
Aalto University
School of Science
Master’s Programme in Computer, Communication and Information Sciences

Hari Shrestha

A Design Science Research
Methodology for Microservice
Architecture and System Research

Master’s Thesis
Espoo, May 02, 2019

Supervisors: Professor Petri Vuorimaa, Aalto University
Advisors: Christopher Gerlier M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/219838973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Computer,
Communication and Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Hari Shrestha
Title: A Design Science Research Methodology for Microservice

Architecture and System Research

Date: May 02, 2019 Pages: viii + 45
Major: Software and Service Engineering Code: SCI3043
Supervisors: Professor Petri Vuorimaa
Advisors: Christopher Gerlier M.Sc. (Tech.)
As enterprise continue their Digital journey, Monolithic architecture approach
of building Digital platforms has now proven to be inefficient and obsolete.
Architectural paradigms in software development are changing with the spin-
ning of time. The paradigms of architecture, formerly considered sufficiently
well architecture and even dominant over the years, are now referred to as
monolithic. The demands for fresh technology approaches are continuously
evolving to cope the new set of business challenges. [25]
The purpose of this thesis is to evaluate the approach with an experiment in
designing a microservice system. The thesis motivates, presents, demonstrates
in use, and evaluates a methodology in microservice system for conducting
Design Science (DS) research. Moreover, the thesis will go through in de-
tail description of Microservice architecture and enables us to differentiate
and find the right Software Development Methodology (SDM) for the Digital
platform. SDM enables the proper management of the software development
processes, the project team, products and services in terms of cost effective-
ness, time, and quality. [23]
The objective of this thesis is to investigate the differences in between ar-
chitectural paradigms such as monolithic, cloud native and microservice and
find the appropriate paradigm that satisfy the enterprises for continuing their
digital business. The research of using different platforms and environment
for possible improvement on the software development process that enables
easy to develop, run and ship distributed application easily and anywhere
will be carried out. Similarly, research also focuses on maintaining the de-
velopment environment consistent, testable and maintainable and hosting the
application to the cloud irrespective to underling infrastructure and operation
system. The research artifacts will help the enterprises and stakeholders to
take an important decision in the selection of the architectural paradigm for
their digital platform in advance. The paper concludes that, Microservice ar-
chitecture is one of the well-known SDM suitable for large enterprise software
business application.

Keywords: Microservices, monolithic, SDM, DS, Architectural
paradigms, Digital platform, etc.

Language: English

ii

Acknowledgements

First of all, I would like to thank my thesis supervisor Prof. Petri Vuorimaa
under his supervision and guiding me to complete the thesis work. I would
appreciate his efforts in finding a new supervisor when my former supervisor
ended his position.

Secondly, I would like to thank Christopher Gerlier M.Sc., my thesis advisor
and colleague, for being my advisor and helping me out of the thesis. His advice
and suggestions helped me to complete my thesis successfully. I would also like
to appreciate his kind efforts for helping me to get the study materials and so
on.

Finally, I want to thank my parent, wife and friends for inspiring and com-
forting me.

Espoo, May 02, 2019

Hari Shrestha

iii

iv

Abbreviations and Acronyms

DS Design Science
SDM Software Development Methodology
SOA Software Oriented Architecture
UI User Interface
EAR Enterprise Application Archive
API Application Program Interface
IDE Integrated Development Environment
IO Input and Output
OS Operating System
CNCF Cloud Native Computing Foundation
HA High availability
HTTP Hypertext Transfer Protocol
IP Internet Protocol
DNS Domain Name System
URL Uniform Resource Locator
DSRM Design Science Research Methodology
CQRS Command Query Responsibility Segregation
REST Representational State Transfer
SSO Single Sign-on
LDAP Lightweight Directory Access Protocol

v

vi

Contents

Abstract ii

Abbreviations and Acronyms v

1 Introduction 1
1.1 Introduction . 1
1.2 Research plan . 1
1.3 Research methods . 2
1.4 Objectives . 2

2 Background 4
2.1 Traditional Software Platform Architecture 4
2.2 Monolithic Application . 5
2.3 Monolithic Pros and Cons . 6
2.4 Microservices . 7

2.4.1 Characteristics of Microservice architecture 7
2.4.2 Benefits of Microservices 8
2.4.3 Drawbacks of Microservices 9
2.4.4 Adopting Microservices by Enterprises 9

3 Development Environment 11
3.1 Docker . 11

3.1.1 Docker Architecture and Its Terminology 11
3.1.2 Containers . 12
3.1.3 Why Containers? . 13
3.1.4 Docker Containers Instead of VMs 14
3.1.5 Docker Images and Docker Container 14

3.2 Kubernetes . 15
3.3 OpenShift Environment . 16

3.3.1 OpenShift Platform Supports 17
3.3.2 Why OpenShift Environment? 18
3.3.3 OpenShift Environment Features 19
3.3.4 OpenShift Basic Concept and Its Overview 20

3.4 Minishift . 21
3.4.1 Minishift architecture . 21
3.4.2 Minishift Life-cycle . 22

4 Discussion 23
4.1 When to use the microservice architecture? 23
4.2 How to decompose the application into services? 23
4.3 How to maintain data consistency? 24

vii

4.4 How to implement queries? . 24
4.5 What is the appropriate size of the microservices? 24
4.6 What is the drawback of having small and big size of microservices? 25
4.7 What happened if there are too many microservices? 25

5 Design Science in Information Systems Research and Guide-
lines 26

6 Design: Development of the Methodology 28
6.1 Project Description . 28
6.2 Design- and Development-Centered Approach 29
6.3 Problem identification and Motivation 29
6.4 Objectives of the Solution . 29
6.5 Design and Development . 30
6.6 Demonstration . 31
6.7 Evaluation . 32
6.8 Communication . 33
6.9 Contribution . 34

7 Software Development: Localization Service 35
7.1 Application Stack . 35
7.2 Localization Tool Client . 36
7.3 Report Generator . 36
7.4 Service Integration . 37

7.4.1 Implementing Request/Response collaboration 37
7.5 Security . 38
7.6 Deployment . 38
7.7 Discussion: Microservices and Design Science 39

8 Evaluation 40

9 Conclusions 41

Bibliography 41

A Example of DockerFile 45

viii

Chapter 1

Introduction

1.1 Introduction
The research will be based on the Microservice architectural field, where a new
approach to software development architecture will be explored and efforts will
be made to solve the problems identified by most enterprises using the tradi-
tional software development method. The research also focuses on identifying
the variations between existing architectural paradigms such as monolithic,
distributed systems, Service-Oriented Architecture (SOA) and Microservices.
Furthermore, the challenges of moving a large business service towards the Mi-
croservice architecture, especially when monolithic microservice application is
decomposed, will be examined. Similarly, research will also focus on how these
multiple services having specific business function deploying on the server can
communicate with each other and what happens if one of the services is down.

In the field of software development enterprises, Microservices is a hot topic
that has become increasingly popular in recent years. Applications based on
Microservice architecture will be created to demonstrate the concept of Mi-
croservices architecture, understanding and knowledge. However, it depends
on the problems, availability of time and progress of learning that the appli-
cation level developed during the research work. At first, the investigation
will begin to gain theoretical knowledge and become acquainted with the ar-
chitecture of Microservices and will attempt to use its principle to understand
the software development concept. In the later part, the research output will
develop the prototypes of Microservices application, and there will be no limita-
tion on selecting the programming language and framework for implementation
and the coding of project work. Finally, research will always focus on the use
of the framework and environment to make work faster, more efficient, easier
to deploy and maintain.

1.2 Research plan
Recently, the use of microservices architecture in the field of software develop-
ment industries is getting popular all over the world [23]. The microservice
architecture has a good feature over the existing architecture of monolith and
SOA. The developer can concentrate on coding using the microservice archi-
tecture. Microservice has simplified, facilitated, maintained and made it much
quicker to develop software.

However, having multiple microservices and deploying individually on the

1

2 CHAPTER 1. INTRODUCTION

servers may have difficulties in communicating among different services. Simi-
larly, the refactoring of the broader business service in several service compo-
nents could require a lot of redesign and refactoring that is not suitable for
the company. In addition, the use of the microservice architecture may not
be fully compatible with existing software and components used. The research
plan will examine these matters in detail.

Some highlight of planning the research work in order are mentioned below:

a) Getting familiar with different architectural paradigm of software develop-
ment

b) Investigate how the microservices address the issues related to traditional
software development approach

c) Investigate the advantages of decomposing large monolithic system to mi-
croservices

d) Investigate on improving the software development process

e) Investigate how the maintain consistent in development environment and
work

f) Possibilities of using Docker and OpenShift environment

1.3 Research methods
The design science research methodology of microservice architecture will be
used throughout the research period. Besides, the research will also base on
reviewing the Scientifics research and articles carried out before and finally,
the prototyping application of microservice architecture will be implemented
and developed using some higher-level programming language. Microservices
architecture involves the refactoring of large enterprise business application into
multiple small services that can be run and deployed individually. Each small
microservice has got its own specific business function and are independent to
others.

1.4 Objectives
The long-term goal of the thesis is to develop the microservices application.
The research will be focus on investigating all the possible drawbacks of using
microservices architecture and try to find out the solutions to eliminate or
minimized those negative aspects of the microservices. Particularly, the study
has the following subobjectives:

a) To outline the positive and negative aspects of using microservices archi-
tecture

1.4. OBJECTIVES 3

b) To differentiate the architectural design between microservice and existing
architectures

c) To find the better approach of eliminating the drawbacks of using microser-
vices

d) To provide the better knowledge of how and where to use the microservices
and possibly the risk analysis

The result of this study will be valuable to the enterprise business and in-
dustries that involves in software development activities. It provides the better
knowledge and understanding of how, when and where to use the microservices
and eliminated the business risks that may occurs due to the selection of wrong
process and finally, provides the good business value.

Chapter 2

Background

There are many driving forces behinds the evolution and the creation of new
software development architecture, technologies tools, and the frameworks, in
the field of Enterprise Software business world. Driving forces such as scalabil-
ity, affordability, availability, maintainability, testability, security, etc. are the
major factors that forces in the creation of improved version of the architecture.

2.1 Traditional Software Platform Architecture

The changes in the architectural paradigms happens with the changes on times.
Traditional software platform architecture such as multi-tier architectural paradigm
was one of the well-known and dominant design patterns that lasted for several
years. Even now the pattern is actively used and popular in several enter-
prises. However, the enterprises are moving towards adopting new paradigms
for their new digital platform or extending the existing platform to minimize
the limitation of traditional monolithic software platform architecture.

Figure 2.1: Traditional Multi-tier Monolithic Application Architecture [25]

4

2.2. MONOLITHIC APPLICATION 5

Figure 2.1 depicts the traditional way of three-tier architectural paradigm,
which is now considered as a monolithic one. Tier 1 is the Presentation tier or
also called user interface layer. It includes the components of the user interface
that present different clients rendering all of the web application’s UI compo-
nents and overall flow. Tier 2 is the Business logic layer that contains all neces-
sary business logics for this application and is centralized in the user-interface
layer separating it. Similarly, Tier 3 is the Data layer that logically resides in
traditional databases and enterprise integration systems. Cross-cutting issues
such as logging, surveillance, single sign-on, security, etc. are addressed in all
these layers with common tools and functionality. [25]

The whole application is compiled and packed as a single collection of vari-
ous modules that includes all the components from the multi-tier architecture
and its tightly coupled dependencies and libraries in the form of enterprise
archive such as EAR. Certainly, the single artifact makes deployment easier
because only one executable file can be copied over. However, it makes the
lifecycle of development a nightmare. [25] A simple and small change in any
part of the multi-tier layer cause a rebuild of the entire executable. Rebuilding
multi-tier application is a complex process as most of the time rebuild fails for
some module or components and the reason is various and mostly unknown.
As a result, the most of the developer’s time will spend fixing the issues caused
by the changes.

Over the period, the architecture becomes very complex, it inhibits a lot in
the case of quick new developer onboarding [25]. Moreover, the features such
as continuous Integration and Delivery and exposing API to external world
will become ineffective and obsolete. Similarly, developing and maintaining the
complex system involves several challenges. Apart from these, running such
system also involves several operational challenges. The discussion about the
challenges in more details are available under the following section 5.2 and 5.3.

2.2 Monolithic Application
A Monolithic application is an independent, self-contained and single tier-
application that runs on single platform with single program. Monolithic
application combines all supporting features such as database management,
client-side user interface and server- side application into one single executable
program. Monolithic application is built and based on monolithic architecture,
in which whatever the feature it has or the different functional areas of the
application it supports, all resides on single program using single platform [7].

Features such as exposing an API for 3rd parties to consume, support-
ing various customers including desktop browsers, native mobile applications,
drivers for communicating with different tools and handling different types
of web communication and much more are all programmed into one applica-
tion [7]. Thus, the implementation code will be big and cumbersome. Due to
the huge amount of code, it is highly possible that even the developing platform

6 CHAPTER 2. BACKGROUND

such as Integrated Development Environment (IDE) and the local machine do
not support or function properly. The allocated memory on the local machine
might not be enough to run the program and needs to increase or more pow-
erful machine. Moreover, it will be very difficult for new comer to understand
the code and be productive quickly enough in these dynamic environments.
Similarly, it will be hard to maintain the standard code quality and motivation
to the developers.

2.3 Monolithic Pros and Cons
Some significant advantages and disadvantages of having all code in the single
large repository aka monolithic application are mentioned below. [9]

Pros:

a) Ability to tightly match interdependent changes: Since all code is in the
same repository, any changes will automatically update the interface as
well as all users of the interface.

b) Simplified repository management: some common repository maintenance
tasks are easier to handle than multiple repositories. Because of a single
repository, for example, backup planning and writing triggers are easy to
perform. [9]

c) Easy Branching and Tagging: Having single application means there’s only
one repository, making the branching and tagging easy.

d) Straightforward Code management: Everything requires for dealing with
code and its requirements are in a same place and having it in a same
place makes the work better. Some actions such as writing scripts, mov-
ing files around, searching across files, etc. benefit from a single global
repository. [9]

e) Less Operational Overhead: Having a single application means there’s only
one application that needs to set up logging, monitoring and testing for.
Deployment can be carried out with less complex. [9]

Cons:

a) Tightly Coupled: As the application evolves, the monolithic application is
closely linked and entangled. As a result, services are difficult to isolate
for purposes like independent scaling or code maintenance [9].

b) Harder to Understand: It is much harder to understand specially for the
newcomers because the application size is usually large and complex.
Besides, multiple dependencies and its side-effects add the complexity
[9].

2.4. MICROSERVICES 7

c) Security and Access control Problems: In traditional monolithic structures,
restricting sections of the source securely becomes very difficult or impos-
sible [4].

2.4 Microservices
Microservices architecture is a way to develop applications in the style of soft-
ware or architecture that structure an application as a collection of loosely
coupled services, where each service can be deployed independently, modularly
and smallly, implementing business capabilities. [23]] Each service carries out
a unique process and communicates with a well-defined, lightweight mechanic
to serve a business goal. [6]

Microservice is a SOA architectural style variant designed to minimize exist-
ing limitations on architecture-based monolithic and other applications. And,
improving the development of software using standard frameworks and tech-
nologies. Microservices break down the large monolithic application into var-
ious smaller services that enable or enhance the application’s modularity and
make it easier to understand, develop and test the application. Each small
service has its own database and acts as a componentize service with specific
business logic and function that can be independently deployed into the server.
Decomposing the application into smaller individual componentize service en-
ables the service to select any suitable technology and frameworks and deploy
individually into the server. [23]

Microservices architecture do not restrict on the selection of technologies
and the frameworks. Developers can select any emerging technology, platform
and the frameworks on software development per their suite and skills. Thus,
one service can be programmed using C-Sharp programming language using
.Net framework, while another service can use JavaScript with node.js frame-
work. Similarly, as each service can be independently developed, deployed and
scale its respective services, parallel development is possible using microservices
where each service can be fully controlled by small autonomous teams, allowing
for continuous delivery and deployment.

2.4.1 Characteristics of Microservice architecture
The main characteristics of microservices are:

a) Flexibility: A service or system is flexible enough to supports all the nec-
essary features required to remain business competitive on the dynamic
business environment.

b) Modularity: Each service is independent and concentrates on some business
functions which contribute towards the overall system behavior rather
than the full functionality of a single service. [19]

8 CHAPTER 2. BACKGROUND

c) Evolution: It is possible to add new features to each service and maintain-
able. The service should not affect to the other service even the service
is down. [19]

2.4.2 Benefits of Microservices
The benefits of using Microservice architecture during software development
are significantly stronger over the existing monolithic architecture. Because of
its significant features and benefits, some big enterprises such as Amazon, eBay,
and Netflix are using the microservices architecture for its enterprise business.
Some of the key benefits discovered so far are mentioned below:

a) Scalability: Scaling can be done only to those services that needs scaling
without affecting the rest of the services. Unlike large, monolithic service,
smaller service can be run on smaller, less powerful hardware. [2]

b) Strong module boundaries: Each service is small and focuses on single
business capability. Service boundaries become the obvious bulkhead,
which is the key concept in resilience engineering. Unlike monolithic
system, if any components fail, the whole system will stop. However,
in microservices, if one service fails and will not affect the rest or the
whole system, that service can be isolated, and the rest of the system can
continue the work.

c) Independent development and deployment: Each service can be developed
and deployed independently to any server.

d) Technology diversity: Unlike monolithic service, microservice facilitates the
developer to select the technology, tools and frameworks based on their
skills and wills. It will not limit to single programming language or frame-
works.

e) Simplicity and maintainability: Microservice application is small and focus
to the single business function. Since it is small, it easier for a new
developer to understand the functionality of a service and maintain the
bug fix.

f) Decentralized data management: Each service has its own database and
effective data management can be easily carried out using microservice.
[12]

g) Composability: Microservices gives the opportunities for reuse of functional-
ity as different ways as possible for different purposes. Reusability of func-
tionality is the key promises of distributed system and service-oriented
architecture. [9]

2.4. MICROSERVICES 9

2.4.3 Drawbacks of Microservices
a) The Complexity of a Distributed System: Each service is now an indepen-

dent service that needs to carefully handle the request travelling between
the modules. Complexity can be increased due to network latency on re-
mote calls, fault tolerance, versioning, message serialization, asynchronic-
ity, etc. [2]

b) Database management complexity: Multiple databases residing on different
services and platform can created difficulties on transaction management.
Retrieving data owned by multiple service can be challenging [9].

c) Difficulties on Deployment: Unlike Monolithic service, microservices having
multiple services can have complexity during deployment. Each service
needs to deploy individually and may be on different server.

d) Testing: Before starting testing, each dependent service must be functional.
Testing can be difficult or impossible unless all the dependent service is
fully functional and available [9].

e) Eventual Consistency: One key limitation existing on distribution system is
to maintain strong consistency [15]. Unlike other distributed system and
SOA, issues on maintaining strong consistency exists on microservices to
some extent. However, microservices uses event-driven methodology to
minimize the issue of consistency.

2.4.4 Adopting Microservices by Enterprises

Figure 2.2: Uses of microservices by enterprises in 2015 [18]

10 CHAPTER 2. BACKGROUND

According to the NGINX App Development Survey 2015, the percentage of
organizations using or investigating microservices were 68 percent. Figure 2.2
below gives the details about the survey result. According to LeanIX Microser-
vices Survey 2017, the number of percentages increased to 80 percent in only
2 years and most of these organization has plan to intensify the usage of mi-
croservices in coming days. [18]

Chapter 3

Development Environment

During software development process, it is vital to have consistency in the
development environment and platforms used by the teams to make the devel-
opment work smooth and efficient. Any differences in the development envi-
ronment and platform used between the developers may create different issues
related to the environment and fixing those issues will ultimately takes longer
time and decreases the productivity of individual developers and team.

3.1 Docker
Docker is an operating system-level virtualization container management ser-
vice, also known as "containerization." It was developed by Docker, Inc. and
released in 2013 for the first time [26]. By providing an additional layer of
abstraction and running on the host operating system, it automates the de-
ployment of software applications within containers. The keywords of Docker
are develop, ship and run distributed applications easily and anywhere [26].
It allows users to package an application in a standardized software develop-
ment unit with all its dependencies. It also provides the strongest isolation
capabilities to secure the application running in containers. As a result, the
applications are portable, lightweight and secure. It is recommended to visit
the official page of docker www.docker.com for more information related to the
docker.

Some of the important features of the docker are mentioned below: [14]

a) Docker has the ability to reduce the development size by providing the
operating system with a smaller footprint via containers.

b) With containers, teams across different units, such as development, QA and
Operations, will find it easier to work seamlessly across applications.

c) Docker containers can be deployed anywhere, on any physical, virtual or
cloud machine.

d) Lightweight Docker containers make them very easy to scale.

3.1.1 Docker Architecture and Its Terminology
Figure 3.1 shows the docker architecture and components. There are certain
keywords and terms that are related to Dockers. Some of its terminology is
mentioned below.

11

12 CHAPTER 3. DEVELOPMENT ENVIRONMENT

Figure 3.1: Docker Architecture [14]

a) Images: This is the application’s blueprints that form the container base.
The list of commands is written in Dockerfile. There are certain rules
of writing scripts in the Dockerfile. Command such as docker pull and
docker build are used to download the image from Docker Hub and create
docker image.

b) Containers: Docker images are deployed and run in containers. It is
created from images from Docker and runs the application itself.

c) Docker Daemon: The background service running on the host that man-
ages Docker containers to be built, run and distributed. It is the process
to which the client speaks in the operating system.

d) Docker Client: It is a tool command allowing the user to interact with
the daemon. There are different form of clients and some client such as
Kinematic, provides powerful GUI to the users through which containers
can be run simply. Docker client simply calls the commands written in
the Dockerfile while creating an image.

e) Docker Hub: A registry of Docker images. It is the directory of all Docker
images that are available. If necessary, you can host your own Docker
registry and use it to pull images. It is the world’s largest library and
community for container images.

3.1.2 Containers
Container is a standard software unit that provides a logical packaging mech-
anism, in which the application is packed in one package together with code

3.1. DOCKER 13

and all dependence, allowing the application to operate quickly and reliably, re-
gardless of the target computing environment. It combines the application and
its dependencies into one succinct manifest (image) that can be controlled for
version, making it easier to replicate the application across cluster developers
and machines. [13]

Unlike virtual machines virtualizing the hardware stack, operating system
level containers virtualize, and multiple containers can run directly at the top
of the OS kernel. Because multiple containers can run and share the OS kernel
directly, the containers are much lighter compared to approaching virtual ma-
chines. Application running in containers can be started much faster and uses
a fraction of the memory compared to running on a whole OS. Because of low
overhead, containers make the underlying operating system and infrastructures
more efficient to use. [13]

3.1.3 Why Containers?

Containers work best for architectures based on service. Unlike Monolithic
architectures, where each application piece is intertwined – from IO to data
processing to rendering – service-base architectures divide these into separate
independent components. Separation and division of labor enables the services
to continue to operate even if others fail, making the entire application system
more reliable.

During the software development process, applications are programmed and
developed using specific version of libraries, tools, dependencies and 3rd party
libraries. In order to run the software application properly and fully function-
ally based on the designed, the supporting environments should have all those
libraries and dependencies with required version. There are high chances that
the supporting software environment is not identical to the development envi-
ronment due to which the application fails to run, and problem arise. [16] One
simple example can be Python version. The development environment uses
Python 2.7 version and in the production environment or replica environment,
Python 3 is running, as a result something weird will happen. In addition to
the software version, there may be several reasons why the software fails to run
such as network topology differences, or security policies and storage.

To solve the problems, a container consists of a complete runtime envi-
ronment that satisfies the application to run without any problems due to the
difference in supporting software environment. The entire runtime environment
includes a downloaded and bundled application, its dependencies and libraries
as well as other binaries, configuration files and even 3rd-party libraries. Dif-
ferences in OS distributions and infrastructure underlying the platform and its
dependency are overridden by containerizing.

14 CHAPTER 3. DEVELOPMENT ENVIRONMENT

Figure 3.2: Docker container and VMs architecture [14]

3.1.4 Docker Containers Instead of VMs
Figure 3.2 shows the architectural differences between Docker container and
Virtual machines (VMs). A Linux-born container shares the host machine’s
kernel with other containers. However, these are different in terms of windows-
based containers such as Windows Hyper-V container, which does not share
kernels of the host machine with other containers. [8] Linux based contain-
ers are lightweight since it runs a discreate process, which takes less memory
than any executables. On the other hand, through a hypervisor, a VM runs a
complete "guest" operating system with virtual access to host resources. As a
result, VMs are providing the most application-needed environment with more
resources.

3.1.5 Docker Images and Docker Container
Using Dockerfile, the Docker image is created. The Dockerfile contains a list of
commands to carry out certain tasks. To create the image from Dockerfile, the
Docker build command is used. Similarly, the command Docker run is used to
run the image in the container. More information on Dockerfile and Docker
commands can be found in the following paragraphs.

Dockerfile: A Dockerfile is a simple text file containing the list of com-
mands called by the Docker client when creating an image. It is an easy way to
automate the process of creating the image. The way of writing commands in
the Dockerfile is identical to the equivalent Linux commands. The following are
some simple examples of keywords or instructions for writing commands in the
Dockerfile: ENV, RUN, ADD, COPY, FROM, LABEL, EXPOSE, STOPSIG-
NAL, USER, VOLUME, and WORKDIR [14]. These commands defined in
the Dockerfile will download and install certain version of Node and nvm:

nvm environment variables
ENV NVM_DIR /usr/local/nvm
ENV NODE_VERSION 7.7.0

3.2. KUBERNETES 15

install npm and node
RUN source $NVM_DIR/nvm.sh \
&& nvm install $NODE_VERSION \
&& nvm alias default $NODE_VERSION \
&& nvm use default
The entire Dockerfile example can be found in Appendix 1.
Docker Build: Command such as ‘docker build -t username.’ is used to

build the image from Dockerfile. -t refers to the tag and username refers to
the tag name, which will eventually become image name once the command
is executed successfully. The space and dot (.) symbols after tag name is
necessary at the end of the command.

Docker Run: Command such as ‘docker run -it username’ is used to run
the image in the container. The docker container will be automatically created
once the command is executed. Some Command are given below: Find a list of
all images: docker images -a Find a list of all containers: docker ps -a or docker
container ls -a Remove image: docker image rm image1, image2, — Remove
container: docker container rm container1 container2 –. [26]

Difficulties:

a) Windows Docker can only host Windows applications within Docker con-
tainers, and only Linux apps are supported by Docker on Linux.

b) Linux based docker container cannot access directly to the Windows Host
USB devices.

c) Adding CA certificated as a part of docker image was not straight forward.

d) Windows support is being developed for orchestrators like Kubernetes and
Apache Mesos.

Also, worth mentioning is that Docker is the only major container platform
compatible with Windows at the moment. It underlines the fact that, for now,
the Windows container ecosystem is much smaller than the Linux container
world.

3.2 Kubernetes
Kubernetes has been developed by the Cloud Native Computing Foundation
(CNCF) and is a container management system hosted by Google open source.
It is used for management of containerized applications in various environments,
including physical, virtual and cloud infrastructure. [27] It helps to create and
manage application containerization and has the ability to automate cluster-
wide deployment, maintenance, application scaling, and application container
operations. It also has the ability to build container-centered infrastructure and
helps move host-centered infrastructure to container-centered infrastructure.

16 CHAPTER 3. DEVELOPMENT ENVIRONMENT

A cluster of Kubernetes is made up of one or more masters and a set of
nodes. High Availability (HA) masters can be configured to ensure that there
is no single point of failure in the cluster. The master can be built so that
it controls all the nodes and deploys the containers to all the nodes. Its main
function is to control the OpenShift cluster and deployment flow using different
kinds of configuration file. [27] Some of Kubernetes ’ important features are
listed below:

a) It contributes to environmental consistency through development and pro-
duction testing

b) It allows further development, integration and implementation

c) It helps to move from host to container-centered infrastructure

d) Auto-scalable and containerzed infrastructure

e) Capality to run applications on cloud

f) Loosely coupled facilities, in which every part can function as a separate
unit

g) Increased resource use density

h) Predictable infrastructure to be developed [27]

3.3 OpenShift Environment
OpenShift is an open source development platform developed by Red Hat En-
terprise Linux. It provides a cloud development Platform as a Service (PaaS)
and enables developing and implementing cloud-enabled services and their
cloud infrastructure application. [28] Developing the cloud-enabled services
and the applications is simpler and easier with the help of OpenShift envi-
ronment. As a result, organizations can move their traditional application
infrastructure and platform from physical and virtual to cloud media easily
[3].

OpenShift environment is a hosting platform for cloud applications and
applications that provides advanced features such as automating application
provisioning, management and scaling. The developers can therefore concen-
trate on writing the business code and logic. Further, it also makes easy for
developers and users to quickly build, launch, and scale container-based web
apps in a cloud environment. OpenShift online provides the cloud-enabled ser-
vices and the applications to be use, developed, build, launch and scale in a
public cloud environment.

Figure 3.3 show the architecture of OpenShift container platform. Open-
Shift is a layered system that uses Kubernetes and Docker cluster to tightly
bind each layer to another layer. The architecture is designed to support and

3.3. OPENSHIFT ENVIRONMENT 17

Figure 3.3: OpenShift Container Platform and its architecture [28]

manage containers from Docker hosting Kubernetes on top of all layers. The
containerized infrastructure is only supported by the new version of Openshift
V3. In this model, Docker helps to create lightweight Linux-based containers,
and Kubernetes supports the task of multiple host container orchestration and
management. [28]

3.3.1 OpenShift Platform Supports
OpenShift supports almost all kinds of applications and makes easy for devel-
oping and deploying the application on cloud platform. It supports three types
of developer and user platforms, including Infrastructure as a service (IaaS),
Software as a Service (SaaS), and Platform as a Service (PaaS) [28]. The short
description of each platform and services are given below.

Infrastructure as a Service (IaaS) Service provider provides some pre-
defined virtual hardware configuration for virtual machines at the hardware
level. In the long run, service providers are still responsible for infrastructure
management such as operating system installation and maintenance, server
packages, networking, and basic system administration.

Software as a Service (SaaS) Users don’t have to worry about the un-
derlying infrastructure like IaaS with this service. It is as simple as the service
plug and play that the user can use it right after logging in. Service provider
provides the software with limited customizable by the users. As a result, only
the minimum amount of customization allowed by the service provider can be

18 CHAPTER 3. DEVELOPMENT ENVIRONMENT

carried out by the user.
Platform as a Service (PaaS) Also known as PaaS is a middle layer

between IaaS and SaaS with a primary goal for developers to spin the de-
velopment environment with few commands. Service provider provides the
development environment that satisfy all the development needs, such as web
application server with a database. Users and developers need a minimum
effort of few commands and much of the work is automatically done by the
service provider. With OpenShift, the developer of PaaS has the freedom to
design specifications for their required environment.

3.3.2 Why OpenShift Environment?
OpenShift environment provides a common platform for the business unit to
develop, deploy and host cloud-based applications and container-based appli-
cations without worrying about the underlying infrastructure and operating
system. In short, containers are the standalone processes independently runs
within their own environment, and independent of underlying operating system
and the infrastructure. The more details about the container will be mentioned
in the section 6.2.1. This facilitates the applications to use, develop, and deploy
easily on cloud. It also provides a self-service platform for all kinds of devel-
opment and testing with managed hardware and network resources, enabling
faster development and life cycle release. It enables the PaaS user and developer
to have freedom to design the required environment with specification.

Figure 3.4: OpenShift Environment

Figure 3.4 shows the efforts of OpenShift that enables the enterprises to
switch their traditional application infrastructure and platform from physical

3.3. OPENSHIFT ENVIRONMENT 19

and virtual to cloud.

3.3.3 OpenShift Environment Features

Figure 3.5 shows the list of features suported by OpenShift environment. Apart
from these list of features, Openshit environment also helps in load balancing
of the deployed services. [21] For example, multiple pods can be use to create
and run the instance os services. If service running in one pod fails or down,
the service running in rest of the pods are still functioning and make the service
available for external world making the system fully functional, high availablity
and fault tolerance.

Figure 3.5: Openshift Environment Features [28]

20 CHAPTER 3. DEVELOPMENT ENVIRONMENT

3.3.4 OpenShift Basic Concept and Its Overview
Some basic terms and concepts used in OpenShift Container Platform are nec-
essary to understand before the actual setup and deployment of the application.
The following topics provide architectural high-level information on key con-
cepts and objects that you will find when using OpenShift Container Platform.
Many of these objects come from Kubernetes, which is expanded to provide a
more feature-rich lifecycle development platform by OpenShift Container Plat-
form.

Containers and images: Containers and images are OpenShift’s building
blocks made up of from Docker images [10]. The cluster has its own images
running inside each pod on OpenShift. The field is pooled from the registry
during the pod configuration and the configuration file pulls the image and
deploys it in the cluster mode. Containers are created when the image of the
Docker is deployed on the cluster of OpenShift. The configuration file defines
the container section in which a container has several images inside it and the
OpenShift Kubernetes manages all the containers running on the cluster node.
[28] Example of Configuration file defining images and containers are shown in
Figure 3.6 [28]:

Figure 3.6: Configuration file defining the images and containers [28]

Pods and services: It allow containers to communicate between them-
selves and to proxy connections [10]. Pod is a container collection and its
storage within an Openshift cluster node. There are generally two types of
pods starting from a single pod and multi-container pod. Service can be de-
fined as a logical set of pods that resides on top of the pod as an abstract layer.
It provides a single name for IP and DNS that allows access to pods. Service
helps manage the configuration of the load balancing and very easily scale the
pod. [28]

Projects and users: It provide the space and means for communities to
organize and manage their content together [10].

Builds and image streams: It allows us to create images that work and
react to new images [10]. Build is a process, in which images are transformed

3.4. MINISHIFT 21

into containers. Build process works on a predefined image source code building
strategy. Image stream is created after the images have been pulled. And it is
looking for an update on an image’s new version. [28]

Deployments: It adds expanded support to the lifecycle of software de-
velopment and deployment.

Routes: It exposes the service to the world, by creating and configuring
externally accessible hostname. Routes are created in Openshift using routers
deployed on the cluster by the OpenShift administrator. Routers are used to
bind external application ports to HTTP (80) and https (443). [28]

Templates: It allow authorized users to simultaneously create multiple
objects based on custom parameters [10].

3.4 Minishift
Minishift is a tool that helps in running OpenShift environment locally by
running a single-node OpenShift cluster inside a virtual machine. It starts
virtual machine on the local computer and creates an OpenShift cluster inside
it. As a result, it enables to try and test a fully featured OpenShift cluster on
the local machine. This is very important for developers from the development
point of view as it provides fully featured OpenShift environment for local
application development, deployment, testing and scaling. [20]

3.4.1 Minishift architecture

Figure 3.7: Minishift architecture [20]

22 CHAPTER 3. DEVELOPMENT ENVIRONMENT

Figure 3.7 describes Minishift’s architecture describing the following com-
ponents: the Minishift VM, the Docker daemon running on the VM, and the
OpenShift cluster running on the daemon. [20] For easy execution, the Min-
ishift binary used to start, stop, and remove the Minishift VM is placed on
the PATH. A pluggable Live ISO is bootstrapped by the VM itself. Minishift
commands interact with both the Docker daemon and OpenShift cluster. Once
the cluster of OpenShift is up and running, the cluster is interacted with oc
binary. cc is an alias for OpenShift command-line interface (cli). Binary are
cached by Minishift under $MINISHIFT_HOME (per default ~/. minishift).
The caching enables to speed up the provisioning of the OpenShift cluster and
to minimize network traffic. [20]

3.4.2 Minishift Life-cycle
There are basically three main commands that control and manages the Min-
ishift life-cycle [20]. The commands are minishift start, minishift stop and
minishift delete. The starting command Minishift creates and configures Min-
ishift VM and provides the Minishift VM with a local OpenShift cluster with
signal node. The command also copies the oc binary to the host that allows
the cluster to interact with OpenShift via the oc command line tool or the Web
console. The web console access URL is provided in the start command output.

It also translates the oc binary to the host, which allows the cluster to
interact via the OC commandline or the Web console with OpenShift [20]. The
web console access URL is provided in the start command output. On restarting
the Minishift with start command and with correct parameters, the OpenShift
cluster starts and run in previous state, allowing to continue working from
the last session. On the other hand, the Minishift remove command removes
the OpenShift cluster and closes the Minishift VM. The delete command also
deletes the Minishift VM and the cluster or state of OpenShift.

Chapter 4

Discussion

Microservices has many benefits than drawbacks. Most of the drawbacks are
related to existing distributed system and SOA. However, microservices uses
the different techniques to minimize those limitations. The use of Event-Driven
architecture to eliminate the issues related to eventual data consistency is an
example how the microservices works. However, there are several issues related
to how and when to use microservice architecture. Microservice architecture
cannot be efficient everywhere. The subsection 6.1 to 6.4 provides good infor-
mation when to use and how to minimize the drawbacks of the microservices.

4.1 When to use the microservice architecture?
Selecting architecture is one of the most challenging and costly tasks during the
software development process. Failure in right selection of architecture leads
the chances of failure in software project. Different factors such as system size,
scalability, security, testability, availability, computing resources, man power,
supporting tools and framework, existing domain, end-users, etc. are needs
to be carefully considered during the selection of architecture. If the system
develop on software project is simple, small size that needs only few developers
to implement and do not need the advance features such as scalability, mono-
lithic architecture can be better architecture for software development process.
Microservice architecture is suitable for large enterprise distributed business
application where the features such as scalability and maintainability are very
important for the business operation. [7]

4.2 How to decompose the application into ser-
vices?

Decomposing the monolithic application into multiple services is quite challeng-
ing [25]. Following strategies can help on deciding how to split the monolithic
application into microservices:

a) Identify and define services corresponding to the business capability.

b) Identify the domain-driven design and define services by subdomains and

c) Decompose by use case or resources and define services that are responsible
for certain actions [25]. For example: Shipping service that handles all
the transaction of shipping orders.

23

24 CHAPTER 4. DISCUSSION

4.3 How to maintain data consistency?

Maintaining strong data consistency is always challenging on distributed sys-
tem and SOA based service. The application is structured by Microservice
architecture as a loosely coupled collection of services. Each service has its
own database, which ensures loose connection. To maintain reliable data con-
sistency, microservices should use an Event-Driven architecture where the up-
dating the data between different service happened with one service publishes
the event on data changes and another service consumes the events and updates
accordingly. [7]

4.4 How to implement queries?

When system depends on multiple services, retrieving data owned by multi-
ple service will be challenging. Command Query Responsibility Segregation
(CQRS) methods can be used as a common solution to cope these challenges.
The CQRS divides the application into two sections: the command-and query-
side. The control handles request creation, updating, deletion and publishing
in case of data change while the query handles queries with an up-to-date,
materialized view. [7]

4.5 What is the appropriate size of the mi-
croservices?

The idea of designing microservice is to be small, autonomy, and focus to the
specific business capabilities. Some degree of overhead and the fallacies of
distributed computing inevitably involves in services [18]. There is always a
change that the services that are decompose are not fully autonomous. More-
over, Services brings cost in terms of maintenance and performance and if
services are too small then there is a risk of anti-pattern where the cost of a
service outweighs its utility [18]. It is obvious that defining the boundaries
between the services are challenging and crucial. Good knowledge of service
design and domain business can be used defining the service boundaries. The
service should be autonomous and loosely-coupled where autonomy is much
more important than size. In addition, service should be defined with proper
boundaries and appropriate size. A single deployable service should be no
bigger than a bounded context, but no smaller than a cohesive unit [18].

4.6. WHAT IS THE DRAWBACK OF HAVING SMALL AND BIG SIZE OF MICROSERVICES?25

4.6 What is the drawback of having small and
big size of microservices?

Identifying the right size of the microservices are hard to define as it always
depends on the nature of the problem domains [17]. However, based on the
microservices definition, it is described in terms of single responsibility principle
as it should do one thing well. The service should contain a fully functional
that independently serves business logics. If the service size is small, we might
need more services to build a complete system. Having too many microservices
increases the complexity in handling and maintain the services.

On the other hand, if the size of microservice is too big, it will be no more
microservice application instead a monolithic one. There will be no advantage
of microservice architecture-based software development practice. The service
should contain single business logic. Hence, the term defining the right size of
microservices has some ambiguity as it is difficult to size anything as abstract
as a service. [17]

Theoretically, the microservice should contain a fully functional business
logic and independently capable to provide the service. The boundaries of the
business logic should be limited and appropriate one. Adding too many func-
tion and feature makes the size of the service too big and hence needs to be
refactored. Bigger size means bigger complexity in software development activ-
ities such as building, developing, testing, deploying, handling and maintaining
the services.

4.7 What happened if there are too many mi-
croservices?

There can be several issues such as performance, optimization, synchronization,
security etc. during communication among many microservices. Microservice
uses standard lightweight simple (REST) API to communicate each other. If
one service depends on the result of another service or the dependent service
fails to execute then another service will not function properly. Besides, calling
huge number of rest API sequentially reduces the performance. Increase in
the number of services that interact each other to provide a complete business
service will increase in the complexity to handle and maintain the microservices.
As a result, the complexity of a microservices based application is directly
correlated with the number of services involved and communicated.

Chapter 5

Design Science in Information Sys-
tems Research and Guidelines

Design science research is conducted to solve problems identified in the organi-
zation. It is based on a rigorous design process to solve the problem observed,
to contribute to research, to evaluate designs and to communicate the results
to the relevant public. [[22], p. 49] Artifacts include any objects designed for
the purpose of identifying research issues, such as constructions, models, meth-
ods, instantiations or social innovations, or new features of technical, social or
information resources. [[22], p. 49]

Table 5.1: Design Science Research Guideline [[1], p. 83]

DS Research is practically governed in the IS discipline by 7 guidelines de-
scribing features of well carried out research. Table 5.1 highlights the seven
guidelines for research into design science, the most important being that re-
search produces an ’ artefact created to solve a problem. ’ In addition, the

26

27

artifact should be relevant to the ’ unresolved and significant business prob-
lem ’ solution. It must be rigorously evaluated for its usefulness, quality and
efficiency. In both building and assessment of the design artifact, verifiable
contributions and rigor must be applied. The artifact must search for a defined
problem using the existing theories and knowledge. Finally, the research needs
to be effectively presented to suitable audiences. [[22], p. 49]

In this thesis, DS research objects like prototyping systems are designated
and developed according to the architecture of microservices. During the soft-
ware development of prototype application, the guidelines mentioned in the
Table 5.1 will be followed. The development of software activities is thor-
oughly monitored and the findings are used for evaluating the Design Science
Research Methodology (DSRM) and DS process. In chapter 5, DSRM will be
discussed more in details. The results and the findings are presented to the
relevence parties in order to demonstrate the concept of the architecture of
the microservice. The relevent stakeholders make the correct decision to use
the architectural paradigms for the microservice on the software development
platform based on the findings and result artifacts.

Chapter 6

Design: Development of the Method-
ology

A system of principles, practices and procedures is the methodology for a partic-
ular field of knowledge. Methodological development requires the development
of a DSRM process. [[22], p. 52] The DS-researchers will be researched to carry
out the design of a DSRM process in a significant past research and current
thinking to determine the appropriate element and the instructions. The main
objectives are to develop an approach to conduct research based on the prin-
ciples of DS research defined within section [8] that are commonly accepted.
The main objectives are the development of a methodology. With the aid of
such a methodology, researchers can produce and present high-quality, valu-
able, rigorous and published DS research into information systems (IS). The
DS Research methodology includes three elements: the conceptual principles
of the DS Research Definition, DS Research Practice Rule, and the research
execution and presentation process. [[22], p. 49]

In this DS research, a consensus building approach will be used to produce
the design to ensure that the DSRM-based element is well accepted. [[22], p.
52] Many IS researchers and other disciplines provided ideas for elements of
the process. As shown in several representative papers and presentations and
our synthesis, the process components of the DSRM process are illustrated in
Table 1. The authors substantially agree on common elements. Our synthesis
results in a process model consisting of six nominal activities that we describe
in the following six activities graphically [[22], p. 52-56]:

1. Problem identification and motivation

2. Define the objectives for a solution

3. Design and development

4. Demonstration

5. Evaluation

6. Communication

6.1 Project Description
Building the software applications system that can be easily develop, deploy
and run in OpenShift environment. The size of the software application de-

28

6.2. DESIGN- AND DEVELOPMENT-CENTERED APPROACH 29

veloped should not be too big and it is very important that the system is
very simple to use, develop, and maintain so that newcomer and even the non-
technical person can understand the functionality and the features with less
efforts. Further, the software application should be complex and if necessary,
system should be split into componentize services. Each service has a certain
business capability and is fully functional and exposable to the external world.
The different teams with different technology stacks may develop each service
independently.

The system takes the .zip file that contains the list of screenshot images
taken from the Smartphone. As an output, it generates the word document
reports containing all those screenshots in order. The end user has a right to
select how many screenshot images the report can have in a row or page.

6.2 Design- and Development-Centered Approach
Activity 3 starts with an approach to design and development. The result
would be an artifact that was not formally regarded as a solution to the explicit
problem domain in which it is being used. Such an artifact could have come
from another research field, it could already have been used to solve another
problem, or an analog idea. [[22], p.64]

6.3 Problem identification and Motivation
Modern software development architectural approach is necessary to carry out
the software development work successfully. From the requirements, the size
of the software application should not be large and complex, and the complex
system should split into componentize services. Beside these, the development
work task should be dividable among the teams where each service can be de-
veloped based on the team expertise and their familiar technology stack and
platform. In order to fulfill these requirements, it is not possible to use the old
monolithic architectural way of development. Instead, microservice architec-
ture is used. The complex system decomposed into multiple componentize ser-
vices with fully functional business capability. Those services combined served
the business goals. Each service is small, independent and fully functional hav-
ing certain business capability; hence the development, testing, maintenance
and deployment work should be easily carried out. [[22], p. 64]

6.4 Objectives of the Solution
The solution’s primary goal is to develop a distributed system-based software
application using Microservice. First, researchers needed to find out, how to
decompose large system into multiple componentize service with business ca-
pability. Second, the appropriate size of the service needs to be identified in

30 CHAPTER 6. DESIGN: DEVELOPMENT OF THE METHODOLOGY

advance. Also, the service needs to be loosely coupled and independent to
other services so that it can be use, develop, deploy, and testing and maintain-
ing independently. As a result, the deployment and monitoring of the service
can be carried out easily and the system application keeps on running even
though some service gets down. Third, why old traditional monolithic way
of software development is not appropriate for the software development. It
helps in differentiating the architectural design between microservice and ex-
isting architectures. Finally, it will provide the better understanding of how
and where to use the microservices and possible the risk analysis. Furthermore,
it helps in finding the better approach of eliminating the limitations of using
microservices. [[22], p. 64]

6.5 Design and Development
The design and development process is based on a research project of the infor-
mation system. The requirement is collected at very first stage and continues
with the involvement of diverse set of penitential end users. The requirement
documents are later used for designing the system architecture. Software was
developed using a standard software development process, allowing multiple
groups of people to work parallel, to provide a proof-of-concept and fully func-
tioning client application.

Figure 6.1: DSRM Process for the Localization Service [[22], p. 65]

Figure 6.1 shows the DSRM process for project development of localization
service. The possible starting point for research into the design and devel-
opment approach begins with the design and development process. Nominal
sequence of processes begins with identification of problem and motivation,
defining goals of solution, design and development, demonstration, evaluation
and communication. The iteration of the process goes on until the design and

6.6. DEMONSTRATION 31

development work meets the needs.

Figure 6.2: System design and architecture

Figure 6.2 provides the relations between different components. TrialStudio
is a desktop application that has localization supports features that generates
the screenshots from the TrialCollector. TrialCollector is an android appli-
cation. The generated screenshots from TrialCollector are zipped into single
portable file. The zipped file contains the screenshots taken with all the se-
lected languages. Localization Tool Client is a microservice application that
takes the screenshots zipped file and called the Report Generator microservice
to generate the Word Report documents. The output of the localization ser-
vice is to produce a word report document from the screenshots of selected
languages. Each language produces the separate word report documents.

6.6 Demonstration

Figure 6.3 shows the deployment of microservices into the OpenShift environ-
ment. The system developed for localization service includes the two main
microservice applications, i.e., Localization Tool Client and Report Generator.
The application was developed using React and JavaScript. Localization tool
client takes the screenshots zipped file and the file can be uploaded either man-
ually or using drag-and-drop feature. The zipped file needs to be under certain
formats to upload successfully by the localization tool client, otherwise, the
error message will be shown. Once the uploading the zipped file is successful,
the list of languages used for creating screenshots will be shown in the table.
The word report document can be generated for each selected language. More
information about the use of the OpenShift Environment microservices can be
found in the section Appendix.

32 CHAPTER 6. DESIGN: DEVELOPMENT OF THE METHODOLOGY

Figure 6.3: Microservices deployed in OpenShift environment

The simple prototype application services that only include two microser-
vices are displayed in Figure 6.3. The question might arise if additional efforts
are really worth using the Microservice architecture to develop this simple ser-
vice. The answer is obvious: yes. It does not seem to matter how the system
application is, microservice architecture in terms of simplicity, scalability and
maintenance much better than a monolithic one. It takes little effort to use
architecture with microservice rather than monolithic architecture. In addi-
tion, the use of microservice architecture offers several advantages since service
development is independent. This will also help the teams to distribute tasks.

6.7 Evaluation

The developer, tester and Application Specialist (AS) team began a test process
when the localization service application was developed. Initially, in a closed
group, the system was extensively tested for debugging. The app was then
shared via the intern web portal with the whole teams of the AS. Anyone who
has a right to access the web portal, can use the software tool and use for
testing. The tools were very efficient and helps a lot specially for the AS team

6.8. COMMUNICATION 33

during the designing and developing of the trial protocol. More than 40 percent
of their time was saved using the tool when designing and developing the trial
protocols. The application tool was very user-friendly and easy to use. The
efforts and contribution to the successful design of the localisation service were
appreciated by all.

Enterprises have identified several issues related to the traditional approach
to software development. In the current digital business platform, issues such
as complexity, scalability and sustainability are identified that most businesses
are trying to avoid or minimize the effects. The entire system application
is programmed into a single project in monolithic application. All modules,
dependencies, functions and everything from UI to business logic and data
management are packaged in a single file. Complexity is obviously increasing
as volume increases and the system becomes less scalable and maintainable. It
has a direct effect on the onboarding of the new developer. In addition, features
such as continuous integration and delivery and external world exposure of APIs
will become ineffective and obsolete.

The methodology of design science research has focus on a rigorous design
process to solve the observed problem, contribute to research, evaluate design
and communicate the result to the relevant stakeholders. Using microservice
architecture, artifacts such as prototyping software development platform has
used to identify research problems and solutions. The research artifacts con-
cludes that the use of microservice architecture in digital platform minimizes
and resolves the existing monolithic application problems. The larger-volume
monolithic application will decompose into several component service called
microservice. Each service component is designed to be small and independent
in order to solve a single task with specific business capacity. Each service can
be individually developed and deployed.

Continuous development and integration can be easily accomplished with
a small and independent component making the system less complex, highly
scalable and maintainable. In addition, new developers can speed up their
on-board learning process. However, the use of microservice architecture also
has some inconvenience that may not always be a good solution for all system
development. Each service component has its own directory in microservices
and must be individually constructed, developed and deployed. Consequently,
multiple service deployments are mandatory. It can also provide significant
overhead with respect to design, interoperability of services, system resource
management, and use. Overall, microservices have much more advantages than
their disadvantages. Microservice architectural paradigms have solved most of
the problems that companies have identified.

6.8 Communication
The approach of software development process of localization service based on
microservices were highly successful. Further, the use of docker and OpenShift

34 CHAPTER 6. DESIGN: DEVELOPMENT OF THE METHODOLOGY

environment in the software development process has helped to the developer to
mainly focus on development activities and the hosting to deploy and maintain
the microservice application with minimum efforts. As a result, the number
of microservice based application has increases, since all the teams started
following the microservices based software development practice and standards.

6.9 Contribution
The results of this study provide valid and effective measures to make an im-
portant decision on the selection of the project-based software development
process. Research artifacts can be used for the assessment and evaluation of
the efficiency and performance of the software development process at the orga-
nizational and project level. Research can help developers, testers, hosters and
other stakeholders to understand how it contributes to software development.

Chapter 7

Software Development: Localiza-
tion Service

Localization service is developed using the Microservices architecture style.
The architectural style of Microservices is an approach to the development of a
single application as a suite of independently deployable services, each running
in their own process and communicating with lightweight mechanisms, often an
HTTP resource API.These services are based on business capabilities and can
be deployed independently through fully automated deployment tools. [24]

7.1 Application Stack

Figure 7.1: Application Stack

Figure 7.1 show the technologies stack used to develop the localization ser-
vices application.

35

36CHAPTER 7. SOFTWARE DEVELOPMENT: LOCALIZATION SERVICE

7.2 Localization Tool Client
Localization tool client service provides the UI that allows uploading the .zip
files containing the screenshots and metadata. The .zip file is uploaded and
becomes ready for generating the .doc report. For generating the report file,
the localization tool client service uses the report generator service.

Figure 7.2: Localization Ttool Client Service API

Notes: React and JavaScript (ES6) are used to develop the user inter-
face (UI) of the localization tool client service. Besides, unit testing of react
component is done using Snapshot testing provided by the Jest Framework.
Jest provides many features including snapshot testing, instant feedback and
parallel executing and testing. At least for development environment, windows-
build-tools are required to compile popular native node modules and can be
installed using following commands: npm install –global windows-build-tools

7.3 Report Generator
Report generator service allows to generate the .doc report based on the screen-
shots available in the zip files. The generated report file can be downloaded
easily by clicking the corresponding download button. JavaScript (ES6) is used
on server-side implementation. Similar to the localization tool client service,
this service is also bound to have those limitation and prerequisites defined

7.4. SERVICE INTEGRATION 37

above. However, report generator service do not have client UI and hence does
not use react.

Figure 7.3: Report Generator Service API

The report generator is responsible for cleaning up the REPORTS_DATA_-
FOLDER. The data held there expires after a time defined by REPORTS_-
DATA_MAX_AGE_MILLISECONDS. The clean-up is executed at regular
intervals defined by REPORTS_DATA_CLEANUP_INTERVAL_MILLISEC-
ONDS.

7.4 Service Integration
Service communicates each other using REST API and HTTP communication
protocol. Localization services such as localization tool client and report gener-
ator are deployed under OpenShift environment. The OpenShift is a container
deployed in replica. OpenShift environment provides the management tools for
handling the Microservices. The management tools provide features such as
logging, routing, fault tolerance, security, and status of the services. [9]

7.4.1 Implementing Request/Response collaboration
Representational State Transfer (REST) and HTTP: REST is an ar-
chitectural style or pattern intended for web-inspired APIs. And HTTP is
one of REST api’s most frequently used communication protocol. HTTP itself
describes some helpful REST-style capacities .For example, in the HTTP speci-
fication, the HTTP verbs (e.g., GET, POST, PUT and DELETE) already have
well-understood meanings as to how resources should be used. [23] The REST
architectural style says that all resources should use the same techniques and
that a set of techniques should be defined in HTTP specification. This means
many different methods can be avoided to createResource or editResource.
Rather, we can simply request the server to create that new resource. The
notion of Hypermedia As The Engine Of Application State (HATEOAS) is
another idea implemented in REST that prevents coupling between client and
server. It should be the final level of a REST API. All the resulting entities
that you receive with a rest call will also release their next possible actions.
[23]

38CHAPTER 7. SOFTWARE DEVELOPMENT: LOCALIZATION SERVICE

7.5 Security
Aspects of security such as authentication and authorization are key concepts
when it comes to people and things that interact within a system. In addition,
it is not efficient to log in separately for different systems when it comes to
a distributed system, using a different username and password for each one.
The goal is to have a single identity that can authenticate once. Single sign-on
(SSO) is a property allows the user to logn in with a single ID and passport for
gaining access to multiple related, yet independent, software systems and often
accomplished by using the Lightweight Directory Access Protocol (LDAP) and
stored LDAP databases on directory servers [11].

Figure 7.4: Security via Single sign-on (SSO)

When a principal attempts to access a resource (such as the localization
service), the principal is directed to authenticate using a flow defined in OpenID
Connect with an identity provider. In this process, the Authorization Server,
also referred to as an OpenID Connect Provider (OP), returns an ID Token to
the SSO portal together with the Access Token, enabling it to decide whether
to give them access to the resource. [11]

7.6 Deployment
Figure 7.5 shows the OpenShift Container Platform and the localization ser-
vices: ts-localization-tool-client and ts-report-generator that are deployed in
OpenShift environment. Each service is running under 2 pods. However, the
service can use several pods to maintain load balancing and fault tolerance

7.7. DISCUSSION: MICROSERVICES AND DESIGN SCIENCE 39

Figure 7.5: OpenShift Container Platform

Througth the platform, it is very easy to maintain the services as it allows to
monitor the logs and events in real time. In addition, multiple service can be
easily imported and created directly.

7.7 Discussion: Microservices and Design Sci-
ence

In practice, design seience methodology was used as guidelines for the software
development process. First, the enterprises problems such as complexity in
development and maintenance, low scalability were identified. Since then, the
objectives for a solution is define such as building the prototype application
based on microservice design patterns. The use of microservices has helped
distribute the task and continue the work of development in parallel so that
the work of development can be carried out independently and in parallel. As
a result, the product development work will be efficient, effective and with in
budget time.

Similarly, from the start to the end of the growth of the localization tool
service, the design science approach has helped a lot. With this DS method-
ology, the idea of developing and constructing prototype implementation and
carrying out prototype-based inquiry and study was produced. During the soft-
ware development process, it provides the guidelines and instructions to follow.
As a result, the software development activities will be accomplished based on
requirements and on time. The result artifact will definately solved the issues
identified by the enterprises.

Chapter 8

Evaluation

The research project was successfully completed with satisfactory results ac-
cording to the research plan. Most of the questions concerning architectural
paradigms and software development have been answered and resolved by the
research outcome. During the research work, more skills and knowledge related
to the improvement of software development process were gained.

After an analysis of research, the better approach for companies to produce
their products is clarified by the microservice architecture. Software develop-
ment work can be done easily, effectively and efficiently with Microservice Ar-
chitecture. In addition, the onboarding process for new hires will be easier and
faster. Docker and Openshift environment use have helped to maintain con-
sistency in development, testing and manufacturing. Furthermore, the deploy-
ment of microservices is much faster and easier compared to the previous one
where the application on the monolithic server is so huge and contains multiple
modules in a single bundle or repository. Similarly, compiling and constructing
the complete monolithic application is difficult to accomplish. Usually, some
module code has not been compiled or built.

However, refactoring those whole monolithic system having several modules
has some drawback that has identified and experienced during the research
project work. Refacturing entire system to component microservices is a huge
task and the challenges can only be faced by experience and senior core devel-
opers. From the business point of view, the revalidation of system products
requires enormous resources and efforts. Therefore, it does not seem feasible to
refactor the entire existing system into the service component. Furthermore,
having multiple microservices requires multiple repositories and each service
needs to maintain and deploy individually on the server. This also brings the
extra overhead to the developers.

Finally, architectural paradigms for microservices are more advantageous
than monolithic ones. Larger enterprises should therefore consider using the
microservice architecture to expand services further or develop new products.

40

Chapter 9

Conclusions

The aim of this design research project was the development and evaluation
of IT objects designed to solve software development organizational problems.
Bigger enterprises are always looking for better solution for the development
of their products with a view to minimize the cost, time and improve the
quality and maintainability of the development works. The artifacts of the
research methodology in the field of design science will assist stakeholders and
teams in developing efficient product development decisions and management
in advance.

The design science research project was successfully completed with the de-
sign and development of two prototypes of applications based on microservice
architecture. The development of prototypes and result shows that following
the microservice architecture in the software development process, the devel-
opment work was easy to carry out since the whole task was distributed as
component among the teams and developer can fully concentrate on the coding
parts. Further, the improvements and changes on the features and functionality
could be done easily during iteration. The microservice application developed
was easy to develop, build, deploy to the server. Similarly, the testing and
maintaining tasks could be done with minimum efforts. Besides these, the uses
of Docker and Openshift environment will helped a lot to maintain the consis-
tency, effectiveness and maintainability of the product development work. The
use of microservice architecture in the software development project helps a
lot through the different points of view to minimize the chances of failure and
produce the quality products.

Continuous development and integration can be easily accomplished with a
small and independent component making the system less complex, highly scal-
able and maintainable. In addition, new developers can speed up their on-board
learning process. However, the use of microservice architecture also has some
inconvenience that may not always be a good solution for all system develop-
ment. Each service component has its own directory in microservices and must
be individually constructed, developed and deployed. Consequently, multiple
service deployments are mandatory. It can bring with its significant overhead
in terms of design, interoperability of services, management, and use of system
resources. [5] The cost will be too high for the application which cannot make
sufficient use of its advantages. Overall, microservices have much more ad-
vantages than their disadvantages. Microservice architectural paradigms have
solved most of the problems that companies have identified. The result artifact
can help to minimize the limitation of architecture by taking proper decision
beforehand on estimating the design cost, time and resources.

41

Bibliography

[1] RH Von Alan, ST March, J Park, and S Ram. Design science in informa-
tion systems research. MIS Quarterly, 28(1):75–105, 2004.

[2] Sascha Alpers, Christoph Becker, Andreas Oberweis, and Thomas Schus-
ter. Microservice based tool support for business process modelling’,
ieee 19th international enterprise distributed object computing workshop.,
2015. Enterprise Distributed Object Computing Workshop (EDOCW),
2015 IEEE 19th International. Accessed 09.05.2018.

[3] Vineet Badola. Microservices architecture: advantages
and drawbacks, 2017. http://cloudacademy.com/blog/
microservicesarchitecture-challenge-advantage-drawback/. Accessed
25.07.2018.

[4] BitKeeper. Bitkeeper, 2019. https://www.bitkeeper.org/BK_Nested_
White_Paper.pdf. Accessed 02.10.2018.

[5] Runscope Blog. 5 reasons not to use microservices —
runscope blog, 2015. https://blog.runscope.com/posts/
5-reasons-not-to-use-microservices. Accessed 15.03.2019.

[6] Familiar Bob. Microservices, iot, and azure, 2015. ISBN 978-1-4842-1275-2
edn., online: Apress.

[7] Richardson Chris. What are microservices?, 1996. http://microservices.
io/index.html. Accessed 22.4.2018.

[8] Google Cloud. What are containers and their benefits | google cloud, 2019.
https://cloud.google.com/containers/. Accessed 02.10.2018.

[9] Webdesigner Depot. Monolith vs microservices: Which
is the best option for you? | webdesigner de-
pot, 2019. https://www.webdesignerdepot.com/2018/05/
monolith-vs-microservices-which-is-the-best-option-for-you/.
Accessed 05.11.2018.

[10] Docs.okd.io. Kubernetes infrastructure – infras-
tructure components | architecture | okd latest.,
2019. https://docs.okd.io/latest/architecture/
infrastructure_components/kubernetes_infrastructure.html#
architecture-infrastructure-components-kubernetes-infrastructure.
Accessed 18.10.2018.

42

http://cloudacademy.com/blog/microservicesarchitecture-challenge-advantage-drawback/
http://cloudacademy.com/blog/microservicesarchitecture-challenge-advantage-drawback/
https://www.bitkeeper.org/BK_Nested_White_Paper.pdf
https://www.bitkeeper.org/BK_Nested_White_Paper.pdf
https://blog.runscope.com/posts/5-reasons-not-to-use-microservices
https://blog.runscope.com/posts/5-reasons-not-to-use-microservices
http://microservices.io/index.html
http://microservices.io/index.html
https://cloud.google.com/containers/
https://www.webdesignerdepot.com/2018/05/monolith-vs-microservices-which-is-the-best-option-for-you/
https://www.webdesignerdepot.com/2018/05/monolith-vs-microservices-which-is-the-best-option-for-you/
https://docs.okd.io/latest/architecture/infrastructure_components/kubernetes_infrastructure.html#architecture-infrastructure-components-kubernetes-infrastructure
https://docs.okd.io/latest/architecture/infrastructure_components/kubernetes_infrastructure.html#architecture-infrastructure-components-kubernetes-infrastructure
https://docs.okd.io/latest/architecture/infrastructure_components/kubernetes_infrastructure.html#architecture-infrastructure-components-kubernetes-infrastructure

BIBLIOGRAPHY 43

[11] Doug Drinkwater. What is single sign-on? how
sso improves security and the user experiences,
2018. https://www.csoonline.com/article/2115776/
what-is-single-sign-on-how-sso-improves-security-and-the-user-experience.
htmll. Accessed 16.04.2019.

[12] M. Fowler. Microservices, a definition of this new architectural term, 1996.
http://www.tug.org/texlive/. Accessed 08.05.2018.

[13] Docker Inc. What is a container? | docker, 2019. https://www.docker.
com/resources/what-container. Accessed 10.01.2019.

[14] Docker Inc. Docker overview | docker documentation, 2019. https://
docs.docker.com/engine/docker-overview/. Accessed 05.04.2019.

[15] InfoQ. The strengths and weaknesses of microservices., 2019. https:
//www.infoq.com/news/2014/05/microservices. Accessed 25.06.2018.

[16] Kinnary Jangla. Accelerating development velocity using docker: Docker
across microservices., 2018. 1st edition. Apress.

[17] Ben Morris. How big is a microservice?, 2015. https://www.ben-morris.
com/how-big-is-a-microservice/. Accessed 30.02.2019.

[18] Neoteric. How can you refactor a monolithic application
into microservices?., 2019. https://medium.com/@NeotericEU/
how-can-you-refactor-a-monolithic-application-into-microservices-2eef8e323840..
Accessed 20.07.2018.

[19] Saverio Giallorenzo Nicola Dragoni, Alberto Lluch Lafuente, Manuel Maz-
zara Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microser-
vices: yesterday, today, and tomorrow, 2016. URL https://arxiv.org/
abs/1606.04036.

[20] OpenShift. Basic usage - using minishift | minishift | okd latest,
2019. https://docs.okd.io/latest/minishift/using/basic-usage.html.
Accessed 15.12.2018.

[21] Diego Pacheco. Building effective microservices, 2017. 1st edition. Packt
Publishing.

[22] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chat-
terje. A design science research methodology for information systems re-
search. Journal of Management Information Systems / Winter 2007–8, 24
(3):45–77, 2008.

[23] Newman Sam. Building microservices, 2015. ISBN: 9781491950340, First
Edition edn., US: O’Reilly Media, Inc.

https://www.csoonline.com/article/2115776/what-is-single-sign-on-how-sso-improves-security-and-the-user-experience.htmll
https://www.csoonline.com/article/2115776/what-is-single-sign-on-how-sso-improves-security-and-the-user-experience.htmll
https://www.csoonline.com/article/2115776/what-is-single-sign-on-how-sso-improves-security-and-the-user-experience.htmll
http://www.tug.org/texlive/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://www.infoq.com/news/2014/05/microservices
https://www.infoq.com/news/2014/05/microservices
https://www.ben-morris.com/how-big-is-a-microservice/
https://www.ben-morris.com/how-big-is-a-microservice/
https://medium.com/@NeotericEU/how-can-you-refactor-a-monolithic-application-into-microservices-2eef8e323840.
https://medium.com/@NeotericEU/how-can-you-refactor-a-monolithic-application-into-microservices-2eef8e323840.
https://arxiv.org/abs/1606.04036
https://arxiv.org/abs/1606.04036
https://docs.okd.io/latest/minishift/using/basic-usage.html

44 BIBLIOGRAPHY

[24] Technovature Marketing Team. Why microservices, 2019. https://www.
technovature.com/m/sd/microservices.html. Accessed 15.04.2019.

[25] Vamsi Talks Tech. Why legacy monolithic architectures won’t work for dig-
ital platforms., 2019. http://www.vamsitalkstech.com/?p=5617. Accessed
09.05.2018.

[26] tutorialspoint.com. Docker overview, 2019. https://www.tutorialspoint.
com/docker/docker_overview.htm. Accessed 22.12.2018.

[27] tutorialspoint.com. Kubernetes tutorial, 2019. https://www.
tutorialspoint.com/kubernetes. Accessed 02.10.2018.

[28] tutorialspoint.com. Openshift tutorial, 2019. https://www.
tutorialspoint.com/openshift/index.htm. Accessed 25.09.2018.

https://www.technovature.com/m/sd/microservices.html
https://www.technovature.com/m/sd/microservices.html
http://www.vamsitalkstech.com/?p=5617
https://www.tutorialspoint.com/docker/docker_overview.htm
https://www.tutorialspoint.com/docker/docker_overview.htm
https://www.tutorialspoint.com/kubernetes
https://www.tutorialspoint.com/kubernetes
https://www.tutorialspoint.com/openshift/index.htm
https://www.tutorialspoint.com/openshift/index.htm

Appendix A

Example of DockerFile

Figure A.1: Example of Dockerfile

45

	Cover page
	Abstract
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Research plan
	1.3 Research methods
	1.4 Objectives

	2 Background
	2.1 Traditional Software Platform Architecture
	2.2 Monolithic Application
	2.3 Monolithic Pros and Cons
	2.4 Microservices
	2.4.1 Characteristics of Microservice architecture
	2.4.2 Benefits of Microservices
	2.4.3 Drawbacks of Microservices
	2.4.4 Adopting Microservices by Enterprises

	3 Development Environment
	3.1 Docker
	3.1.1 Docker Architecture and Its Terminology
	3.1.2 Containers
	3.1.3 Why Containers?
	3.1.4 Docker Containers Instead of VMs
	3.1.5 Docker Images and Docker Container

	3.2 Kubernetes
	3.3 OpenShift Environment
	3.3.1 OpenShift Platform Supports
	3.3.2 Why OpenShift Environment?
	3.3.3 OpenShift Environment Features
	3.3.4 OpenShift Basic Concept and Its Overview

	3.4 Minishift
	3.4.1 Minishift architecture
	3.4.2 Minishift Life-cycle

	4 Discussion
	4.1 When to use the microservice architecture?
	4.2 How to decompose the application into services?
	4.3 How to maintain data consistency?
	4.4 How to implement queries?
	4.5 What is the appropriate size of the microservices?
	4.6 What is the drawback of having small and big size of microservices?
	4.7 What happened if there are too many microservices?

	5 Design Science in Information Systems Research and Guidelines
	6 Design: Development of the Methodology
	6.1 Project Description
	6.2 Design- and Development-Centered Approach
	6.3 Problem identification and Motivation
	6.4 Objectives of the Solution
	6.5 Design and Development
	6.6 Demonstration
	6.7 Evaluation
	6.8 Communication
	6.9 Contribution

	7 Software Development: Localization Service
	7.1 Application Stack
	7.2 Localization Tool Client
	7.3 Report Generator
	7.4 Service Integration
	7.4.1 Implementing Request/Response collaboration

	7.5 Security
	7.6 Deployment
	7.7 Discussion: Microservices and Design Science

	8 Evaluation
	9 Conclusions
	Bibliography
	A Example of DockerFile

