared sequence, however some usability might
be diminished.

5.4.2 Internet of Things Co-Presence Verification

In many occasions, in order for Internet of Things (IoT) devices to achieve their
intended operation, proximity should be guaranteed. For example, in a security
system, in order to avoid blind spots, in many cases devices should be located within
visibility range. An attacker can move some components of the security system and
apply a relay attack in order to deceit the system.

By applying the proposed solution, proximity evidence can be provided among
such devices. A similar approach to the ones described in this chapter can be applied.
When one IoT device requests proximity evidence from another, the same procedure
is executed, with the requesting device acting as device TT and the proving device
as device TI. In this scenario, the IoT devices of the system should be considered as
trusted as well.

5.5 Summary

In this chapter, the integrationof infrared as anAAEactuator for relay attackprevention
in different real-world scenarios was investigated. Existing industry standards were
taken into consideration, where applicable. Contactless transactions (EMV payments,
physical access control, and transport ticketing), as well as continuous host-based
two-factor authentication were investigated. Online two-factor authentication, and
IoT co-presence verification were also discussed.

Integration architectures were described, and working prototypes were built and
evaluated. Proposed protocols were undergone mechanical formal evaluation. The
results indicated that integration of the proposed solution with existing industry
standards can be used to counter relay attacks, and is in compliance with current
operational timing requirements, where applicable.
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Chapter 6

Vibration as an Artificial Ambient
Environment Actuator

6.1 Introduction

In previous chapters of this thesis, AAE as a means of PRAD was described, and
the use of infrared light as an AAE actuator was evaluated for its effectiveness and
applicability in real-life scenarios. In this chapter, the effectiveness of vibration as an
AAE actuator is investigated.

In this case, one or both transaction devices vibrate a randomly generated pattern.
The impact of the vibration is recorded by both transaction devices, using a selected
ambient sensor. The recorded data from the two devices is subsequently compared
against each other for similarity. For this approach to be effective in terms of providing
PRAD-related evidence, the comparison of two recordings that are genuinely in
proximity should be distinguishable from comparing recordings that are not in
proximity. Moreover, it should be difficult for an attacker to replicate the same
vibration pattern at a remote location, by relaying it or otherwise. More specifically,
the challenge for the attacker is to replicate the vibration both accurately and in a
timely manner. In case there is a delay in replicating the pattern, part of the impact
might not be captured by one of the transaction devices. To further minimise the
probability of the attacker accurately replicating the vibration at a distant location,
both transaction devices can vibrate a random pattern (different for each device)
simultaneously. This way, a fusion of the two vibrations will be recorded.

In order to assess the effectiveness of the proposed solution, an evaluation test-bed
was deployed. During the trials, 36,000 genuine and relay transaction pairs were
used, covering a wide range of potential techniques that an attacker might use against
the proposed system. Analysis with popular machine learning algorithms (same
as in Chapter 3) indicates that the proposed solution is highly effective as a PRAD
mechanism, especially in the case of applying a gyroscope as the ambient sensor to
measure the impact (0.1% EER).
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6.2 Vibration as an AAE Actuator

In this section, the basic principles of using vibration as anAAE actuator are presented.

6.2.1 AAE Framework

The genuine user is asked to place the Transaction Instrument (TI) on the Transac-
tion Terminal (TT). Upon initiation of the transaction, one (unidirectional) or both
(bidirectional) transaction devices vibrate using some randomly generated pattern.
Simultaneously, both devices use some ambient sensor to measure the impact of the
vibration over a period of time. A 500ms long vibration pattern and recording was
used. In the case that both devices vibrate, a fusion of the two random vibrations
is causing the impact. Candidate sensors, available on a wide range of modern
smartphones that can potentially be used to measure the impact of the vibration
include:

1. the accelerometer,

2. the geomagnetic rotation vector,

3. the gyroscope,

4. the magnetic field,

5. the rotation vector,

6. the gravity sensor, and

7. the linear acceleration sensor.

The vibration-based AAE channel (referred to as the ‘vibration channel’) is used
as an out-of-band channel5, along with the main communication channel (e.g. NFC,
WiFi, etc.), aiming to provide proximity assurances. The initiation of the vibration
channel should be subsequent to the initiation of the main communication channel
for each of the devices, with as minimal delays as possible, in order to minimise the
attack window.

Upon completion of the transaction, data streams captured by the sensors of the
two devices are compared for similarity. The similarity comparison can be performed
either by one of the transaction devices, or by a TTP. The exact characteristics and
architecture of the party responsible for the comparison (i.e. one of the transaction
devices or the TTP) are beyond the scope of this chapter. Of course, the recoded
data streams should be communicated to the comparison party in an encrypted and
authenticated form.

The comparison of the data streams should provide adequate information regard-
ing the coexistence of the communicating devices. The comparison party takes a

5Out-of-band channel: Second channel
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decision, based on which the transaction is either approved or rejected. The assump-
tion of this technique is that juxtaposing the recordings of the vibrated pattern(s)
will be distinguishable when the transaction devices are in proximity, compared to
otherwise.

6.2.2 Threat Model

The attacker, in this chapter as well, is considered to be of opportunistic nature and
requires no prior interaction or knowledge of either TT or TI. Scenarios where TT
or TI are compromised will not be covered. Instead, the focus is on evaluating the
proximity assurances that can potentially be provided for genuine devices, when
using vibration as an AAE actuator.

It is also assumed that the attacker only has access to off-the-shelf relay equipment.
Transaction limits often apply on smartphone-based transactions, for example the £30
limit that is currently imposed on digital payment transactions in the UK (as discussed
in the previous chapter). Therefore, due to the limited financial gain involved, a
powerful attacker with advanced and expensive relay equipment is not the major
concern.

For the same reason, it is assumed that the attacker can only try to guess the
pattern vibrated by the genuine devices. More advanced attacks, like acoustic attacks,
during which an attacker captures the vibration pattern by performing acoustic
analysis and replays it at a distant location, are not considered. Even though acoustic
attacks have been demonstrated in the context of decoding a vibration pattern [67],
combining an acoustic and a relay attack by relaying the decoded pattern at a remote
location in real time is a challenging task for off-the-shelf attackers. Delays associated
with audio recording latency, signal processing, data communication between the
two relay devices, and replaying at a distant location, which would be required
for such an attack, would significantly increase its complexity. Note that delay in
relaying the pattern at a distant location would lead to a shift of the relayed vibration
pattern on that side (e.g. Figure 6.1). However, an emulation of such an attack has
been considered (during which both relay devices vibrate the same patten), and is
discussed in the following sections.

(a) No Relay Attack (b) Relay Attack

Figure 6.1: Vibration Fusion Without and With Relay Attack
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6.3 Evaluation Framework

In order to evaluate the proposed solution, a test-bed framework was deployed. Four
Android devices were used to emulate a genuine (proximity) and a relay transaction.
The two transactions (genuine and relay) were being captured at the same time when
required, or generated based on the captured data otherwise. Three scenarios were
evaluated:

1. both transaction devices vibrating,

2. only the transaction terminal vibrating, and

3. only the transaction instrument vibrating.

Each of these scenarios was evaluated with each of the six sensors:

1. accelerometer,

2. gravity sensor,

3. gyroscope,

4. linear acceleration sensor,

5. magnetic field, and

6. rotation vector.

The communicating devices in the genuine transaction scenario were a Transaction
Terminal (TT), and a Transaction Instrument (TI′). In the case of the relay transaction,
the communicating devices were the same transaction terminal TT, and a distant
Transaction Instrument (TI), located 5ft (1.5m) away. Devices TI′, and a transaction
terminal co-located with TI (referred to as TT′), were used as relay devices. The
transaction scenarios are as in previous chapters, as depicted in Figure 3.3.

Device TI′ had a double role in this set-up as well. It acted as both a genuine and
a relay device. This way, data from both scenarios could be collected simultaneously
when possible (as in Chapters 3 and 4). The two devices of each pair were placed
one on top of the other, such that the transaction terminal was at the bottom, facing
downwards, and the transaction instrument on top, facing upwards. The two pairs
(genuine and relay) were placed on separate tables, such that vibration of one pair
would not affect the measurement of the other.

Five different attack techniques were performed against each sensor and each
vibration scenario. Four scenarios were obtained by assuming that the attacker was
capable of vibrating a pattern from one, both, or none of the transaction devices. A
further scenario was obtained by assuming that the same pattern could be vibrated
on both relay devices during a single transaction (emulating a perfect acoustic attack).
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The notation that is used to describe the vibrationmode of the transaction and relay
devices in this and subsequent sections has the form of four characters, each character
representing either ‘Vibration’ or ‘No Vibration’ using ‘V’ and ‘N’ respectively. The
sequence of four characters represents the four devices of the test-bed, as: TT TI′ TT′ TI.
For example, VNVN means that TT and TT′ vibrate, while TI′ and TI do not.

In total, 15 distinct vibration mode sets were part of the empirical analysis. Out
of these 15, five sets were collected through field trials, and ten sets were generated
based on the raw data from the field trials (these sets are referred as ‘synthetic datasets’).
For the generation of the synthetic datasets, another two sets had to also be collected
through field trials.

In the case of synthetic datasets, transactions collected by the pair TT–TI′ through
field trials were regarded as genuine transactions. Relay transactions were based on
combining genuine transaction measurements performed by TT and TI from different,
experimentally collected sets. A point to note is that synthetic data was based on
raw field-data, and was not generated randomly or based on artificial-replication of
specific features.

Figure 6.2: Synthetic Data Generation (VNNV)

Figure 6.2 depicts the generation process of the synthetic dataset VNNV as an
example case. In this case, a genuine transaction (no relay involved) required both
transaction devices to be vibrating. Three sets of raw field-data for the construction of
this case were used. Considered as genuine transactions are transactions between
TT and TI′ from the set VVVV. For relay transactions, raw field-data captured by
device TT from the set VNVN were used (where TI′ did not vibrate and TT did),
and data captured by device TI from the set NVNV (where TI vibrated and TT′ did
not). Table 6.1 lists all the evaluated vibration scenarios and experimentally recorded
pairs that were used for the generation of synthetic pairs. Under the ‘Generated By’
heading of the table, bold characters in vibration mode sequences identify the raw
field-data that constitute the synthetic data for the respective mode. The two extra
sets (discussed before) are marked as ‘Other’ in the table.

The rationale for the synthetic data generation is due to one of the following two
reasons — depending upon the vibration mode sequence:
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Table 6.1: Vibration Modes

Generated By
TT TI′ TT′ TI Experimentally

Recorded Genuine Pair Relay Pair

Both Vibrate

V V V V 3 — —
V V V* V 3 — —
V N V V 7 VVVV VNVN + VVVV
V V N V 7 VVVV VVVV + NVNV
V N N V 7 VVVV VNVN + NVNV

TT Vibrates

V N V N 3 — —
V V V N 7 VNVN VVVV + VNVN
V V V* N 7 VNVN VVV*N (Other)
V V N N 7 VNVN VVVV + NNNN
V N N N 7 VNVN VNVN + NNNN

TI Vibrates

N V N V 3 — —
N V V V 7 NVNV NVNV + VVVV
N V V* V 3 — —
N N V V 7 NVNV NNNN + VVVV
N N N V 7 NVNV NNNN + NVNV

Other V V V* N 3 — —
N N N N 3 — —

*TT′ vibrates the same pattern as TI′

1. Both a genuine and relay transaction could not be captured simultaneously (i.e.
when TI′’s vibration mode was not the same as TI).

2. Recorded data could be used for the generation of a pair (e.g. in the case of
VVNV, whose genuine pair can be taken from VVVV, and the relay pair by
combining the same pair’s TT recording with NVNV’s TI recording).

A total of 400 transactions per captured pair were recorded for each sensor
(totalling 16,800 transaction pairs), based on which, 24,000 synthetic relay transactions
were generated (400 for each synthetic set). Each synthetic set consisted of 400 genuine
transactions, recorded through the experimental test-bed, and 400 synthetic ones,
based on the combination of recorded transactions.

Four Android applications were developed, one for each device. The devices used
in the genuine pair were two SGS4 (GT-I9500) devices. For the relay pair, an SGS4
and a Nexus 5 were used. Each device was capable of communicating with the next
device and the previous device in the chain (see Figure 3.3) through WiFi, using UDP
packets. For example, device TI′ could communicate with device TT as part of the
genuine transaction, and TT′ as part of the relay transaction.

Figure 6.3 depicts the transaction process between the four devices. A transaction
was initiated through a UDP packet from device TT to TI′, containing a transaction
ID, the sensor to be used in the transaction, and which device(s) should vibrate
(vibration mode). The same information, along with the random pattern that TI′

would vibrate, if the vibration mode required it, were forwarded from TI′ to TT′.
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TT TI′ TT′ TI

sensor|transaction ID
|vibration mode

sensor|transaction ID
|vibration mode
|{vibration pattern}

sensor|transaction ID
|vibration mode

vibrate() vibrateAndRecord()vibrateAndRecord() vibrateAndRecord()

saveMeasurement() saveMeasurement()validateReceivedData()

saveMeasurement()

Figure 6.3: Measurement Recording Overview

Upon initiation of a transaction, a 500ms long random pattern was vibrated by one or
both transaction devices, depending on the current transaction’s vibration mode. At
the same time, the devices were recording the impact of the vibration, using some
sensor. Upon completion of the transaction, the measurements were stored in a local
SQLite database, for each of the relevant devices for later extraction and analysis. The
stored data was kept in XML format, as in Listing 3.1. Subsequent transactions were
separated by a 5 second gap in order for the devices to rest. Upon completion of the
field trials, the local databases were transferred to a computer for analysis.

6.4 Transaction Data Analysis

For the analysis of the collected data, the Weka machine learning software was used
to determine whether the measurements of TI′ and TI were in proximity with TT, i.e.
whether it was possible to uniquely distinguish between (TI′i ,TTi) and (TIi ,TTi). As
already explained, on Android, all the examined sensors produce a vector of values
consisting of x, y, and z components. In this chapter as well, as in Chapter 3, the
vector magnitude (Eq. 3.10) was used as a general-purpose method for producing a
single, combined value, prior to generating the training sets for machine learning.

Following the evaluation procedure of Chapter 3, the ‘optimal’ threshold that
separates illegitimate and legitimate attempts was calculated: the threshold that
minimises the EER. The threshold was based on the probability estimate output by
the learned classification model, i.e. the estimated probability that a transaction is
legitimate. A train-test experiment was necessary in order to avoid optimistic bias in
the error estimate when applying machine learning.

The same machine learning algorithms and approaches as the ones discussed and
used in Chapter 3 were used in this chapter as well. More specifically, a training and
a test set were created by the full set of transactions. It was ensured that legitimate
and illegitimate transactions that shared the same transaction ID and used sensor (i.e.
recorded simultaneously), both existed in either the training or the test set, in order
to avoid potential bias. In this occasion as well, 10-fold cross-validation repeated
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Table 6.2: Estimated EER for Machine Learning Algorithms (obtained
by repeating 10-fold cross-validation 10 times)

Classifier
Vibration
Mode Random Forest Naïve Bayes Decision Tree Logistic

Regression
Support Vector

Machine

Accelerometer

Both Vibrate 0.069 0.094 0.104 0.172 0.067
TT Vibrates 0.096 0.185 0.143 0.247 0.084
TI Vibrates 0.083 0.110 0.123 0.186 0.078

Gravity

Both Vibrate 0.500 0.493 0.500 0.488 0.492
TT Vibrates 0.499 0.484 0.500 0.486 0.490
TI Vibrates 0.503 0.494 0.500 0.500 0.497

Gyroscope

Both Vibrate 0.003 0.001 0.009 0.014 0.003
TT Vibrates 0.001 0.001 0.003 0.003 0.001
TI Vibrates 0.001 0.003 0.006 0.006 0.002

Linear Acceleration

Both Vibrate 0.015 0.017 0.042 0.047 0.014
TT Vibrates 0.016 0.015 0.038 0.044 0.016
TI Vibrates 0.002 0.002 0.020 0.009 0.003

Magnetic Field

Both Vibrate 0.059 0.315 0.187 0.477 0.031
TT Vibrates 0.065 0.202 0.132 0.291 0.035
TI Vibrates 0.146 0.236 0.149 0.409 0.138

Rotation Vector

Both Vibrate 0.008 0.008 0.031 0.113 0.007
TT Vibrates 0.002 0.010 0.014 0.106 0.002
TI Vibrates 0.016 0.005 0.024 0.039 0.013

10 times was performed (total of 100 estimates). The machine learning algorithms
that were used as part of this evaluation are, namely, Random Forest, Naïve Bayes,
Decision Tree, Logistic Regression, and SVM.

The EERs were computed as discussed in Section 3.2, by determining thresholds
where the FAR was equal to the FRR for each tested sensor. A more detailed
explanation of the machine learning analysis is provided in Sections 3.2 and 3.3.2.

The individual differences |Ai , j − Bi , j | (where Ai , j refers to the jth data-point of
the ith sensor measurement on device A) were used as attributes that describe each
pair of transactions when training and testing each machine learning model. Thus, as
transactions were sampled at 5ms intervals, a total of 100 numeric features existed
in each example for training and testing the machine learning model. If an example
corresponded to a legitimate transaction, it was labelled as positive, otherwise it was
labelled as negative.

Weka’s default settings were used for each of the first four machine learning
algorithms that were mentioned earlier (also in Table 6.2). For the fifth algorithm,
SVMs optimised with the SMO algorithm were used. The complexity parameter C
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and the width of the RBF kernel γ were tuned using a grid search by optimising
AUROC as estimated using internal cross-validation on the training data. For all five
algorithms, the settings that were used are the same as the ones used in the machine
learning analysis of Chapter 3.

Table 6.2 lists the results obtained from the different machine learning algorithms.
These results were obtained by averaging estimated EERs across all the relevant attack
scenarios from Table 6.1. The best result for each sensor is shown in bold. The results
for individual attack scenarios can be found in Appendices D (both devices vibrating
scenario), E (terminal only vibrating scenario), and F (instrument only vibrating
scenario). For each vibration mode, sensor, and learning algorithm, these tables show
the mean and standard deviation of the 100 EER estimates obtained using 10-fold
cross-validation repeated 10 times.

Table 6.2 shows that SVMs produce the lowest EER for most sensors/vibration
modes. Random forests and Naïve Bayes also demonstrated low EERs for many
sensors/vibrationmodes. The results from themachine learning experiments indicate
that all sensors apart from the gravity sensor provide useful information for the
discrimination between legitimate and distant (relay) transactions. Ranking the
sensors based on discriminative power (i.e. the EER) when evaluated in conjunction
with SVM classifiers yields the following ranking (best to worst): gyroscope, rotation
vector, linear acceleration, magnetic field, accelerometer, and gravity. The same
ranking holds for random forests. Based on Naïve Bayes, the ranking is: gyroscope,
rotation vector, linear acceleration, accelerometer, magnetic field, and gravity. Finally,
none of the vibration modes seems to be performing substantially better than the
others, except in the cases of magnetic field, where the TI only vibrating performed
substantially worse than the rest, and the case of accelerometer, where TT only
vibrating performed substantially worse.

6.5 Discussion and Outcome

The analysis of the experimental data indicates that the effectiveness of the proposed
solution as a PRADmechanism is high. Using most sensors, the empirically observed
relay attack detection rate is higher than that of previously proposed solutions [68,
116, 139, 153]. No particular attack against the proposed solution performs better
than the others. However, some attacks perform better than others depending on the
classifiers and sensors involved. The performance of the solution is not significantly
affected by using any of the evaluated attacks.

Even though a different smartphone was used as device TT′, no significant impact
was observed in the results. Observing the results of TI only vibrating, where TT′’s
impact in the transaction was negligible, except in the case of using the magnetic field
sensor, no significant degradation in the effectiveness of the proposed solution was
observed. However, further investigation might be required before deployment in
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the real world. More aspects should also be examined, like the impact of protective
smartphone cases on the proposed solution.

Moreover, even though no significant performance differences were observed
between different vibration modes, in order to prevent acoustic attacks by a more
resourceful attacker, both devices vibrating might be preferred. Observing the
vibrated pattern has been demonstrated with relatively high success rate in [67], so it
might have some effectiveness against the proposed technique. Fusing vibrations from
both devices can be a significant barrier against off-the-shelf attackers, as explained in
Section 6.2.2.

No additional or non-standard hardware on the TI side is likely to be required,
like in many other proposed solutions, as the one presented in Chapter 4 (Infrared as
an AAE actuator) and [139]. The examined sensors are available on a large variety of
smartphones, and most modern smartphones will be equipped with at least one of
them.

In order for the proposed solution to be deployed on a large scale, the transaction
terminals should be equipped with the sensor that will be used to measure the
vibration. The sensor should be attached on a flat surface, on which devices will be
placed on. Some usability implications might arise, for example in cases that the
terminal is not steady. Also, since the vibration is 500ms long, the comparison of
the captured values cannot be performed during the time of the transaction. The
length of the vibration might be a barrier for shorter transactions, like in the case of
transportation-related transactions that require to complete within 300ms. Further
investigation is required in order to evaluate the effectiveness in such transactions.
This solution might be more relevant to contactless payments, access control, and
2FA.

Finally, as already discussed, many of the previously proposed solutions might
also be vulnerable in the presence of a context manipulating attacker. Since this
solution is not dependant upon the surrounding environment, such attacks do not
apply, unless the attacker can physically tamper with the devices.

6.6 Summary

Communicating devices are vulnerable to relay attacks. Traditional distance bounding
protocols that aim to counter such attacks might not be applicable in the field
of smartphones. Alternative approaches against off-the-shelf attackers have been
proposed, mostly based on sensing of the ambient environment. However, thesemight
not be suitable or secure under certain scenarios, like in the case of transactions with
industry imposed time restrictions of up to 500ms (e.g. EMVand transportation related
transactions). The generation of a random bit/stream-based AAE by peripherals of
the transaction devices has demonstrated promising results as a PRAD mechanism
when using infrared light as an AAE actuator, as seen in chapters 4 and 5.
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In this chapter, the use of vibration as an AAE actuator is investigated. During the
transaction, one (unidirectional) or both (bidirectional) transaction devices vibrate
some random pattern, which is measured by a selected ambient sensor by both
transaction devices. The two measurements are then compared for similarity, in order
to establish proximity evidence.

A test-bed was designed and built for the evaluation of the proposed solution as a
PRAD mechanism. Three different vibration modes (only one of the two, or both the
transaction devices vibrating a random pattern) were evaluated, against five different
attack scenarios. Six ambient sensors were evaluated. A total of 36,000 genuine–relay
transaction pairs, based on field trials, were collected or synthetically generated.
Analysis using five machine learning algorithms was performed, indicating high
classification accuracy between genuine and relay transactions on all vibration modes,
and using most of the sensors.
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Part IV
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Relay Attack Detection
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Chapter 7

Force-Based Relay Attack Detection

7.1 Introduction

In the previous part of this thesis, the generation of an AAE as a PRAD mechanism
was investigated. In the remaining chapters, alternative approaches of relay attack
prevention are discussed, that are not based on the ambient environment.

In this chapter, a novel approach towards PRAD is proposed, based on sensing
button presses on the user’s smartphone by both transaction devices (transaction
terminal and transaction instrument, i.e. the user’s smartphone) simultaneously. To
achieve that, the transaction terminal should be equipped with a force-sensitive panel,
capable of detecting the coordinates where pressure is being applied on it. During
the time of the transaction, the user is requested to place the transaction instrument
(smartphone) on the force-sensitive panel and press a set of buttons that are presented
on the smartphone’s display. The input button sequence, as well as timings of button
presses and between subsequent button presses (referred to as ‘releases’) are captured
by both transaction devices and used as features for similarity comparison. The
concept behind this approach is that the two transaction devices that need to establish
proximity evidence will record approximately the same timing measurements of
the corresponding button presses and releases, in case they are in contact with each
other. For an attacker to perform a successful attack, replication of the genuine user’s
movement when performing the button presses/releases will have to be accomplished
with accuracy of a few milliseconds.

Empirical evaluation of the proposed technique was performed in two phases.
First, the effectiveness of the proposed technique as a mechanism to provide proximity
evidence was evaluated. Afterwards, a set of volunteers attempted to perform a
relay attack multiple times by trying to replicate the movement of a genuine user.
High success rate of the proposed method as a PRAD mechanism was observed.
Using threshold-based evaluation, all the attack attempts were detected. Perfect
classification was also achieved by using the SVM classifier. Near-perfect classification
(up to 99.8%) was achieved by other well-known machine learning algorithms.
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7.2 Force-Sensing PRAD

In this section, the theoretical foundation of the proposed framework, and the threat
model are presented.

7.2.1 PRAD Framework

During the course of a transaction, the user is called to position the Transaction
Instrument (TI) on an extension force-sensitive panel of the Transaction Terminal (TT),
in order to complete the PRAD procedure. A smartphone application (running on
TI) presents to the user an interface with buttons that the user is called to press on.
Device TT uses the force-sensitive panel to detect the location of the presses on device
TI, that is then translated to the corresponding button of device TI. The detection
is based on the coordinates at which the highest amount of force/pressure is being
applied on the panel.

Regarding the smartphone application, alternative interface design approaches
can be followed. For example, the application might present buttons with numbers
and ask the user to input a provided random 4 digit sequence. Alternatively, the
application can present a button at a time that the user has to press in order for the
next button to appear, until all the buttons of a random sequence have been pressed.
It should be stressed that even though the aforementioned method was used during
the evaluation of the proposed framework (see Section 7.3), it is not restrictive, as
alternative approaches can be used instead. Figure 7.1 presents the basic architecture
of the framework, when using the later application design method. Also, the use of a
PIN and other forms of user identification codes may pose a threat, as an attacker
could potentially capture them if the user attempts to perform a transaction with a
malicious terminal.

Figure 7.1: The Basic Framework Architecture
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Each button is assigned an ID, based on the location of the button (e.g. the top
left button is assigned the ID ‘1’). When the user presses a button, both transaction
devices detect and record the ID of the button that was pressed, and the duration of
the button press. For the correct detection of the buttons that are pressed on device
TI, by device TT, the first should be placed on on top of the former, with its screen
facing upwards. The position should be such that each button of device TI is aligned
with the area that will be translated to the correct button by device TT. The duration
between subsequent button presses is also recorded by the two devices. To summarise,
three elements are recording by both devices simultaneously:

1. The sequence of the IDs of the pressed buttons (e.g. ‘1234’)

2. The duration of each button press (in ms)

3. The duration between subsequent button presses (in ms)

Table 7.1 presents an example of the recorded features. Further features can also
potentially be used, like the amount of pressure applied, but were not considered in
this work due to limitations inflicted by the architecture of the majority of modern
smartphones (further discussion in Section 7.6).

Table 7.1: Example of a Record (all values represent time in ms, except
from the ‘Input Sequence’)

Feature Value

Input Sequence 5132
Press 1 117
Release 1 1434
Press 2 118
Release 2 1294
Press 3 178
Release 3 1634
Press 4 117

In order for device TI to recognise the buttons and timings, simple API calls are
required. Device TT can recognise the buttons and timings based on the coordinates
and duration of the detected pressure on the force-sensitive panel.

As already mentioned, the assumption is that the two devices are going to
record approximately the same values (button sequence and durations of presses
and releases), and that an attacker has a low probability of accurately replicating the
movement of a genuine user. The accuracy of the system should be at the millisecond
level. The captured data of the two devices should provide sufficient proximity
evidence when compared against each other, while data captured when a relay attack
is taking place should be detectable at a high rate, in accordance to the requirements
of the deployment scenario.

The proximity verification process can take place during the course of the transac-
tion by one of the communicating devices, or afterwards, by a TTP. The captured
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data should be communicated between the devices or to the TTP in an encrypted and
authenticated form, but discussion regarding the trusted comparison party’s (i.e. the
TTP or one of the transaction devices) architecture is out of the scope of this chapter.
As the main focus of this chapter is to examine the effectiveness of the proposed
solution as a PRAD mechanism, the discussion is limited and the integration with
existing applications is not investigated.

7.2.2 Threat Model

In line with the previous chapters of this thesis, the attacker is considered to be of
opportunistic nature and requires no prior interaction or knowledge of the transaction
devices TT and TI. Potential implications that might arise in case the transaction
devices are compromised are out of the scope of this chapter. The focus is on providing
proximity assurances on genuine devices whose operational requirements mandate
that they are co-located in order to perform a transaction.

The attacker is also assumed to onlyhave access to off-the-shelf relay equipment. As
alreadydiscussed, limits typically apply on smartphone-based contactless transactions,
like for example the £30 limit on payment transactions in the UK. Moreover, an
attacker that might be using more advanced techniques, like a robotic arm that
replicates the movement of a genuine user with accuracy, is likely going to be detected
by the genuine device operators. Therefore, a very powerful attacker might not be a
major concern.

7.3 Test-bed Architecture

A test-bedwas designed and built, in order to evaluate the proposed solution. Android
devices were used to represent TI, and an Arduino-based prototype was developed
and used as TT.

An Android application was built and installed on three devices; a light and small
Android smartphone, a heavier and larger Android smartphone, and an Android
tablet device. As the first, an SGS5 mini (SM-G800F) was used. It features a 4.5-inch
display, and weighs 120 grams. An SGS4 (GT-I9500) device was used as the second
device. It features a 5-inch display and weighs 130 grams. Finally, a Nexus 9 was used
as the tablet. Its display is 8.9-inches and weighs 425 grams6.

The Android application, running on TI, featured six equal sized zones on the
touch screen display (as in Figure 7.1). These zones are referred to as ‘buttons’.
Initially, a random button of the six was highlighted on the screen, using a colour.
This indicated to the user to press the randomly highlighted button on the screen.
Releasing a button would trigger it to disappear, and the application would randomly
pick and highlight a second button. A total of four buttons were randomly highlighted
for each transaction. A random shared ID assigned to each transaction, along with the

6All device characteristics found at http://www.gsmarena.com/

http://www.gsmarena.com/
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IDs of the captured button sequence, and the timings of button presses and interval
duration between subsequent button presses were appended to a local CSV file. That
file was later extracted from the device for data comparison.

An Arduino Due was used for the TT prototyping. Four Force Sensitive Resistors
(FSRs) were connected to the board’s analogue inputs (Figure 7.2a). FSRs can be used
to detect pressure or weight. The basic working principle is that the resistive value
of the sensor alternates depending on the amount of force that is being applied on
the sensor. Silicone buffer pads7 were manually attached to the centre of the sensors,
as the force resistive area of the FSRs was not reachable by the surface of the smart
devices otherwise. Even though FSRs were used in this prototype, other sensors
might potentially also be used alternatively, for example capacitive touch sensors.

Initially, when TI was placed on TT and the process started, a calibration phase
was conducted, in order to ‘cancel out’ the weight of the device. For one second
after the process initiation, TT would capture values from all four sensors and the
maximum recorded value of each sensor would then be used as a reference point. A
LED would indicate the completion of the calibration phase. Algorithm 1 describes
the calibration process in more detail. As input (sensorReading1, etc.), the algorithm
takes the values that are being measured by each of the four sensors, and returns
an array (sensorMaxVal) that contains the maximum recorded values for each of the
sensors.

Algorithm 1: Sensor Calibration of Device TT
Input : int sensorReading1, int sensorReading2, int sensorReading3, int

sensorReading4
Output : int[] sensorMaxVal

1 sensorMaxVal[]← {0, 0, 0, 0};
2 startTime← getCurrentTimeMillis() ; // gets the current time in ms
3 while getCurrentTimeMillis() - startTime ≤ 1000 do
4 this.updateSensorReadings() ; // reads current sensor measurements
5 if sensorReading1 > sensorMaxVal[0] then
6 sensorMaxVal[0]← sensorReading1;
7 end
8 if sensorReading2 > sensorMaxVal[1] then
9 sensorMaxVal[1]← sensorReading2;

10 end
11 if sensorReading3 > sensorMaxVal[2] then
12 sensorMaxVal[2]← sensorReading3;
13 end
14 if sensorReading4 > sensorMaxVal[3] then
15 sensorMaxVal[3]← sensorReading4;
16 end
17 end
18 return sensorMaxVal

7Example of buffer pads: https://www.amazon.co.uk/gp/product/B00P11D4VK/ref=s9u_simh_
gw_i2

https://www.amazon.co.uk/gp/product/B00P11D4VK/ref=s9u_simh_gw_i2
https://www.amazon.co.uk/gp/product/B00P11D4VK/ref=s9u_simh_gw_i2
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Figure 7.2: Detection of Presses by TT

After the calibration phase, the user was called to input the sequence on device TI.
While a button was being pressed, the calibrated TT sensor(s) closest to that button
was/were recording the highest force values (Figure 7.2). The indication used for
detecting that a button was being pressed was that some of the sensors were recording
values above their calibration point. The time during which higher values than the
calibration point were being recorded by some of the FSRs was considered to be the
pressing time. Similarly, the time between subsequent button presses was the time
during which none of the sensors were recording higher values than the calibration
threshold.

After a button was released, TT would estimate the ID of the button that was being
pressed, based on the sensor recordings. To achieve this, each sensor was assigned
a value, which was the average of all the values captured by that particular sensor
during the button press period. Six virtual buttons had to be detected, corresponding
to the buttons presented by TI. For the detection of the pressed button, the values that
were assigned to each of the four sensors were used.

Algorithm 2 lists pseudocode for detecting the pressed buttons when the button
ID numbers of device TI are as per Figure 7.1, and the sensor ID numbers of device TT
as per Figure 7.2. The input sensor1, sensor2 sensor3, and sensor4 is the value assigned
on each of the four sensors. Initially, the side (left or right) of the screen on which the
press was on was determined by comparing the sum of the sensor values returned
from each side. Once the side was determined, the proportion of the force applied on
the top sensor was calculated. The proportion was divided in three equal parts. If the
proportion was between 0.66 and 1, the top virtual button ID was returned. Similarly,
values between 0.33 and 0.66 corresponded to the middle virtual button, and between
0 and 0.33 to the bottom one.

When four button presses were detected by the prototype, it would return
the pressed button sequence and the timings to a connected computer, through
Arduino’s serial port. An application developed in Python would request from
the experiment operator to manually input the unique ID that was assigned to the
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Algorithm 2: Detection of Pressed Button
Input : int sensor1, int sensor2, int sensor3, int sensor4
Output : int pressedButtonID

1 leftSide← sensor1 + sensor2;
2 rightSide← sensor3 + sensor4;
3 if leftSide > rightSide then
4 force← sensor1 / leftSide;
5 if force ≥ 0 and force < 0.33 then
6 return 5
7 else if force ≥ 0.33 and force < 0.66 then
8 return 3
9 return 1

10 end
11 force← sensor3 / rightSide;
12 if force ≥ 0 and force < 0.33 then
13 return 6
14 else if force ≥ 0.33 and force < 0.66 then
15 return 4
16 return 2

particular transaction by TI. The returned values and the transaction ID would be
appended to a CSV file with the same format as the one on TI’s side.

Two experimental frameworks were developed, for proximity and relay attack
evaluation. At the end of each phase, the stored data would be extracted from each of
the mobile devices and moved to a computer for the evaluation of the results.

7.4 Proximity Detection Framework

In order to evaluate the performance of the proposed solution in a proximity detection
scenario, 100 transactions were performed with each of the three devices listed
in Section 7.3. A random sequence was generated and presented by TI on each
transaction. The FSRs were aligned in a set-up for the smallest device (SGS5 mini),
and this set-up was maintained throughout the experimental phase, regardless of the
device being used. After the completion of the first phase, using each of the three TI
devices, the collected data in CSV format was extracted from the mobile devices and
transferred to a computer for comparison. The data from the Arduino was already
stored on the computer (passed through the serial port, as described in the previous
section).

The aim of the framework was to assess whether sufficient information for
establishing proximity evidence is collected during the process. The results were
used to set acceptable upper and lower bounds for presses and releases.



128 Chapter 7. Force-Based Relay Attack Detection

7.4.1 Evaluation Methodology

A Python application was developed for the data analysis process, which would
compare the input sequence recorded by both devices, and then calculate the difference
of individual corresponding features (buttonpress and release timings). Theminimum
and maximum press and release differences were detected for each of the devices,
and for all 300 measurements combined. The minimum and maximum press and
release differences were used as limits for distinguishing genuine from relay attack
transactions in the relay attack detection framework (in the threshold-based evaluation
— see Section 7.5.2).

7.4.2 Results and Discussion

The results of the proximity detection framework are listed in Table 7.2. The results
refer to the time difference in milliseconds between the timings recorded by TT and TI.
For example, the difference of the first press for a single transaction is calculated as:

Di f fPress1 � TTPress1 − TIPress1

The maximum, minimum, and the average calculated values are listed in the
table, as well as the span between the maximum and minimum observed values.
The analysis has been performed for each of the three devices, as well as for the
combination of all the recordings of the three (referred to as ‘Total’). Negative timings
denote that the measurement of a press or release by TI was longer than that of TT.

Table 7.2: Proximity Detection Results — in ms (negative results
indicate that TI’s measurement durations were larger than TT’s)

Minimum Maximum Span Average
Press Release Press Release Press Release Press Release

SGS5 mini -46 11 -11 48 35 37 -29.09 28.71
SGS4 -28 -8 9 30 37 38 -5.32 5.26
Nexus 9 -18 -8 12 23 30 31 -2.16 2.83

Total -46 -8 12 48 58 56 -12.19 12.27

Differences among the devices were observed, likely related to their weight.
However, the measured time span was approximately the same for all three devices.
Therefore, a real-world deployment is recommended to take into account the device
model, in order to minimise the attack window approximately by half.

High accuracy was also ascertained in the detection of the input pattern by device
TT. Prior to the initiation of the experimental phase, the pattern detection of the
smaller devices was found to be very high. Failures occurred in a few occasions where
the buttons on device TI were pressed very close to neighbouring buttons. Slightly
reducing the size of the buttons effectively restricted this issue.

The detection of button presses on the tablet device required longer presses than
on the smartphones, which had no special input requirements. Even though perfect
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detection was recorded when longer button presses were applied, the use of tablets is
not recommended without readjustment of the underlying FSRs.

7.5 Relay Attack Detection Framework

The effectiveness of the proposed solution as an anti-relay mechanism was subse-
quently evaluated. A set of 10 volunteers was gathered, who tried to attack the system
in two phases, explained below. A separate Android application was developed for
the purposes of the experiments, based on the application used in the proximity
evaluation framework. The application was presenting predefined sequences instead
of random ones, so that all volunteers tried to attack the same sequences. Device TT’s
architecture did not alter between the two frameworks (proximity and relay attack
detection).

During the first attack phase, a set of videos of a person inputting a sequence
(genuine user) were presented to the volunteers. The sequence timings entered by the
genuine user on TI were stored in a CSV file as per Section 7.4 for later comparison
against relay attack data. The videos were played on a large screen (24-inch), and the
movement of the genuine user was clear and evident, according to the volunteers. The
camera used to record the videos was placed on the left of the device, at a 45 degree
angle, in order to make the presentation of the three dimensions more clear. Prior to
the initiation of the experiments, the volunteers were asked to choose the rotation
and flip of the video that they preferred. A set of 10 different patterns were presented
to each volunteer, who was asked to attempt to replicate/mimic the movement of the
genuine user with accuracy while the video was playing, or afterwards. The same
pattern was presented on both the video and the device provided to the volunteers.
Also, the same device (SGS5 mini) was used on the video and by the volunteers. Data
from both devices was stored in separate CSV files, separately for each volunteer.

All volunteers were university students and stuff who had a good understanding
of security and relay attacks. Prior to the experiments, their goal and the principle
on which the anti-relay mechanism was based were thoroughly explained to them.
Moreover, four of the volunteers had background in playing some musical instrument
(guitar, piano, or both), ranging from medium to advanced level.

During the second phase of the experiment, the volunteers were asked to try to
attack the exact same video 10 times. Meaning, a genuine user entered a sequence
which was recorded and then the volunteers were given 10 tries to try to replicate the
same sequence as close to the genuine user as possible. The volunteers were able to
watch the video of the genuine user inputting the sequence, while attempting their
attacks. This tested the possibility of whether an attacker who watches the same
pattern being entered a number of times, their potential of replication would increase.
The same set-up as in the previous phase was used. In both phases the attacker was
powerful, as the input sequence was known, and there was a clear view of the genuine
user’s movements.
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7.5.1 Evaluation Methodology

Measurements captured from the device TI that the genuine user was using on the
video were compared against measurements from device TT used by the volunteers.
As per Figure 4.1, the pair (TI–TT′), where TT′ was the terminal device used in the
video, acted as the proximity pair during the analysis (i.e. no relay attack involved).
The pair (TI–TT) acted as the distance pair (i.e. during a relay attack). The transaction
instrument operated by the volunteers is referred to as TI′.

In order to evaluate the performance of the volunteers, two methods were used;
threshold- and machine learning-based analyses. Initially, acceptable minimum and
maximum thresholds for presses and releases were set, based on the results of the
proximity evaluation framework (Section 7.4.2). The recorded presses and releases
from the two devices were sequentially compared against each other. If the difference
between a press or a release captured by TT and TI was within the bounds, it was
considered to be acceptable. Otherwise, a relay attack was detected. The point at
which the inconsistency appeared was the detection point. For example, if an attacker
performed the first press and the first release correctly, but the second press was out
of bounds, the second press would be considered as the detection point. Figure 7.3
depicts a typical scenario in which the volunteer fails to replicate the movement of
the genuine user with enough accuracy. The volunteer’s attempt was recorded by
devices TT and TI′, while device TI represents the corresponding measurement of the
genuine user. The comparison that took place was between devices TT and TI. Device
TI′ is also shown for reference purposes. The attempt could be detected at the first
press, as the attacker held the button for a shorter period of time than the genuine
user. This part of the evaluation was conducted in two phases. The relay attack data
was first subjected against the thresholds set by combining all three devices, and then
against device specific thresholds (SGS5 mini).

Weka was used to apply a suite of well-known classifiers (same as the ones used

Figure 7.3: Graphical Representation of a Typical Attack Attempt (the
device topology is as in Figure 4.1 and device TI′ is displayed here for

reference purposes)
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in previous chapters). The classifiers were trained on a set of feature vectors with
corresponding binary labels (genuine or relayed transaction), which were collected
beforehand. The trained model was used to classify subsequent transaction data
streams as genuine or relayed. The Random Forest, Naïve Bayes, Logistic Regression,
Decision Tree (grown using the C4.5 algorithm), and SVM with the RBF kernel
(the SVM with RBF hyper-parameters, C and γ, were established using standard
exhaustive grid search) classifiers were tested. The threshold was based on the
probability estimate output by the learned classification model, i.e. the estimated
probability that a transaction is genuine. As genuine transactionswere also considered
transactions collected during the proximity evaluation phase (Section 7.4). In this
chapter as well, the same configuration as the one listed in Chapter 3 was used for the
machine learning-based analysis.

As already discussed in Chapter 3, in order to assess the accuracy of Weka, it was
benchmarked against the Python library scikit-learn. The same algorithms and
parameters as in Weka were used. The results that scikit-learn produced were
exactly the same as Weka’s.

7.5.2 Results and Discussion

A total of 200 relay transactions were evaluated. The results of both threshold- and
machine learning-based analyses are presented in this section.

Evaluation 1: Threshold-Based

The results of the threshold-based analysis are listed in Table 7.3. ‘General Threshold’
refers to using the threshold set by combining the proximity results of all three tested
devices, while ‘Device Specific Threshold’ to using the threshold set by the SGS5 mini,
as it was the device used for the relay attack detection evaluation. ‘Detected’ refers to
the percentage of relay attempts detected at a particular press or release, because the
attackers failed to accurately replicate the movement of the genuine user at that point.
‘Correct’ refers to the percentage of times that a single press or release was successfully
replicated by the attacker. Finally, the first phase refers to the user trying to attack a
different video on each try, and the second phase, the attacker trying to attack the
same video 10 times.

None of the volunteers were able to successfully attack the system when using
threshold-based analysis. Moreover, the volunteers with background in playing a
musical instrument did not present improvements over the rest of the users. However
the sample was limited, so further investigation might be required.

The best attempt is presented in Figure 7.4. Device TI′ in the figure represents the
measurement recorder by the transaction instrument that the volunteer was using. It
illustrates the corresponding proximity transaction, for which all presses and releases
were within bounds. The relay attack was detected on the third press, using the
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Table 7.3: Threshold-Based Relay Attack Detection Results

Press 1 Release 1 Press 2 Release 2 Press 3 Release 3 Press 4 False Accept

General Threshold – Phase 1
Detected 73 24 0 2 1 0 0 0
Correct 27 10 37 10 24 5 31 —

Device Specific Threshold – Phase 1
Detected 84 16 0 0 0 0 0 0
Correct 16 7 25 9 9 4 23 —

General Threshold – Phase 2
Detected 57 37 5 1 0 0 0 0
Correct 43 11 29 24 26 9 20 —

Device Specific Threshold – Phase 2
Detected 65 33 2 0 0 0 0 0
Correct 35 6 21 22 20 6 9 —
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Figure 7.4: Graphical Representation of the Best Attack Attempt (the
device topology is as in Figure 4.1 and device TI′ is displayed here for

reference purposes)

threshold set by the combination of the three devices. However, using device specific
threshold, the attack was successfully detected on the first release (Figure 7.5).

The majority of the transactions were detected on the first press or release in both
cases, i.e. both when using general and when using device specific thresholds, even
when the volunteers tried to attack the same video multiple times (second phase).
During the second phase, a small incline was observed in the user performance as
the same video was being attacked multiple times, most evident in the performance
of releases. Figure 7.6 depicts that incline, along with the average, maximum, and
minimum performance of each round’s presses and releases.

Evaluation 2: Machine Learning-Based

The results of the machine learning-based analysis, obtained by repeating stratified
10-fold cross-validation, are presented in Table 7.4. A training set of 300 genuine
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(including the transactions from the proximity detection evaluation — Section 7.4)
and 200 relay attack transactions was used. The same settings for each algorithm, as
the ones used in Chapters 3 and 6 were used on Weka. The metrics listed are the
classification accuracy (Accuracy) (see Eq. 3.3), the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC), the F1-score (see Eq. 3.1), and the EER.

Perfect classification was achieved by using the SVM classifier. Near perfect
classification (> 98%) was also achieved by the Random Forest, Naïve Bayes, and
Decision Tree classifiers, with the best performance observed by the first three
(> 99.5% accuracy). The Random Forest algorithm failed to accurately classify two
relay transactions, the Naïve Bayes one, and the Decision Tree six.

Table 7.4: Machine Learning Classification Results Obtained by Re-
peating 10-Fold Cross-Validation 10 Times

Random
Forest

Naïve
Bayes

Logistic
Regression

Decision
Tree

Support Vector
Machine

Accuracy (%) 99.62 99.80 86.58 98.78 100.00
F1-score 0.9969 0.9984 0.90 0.9901 1.0
EER 0.0022 0.0047 0.1993 0.104 0.0

7.6 Discussion and Outcome

The analysis of the experimental data indicated the high effectiveness of the proposed
solution as a PRAD mechanism. However, some usability concerns might arise,
especially for visually impaired users, and users with motor difficulties. Compared to
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Figure 7.6: Performance Variation of Each of the 10 Attempts in the
Second Phase

the majority of previous works, additional steps are required by the user, including
the correct placement of device TI on TT.

Since the positioning of device TI on TT is important for the latter to accurately
detect the ID of the pressed button, device-specific positioning lines were presented
on the TI’s display prior to the process initiation. This assisted in more equally
dividing the mass across the four FSRs. The model of the device could be determined
through API calls, which was used to display the correct positioning. Figure 7.7
depicts the guidelines and the pattern input interface on the SGS5 mini device. It
should be stressed that the positioning precision had to be performed with only some
degree of accuracy, meaning that perfect positioning of the devices was not necessary.
The detection was found to be very accurate even without perfect placement of the
devices. The impact of not correctly aligning the two devices may vary, depending
upon the amount of offset between the location of the user’s presses on device TI and
the expected coordinates range of the corresponding button on TT. In case there is
offset between the devices, and force is applied by the user outside of the detection
range for a particular button by device TT (as seen in Figure 7.8), the former might
not detect the correct button.

Failure to press on the correct button (mis-pressing)may also lead to inconsistencies
between the captured data of the two devices, so the process will have to be restarted.
Moreover, a vibration of the phone during the process may cause inconsistencies, so
it should temporarily be disabled, until the completion of the process. Finally, the
performance of the solution might also degrade if phone cases are used on TI, or the
device’s camera is located above the point where an FSR should touch. However,
significant advantages over previous works exist, so depending on the deployment
scenario, this technique might be preferable.

The relay attack detection rate was empirically found to be higher than many
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(a) Device Calibration (b) Pattern Entry

Figure 7.7: The Evaluation Test-bed

Figure 7.8: Button Alignment Between TI and TT During Correct and
Incorrect Device Placement (grey squares represent buttons of device
TI, while white squares represent the corresponding TT coordinates

range)

previously proposed solutions [68, 116, 139, 153]. The detection rate can potentially
improve even further by considering more features, like the amount of pressure
detected by the two devices. Even though this is possible on TT, as the FSRs are
capable of detecting the amount of pressure that is being applied on them, at the
moment, the majority of smartphones are not capable of accurately measuring the
amount of pressure that is being applied on their screen. Some Android devices
estimate the amount of pressure through the number of pixels being covered on
the screen by the user’s finger. This technique is not very accurate, and it is also
not available on all devices. The feature is not supported by the SGS4. On the
other two devices, the accuracy was found to be highly dependent on the finger
orientation rather than the amount of pressure being applied on the screen. Moreover,
inconsistencies were observed among the pressure values recorded by the two devices.
It was concluded that the technology was not mature enough to provide quality data.

Moreover, no additional or non-standard hardware on the TI side is required (like
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for example in the case of Chapter 4). Finally, this solution is not dependent upon the
surrounding environment, therefore it is not vulnerable to attacks that require the
presence of an attacker with context manipulating capabilities, as described in [138],
unless the attacker is capable of physically tampering with the devices.

The usability issues associated with this solution might make it more relevant
to contactless payments and access control in scenarios where high throughput of
customers is not a requirement, as well as 2FA. However, the high effectiveness in
combination with not requiring extra hardware on the transaction instrument’s side
pose clear advantages. Moreover, since the comparison of the collected data can be
based on simple comparisons, it might be feasible to be deployed in offline scenarios,
where the comparison is performed by one of the transaction devices.

7.7 Summary

In this chapter, a novel approach for PRAD was presented, by using bidirectional
sensing and comparing of subsequent button presses and releases by the transaction
devices. Unlike the PRAD approaches that were proposed and/or evaluated in the
previous chapters of this thesis, this approach does not rely on the generation or
sensing of the ambient environment. Instead, it is based on sensing of user-performed
actions. This approach is meant to be used as part of the transaction process, like the
PIN entry.

For the evaluation of the proposed technique, a test-bed was designed and built,
that consisted of two phases. Initially, the effectiveness in proximity detection was
examined. Afterwards, the test-bed was subjected against a set of volunteers who
tried to attack the system. All the attack attempts were successfully detected through
threshold-based analysis. Moreover, perfect classification was achieved by using
the SVM classifier. Classification accuracy of up to 99.8% was achieved by other
well-known machine learning classifiers.
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Chapter 8

Host-Based Relay Attack Detection

8.1 Introduction

While the previous chapters of this thesis focused mainly on PRAD, assuming that
the genuine transaction devices have not been compromised, and the attacker can
only stand in the middle, this may not always be the case. Relay attacks that require a
malicious application to be installed on the user’s device have been demonstrated [131].
The malicious application is capable of acting as one of the relay devices, relaying
transaction data and tokens, captured from the host device, without the genuine
user’s consent. While the type of relay attack targeted in the previous chapters can be
identified as a Mafia Fraud Attack, the type aimed in this chapter combines elements
of both the Mafia Fraud Attack and the Terrorist Fraud Attack (see Section 2.3). In
this scenario, the topology of the devices is similar to the Terrorist Fraud Attack, but
the user is not knowingly cooperating with the attacker.

However, one of themajor challenges for an attacker is to get amalicious application
distributed to a substantial population of genuine users. In the Android platform
it has been reported that approximately 86% of all malware distribution relies on
repackaged applications [171]. Therefore, protecting against repackaged applications
may prevent this type of relay attacks as well. As already discussed in Section 2.5,
repackaged applications in the course of this thesis are considered applications
that try to impersonate a genuine application by slight modifications/variations to
the genuine application’s artwork and/or changes to its source code in a way that
the repackaged application looks and/or feels like the genuine application. The
main objective of a repackaged application is to mimic a genuine application so it
can target novice users that gravitate towards the popularity/functionality of the
genuine application. In this definition, excluded are applications that infringe the
potential intellectual property of the original application and present themselves as
unique/different applications.

Repackaged applications are a serious threat and are part of the OWASP’s Top
Ten Mobile Risks for 2014 [122], and 2016 [121], posing at places 10 and 8, respectively.
Many different methods for detection of repackaged applications have been proposed,
but most of them rely on the application stores to perform the detection [40, 41, 45, 75,
135, 166, 167, 170].
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In this chapter, a method for detecting repackaged applications is proposed,
initiated on the client side, prior to an application’s installation. The target application
is being checked against a database of legitimate applications, hosted by a TTP. If
it does not exist in the database, string and image similarity algorithms are used to
detect original applications with similar name and icon pairs. These two elements
characterise an application prior to its installation. An attacker who wants to increase
the spreading rate of a repackaged application by taking advantage of the already
established popularity of an original application might not be likely to alter these
elements.

The experimental results demonstrate that the proposed mechanism is both effec-
tive and efficient in detecting repackaged applications. Furthermore, in comparison
to existing methods, the proposal scored high on a set of predefined criteria. However,
this approach ismeant to complement static analysis tools, as it provides the important
feature of being application source agnostic, and not replace them.

8.2 Proposed Solution

A repackaging detection technique that takes advantage of the attacker’s reluctance
to significantly alter elements that characterise an application without substantially
minimising the attack vector, is proposed. The elements that characterises an
application prior to its installation are its name and icon. Since there is a high
probability that little or no modification is likely to have taken place on these elements
of a repackaged application, image and string comparison algorithms can be used in
order to determine the potential original application by comparing them against a
database of authentic applications.

This technique is initiated from the client side, prior to the installation of an
application. Relevant data from the application is transferred to the TTP’s server that
maintains a database of original and trusted applications, as well as a blacklist of
malware and repackaged applications. Based on the analysis, the TTPwill either verify
that the application in question is genuine, or return a list of genuine applications
that this application may be trying to masquerade.

It is assumed that applications kept in the TTP’s database have been sanitised and
do not contain malicious code. It is also assumed that developer–application pairs in
the database have been confirmed and no repackaged applications exist. Applications
from the Google Play Store are used for the population of the trusted database. Studies
have found that 1.2% of all applications of the Play Store are repackaged [18], so
it is reasonable to consider it as relatively trusted for the purposes of this chapter.
However, in a real world scenario, building the TTP’s database is a challenging task,
but the construction methodology is out of the scope of this thesis.

8.2.1 Threat Model

The capabilities of an attacker for the scope of this chapter are as follows:
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• An attacker can access any legitimate Android application. This includes being
able to decompile, modify, recompile, or copy and use elements (including, but
not limited to media files) of applications.

• An attacker cannot significantly alter the name and the icon that characterise an
application, without going unnoticed by potential victims.

• An attacker can distribute applications on any channel (e.g. third-party applica-
tion stores, online forums, etc.), except the Google Play Store. In the scope of
this chapter, the Google Play Store is considered as the trusted entity.

• An attacker cannot sign applications using the original developer’s signing key.

• An attacker cannot influence the TTP’s database.

• An attacker cannot forcefully install an application or have access to a victim’s
device.

8.2.2 Assumptions

As already mentioned, the assumptions are the following:

• It is assumed that applications kept in the TTP’s database have gone through
thorough analysis and do not contain malicious code.

• It is assumed that developer–application pairs in the database have been
confirmed and no repackaged applications exist.

Although the exact detection details that the Google Play Store uses are not
publicly available, the use of repackaging detection mechanisms in combination with
users being able to report applications, aid towards building a safer ecosystem. The
use of repackaged application detection mechanisms in certain application stores,
such as the Google Play Store, does not degrade the importance of the proposed
solution, since Android users are not restricted to downloading applications from the
Google Play Store, and the proposed solution is application store agnostic.

8.2.3 Requirements

The requirements that should be met in order to ensure the feasibility of the proposed
solution are the following:

• The process should be fast. A user who is installing an application is not likely
to wait for more than a few extra seconds for the process to finish.

• Using a remote server to assist the detection process should use as little
bandwidth as possible. Bandwidth may cost, and uploading an application that
might be several megabytes in size may not be acceptable for a user, who might
refrain from using such service.



140 Chapter 8. Host-Based Relay Attack Detection

• The detection process should not have a noticeable impact on the user device’s
performance. The method should be integrated to the package installer and run
prior to an application’s installation.

8.2.4 Proposed Solution’s Overview

A high level overview of the proposed solution would be as follows:

1. On the client side, when the user has selected to install an application, prior
to the initiation of the installation, data required for the detection process is
extracted from the .apk file and transferred to the TTP’s server through a secure
channel (e.g. using SSL).

2. The TTP’s server, after receiving the data from the device, processes it and
takes a decision whether the target application is safe (i.e. exists in the trusted
applications database), unknown to its database, potentially repackaged, or
repackaged/malicious. The decision is then returned to the client.

3. According to the returned result, the client device will either continue by
installing the application without any warnings (in case it is classified as safe),
or warn the user that it is unknown, potentially malicious, or malicious. In case
it is classified as potentially repackaged, a list of possible original applications
is also presented to the user, with links to safe ways of obtaining them.

The proposed approach should either be integrated with Android’s application
installer as an opt-in feature, or be a separate opt-in application or process that
executes prior to the application installer. Some privacy concerns might arise, since
information regarding the application that is going to be installed are transmitted to a
remote server. Offering the service as an opt-in feature would enable users to refrain
from using it. Anonymising the transmitted data can help improve the privacy, but
the investigation of privacy concerns is out of the scope of this chapter.

The proposed solution uses techniques already available on smartphones, making
it technically feasible. Since high performance is one of the requirements of the
proposed solution, the impact on the time required for the installation of an application
should beminor. Finally, the user is notified only in the case of a suspicious application,
making the process invisible to the user, unless a threat is detected. Therefore, from
the perspective of the user, unless an issue is detected, the impact on the user
experience should be negligible. However, issues might arise in case there is no
internet connection during the installation. Such issues should be considered prior to
deployment, but such discussion is beyond the scope of this chapter.

8.2.5 The Detection Process

The TTP’s server requires five elements for the detection process. These elements
are extracted from the target .apk file on the client side, prior to the initiation of the
installation process, and are transmitted to the server over a secure channel.
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The five elements are:

1. The hash of the .apk container (referred as ‘signed .apk’). It is used to speed up
the process in case the application being tested is known to be legitimate (exists
in the trusted applications database).

2. The hash of the .apk container, excluding the META-INF folder (referred as
‘unsigned .apk’). It is used to detect blacklisted applications, regardless of the
developer’s signature, or applications that are legitimate but have been signed
with a different developer signature.

3. The hash of the developer’s signature. It is used to determine whether a
potentially repackaged application could be a version of a legitimate application
that is not maintained in the TTP’s database. In such case, the application being
tested and the potentially legitimate application should be sharing the same
developer signature.

4. The application’s name.

5. The application’s icon.

In case the application being tested does not exist in the trusted application
database, the application name and icon are used for detection of visually similar
applications.

A pre-computed list of these elements for all trusted applications is stored in the
TTP’s database, against which the received data is checked. The names and icons of
older versions of an application are also kept, in case they have changed.

Algorithm 3: Repackaged Application Check
Input: String signedHash, String unsignedHash, String appName, Image

appIcon
/* Check the blacklist database for an unsigned hash match */

1 if blacklisted(unsignedHash) then
2 return getOriginalApp(unsi gnedHash)
3 end
/* Check the applications database for a signed hash match */

4 else if signedHashExists(si gnedHash) then
5 return applicationSafe()
6 end
/* Check the applications database for an unsigned hash match */

7 else if unsignedHashExists(unsi gnedHash) then
8 return getOriginalApp(unsi gnedHash)
9 end
/* Find similar applications based on their name and icon */

10 else
11 return getSimilarApps(appName , appIcon , devSi gnature)
12 end
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Algorithm 3 explains the process followed by the server in order to check the
originality of an application. In the algorithm, the function blacklisted(String unsigned-
Hash) queries the blacklist database and returns true if the input unsigned hash exists.
This first step increases the overall performance of the system by quickly detecting
known malicious applications. The functions signedHashExists(String signedHash)
and unsignedHashExists(String unsignedHash) query the trusted database for matches
and return true if the signed or unsigned application’s hash exist, respectively. The
function getOriginalApp(unsignedHash) returns the original application that is linked
to that hash, if such exists. The function applicationSafe() returns a code that denotes
that the application is legitimate. However, if no trusted application is found, get-
SimilarApps(String name, Image icon, String devSignature) returns an array of trusted
applications that are similar to the input, based on their name and icon. The detection
process is described in Section 8.2.6. In case an application does not exist in the
database, but is found to be similar to another, it may be an updated (or older) version.
For this reason, the hashes of the developer signatures of the tested application are
compared and if they match, the server notifies that it may be a different version of
a certain legitimate application. A developer should use the same signature(s) for
different versions of an application, otherwise the operating system will refuse to
complete the update process.

The result is finally returned to the user’s device. If the application does not exist
in the database, but similar applications are detected, a list of these is presented to the
user. If the application is found to be legitimate, the installation process will continue
without any further warnings. If the application is found to be blacklisted, signed
with a different signature than the original, or not found in the trusted database, the
user is warned. A flow chart of the process is also presented in Figure 8.1.

Start

get data
from device

check unsigned
hash with blacklist

is there a
match?

return warning to device

check signed
hash with DB

is there a
match?

return OK to device

check unsigned
hash with DB

is there a
match?

search similar app
names/icons in DB

return similar apps to device

no

yes
yes

no

yes
no

Figure 8.1: Repackaging Detection Flow Chart
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Any application with signature or code modifications is treated as non-trusted
by the proposed solution. Threats from such applications have been discussed in
Section 2.5.1. Table 8.1 lists the threat level of the different possibilities of the detection
process.

Table 8.1: Possibilities

Safe Potentially Unsafe Unsafe

Signature exists in malicious applications DB
Signed sha(apk) exists 3

Signature exists in genuine applications DB
Signed sha(apk) exists 3

Signed sha(apk) does not exist 3

Unsigned sha(apk) does not exist 3

Signed sha(apk) does not exist 3

Unsigned sha(apk) exists 3

Signature does not exist in genuine applications DB
Unsigned sha(apk) exists 3

Unsigned sha(apk) does not exist 3

8.2.6 Similarity Detection

Well-known string and image similarity methods were evaluated. For completion
reasons, a comparison and rationale behind the choice of the selected methods for the
proposed solution is provided.

Name Similarity

For the name similarity detection, the Jaro-Winkler [163] method was used. Previous
work [29] has shown that it is more accurate than other string distance metrics for
short strings, like names.

It was compared against the popular Levenshtein distance metric. The results are
presented in Table 8.2. The input string was checked against the whole set of data
stored in the trusted database. More information regarding the construction of the
database and the data sets that were used is provided in Section 8.3.2. In the table,
the ‘Rank’ column demonstrates the order, while the ‘Similarity’ column contains
the similarity between the input string and the returned string, as calculated by the
algorithms. The results that Jaro-Winkler returned were found to be perceptually
more accurate and the performance of the algorithm significantly better.

Icon Similarity

Various methods for the icon similarity detection were tested. In contrast to string
similarity, image similarity detection algorithms are more complicated and the
accuracy of their results is highly dependent on the given image set.
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Figure 8.2: Test Set

The state-of-the-art in image recognition are training algorithms [42]. Since
application icons in most occasions are drawings that do not frequently change,
training an algorithm can be extremely challenging, due to the lack of input data that
is required. Therefore, a more applicable method for tackling this problem had to be
used.

Comparing the histograms of two images produced promising results during the
experimental phase. Colour similarity between the images and pHashes (perceptual
hashing) [98] were also tested, but gave significantly worse results. Finally, a
method introduced by Jacobs et al. [88] was tested. Their method uses Haar Wavelet
Decomposition techniques in order to determine how many significant wavelet
coefficients the input image has in common with a target image and therefore
determine the amount of similarity.

The results of the image comparison between the original image and the rest of
the images shown in Figure 8.2, using the Haar Wavelet and histogram comparison
methods, are presented in Table 8.3. More experiments were conducted, using
different sets of images, that produced similar results in terms of accuracy.

Table 8.2: Jaro-Winkler and Levenshtein Distance Top 10 Results Based
on Input ‘googl app stoy’

Results Jaro-Winkler Levenshtein
Rank Similarity Rank Similarity

Google Play Store 1 0.904008 1 7
Google Earth 2 0.873016 3 8
Google Classroom 3 0.86756 2 8
Google Fit 4 0.866667 5 8
Google Sheets 5 0.864469 6 8
Google Docs 6 0.862284 4 8
Google Apps Device Policy 7 0.855801 — —
Google Translate 8 0.839782 — —
Google Slides 9 0.839744 — —
Google Goggles 10 0.83631 8 9
GoPro App — — 7 8
Google Finance — — 9 9
Hack App Data — — 10 9

Average query execution time* 3.1 seconds 6.8 seconds
∗Based on 50 executions of the query
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The histogram comparison was tested for binarised versions of the images as
well. The OpenCV [119] library was used for the histogram comparison, and the
Correlation Algorithm was used to calculate the distance between two histograms.
The Correlation Algorithmwas chosen because it produced significantly better results
than the other histogram comparison algorithms that OpenCV provides (Chi-Square,
Intersection, and Bhattacharyya distance).

The Haar Wavelet method was noticed to be more resistant to images with added
noise or distortion, while the histogram method could detect rotated images better.
Histogram comparison is also more likely to return high similarity in cases where the
target image has similar colours as the original one, but a different pattern is depicted.
This could possibly lead to many false positives. Moreover, since application icons
are typically relatively small, it is more likely that added noise or distortion will go
unnoticed, than rotation. Therefore, the Haar Wavelet method was chosen to be used.
More efficient algorithms for image and string similarity that will further improve the
results may exist, but this is not the main focus of this chapter.

Application Similarity Metrics

A user is more likely to trust (and consequently install) an application in which they
can recognise symbols that are familiar to them [129]. Therefore, the higher the
resemblance, the more likely it is for an application to get installed.

In the proposed technique, two similarity detection algorithms were used; name
similarity and icon similarity. These algorithms return their similarity score, X and
Y for the name and icon similarity respectively. To combine these similarity scores
and compute the overall similarity, Equation 8.1 was used.

Sima ,b � 10X × 10X +Y × 10Y

2
(8.1)

In the equation, X represents the similarity percentage between the names of the
applications a and b, andY the similarity percentage between their icons, as returned
from the algorithms described in Sections 8.2.6 and 8.2.6, respectively. The proposed
equation weights the name and icon similarities in a way that high similarity in one

Table 8.3: Image Comparison Methods

Haar Wavelet Histogram Binarised Icon’s Histogram

Original 100.00 100.00 100.00
Added line 57.49 61.55 100.00
Double logo 46.97 71.98 94.33
Rotated 15.72 88.84 99.99
Distort 89.70 53.48 99.97
Noise 47.15 38.81 91.68
Other logo 1 4.01 7.67 52.87
Other logo 2 8.52 0.70 99.81
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of the two elements would have a significant impact on the overall similarity. The
same weight is given to the two similarity scores, which are then averaged.

During the evaluation phase, in order for two applications to be considered
similar, the similarity score returned by Equation 8.1 should have exceeded 40%.
The threshold of 40% was chosen because during experimentation it was giving the
most promising results in terms of false-positive and false-negative rates. However,
this score mainly focuses on improving the usability of the proposed solution by
not returning to the user a large list of potentially irrelevant applications. It can be
readjusted according to the operational requirements and the similarity metrics that
are used. Similarly, alternative approaches for weighing the name and icon similarity
results may be used.

8.3 Implementation

In order to test the effectiveness of the solution, two tools were built. An Android
application capable of extracting the required features from an .apk file, and a server
responsible for the repackaging detection process.

8.3.1 The Android Application

The Android application takes as input an .apk file and extracts the required features,
as described in Section 8.2.5. It first extracts the name, the icon, the package name, and
calculates the hashes of the signatures that exist in the application. The name (since it
may contain special characters) and the icon are encoded using Base64 encoding in
order to be transmitted over the network. Finally, it decompresses the application to a
new directory, removes the META-INF directory, compresses it again and calculates the
SHA256 of the signed and unsigned applications. The extracted data is being sent to
the detection server, using SSL, in order to maintain the integrity and confidentiality.

In the experiments, an SGS5 mini (SM-G800F) was used, running Android 4.4.2.
It is regarded as a low-specifications Android smartphone.

Challenges

Ideally this mechanism should be built in the package manager process or automati-
cally run when an application is about to be installed. Due to Android limitations, the
previous is not possible without further system modifications. A customised version
of Android can integrate both, since the package manager is part of the Android
AOSP. Since the integration of the solution to the operating system would not have
any impact on proving its robustness, a proof of concept application that takes an
.apk file as input and performs the whole process was built instead.
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8.3.2 The Server Application

The server application was mainly written in Java, running on top of a Tomcat server,
version 7.0.57. The host machine was a laptop with 8GB of RAM and an Intel Core
i7–2620M CPU, running at 2.7GHz. The OS was Ubuntu 14.10, Desktop edition. The
database software used in the experiments was MySQL, version 5.5.41. A set of
2676 free applications were crawled from the Google Play Store (referred to as ST),
using a crawler that was written in Python, and were added to the database. These
applications were considered as authentic and non-repackaged.

The database consisted of three tables. The first one was holding the blacklisted ap-
plication unsigned hashes, along with a link to the corresponding original application
(if there was one). The second contained the developers of the trusted applications,
along with the hash of their public key. The last one contained the essential informa-
tion about the applications. This information included the application name and icon,
the signed and unsigned application’s hashes, the developer’s ID, as well as other
data that were crawled from the Google Play Store, like the package name and total
number of downloads.

All the hashes were calculated using the SHA256 algorithm. The built-in
MessageDigest Java class was used for the calculation of the hashes.

Application Similarity

• Name similarity: The name similarity was performed in the database, using
an implementation of Jaro-Winkler written in SQL8, in order to increase the
performance. No further actions were taken in order to optimise the code for
performance.

• Icon similarity: Image similarity detection was the biggest challenge, due to the
multitude of the existing algorithms. It had to be efficient, while returning as
accurate results as possible. It was developed in Perl, using the Image::Seek
module, which is capable of calculating image similarity based on the Haar
Wavelet Decomposition method. Coefficients of the decomposition of the
application icon in question were compared with pre-computed coefficients of
trusted applications in the database.

8.4 Results and Evaluation

After the population of the trusted server with legitimate applications, as described
in Section 8.3.2, three experimental phases were conducted in order to assess the
robustness of the proposed solution. In the first two, applications from the Drebin
malicious dataset [14, 15] (referred to as SM) were used as input on the client device.

8Jaro-Winkler SQL source code: https://androidaddicted.wordpress.com/2010/06/01/jaro-
winkler-sql-code/

https://androidaddicted.wordpress.com/2010/06/01/jaro-winkler-sql-code/
https://androidaddicted.wordpress.com/2010/06/01/jaro-winkler-sql-code/
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During the third phase, legitimate applications that exist in the trusted database were
used, in order to measure the performance of the solution in this scenario.

In the first phase of the experiment, the accuracy of the proposed solution was
tested against applications with very high probability of being repackaged. According
to previous research [103], altering the package name of an application would lower
its visibility in markets. Therefore, a set of such applications can be generated by
extracting applications from the set SM , with package names that exist in the Play
Store. A total of 227 free (non-paid) applications (referred to as SF) were extracted
and used during the experimentation.

In the second phase, 100 random applications (referred to as SR) were chosen
from SM , excluding SF (so, SR ⊆ SM \SF), in order to further investigate the accuracy
of the solution with applications that are most likely not repackaged (false positive).
The main goal of this test was to measure the amount of non-repackaged applications
that would be detected as repackaged.

In the last phase, 50 representative legitimate applications (referred to asSL, where
SL ⊆ ST) were randomly selected and tested in order to measure the performance of
the system when legitimate applications are tested.

The first two phases of the experiments were analysed in terms of accuracy and
performance. Manual inspection of the applications in the sets was finally performed
in order to assess the quality of the results.

8.4.1 Results

Table 8.4 presents the results from the three experimental phases described in the
previous section. ‘Average Time/Check’ refers to the average time required from the
moment the smartphone device initiated the process, until it displayed the returned
results on its screen. Cases in which the original version of the repackaged application
being checked was included in the returned results were marked as true positives.
Returned results that did not include the original application were marked as false
positives. True negatives were considered cases in which no results were returned
from the server and no corresponding original application existed. Finally, cases in
which no similar applications were returned, and the trusted database included the
original application were marked as false negatives.

During the first phase of the experiment, 189 applications (83.3%) returned exactly
one result. A total of 15 applications (6.6%) returned two results. One application

Table 8.4: Experimental Results

Set Size True
Positive

True
Negative

False
Positive

False
Negative

Average
Time/Check

Phase 1 SF (227 apps) 203 3 2 19 3.42 seconds
Phase 2 SR (100 apps) 11 88 1 0 3.9 seconds
Phase 3 SL (50 apps) 50 0 0 0 0.6 seconds
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(0.4%) returned three results and the 22 remaining (9.7%) did not return any result.
The time required for the extraction of the features from the .apk file on the device
was approximately 0.18 seconds. Approximately 2.6 seconds were spent on the
application name comparison on the server side. The time required for the image
similarity detection was negligible (<1ms). The average application size was 2.1MB.
A slight time overhead may be added on the client side in case of larger applications,
since the decompression phase, as well as the computation of the hashes might
take longer to complete. However, this process only takes place once, prior to the
applications installation, causing a negligible impact on the overall operating system’s
performance.

During the second phase, 9 applications returned exactly one result. Two returned
two results and one returned four results. 3.5 seconds were required for the server
to take a decision, 3.2 of which were required for the string similarity comparison.
A total of 0.14 seconds were required for the Android device in order to extract the
required data from the .apk file. The average application size was 1.5MB.

Finally, during the third phase, only applications that already existed in the
database were tested. This phase was performed in order to calculate the system’s
performance in this occasion. A total of 0.04 seconds were required by the server for
the detection process. Data extraction on the client required 0.3 seconds to complete
and the average .apk file size was 4MB.

The database that holds the Haar transformation norms and gets populated when
new icons are added to the set of application icons, requires an average (after 5 runs of
the population script) of 1 minute and 7 seconds, for a total of 2676 images. Therefore,
0.025 seconds for each new added icon. However, this process only needs to take
place during the database population phase, and will not impact the later detection
process.

8.4.2 Evaluation

The results were evaluated in two phases.

First Phase

After manual analysis, both false positives detected in this phase were found not to
be repackaged applications of the applications with the same package names in the
Google Play Store. Both the package names were simple (com.hotel and com.acid)
and the existence of applications with the same package name was most probably
due to a coincidence.

Nineteen false negatives were also detected. Fifteen of them shared similar
icons with the corresponding original applications. Their application names were in
Chinese, in contrast with the original applications whose names are in English. The
measurement of the name similarity returned 0 and the amount of the icon similarity
was not enough to compensate. Since the samples in SM were collected between
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2010 and 2012, and the original corresponding applications may have been updated
numerous times since then, it is unclear whether the application names of the original
applications were in Chinese at the time of capture, or the names of the repackaged
applications have been altered. The original application developers in all cases seem
to be based in China, based on Google Play Store data.

The remaining four false negative results were returned by applications that had a
completely different icon than the original application, and a different name. Again, it
was not clear whether the attacker who performed the repackaging altered the name
and icon, or these were the name and icon of the original application at the time of
repackaging.

The remaining three applications that did not return any results were not repack-
aged versions of applications that exist in the Google Play Store. They only shared
the same package names with Google Play Store applications. Therefore, correctly, no
results were returned.

(a) Original (b) Repackaged

Figure 8.3: Netflix Application Icons

Forty applications that were correctly recognised had similar names, but different
icons to the original ones in the database. For example, a repackaged version of Netflix
contained an old application logo, which compared to the newer one has reverse
colours, different fonts, shadows, and rounded corners (Figure 8.3). Applications
with resized icons between the original and the repackaged version were not counted,
since all icons were resized to 128×128 pixels prior to the similarity detection.

Moreover, it was observed that in all occasions when the server would suggest
more than one potentially original applications, the one with the highest similarity to
the application being tested was the correct suggestion.

Second Phase

During this phase, no false negatives were detected. There was one false positive and
eleven true positives.
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The true positive results were not detected as repackaged when only looking at
the package name, that suggests that it might be a common practice for attackers to
alter it. Four applications were also detected to have a slightly different icon than the
original applications.

Finally, the false positive was caused by an application that had the default
icon that the Eclipse IDE adds on newly created Android projects. A total of four
applications with this particular icon existed in the database and were returned. It is
a common practice for developers to change the default icon, in order to brand the
application.

Observations

The proposed solution demonstrated its effectiveness in detecting repackaged appli-
cations (91.5% detectability, according to the results of the first experimental phase).
Its high performance in terms of speed also demonstrates that it is likely to be
applicable to real-world scenarios. However, further investigation is required prior to
deployment, mainly in order to address potential privacy concerns, issues regarding
the population of the TTP’s database, and handling in cases of poor or no internet
connectivity.

During the experiments, repackaged applications that were not using the original
application’s source code, but only its name and icon, were also detected. These
applications would probably have gone undetected by many countermeasures that
are based on different methods, discussed in Section 2.5.2.

An application that is known to use this repackaging technique, disguising itself
as the Google Play Store [165], but using the icon of an older version of the application
and ‘googl app stoy’ as its name, was successfully detected. Only one result was
returned by the server; the original Google Play Store. Although this type of attack
is not new [33], this kind of applications might not get detected by most alternative
repackaging detection techniques. More applications like the previous were detected
during the experiments.

The best example is a fraudulent applicationwith package name net.android.app.
Four variants of the application were found in the set SF, using this package name.
After manual inspection of the disassembled code, it was concluded that all variants
share the same source code, which is capable of sending textmessages to premium-rate
numbers, without the user’s authorisation.

Thefirst versionof the sample (basedon that itwas found in thefirst chronologically
ordered directory of SM), uses ‘brauzer’ (Russian for ‘browser’) as its name, and the
logo of Microsoft Internet Explorer as its icon. Since no similar applications were
included on the server, correctly, no similar applications were returned.

The later variants of the sample used different names and icons. The first two
used ‘Skype’ as their name and the original Skype icon. The last used ‘Opera Mini’
as its name and the Opera Mini browser’s icon. It is believed that this was a well
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thought move from the attacker’s side towards increasing the distribution vector of
the application.

Most of the existing application repackaging detection methods may not be
capable of detecting this type of application repackaging. The results suggest that it
is not a common practice for attackers to alter the names and icons of repackaged
applications.

8.4.3 Comparison with Previous Works

Table 8.5 presents a comparison between the proposed solution and popular previous
solutions, described in Section 2.5.2. A short description and explanation is provided
below:

Most of the previous works rely on the detection being performed on the applica-
tion store side (criterion 1). It has been noticed that many third-party markets do not
remove malicious applications, and in many occasions the distribution of malicious
applications and adware is being done intentionally [103]. Since anyone with the
required technical knowledge can potentially create an application market, it is unsafe
to rely on them for the detection and removal of potentially harmful applications.
Many application markets are not likely to scan for repackaged applications due to the
computational cost and/or the lack of technical expertise. Finally, there are dedicated
websites and forums that distribute Android applications. Scanning application
market servers for malicious and repackaged applications does not protect against
applications that have been downloaded from such sources. The proposed solution
was designed to be able to initiate the detection process from the client side, making
it application download source agnostic (criterion 2), and notifying the user in order
to prevent the installation of a potentially repackaged application (criterion 3).

Another shortcoming of the previous techniques is that they are mostly based
on code analysis, or use features that are strongly linked with the application’s
code. Therefore, they would not be capable of detecting applications that claim to be
legitimate by just imitating their name and application icon, but using a completely
different code-base (criterion 4), or when advanced obfuscation techniques have been

Table 8.5: Comparison with Previous Works

Criteria DNADroid DroidMOSS AppInk Proposed

1. App store centric 3 3 7 3*
2. Download source agnostic 7 7 3 3

3. Client notification 7 7 3 3

4. Detects stolen branding 7 7 7 3

5. Detects stolen source code 3 3 7 7

6. Resilient to code obfuscation 7 7 3 3

7. Requires trusted sample 3 3 3 3

*Although the current implementation focuses on the client side, there are no restrictions for scanning an
application store using the proposed solution
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applied (criterion 6). Solely in 2014, at least two samples were detected, claiming to be
the Google Play Store application, none of which was using the original application’s
source code [13, 165]. Such solutions, however, may be able to detect whether an
application has stolen parts of the source code of another application (criterion 5).

Finally, most proposed solutions have to maintain samples of trusted applications
(or some other trusted derivative), against which a tested application is compared
(criterion 7). A repackaged application cannot be detected by any method, unless
that method maintains the necessary information of the authentic corresponding
application.

8.5 Summary

In this chapter, a repackaging detectionmethodwas proposed, that takes advantage of
the attacker’s inability to significantly modify the application’s name and icon, while
maintaining the same attack vector. Therefore, an attacker is not likely to perform such
modifications. The experimental results showed that the initial argument was valid.
Through a prototype that was built, it was possible to detect the original applications
with high confidence, given a repackaged application as an input.

Compared to previous works, the proposed solution was found to be about
as accurate as many application market level detection techniques, but capable of
initialising the detection process from the client side, allowing for source-independent
detection. Only a few kilobytes of data is required for the detection, which adds
a slight overhead only on the application installation process. This feature is very
important, as many application stores may not use repackaging detection techniques.
Google has started providing to users client-based detection of malicious applications
through Google Play Protect [64], even though in the past it used to mainly rely
on the server-based Bouncer [96, 105]. Moreover, no special actions are required on
the developer’s side. Finally, it is capable of detecting a variation of repackaged
applications that only share the same name and icon with the original. Since
repackaged applications are responsible for approximately 86% of the malware
distribution on the Android platform, protecting against them can protect against
various types of attacks, including the variation of relay attacks described previously
in this chapter.
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Chapter 9

Conclusion and Future Work

Relay attacks pose a serious threat towards the entities involved in a transaction.
The victims of such attacks may include not only the users who are performing
a transaction, but also banks (e.g. in the case of financial transactions), transport
operators (e.g. in the case of attacks on ticketing systems), and corporations (e.g. in
the case of relay attacks on access control systems), among others. This may result in
financial loss or loss of reputation, identity theft, and more.

Relay attacks are difficult to be detected by authorities beyond the victim user.
In the field of smart cards, distance bounding protocols have demonstrated high
effectiveness in relay attack detection. However, in the field of smartphones, distance
bounding protocols might not be effective, as discussed in previous chapters. One
alternative PRAD solution that has been proposed suggests the collection of mea-
surements from the immediate ambient environment of the transaction devices (the
natural ambient environment). The measurements are subsequently compared for
similarity, in order to establish proximity evidence. The data should be collected
during the course of a transaction, using some ambient sensor(s). For example, in
the case of a payment transaction, when the user taps the transaction instrument on
the transaction terminal, both devices should collect data during the course of the
transaction. One of the devices or a TTP (e.g. the bank) is then responsible for the
PRAD process, through comparison of the collected data.

In this thesis, the effectiveness of the natural ambient environment was initially
assessed. The evaluation focused on time-restricted mobile contactless transactions,
taking into account industry requirements, such as the ones imposed by EMV.
Previous work did not take into account such restrictions, which nonetheless apply
on a large number of security-critical mobile contactless transactions, such as mobile
payments and transportation-related transactions.

The initial evaluation of the natural ambient environment as a PRAD mechanism
demonstrated results that may be inadequate in respect to PRAD for security-critical
applications. Subsequently, different approaches were proposed in order to improve
the accuracy of PRAD for such transactions.

First, the generation of an AAE was proposed. For this approach, the devices that
communicate during a transaction are responsible for generating and/or measuring
the AAE that is produced through some of their peripherals (e.g. vibration). The
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generation of an AAE should be based on a random stream or sequence and be easy
for the genuine transaction devices to establish PRAD-related information, while
being difficult for an attacker to relay at a remote location. Similar to natural ambient
environment sensing, the data collected by the transaction devices are compared
for similarity and a transaction is approved if the similarity exceeds some certain
threshold.

From a list of proposed peripherals that can potentially be used as AAE actuators,
infrared light and vibration were evaluated, both of which demonstrated positive
results (∼98% TAR, and 0% FAR on infrared, and near perfect classification of genuine
and relayed transactions on vibration). The applicability of infrared in real-world
scenarios was also evaluated, showing that there is potential for the proposed solution
to be integrated to commercial applications/products.

Moreover, two approaches that do not rely on sensing of the ambient environment
were proposed. The first of them suggested the use of a random sequence of virtual
buttons that are presented on predefined locations of the display of the transaction
instrument (smartphone). The transaction instrument is placed on a special ‘plate’,
operated by the transaction terminal, capable of detecting the approximate location of
where force is being applied on the device which is placed on it. The genuine user of
the smartphone is called to touch the buttons that are displayed at random predefined
locations of the screen. The transaction terminal is capable of detecting which button
was pressed on the mobile device, based on the capabilities of the sensing ‘plate’.
Both transaction devices record the pressed button sequence, the duration of button
presses, as well as the duration between subsequent button presses. The timings
and the sequence recorded by the two devices are then compared for similarity in
order to determine whether the devices are in proximity. The solution demonstrated
high effectiveness as a PRAD mechanism. A set of ten attackers tried to attack the
proposed system, however all of the attempts (200 in total) were successfully detected,
both using threshold- and machine learning-based analysis techniques.

Finally, a method to detect repackaged applications was proposed. Repackaged
applications have been found in the past responsible for the distribution of approx-
imately 86% of all Android malware. Moreover, relay attacks that use a malicious
application installed on a genuine user’s device, instead of relying on masqueraded
devices, have been demonstrated. Since repackaged applications are a major source of
malware distribution, detecting such applications prior to their installation is crucial
for protecting against a large variety of attacks, including relay attacks. The proposed
solution suggested that looking at the features that characterise the application prior
to its installation, i.e. its name and icon, in case it is not found to be genuine, can
assist towards detecting whether the application might be potentially repackaged. An
evaluation of the proposed solution revealed high accuracy in detecting repackaged
applications. Moreover, the detection process is initiated from the client side, which
makes the solution application source agnostic. This is a major advantage over other
proposed solutions that rely on application markets to run the repackaging detection,
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since usersmay be using various application sources (e.g. websites), and somemarkets
may not apply repackaging detection techniques.

9.1 Comparison of the Proposed Solutions

While a variety of solutions have been proposed in this thesis, there is no one solution
that can fit as a PRAD mechanisms in all possible scenarios. Each one has advantages
and disadvantages over the rest. Table 9.1 compares the proposed solutions against a
set of criteria.

Table 9.1: Comparison of Proposed Solutions

AAE Force
Sensing

Repackaging
DetectionInfrared Vibration

1. Requires Extra HW on TI Side • 7 7 7

2. Comparison During Transaction Time 3 7 ? —
3. Resists Context-Manipulating Attacker 7 3 3 3

4. Requires User Interaction • • 3 ◦
5. Unattended Operation 3 • 7 —
6. Device Size May Impact Accuracy 7 ? ◦ 7

7. Phone Cases May Affect Accuracy ◦ ? ? 7

8. PRAD Distance Up to a
Few Metres

0m 0m —

3: Yes, 7: No, •: Potentially/Minor, ◦: In some cases,?: Not Evaluated, —: Not Applicable

In the table, the first criterion refers to whether extra hardware (HW) is required
on the transaction instrument, other than what is already widely available on modern
smartphones. In the case of using infrared as an AAE actuator, extra HWmight be
required, since not all modern smartphones are equipped with an infrared emitter.
Therefore, this PRAD technique might be more suitable for scenarios in which the
devices are provided to the users, and cover some HW requirements, as in the case
of companies providing devices to the employees that can be used in access control.
However, as explained in Chapter 4, an infrared emitter is available in a variety of
devices. All other solutions do not require HW that is not likely to be available. In the
case of vibration, sensors as the accelerometer are highly recommended to be included
on Android devices, and HW features that can be used for notifying the user (such
as vibration) must be included [5]. Similarly, according to the same specifications
document, devices must be equipped with at least a 2.5 inches display, and support
touchscreen input (therefore the force sensing PRAD approach would not require
extra HW on the device side). Finally, devices should include support for one or more
forms of 802.11, therefore the repackaging detection approach does not have extra
requirements either. This is an advantage over certain previous works as well, that
rely on sensors that are uncommon on Android devices (e.g. temperature, humidity,
and precision gas).

The next criterion refers to the ability of the proposed solution to perform the
similarity comparison between the captured data from the two devices during the
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time-frame of the transaction. In Chapter 5, this was evaluated for infrared, with
successful results. In the case of vibration, a TTP is required, since the vibration
duration is 500ms (equal to the maximum permitted transaction time). Thus, the
comparison can only be performed post-transaction time. So, if the transaction
is accepted or rejected, the transaction devices will be notified posteriori. This
mechanism is therefore intended for transactions in which at least one of the devices
is online. In the case of force sensing, such evaluation was not performed, however
the amount of data that has to be transferred between the devices is a few bytes long
(smaller than in the case of infrared), and the threshold-based analysis only requires
a minimal amount of calculations. The amount of data and calculations required
for the force sensing PRAD mechanism is an aliquot part of the amount of data and
calculations required for the infrared AAE-based mechanism. It is safe to assume that
it is possible for the force sensing PRAD to effectively perform the comparison during
the transaction time, when threshold-based analysis is used, but further investigation
might be required. In the case of device-specific thresholds, possibly a TTP will be
required, in order to hold a database of all the thresholds and models. It is worth
noting, however, that in this particular technique the user input takes place during
the transaction, but outside of the 500ms time-frame, as happens in the case of PIN
authentication. Finally, in the case of repackaging detection, this criterion is not
applicable, since the detection takes place during the installation of the application
and not during the transaction time.

The third criterion refers to the effectiveness of the solution in the presence of
a context-manipulating attacker. In the case of natural ambient sensing, as it has
already been discussed, a context-manipulating attacker may be capable of creating
false acceptances and rejections when certain sensors are used to measure the ambient
environment [138]. In the case of the proposed solutions, such an attacker cannot
interfere with the non AAE-based solutions. In the case of using vibration as an AAE
actuator, the evaluation demonstrated that the vibrations performed by an attacker do
not largely impact the effectiveness of the solution. However, as the evaluation of the
effectiveness against a context-manipulating attacker was not the main objective of
this work, and further attacks might be possible, further investigationmay be required.
Finally, in the case of infrared, an attacker was found not capable of achieving a
false positive when using off-the-shelf equipment and custom-built devices, based on
various off-the-shelf components. However, an attacker can create a false negative by
emitting random infrared signals from a distance that may result in the transaction
terminal capturing a wrong sequence. Physical barriers to block signals originating
from indirect/unintended sources from reaching the infrared sensor were proposed
as a countermeasure.

The fourth criterion refers to the PRAD process requiring user interaction. Some
form of user interaction is required on all solutions, however, in most of them it
is minimal. In the case of infrared as an AAE actuator, the user should keep the
transaction instrument’s infrared emitter in a 30 degree angle from the transaction
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terminal’s infrared receiver (on any direction). In the case of vibration as an AAE
actuator, the user has to place the transaction instrument on the transaction terminal
prior to the initiation of the transaction. In the case of application repackaging, if
an application is found to be potentially repackaged, the user is given a warning
containing instructions. Finally, in the case of force sensing, the user has to place the
transaction instrument on the force sensing plate that is attached to the transaction
terminal, and press on a button sequence. This solution requires the highest amount
of user interaction. It might be preferred over the others in certain scenarios however,
since no extra hardware is required, its effectiveness was found to be very high, and
no TTP might be necessary.

The fifth criterion refers to the capabilities of the proposed solutions to operate
without requiring to be assisted by a user. This might be useful in various scenarios,
for example in IoTs, when two devices need to prove to each other that they are
co-located. In the case of infrared, this is possible as long as the infrared emitters
and receivers are placed within a 30 degree angle. In the case of vibration it is also
possible, as long as the devices are placed on top of each other. However, the impact
from the vibration might cause the devices to move over time. Force sensing on the
other hand always requires user interaction, so unsupervised operation is not possible.
Finally, this criterion is not applicable in the case of repackaging detection.

The sixth criterion is about the impact that the size of the device might have in the
accuracy. In the cases of infrared and repackaging detection, the device size is not
relevant to the performance of the proposed solution. In the case of force sensing, the
device size and weight affected the solution to some extent, but as a countermeasure,
device-specific thresholds were also used. In the case of vibration, the impact of the
device size was not evaluated, as it was not the main objective.

The seventh criterion refers to the impact that phone cases might have on the
accuracy. In the case of repackaging detection, phone cases are not relevant. In the
case of infrared as an AAE actuator, phone cases do not affect the accuracy, except
if they block the infrared emitter of the device. In the cases of vibration as an AAE
actuator and force sensing, no evaluation was performed, as it was not the main scope
of these works, but it is likely that especially thicker, softer, and oddly shaped cases
may affect the proposed solutions.

The last criterion refers to the operating distance of the solutions. In certain
scenarios, like IoTs, device co-location might not necessarily require the transaction
devices to be touching. For example, in the case of a home security system, two
devices might need to be located in the same room. Using infrared as an AAE actuator,
this is possible, since the solution can operate up to a few metres. However, in other
scenarios, like EMV payments, a few metres might be a distance in which a relay
attack or denial of service attack might be possible. Infrared can still operate in such
scenarios, if barriers are applied. It is also worth noting that relay attacks could not
be performed successfully during the evaluation that was performed, therefore no
evidence exists to suggest that they are possible. In the cases of vibration as an AAE
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actuator and force sensing however, the devices should be touching in order for the
proximity evidence to be collected successfully. Finally, this criterion is not applicable
in the case of repackaging detection.

Finally, it is worthmentioning that the best performancewas observed by using the
force sensing PRAD, as well as by using vibration as an AAE actuator. In these cases,
the least amount of false rejects and/or accepts was observed. However, positive
results were observed by all proposed solutions, and as discussed above, certain
solutions may be more appropriate than others for certain use cases.

9.2 Applicability of the Proposed Solutions

As is evident from the previous section and discussions in previous chapters, certain
proposed solutions might be more suitable for certain scenarios. Prior to deployment
of one of the proposed solutions in a real-world application, various aspects should
be taken into consideration.

Firstly, usability aspects should be considered. Some proposed solutions may
be difficult to operate by users with motor difficulties or impaired vision (e.g. the
force sensing-based PRAD). As discussed in Chapter 4, the devices should have the
ability to negotiate the sensors and methods to be used for the PRAD. The transaction
terminals should be able to provide a multitude of different PRAD techniques, such
that the system can be easily used by all potential users. Further investigation is
required to be performed by the relevant industries, in order to assess potential
usability concerns under specific use cases.

Moreover, the transaction terminals are required to be equipped with extra
hardware (except in the case of the host-based detection). In this case as well, the
transaction devices should be capable of negotiating the sensors that re going to be
used, since not all smartphones are equipped with all the available sensors. Devices
that are already in the market will thus be capable of performing PRAD techniques
without requiring extra hardware.

Prior to deploying the proposed solutions, further investigation is required to
assess their performance in real-world scenarios. A larger variety of devices should
also be used during the assessment. Also, alternative techniques should also be
investigated, that could potentially provide better results.

Finally, the host-based PRAD can be integrated to existing devices without
requiring extra hardware to be installed on the transaction devices. However, in
order to be applicable to the industry, certain elements of the solution should be
discussed. The authorities responsible for populating and maintaining the trusted
applications database should be decided. Moreover, the solution should be integrated
to the smartphone’s operating system. In Chapter 8, potential approaches that can be
followed to perform the integration have been discussed.

Since smartphone-based contactless transactions are on the rise, the proposed
solutions can assist towards creating a more secure ecosystem. In various industries,
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like banking and transportation, relay attacks may pose a serious threat, leading to
economical and reputation loss. Corporations might also experience unauthorised
access to their premises, and IoTs that are required to be placed within some distance
from each other might be intentionally moved to a greater distance, without being
detected, with the aid of relay attacks. Moreover, the users may be affected by such
attacks. User impersonation is possible, and in case no relay attack countermeasures
have been used, it is hard to prove that a transaction was not genuine, since it occurred
between genuine devices. The solutions that have been proposed in this thesis can
aid towards providing proximity assurances in scenarios where traditional smart card
distance bounding protocols may not be applicable.

9.3 Comparison to Previous Works

Compared to previous works on smartphone-based PRAD, the proposed solutions
described in this thesis were found to have a variety of advantages. First of all, the
proposed solutions were found to provide better results than previously proposed
mobile-based PRAD techniques. Moreover, compliance with industry standards that
require transactions to complete in short time-frames (up to 500ms) was achieved.
Certain of the proposed solutions also do not require a TTP in order to perform the
PRAD. Finally, the proposed solutions were found more resilient against an attacker
with context manipulating capabilities.

The major disadvantage of the proposed solutions, compared to previously
proposed solutions, is the user friendliness. Most of the previous solutions do not
require extra steps on the side of the user in order to perform a transaction (with the
exception of [116]). However, the accuracy of previously proposed solutions is lower,
especially in the case of transactions with a time limit of up to 500ms. According to
the results presented in Chapter 3, at best, approximately one in every five genuine
transactions that use the natural ambient environment as a PRAD mechanism will
fail and will have to be repeated.

9.4 Future Work

As part of the ongoing research, the work presented in this thesis can be expanded
towards various directions. The evaluation of past proposals (Chapter 3) can be further
investigated by simultaneously measuring multiple sensors within the transaction
time duration. This is to evaluate whether the risk associated with using individual
sensors would be reduced. Moreover, a larger range of devices can be used to further
assess the effectiveness of the natural ambient environment as a PRAD mechanism.

Similarly, the effectiveness of all the proposed PRAD countermeasures (presented
in Chapters 4 to 8) can also be examined further by assessing a variety of different
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devices. Moreover, user studies can be carried out, in order to assess the usabil-
ity, performance, and user acceptance of the proposed solutions outside of a lab
environment.

Individual proposals can be extended towards various directions. Chapter 4
(Preventing Relay Attacks Using Infrared Light) can be extended by investigating various
attacks and potential mitigations against them, like denial of service attack through
emission of interfering infrared sequences from a short distance. The use of infrared as
an AAE actuator can be investigated further in continuous two-factor authentication
for online logins, expanding the solution presented in Chapter 5 (Infrared Light for
Proximity Critical Scenarios).

Chapter 6 (Vibration as an Artificial Ambient Environment Actuator) can also benefit
by examining the impact of collecting data from multiple sensors simultaneously
(sensor fusion) on the performance of the proposed solution. Furthermore, the impact
that phone cases might have on the proposed solution can be investigated.

Additional features that would minimise the potential of an attacker to perform
a relay attack can be examined, expanding the investigation presented in Chapter 7
(Force-Based Relay Attack Detection). For example, the pressure intensity. However, it
should be stressed that many devices lack features, like that of measuring the intensity
of the pressure that is being applied on their screen.

Finally, the proposed solution presented in Chapter 8 (Host-Based Relay Attack
Detection), can be expanded by further investigating string and image similarity
algorithms and techniques. A more in depth study can assist towards the better
selection of the threshold over which two applications are considered similar, leading
to even lower false-positive and false-negative rates. Finally, code optimisations can
further improve the proposed solution’s performance.



163

Appendix A

Ambient Sensors

This appendix provides a short description of each sensor.

A.1 Accelerometer

The accelerometer sensor —deployed in most modern smartphones– measures the
acceleration applied to the device on the x, y and z axes; its units are metres per
second per second (ms−2).

A.2 Ambient Temperature

The ambient temperature sensor returns the room temperature in Celsius degrees
(◦C).

A.3 Bluetooth

Bluetooth is a technology that facilitates wireless communication and operates in the
ISM band centred at 2.4 gigahertz. As a proximity sensor, we measure the Bluetooth
devices in the vicinity (their names and MAC addresses).

A.4 Geomagnetic Rotation Vector (GRV)

The GRV sensor measures the rotation of the device using the device’s magnetometer
and accelerometer; it returns a vector containing the angles that the device is rotated
in the x, y and z axes.

A.5 Global Positioning System (GPS)

The GPS sensor based a satellite-based global positioning and velocity measurement.
A latitude and longitude pair is returned, representing a geographical location on
Earth.
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A.6 Gravity

The gravity sensor on mobile handsets measures the effect of Earth’s gravity on the
device, measured in metres per second per second (ms−2).

A.7 Gyroscope

The gyroscope measures the rate of rotation of the device about the x, y and z axes;
its units are radians per second (rads−1).

A.8 Relative Humidity

The relative humidity sensor returns the percentage of the relative ambient humidity
in the air.

A.9 Light

The light sensor measures the lighting conditions surrounding the mobile handset.
Android measures this quantity in lux.

A.10 Linear Acceleration

The linear acceleration sensor measures the affect of a device’s movement on itself; its
units are metres per second per second (ms−2).

A.11 Magnetic Field

The magnetic field sensor detects the Earth’s magnetic field along three perpendicular
axes x, y and z. Android measures these values in microteslas (µT).

A.12 Network Location

A latitude and longitude pair is returned, representing a geographical location on
Earth.

A.13 Pressure

The pressure sensor measures the atmospheric pressure surrounding the mobile
handset. It is measured in hectopascals (hPa).
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A.14 Proximity

The proximity sensors detects distance, measured in centimetres. In many devices
the sensor returns only a boolean value, declaring whether something is in close
proximity to the device or not.

A.15 Rotation Vector

Rotation vector is a software sensor, similar to the GRV, but also incorporates the
gyroscope. The returned values represent the angles which the device has rotated
through the x, y and z axes.

A.16 Sound

For the sound sensor’s measurement, we use the device’s microphone to record the
noise in the vicinity of the mobile handsets and retrieve the maximum amplitude that
was sampled, every time it becomes available by the Android operating system.

A.17 WiFi

This sensor uses traditional WiFi to detect the networks in the vicinity of the mobile
device. The MAC addresses and ESSIDs of the nearby networks are returned.
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Appendix B

Protocol 1 – Scyther Script

1 usertype IRsequence;

2 hashfunction h;

3 usertype SessionKey;

4 secret Cert: Function;

5
6 protocol protPK(TI,TT) {

7 role TI {

8 fresh nti: Nonce;

9 var ntt: Nonce;

10 fresh IRSeq: IRsequence;

11 fresh IRTiming: Ticket;

12 var Y: Ticket;

13 fresh K: SessionKey;

14 recv_1(TT,TI, TT,ntt,Cert(TT));

15 send_2(TI,TT, {TI,TT,nti,ntt,K,IRSeq}pk(TT),{h(K,ntt)}sk(TI),

Cert(TI));

16 send_3(TI,TT, {TI,TT,nti,ntt,IRTiming}K);

17 recv_4(TT,TI, {TI,TT,nti,ntt,Y,{h(nti)}sk(TT)}K);

18
19 claim(TI, Alive);

20 claim(TI, Secret, K);

21 claim(TI, Secret, nti);

22 claim(TI, Niagree);

23 claim(TI, Nisynch);

24 claim(TI, Secret, IRSeq);

25 claim(TI, Secret, IRTiming);

26 claim(TI, Secret, Y);

27 }

28
29 role TT {

30 var nti: Nonce;

31 fresh ntt: Nonce;

32 var X: Ticket;

33 var Y: Ticket;

34 fresh apprv: Ticket;

35 var K: SessionKey;
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36 send_1(TT,TI, TT,ntt,Cert(TT));

37 recv_2(TI,TT, {TI,TT,nti,ntt,K,X}pk(TT),{h(K,ntt)}sk(TI),Cert(

TI));

38 recv_3(TI,TT, {TI,TT,nti,ntt,Y}K);

39 send_4(TT,TI, {TI,TT,nti,ntt,apprv,{h(nti)}sk(TT)}K);

40
41 claim(TT, Alive);

42 claim(TT, Secret, K);

43 claim(TT, Secret, nti);

44 claim(TT, Niagree);

45 claim(TT, Nisynch);

46 claim(TT, Secret, X);

47 claim(TT, Secret, Y);

48 claim(TT, Secret, apprv);

49 }

50 }
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Appendix C

Protocol 2 – Scyther Script

1 usertype IRsequence;

2 hashfunction h;

3
4 macro K = k(TI,TT);

5
6 symmetric -role protocol protSK(TI,TT) {

7 role TI {

8 fresh nti: Nonce;

9 var ntt: Nonce;

10 fresh IRSeq: IRsequence;

11 fresh IRTiming: IRsequence;

12 var Y: Ticket;

13 recv_1(TT,TI, {TT,ntt}K);

14 send_2(TI,TT, {TI,TT,nti,ntt,IRSeq}K);

15 send_3(TI,TT, {TI,TT,nti,ntt,h(IRSeq),IRTiming}K);

16 recv_4(TT,TI, {TI,TT,nti,ntt,Y,h(IRSeq)}K);

17
18 claim(TI, Alive);

19 claim(TI, Niagree);

20 claim(TI, Nisynch);

21 claim(TI, SKR, ntt);

22 claim(TI, SKR, nti);

23 claim(TI, Secret, IRSeq);

24 claim(TI, Secret, IRTiming);

25 claim(TI, Secret, Y);

26 }

27
28 role TT {

29 var nti: Nonce;

30 fresh ntt: Nonce;

31 var X: Ticket;

32 var Y: Ticket;

33 fresh apprv: Ticket;

34 send_1(TT,TI, {TT,ntt}K);

35 recv_2(TI,TT, {TI,TT,nti,ntt,X}K);

36 recv_3(TI,TT, {TI,TT,nti,ntt,h(X),Y}K);
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37 send_4(TT,TI, {TI,TT,nti,ntt,apprv,h(X)}K);

38
39 claim(TT, Alive);

40 claim(TT, Niagree);

41 claim(TT, Nisynch);

42 claim(TT, SKR, ntt);

43 claim(TT, SKR, nti);

44 claim(TT, Secret, X);

45 claim(TT, Secret, Y);

46 claim(TT, Secret, apprv);

47 }

48 }
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Appendix D

Both Devices Vibrate

Table D.1: Estimated EER Results for Machine Learning Algorithms
(obtained by repeating 10-fold cross-validation 10 times)

Classifier
Vibration
Mode Random Forest Naïve Bayes Decision Tree Logistic

Regression
Support Vector

Machine

Accelerometer

VVVV 0.073 ± 0.030 0.115 ± 0.041 0.120 ± 0.047 0.200 ± 0.042 0.058 ± 0.026
VVV*V 0.075 ± 0.032 0.111 ± 0.035 0.122 ± 0.041 0.215 ± 0.046 0.067 ± 0.028
VNVV 0.051 ± 0.027 0.066 ± 0.026 0.079 ± 0.036 0.148 ± 0.039 0.049 ± 0.022
VVNV 0.068 ± 0.030 0.100 ± 0.039 0.099 ± 0.041 0.147 ± 0.042 0.084 ± 0.032
VNNV 0.076 ± 0.033 0.078 ± 0.038 0.099 ± 0.047 0.148 ± 0.036 0.079 ± 0.036

Gravity

VVVV 0.497 ± 0.048 0.498 ± 0.042 0.500 ± 0.000 0.459 ± 0.041 0.500 ± 0.000
VVV*V 0.508 ± 0.053 0.505 ± 0.041 0.500 ± 0.000 0.540 ± 0.038 0.500 ± 0.000
VNVV 0.509 ± 0.053 0.487 ± 0.056 0.500 ± 0.000 0.453 ± 0.050 0.458 ± 0.050
VVNV 0.493 ± 0.054 0.492 ± 0.041 0.500 ± 0.000 0.510 ± 0.041 0.500 ± 0.000
VNNV 0.494 ± 0.053 0.483 ± 0.055 0.500 ± 0.000 0.478 ± 0.056 0.502 ± 0.062

Gyroscope

VVVV 0.004 ± 0.009 0.004 ± 0.011 0.009 ± 0.014 0.021 ± 0.016 0.004 ± 0.009
VVV*V 0.002 ± 0.008 0.000 ± 0.000 0.008 ± 0.014 0.009 ± 0.013 0.003 ± 0.009
VNVV 0.004 ± 0.010 0.001 ± 0.005 0.010 ± 0.015 0.008 ± 0.014 0.003 ± 0.009
VVNV 0.005 ± 0.011 0.002 ± 0.008 0.010 ± 0.016 0.019 ± 0.017 0.003 ± 0.009
VNNV 0.002 ± 0.010 0.000 ± 0.003 0.009 ± 0.015 0.013 ± 0.016 0.002 ± 0.007

Linear Acceleration

VVVV 0.000 ± 0.000 0.000 ± 0.000 0.021 ± 0.025 0.000 ± 0.000 0.000 ± 0.000
VVV*V 0.000 ± 0.000 0.000 ± 0.000 0.023 ± 0.027 0.000 ± 0.000 0.000 ± 0.000
VNVV 0.016 ± 0.019 0.015 ± 0.019 0.045 ± 0.032 0.057 ± 0.032 0.016 ± 0.018
VVNV 0.027 ± 0.021 0.028 ± 0.022 0.058 ± 0.034 0.090 ± 0.042 0.026 ± 0.022
VNNV 0.032 ± 0.025 0.042 ± 0.028 0.065 ± 0.042 0.088 ± 0.036 0.026 ± 0.023

Magnetic Field

VVVV 0.082 ± 0.030 0.316 ± 0.060 0.218 ± 0.073 0.488 ± 0.062 0.042 ± 0.022
VVV*V 0.100 ± 0.029 0.315 ± 0.053 0.220 ± 0.068 0.530 ± 0.052 0.045 ± 0.026
VNVV 0.008 ± 0.012 0.312 ± 0.059 0.140 ± 0.058 0.441 ± 0.064 0.009 ± 0.013
VVNV 0.097 ± 0.033 0.311 ± 0.061 0.219 ± 0.100 0.484 ± 0.060 0.048 ± 0.023
VNNV 0.009 ± 0.014 0.322 ± 0.046 0.136 ± 0.052 0.444 ± 0.060 0.009 ± 0.014

Rotation Vector

VVVV 0.007 ± 0.012 0.005 ± 0.017 0.031 ± 0.027 0.109 ± 0.047 0.008 ± 0.013
VVV*V 0.007 ± 0.012 0.005 ± 0.016 0.035 ± 0.027 0.114 ± 0.054 0.005 ± 0.010
VNVV 0.009 ± 0.012 0.010 ± 0.024 0.031 ± 0.026 0.109 ± 0.045 0.007 ± 0.012
VVNV 0.009 ± 0.013 0.009 ± 0.024 0.030 ± 0.026 0.116 ± 0.051 0.007 ± 0.014
VNNV 0.008 ± 0.012 0.009 ± 0.024 0.030 ± 0.025 0.116 ± 0.051 0.007 ± 0.014

*TT′ vibrates the same pattern as TI′
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Appendix E

Transaction Terminal Vibrates

Table E.1: Estimated EER results for machine learning algorithms,
obtained by repeating 10-fold cross-validation 10 times

Classifier
Vibration
Mode Random Forest Naïve Bayes Decision Tree Logistic

Regression
Support Vector

Machine

Accelerometer

VNVN 0.055 ± 0.025 0.111 ± 0.039 0.095 ± 0.041 0.168 ± 0.038 0.033 ± 0.019
VVVN 0.037 ± 0.026 0.082 ± 0.039 0.068 ± 0.033 0.148 ± 0.049 0.015 ± 0.016
VVV*N 0.121 ± 0.036 0.465 ± 0.271 0.216 ± 0.054 0.474 ± 0.049 0.092 ± 0.048
VVNN 0.138 ± 0.040 0.141 ± 0.049 0.174 ± 0.050 0.248 ± 0.055 0.146 ± 0.040
VNNN 0.131 ± 0.036 0.124 ± 0.041 0.164 ± 0.056 0.195 ± 0.043 0.133 ± 0.037

Gravity

VNVN 0.503 ± 0.053 0.492 ± 0.041 0.500 ± 0.000 0.481 ± 0.042 0.500 ± 0.000
VVVN 0.496 ± 0.058 0.473 ± 0.054 0.500 ± 0.000 0.484 ± 0.056 0.483 ± 0.083
VVV*N 0.489 ± 0.052 0.447 ± 0.056 0.500 ± 0.000 0.471 ± 0.056 0.457 ± 0.055
VVNN 0.503 ± 0.059 0.481 ± 0.051 0.500 ± 0.000 0.484 ± 0.052 0.509 ± 0.081
VNNN 0.502 ± 0.053 0.527 ± 0.049 0.500 ± 0.000 0.508 ± 0.041 0.500 ± 0.000

Gyroscope

VNVN 0.002 ± 0.006 0.000 ± 0.000 0.003 ± 0.008 0.001 ± 0.006 0.000 ± 0.003
VVVN 0.000 ± 0.000 0.001 ± 0.007 0.003 ± 0.008 0.003 ± 0.011 0.001 ± 0.005
VVV*N 0.000 ± 0.000 0.005 ± 0.011 0.003 ± 0.010 0.001 ± 0.004 0.000 ± 0.000
VVNN 0.000 ± 0.000 0.001 ± 0.004 0.003 ± 0.009 0.005 ± 0.011 0.001 ± 0.004
VNNN 0.002 ± 0.006 0.000 ± 0.000 0.002 ± 0.007 0.005 ± 0.011 0.003 ± 0.008

Linear Acceleration

VNVN 0.000 ± 0.000 0.000 ± 0.000 0.012 ± 0.015 0.000 ± 0.000 0.001 ± 0.004
VVVN 0.007 ± 0.012 0.004 ± 0.009 0.031 ± 0.021 0.037 ± 0.022 0.003 ± 0.008
VVV*N 0.000 ± 0.000 0.000 ± 0.000 0.013 ± 0.020 0.000 ± 0.000 0.000 ± 0.000
VVNN 0.034 ± 0.025 0.034 ± 0.026 0.058 ± 0.033 0.087 ± 0.032 0.034 ± 0.023
VNNN 0.038 ± 0.022 0.035 ± 0.025 0.077 ± 0.037 0.095 ± 0.036 0.042 ± 0.025

Magnetic Field

VNVN 0.020 ± 0.019 0.328 ± 0.051 0.146 ± 0.053 0.443 ± 0.064 0.014 ± 0.018
VVVN 0.117 ± 0.042 0.321 ± 0.058 0.203 ± 0.114 0.480 ± 0.053 0.058 ± 0.030
VVV*N 0.082 ± 0.035 0.125 ± 0.040 0.123 ± 0.048 0.183 ± 0.045 0.045 ± 0.025
VVNN 0.080 ± 0.028 0.122 ± 0.036 0.119 ± 0.041 0.176 ± 0.039 0.044 ± 0.022
VNNN 0.024 ± 0.020 0.116 ± 0.039 0.071 ± 0.041 0.171 ± 0.041 0.014 ± 0.018

Rotation Vector

VNVN 0.006 ± 0.013 0.005 ± 0.016 0.022 ± 0.023 0.119 ± 0.046 0.006 ± 0.012
VVVN 0.005 ± 0.011 0.004 ± 0.013 0.020 ± 0.022 0.118 ± 0.048 0.005 ± 0.010
VVV*N 0.000 ± 0.002 0.014 ± 0.019 0.011 ± 0.015 0.096 ± 0.038 0.000 ± 0.000
VVNN 0.000 ± 0.000 0.014 ± 0.019 0.008 ± 0.015 0.100 ± 0.045 0.000 ± 0.000
VNNN 0.000 ± 0.000 0.014 ± 0.019 0.008 ± 0.012 0.099 ± 0.046 0.000 ± 0.000

*TT′ vibrates the same pattern as TI′
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Appendix F

Transaction Instrument Vibrates

Table F.1: Estimated EER Results for Machine Learning Algorithms
(obtained by repeating 10-fold cross-validation 10 times)

Classifier
Vibration
Mode Random Forest Naïve Bayes Decision Tree Logistic

Regression
Support Vector

Machine

Accelerometer

NVNV 0.101 ± 0.038 0.111 ± 0.043 0.125 ± 0.052 0.180 ± 0.040 0.104 ± 0.039
NVVV 0.026 ± 0.021 0.037 ± 0.028 0.069 ± 0.033 0.090 ± 0.031 0.012 ± 0.014
NVV*V 0.071 ± 0.030 0.115 ± 0.042 0.110 ± 0.041 0.188 ± 0.042 0.046 ± 0.026
NNVV 0.100 ± 0.036 0.128 ± 0.039 0.148 ± 0.054 0.245 ± 0.054 0.082 ± 0.030
NNNV 0.118 ± 0.040 0.158 ± 0.059 0.164 ± 0.049 0.228 ± 0.041 0.144 ± 0.037

Gravity

NVNV 0.485 ± 0.056 0.487 ± 0.047 0.500 ± 0.000 0.502 ± 0.040 0.500 ± 0.000
NVVV 0.498 ± 0.056 0.506 ± 0.041 0.500 ± 0.000 0.497 ± 0.048 0.500 ± 0.000
NVV*V 0.501 ± 0.049 0.488 ± 0.042 0.500 ± 0.000 0.477 ± 0.039 0.500 ± 0.000
NNVV 0.514 ± 0.058 0.493 ± 0.051 0.500 ± 0.000 0.506 ± 0.049 0.482 ± 0.091
NNNV 0.516 ± 0.054 0.497 ± 0.051 0.500 ± 0.000 0.517 ± 0.054 0.501 ± 0.123

Gyroscope

NVNV 0.000 ± 0.003 0.000 ± 0.000 0.005 ± 0.011 0.008 ± 0.014 0.000 ± 0.002
NVVV 0.002 ± 0.006 0.011 ± 0.015 0.004 ± 0.009 0.011 ± 0.014 0.006 ± 0.012
NVV*V 0.002 ± 0.008 0.003 ± 0.009 0.007 ± 0.013 0.003 ± 0.008 0.002 ± 0.007
NNVV 0.002 ± 0.006 0.000 ± 0.000 0.006 ± 0.012 0.004 ± 0.009 0.000 ± 0.004
NNNV 0.000 ± 0.003 0.000 ± 0.000 0.006 ± 0.012 0.005 ± 0.010 0.000 ± 0.003

Linear Acceleration

NVNV 0.001 ± 0.004 0.000 ± 0.003 0.024 ± 0.023 0.007 ± 0.012 0.002 ± 0.006
NVVV 0.000 ± 0.000 0.000 ± 0.000 0.022 ± 0.021 0.000 ± 0.000 0.000 ± 0.000
NVV*V 0.000 ± 0.000 0.000 ± 0.000 0.017 ± 0.020 0.000 ± 0.000 0.000 ± 0.000
NNVV 0.002 ± 0.007 0.002 ± 0.007 0.017 ± 0.021 0.014 ± 0.015 0.004 ± 0.009
NNNV 0.009 ± 0.012 0.008 ± 0.014 0.020 ± 0.022 0.025 ± 0.019 0.010 ± 0.014

Magnetic Field

NVNV 0.267 ± 0.051 0.273 ± 0.052 0.124 ± 0.109 0.435 ± 0.053 0.276 ± 0.048
NVVV 0.116 ± 0.039 0.119 ± 0.049 0.110 ± 0.062 0.197 ± 0.047 0.126 ± 0.045
NVV*V 0.254 ± 0.056 0.262 ± 0.060 0.198 ± 0.129 0.444 ± 0.056 0.268 ± 0.050
NNVV 0.045 ± 0.025 0.253 ± 0.056 0.171 ± 0.063 0.483 ± 0.066 0.010 ± 0.013
NNNV 0.046 ± 0.026 0.271 ± 0.060 0.143 ± 0.087 0.488 ± 0.064 0.011 ± 0.013

Rotation Vector

NVNV 0.019 ± 0.022 0.003 ± 0.012 0.030 ± 0.026 0.041 ± 0.025 0.016 ± 0.020
NVVV 0.009 ± 0.015 0.010 ± 0.016 0.007 ± 0.012 0.003 ± 0.008 0.000 ± 0.000
NVV*V 0.017 ± 0.018 0.004 ± 0.012 0.024 ± 0.024 0.060 ± 0.024 0.017 ± 0.019
NNVV 0.019 ± 0.019 0.004 ± 0.015 0.030 ± 0.024 0.050 ± 0.029 0.015 ± 0.019
NNNV 0.017 ± 0.019 0.004 ± 0.015 0.030 ± 0.024 0.041 ± 0.025 0.015 ± 0.018

*TT′ vibrates the same pattern as TI′
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