
Aalto University

School of Science

Master’s Programme in Mathematics and Operations Research

Olga Kuznetsova

Private Information Retrieval:

Combinatorics of the Star-Product Scheme

Master’s Thesis
Espoo, June 2, 2019

Supervisor: Professor Camilla Hollanti
Advisor: Dr. Ragnar Freij-Hollanti

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/219838965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University
School of Science
Master’s Programme in Mathematics and
Operations Research

ABSTRACT OF
MASTER’S THESIS

Author: Olga Kuznetsova

Title:
Private Information Retrieval: Combinatorics of the Star-Product Scheme

Date: June 2, 2019 Pages: 72

Major: Mathematics Code: SCI3054

Supervisor: Professor Camilla Hollanti

Advisor: Dr. Ragnar Freij-Hollanti

In coded private information retrieval (PIR), a user wants to download a file
from a distributed storage system without revealing the identity of the file. We
consider the setting where certain subsets of servers collude to deduce the identity
of the requested file. These subsets form an abstract simplicial complex called
the collusion pattern. In this thesis, we study the combinatorics of the general
star-product scheme for PIR under the assumption that the distributed storage
system is encoded using a repetition code.

Keywords: Private information retrieval, Matroids, Simplicial complexes,
Linear codes

Language: English

2



Acknowledgements

I wish to thank Ragnar Freij-Hollanti and Camilla Hollanti for their support
during the writing of this thesis.

Espoo, June 2, 2019

Olga Kuznetsova

3



Contents

1 Introduction 6

2 Coding-Theoretic Preliminaries 9
2.1 Error-Correcting Codes . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Examples of Codes . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Repetition Codes . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Reed–Solomon Codes . . . . . . . . . . . . . . . . . . . 17
2.3.3 Reed–Muller Codes . . . . . . . . . . . . . . . . . . . . 20

2.4 Standard Operations on Linear Codes . . . . . . . . . . . . . . 22
2.4.1 Operations on a Single Code . . . . . . . . . . . . . . . 22
2.4.2 Operations on Collections of Codes . . . . . . . . . . . 23

2.5 Entropy and Mutual Information . . . . . . . . . . . . . . . . 25

3 Combinatorial Preliminaries 29
3.1 Abstract Simplicial Complex . . . . . . . . . . . . . . . . . . . 29
3.2 Matroids and Coding Theory . . . . . . . . . . . . . . . . . . 30

4 Private Information Retrieval 33
4.1 Coded Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Collusion pattern . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Privacy of PIR . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Construction of a PIR Scheme . . . . . . . . . . . . . . . . . . 37

4.4.1 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2 Responses . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.3 Reconstruction function . . . . . . . . . . . . . . . . . 40
4.4.4 Iteration process . . . . . . . . . . . . . . . . . . . . . 40

4.5 The Class of Star Product Schemes . . . . . . . . . . . . . . . 41
4.6 Efficiency of a PIR Scheme . . . . . . . . . . . . . . . . . . . . 46

4



5 Lift over a collusion pattern 47
5.1 Linear conditions observed by the collusion pattern . . . . . . 47
5.2 Construction of a linear code L from the observed minimal

linear equations L . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Equivalence of L and QT . . . . . . . . . . . . . . . . . . . . . 54

6 Combinatorics of QT 56
6.1 Elementary properties . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Matroid of QT . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Matroid invariance of QT . . . . . . . . . . . . . . . . . 58
6.2.2 Explicit construction of CT . . . . . . . . . . . . . . . . 60

6.2.2.1 Preserved circuits . . . . . . . . . . . . . . . . 61
6.2.2.2 New circuits . . . . . . . . . . . . . . . . . . . 63

7 Conclusion 65

A Download rate 71

5



Chapter 1

Introduction

It is a late Monday afternoon and Jane Burn, a financial intelligence officer
at The Metropolitan Police Service, receives a tip that Big Corp Inc. is
involved in money laundering. She immediately dives into the investigation
and decides to request the financial statements of Big Corp and its alleged
collaborators. The key to the success of her investigation is the ability to
move discreetly without alarming the suspects.

How should she go about accessing the files? Clearly, the financial state-
ments of publicly listed companies are public knowledge. And it is also not
surprising that a financial intelligence officer would analyze such reports on
a regular basis. Therefore, the only sensitive information is the identities of
the suspects.

Unfortunately, Jane cannot trust the cloud storage provider where the finan-
cial statements are stored. In fact, she knows that the servers located within
close proximity collude by sharing the information about the queries that
they receive. Their motivation is innocent enough: they want to optimize
service delivery and never share the information with third parties, but this
is too important to take the risk.

To her advantage, the provider does not have the capacity to collate the
queries across all of its servers. So, as long as she moves swiftly and en-
sures that partially observed queries are not informative, she will be able to
maintain the secrecy of her investigation.

This fictional setting illustrates the motivation and key components of private
information retrieval (PIR), whose goal is to allow downloading a file from
a distributed storage system without revealing the identity of the file to the
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CHAPTER 1. INTRODUCTION 7

storage provider. The flavor of PIR that we are interested in requires that
it is impossible to recover the sensitive information from partially observed
queries. Therefore, privacy achieved thanks to the clever structure of the
queries.

As a first step, Jane needs to choose the structure of the queries that would
allow her to retrieve the financial statements of a specific company. This
structure cannot remain secret from the storage provider and, in fact, pri-
vacy is not necessary when Jane performs non-sensitive investigations, e.g.,
a regular audit. However, the structure should also enable her to switch to
sensitive investigations without the storage provider noticing the switch. In
other words, she should be able to send secret queries that should appear
indistinguishable from the public queries to the storage provider.

Mathematically, the structure of Jane’s public queries is given by a linear
code Q, which is a finite-dimensional Fq-vector space. Her privacy challenge
satisfies three criteria:

1. once a group of servers colludes, then every server in the group knows
exactly which queries every other member of the group receives, i.e.,
collusion is closed under containment;

2. due to external constraints, a group of colluding servers cannot pass
information to other groups, i.e., collusion is not transitive;

3. at least one server actively tries to identify secret queries.

These three properties correspond to the concept of the abstract simplicial
complex, which we call the collusion pattern T .

Finally, the structural property of the linear code Q that allows Jane to
switch from public to private queries is called the lift QT and it is rigorously
defined in this thesis for the first time. Essentially, the lift provides privacy
by attaching the secret query to the parts of the public query that are not
visible to the adversaries. This way the adversary cannot tell the difference
between a genuine public message and a modified one that contains sensitive
information. At the same time, it is easy to recover the secret query for
anyone who can observe the entire message.

One may hypothesize that the operation of lifting is purely combinatorial,
i.e., if the combinatorial structures of two different codes Q1 and Q2, known
as their matroids, are the same, then so will be the matroids of QT1 and
QT2 . Our main contribution is to show that this hypothesis is false in full
generality and to give sufficient conditions that ensure that QT1 and QT2 are
matroid invariant.
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The outline of the work is as follows. We set the stage in Chapters 2
through 4, where we discuss relevant facts about coding theory and pri-
vate information retrieval. Then, in Chapter 5, we focus on the notion of the
lift and give a specific algorithm for construction. Finally, our main result
and the description of earlier approaches will be presented in Chapters 6 and
Appendix A.



Chapter 2

Coding-Theoretic Preliminaries

The codes discussed in this thesis belong to the family of error-correcting
codes. Originally, such codes were developed to enable reliable transmission
of data over unreliable communication channels such as telephone conversa-
tions. For example, if a message consists of a string of 0s and 1s and the
signal is weak, some 0s may be interpreted as 1s and vice versa. Error correc-
tion methods introduce redundancy in the transmitted message to allow for
reconstruction of the original message even if some symbols are corrupted.

We are interested in the application of error-correcting codes to data retrieval.
The specifics will be discussed in detail in later sections, but we want to briefly
mention the motivation already at this stage.

Distributed storage systems may use a subfamily of error-correcting codes
known as erasure-correcting codes to ensure that the data can be recovered
if some servers fail. Here the assumption is that some symbols may get
erased, but the ones that remain do not contain errors. The goal is to be
able to recover the original string even when some symbols are lost. This
introduces redundancy in the storage system. We shall illustrate this with
the following toy example.

Example 2.0.1. Assume, we have a file x = [a, b] and three servers. Here
are two examples of how to store the file on the servers:

• replication: storing both fragments on each of the servers, i.e., the
storage system becomes {(a, b), (a, b), (a, b)};

• parity check: storing one fragment on each of two servers and their
sum on the third server, i.e., the storage system becomes {(a), (b), (a+
b)}.

9
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Note that, in the case of replication, we need to store twice as much data as
in parity-check coding, so it leads to large storage overhead. On the other
hand, under replication, it is possible to retrieve the entire file from just one
server and it can tolerate failures on two out of three servers.

While error-correcting codes provide an efficient and reliable means for stor-
ing data, their redundancy can also be exploited by the users who want to
access the storage system. We will illustrate this with another toy example.

Example 2.0.2. Assume there are three files a, b and c replicated on two
non-colluding servers. In other words, the storage system is
{(a, b, c), (a, b, c)} and the servers do not sure the information about the
queries they receive.

A user wants to retrieve a. Assume the user chooses a vector (α1, α2, α3) ∈ F3
2

uniformly at random to retrieve the file. Then she sends the query (α1, α2, α3)
to the first server and (α1 + 1, α2, α3) to the second server.

The servers compute the responses by taking

〈(α1, α2, α3), (a, b, c)〉 := α1a+ α2b+ α3c

and 〈(α1+1, α2, α3), (a, b, c)〉. Thus, the user can recover a privately by taking

〈(α1, α2, α3), (a, b, c)〉 − 〈(α1 + 1, α2, α3), (a, b, c)〉 = a.

We will now introduce some facts from coding theory that will be used in
our work.

2.1 Error-Correcting Codes

In what follows, we summarize the ideas presented in [31], [5], [1]. A standard
assumption in coding theory is that information is encoded using a finite
alphabet Q with |Q| = q, containing a distinguished element 0.

We focus on a specific type of codes, called block codes, where the coded
information can be divided into blocks of n symbols which can be decoded
independently. A block code C is a nonempty subset of Qn.

The elements of a code are called codewords. It is often useful to measure
the distance between any two codewords, as it describes the failure tolerance.
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Definition 1. If x ∈ Qn, y ∈ Qn, then the Hamming-distance d(x,y) (or
just distance) of x and y is defined by

d(x,y) :=
∣∣∣{i | 1 ≤ i ≤ n, xi 6= yi}

∣∣∣.
The weight w(x) of x is defined by

w(x) := d(x,0),

where 0 is always chosen to be the all-zeros string.

Observe that the Hamming distance is a metric as it satisfies the triangular
inequality, i.e., d(a,b) + d(b, c) ≥ d(a, c) for all a,b, c ∈ Qn. We refer the
reader to [31] for the discussion of different distance functions.

Definition 2. For x ∈ C, the support is supp(x) = {i ∈ [n] : xi 6= 0} and
the support of the code C is given by supp(C) =

⋃
x∈C supp(x).

It follows from the definitions that w(x) = | supp(x)|.

We can now present a model for information transmission with additive er-
rors. Assume a codeword x is sent over an unreliable communication channel.
Then the received codeword becomes r = x + e, where e ∈ Qn is the error
introduced during the transmission. The goal of the receiver is to identify
the original codeword x. In our work, we are going to assume that this is
achieved using minimal distance decoding. This means that the receiver tries
to identify a codeword x′ ∈ C such that d(x′, r) is minimal. Note that there
can be more than one codeword in C that satisfies this condition.

Our approach makes several implicit assumptions:

• an error in position i is independent of the errors in any other position;

• the symbol in error can be any of the other q − 1 elements;

• during communication, all codewords are equally likely.

Earlier we defined distance and weight for individual codewords. We can
now consider similar notions for entire codes.

Definition 3. The minimum distance of a code C is

min{d(x,y) |x ∈ C,y ∈ C,x 6= y}.
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It is usually denoted by dmin or just d when the reference to minimum distance
is clear from the context.

Definition 4. The minimum weight of C is

min{w(x) |x ∈ C,x 6= 0}.

Similarly, it is denoted by wmin or just w when no confusion can arise.

An elementary but useful observation is that if there are at most e errors in
the received codeword y ∈ Qn and the minimum distance is dmin = 2e + 1,
then the receiver will always have a unique matching codeword x ∈ C. This
is because if d(x, y) = e and for all codewords x′ ∈ C different from x,
d(x, x′) ≥ 2e + 1, then d(x′, y) ≥ e + 1. A code where every y ∈ Qn has
distance ≤ e to exactly one codeword in C is called perfect.

Finally, it is often useful to evaluate the efficiency of a given code using the
information rate.

Definition 5. If |Q| = q and C ⊂ Qn, then

R := n−1 logq |C|

is called (information) rate of C.

2.2 Linear Codes

We now turn our attention to a special type of block codes that have nice
algebraic properties. We let Q = Fq, where Fq is a finite field and, hence,
q = pn, where p is a prime.

Definition 6. A q-ary linear code C is a linear subspace of Fnq . If C has
dimension k and minimum distance d, then C is called an [n, k, d] code.

The rate of an [n, k, d] code C is k
n
. One advantage of linear codes is that it is

possible to use standard tools from linear algebra to generate and structure
such codes.

Definition 7. A generator matrix G for a linear code C is a k × n-matrix
for which the rows are a basis of C.

If G is a generator matrix, then C = {aG | a ∈ Fkq}. It follows immedi-
ately that elementary row operations preserve the code. Any k independent
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columns of G are called an information set of C and the remaining n − k
columns are called a parity-check set.

We say that G is in standard form if G is of the form G = (Ik P ), where Ik
is a k× k identity matrix. If a particular instance of the code C is generated
using a matrix in standard form, then it is called systematic.

Two linear codes are called equivalent if they differ at most by a permutation
of columns in a generator matrix. It is clear that any linear code is equivalent
to some linear code in standard form. We would like to note that some
authors also include field automorphisms in the definition of equivalence.
Under that definition, two linear codes C and D are equivalent if there is a
permutation π : [n]→ [n] and an automorphism σ : Fq → Fq such that

(c1, . . . , cn) ∈ C ⇐⇒ (σ(cπ(1)) . . . σ(cπ(n))) ∈ D.

Clearly, if q is prime then the two definitions agree.

In general, if M is the total number of codewords in code C, then one needs
to check

(
M
2

)
pairs of codewords to determine the minimum distance dmin.

However, for linear codes, it is sufficient to check only M words, as shown in
the following theorem.

Theorem 1. For a linear code C, the minimum distance is equal to the
minimum weight.

Proof. For all x,y ∈ C, the following holds

d(x,y) = d(x− y,0) = w(x− y), and if x ∈ C,y ∈ C, then x− y ∈ C.

Hence, dmin = min
x,y∈C

d(x,y) = min
x∈C

w(x,y) = wmin.

Definition 8. The dual code C⊥ of an [n, k] code C is defined by

C⊥ = {y ∈ Fnq | ∀x ∈ C 〈x,y〉 = 0}

Let G = (Ik P ) be a generator matrix for code C, then H, a generator matrix
for the dual code C⊥ has the form H = (−P T In−k). This follows from

x ∈ C ⇐⇒ xHT = 0. (2.1)

By convention, H is called a parity check matrix of C.
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Definition 9. If C is a linear code with parity check matrix H then for every
x ∈ Fnq , we call xHT the syndrome of x.

It follows from (2.1) that the codewords are characterized by syndrome 0.
More generally, since C is a subgroup of Fnq , we can partition Fnq into cosets
of C. Then x,y belong to the same coset if and only if they have the same
syndrome (xHT = yHT ⇐⇒ x− y ∈ C). Therefore, if a vector x is
received with error pattern e, then x and e have the same syndrome. It
follows that for minimum distance decoding, one needs to identify a vector e
of minimimum weight that belongs to the same coset as x and then decode
x as x− e. The vector e is the coset leader (and might not be unique).

To see how this idea works in practice, consider the following [6, 3] binary
code C with a generator matrix

G =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


and the corresponding parity check matrix

H =

 0 −1 −1 1 0 0
−1 0 −1 0 1 0
−1 −1 0 0 0 1

 ∼=
0 1 1 1 0 0

1 0 1 0 1 0
1 1 0 0 0 1

 .
Let a ∈ F3

2 be the message that the sender wants to send to the receiver.
Then c = aG ∈ C is the corresponding codeword. Assume that due to the
noise in the communication channel, the receiver gets x ∈ F6

2 instead. Then
e = (e1, . . . e6) = x− c is the error pattern. In this example,

e2 + e3 + e4 = x2 + x3 + x4 := s1,

e1 + e3 + e5 = x1 + x3 + x5 := s2,

e1 + e2 + e6 = x1 + x2 + x6 := s3.

Since the receiver knows x, they also know s1, s2, s3. Hence, in order to
identify c, the receiver must determine the most likely error pattern e given
s1, s2, s3. By convention, the most likely pattern is the one with fewest errors,
i.e., the smallest number of 1s. It can be easily checked that if (s1, s2, s3) 6=
(1, 1, 1) there is a unique choice for e. For example, if (s1, s2, s3) = (1, 1, 0),
then the most likely pattern is (0, 0, 1, 0, 0, 0). Other possible error patterns
are

{(1, 1, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 0, 0, 1, 1, 0), (1, 1, 1, 1, 1, 0)}
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but they all have more errors.

If (s1, s2, s3) = (1, 1, 1) the decoder must choose e from

{(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1)}.

Assume that the receiver knows that the probability p of receiving a corrupted
symbol is p. If we list all possible error patterns and then decode them using
maximum likelihood decoding, we see that all patterns with at most one
error are decoded correctly and among other patterns, there exists one with
two errors that is also decoded correctly. Hence, the probability of decoding
correctly is:

r6 + 6r5p+ r4p2,

where r = 1− p.

One of the benefits of this algebraic approach is that it decreases the space of
alternatives that need to be considered for decoding a message. In general, a
linear code C contains qk codewords and the receiver can get qn messages. If
the code had no structure, then for every message, the receiver would need to
compare the received string with all qk codewords. However, in linear codes,
it is enough to consider qn−k coset leaders and if we assume that the rate of
the code is relatively high, i.e., k > n− k, then qn−k < qk.

There is a useful relationship between the weight of a codeword in C and a
parity check matrix H.

Theorem 2. Let C be a linear code with a parity check matrix H and x a
non-zero codeword in C. Then the columns of H corresponding to supp(x) are
linearly dependent. Conversely, if a linear dependence relation with nonzero
coefficients exists among S columns of H, then there is a codeword x in C
with supp(x) = S.

Proof. By (2.1), we know that xHT = 0. Since x is a non-zero codeword, the
columns in supp(x) are linearly dependent. Conversely, if S is a dependent set
of columns of H, then there exists a set of coefficients such that

∑
i∈S xiHi =

0, where Hi is a column of H. Then these coefficients define a codeword
x ∈ C with supp(x) = S.

Corollary 1. A linear code C with a parity check matrix H has a minimum
distance d if and only if the cardinality of the smallest minimal dependent
set of columns of H is d.
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Next, we prove an important bound for the dimension of linear codes.

Theorem 3. Singleton bound. Let C be a linear [n, k, d] code. Then any set
of n− d+ 1 coordinates contains an information set and k ≤ n− d+ 1.

Proof. Let G be a generator matrix of C and S a subset of columns of G
with cardinality s and assume that S does not contain an information set.
Consider the restriction GS of G to S. This is a k×s matrix and rk(GS) < k
since, by assumption, S does not contain an information set. Hence there
exists a non-trivial linear combination of the rows of GS that equals 0 and a
codeword x ∈ C with 0s on S. Since the rows of G are linearly independent,
x 6= 0 and hence d ≤ n−s and s ≤ n−d. In particular, a set S of cardinality
k− 1 cannot contain an information set, so it follows that k ≤ n− d+ 1.

Linear codes that satisfy the Singleton bound with equality are called maxi-
mum distance separable (MDS) codes. MDS codes are usually written more
concisely as [n, k] codes with d = n − k + 1 implied. Note that repetition
codes, i.e., the codes that are generated by 1 = (1, . . . , 1), are [n, 1] MDS
codes. An example of a non-repetition MDS code is the code generated by
the following generator matrix

G =

1 0 0 1
0 1 0 1
0 0 1 1

 ;

it is a [4, 3] MDS code known as the simple parity check code.

On the other hand, the code generated by

G =

[
1 1 0 0
0 0 1 1

]
,

is not an MDS code, since dimC = 2 but {1, 2} is a dependent set.

It is sometimes useful to use the notion of evaluation codes [26].

Definition 10. Let S = {P1, . . . , Pn} be a set and V an Fq-vector space of
maps φ : S → Fq. Then the evaluation code C[V, S,Fq] is the image of the
map

i : V → Fnq , φ 7→ (φ(P1), . . . , φ(Pn)).

Since V is a vector space, all evaluation codes are linear codes. On the other
hand, all linear codes are evaluation codes since, if G is a generator matrix,
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then we can let S be the set of columns of G and V the dual space (Fkq)⊥,
i.e. the Fq-space of all linear forms on Fkq . For x′ ∈ Fkq , we denote the corre-
sponding linear form by φ′ and the encoding of x′ equals (φ′(c1), . . . , φ

′(cn)),
where ci is a column of G.

This view of linear codes is particularly useful when V represents a special
class of maps, for example, polynomials of bounded degree. We will discuss
such classes of linear codes in the following section.

2.3 Examples of Codes

We shall now describe some of the codes that will be used in this thesis. Here
the expositions of Reed–Solomon and Reed–Muller codes follow [12].

2.3.1 Repetition Codes

Recall that the repetition code Rep[n] ⊂ Fnq is a one-dimensional linear vector
space generated by 1 = (1, . . . , 1). In essence, using Rep[n] to transmit a
message corresponds to retransmitting every message n times.

2.3.2 Reed–Solomon Codes

To construct a Reed–Solomon code, we pick a set of distinct points S =
{α1, . . . , αn} ⊆ Fq. Then a Reed–Solomon code RSq[n, k] is defined by

RSq[n, k] = {(p(α1), p(α2), . . . , p(αn)) ∈ Fnq },

where p ∈ Fq[x] ranges over all polynomials of degree at most k − 1.

The canonical generator matrix of this code is given by

G =


1 · · · 1
α1 · · · αn
α2
1 · · · α2

n
...

...
...

αk−11 · · · αk−1n

 .

Since any two distinct polynomials of degree less than k agree in at most
k − 1 points, it means that the minimum distance of a Reed–Solomon code
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is n − (k − 1) = n − k + 1, so it satisfies the Singleton bound with equality
and, hence, is an MDS code.

Clearly, RSq[n, 1] is a repetition code. One can also generalize the concept
of Reed–Solomon codes by defining a vector v ∈ (F∗q)n of coefficients of the
coordinates of the codewords, i.e.,

GRSq[n, k,v] = {(v1p(α1), v2p(α2), . . . , vnp(αn)) ∈ Fnq }

over the same set S of evaluation points as above [10].

Next, we will show that the dual of a generalized Reed–Solomon code is a
generalized Reed–Solomon code. The proof follows [20] and [13]. We start
with two lemmas.

Lemma 1. For every non-zero α ∈ Fq, we have αq−1 = 1.

Proof. Let u :=
∏

06=β∈Fq

β ∈ Fq. Observe that for all non-zero α and β,

αβ 6= 0. Then the map β 7→ αβ is a permutation of the non-zero elements
of Fq. Therefore,

u =
∏

06=β∈Fq

β =
∏

0 6=β∈Fq

αβ = αq−1
∏

06=β∈Fq

β

and since α 6= 0, the claim follows.

Lemma 2. Let k ∈ Fq. Then

∑
β∈Fq

βk =

{
0, if k ∈ Fq\{q − 1};
−1, if k = q − 1.

Proof. First, let Sk :=
∑
β∈Fq

βk. Then, as in Lemma 1, we can apply the

permutation β 7→ αβ with α 6= 0 to conclude that

Sk =
∑
β∈Fq

αkβk = αk
∑
β∈Fq

βk = αkSk.

Now we have two cases: either Sk = 0, or Sk 6= 0 and then αk = 1. Assume
Sk 6= 0. Then the polynomial xk − 1 = 0 ∈ F[x] has q − 1 roots. This can
only hold if k = q − 1. So, we have

Sq−1 =
∑
β∈Fq

βq−1 = 0q−1 +
∑

06=β∈Fq

βq−1 = q − 1,
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where the final equality follows from Lemma 1. However, q−1 ≡ −1 mod q,
and the claim follows.

Now it is easy to see why

G =


1 · · · 1
α1 · · · αn
α2
1 · · · α2

n
...

...
...

αk−11 · · · αk−1n


and

H =


1 · · · 1
α1 · · · αn
α2
1 · · · α2

n
...

...
...

αn−k−11 · · · αn−k−1n


are two orthogonal matrices.

We will derive the dual of a generalized Reed–Solomon code using Lagrange
interpolation. For that, we will need the following notation. Let

L(x) :=
n∏
i=1

(x− αi)

and
Li(x) := L(X)/(x− αi) =

∏
j 6=i

(x− αj).

Note that L(x) and Li(x) are monic of degree n and n− 1, respectively.

First, let us state the famous Lagrange interpolation theorem.

Theorem 4. Let p ∈ Fq[x] and deg(p) = d. Assume that, for distinct
{α1, . . . , αn} ⊆ Fq with d < n, we have p(αi) = βi. Then

p(x) =
n∑
i=1

βi(
∏
j 6=i

x− αj
αi − αj

).

Proof. Let g(x) be the right-hand side of the equation. Observe that deg(g) ≤
n− 1 and g(αi) = βi. By assumption, deg(p) = d ≤ n− 1, so p(x)− g(x) is a
polynomial of degree at most n−1. But it has n distinct roots, so p(x)−g(x)
is the zero polynomial. Hence, p(x) = g(x).
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We are finally ready to determine the dual of a GRSq[n, k,v] code.

Theorem 5. For any GRSq[n, k,v],

GRSq[n, k,v]⊥ = GRSq[n, n− k,u],

where u is given by u−1i = vi
∏
j 6=i

(αi − αj).

Proof. By construction, ui = v−1i Li(αi). We want to show that

∀p ∈ GRSq[n, k,v],g ∈ GRSq[n, n− k,u] p · g = 0.

By definition, the ith coordinate of vector p is vip(αi) and the polynomial
p has a degree at most k − 1. Similarly, the ith coordinate of vector g is
v−1i g(αi) and the polynomial p has a degree at most n− k − 1.

Therefore, their product p(x)g(x) has a degree at most n−2, so the coefficient
of xn−1 is 0. From Lagrange interpolation we have

p(x)g(x) =
n∑
i=1

p(αi)g(αi)
Li(x)

Li(αi)
,

Recall that Li(x) is monic of degree n−1. We can now equate the coefficients
of xn−1 on both sides.

0 =
n∑
i=1

p(αi)g(αi)
1

Li(αi)

=
n∑
i=1

(vip(αi))

(
v−1i
Li(αi)

g(αi)

)
= p · g.

2.3.3 Reed–Muller Codes

Another useful generalization of Reed–Solomon codes is that of Reed–Muller
codes RMq[r,m] defined by

RMq[r,m] = {(p(α1), p(α2), . . . , p(αn)) ∈ Fnq },
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where the set {α1, . . . , αn} equals Fmq , p ∈ Fq[X1, . . . , Xm] is a polynomial of
degree at most r, and n = qm.

Hence, the dimension of the code is given by the number of independent
polynomials of degree at most r. If q = 2, then the dimension k of the code
is given by

k = 1 +

(
m

1

)
+ · · ·+

(
m

r

)
.

We want to show how to construct a (non-systematic) generator matrix G of
RM2[r,m]. Let us start by introducing some notation.

Definition 11. The star (or Schur) product of two vectors a and b is their
componentwise multiplication, i.e.,

a ? b = (a1, . . . , an) ? (b1, . . . , bn) = (a1b1, . . . , anbn).

Then the following block matrix is a generator matrix G for a Reed–Muller
code RM2[r,m]:

G =


G0

G1
...
Gr

 ,
where G0 is an all-ones vector of length 2m, G1 is an m × 2m matrix with
each binary m-tuple appearing once as a column and Gl is an

(
m
l

)
× 2m

matrix consisting of all possible l-element star products of rows of G1. As an
example, let us construct a generator matrix for RM2[3, 4]:

G0 =
[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
]
,

G1 =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 ,

G2 =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 ,

G3 =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

 ,
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where we arrange the columns of G1 from all zeros to all ones in increasing
order with the low-order bit in the bottom row.

It can be shown that RM2[r,m] has minimum distance 2m−r and its dual is
RM2[m− r − 1,m][31].

2.4 Standard Operations on Linear Codes

Unless otherwise specified, we follow the notation introduced in [1].

2.4.1 Operations on a Single Code

Let C[n, k, d] be a linear code. One can extend the code by fixing k and
adding parity check symbols (so n−k and n increase). Note that this opera-
tion does not affect the number of codewords in the code. Also, the extension
is not unique and d may or may not increase.

Another useful operation is that of puncturing. Let S ⊂ [n] be any set of
coordinates and G a generator matrix of C. We produce a punctured code
CS by removing the columns in S from G. By convention, we do not change
the index of the columns after puncturing, e.g., if we have 5 coordinates and
puncture in the second, then the remaining coordinates are {1, 3, 4, 5}. Note
that if every column in S corresponds to a parity check symbol, then the total
number of codewords remains unchanged. Here we generalize the definition
of puncturing given in [31] by allowing the removal of information symbols.

Closely related to puncturing is the operation of shortening. Consider the
same subset S as before, but now construct a shortened code CS be selecting
only those codewords in C whose restriction x|S = 0 and puncturing them
on S. We summarise several useful properties of punctured and shortened
codes in the following theorem.

Theorem 6. Let C[n, k, d] be a linear code over Fq and S a set of s coordi-
nates. Then:

1. (C⊥)S = (CS)⊥ and (C⊥)S = (CS)⊥;

2. if s < d, then dimCS = k and dim(C⊥)S = n− s− k;

3. if s = d and S is the support of a minimum weight codeword, then
dimCS = k − 1 and dim(C⊥)S = n− s− k + 1.
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Proof.

1. Let x be a codeword of C⊥ such that its restriction x|S = 0. We
puncture x in the coordinates in S and denote the resulting codeword
by x′. It clear that x′ ∈ (C⊥)S. Now take any y ∈ C. By construction,
0 = y·x = y′·x′, where y′ is the codeword y punctured in S. Therefore,
x′ ∈ (CS)⊥.

On the other hand, let x be a codeword in (CS)⊥. We extend it by
adding 0 on the coordinates in S and denote the resulting code by x′′.
Take any y ∈ C and puncture it on S to obtain y′. Then 0 = y′ · x =
y · x′′,and so x ∈ (C⊥)S.

2. Assume s < d. Then n−d+1 ≤ n−s, so by Theorem 3, n−s contains
an information set. Therefore, dimCS = k and the claim follows from
part 1.

3. Let S ′ ( S have cardinality |S ′| = d− 1. Then by part 2, dimCS′ = k
and the minimum distance of CS′ is 1. We obtain CS by puncturing
CS′ in the only non-zero coordinate of a minimum weight codeword
of CS′ . This means that there is no linear dependency between the
elements of S ′ and S − S ′, so dimCS = k − |S − S ′| = k − 1.

2.4.2 Operations on Collections of Codes

Let {Ci[ni, ki, di], i ∈ [m]} be a collection of linear codes over field Fq.

The direct sum of {Ci[ni, ki, di], i ∈ [m]} is the code C,

C =
⊕
i

Ci = {(c1, . . . , cm)|ci ∈ Ci}

Note that C is a [
∑

i ni,
∑

i ki,min{di}] code. The first two parameters are
immediately clear from the definition. To see why minimum distance is
min{di}, we apply Theorem 1. Let c′i be a codeword of minimum weight in
Ci. It is clear that to find codewords of minimum length in C, it is enough
to compare the codewords of the form (0, . . . , c′i, . . . , 0), i.e. cj = 0 if i 6= j
and ci = c′i. It follows that the minimum weight w of C is w = min{wi} =
min{di}. Let Gi be the generator matrix for Ci. Then G, the generator
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matrix for C becomes

G =
⊕
i

Gi =

G1 0 0

0
. . . 0

0 0 Gm

 .
Similarly, the parity check matrix H is

H =
⊕
i

Hi =

H1 0 0

0
. . . 0

0 0 Hm

 .
Another common operation is called the (u,u + v) construction or Plotkin
sum. We assume that n1 = n2 = · · · = nm and define

C := {(u1, u1 + u2, · · · , u1 + u2 + · · ·+ um)|ui ∈ Ci}.

C is a [mn,
∑

i ki,min{(m− i + 1)di}] code. The fact that the block length
is mn is clear from definition. To see that the expressions for dimension
and minimum distance hold, note that if {u1, . . . , uki} is a basis for Ci, then
{(u1, . . . , u1), (0, u2, . . . , u2), . . . , (0, . . . , 0, um)} is the corresponding basis for
C.

Also, the generator matrix G and the parity check matrix H are:

G =



G1 G1 G1
... G1

0 G2 G2
... G2

· · · · · · · · · · · · · · ·
0 0 Gi

... Gi

· · · · · · · · · · · · · · ·
0 0 0

... Gm


,

H =



H1 0 0
... 0

−H2 H2 0
... 0

· · · · · · · · · · · · · · ·
−Hi −Hi Hi

... 0
· · · · · · · · · · · · · · ·
−Hm −Hm −Hm

... Hm


.
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Finally, we consider one more operation called a star (or Schur) product of
codes as defined in [10]. Let A[n, k1, d1] and B[n, k2, d2] be two linear codes
over the same field. With a minor abuse of notation, we pick a generator
matrix for each of the codes and denote them by A and B respectively.
Then the star product A ? B is the linear code generated by k1k2 vectors
corresponding to the star products of rows of the generator matrices A and
B, where a star product of two vectors is their component-wise multiplication
as given in Definition 11. Clearly, dimA ? B ≤ k1k2.

Note that this definition is independent of the choice of generator matrices
because multiplication is distributive over addition. Furthermore, the star
product of codes can be alternatively defined as 〈a ? b : a ∈ A[n, k1, d1], b ∈
B[n, k2, d2]〉. We refer the reader to [19], [22], [23] for a detailed discussion
of the known algebraic properties of star products of linear codes.

2.5 Entropy and Mutual Information

A natural question that comes up during the discussion of encoding is how
many bits are really necessary to encode an information symbol. It was
addressed already in 1948 by Shannon [25], who established an important
lower bound and introduced the concept of entropy.

Definition 12. Given a discrete random variable X with possible values
{x1, . . . , xn}, and probability mass function P (X), the entropy, denoted H(X),
is given by

H(X) = E[− log(P (X))] = −
n∑
i=1

pi log pi. (2.2)

Intuitively, entropy captures the level of uncertainty of a random variable.
The base of the logarithm represents the choice of unit of measure. Common
choices are 2 (in which case entropy is measured in bits), e (nats), 10 (bans).
In our case, we will work with logarithms of base q, where q is the size of our
ground field. Let us illustrate this with the following example.

Example 2.5.1. Let X be a random variable representing the number that
comes up on a fair 6-sided die, i.e., pi = 1

6
for all i. Then

H(X) = −
6∑
i=1

1

6
log

1

6
= 0.78.
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On the other hand, let Y be a random variable representing the number that
comes up on an unfair 6-sided die with p1 = 1

2
and pi = 1

10
for all i > 1.

Then

H(Y ) = −1

2
log

1

2
−

6∑
i=2

1

10
log

1

10
= 0.65.

We can see that the H(X) > H(Y ), which reflects the fact that X has a
higher level of uncertainty.

Entropy was constructed to reflect the intuitive notion of the uncertainty of
the random variable and to satisfy three key properties:

1. H should be continuous in each pi;

2. If all the pi are equal, i.e., pi = 1
n
, then H should be a monotonic

increasing function of n. This is because if every event is equally likely
then the uncertainty should grow in the number of events.

3. If an event be broken down into two successive events, the original H
should be the weighted sum of the individual values of H. This means
that for positive integers b1, . . . , bk such that b1 + · · ·+ bk = n,

Hn

(
1

n
, . . . ,

1

n

)
= Hk

(
b1
n
, . . . ,

bk
n

)
+

k∑
i=1

bi
n

Hbi

(
1

bi
, . . . ,

1

bi

)
,

where subscripts are used to indicate the number of outcomes in each
event.

Let us illustrate the last condition with an example.

Example 2.5.2. Let X be a random variable representing the choice between
three options with probabilities p1 = 1

2
, p1 = 1

3
, p1 = 1

6
. This random vari-

able can be interpreted as two successive choices: first, choosing between the
first option or the remaining options, both with probability 1

2
and, second,

if options {2, 3} are chosen, then choosing 2 with probability 2
3

and 3 with
probability 1

3
. We have

H

(
1

2
,
1

3
,
1

6

)
= H

(
1

2
,
1

2

)
+

1

2
H

(
2

3
,
1

3

)
.

Shannon showed that, up to a constant coefficient, the only function that
satisfies all three requirements is the one given in 2.2. The constant coefficient
is used for convenience and reflects the choice of unit of measure, i.e., the
choice of the base of logarithms.
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Observe, that from the perspective of the receiver, the symbols transmitted
by the sender are a random variable. Using this perspective and entropy,
Shannon showed that

1. The average number of bits per symbol of any uniquely decodable
source must be greater than or equal to the entropy H of the source;

2. If the string of symbols is sufficiently large, there exists a uniquely
decodable code for the source such that the average number of bits per
symbol of the code is arbitrarily close to H.

The concept of entropy can be extended to several random variables.

Definition 13. Given two discrete random variables X and Y with joint
probability mass function P (X, Y ), the joint entropy, denoted by H(X, Y ) is
given by

H(X, Y ) = E[− log(P (X, Y ))] = −
∑
x,y

p(x, y) log p(x, y).

Joint entropy measures the uncertainty when the two random variables X
and Y are taken together.

Definition 14. Given two discrete random variables X and Y with joint
probability mass function P (X, Y ) and conditional probability mass function
P (X|Y ), the conditional entropy of X given Y , denoted by H(X|Y ) is given
by

H(X|Y ) = E[− log(P (X|Y ))] = −
∑
x,y

p(x|y) log p(x|y).

Entropy has the following properties:

• Entropy is non-negative and H(X) = 0 if and only if X is deterministic.

• Joint entropy can be decomposed as follows:

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|X1, . . . , Xi−1).

In particular,

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X).

• Conditioning decreases entropy

H(X|Y ) ≤ H(X)
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• Let χ be the set of outcomes of X. Then

H(X) ≤ log(|χ|).

• Entropy is maximized and the bound from the previous point is achieved
when X is uniformly distributed.

• Entropy is non-increasing under functions:

H(X) ≥ H(g(X)),

where g(X) is a deterministic function of X. The equality is achieved
if and only if g is a bijection on a set of probability 1.

As we have seen above, entropy describes the level of uncertainty of a ran-
dom variable X and conditional entropy shows how much uncertainty about
X remains once we know the value of another random variable Y . So, a
natural next step would be to connect these two concepts and see, how much
uncertainty in X cannot be related to Y . This is where mutual information
comes in [32].

Definition 15. The mutual information between two discreet random vari-
ables X and Y jointly distributed according to p(x, y) is given by

I(X, Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

It follows immediately from the definition that mutual information is sym-
metric and non-negative, and, using the properties of entropy, we see that

I(X, Y ) = H(X)− H(X|Y )

= H(Y )− H(Y |X)

= H(X) + H(Y )− H(X, Y ).

Observe that mutual information I(X, Y ) is zero if and only if the random
variables X and Y are independent.

In the context of private information retrieval, the two random variables
of interest are the queries that are received by servers and the identity of
the file of interest. A priori, servers do not know which queries they are
going to receive but they know their distribution, so queries are a random
variable from their perspective. Similarly, the identity of the file of interest
is unknown to them but they know the entire set of files and the distribution
of interests among the user population in general.
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Combinatorial Preliminaries

There are two combinatorial concepts that are going to be heavily used in
our work. The first one is the abstract simplicial complex, which is the
combinatorial analog of a topological simplicial complex. This is going to be
how we think about collusion patterns. The second one is matroid, which
is going to describe the combinatorial properties of a linear code. We will
discuss both in this chapter.

3.1 Abstract Simplicial Complex

We will summarise some facts about abstract simplicial complexes in this
section and refer the reader to [21], [18], [33].

Definition 16. An abstract simplicial complex is a collection S of finite
nonempty sets such that if S is an element of S, then so is every nonempty
subset of S.

An element S ∈ S is called a simplex or face of S. An inclusion maximal
element of S is called a facet. We say that S is generated by its facets if

S = 〈S1, . . . , Sn〉 := {S ⊆ Si ∀i ∈ [n]}.

There is also the notion of dimension.

dimS = |S| − 1

dimS =

{
max
S∈S

dimS, if this maximum is finite;

∞, otherwise.

29
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A simplicial complex is called pure if all facets have the same dimension.

The vertex set of S is the union of singleton faces of S and is denoted by
V (S). Clearly, an element is a vertex v ∈ V (S) if and only if it is also a
0-simplex of S.

An abstract simplicial complex if called finite if it has finitely many faces,
or equivalently if its vertex set is finite. A subcollection of S that is also an
abstract simplicial complex is called a subcomplex of S.

Two abstract simplicial complexes S and S ′ are called isomorphic if there
exists a bijection f : V (S)→ V (S ′) such that {v0, . . . , vk} ∈ S if and only if
{f(v0), . . . , f(vk)} ∈ S ′.

It is possible to associate to every abstract simplicial complex S a piecewise-
linear topological space K, which is called the geometric realization of S. It
can be shown that every abstract simplicial complex S of dimension d has
a geometric realization of K in R2d+1 and the realization is unique up to a
linear isomorphism.

3.2 Matroids and Coding Theory

We will now define the concept of matroids that will be used in later sections
to analyze the combinatorics of retrieval codes. Our exposition is based on
[11], [34], [15]. Matroids generalize the concept of linear independence in
vector spaces. There are many equivalent ways to define a matroid, but for
the purposes of this thesis, the most useful one is the following.

A matroid M is a pair (E, C), where E is a finite set and C ⊆ 2E is a collection
of subsets of E, called circuits, that satisfies the following axioms:

1. ∅ /∈ C

2. If C ′, C ′′ ∈ C and C ′ ⊆ C ′′, then C ′ = C ′′

3. If C ′, C ′′ ∈ C, C ′ 6= C ′′ and e ∈ C ′ ∩ C ′′, then ∃C ∈ C such that
C ⊆ (C ′ ∪ C ′′)− e.

The terminology arises from graph theory and the circuits of a matroid can
be understood as cycles of a graph on edge set E. The circuits of a matroid
are the minimal dependent sets, i.e., every proper subset of a circuit is said
to be an independent set. We say that a set is dependent if it contains a
circuit and it is independent if it is not dependent.
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An equivalent definition of a matroid M via its set I of independent subsets
of the ground set E is given by the following axioms:

1. ∅ ∈ I

2. If I ∈ I and I ′ ⊆ I, then I ′ ∈ I

3. If I ′, I ′′ ∈ I and |I ′| < |I ′′|, then ∃e ∈ I ′′ − I ′ such that I1 ∪ e ∈ I.

In general, any matrix has a corresponding matroid where the columns are
the ground set of the matroid and the dependencies of the matroid match
precisely the column dependencies of the matrix. In particular, in the case
of a linear code D, the matroid of D is given by its generator matrices where
E is the set of columns of any such matrix and circuits are given by the
supports of minimal linear equations. For example, if D is an [n, k] MDS
code, then the corresponding matroid is called uniform Uk,n and the set of
circuits is the collection of all sets of coordinates of cardinality k + 1.

Not all matroids have a corresponding matrix, but in our work, we are fo-
cusing on Fq-linear matroids, i.e., the matroids that have a representation as
a vector space over a field Fq.

For any S ⊆ E we can define the rank r(S) as the size of the largest indepen-
dent set contained in S. In particular, r(E) of the matroid of an Fq-linear
code D is equal to the dimension of the code.

We will now define several useful operations on matroids.

Definition 17. Let M = (E, I) be a matroid and X ⊆ E.

• The deletion of M by X is the matroid M\X = (E −X, I\X), where
I\X := {I ∈ I : I ⊆ E − X}. We will also give an alternative
definition in terms of circuits: M\X = (E −X, C\X), where C\X :=
{C ∈ C : C ⊆ E −X}.

• The contraction of M by X is the matroid M/X = (E−X, I/X), where
I/X := {I ∈ I : I ⊆ E − X and there exists a maximal independent
set J ⊆ X s.t.I ∪ J ∈ I}. Alternatively, C/X := {S ∈ 2E : ∃S ′ ⊆
X s.t. S ∪ S ′ ∈ C}.

It can be shown that deletion corresponds to puncturing the linear code by
columns in X, and contraction corresponds to shortening the linear code by
columns in X [6].

A minor of a matroid M is a matroid that is obtained from M by a sequence
of deletions and contractions. It can be shown that this sequence is asso-
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ciative and that the operations of contraction and deletion commute [34].
This implies that every minor can be written M\Y/X for X, Y ⊆ E and
X ∩ Y = ∅.

Similar to the notion of the direct sum of codes, we can define the direct sum
of matroids [6].

Definition 18. Let M1 = (E1, I1), . . .Mm = (Em, Im) be a collection of m
matroids on disjoint ground sets E1, . . . Em. Then the direct sum

⊕
iMi(Ei, Ii)

is the matroid M(
⋃
i∈[m]Ei, I), where I := {

⋃
i∈[m]Xi : Xi ∈ Ii}.



Chapter 4

Private Information Retrieval

Recall that private information retrieval is a collection of methods that al-
low the users of a distributed storage system to access desired files without
revealing the identities of the files of interest. The concept was first intro-
duced by Chor, Goldreich, Kushilevitz, and Sudan in [7], [8] and extended to
encoded distributed storage systems by Shah, Rashmi, Ramchandran, and
Kumar [24]. Note that in this literature, the collections of files stored on
distributed storage systems are referred to as databases.

In the classic PIR model of [8], a database is a binary m-bit string x =
[x1, . . . , xm] ∈ {0, 1}m and the user wants to retrieve the ith bit xi without
revealing the index i. Since then, the approach has been extended and we
will follow the convention by Freij-Hollanti, Gnilke, Hollanti and Karpuk [10],
where the distributed storage system contains m files and each file is a b× n
matrix whose entries are elements of a finite field Fq.

The study of PIR has two flavours: information-theoretic or computational.
Information-theoretic PIR was introduced in [7] and requires that queries do
not contain any file-identifying information. Computational PIR was intro-
duced shortly afterward by Kushilevitz and Ostrovsky in [16] with the goal
to make it computationally hard to identify the file.

We have said that PIR protects the identities of the files of interest, but we
have not specified the adversaries whose presence necessitates such measures.
Traditionally, the main type of adversary is thought to be the operator of
the distributed storage system who is curious about the exact nature of
the queries [7], [8]. Another possible scenario is when a distributed storage
system is known to have been hacked by third parties who can now observe
queries but the users want to be able to continue downloading files. In the

33
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earliest studies of PIR, it has been assumed that either the operator collects
query data from all servers simultaneously or then the data from distinct
servers cannot be collated. When all servers collude, the only approach that
completely guarantees the privacy of users is to download all files. When none
of the servers collude, it has been shown that more efficient schemes exist
even when there are only two servers in the storage system [8]. Since these
two situations present two opposite ends of the spectrum, it is natural to
consider what happens in the space between the two extremes. For example,
if the distributed storage system is encoded using an [n, k] MDS storage
code and the servers can be partitioned into two disjoint groups of colluding
servers, each of size at most k, then there exists a retrieval scheme whose
rate is n−k

n
[30]. Our work contributes to the study of PIR with arbitrary

collusion patterns.

The construction of information-theoretic PIR schemes was addressed in [28],
[10], [4], [24] and was followed by the study of efficiency of different schemes
[2], [27], [3]. One particular question of interest is the derivation of the PIR
capacity for different schemes, that is, the highest rate at which a file can be
downloaded privately. For example, for the special case of the so-called MDS
codes, it has been shown that if a non-colluding coded distributed storage
system contains m messages, then the PIR capacity is C = 1−R

1−Rm , where

R = k
n

is the rate of the underlying [n, k] MDS storage code [2].

One can deepen the question of developing new schemes by analyzing specific
settings for the PIR such as certain important classes of storage codes [9], [17].
On the other hand, it is also possible to generalize the question of PIR by
relaxing certain assumptions about the set-up. For example, some servers
could be unresponsive or known to provide erroneous information [29].

Our work falls under the category of information-theoretic PIR. We build
on the star-product scheme that generalizes several previously established
schemes [10]. The name comes from component-wise multiplication of vec-
tors also known as the star-product multiplication. In this scheme, queries
are codewords chosen uniformly at random from a publicly known linear
code, which is referred to as the retrieval code. In order to be able to
download the necessary file, the user modifies the queries corresponding to
the desired file index in a pre-determined way that cannot be observed by
the servers. During the information retrieval process, the queries are star-
multiplied with the corresponding vectors in the distributed storage system.
Specifically, the servers correspond to the coordinates and each performs one
of the coordinate-wise multiplications. The fact that the query modification
follows a pre-determined algorithm allows the users to retrieve the original
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file; while the fact that the modifications are not observable to the servers
preserves privacy.

A complete understanding of this scheme will require the knowledge of com-
binatorics of the interaction of the retrieval code and the collusion pattern
and the algebraic properties of the star product of the storage code and the
retrieval code. The focus of this work is the combinatorics of the retrieval
code and the collusion pattern.

We will use this chapter to introduce the key ideas behind PIR and then
move on to present our main results in the subsequent chapters.

4.1 Coded Storage

First, we need to define the concept of an encoded collection of files stored
on a distributed storage system. Consider a finite collection of files

X = {x1, x2, . . . , xm};

we assume that the ordering of the files is fixed and publicly known. Each
file xi is an element of Fbi×kq , where Fq is the finite field of size q. In other
words, each file xi can be viewed as a string of symbols that can be split into
bi substrings all of length k. In general, bi does not need to be the same for
all files, but for simplicity, we will assume that it is the case, i.e., bi = b for
all i. Here again, the position of each symbol is fixed and publicly known.
Hence, we can represent X as an mb× k matrix:

X =



x111 x211 . . . xk11
x112 x212 . . . xk12
. . . . . . . . . . . .
x11b x21b . . . xk1b
. . . . . . . . . . . .
x1i1 x2i1 . . . xki1
x1i2 x2i2 . . . xki2
. . . . . . . . . . . .
x1ib x2ib . . . xkib
. . . . . . . . . . . .
x1m1 x2m1 . . . xkm1

x1m2 x2m2 . . . xkm2

. . . . . . . . . . . .
x1mb x2mb . . . xkmb



,
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where a symbol xlij is in row j and column l in the matrix of file i.

This collection X is passed to a set E of servers for storage with |E| = n.
The files need to be protected against data loss in the case of server failure,
so each file xi is encoded using an error-correcting linear [n, k, d] code C (the
same for all files) with a fixed and publicly known generator matrix GC . Note
that n equals the total number of servers in the storage system. The encoded
files stored on the servers have the form

Y = XGC =



y111 y211 . . . yn11
y112 y212 . . . yn12
. . . . . . . . . . . .
y11b y21b . . . yn1b
. . . . . . . . . . . .
y1i1 y2i1 . . . yni1
y1i2 y2i2 . . . yni2
. . . . . . . . . . . .
y1ib y2ib . . . ynib
. . . . . . . . . . . .
y1m1 y2m1 . . . ynm1

y1m2 y2m2 . . . ynm2

. . . . . . . . . . . .
y1mb y2mb . . . ynmb



.

We call the set E of servers together with storage code C and data matrix
Y a distributed storage system [3], [28], [10].

To simplify the exposition, we introduce several conventions. First, the gen-
erator matrix GC is assumed to be in the reduced row echelon form. Second,
we assume that supp(C) = E, for if for some server i ∈ E, ci = 0 for all
c ∈ C, we don’t need to request information from server i. Third, going
forward, we will use subscripts to identify files and superscripts to identify
servers. For example, ylij is the symbol that is stored on server l that comes
from encoding row j of file i1.

4.2 Collusion pattern

Next, we address the question of collusion. In order to reconstruct the iden-
tity of the file, one needs to be able to extract this information from the

1This is different from the notation introduced in [10], where superscripts denote files
and subscripts denote servers.
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queries that are sent to one or several servers. We assume that the informa-
tion extraction is not transitive, i.e., if an adversary (e.g., the operator of
the distributed storage system) can access the queries sent to sets T and T ′

of servers, it does not mean that he or she can collate the information from
T ∪ T ′. This can happen when certain groups of servers are placed in differ-
ent geographical locations. Also, such sets are completely determined by the
adversary and our goal is to construct a retrieval scheme that is immune to
a given privacy breach.

We say that a set T is a colluding set if the adversary is able to access queries
sent to every server in T and we call the collection of such colluding sets a
collusion pattern T .

Note that if a set T is a colluding set, then every subset of T is also a
colluding set. In other words, we can view collusion patterns as abstract
simplicial complexes on the ground set E.

4.3 Privacy of PIR

It is now a good time to formalize what we mean by information-theoretic
privacy. Let AT be the joint distribution of columns in the query matrix Q
indexed by the servers in T over all s iterations of the PIR scheme. Recall
that we denote the mutual information of two random variables by I(·; ·).
Then we require that

I(AT ; i) = 0 ∀T ∈ T .

Clearly, under the trivial PIR scheme, where we download all encoded sym-
bols for all files, the privacy is preserved for any T . In particular, this is
the only scheme where privacy is preserved when there is only one server
or servers share information about the queries among themselves. However,
this option is usually prohibitively expensive and we want to develop schemes
that download significantly fewer.

4.4 Construction of a PIR Scheme

We are ready to discuss the main building blocks of a PIR scheme for a
distributed storage system; this construction is adapted from [10].

Intuitively, a PIR scheme has four components:
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1. an algorithm for forming queries to retrieve a given file that does not
reveal the identity of the file;

2. (server-determined but known to the user) algorithm for how servers
compute their response to query;

3. an algorithm for reconstructing the original file from servers’ responses;

4. an iteration algorithm for creating new queries for the same file if it is
not possible to retrieve all necessary information at once.

All four algorithms are publicly known and only the first component ensures
privacy in the scheme. We will now discuss each component in more detail.

4.4.1 Queries

We want to view a query as a block matrix A ∈ Fbm×nq , where each block
qi ∈ Fb×nq corresponds to one file in the distributed storage system and the
number of blocks corresponds to the total number of files, though some blocks
can be zero submatrices. The entry qlij is sent to the lth server to retrieve
the encoded symbol from the jth row of file i.

Each qi ∈ Fb×nq is sampled from a publicly known probability space (Qi, µi)
and we denote the Cartesian product of all such probability spaces by X =
Q1 × · · · ×Qm. We define the probability space Q of all possible queries by
Q := (X , ν), where ν is the joint distribution of {Q1, . . . , Qm}. A query A can
be also viewed as an element of the m-fold Cartesian product Q1× · · · ×Qm

where each m-tuple is chosen according to ν.

The process of constructing queries poses the key dilemma of PIR: on the one
hand, no query should reveal any information about the identity of the file of
interest, on the other hand, we want to minimize the amount of extraneous
information that we download.

Exactly how this balance is achieved will become clear later, but at this stage,
we would like to say that, in order to retrieve the ith file our query matrix
A will have the form
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A =



q111 q211 . . . qn11
q112 q212 . . . qn12
. . . . . . . . . . . .
q11b q21b . . . qn1b
. . . . . . . . . . . .
q1i1 q2i1 . . . qni1
q1i2 q2i2 . . . qni2
. . . . . . . . . . . .
q1ib q2ib . . . qnib
. . . . . . . . . . . .
q1m1 q2m1 . . . qnm1

q1m2 q2m2 . . . qnm2

. . . . . . . . . . . .
q1mb q2mb . . . qnmb



,

where for all j 6= i, the blocks qj will be sampled from (Qj, µj); whereas
the probability space (Qi, µi) will be replaced with another probability space
(QTi , µ

T
i ) that is indistinguishable from (Qi, µi) for the collusion pattern T .

We will focus on the queries that are generated according to the following
conventions:

• (Qi, µi) = (Qj, µj) for all i and j, and so we will suppress the notation
and write (Q, µ) instead. It will follow from the construction that under
this assumption, (QTi , µ

T
i ) = (QTj , µ

T
j ) for all i and j, so we will also

use the notation (QT , µT )

• µ and µT are the discrete uniform distributions on Q and QT , respec-
tively;

• ν =
∏m

i=1 µi, i.e., the blocks are chosen independently;

• Q is a linear code and we will construct QT as a linear code.

Finally, we assume that the uploading cost, i.e., the cost of sending queries, is
negligible compared to the downloading cost, which is commonly encountered
in practice. For example, it is much cheaper to select a movie rather than
to stream one. In our model, this can be guaranteed by letting the queries
take values in a small subfield of the field Fq of the storage code and was
explicitly done for the first time in [9].
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4.4.2 Responses

The convention in the PIR literature is that servers compute responses by
taking inner products of the columns of Y and the columns of Q, i.e. rj =
〈qj, yj〉 ∈ Fq (hence, our schemes belong to the class of linear PIR schemes).
We call R = [r1 · · · rn] the response vector which is transmitted to the user.

4.4.3 Reconstruction function

Next, we need a reconstruction function which takes as input the response
vector R and returns information symbols from the file xi. The goal of this
step is to separate decoy queries from information-retrieving queries. We
will be dealing only with strongly linear PIR schemes, i.e., in addition to
responses being given by inner products, our reconstruction functions will be
linear transformations whose matrix is a generator matrix of the dual of a
certain linear code [14]. In other words, the reconstruction function will be a
parity check matrix of the code itself. This code will be designed to contain
all responses to decoy queries.

4.4.4 Iteration process

A complete reconstruction of row j of file xi requires the knowledge of all k
information symbols. Depending on the encoding and the collusion pattern,
it is possible that we can download some c 6= k symbols during a single
iteration. This may allow us to improve the scheme by iterating s > 1 times
if the number of rows per file b > 1.

First, observe that since any server’s response is an inner product of the
respective columns of Y and Q, a given subset of columns can be used for
downloading data from at most one row during one iteration. Otherwise, we
will only be able to reconstruct the file up to sums of rows. Therefore, in
any individual iteration, once we fix a set of servers for a given row of the
file, we do not attempt to download symbols that are stored on the same set
from other rows.

Second, it is possible that during some iterations, one can download more
symbols from a given row than is necessary. This could be because the
collusion pattern and the encoding allow downloading c > k symbols per row
or that after a certain number of iterations, one needs to download k′ < k
remaining symbols, but it is possible to download k′ < c < k symbols.
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Figure 4.1: Visualizing the iteration process in Example 4.4.1. There are
n = 10 servers, each file contains b = 3 rows with 4 information symbols per
row and we can download 6 symbols per iteration. Depicted is the encoded
file yi ∈ Fb×nq , along with the encoded symbols downloaded in the first (red)
and second (blue) iterations.

Given these two observations, the choice of servers that are accessed during
a given iteration is trade-off between maximizing the number of symbols
downloaded from one row versus the number of rows accessed.

Example 4.4.1. Consider the situation when the number of servers n = 10,
each file contains b = 3 rows, there are 4 information symbols per row and
we can download 6 symbols per iteration (see Fig. 4.1). Naturally, one
can download all three rows in three iterations, downloading 6 symbols from
one row every time, but this will be wasteful. Instead, one could adopt the
following strategy:

1. During the first iteration, download first-row symbols from servers
{1, 2, 3, 4} and second-row symbols from servers {5, 6}.

2. During the second iteration, download second-row symbols from servers
{1, 2} and third-row symbols from servers {3, 4, 5, 6}.

This (not unique) strategy shows that it is possible to download all three rows
in two iterations. Note that since we need a total of 12 symbols to reconstruct
the original file and it is possible to download at most 10 symbols per iteration,
then the strategies that involve two iterations maximize efficiency. This is
illustrated in Figure 4.1.

4.5 The Class of Star Product Schemes

We will now discuss a class of PIR schemes that arise from the operation of
the star product that was discussed in Sec.2.4.2. This class is a generalization
of the star product scheme introduced in [10].

Let C be a linear [n, k, d]q storage code, X a matrix of files, and Y = XGC a
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distributed storage system as in Section 4.1. We denote the set of all servers
by E with |E| = n. Our queries will be generated using a linear code Q,
which we call a retrieval code.

Before we continue, we would like to point out an important observation that
will help understand how the star product schemes protect privacy.

Lemma 3. Let A and B be two linear codes and we construct two m × n
matrices A and B, such that each row of each matrix is a codeword in the
respective linear code. We denote rows by subscripts, so Ai ∈ A and Bi ∈ B.
If we now take a vector v = [v1 · · · vn], where vj = 〈Aj, Bj〉, and superscripts
indicate columns, then v ∈ A ? B.

Proof. This is because

v = [v1 · · · vn] = [〈A1, B1〉 · · · 〈An, Bn〉] (4.1)

=
m∑
i=1

[A1
i ? B

1
i · · ·Ani ? Bn

i ] (4.2)

=
m∑
i=1

Ai ? Bi ∈ A ? B. (4.3)

Hence, if every row in the query matrix A is a codeword in Q, then the
response vector R is a codeword in C?Q. In particular, R will be annihilated
by a generator matrix of (C ? Q)⊥.

We will now introduce some useful notation and a definition.

Let d(x, y) be the Hamming distance of two strings x and y of equal length,
and let C, Q be codes. We write:

• d|S(x, y) to denote the Hamming distance of x and y restricted to a
subset S of coordinates, i.e. d|S(x, y) = |{i|xi 6= yi, i ∈ S}|;

• d(x,C) := min
y∈C

d(x, y) and d|S(x,C) := min
y∈C

d|S(x, y);

• d(C,Q) := min
x∈C,y∈Q

d(x, y) and d|S(C,Q) := min
x∈C,y∈Q

d|S(x, y).

Definition 19. Let T be a collusion pattern and Q a retrieval code on the
same ground set, and let T ∈ T . We say that QT is a lift of Q over the
colluding set T if QT = {x ∈ Fnq : d|T (x, Q) = 0}. We denote the elements
of QT by qT .
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Similarly, we say that QT is a lift of Q over the collusion pattern T if
QT = {x ∈ Fnq : d|T (x, Q) = 0 ∀T ∈ T }, and we denote the elements of QT

by qT .

Note that our definion allows for arbitrary colluding sets. This is different
from [10], where the authors focused on t-collusion, i.e., when every set of
size at most t is a colluding set.

It is immediate from the definition that Q ⊆ QT for all T ∈ T and QT =
∩T∈TQT . Each QT is a linear code, for if qT and q′T are in QT , then for all
non-zero α ∈ Fq,

d|T (αqT + q′T , Q) ≤ d|T (αqT , Q) + d|T (q′
T
, Q)

= d|T (qT , Q) + d|T (q′
T
, Q) since α 6= 0

= 0.

Hence, QT is an intersection of linear codes, so it is a linear code and Q ⊆
QT ⊆ Fnq . Also, observe that every qT ∈ QT \Q can be written as qT = q+w,

where q ∈ Q and w /∈ Q and wj = 0 whenever qT
j

= qj. However, this
decomposition is not unique.

Example 4.5.1. Let Q ⊆ F5
2 be the code generated by

GQ =

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1


and let T = {{1, 2, 3}, {3, 4, 5}}.

Then QT = F5
2, so it is generated by

GQ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

This is because r({1, 2, 3}) = r({3, 4, 5}) = 3 in M(Q). In other words,
take any codeword x = (x1, x2, x3, x4, x5) ∈ F5

2 and view only the first or
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the last three coordinates. In each case there is a vector in Q with the same
values on the corresponding coordinates, so d|T (x, Q) = 0} for all T ∈ T .
In particular, there exist x1 = (x1, x2, x3, x1 + x2, x2 + x3) ∈ Q and x2 =
(x4 − x5 + x3, x5 − x3, x3, x4, x5) ∈ Q.

We are now ready to describe the star product scheme. Assume we want to
download file xi:

1. Construct the query matrix A1 for the first iteration:

1.1. Choose mb codewords from Q uniformly at random and assign
them an arbitrary order denoting by qij . The codewords do not
need to be unique.

1.2. For each row j of file xi, we add wij /∈ Q such that dij+wij ∈ QT .

1.3. Set the rows of A1 to be

alj =

{
qlj if l 6= i

qlj + wij if l = i
.

2. By (4.1) the response vector R can be decomposed as

R = v +
b∑
i=1

yli ?wli,

where v is a codeword in C ? Q, yli is row li in the distributed storage
system Y , and the vectors yli ? wli have pairwise disjoint supports in
known positions.

3. Let H be a generator matrix of (C ? Q)⊥. Then

HRtr = Hvtr +H

(
b∑
i=1

yli ?wli

)tr

= H

(
b∑
i=1

yli ?wli

)tr

.

Note that in the star product schemes, downloading the entire collection of
files means running the algorithm ms times, whereas downloading no files
means qij ∈ Q for all i and j.

We will now illustrate the scheme with an example.
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Example 4.5.2. Let Q ⊆ F6
3 and T = {{1, 2, 3}, {4, 5, 6} and let

GC =

1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1

 ,
and

Y =


1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1
1 1 1 0 2 2

 ,
i.e. the distributed storage system consists of four files and each file contains
only one row. Assume we want to download x2 and we choose Q = Rep[6].
Further, assume that, for all i, qi = (1, 1, 1, 1, 1, 1) was chosen uniformly at
random from {(1, 1, 1, 1, 1, 1), (0, 0, 0, 0, 0, 0)}. Let w2 = (0, 0, 0, 1, 1, 1), so
the query matrix becomes

A =


1 1 1 1 1 1
1 1 1 2 2 2
1 1 1 1 1 1
1 1 1 1 1 1

 .
Then the response vector is

R = (〈a1, y1〉, . . . , 〈a6, y6〉) = (2, 2, 2, 1, 2, 2) = (2, 2, 2, 0, 1, 1) + (0, 0, 0, 1, 1, 1).

Since Q is a repetition code, we know that H = G(C?Q)⊥ = GC⊥ and

GC⊥ =

−1 −1 −1 1 0 0
−1 −1 0 0 1 0
0 −1 −1 0 0 1

 .
The we get HRtr = Hwtr

2 = (1, 1, 1)tr, which correspond to (x42, x
5
2, x

6
2). Fur-

thermore, we know that for any xi, x
1
i + x2i + x3i = x4i , x

1
i + x2i = x5i , and

x2i + x3i = x6i , so we can reconstruct the remaining symbols of x2.

In this example, the storage code and the colluding pattern allowed us to
download all information symbols during one iteration, so no further itera-
tions are necessary.

We refer the reader to [10] for the proof of correctness and privacy of the star
product scheme.
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4.6 Efficiency of a PIR Scheme

By convention, the rate of a PIR scheme is used to evaluate its efficiency and
is defined as the ratio of the size of file xi to the total number of symbols that
were downloaded, i.e. R = bk

ns
. The reason why the formula does not include

a reference to the queries is that, by assumption, the cost of uploading is
negligible. We will be also using the notion of dimension of the quotient
QT /Q, which we will denote by ρ(T , Q).



Chapter 5

Lift over a collusion pattern

The choice of an efficient retrieval code Q depends on two factors:

1. the limitations set by the collusion pattern T ;

2. the algebraic properties of C ? Q.

The second factor is important because, even if ρ(T , Q) > 0, it is possible
that dim(C ? Q) = n and hence the download rate of the scheme is 0.

In this thesis, we will focus on the first factor. This can be also interpreted
as C being a repetition Rep[n] code. Recall that Rep[n] ⊂ Fnq is a one-
dimensional linear vector space generated by 1 = (1, . . . , 1), so Rep[n]?Q = Q
and dim(Rep[n] ? Q) = dimQ for any linear code Q.

Before we tackle this directly, let us review the notion of QT , the lift of
the linear code Q over a collusion pattern T . We introduced and defined
QT in Section 4.5. Intuitively, it is the linear code that preserves the linear
dependencies visible to the collusion pattern. However, it is still unclear
exactly how QT is constructed.

5.1 Linear conditions observed by the collu-

sion pattern

A good approach to describe the lift of a code is by listing the linear conditions
that should be satisfied by all codewords in the lift. In other words,

QT = {x ∈ Fnq : l(x) = 0 ∀l ∈ LQT },

47
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where l is a linear condition and LQT is a generating set of QT .

In particular, it is enough to limit the analysis to the minimal support linear
conditions. This is because, for any linear code C,

l ∈ Lall − Lmin =⇒ ∃{l1, . . . , lk} ⊆ Lmin s.t. l =
k∑
i=1

aili,

where Lall is the set of all linear conditions satisfied by C, Lmin ⊆ Lall is the
set of minimal support linear conditions and for some ai ∈ Fq−{0}. In other
words, the minimal support codewords in C⊥ generate C⊥.

Going forward, we will assume that LQT is a basis, i.e., it only contains min-
imal support conditions that are sufficient to generate QT and has minimal
cardinality. Combinatorially, we want to describe the matroid M(QT ) by its
circuits.

There are two equivalent ways to identify a linear condition on a given sup-
port S of cardinality s. We will describe them here and use later when we
introduce our algorithm for constructing QT in Section 5.2.

The first way is by checking whether there exists a dual codeword y ∈ Q⊥
such that supp(y) = S. Note that if no such codeword exists, then x ∈
QT −Q can take arbitrary values on the coordinates in S, i.e., QS = Fsq. We
show when such a codeword exists in the following proposition.

Proposition 1. Let C ( Fnq be a linear code and S a subset of its coordinates.
Then there exists a linear condition on S if and only if there exists a dual
codeword y with supp(y) = S.

Proof. Recall that

C⊥ = {y ∈ Fnq | ∀x ∈ C 〈x,y〉 = 0}.

But this is equivalent to saying that there exists a linear condition on supp(y)
that is satisfied by all x ∈ C. Then this is also a linear condition in C.

The second way is by fixing some generator matrix GQ for Q and taking its
row-reduced restriction on S, which we denote by (GQ)|S. If (GQ)|S ≡ Is,
then QS = Fsq. On the other hand, if (GQ)|S 6≡ Is, then there exist linear
conditions supported on S. In particular, if (GQ)|S ≡ (Is−1|l), where l is
a column with non-zero entries, then S corresponds to the support of a
minimal linear condition, and the exact coefficients of the corresponding
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minimal linear condition are given by l. We show why this is true in the
following proposition.

Proposition 2. Let C be a linear code with a generator matrix GC. Assume
that for some S ⊆ E with |S| = s, it holds that (GC)|S ≡ (Is−1|l) with all
li 6= 0. We denote the index of the coordinates of the elements of S by si,
where si is the index of the ith element of S in the ground set E. Then there
exists a minimal support linear condition on S given by

l1xs1 + · · ·+ ls−1xss−1 = xss .

Proof. We puncture C on E − S and denote the new code by Cpunct. Then
S is a circuit in M(Cpunct). But M(Cpunct) = M(C)\(E − S), so it is also a
circuit in M(C). Therefore, there exists a minimal support linear condition
on S. The coefficients of this linear condition follow immediately from the
row-reduced restriction (GC)|S ≡ (Is−1|l) with all li 6= 0.

Let us illustrate these approaches with an example.

Example 5.1.1. Let C be a [6, 3] MDS code over F7 and GC⊥ be a generator
matrix of its dual C⊥

GC⊥ =

1 1 1 1 0 0
0 0 1 1 1 1
1 2 3 4 5 6

 .
Then its row-reduced form, RC⊥, is

RC⊥ =

1 0 0 6 3 2
0 1 0 1 3 4
0 0 1 1 1 1

 ,
so C has a generator matrix

GC =

1 6 6 1 0 0
4 4 6 0 1 0
5 3 6 0 0 1

 .
Let the set S be {1, 2, 5, 6}. First, let us check the linear conditions on S by
identifying a dual codeword y such that supp(y) = S. It is easy to see that

y = (1, 1, 0, 0, 6, 6) = (1, 1, 1, 1, 0, 0)− (0, 0, 1, 1, 1, 1),

i.e., x1 + x2 + 6x5 + 6x6 = 0.
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Now let us identify the same linear condition using the restriction (GC)|S.

(GC)|S =

1 6 0 0
4 4 1 0
5 3 0 1

 ∼=
1 0 0 1

0 1 0 1
0 0 1 6

 ,
and we also get x1 + x2 + 6x5 + 6x6 = 0.

We still need to show that the two approaches are equivalent.

Lemma 4. Let V be a vector space over F and x ∈ V a minimal support
vector. Then for every y ∈ V such that supp(y) = supp(x), there exists an
α ∈ F such that y = αx.

Proof. For contradiction, assume no such α exists. Let y1 = βx1 where
β ∈ F. Then 0 6= y − βx ∈ V and

supp(y − βx) ( supp(y).

This contradicts the minimality of the support of y.

Proposition 3. Let C be a linear code with a generator matrix GC. Then
the following are equivalent:

1. For some S ⊆ E with |S| = s, it holds that (GC)|S ≡ (Is−1|l) with all
li 6= 0;

2. There exists a minimal support dual codeword y such that supp(y) = S
and y = α(l1, . . . , ls1 ,−1), α ∈ Fq\0.

Proof. This is a corollary of Propositions 1 and 2. The first statement is
equivalent to saying that S is a circuit in M(C) but this is also equivalent
to having a minimal support dual codeword on S. Since C is a vector space,
the minimal support dual codewords are unique up to scalar multiplication
by Lemma 4.

Clearly, if l ∈ LQT , then l ∈ LQ. Therefore, we only need to identify those
conditions that will be inherited from Q. An easy place to start is by looking
at those that are supported on the collusion pattern T . This is because, if,
for some T ∈ T ,

∑
i∈T aixi = 0 is satisfied by all x ∈ Q, then it is also

satisfied by all x ∈ QT . We say that these linear conditions are observed
by T .

Let L be the collection of minimal linear conditions observed by T . We need
to answer three questions:
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1. How to construct a linear code L determined by L?

2. Is L = QT ?

3. To what extent does M(QT ) depend on the algebraic properties of Q?

We are interested in the last question because T is a combinatorial construc-
tion (abstract simplicial complex) and one would hope that the construction
of QT is also a combinatorial operation. Therefore, we will address the first
two questions in this section and cover the last question in Section 6.2.

5.2 Construction of a linear code L from the

observed minimal linear equations L

We are now ready to construct a generator matrix for the linear code L from
the collection of minimal linear conditions L:

1. Identify the set L of observed minimal support linear conditions using
restrictions of GQ on each colluding set;

2. Form a matrix AL whose rows are dual codewords corresponding to the
linear conditions in L;

3. Row reduce and bring AL to the systematic form without changing the
label of the columns (although their order might change). This is a
generator matrix GL⊥ = (In−k P ) for the dual code L⊥;

4. Produce a generator matrix GL = (−P tr Ik) for L

5. Permute the columns of GL so their order corresponds to their index
in Step 3.

Alternatively, in the last step, one could relabel the elements of colluding
sets to reflect their new position in the distributed storage system.

Example 5.2.1. Let Q be the RS7[7, 3] code whose canonical generator ma-
trix is

GQ =

1 1 1 1 1 1 1
0 1 2 3 4 5 6
0 1 4 2 2 4 1

 .
For future reference, we denote the reduced row echelon form of GQ by RQ
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and it is

RQ =

1 0 0 1 3 6 3
0 1 0 4 6 6 4
0 0 1 3 6 3 1

 .
Let the maximal elements of T be {{1, 2, 3, 4}, {2, 3, 5, 6}, {4, 5, 6, 7}}. Then
the collection of observed minimal support linear equations is

L = {x1 + 4x2 + 3x3 = x4, x2 + 5x3 + 2x5 = x6, x4 + 4x5 + 3x6 = x7},

which corresponds to matrix

AL =

i ii iii iv v vi vii[ ]1 4 3 6 0 0 0
0 1 5 0 2 6 0
0 0 0 1 4 3 6

.

After row reduction we get

GL⊥ =

i ii iv iii v vi vii[ ]1 0 0 4 3 0 6
0 1 0 5 2 6 0
0 0 1 0 4 3 6

.

This gives a generator matrix for the linear code L:

GL =

i ii iv iii v vi vii


3 2 0 1 0 0 0
4 5 3 0 1 0 0
0 1 4 0 0 1 0
1 0 1 0 0 0 1

.

Resorting the columns gives

GL =

i ii iii iv v vi vii


3 2 1 0 0 0 0
4 5 0 3 1 0 0
0 1 0 4 0 1 0
1 0 0 1 0 0 1

.
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We denote the row-reduced form by RL and it is

RL =


1 0 0 1 0 0 1
0 1 0 4 0 1 0
0 0 1 3 0 5 4
0 0 0 0 1 2 3

 .

To improve our understanding of the structure of GL, let us compare the
reduced row echelon forms of GL and GQ, denoted by RL and RQ. This time
we will start with our example and then generalize the statement. Recall we
use subscripts to denote rows and superscripts to denote columns.

Example 5.2.2. We have

RL =


1 0 0 1 0 0 1
0 1 0 4 0 1 0
0 0 1 3 0 5 4
0 0 0 0 1 2 3

 ,

RQ =

1 0 0 1 3 6 3
0 1 0 4 6 6 4
0 0 1 3 6 3 1

 .
We will now multiply (RL)4 by (RQ)5i and then replace (RL)i by (RL)i +
(RQ)5i (RL)4, we get

GL =


1 0 0 1 3 6 3
0 1 0 4 6 6 4
0 0 1 3 6 3 1
0 0 0 0 1 2 3

 .

In general, consider the generator matrix GQ of Q in the standard form:

GQ =

 1 0 0 p1,k+1 · · · p1,n

0
. . . 0

...
. . .

...
0 0 1 pk,k+1 · · · pk,n

 .
Then after a permutation of columns, the generator matrix GL of L is of the
form
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GL =



1 0 0 pk+1
1 · · · pk+m1 pk+m+1

1 · · · pn1

0
. . . 0

...
. . .

...
...

. . .
...

0 0 1 pk+1
k · · · pk+mk pk+m+1

k · · · pnk
0 0 0 1 · · · 0 (pL)k+m+1

k+1 · · · (pL)nk+1

0
. . . 0

...
. . .

...
...

. . .
...

0 0 0 0 · · · 1 (pL)k+m+1
k+m · · · (pL)nk+m


=

[
GQ

GL/Q

]

and dimL = k + m. This block structure is not surprising, since Q ⊆ L by
construction.

Then RL, row-echelon form of GL, is

RL =

[
Ik 0 P ′

0 Im PL

]
,

where (P ′)ji = P j
i −

∑k+m
l=k+1 P

l
i (PL)jl and PL is given by the algorithm above.

5.3 Equivalence of L and QT

The following proposition shows the uniqueness of GL and the equivalence
of L and QT .

Proposition 4. GL is unique up to elementary row operations and L = QT .

Proof. GL is constructed using standard linear algebra to be a generator
matrix of the vector space L = {x ∈ Fnq for all l ∈ L}, so it is unique up to
elementary row operations.

Next, we want to show that L is indeed the lift of Q over T . Since we
included all linear equations corresponding to C ∩ T , we know that if x ∈ L,
then d|T (x, L) = 0 for all T ∈ T , so x ∈ QT and hence L ⊆ QT . On
the other hand, if L ( QT , then it means that at least one of the linear
conditions introduced in L is redundant. Let S be the support of that linear
condition. Since the linear condition was redundant, QT|S = F|S|q . However,
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by construction, S ∈ T and so QT|S ( F|S|q . Therefore, L contains only the

necessary linear conditions and L = QT .



Chapter 6

Combinatorics of QT

Now that we have shown how to construct QT , we want to analyze its com-
binatorics. Our goal is to show that the operation of lifting a code over a
collusion pattern is not matroid invariant and to discuss the properties that
determine the matroid structure of QT completely or partially.

6.1 Elementary properties

Let us start by reviewing some of the basic combinatorial properties of the
lift QT that are induced by an arbitrary collusion pattern T . It follows
immediately from the definition that I ⊆ IT and QT = F|T |q whenever T ∈ I.

Since we know that Q ⊆ QT ⊆ Fnq , we would like to know when the state-
ments hold with equality. It is easier to start with the second one. In what
follows, C denotes the set of circuits of M(Q).

Lemma 5. The following are equivalent:

1. QT = Fnq ;

2. C ∩ T = ∅;

Proof. Every T ∈ T is independent in Q if and only if d|T (x, Q) = 0 for all
T ∈ T and x ∈ Fnq . This holds if and only if QT = Fnq .

Corollary 2. If Q is an [n, k] MDS code and for all T , |T | ≤ k, then
QT = Fnq .

56
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When it comes to the first containment, one could hope that CT = C ∩ T , as
it is in the following example:

Example 6.1.1. Let

GQ =

[
1 0 1 1 1 0
0 1 1 1 0 1

]
and T = {{1, 2, 3}, {4, 5, 6}}. The set {3, 4} is a circuit but it is independent
in M(QT ) for there exists a codeword dT ∈ QT corresponding to an arbitrary
pair of values on {3, 4}.

However, CT = C ∩ T is not true in general. Consider the following setting:

Example 6.1.2. Let Q = Rep[5], so every pair of coordinates is a circuit.
Now, assume all pairs except {1, 2} collude. Since {1, 5} collude, we know
that dT1 = dT5 for all dT ∈ QT . Similarly, dT2 = dT5 . Hence, dT1 = dT2 and
d|{1,2}(Q,Q

T ) = 0.

Therefore, we will only give partials result related to this containment.

Lemma 6. If C ⊆ T , then Q = QT .

Proof. If C is a circuit in Q and a colluding set, then d|C(Q,QT ) = 0, so C ∈
CT . Hence, if C ⊆ T , then M(Q) = M(QT ) and the statement follows.

Lemma 7. The following are equivalent:

• QT = Q;

• Either Q = Fnq or every linear dependency in Q is a linear combination
of the linear conditions defined on C ∩ T .

Proof. We have two cases: either Q = Fnq or Q ( Fnq . In the first case, the
statements follow immediately from Q ⊆ QT ⊆ Fnq .

If Q ( Fnq , then the statement is equivalent to saying that Q = L, where L
is the linear code from Chapter 5 that is generated by the linear conditions
supported on C ∩ T . The claim then follows from Proposition 4.
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6.2 Matroid of QT

The next step in understanding the combinatorics of lifting is to analyze the
relationship between the matroids of the code Q and its lift QT . In general,
one can define multiple linear codes Q with the same matroid structure. For
example, all [n, k] MDS codes are representations of the uniform matroid
Uk,n.

At this point, it is good to mention that we can assume that for every i ∈ [n],
there exists a colluding set T that properly contains i. This is because if
for some i no such colluding set exists, then there exists a Q such that
ρ(T , Q) ≥ 1. To see that we can choose j 6= i and for all codewords d ∈ Q,
let dj = di. Then QT = (Q|[n]−{i})

T ×Fq, so, in order to understand all T , it
is sufficient to understand only those that do not contain any non-colluding
servers.

6.2.1 Matroid invariance of QT

Since a collusion pattern T is an abstract simplicial complex and the opera-
tion of lifting has a strong combinatorial flavor, it may appear that lifts are
matroid invariant. This would mean that for any two different linear codes
Q1 and Q2, M(Q1) = M(Q2) implied M(QT1 ) = M(QT2 ). However, this is
not true as the following example illustrates.

Example 6.2.1. Let Q1 and Q2 be two [6, 3] MDS codes over F7 as follows.
A generator matrix for the dual code Q⊥1 is

GQ⊥1
=

1 2 1 5 0 0
1 5 0 0 5 1
0 0 5 1 2 1


and a generator matrix for the dual code Q⊥2 is

GQ⊥2
=

1 1 1 1 0 0
0 0 1 1 1 1
1 2 3 4 5 6

 .
Clearly, M(Q1) = M(Q2). Assume the collusion pattern is

T = {1234, 1256, 3456}.
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In Q1, the unique dual codewords supported on the facets of T are

{(1, 2, 1, 5, 0, 0), (1, 5, 0, 0, 5, 1), (0, 0, 5, 1, 2, 1)}

and they form a basis of Q⊥1 , so Q1 = QT1 . Observe that uniqueness follows
from the fact that the facets of T are circuits in M(Q1).

On the other hand, in Q2, the corresponding codewords are

{(1, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1), (1, 1, 0, 0, 6, 6)},

where
(1, 1, 0, 0, 6, 6) = (1, 1, 1, 1, 0, 0)− (0, 0, 1, 1, 1, 1),

so Q1 ( QT1 and uniqueness again follows from the fact that the facets are
circuits in M(Q2).

At this stage, we will state a partial result relating the matroid of the lift to
the matroid of the retrieval code.

Proposition 5. Let Q1 and Q2 be two different linear codes such that M(Q1) =
M(Q2) and for every basis of Q⊥1 , there is a corresponding basis on the same
set of supports in Q⊥2 . Then for any collusion pattern T , M(QT1 ) = M(QT2 ).

Proof. Let L1 and L2 be two collections of minimal support linear conditions
on Q1 and Q2 that are generating sets of Q⊥1 and Q⊥2 , respectively, and such
that their elements have the same supports. By assumption, such sets exist.
We assign an arbitrary order to the set of supports and use that order to
index the linear conditions in L1 and L2.

Let
∑n

i=1 α
j
ixi be the jth element of L1 and

∑n
i=1 β

k
i xi be the kth element

of L2. We say that the linear map λj1 = (αj1, . . . , α
j
n) is the corresponding

jth linear map and λk2 = (βk1 , . . . , β
k
n) is the corresponding kth linear map of

L1 and L2, respectively. We denote the collections of corresponding linear
maps by Λ1 and Λ2 and define vector spaces V1 =

〈
λj1 | λ

j
1 ∈ Λ1

〉
and V2 =〈

λj2 | λ
j
2 ∈ Λ2

〉
. Observe that the sets of supports of vectors in V1 and V2 are

equal to the sets of dependent sets of M(Q1) and M(Q2), respectively.

Now, let LT1 ⊆ L1 and LT2 ⊆ L2 be the subsets that are observed by T and
V T1 ⊆ V1, V

T
2 ⊆ V2 be the vector spaces generated by ΛT1 and ΛT2 .

Assume M(QT1 ) 6= M(QT2 ), so there exists a set S that is dependent in
M(QT1 ) but independent in M(QT2 ). If S is dependent in M(QT1 ), then there
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exists a linear map λs1 with support on S that is an element of V T1 . Then for
some λk1 ∈ ΛT1 , ΛT1 \λk1 ∪ λs1 is a basis of V T1 . Furthermore, this basis can be
extended to a basis of V1. But then there exists a basis of V1 defined on the
same set of supports, which is a contradiction.

6.2.2 Explicit construction of CT

In an earlier version of the thesis, we attempted to construct CT directly
from C ∩ T . To accomplish this we considered the following question: given
two circuits C ′ and C ′′ in CT , is an arbitrary dependent set S in Q also
a dependent set in QT ? Note that if S − (C ′ ∪ C ′′) 6= ∅, then one cannot
conclude whether S is dependent in QT based on C ′, C ′′ alone because it is

possible to extend any x ∈ FS−(C
′∪C′′)

q to a codeword in QT by concatenating
x with any y ∈ Q|C′∪C′′ .

It is clear that CT = (C ∩ T ) ∪ P ∪ N , where P := (C ∩ CT ) − (C ∩ T ) and
N := CT −C. We say that the elements of P are the circuits of M(Q) that are
preserved in M(QT ) and the elements of N are the new circuits introduced
in M(QT ).

We introduce the following notation. Let Ci, Cj ∈ CT , and Ci ∩ Cj 6= ∅, we
say that a circuit C ∈ CT is generated by Ci, Cj, if C ⊆ Ci∪Cj and C ∈ CT ′ ,
where T ′ = {Ci, Cj}. We denote the set of all circuits generated by Ci, Cj as
〈Ci, Cj〉 and we know that 〈Ci, Cj〉 6= ∅ by the third circuit axiom.

Let C ∩ T = {C1, . . . , Ck}. Then define

〈C1, . . . , Ck〉 :=
⋃
i,j∈[k]

〈Ci, Cj〉 = {C1, . . . , Ck1} ⊇ {C1, . . . , Ck}

and
〈C1, . . . , Ck〉2 :=

⋃
i,j∈[k1]

〈Ci, Cj〉.

In general,

〈C1, . . . , Ck〉n :=
⋃

i,j∈[kn−1]

〈Ci, Cj〉

and we set
〈C1, . . . , Ck〉0 := {C1, . . . , Ck}.

Assuming that these operations are well-defined, the hope is that

CT = lim
n→∞
〈C ∩ T 〉n.
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At the first glance, this approach to generation appears to be excessively com-
plicated. However, it turns out to be relatively nice in the case of preserved
circuits.

6.2.2.1 Preserved circuits

Let C ∈ C, C ′, C ′′ ∈ CT , C ′ ∩ C ′′ 6= ∅ and C ⊆ C ′ ∪ C ′′. When is C ∈ CT ?
We need to consider three cases (see Table 6.1):

1. C ( C ′4C ′′;

2. C ⊇ C ′4C ′′;

3. C ( C ′4C ′′, C ) C ′4C ′′.

Case 1

Let C ( C ′4C ′′ and assume C is independent in M(QT ). By construction,
there exists e /∈ C ′4C ′′ and, without loss of generality, we can assume that
e ∈ C ′. We pick arbitrary values for elements in C ′′ − C ′ and choose the
elements of C ′ ∩ C ′′ such that the linear condition of C ′′ is satisfied. We
know that C ′ − e is an independent set, so we can pick arbitrary values for
C − C ′′ and since e /∈ C ′4C ′′, we can set e to satisfy the linear condition of
C ′. Since none of the linear conditions of the known circuits is violated, C
is indeed an independent set in M(QT ).

Case 2

Let C ⊇ C ′4C ′′ and assume C ∈ IT . We pick arbitrary values for elements
in C ′′−C ′ and choose the elements of C ′ ∩C ′′ such that the linear condition
of C ′′ is satisfied. However, C − C ′′ = C ′ − C ′′, so setting arbitrary values
to C − C ′′ will violate the linear condition of C ′. Hence, C is a dependent
subset in M(QT ). Furthermore, every proper subset of C is independent in
M(Q) and by the first property above, this means that every proper subset
of C is independent in M(QT ), so C ∈ CT .

Case 3

Let C ( C ′4C ′′, C ) C ′4C ′′ and assume C ∈ IT . This case is essentially
equivalent to Case 1, because there exists e ∈ C ′4C ′′−C and by performing
the same analysis, we can see that both linear conditions of C ′ and C ′′ will
be satisfied even if the elements of C have arbitrary values. Therefore, C is
indeed an independent set in M(QT ).

We summarise the findings in the following proposition.



CHAPTER 6. COMBINATORICS OF QT 62

Case Observed circuits Unobserved circuits

1: C ( C ′4C ′′ x1 + x2 + x3 = x4,
x3 + x5 + x6 = x4

x1 = x5,
x2 = x6

2: C ⊇ C ′4C ′′ x1 + x2 + x3 = x4,
x3 + x5 = x4

x1 + x2 = x5

x1 + x2 + x3 = x4,
x3 + x4 = x5

x1 + x2 + 2x3 = x5

3: C 6⊆ C ′4C ′′,
C 6⊇ C ′4C ′′

x1 + x2 + x3 + x4 = x5,
x3 + x4 + x5 + x6 + x7 = x8

x2 + x4 = x6,
2x1 + x2 + x3 + x4 = x7

Table 6.1: Examples of the three cases discussed in Section 6.2.2.1. All linear
equations are defined over Q.

Proposition 6. Let C ∈ C, C ′, C ′′ ∈ CT , C ′ ∩ C ′′ 6= ∅ and C ⊆ C ′ ∪ C ′′.
Then

1. C ( C ′4C ′′ =⇒ C ∈ IT ;

2. C ⊇ C ′4C ′′ =⇒ C ∈ CT ;

3. C 6⊆ C ′4C ′′, C 6⊇ C ′4C ′′ =⇒ C ∈ IT .

Since we are working with representable matroids, the circuits are given by
minimal support linear equations. In general, two linear equations with in-
tersecting supports do not need to have the same coefficients on the elements
of the intersection. Hence, one may wonder how having different coefficients
affects the matroid.

Proposition 7. Suppose two intersecting circuits C ′, C ′′ of M(QT ) are given
by linear equations ∑

i∈C′−C′′
αixi +

∑
i∈C′∩C′′−{xj}

αixi = xj

and ∑
i∈C′′−C′

βixi +
∑

i∈C′∩C′′−{xj}

βixi = xj,

where xj is an arbitrary element in the intersection. Let S ⊆ C ′ ∩C ′′−{xj}
be the set where αi 6= βi. Then S ∪ (C ′4C ′′) is a dependent set in M(QT ).

Proof. We have ∑
i∈C′−C′′

αixi +
∑
i∈S

(αi − βi)xi =
∑

i∈C′′−C′
βixi,
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so S ∪ (C ′4C ′′) is a dependent set in M(QT ).

Corollary 3. If C ′4C ′′ is a circuit in M(Q), then αi = βi for all i ∈
C ′ ∩ C ′′ − {xj}.

In other words, our analysis suggests that we need to focus on analyzing
the symmetric differences of known circuits of CT . In the case of preserved
circuits it really is enough since, once we know that a circuit C of M(Q) is
a dependent set in M(QT ), we know that it is also a circuit in M(QT ). This
is because every proper subset of C is independent in M(Q) and, hence, also
in M(QT ).

6.2.2.2 New circuits

Now consider the setting when C ′, C ′′ ∈ CT , and S ⊆ C ′ ∪C ′′ is a dependent
set in M(Q) but not a circuit. Clearly, if at least one of the circuits contained
in S are preserved in M(QT ), then S is also a dependent set in M(QT ). So
assume no such circuit exists and we are asking whether this implies that S
is a circuit in M(QT ).

The previous analysis suggests that we need to analyze the relationship be-
tween S and C ′4C ′′. Unfortunately, this approach does not extend well to
this setting, because the notion 〈Ci, Cj〉 of ”generated circuits” depends not
only on the sets Ci, Cj but also on the entire collection C. We will illustrate
this with an example.

Example 6.2.2. Assume that after some operations we conclude that the
following sets are circuits in M(QT ):

C1 = {x1, x2, x3}, C2 = {x3, x4, x5}, C3 = {x4, x5, x6, x7},
C4 = {x1, x2, x7, x8}.

They could, for example, correspond to linear conditions

{x1 + x2 = x3, x3 + x4 = x5, x5 − x4 + x6 = x7, x1 + x2 + x8 = x7}.

Then
C14C2 = {x1, x2, x4, x5}

and
C34C4 = {x1, x2, x4, x5, x6, x8},

so (C14C2) ( (C34C4). However, this fact would not be clear by considering
〈C3, C4〉.
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This means that even if a set appears to be a minimal dependent set with
respect to a given pair of known circuits, it could be non-minimal with respect
to another (potentially yet to be identified) pair of circuits. Similarly, a
set may appear independent with respect to a given pair of known circuits
but dependent with respect to another set of known circuits. Therefore,
in addition to generating new circuit candidates at each iteration, we also
need to define the process of eliminating the sets that are proven not to
be circuits. This will overcomplicate the algorithm and we decided not to
pursue it further. While insufficient by itself, this intermediate step helped us
to develop the sufficient conditions for matroid invariance that were presented
in Section 6.2.1.



Chapter 7

Conclusion

This thesis is part of the ongoing work to develop and improve efficient
schemes for coded private information retrieval. Such information retrieval
allows users to download a file from a coded distributed storage system with-
out revealing the identity of the file.

This concept is motivated by the scenario when a collection of files is stored
on a distributed storage system and servers send honest responses, but some
servers form groups where every member shares the information about in-
coming queries it observes. Furthermore, we are interested in information-
theoretic privacy where the queries do not provide any information about the
identity of the file of interest.

Groups of servers that share information among themselves are called col-
luding sets and their ensemble is a collusion pattern. We worked under the
following assumptions:

1. once a group of servers colludes, then every server in the group knows
exactly which queries every other member of the group receives, i.e.,
collusion is closed under containment;

2. due to external constraints, a group of colluding servers cannot pass
information to other groups, i.e., collusion is not transitive;

3. there exists at least one non-empty colluding set.

Mathematically, a distributed storage system corresponds to a coordinate
space C over Fq and a collusion pattern to an abstract simplicial complex T
with every facet corresponding to an inclusion maximal colluding set.

We explored the properties of the star-product scheme [10] under arbitrary
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collusion patterns. This scheme requires the user to choose a publicly known
retrieval code Q, which is a vector space over Fq on the same coordinate set
as C.

We achieve privacy with the star-product scheme by constructing an auxiliary
code QT that is indistinguishable from Q for the colluding servers and call
it the lift of Q over a collusion pattern T . Mathematically, for each T ∈ T
we choose an inclusion maximal linear code QT such that Q|T = QT

|T and

then QT =
⋂
T∈T

QT . We can assume that there is no collusion across the

entire storage system, for, in this case, the only way to preserve privacy
is to download the entire collection of files. In our thesis, we provided an
algorithm for constructing the lift for a given pair of a retrieval code Q and
an arbitrary collusion pattern T .

A good retrieval code Q allows to download files privately and maximizes the
amount of retrieved information in each iteration of the scheme. In general,
the choice depends both on the combinatorics of the collusion pattern and
the algebraic properties of the storage and retrieval codes. We focused on the
former and showed that the operation of lifting is not matroid invariant in
full generality. This means that even if two codes Q1 and Q2 have the same
matroid M(Q1) = M(Q2), then their lifts QT1 and QT2 over a given collusion
pattern T can have different matroids. However, we also provided sufficient
conditions under which M(QT1 ) = M(QT2 ).

This groundwork offers a starting point for several research directions. First
of all, we would like to give the necessary and sufficient conditions under
which the lifts of two different codes have the same matroid. This will help
explain the conditions on the collusion pattern under which the lift of the
code is equal to the code itself, i.e., when it is not possible to retrieve data
using the star product scheme. Furthermore, it will be interesting to look
at a fixed class of retrieval codes, e.g., Reed–Solomon codes, and define a
function that gives the dimension of the lift over a given collusion pattern.
Similarly, we could to fix a certain class of collusion patterns and see the
implications for the dimension of the lift. Possible areas of focus are the lifts
that can be interpreted as interesting classes of graphs, e.g., clique complexes
or neighborhood complexes.
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Appendix A

Download rate

One may be interested in understanding the download rate of the star-
product PIR scheme. In our case, this is the number of information sym-
bols that can be downloaded with the help of the lift and is determined by
dim(C ?QT /C ?Q). However, when the storage code C is a repetition code,
this is not an interesting question since downloading any one symbol privately
is sufficient to reconstruct the original file. On the other hand, if C is not
a repetition code, then the download rate is not determined by the retrieval
code Q alone because dim(C ?QT /C ? Q) ≤ dim(QT /Q) and equality needs
not to hold in general.

Nevertheless, dim(QT /Q) provides a useful upper bound, as it gives the total
number of symbols that is possible to retrieve from one row per iteration. Re-
call that, for a given collusion pattern T , we denote dim(QT /Q) by ρ(T , Q).
Since Q is a vector space, we know that ρ(T , Q) > 0 if and only if QT \Q 6= ∅.
Also, ρ(T , D) ≤ |E| − k by the rank-nullity theorem and since DT ⊂ Fnq .

If S is a subset of the ground set E and a new code is formed by puncturing
in the coordinates of E − S, we denote the dimension of dim(QT|S/Q|S) by

ρ|S(T , Q).

Proposition 8. Let S ⊆ E. Then ρ|S(T , Q) = max d|S(x, Q) for x ∈ QT −
Q.

Proof. By definition, if x ∈ Q, then x ≡ 0 in QT /Q. Also, it follows from the
basic properties of QT discussed in Section 6.1 that if a set S is dependent
in QT , then it is dependent in Q. Hence, ρ(T , S) is the largest number of
coordinates of S where a word can take arbitrary values in QT but not in Q.
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Consider a codeword x = (x1, · · · , xn) ∈ QT . Then x can be written as
x = x′+ y, where yi = x′i− xi and x′ ∈ Q. In general, the choice of x′ is not
unique, however, ρ|S(T , Q) = maxw(y) = max d|S(QT −Q,Q).

In other words, given an arbitrary string of length |S| ≤ n, we select the
longest subset of the string that could be part of a legitimate codeword in
Q. The remaining coordinates are deviations from Q. By construction, QT

maximizes the number of coordinates where the codewords can deviate under
the constraints induced by the collusion pattern T . Then ρ|S(T , Q) measures
precisely the number of such coordinates.

Generally speaking, the concept of download rate can have more interpreta-
tions that the one that has been given in this thesis. We will offer three most
natural options.

First of all, one could talk about the symbol rate RS, which is the highest
achievable ratio of the number of downloaded symbols to the weight of the
response vector during an iteration of a scheme. Another option is the file
rate RF , which gives the highest rate at which one can download the entire
file and is the one that is used in our work. Finally, one may be interested
in the stripe rate RR, which shows how efficiently the rows (stripes) of the
file can be downloaded individually.

It holds that
RR ≤ RF ≤ RS.

The first inequality holds because a file can be always downloaded one row
at a time. The second inequality holds because some collusion patterns may
allow for high rates during the iterations where few information symbols are
downloaded.
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