Implementation of Assembly
Operations with YuMi Robot

Vladimir Kuliaev

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 27.5.2019

Supervisor

Prof. Valeriy Vyatkin

Advisor

Udayanto Dwi Atmojo, PhD

,, Aalto University
School of Electrical

Engineering

Copyright (© 2019 Vladimir Kuliaev

School of Electrical www.aalto.fi

A’ , Aalto University Aalto University, P.O. BOX 11000, 00076 AALTO
Engineering Abstract of the master’s thesis

Author Vladimir Kuliaev
Title Implementation of Assembly Operations with YuMi Robot

Degree programme Automation and Electrical Engineering

Major Control, Robotics and Autonomous Systems Code of major ELEC3025
Supervisor Prof. Valeriy Vyatkin

Advisor Udayanto Dwi Atmojo, PhD

Date 27.5.2019 Number of pages 42+63 Language English

Abstract

Nowadays, the trend in manufacturing industries is to make the manufacturing
processes sustainable in the countries with higher labour cost. Factory of the Future
research project of Aalto University aims to develop a futuristic platform for research
and demonstration of net-centric production manufacturing model. It is hoped,
that the platform can contribute in transforming Finland’s manufacturing into an
agile, high tech network of providers of various manufacturing services of production
activities. This thesis investigates, how successfully ABB IRB14000 YuMi robot
can fit in this net-centric production concept. Two different approaches have been
studied: Integrated Vision approach and From Digital Twins to Product Assembly
Approach. The results of both studies show that to be able to fit the Factory of
the Future concept, the second approach can be used with minor modifications.
Two case studies demonstrate the agility of the method. Also, possible direction of
improvement has been proposed. The first study results came to be very useful for
possible higher flexibility of product-centric manufacturing.

Keywords Robotics, Integrated Vision, Digital Twin, Product-Centric
Manufacturing, Industrial Robot

Preface

The research work presented in this thesis work has been done in a form of contri-
bution to the Factory of the Future research project of Department of Electrical
Engineering and Automation at Aalto University, Finland between May, 2018 and
May, 2019.

I would like to express my deepest gratitude to Prof. Valeriy Vyatkin for entrusting
me with this work and giving his valuable support and guidance. It was an honor for
me to work with him. I would also like to thank my advisor Udayanto Dwi Atmojo
for his continuous support, guidance and help throughout the work. At the same
time, I would like to thank Dr. Seppo Sierla and Professor of Practice Jan Blech
for their support throughout their support during the second part of the thesis and
giving a wonderful working and coordinating experience that lead to the acceptance
of the research in a form of a scientific paper for the 17th International Conference
on Industrial Informatics in July, 2019 in Helsinki, Finland.

Finally, I would like to express my deepest gratitude and love to my family for
their endless support, trust and encouragement throughout my life.

Espoo, 27.05.2019

Kuliaev Vladimir

Contents

Abstract

Preface

Contents

Symbols and abbreviations

1 Introduction
1.1 Background
1.2 Thesis Structure

2 Integrated Vision Approach

2.1 Background
2.2 Concept
2.3 Set-up Description
24 Camera Set Up e
2.5 Camera to Robot Calibration
2.6 Hands Synchronization
2.7 Integrated Vision Jobs oL

2.7.1 Location Detection

2.7.2 QR Code Reading
2.8 Results.

3 From Digital Twins to Product Assembly

3.1 Background
3.2 Concept
3.3 Assembly Planning and Modelling Framework
3.4 From Virtual to Physical: From Digital Twin to Assembly
3.5 Planning and Modelling from the Framework Side
3.6 YuMi Robot Controller Side
3.7 Case Studies

3.7.1 Case Study 1 "Square Tower"

3.7.2 Case Study 2 "Pyramid Tower"
3.8 Results.
3.9 Possible Enhancements o000

4 Conclusions

A Appendix
A1 CAD Drawings
A.2 Programs for the left and for the right hands

10
10
10
12
13
17
18
21
21
22
22

23
23
24
25
26
27
29
32
32
35
37
37

39

B Appendix
B.1 Java codes

B.2 RAPID codes

Symbols and abbreviations

Abbreviations

3D

CPS
CPPS
QR code
LAN

IP

TCP
TCP
RGB

PC
OEM
CAD
AM
OPC
OPC UA
ASP
APP

ID

BOM

Three Dimensional
Cyber-Physical System
Cyber-Physical Production System
Quick Response code

Local-Area Network

Internet Protocol

Transmission Control Protocol
Tool Center Point

Red Green Blue

Personal Computer

Original Equipment Manufacturer
Computer Aided Design

Additive Manufacturing

Open Platform Communications
Unified Architecture

Assembly Sequence Planning
Assembly Path Planning
Identification number

Bill of Materials

1 Introduction

1.1 Background

The goal of the research described in this thesis, is to figure out how successful the
assembly process, using YuMi robot might be from the factory of the future concept
perspective.

Factory of the future is a research project going on at the Aalto University. As a part
of Aalto Industrial Internet Campus, the Aalto Factory of the Future platform will
be combined with several production-related labs to form a prototype of collaborative
network. State of the art technologies will be used, from robotics, mobile machines,
artificial intelligence, distributed computing, 3D printing, smart materials and wireless
communication to realize the features of flexibility and adaptability, self-healing,
autonomous operation, collaborative operations of product design and production
facilities, and better resource utilization. The goal of the project is to create an
environment, where the final project is assembled without any physical person taking
part in the process. The product description is coming in a digital form and then
needs to be assembled. Right now, the Facory of the Future consists of the storage
island with conveyor belts that can lead the needed components to different locations,
autonomous vehicle, that can deliver these components to some other islands, the
collaborative robot, that can be installed on top of the moving platform and can
perform different kinds of assemblies in different locations.

Previously, the trend in manufacturing industries was to outsource manufacturing
process to some countries with low labour cost.[1] Nowadays, the trend of Industry
4.0 is targeting the goal of making manufacturing process sustainable in the countries
with higher labour cost. Publications on CPS (Cyber- Physical Systems), CPPS
(Cyber-Physical Production Systems), Smart Manufacturing and Industrial Internet,
for example [2, 3, 4] among many others, demonstrate a trend within potential
participants to offer their own specialised services for final product manufacturing.
One of these offers is presented as a concept of using YuMi robot for assembly
processes.

The goal of the following study is to investigate, how the IRB14000 YuMi Collab-
orative Robot can fit in the factory of the future environment. Two ways towards
getting the final product will be described. Two different assembly methods will be
examined with their benefits and disadvantages are examined.

1.2 Thesis Structure

Following is the breakdown of the structure of the thesis work:

e Chapter 2: In chapter 2, the first study is described. The use of Integrated
Vision together with the YuMi robot is considered. One case study is presented.
Results of the described use-case are given.

e Chapter 3: In this chapter, the product-centric approach is considered. The
planning and modelling framework is introduced together with the robot control
logic. The case studies are presented with the results. Possible way of combining
both of the studies is proposed.

e Chapter 4: In the final chapter, the concluding remarks about the whole
thesis work are added.

10

2 Integrated Vision Approach

2.1 Background

As a representative example of customized product assemble, Aalto Factory of the
Future uses structures composed of Lego™ blocks. There have been attempts to
assemble Lego pieces using YuMi robot already. However, these attempts have used
a pretty simple concept behind. The original location of Lego pieces was predefined.
It was a tower that had a certain amount of bricks assembled together. The robot’s
job was to pick the bricks one by one from that tower and to assemble the row of
the blocks in front of the base. That project mostly demonstrated only the ability of
YuMi to disassemble Lego structures and to attach blocks in some new location.
There has been a study that considered applying integrated vision capabilities of the
ABB robotics. The use case is to solve the five-piece Tangam puzzle. The YuMi robot
was able to solve the task either alone or in collaboration with a human through
messages on FlexPendant.[5] Puzzle pieces are spread randomly by hand of a human
in the area reachable by YuMi. To identify and locate the puzzle pieces, the vision
module, based on a Cognex In-Sight Ethernet smart camera was used. The vision
job was based on the "PatMax Pattern" pattern recognition algorithm. As a result,
the robot was able to solve the puzzle without human intervention.[5]

These two already completed projects contribute the following results:

1. First of all, it is known that high-precision robot is suitable for Lego pieces
assembly.

2. The second study demonstrates, how the integrated vision algorithms can help
with identifying the required workpieces.

The next section describes the concept of applying methods, described above, to get

the assembly operation done.

2.2 Concept

The following assumptions are taken:

e The final product is known. It is required to assemble a tower, which consists
of three layers.

e Each layer has a predefined colour. The bottom layer has to be yellow, the
middle one has to be blue and the top layer has to be green.

e The concept is that the robot has to identify the location of Lego blocks on
the board. After that the robot has to pick the blocks of appropriate colours
and then to assemble the tower.

The 4x2 blocks of 5 different colours are spread on the board. The location and
orientation of the blocks are random. Location of the blocks is identified with the top

11

COGNEX camera that attached to the robot. After that, the identified workpiece is
picked up with one robot hand, passed to the second hand for colour identification.
Unfortunately, the top camera is black and white so is unable to detect colours.
Identifying colours in grey scale is not reliable. In this case, each of the Lego blocks
has QR codes tag on the sides. The QR code only contains the word related to
the colour of the workpiece (“red”, “blue”, “green”, “white”, “yellow”). The top
camera does not also have auto focus, so the QR code reading is not possible with
the camera in case it is installed for location identification. In this case QR reading
job is made by using the camera on one of the hands of the robot.

1.

Calibration. In the following scenario, this involves the calibration of the
YuMI’s gripping fingers’ arm, which is necessary for the robot software control
logic. This calibration is done to obtain the absolute position of the Yumi’s
gripper when it is opening and closing.

. Preparation for Item location identification. The arms of the robot are moved

on the sides. This is done to ensure that the hands are not in range of the
camera, no external shadows appear, and the future workpiece search will be
as precise as possible.

. Location identification. The top camera is taking the picture of the Lego board

with blocks on it. After that the location is identified and the coordinated are
stored in the format of predefined work object, that was created in relation to
the top camera.

. Preparation for identification of the workpiece. After the location is known, the

workpiece needs to be identified. The right hand moves towards the workpiece
and picks it up. Then the workpiece is moved to the predefined point somewhere
in front of the robot base (in the middle). There the workpiece is passed to
the left hand.

Colour identification. After the left hand received the workpiece, the right
hand moves to a such position, where the camera on the gripper can capture
the QR code on the side of the workpiece. At the same time, the left hand
needs to rotate the workpiece as well. Then, the camera takes picture of the
workpiece and reads the QR on it. After that, the workpiece is passed back to
the right hand, which is in the position to place it to the target place.

Sorting. After the colour of the workpiece is known, the program can follow
on of the two possible scenarios. If the colour of the block corresponds to
the needed for current layer of the product, then the assembly process can be
started. If the colour is of some other type, the workpiece is placed to the place,
where it will be stored, until this colour will be needed for further assembly
process. Steps 2-6 will be repeated until the required workpiece is found or as
long as there are Lego blocks on the Lego board.

Assembly. When the robot knows that the needed workpiece in its hand, the
Lego block is placed to the target position. As the workpiece is passed between

12

two hands during the previously mentioned steps, the accuracy of the gripping
is not good enough for straight pushing it in. That is why aligning process is
required.

8. Aligning. The aligning process is performed in such a way that the robot arm
gently pushes the workpiece from all sides one by one to ensure the perfect
aligning of the workpiece before pushing it in.

9. Pushing. When it is known for sure that the workpiece is aligned, it can be
pushed directly downwards.

2.3 Set-up Description

To perform the assembly described in the previous part, the following components
were used:

e Lego plate. As a workspace for the robot the classic 38x38 cm baseplate was
used. This plate is required to ensure that all of the Lego blocks will be always
kept in the correct places. This ensures precision during the assembly process,
storing and any kind of manipulations within the robot job.

e IRB14000 YuMi Robot. For implementing the described above assembly process
YuMi Robot was used. This robot is equipped with two lightweight and padded
arms. The arms are controlled independently and are able to handle a payload
up to 500 g per arm.[6] Each arm is equipped with two-finger smart grippers.
Their configurations are described further.

e Lego blocks. Classic Lego blocks of 4x2 and 2x2 sizes were used. For the testing
purposes only 5 of the blocks were required. All of the bricks are of different
colours: green, white, yellow, blue and red.

e Camera. As in the study, mentioned in the paper [5], the vision module for this
assembly implementation is also based on a Cognex In-Sight Ethernet smart
camera (ism1402). The camera has 5 Megapixel resolution. The camera has
manual focus and diaphragm and has to be calibrated to a certain position. In
the current case, it was calibrated for the distance from the mounting point to
the Lego baseplate. This distance is approximately equal to the size of an ISO
A4 paper. This camera is monochrome. As a benefit, ism1402 is one of the
highest speed performance model. Compared to the previous generation model,
the performance rating has increased by the factor of 2.5. The greatest benefit of
the chosen camera is the compatibility with the selected robot. Integrated vision
module of ABB RobotStudio provides a plenty variety of possible programs
that can be loaded into camera and they are called jobs. Each vision job
consists of location and inspection tools. "Location tools provide position data
of objects, like for instance, blobs, edges or patterns while inspection tools
examine the located objects (measure distances, diameters or create geometric
references, etc.)."[5] The results of jobs are output and further used in robot
control logic without any conversions or complicated decoding.

13

)

e Smart grippers. The smart grippers of the “Servo + Vision + Vacuum’
configuration have been used in the study. Vacuum option has not been used
for the study due to the future idea that the robot will be mounted to the
moving platform. Fingers required some minor modification. Rubber pieces
were attached to each finger to increase friction between them and Lego bricks.

e Fixture mechanism for camera. Fixture Mechanism had to be designed from
scratch to fulfil the needs of the current study.

Figure 2.1: Camera fixture CAD model

The mechanism consists of the following components:

1. The base. It was decided to place the camera on top of the robot. Origi-
nally, IRM14000 has a service thread on top for lifting hook. This thread
was used as a way to attach the base of the fixture. Such decision provided
the possibility to have the camera always at the same spot even in case
the robot is moved from the original place.

2. Extension arm. This component is required to extend the arm of the
fixture. The length of this arm can be varied. In the current study the
length of 10 cm was used.

3. Arm to camera fixture. This fixture is similar to the previously mentioned
component. The difference is that this component has a fixture to the
base or extension arm on the one side and the fixture to the camera on
another one.

Figure 2.2 shows how the fixture looks like with the camera attached on top of YuMi
robot. All of the components have been 3D printed out of ABS plastic and all of the
CAD drawings can be found in the appendices.

2.4 Camera Set Up

To be able to set up the camera, separate fixture mechanism(described before) was
designed. The mechansism consists of 3 components(figure, add a bit later /screenshot

14

Figure 2.2: Camera fixture on top of IRB14000

needed) that need to be connected together. The ognex camera needs to be attached
to the last plate. Cable connection needs to be done so that the 8 pin cable is
connected to the camera on one side and to OUT port of the power injector. Then,
the Ethernet cable needs to be connected to IN port of the power injector on one end
and to the IRB14000 LAN 2 port on another end. Only this connection guarantees
stable connection and control of the camera jobs. In case of multiple external cameras
usage, the switch has to be connected to LAN 2 port. The manual provided by the
robot distributor is unclear about the connection set up. It can be noticed at the
figure 2.3 [6] below that there are 3 LAN ports available. However, LAN 1 port
is not visible outside IRB14000. LAN 3 port is better to be isolated from private
network in some cases where Ethernet/IP or PROFINET buses are used. That is
why it is strongly recommended to connect the camera to LAN 2 port.

To be able to detect location of Lego blocks, the following preparations need to be
done: Camera set-up. As mentioned earlier, the provided camera is monochrome
with manual settings. In this case the robot operator needs to adjust the camera to
the Lego baseplate.

Firstly, it is important that all of the Lego studs are clearly seen on the image. It is
possible to make some test pictures via RobotStudio.

Secondly, the diaphragm value has to be chosen such that Lego bricks can be clearly
differentiated from the baseplate. In greyscale some colours, such as green under
certain light might look pretty similar to plain grey colour.

Thirdly, the camera to baseplate calibration is required. This process has to be done
manually by using RobotStudio software.

The image consists of pixels. It is required to get the result in mm. So, for this
purpose camera calibration needs to be done. The Calibrate function is available in
RobotStudio. The whole process consists of two steps. First of all, it is required to

15

Robot Controller

|
ServiceH LAN 1 HLAN 2 Hmm 3 Hjwan
ey iy T

An alternative configuration is that LAN 3
Service, LAN 1, LAN 2, and LAN 3 then s
as different porls on the same swilch. Thi
parameler Interface, in lopic Communicai
lo "LAN". See Technical reference manuz

Robot Controller

Figure 2.3: LAN ports configuration

convert the image pixels to mm. After that, is required to relate camera coordinated
to a robot frame (Work object).[7]
The table 2.1 below describes the camera calibration process.|7]

16

Table 2.1: Camera calibration

Action

Make sure that the camera is in Program Mode.

Click Calibrate in the ribbon.

In the Context window, change the Calibration Type to Grid.

=W DN =

From the Grid Type drop-down menu select one of the checkerboard
calibration plates with fiducial, reference point.

If necessary, adjust the spacing, units, lens model, and number of poses
settings.

Use mm as the unit.

The lens model depends on from where the most distortion is expected.
Either because the camera is viewing from an angle (projection), or that
the lens itself is distorting the image (radial).

Number of poses allows to use more than one image of the calibration
plate to calibrate the camera in case the plate does not cover the full
field of view.

Click Print Grid to print the calibration plate. The printed image must have a
high contrast and the paper must not be reflective (high gloss).
Verify with a ruler that the squares are proportional.

Place the calibration plate on a fixed position in the center of the camera
image, at the same height as the objects that the camera shall identify. The
calibration paper must be completely flat, adequately illuminated, and free
from gloss and shadows.

Rotate the calibration plate so that the X and Y arrows corresponds to the
desired direction of the camera work object.

In the Context window, click Next.
The calibration is now being calculated by the camera, and the number of
found feature points are displayed.

Click Next.

10

Click Calibrate to apply the calibration.

11

Click Finish to complete the calibration.

12

Do not change the position of the calibration plate until the work object has been
defined.

17

2.5 Camera to Robot Calibration

The camera is calibrated to the robot by defining a work object with the same origin
of coordinates as the calibration plate.
The table 2.2 below describes the camera to robot calibration process.|7]

Table 2.2: Camera to robot calibration

Action

1 | Create a pointing tool and define the tool TCP using an accurate method.
Create one work object for each camera.

3 | Activate the pointing tool and define the user frame of the camera work object
along the corresponding x- and y-axes of the calibration plate.

Leave the object frame empty.

4 | Test that the calibration is correct by jogging the robot in the work object.

5 | The calibration plate can now be removed.

After the calibration is done, and new work object has been created, it is required
to teach the robot, how to grab the brick. It is not enough for YuMi robot to get
XYZ coordinated of the target object for picking it up. As the robot has 7 joints, it
is required to determine at least some average configuration of the joints operating
within the coordinate values that are not predeclared in the code.

Gripping a part is often not the same as moving the TCP to the target reported by
the camera. Often this position must first be offset and rotated by some value to
accommodate a good grip.

The easiest way to do this is by jogging the robot to the specified position and then
modify the position, usually referred as ModPos.

The table 2.3 below describes the process, how to teach the robot how to grip a
workpiece. [7]

Table 2.3: Gripper teaching process

Action

1 | Run the program till the point where the hand stops above the workpiece and
stop the execution.

At this point the object frame of mywobj has been modified and the correct
tool, mytool, is activated.

2 | Jog the robot to a good gripping position.

w

Mark the position myrobtarget and tap ModPos.

4 | Run the program from the top and make sure that the part is gripped according
to the taught position.

5 | Move the part and run the program from the top again.

18

2.6 Hands Synchronization

Practically, IRB14000 is a model that contains 2 separate one-arm robots connected
to one base. To synchronize hands between each other, flags have to be put. While the
program is under execution, flags can guarantee that one of the hands will not arrive
to certain position until the second one is ready for it to happen. Synchronization
variable “syncident” is in charge of this waiting process [8]. During the program 10
of them have been used.

1. To increase a chance of successful part location detection there has to be
nothing in range of the top camera when the picture of the baseplate with
bricks on it is taken. The first syncident syncl is ensuring that both hands are
outside the range.

Figure 2.4: Syncident 1 caption

2. Second flag sync2 guarantees that the left arm is in suitable position for picking
up the already detected block from the right hand. Also, the gripper opens
and gets ready for picking the workpiece.

Figure 2.5: Syncident 2 caption

19

3. Third flag ensures that the left arm moves towards the workpiece that is still
held by the right arm.

Figure 2.6: Syncident 3 caption

4. The fourth syncident guarantees that the left arm holds the workpiece while
the right one is already not holding it.

Figure 2.7: Syncident 4 caption

5. The fifth synchronization point takes place when the right hand moves away
letting the left one to rotate the gripper joint for QR code reading.

6. Sync6 ensures that both of the hands are in suitable positions for QR reading.

7. SyncT7 returns both of the arms back to positions where the already identified
workpiece can be passed back to the arm, that is responsible for the assembly
process (Right arm).

8. Sync8 is ensures the correct passing of the workpiece. One hand opens the
gripper fingers and the second hand closes its fingers.

9. Syncl0 gives the command to the left hand to move aside to avoid collisions
with the right arm, that will start the assembly process.

20

Figure 2.10: Syncident 8 caption

10. Sync9 provides that information that the left arm has reached the destination
point and will no longer participate in the assembly process till the new
workpiece has to be identified.

21

2.7 Integrated Vision Jobs
2.7.1 Location Detection

First job that has been used is “lct.job”, responsible for the workpiece location
identification. "PatMax Pattern" pattern algorithm was chosen to be used for
workpiece search. Typical result of the search can be seen in the figure 2.11.

Pl Ff o e
IJ))J))JJJM‘
SIS IS S S |
1332222332333 3%
SERR T~ TEEEEA 444
BEPE - TrLEAded
SSEy’ T TrrEEii
»J D PP PR
TEE s -
22D 9

29292 e

' EEE)

DI2I

CE L

29

)
J
3
)
]
)
)

Figure 2.11: PatMax result example
After the workpiece is found, the location coordinates are stored in mycameratarget
variable. It is important to first switch the camera into program mode, then load

the job to the camera and then put it into the run mode.

CamSetProgramMode upCam;

CamLoadJob upCam, detectjob;
CamSetRunMode upCam;

Figure 2.12: Up Camera Preparation

Only after that, the camera is ready for taking the picture and running the search
job.

As it was described before, separate workobject has been created the environment
and coordinates, calculated by the camera.

22

CamRegImage upCam;

CamGetResult upCam, mycameratarget;
wobjl.oframe := mycameratarget.cframe;

Figure 2.13: Up Camera Result capturing

2.7.2 QR Code Reading

2-D verification algorithm has been used for the QR code reading. It has been figured
out that the size of the QR code has to be at least 7x7 mm for successful reading.
The Smart Gripper camera was used for 2-D verification job. The typical result is
presented on the figure 2.14 below.

Figure 2.14: QR Reading Result Example

The results are stored in the variable cameratargetl. This variable is able to keep
multiple Boolean values. Vall-Val5 have been used for 5 colours. Vall corresponds
to white, val2-yellow, val3-red, val4-blue, and valb-green. Depending on this value,
according to the control logic the robot either starts the assembly or puts the
workpiece aside for storing and looks for the next workpiece.

2.8 Results

The results of the study are considered as controversial. On one hand, the designed
control logic works, and the robot is able to assemble the desired product. On the
other hand, the possibility of failure is pretty high. Ten test runs of the same program
have been made and only during 3 of them, the robot was able to finish the assembly.
The item location process is very sensitive to the external lighting. If some shadow
appears, the contrast is changing, and the camera is not able to detect workpieces
on the Lego baseplate. Probably, the use of RGB camera can solve the issue.

From the Factory of the Future perspective, this concept has one serious constraint.
Camera calibration and Camera to Robot calibration is not possible to be realized
in without manual contribution of the robot operator. This goes against with the
concept of the Factory of the Future and makes it impossible to have this robot
running the program being installed on the moving platform.

23

3 From Digital Twins to Product Assembly

Second study describes the possibility of using the robot as a slave, receiving com-
mands from Digital Twin on a remote PC.

It presents a possibility of a new development that enables the integrated approach
for product-centric manufacturing. It proposes an overall solution that will allow
product-centric manufacturing in the factory floor and will cover more global lifecycle
from digital product description to physical assembly.

This study describes the implemented connection to a physical assembly of ABB
IRB 1400 YuMi collaborative robot. The results on using the framework to assemble
Lego-brick models in a product centric way are also presented.

3.1 Background

The fourth industrial revolution, Industry 4.0, is expected to bring about the dissolu-
tion of the well-established automation architecture [9, 10, 11, 12]. This architecture
is based on the emerging Reference Architecture Model Industry 4.0 (RAMI 4.0). It
promises real time availability of data and information lifecycle phases and organi-
zational boundaries [13]. Nowadays, sophisticated technology in RAMI 4.0 is the
OPC UA [14, 15]. In the context of RAMI 4.0, the focus so far has been on enabling
technology, but the real revolution is going to occur when the technology is success-
fully implemented for servitization of industry with advanced agile manufacturing
paradigms executed by networked enterprises [11]. The need for agile manufacturing
arises not only from rapidly changing market demand but also from novel product
design approaches exploring larger parts of the design space [16] and the need to
perform concurrent product design and assembly planning [17].

One example of an agile manufacturing paradigm is the product-centric manufacturing.
The idea behind this type of manufacturing is that the digital equivalent of a
product will request manufacturing services [18]. The core benefit of product-
centric manufacturing is that the manufacturing facility does not require any offline
assumptions concerning the types of products that will be manufactured, the way of
manufacturing each of the products, and the order of executions. This all means,
that later in the future there will be more agility in a manufacturing process, better
capability to react on some customized products.

The recent work has extended the product-centric manufacturing paradigm to the
factory floor domain [19]. It demonstrates the concept of self-made virtualized 3D
environment. Later, this work has been extended to utilize OPC UA to communicate
the digital description of the product from the designer to possible manufacturers [20].
This provided the possibility of having designer and the manufacturer in different
organizations. Till now, the concept in [20] has been implemented only in virtual
world. It was decided to continue this approach and to extend the lifecycle from
virtual assembly to some physical one. The study below presents a development that
enables an integrated approach for product-centric manufacturing.

24

3.2 Concept
Product-centric manufacturing concept has three stages:

1. Firstly, the original equipment manufacturer (OEM) designer sends a digital
product description to one or more manufacturers, who will automatically and
promptly perform a virtual assembly in a virtualized 3D production cell without
any need for manual and physical engineering work. This part has been already
done in some previous work[19]. The work has already been done on the basis
lego-bricks using collision detection. Also, there has been a study in the same
source for generic CAD part designs without collision detection[19] but this
example will not be considered in the current study. The concept implies that
based on the results of the virtual assembly, the designer can decide whether
the design is practical and economical from the assembly perspective and if the
manufacturing site has suitable capabilities for the manufacturing this design.
The feedback from the virtual assembly can be used for modification of the
original design and to decrease the amount of potential manufacturers.

2. During the second stage the assembly is piloted with physical product parts and
production equipment (“Pilot assembly”). As an example, this assembly can
involve Additive Manufacturing (AM). This approach is can lead to reduction
of delays involved at this stage [21] especially due to overcoming the delays
from the supply chains [22]. The point about the current method is that it
may not be yet be a cost-effective technology for mass production [23, 24].

3. The third stage (“Ramp up”) involves ramping up the production with the
chosen manufacturer, after the design has been adjusted based on the results
of the first two stages. During this stage, the parts can be produced with
AM, a hybrid scenario which combines AM and conventional supply chain
management [25], or even completely without AM.

Manufacturer

Virtual

OEM designer g 1 sssarmbly

\3 ™ Pilot assembly

Ramp up

Figure 3.1: Stages of product-centric manufacturing concept

To conclude, the proposed concept may result in changes of the manufacturing sector.
It opens the possibilities for new and innovative designers with small budgets to

25

participate in the competition without investing in dedicated production facilities.
The first stage has been already implemented in the some previous research [19].
The core challenge was to try to realize the second and the third stage by using
the physical robot (IRB 14000 YuMi) with versatile capabilities to perform physical
assembly.

3.3 Assembly Planning and Modelling Framework

Originally, the assembly planning and modelling framework was proposed in [19]. In
the current chapter, the whole process concept will be briefly described. For the case
of the current study the existing framework has been simplified.

As it has been mentioned in the previous paragraph, the automatic assembly of
products is based on their digital descriptions. In [20], the products were built out of
workpieces in forms of Lego blocks of 2 configurations: 2x2 and 2x4. OPC UA address
spaces have are originally used for the product descriptions. The simple description
of a typical “Lego tower” in form of OPC UA server files is shown on Figure 3.2. Both
types of Lego blocks are presented as OPC UA types with corresponding connection
points. All of the Lego bricks are located under a Parts folder. The screenshot from
UaExpert demonstrates the example of one design with several 2x2 and 2x4 blocks.
In the Address space pane, the “Colour” attribute of the 2x2 block named “rect1”
is selected. Also, in the Attributes pane, it is seen that the value of this attribute
is green. This means, that according to the digital description, the colour of the
selected block is green.

The methodology presented in [19] is able to automatically construct a digital twin
of the final product in an assembled state, using the 3D properties of the square
and rectangle Lego bricks together with the corresponding connections between
them. The whole process happens based on the product description. The digital
twin is augmented with a product-centric control capability, including ASP and
APP. The methodology in [19] performed the product-centric control in the 3D
virtual environment with a cartesian robot. It is important to mention that in this
environment, interconnected nodes are manipulated, and the limitations, constraints
and challenges of the physical world are ignored. During the current study, the
product-centric control is adapted to the physical world and the ABB YuMi robot.
The figure 3.3 presents the product-centric control for the stages 2 qnd 3 of the
figure 3.1. The given algorithm is executed cyclically. Each execution will exercise
only a part of the code according to the guard conditions in the opt, break and alt
fragments. The function nextUnassembledPart() towards the bottom of the sequence
is responsible for ASP. planAssemblyPath() is responsible for APP, returning a Tra-
jectory object consisting of waypoints and rotations of the part to be assembled. The
variety of Boolean variables are in charge of controlling the translational movement
to the next waypoint or rotation. After the translation or rotation is completed, the
sequence proceeds to the nextPoint() method of the Trajectory object. In case this
returns null, the sequence jumps to the place() operation and proceed to the next
call of ASP. During the current study, the sequence is performed on the PC machine
that hosts a digital twin and communicates with a physical assembly station (ABB

26

|| Ele View Server Document Settings Help
DR &= X425

UserAccesslevel

MinimumSamplinginterval 0
Histonzing
« m L]

References & x
GEIRPrered~) ©
Reference Target DisplayName
HasTypeDefiniti.. PropertyType

Figure 3.2: Product description of a "Lego tower" as OPC UA information model

YuMi robot). The communication is set up through socket in order to realize the
product-centric manufacturing in the physical world.

3.4 From Virtual to Physical: From Digital Twin to Assem-
bly

In the previous section, it has been described that the digital twin is in charge
of controlling the assembly of its physical counterpart. In the current setup, the
twin is running on a PC and communicates with the physical manipulator on the
factory floor. As in the first study, the physical manipulator’s role is performed by
ABB IRB14000 Dual Arm Precision “YuMi” robot. Based on the digital product
description, the digital twin generates a particular assembly sequence and planning

27

assemblyArm
S et
1

opt J [movingToPart] | :
T move() >
e = o o o o MOVINGTOPAMt = = = = = = = = = -
L L L
break ['movingToPart AND lassemblyArm partmta(hedli
k pick(} >
1 1 1
1 | 1
break JltrajcctoryMotmnI : :
break l [translat:onlnProgressI :
move() »>
|—rota\t(lrnjf.clowam}——b:
break] IrotationinProgress| :
e === translationinProgress= — — = = = = — -
I ' I
lrmrmecaaa- rotationinProgress — = — = = — — — -
'~—murtl’cnm|b—§J :
ﬁ = = A{rajectoryPoint= — — -1 I
T
[trajectoryPoint == null] I

________ N e ettt
: lrcsctTmmctoryMohon(] I :
b place() L

e el e s e s e e e e e L —— I

[else] F—isRotationMotion()——»
= = = 4sRotation- — — =

1

alt l [isRotation]

: I setRotationinProgress
nitRotate{trajectoryPoint p=———————p{

b o ———— - ————— =
[else]l] setTranslationinProgress 1 I

|
thove(tra;ectoryPomt}——D'

-l

t= planAssumbtyPath(mr:i

setMovingToPart()

T
| I part = nextUnassembledPart()
I
]
I
I

setTrajectoryMotion()

(R ——— | 1

h dera;eﬂory(]—’

Figure 3.3: Product-centric Assembly Requests

routine which is later transferred to the YuMi robot in a specific form of messages.
The YuMi robot is operated by a RAPID language-based software control logic.
This logic allows the robot to receive the routine sent by external computer with a
digital twin running there, decode, read and transform into physical execution and
manipulation to assemble the physical counterpart of the digital twin.

3.5 Planning and Modelling from the Framework Side

The framework described in the previous section is implemented in Java and is
running on a PC. Based on the given digital product description, the framework
cyclically generates a list of several information regarding each component, that

28

together forms a final product. The required data has been taken from the available
info:

e Name of the workpiece with its identification number (ID)
e Three axis target coordinates of where the workpiece has to be placed

e Information regarding the need of rotating the workpiece before placing it to
the target location

This data has to be transferred to the physical assembly station (YuMi robot). It
was mentioned earlier, that the existing framework has been simplified and modified
to make the setup work. The following changes have been made to the existing
framework:

e First of all, the communication interface has been introduced. As it has been
mentioned earlier, the generated data about every workpiece has to be somehow
transferred from the PC to the physical workstation controller on the factory
floor. That’s why the new communication interface has been introduced. This
communication channel has been realized in a form of TCP/IP communication
socket. It exists both in Java (planning and modelling framework) and in
RAPID programming environment (ABB YuMi robot).

e Messaging protocol between the framework and physical station controllers.
The messaging protocol includes a text command to start the assembly process,
cyclic stream of information regarding every Lego component and a message to
finish the assembly process and return to the original position of the robot.

String start = new String("Start");

socket.InitializeSocket();
socket.sendCommand(start);

Figure 3.4: Command to start in DigitalTwin

String stopp = new String("Stop");
socket.InitializeSocket();
socket.sendCommand (stopp);

Figure 3.5: Command to stop in Digital Twin

socket.InitializeSocket();

socket.sendCommandl(lego.id, y, rotation);

Figure 3.6: Command to send a string of relevant information in DigitalTwin

e Actuator coordination functionality in the Digital Twin class has been modified
to make the message more compact.

29

String rotation = new String();

if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(@, FastMath.HALF_PI, @));
String rota = new String('990");

// System.out.println(lego.id + " " + rota);
rotation = rota;

} else {
String rotno = new String("ee");
rotation = rotno;

Figure 3.7: Rotation information in Digital Twin

e All the OPC UA functionality has been disabled to simplify the case studies.
Later on, it can be returned but some further modifications will be required.
During the current study, the digital product description is generated by the
client in form of the .txt file.

e Collision detection check has been also disabled. This has been done due to
the fact that at the current point of the study collision in the virtual world has
nothing the same with possible collisions during physical assembly. Besides
that, the existing framework is created so, that during collision checking process,
virtual assembly is still performed. This means, that the physical station will
try to repeat even the process, when the final product will be failed to get
assembled.

3.6 YuMi Robot Controller Side

The robot-controller software is implemented using ABB’s RAPID programming
language. It is important to point out that during the realization of this project
only one hand of the robot has been used. All of the presented solutions correspond
only to the right arm of Yumi. In particular, the following functionalities have been
realized:

1. Calibration. During the current study, Smart Gripper for the YuMi robot has
been used. Only the gripping fingers are required. Vacuum suction cups are
not used and can be not attached. Before the assembly starts, calibration of
these fingers is required. As the fingers have extra rubber material on the
sides to increase friction while gripping, the calibration is done to obtain the
absolute position of the fingers by opening the fingers and closing the fully
with fixating both of the positions.

2. Initialization. This block of commands is responsible for setting up the com-
munication channel between the Digital Twin and the YuMi controller. The
network communication socket is opened and waiting for the message containing
the command to start the assembly process. After the message is received, the
robot control logic activates the right arm and moves it to the “safe” position.
“Safe” position has been intentionally introduced by the code developer. This is
such a position, that ensures safe movements towards the workpiece storage and

30

towards final destinations of workpieces. The code is designed so, that every
time the arm needs to move between the storage and the target locations it is
passes through the “safe” position. This position is required to avoid possible
collisions of the arm with the table, on which the assembly is performed. Also,
it is important to mention that in-built collision avoidance functionality is
disabled during this study.

. The following block describes the control logic of the assembly process. The
predefined settings are made in a way that the final project can consist out
of the 10 2x4 bricks and one 2x2 block. All of the Lego pieces are available
at their specific locations before the assembly starts. The main program is
presented in a form of a recurring loop, which consists of the following:

e Moving the joints of YuMi’s arms to the “safe” position if they are not in
this position yet.

e Communication to transmit and receive message. This is the communica-
tion that is performed via socket. Unfortunately, RAPID programming
language supports less data formats compared to Java. However, it is
enough that both of the language support strings. Bute format was also
an option, but the process of decoding the information is much more
complicated compared to strings. String format was chosen since it can
be used to transmit information of different “nature” from pure numbers
to words.

e Breaking down the message into the parts that make sense for the RAPID
code. This includes type of the Lego brick, it’s ID number, the rotation
requirement, and the three axis coordinate values of the target location of
the workpiece at the final assembly location.

e Actuation of the robot to move towards the appropriate workpiece, actuate
gripping fingers to grab the Lego block with a certain holding force to be
able to tear it off the Lego plate, move the arm with the selected workpiece
towards the target coordinates passing through the “safe” point to avoid
collision with the environment, and then rotate the workpiece 90 degrees
in case the rotation is required.

e Pushing the workpiece on the assembly position. In the current study,
pushing is required as the assembly consists only out of Lego components.
The design of Lego blocks has been made in a way that the secure connec-
tion of the bricks can be achieved only by pushing. As the YuMi robot
requires gentle manipulations, pushing process is achieved by performing
the pushing action twice in the middle of the rectangular block, then twice
to the left of the center point and finally twice to the right of the center
point. In case of square workpiece only double pushing in the center is
enough. This pushing cycle ensures proper attachment of Lego pieces.

e After the pushing cycle, robot arm (physical actuator) is returned to the
“safe” position.

31

4. Finishing block. If the just pushed Lego block was the last one from the
assembly, the robot receives “Stop” command. The control logic always checks
in the beginning of the cycle if the received message contains “Stop” word in
the beginning. According to the code description, the arm of the robot has to
return the “home” position. Having both arms in this position, the robot is
ready for transportation to some other workplace if needed.

Above described algorithm is shown in the Figure 3.8 below.

Calibration

Receive “Start” string
. Move the robot from
home position to the
Initialization SRRt > safe

. Send back "done”

message

1

%
Receive next string

Break down the string into:
. Lego type
1D

Start assembly o
. Rotation info
.

Stop Commad?
process

Target coordinate

Rotate Lego block
above target
location

Rotation
required?

Yes

Push the Lego block

h 4

Stop execution and Send completion
Return to home position message to the PC

Figure 3.8: QR Reading Result Example

32

3.7 Case Studies

To demonstrate and evaluate flexibility and versatility of the code, two different case
studies of assembly planning and execution have been considered. As OPC UA part
has been disabled in the Digital Twin framework, digital product description was
declared in a text format. All the relevant information is presented in form of two
tables. The first table shows the typical information that can be found in a Bill
of Materials (BOM) together with the angle of orientation information in the final
assembly. The second table represents connections between Lego bricks. Rectangular
workpieces have three connection possibilities. Every connection point is located in
the center of the 4x2 studs of the Lego and each has interleaving 2x1 studs with
the adjacent connection point. The three connection points on the top surface are
named as topA, topB, topC. At the same time, bottom connection points are called
bottomA, bottomB and bottomC correspondingly. Both of the tables help to figure
out target coordinates on the workpieces in the final assembly. This forms the basis
for ASP and APP of the modelling and planning framework. For the purpose of
description, the case studies will be later on referred as “Square Tower” and “Pyramid
Tower”.

3.7.1 Case Study 1 "Square Tower"

The Square Tower consists of 10 rectangular Lego bricks. The bricks have to be
assembled in such way, that the tower has five layers. Each layer has 2 bricks
assembled next to each other parallel. The orientation of each floor differs 90 degrees
compared to the previous layer. Tables 3.1 and 3.2 demonstrate the description of
case study 1.

Table 3.1: Square Tower Part List

Type Part ID | Colour | Orientation
RectangleLego | Rectanl | Blue 90
RectangleLego | Rectan2 | Yellow | 0
RectangleLego | Rectan3 | Blue 90
RectangleLego | Rectand | Yellow | O
RectangleLego | Rectanb | Green 90
RectangleLego | Rectan6 | Green 90
RectangleLego | Rectan7? | Red 0
RectangleLego | Rectan8 | Red 0
RectangleLego | Rectan9 | White | 90
RectangleLego | Rectanl10 | White | 90

As mentioned earlier, planning and modelling framework cyclically generates in-
formation, that is sent to YuMi robot for physical assembly. The following table
demonstrates how the assembly process looks like in the virtual world and in physi-
cal environment. All of the snapshots have been made simultaneously during the
assembly procedure.

Table 3.2: Square Tower Connection List

Connection endpoint 1

Connection endpoint 2

Part ID | Connection point | Part ID | Connection point
Rectan2 | bottomA Rectanl | topA

Rectan2 | bottomC Rectan3 | topA

Rectanl | topC Rectan4 | bottomA

Rectanb | bottomA Rectan2 | topA

Rectan6 | bottomA Rectan2 | topC

Rectan7 | bottomA Rectanb | topA

Rectan8 | bottomA Rectanb | topC

Rectan9 | bottomA Rectan7 | topA

Rectan10 | bottomA Rectan7 | topC

33

Table 3.3: Square Tower Connection List

Virtual Assembly Physical assembly

34

35

3.7.2 Case Study 2 "Pyramid Tower"

The second case study looks pretty similar to the first one. The first difference is
that now the square Lego block has been added on the top. The Pyramid Tower has
also 5 layers. Two bottom layers consist of three rectangular bricks, two of each are
oriented parallel and the third one is rotated 90 degrees. The third layer consists
of two 4x2 blocks, the fourth-1. The top layer is presented as a square piece. The
tower has a pointed tip. The tower has only one line of symmetry, while the previous
case study has two. The product descriptions of the Pyramid tower are presented in
Table 3.4 and Table 3.5.

Table 3.4: Pyramid Tower Part List
Type Part ID | Colour | Orientation
RectangleLego | Rectanl | Blue 90
RectangleLego | Rectan2 | Blue 90
RectangleLego | Rectan3 | Green 90
Rectanglelego | Rectand | Yellow | 0
RectangleLego | Rectanb | Green 90
RectangleLego | Rectan6 | Yellow | 180
RectangleLego | Rectan7 | Red 0
RectangleLego | Rectan8 | Red 0
RectangleLego | Rectan9 | White | 90
SquareLego Squarel | White | -

Table 3.5: Pyramid Tower Connection List

Connection endpoint 1 Connection endpoint 2
Part ID | Connection point | Part ID | Connection point
Rectan2 | bottomA Rectanl | topC
Rectan2 | topC Rectan3 | bottom
Rectanl | topC Rectand | bottomA
Rectanb5 | topC Rectand | bottomA
Rectan6 | bottomA Rectanb | topA
Rectan7 | bottomA Rectan2 | topA
Rectan8 | bottomA Rectan2 | topC
Rectan9 | bottomA Rectan7 | topB
Squarel | bottom Rectan9 | topB

As mentioned earlier, planning and modelling framework cyclically generates in-
formation, that is sent to YuMi robot for physical assembly. The following table
demonstrates how the assembly process looks like in the virtual world and in physi-
cal environment. All of the snapshots have been made simultaneously during the
assembly procedure.

36

1st

L

1011

Square Tower Connecti

Table 3.6
irtual Assembly

Physical assembly

E.E:R.rﬁ § MR ad

7 myx ¢ . 411111121110)

oy cA
W i0000)
111111331)0))
11111111111,
1111101))))
11133);

.
55_,:5

1))

v

37

3.8 Results

Both of the case studies clearly demonstrate that the created code works well. The
robot was able to assemble designed product assemblies that differ from each other.
The key point that allows to consider achieved results as successful is that the source
code of the robot has not been modified before changing the final product description.
However, the drawbacks faced during the tests still seem to be quite similar to ones,
faced during the first study. As both of studies are considered to be used in a Factory
of the Future concept, the problem of manual defining of the workobject keeps to
remain critical. It has been noticed during the test runs of the robot, that if the
robot has been moved even one millimetre to any of the sides, the possibility of
successful assembly process is leading to zero. From one hand, the goal of the study
has been reached. From another hand, keeping in mind the whole concept of having
the robot on top of the moving platform leads to the conclusion that some serious
interventions to the source code of the IRB14000 is required. One of the possibilities
might be the research on the way of declaring the workobject based on the image
received from the external camera on top of the robot. At the moment of the study,
this kind of functionality is not available from the robot producer. As a result,

3.9 Possible Enhancements

Taking into account two studies that have been done throughout current thesis, some
possible future enhancements are proposed:

1. First of all, it definitely makes sense to combine methods investigated in both
studies. For example, the robot instead of using predefined workpieces searches
for the one that fits the description of the one that the Digital Twin requests
for the assembly and then places it to the target location. This would make the
assembly process even more flexible than it is in the second study. To make the
search faster, it is strongly recommended to substitute the QR reading thread.
The optimal way is to start using the RGB camera, to differentiate colours at
the very beginning of the searching algorithm.

2. Secondly, to make the mobility of the robot possible, it is required to make the
process of camera to robot calibration and camera calibration independent from
the robot operator. If it is possible to make it happen in a form of code, the
robot can be mounted to the moving platform and it will be able to assemble
different designs at different locations.

3. Move to wireless communication between the Digital Twin and the robot
framework. During the studies described in this thesis, all of communication
between PC and the robot controller have been made using the wired connection.
Wireless communication will increase the flexibility and the area of usage as
well.

4. Bringing back the OPC UA protocol. While considering current study as a part
of Factory of the Future concept, the robot has to be able to communicate with

38

other stations involved in the assembly process. Applying OPC UA standard
would better fit the nowadays trends in automation.

39

4 Conclusions

In this thesis work, two different approaches towards final product assembly have
been considered. The first study was focused on the way how to figure out which
workpiece to choose for the assembly process. The core idea behind was that the
final product always remains the same, while the range of Lego bricks suitable for
the assembly is bigger than the actual number of pieces, the final product consists
of. The designed control logic allowed the robot to identify randomly distributed
Lego blocks, pick them one by one, identify the colour and then either to proceed to
assembly, or to put the workpiece aside and keep in the memory where the already
identified Lego block is stored and of which colour it is.

The second study was considering the opposite proposal. The final assembly descrip-
tion was presented in a way of digital description, while the list of available items for
assembly always keeps being the same at predefined locations. This required to have
some separately running program on external computer that configures the required
assembly path, that is later sent to the YuMi robot. The versatile code has been
designed, which brings flexibility to the whole system.

The results of the studies have been evaluated from the side of having the desired
assembly done and from the point of having the code running in the robot on top
of the moving platform. The objectives of the work are achieved with fair success,
however there were some limitations and restrictions faced during the case studies
and test runs of the codes. The core issue that both of the approaches require some
calibrating process that cannot be done via coding at a time of the research. This
leads to the limitation of robot usage together with Lego baseplate. At the same
time, throughout the study, future direction of possible studies has been proposed.

40

References

[1]

[10]

[11]

[12]

[13]

G. Ziilch, H. I. Koruca, and M. Borkircher, “Simulation-supported change pro-
cess for product customization—a case study in a garment company,” Computers
in Industry, vol. 62, no. 6, pp. 568-577, 2011.

E. Hofmann and M. Riisch, “Industry 4.0 and the current status as well as
future prospects on logistics,” Computers in Industry, vol. 89, pp. 23-34, 2017.

A. Giret, E. Garcia, and V. Botti, “An engineering framework for service-oriented
intelligent manufacturing systems,” Computers in Industry, vol. 81, pp. 116-127,
2016.

A. Fayoumi, “Ecosystem-inspired enterprise modelling framework for collabo-
rative and networked manufacturing systems,” Computers in Industry, vol. 80,
pp- H54-68, 2016.

D. Kirschner, R. Velik, S. Yahyanejad, M. Brandstotter, and M. Hofbaur,
“Yumi, come and play with me! a collaborative robot for piecing together
a tangram puzzle,” in International Conference on Interactive Collaborative
Robotics, pp. 243-251, Springer, 2016.

A. Robotics, “Product manual — irb 14000-0.5/0.5,” Visterds, Sweden, 2015.
A. Robotics, “Operating manual robotstudio,” Visteras, Sweden, 2007.

A. Robotics, “Technical reference manual rapid overview,” ABB AB Robotics
Products SE-721 68 Visteras Sweden.

V. Krueger, A. Chazoule, M. Crosby, A. Lasnier, M. R. Pedersen, F. Rovida,
L. Nalpantidis, R. Petrick, C. Toscano, and G. Veiga, “A vertical and cyber—
physical integration of cognitive robots in manufacturing,” Proceedings of the
IEEFE, vol. 104, no. 5, pp. 1114-1127, 2016.

R. Harrison, D. Vera, and B. Ahmad, “Engineering methods and tools for
cyber—physical automation systems,” Proceedings of the IEEE, vol. 104, no. 5,
pp- 973-985, 2016.

H. Kagermann, R. Anderl, J. Gausemeier, G. Schuh, and W. Wahlster, Industrie
4.0 in a Global Context: strategies for cooperating with international partners.
Herbert Utz Verlag, 2016.

A. J. Isaksson, I. Harjunkoski, and G. Sand, “The impact of digitalization
on the future of control and operations,” Computers € Chemical Engineering,
vol. 114, pp. 122-129, 2018.

F. Zezulka, P. Marcon, 1. Vesely, and O. Sajdl, “Industry 4.0—an introduction in
the phenomenon,” IFAC-PapersOnLine, vol. 49, no. 25, pp. 8-12, 2016.

[14]

[15]

41

V. Jirkovsky, M. Obitko, P. Kadera, and V. Marik, “Toward plug&play cyber-
physical system components,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 6, pp. 2803-2811, 2018.

S. Griner, J. Pfrommer, and F. Palm, “Restful industrial communication with
opc ua,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1832—
1841, 2016.

D. Bacciotti, Y. Borgianni, and F. Rotini, “An original design approach for
stimulating the ideation of new product features,” Computers in industry, vol. 75,
pp- 80-100, 2016.

E. Gruhier, F. Demoly, and S. Gomes, “A spatiotemporal information manage-
ment framework for product design and assembly process planning reconciliation,”
Computers in Industry, vol. 90, pp. 17-41, 2017.

J. Lyly-Yrjanainen, J. Holmstrom, M. I. Johansson, and P. Suomala, “Effects
of combining product-centric control and direct digital manufacturing: The case
of preparing customized hose assembly kits,” Computers in Industry, vol. 82,
pp. 82-94, 2016.

S. Sierla, V. Kyrki, P. Aarnio, and V. Vyatkin, “Automatic assembly planning
based on digital product descriptions,” Computers in Industry, vol. 97, pp. 34-46,
2018.

M. Yli-Ojanperé, S. Sierla, N. Papakonstantinou, and V. Vyatkin, “Adapting
an agile manufacturing concept to the reference architecture model industry 4.0:
A survey and case study,” Journal of Industrial Information Integration, 2018.

M. Attaran, “The rise of 3-d printing: The advantages of additive manufacturing
over traditional manufacturing,” Business Horizons, vol. 60, no. 5, pp. 677-688,
2017.

S. H. Khajavi, J. Partanen, and J. Holmstrom, “Additive manufacturing in
the spare parts supply chain,” Computers in industry, vol. 65, no. 1, pp. 50-63,
2014.

Q. Li, I. Kucukkoc, and D. Z. Zhang, “Production planning in additive manufac-
turing and 3d printing,” Computers & Operations Research, vol. 83, pp. 157172,
2017.

R. F. Hartl and P. M. Kort, “Possible market entry of a firm with an additive
manufacturing technology,” International Journal of Production Economics,
vol. 194, pp. 190-199, 2017.

S. H. Khajavi, J. Partanen, J. Holmstréom, and J. Tuomi, “Risk reduction in
new product launch: A hybrid approach combining direct digital and tool-based
manufacturing,” Computers in Industry, vol. 74, pp. 29-42, 2015.

42

[26] V. Kuliaev, “Yumilego2019.” https://github.com/vladimirkuliaev/
YuMiLego2019, 2019.

https://github.com/vladimirkuliaev/YuMiLego2019
https://github.com/vladimirkuliaev/YuMiLego2019

43

A Appendix

A.1 CAD Drawings

This Appendix is intended to document the CAD drawings of the Fixture mecha-
nism described in 2.3. The models have been created in SolidWorks software. All

the files and drawing in .SLDPRT and .SLDDRW formates can be found in Git
repository. [26]

50

A

3_

60
B
&

8

4 R
c ©
—
|
|
- /
UNLESS OTHERWISE SPECIFIED: FINISH:

DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:

LINEAR:

ANGULAR:

NAME SIGNATURE DATE
DRAWN Viadimir Kulicev
CHK'D
APPV'D
MFG
A QA MATERIAL:

WEIGHT:

DEBURR AND
BREAK SHARP
EDGES

TITLE:

DWG NO.

SCALE:1:1

R2

10

(@)
(@)
26
DO NOT SCALE DRAWING REVISION
poart] A
SHEET 1 OF 1

150

20

VIV

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS

SURFACE FINISH:

TOLERANCES:
LINEAR:
ANGULAR:

FINISH:

DEBURR AND
BREAK SHARP
EDGES

DO NOT SCALE DRAWING REVISION

NAME

SIGNATURE

DATE

TITLE:

DRAWN | Viadimir Kuliaev

CHK'D

APPV'D

MFG

QA

MATERIAL:

DWG NO.

part2

A4

WEIGHT:

SCALE:1:2 l SHEET 1 OF 1

3

2 I

30 _ 163,57

Y 3;‘; 15
ot
o — 3——':0:_
0 e %
[T]
[]
UNLESS OTHERWISE SPECIFIED: | FINISH: DEBURR AND
DIMENSIONS ARE IN MILLIMETERS BREAK SHARP DO NOT SCALE DRAWING REVISION
SURFACE FINISH: EDGES
TOLERANCES:
LINEAR:
ANGULAR:
NAME SIGNATURE DATE TITLE:

DRAWN | Viadimir Kuliaev

CHK'D

APPV'D

MFG

QA MATERIAL: DWG NO.

Part3

WEIGHT: SCALE:1:4 I SHEET 1 OF 1

4 3 2 |

47

A.2 Programs for the left and for the right hands

This Appendix is intended to document the programs for both of the YuMi arms,
described in 2. The programs have been created in ABB RobotStudio software. All
the files in .MOD formate can be found in Git repository.|26]

MODULE MainModule

CONST robtarget safePoint:=[[194.64,287.75,197.42],
[0.0735244,0.843246,-0.113842,0.5201631, [0,1,-1,4],
[102.588,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget safePoint10:=[[266.62,149.09,62.15],
[0.495985,0.508823,-0.500331,0.49474],[-1,1,-1,41,
[107.346,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget readyToOpen:=[[266.62,149.08,62.15],
[0.495987,0.508822,-0.50033,0.494739],[-1,1,-1,41,
[107.346,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget readyToOpenl@:=[[254.87,69.02,59.07],
[0.496019,0.508794,-0.500334,0.4947321,[-1,1,-1,4],
[108.541,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

VAR syncident syncl;
VAR syncident sync2;
VAR syncident sync3;
VAR syncident sync4;
VAR syncident sync5;
VAR syncident sync6;
VAR syncident sync7;
VAR syncident sync8;
VAR syncident sync9;
VAR syncident syncl0;
VAR bool ready :=FALSE;

PERS tasks tasklist{2}:=[["T_ROB_L"]1, ["T_ROB_R"11;

CONST jointtarget
photoPos:=[[-83.0377,-142.241,15.6685,81.9131,72.8104,-152.786],
[70.0473,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget readyToOpen20:=[[254.87,244.32,59.07],
[0.496027,0.508793,-0.500331,0.4947281, [-1,1,-1,41,
[108.541,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

PROC main()

preparation;

Stop;

Hand_SetHoldForce(12);

WHILE NOT ready

DO

check_operation;

ENDWHILE

ENDPROC
PROC preparation()
g_JogOut;
g_SetForce 5;
g_SetMaxSpd 3;
g_JogIn;

g_Calibrate;
g_GripIn;
ENDPROC

PROC check_operation()
MovelL safePoint, v1000, fine, toolQ;

WaitSyncTask\InPos, syncl, tasklist;
MovelL readyToOpen, v1000, fine, tool®;
g_MoveTo 10;

WaitSyncTask\InPos, sync2, tasklist;

MovelL readyToOpenl@, v30, fine, toolo;
WaitSyncTask\InPos, sync3, tasklist;
g_GripIn;

WaitSyncTask\InPos, sync4, tasklist;

WaitSyncTask\InPos, sync5, tasklist;
MoveAbsJ photoPos\NoEOffs, v50, fine, toolo;

WaitSyncTask\InPos, sync6, tasklist;
Movel readyToOpenl®, v50, fine, toolo;
WaitSyncTask\InPos, sync7, tasklist;
WaitSyncTask\InPos, sync8, tasklist;
WaitSyncTask\InPos, syncl@, tasklist;
g_JogOut;
MovelL readyToOpen20, v50, fine, toolo;
WaitSyncTask\InPos, sync9, tasklist;

ENDPROC
ENDMODULE

MODULE MainModule
PERS wobjdata wobj1:=[FALSE,TRUE,"",

[[186.619,14.041,43.2433],
[0.741199,0.00178913,-0.00792014,-0.671236]]1, [[0.796976,55.6561,01,
[1,0,0,0.000286155]]11;

CONST string detectjob := "1lct.job";

CONST string readREDjob := "QR_Red.job";

VAR cameratarget mycameratarget;

CONST robtarget abovewP:=[[10.04,5.14,80.52],
[0.00194954,0.743988,0.668187,0.00183217]1,[1,2,-1,4]1,
[157.199,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget startPoint:=[[266.38,-323.45,123.19],
[0.264136,-0.898026,0.3062,0.1732731,[1,3,-2,41,
[-158.689,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget myrobtarget10:=[[200.32,218.76,74.491,
[0.00104262,-0.924304,-0.381193,0.0187858], [1,2,1,4]1,
[151.124,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget safeUp:=[[451.88,-197.47,103.88],
[0.00870065,0.69364,-0.720166,-0.0122373],[1,3,0,41,
[178.372,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget startPointl10:=[[253.71,-80.30,187.72],
[0.0085022,-0.0615952,-0.99792,-0.0170172],[1,2,1,4]1,
[-141.069,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget passPoint:=[[253.71,-80.30,187.72],
[0.00850392,-0.061597,-0.99792,-0.0170158], [1,2,1,4],
[-141.069,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget myrobtarget:=[[9.28,4.07,-0.32],
[0.00195056,0.743987,0.668188,0.00183229],[1,2,-1,4]1,
[157.198,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

VAR syncident syncl;
VAR syncident sync2;
VAR syncident sync3;
VAR syncident sync4;
VAR syncident sync5;
VAR syncident sync6;
VAR syncident sync7;
VAR syncident sync8;
VAR syncident sync9;
VAR syncident syncl0;

PERS tasks tasklist{2}:=[["T_ROB_L"1, ["T_ROB_R"11;

CONST jointtarget
photoPos:=[[50.7374,-108.633,53.0334,208.473,-1.17635,-97.30271,
[-86.458,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST jointtarget
photoPos10:=[[80.6834,-101.674,35.5473,256.881,-57.7592,-178.45],
[-113.714,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget passPointl10:=[[253.71,-209.99,187.72],
[0.00851123,-0.0616072,-0.997919,-0.0170138], [1,2,0,4],
[-141.069,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

VAR bool yellow :=FALSE;

VAR bool white :=FALSE;

VAR bool red :=FALSE;

VAR bool blue :=FALSE;

VAR bool green :=FALSE;

VAR bool blue_in_place :=FALSE;
VAR bool green_in_place :=FALSE;
VAR bool yellow_in_place :=FALSE;
VAR bool white_in_place :=FALSE;
VAR bool red_in_place :=FALSE;

VAR bool ready :=FALSE;

VAR cameratarget cameratargetl;

CONST robtarget abovewWP10:=[[262.50,42.02,19.971,
[0.00702238,0.738477,-0.674185,-0.008743561, [1,3,0,41,
[153.482,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget aboveWP20:=[[458.31,24.25,71.331,
[0.00629773,0.68095,-0.732244,-0.00930247],[1,3,0,41,
[153.482,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget aboveWP30:=[[454.62,24.41,50.10],
[0.00629827,0.680952,-0.732242,-0.009302831, [1,3,0,41,
[153.481,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget aboveWP40:=[[454.62,24.41,65.21],
[0.0062994,0.68095,-0.732244,-0.00930237],[1,3,0,41,
[153.481,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget abovewWP50:=[[454.62,50.65,62.50],
[0.00629821,0.68095,-0.732244,-0.00929812],1(2,3,0,41,
[153.48,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget aboveWP60:=[[454.62,50.63,48.68],
[0.00631059,0.680948,-0.732245,-0.009291631, [2,3,0,41,
[153.479,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget aboveWP70:=[[454.62,43.34,48.68],
[0.00631171,0.680947,-0.732246,-0.009292361,[2,3,0,41,
[153.479,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP80:=[[454.62,55.53,48.681],
[0.00631106,0.680947,-0.732247,-0.009290611, [2,3,0,41,
[153.479,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget aboveWP90:=[[496.50,55.53,75.78],
[0.00630719,0.680947,-0.732247,-0.009284471,1(2,3,0,41,
[153.479,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget aboveWP100:=[[496.50,24.19,75.78],
[0.00631004,0.680945,-0.732249,-0.0092846],[2,3,0,41,
[153.478,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget abovewWP110:=[[496.52,24.13,75.781,
[0.00214193,-0.999409,0.0324964,0.0110175]1,[2,3,-1,41,
[153.478,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget abovewWP120:=[[496.52,24.14,50.041],
[0.00214212,-0.999409,0.0324936,0.011017]1,[2,3,-1,41,
[153.477,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget aboveWP130:=[[481.02,24.14,50.04],
[0.00214223,-0.999409,0.0324931,0.0110165], [2,3,-1,41,
[153.477,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget abovewWP140:=[[490.42,24.13,50.041],

[0.00213632,-0.999409,0.032496,0.0110142]1,[2,3,-1,41,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP150:=[[490.42,24.13,73.
[0.00213405,-0.999409,0.0324978,0.0110113],[2,3,-1,41,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP160:=[[456.36,20.73,54.
[0.0180065,-0.999647,-0.0137112,0.0138836], [1,3,-1,41,
[153.975,9E+09,9E+09, 9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP170:=[[420.01,24.11,73.
[0.0021187,-0.999409,0.0325046,0.0110179], [1,3,-1,4]1,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget abovewWP180:=[[420.01,24.09,50.
[0.0021036,-0.999408,0.0325085,0.0110247]1,[1,3,-1,41,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP190:=[[430.11,24.09,50.
[0.00210359,-0.999408,0.0325103,0.011026]1, [1,3,-1,4]1,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP200:=[[424.14,24.09,50.
[0.00210401,-0.999408,0.0325103,0.011026]1, [1,3,-1,4]1,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP210:=[[424.14,24.09,80.
[0.00210221,-0.999408,0.0325109,0.0110248], [1,3,-1,41,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP220:=[[453.59,24.09,80.
[0.00210025,-0.999408,0.0325118,0.01102211, [1,3,-1,41,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP230:=[[456.36,20.71,90.
[0.0179907,-0.999648,-0.0137035,0.013888], [1,3,-1,41,
[153.975,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP240:=[[456.36,20.71,90.
[0.0179898,-0.999648,-0.0137036,0.0138892]1, [1,3,-1,41,
[153.975,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floor2:=[[456.17,24.23,71.32],
[0.00631087,0.680946,-0.732248,-0.009297861, [1,3,0,41,
[153.482,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget floorl2:=[[456.17,24.23,60.42]
[0.00631093,0.680945,-0.732248,-0.009297921, [1,3,0,41,
[153.482,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget floor22:=[[456.17,44.19,71.31]
[0.00632586,0.680942,-0.732251,-0.0092921], [1,3,0,41,
[153.482,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget floor32:=[[456.17,45.34,56.30]
[0.00632468,0.680943,-0.73225,-0.00929128],(2,3,0,41,
[153.481,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget floor42:=[[456.17,43.71,56.30]
[0.00632329,0.680942,-0.732251,-0.009292271,1[2,3,0,41,
[153.48,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget floor52:=[[456.20,53.78,56.30]
[0.00632235,0.680943,-0.73225,-0.00929103],[2,3,0,41,
[153.48,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget floor62:=[[456.20,53.78,83.10]
[0.00632432,0.680942,-0.732251,-0.009289331, [1,3,0,41,
[153.48,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget floor72:=[[492.81,22.40,83.10]

571,

91],

561,

171,

171,

171,

42],

42],

o8],

08],

’

’

’

’

’

’

’

[0.00632226,0.680942,-0.732251,-0.009287591, [1,3,0,41,
[153.479,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget floor82:=[[492.87,22.42,83.10],
[0.0110481,-0.0434475,-0.998993,-0.00202396]1, [1,3,1,4],
[153.479,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floor92:=[[492.87,22.42,59.95],
[0.0110464,-0.0434492,-0.998993,-0.002023161, [2,3,1,4],
[153.478,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floor102:=[[480.78,22.42,59.95],
[0.0110476,-0.0434492,-0.998993,-0.002021381, [2,3,1,4],
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floorl112:=[[498.49,22.41,75.55],
[0.011036,-0.0434519,-0.998993,-0.002010521, [2,3,1,41,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floorl22:=[[419.30,22.41,75.55],
[0.0110417,-0.043456,-0.998992,-0.0020105], [1,3,1,4]1,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floorl32:=[[429.61,26.06,56.49],
[0.0110399,-0.0434531,-0.998992,-0.00201012]1, [1,3,1,4],
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floorl42:=[[409.35,26.06,71.28],
[0.0110395,-0.043454,-0.998992,-0.002006751, [1,3,1,41,
[153.477,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floor152:=[[452.35,-2.01,71.28],
[0.0110359,-0.0434544,-0.998992,-0.002007541, [1,3,1,4],
[153.476,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget floorl62:=[[452.35,-2.01,55.74],
[0.0110368,-0.0434533,-0.998993,-0.00200545]1, [1,3,1,4],
[153.476,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floorl72:=[[452.35,9.70,55.74],
[0.0110353,-0.0434537,-0.998993,-0.00200771, [1,3,1,41,
[153.476,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floor182:=[[452.35,0.17,67.06],
[0.0110352,-0.0434537,-0.998993,-0.002006761, [1,3,1,4],
[153.476,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floor192:=[[452.35,25.23,74.56],
[0.011032,-0.0434539,-0.998993,-0.002007361, [1,3,1,41,
[153.475,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget floor202:=[[452.92,28.61,63.68],
[0.00126995,0.00955331,-0.999856,0.01398351, [1,3,1,41,
[156.397,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget floor212:=[[452.94,28.28,73.06],
[0.00133556,0.00933585,-0.999849,0.01462661, [1,3,1,41,
[156.363,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget floor222:=[[446.97,27.99,95.74],
[0.00862998,-0.0208298,-0.999697,0.009865641, [1,3,1,4],
[153.836,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget floor232:=[[447.40,28.40,66.51],
[0.00827314,-0.0211588,-0.999703,0.008827121, [1,3,1,4],
[153.95,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget floor242:=[[446.97,27.99,95.91],
[0.00862664,-0.0208302,-0.999697,0.009865751, [1,3,1,4],
[153.836,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget floor252:=[[453.43,19.41,126.85],

[0.0174637,-0.0228552,-0.998993,0.034441],[1,3,1,4]1,
[153.77,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget floor262:=[[453.43,-212.51,126.85],
[0.0174588,-0.0228532,-0.998993,0.034443],[1,3,1,41,
[153.77,9E+09,9E+09,9E+09,9E+09, 9E+09]] ;

CONST robtarget safeUpl0:=[[319.34,-73.36,189.82],
[0.10164,0.738029,-0.66437,0.0599575],[1,2,0,4]1,
[-164.153,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP250:=[[447.96,24.92,77.481,
[0.010928,-0.643277,0.765552,-0.00234169], [1,2,0,4]1,
[-175.395,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveWP260:=[[448.32,25.54,69.39],
[0.0107708,-0.687358,0.726232,-0.00298403],[1,2,0,41,
[-175.394,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveWP270:=[[448.32,25.54,83.881,
[0.0107711,-0.687357,0.726234,-0.00298546], [1,2,0,4]1,
[-175.394,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveWP280:=[[448.32,47.56,83.881,
[0.0107714,-0.687357,0.726233,-0.00298611], [1,2,0,4]1,
[-175.394,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveWP290:=[[448.32,47.55,68.25],
[0.0107717,-0.687357,0.726233,-0.00298557], [1,2,0,41,
[-175.394,9E+09,9E+09, 9E+09,9E+09,9E+091] ;

CONST robtarget abovewWP300:=[[448.32,42.89,68.25],
[0.0107722,-0.687359,0.726232,-0.00298747]1,[1,2,0,41,
[-175.393,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP310:=[[492.02,22.95,86.75],
[0.00971065,0.0328106,0.999399,0.00555773],[1,3,1,41,
[-175.393,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget abovewWP320:=[[492.02,22.95,70.26],
[0.00971239,0.0328108,0.999399,0.00555609], [1,3,1,41,
[-175.393,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget abovewWP330:=[[475.76,22.95,70.26],
[0.00971375,0.0328105,0.999399,0.00555645], [1,3,1,41,
[-175.393,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP340:=[[417.06,22.95,85.58],
[0.00971085,0.0328128,0.999399,0.00555814], [1,2,1,4]1,
[-175.392,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP350:=[[417.06,22.95,66.65],
[0.00971141,0.032813,0.999399,0.00555769], [1,2,1,4],
[-175.392,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP360:=[[424.29,22.95,66.65],
[0.00971093,0.0328128,0.999399,0.00555672], [1,2,1,4]1,
[-175.391,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP370:=[[448.99,0.32,88.69],
[0.00971669,0.0328153,0.999399,0.00555338], [1,2,1,4],
[-175.389,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP380:=[[448.99,0.31,67.46],
[0.00971881,0.0328164,0.999399,0.00555259], [1,2,1,4],
[-175.388,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP390:=[[438.24,9.58,67.46],
[0.00971912,0.0328163,0.999399,0.0055538], [1,2,1,4],
[-175.387,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP400:=[[452.89,23.13,90.84],

[0.00972105,0.0328154,0.999399,0.00555112],[1,2,1,4]1,
[-175.386,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP410:=[[450.69,20.29,81.52],
[0.00829293,0.0398968,0.99897,0.01994941, [1,3,1,4],
[-178.145,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveWP420:=[[450.69,20.29,72.251,
[0.00829189,0.0398974,0.99897,0.0199499], [1,3,1,4],
[-178.145,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveWP430:=[[453.32,50.61,86.74],
[0.00969977,0.0328153,0.999399,0.00554626], [1,2,1,4]1,
[-175.393,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST jointtarget
photoPos20:=[[53.6922,-67.624,49.9305,274.915,-40.6568,-146.833],
[-99.2732,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget passPoint20:=[[253.71,-195.94,187.72],
[0.00851045,-0.0616068,-0.997919,-0.01701451, [1,2,1,4],
[-141.069,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveWP440:=[[455.30,0.44,80.41],
[0.00208294,-0.999408,0.0325202,0.0110275]1, [1,3,-1,41,
[153.476,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP450:=[[455.30,0.44,51.52],
[0.00208284,-0.999408,0.0325167,0.0110258], [1,3,-1,41,
[153.476,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveWP460:=[[455.30,10.51,51.52],
[0.00208341,-0.999408,0.0325183,0.0110275]1, [1,3,-1,41,
[153.476,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget passPoint30:=[[412.01,-175.97,158.161,
[0.00851856,-0.0616192,-0.997918,-0.01701411, [1,2,0,4],
[-141.067,9E+09,9E+09, 9E+09,9E+09,9E+091];

CONST robtarget passPoint40:=[[412.01,-175.97,55.731,
[0.0085216,-0.0616192,-0.997918,-0.01700911, [1,2,0,41,
[-141.065,9E+09,9E+09,9E+09,9E+09,9E+091];

CONST robtarget above_blue_piece:=[[412.00,-175.98,97.27],
[0.0085328,-0.061629,-0.997918,-0.0170061], [1,2,0,4]1,
[-141.063,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget at_blue_piece:=[[412.01,-176.06,45.54],
[0.00834812,-0.0616105,-0.99793,-0.01644781,[1,2,0,41,
[-141.064,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget above_green_piece:=[[414.11,-106.77,97.67],
[0.00853287,-0.061626,-0.997918,-0.01700841, [1,2,1,41,
[-141.061,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget at_green_piece:=[[414.10,-106.77,48.53],
[0.00853392,-0.0616244,-0.997918,-0.01700471, [1,2,0,4],
[-141.06,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

VAR bool first_done :=FALSE;

VAR bool second_done :=FALSE;

VAR bool third_done :=FALSE;

CONST robtarget passPoint50:=[[460.72,-106.35,69.84],

[0.0085238,-0.0616418,-0.997917,-0.01698661, [1,2,0,4],
[-141.061,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget passPoint60:=[[460.72,-106.35,45.95],

[0.0085232,-0.0616436,-0.997917,-0.01698521, [1,2,0,4],
[-141.06,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget passPoint70:=[[461.75,-175.97,103.63],
[0.0085321,-0.0616276,-0.997918,-0.01700511, [1,2,0,41,
[-141.063,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;
CONST robtarget passPoint80:=[[461.75,-175.98,47.12],
[0.00853214,-0.0616288,-0.997918,-0.0170021, [1,2,0,41,
[-141.062,9E+09,9E+09,9E+09,9E+09,9E+09]1] ;
PROC main()

preparation;

Stop;

Hand_SetHoldForce(12);

build_first_floor;

build_second_floor;

build_third_floor;
Stop;

ENDPROC

PROC preparation()
g_SetForce 5;
g_SetMaxSpd 3;
g_JogOut;
g_Jogln;
g_Calibrate;
g_Jogln;
'Move] startPoint, v1000, z50, tool@\WObj:=wobjo;
CamSetProgramMode upCam;
CamLoadJob upCam, detectjob;
CamSetRunMode upCam;
CamSetProgramMode rightHand;
CamLoadJob rightHand, readREDjob;
CamSetRunMode rightHand;
ENDPROC

PROC build_first_floor()

Movel safeUp, v4000, z50, tool@\WObj:=wobj0;

CamRegImage upCam;

CamGetResult upCam, mycameratarget;
wobjl.oframe := mycameratarget.cframe;

Movel safeUp, v4000, fine, tool@\WObj:=wobj0;
Movel safeUpl@, v4000, fine, tool@\WObj:=wobjo;
Movel aboveWP, v2500, fine, tool@\WObj:=wobjl;

g_GripOut;

MoveL myrobtarget, v1000, fine, tool® \WObj:=wobjl;

g_GripIn;

Movel aboveWP, v1000, fine, tool@\WObj:=wobjl;
WaitSyncTask\InPos, syncl, tasklist;

Movel passPoint, v1000, fine, toolo;
WaitSyncTask\InPos, sync2, tasklist;
WaitSyncTask\InPos, sync3, tasklist;

WaitSyncTask\InPos, sync4, tasklist;
g_MoveTo 10;
MovelL passPointl10, v1000, z50, tool@;

WaitSyncTask\InPos, sync5, tasklist;
g_GripIn;
MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos10\NoEOffs, v1000, z50, toolo;
WaitSyncTask\InPos, sync6, tasklist;
CamReqImage rightHand;

CamGetResult rightHand, cameratargetl;

IF cameratargetl.val2 =1
THEN
yellow := NOT yellow;
startbuilding_first;
ELSEIF
cameratargetl.vall
THEN
white := NOT white;
put_to_white_pos;
ELSEIF
cameratargetl.val3
THEN
red := NOT red;
put_to_red_pos;
ELSEIF
cameratargetl.val4d
THEN
blue := NOT blue;
put_to_blue_pos;
ELSEIF
cameratargetl.val5
THEN
green := NOT green;
put_to_green_pos;
ENDIF

1
=

1l
[

1l
[

1l
=

ENDPROC
PROC build_second_floor()

IF blue_in_place THEN
Movel above_blue_piece, v1000, z50, tool®;
g_MoveTo 10;
MovelL at_blue_piece, v100, fine, toolo;
g_GripIn;
MovelL above_blue_piece, v1000, z50, tool@;
startbuilding_second_straight;

ELSE
Movel safeUp, v1000, z50, tool@\WObj:=wobj0;
CamReqImage upCam;
CamGetResult upCam, mycameratarget;
wobjl.oframe := mycameratarget.cframe;

Movel safeUp, v1000, z50, tool@\WObj:=wobj0;
MovelL aboveWP, v500, z100, tool@\WObj:=wobjl;

g_MoveTo 15;

MoveL myrobtarget, v1000, fine, tool® \WObj:=wobjl;

g_GripIn;

Move] aboveWP, v1000, fine, tool@\WObj:=wobjl;

WaitSyncTask\InPos, syncl, tasklist;

Movel passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync2, tasklist;
WaitSyncTask\InPos, sync3, tasklist;
WaitSyncTask\InPos, sync4, tasklist;

g_MoveTo 10;

MovelL passPointl10, v1000, z50, tool@;
WaitSyncTask\InPos, sync5, tasklist;

g_GripIn;

MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos10\NoEOffs, v1000, z50, toolo;

WaitSyncTask\InPos, sync6, tasklist;

CamReqgImage rightHand;

CamGetResult rightHand, cameratargetl;

IF

cameratargetl.vall =1
THEN

white := NOT white;

put_to_white_pos;
ELSEIF

cameratargetl.val3d =1
THEN

red := NOT red;

put_to_red_pos;
ELSEIF

cameratargetl.val4 =1
THEN

blue := NOT blue;

startbuilding_second;
ELSEIF

cameratargetl.vald =1
THEN

green := NOT green;

put_to_green_pos;
ENDIF

ENDIF
ENDPROC

PROC build_third_floor()

IF green_in

ELSE

Movel s

_place THEN

Move] above_green_piece, v1000, z50, toolo;
g_MoveTo 10;

MovelL at_green_piece, v100, fine, toolo;
g_GripIn;

MovelL above_green_piece, v1000, z50, toolo;
startbuilding_third_straight;

afeUp, v1000, z50, tool@\WObj:=wobjo;

CamReqImage upCam;

CamGetResult upCam, mycameratarget;
wobjl.oframe := mycameratarget.cframe;

Movel safeUp, v1000, z50, tool@\WObj:=wobj0;
MovelL aboveWP, v500, z100, tool@\WObj:=wobj1l;

g_MoveTo 15;

MoveL myrobtarget, v1000, fine, tool® \WObj:=wobjl;

g_GripIn;

Movel aboveWP, v1000, fine, tool@\WObj:=wobjl;

WaitSyncTask\InPos, syncl, tasklist;

Movel passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync2, tasklist;
WaitSyncTask\InPos, sync3, tasklist;
WaitSyncTask\InPos, sync4, tasklist;

g_MoveTo 10;

MovelL passPointl10, v1000, z50, tool@;
WaitSyncTask\InPos, sync5, tasklist;

g_GripIn;

MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;

MoveAbsJ photoPos10\NoEOffs, v1000, z50, toolo;
WaitSyncTask\InPos, sync6, tasklist;

CamReqImage rightHand;

CamGetResult rightHand, cameratargetl;

IF

cameratargetl.vall =1
THEN

white := NOT white;

put_to_white_pos;
ELSEIF

cameratargetl.val3d =1
THEN

red := NOT red;
put_to_red_pos;

ELSEIF
cameratargetl.vald =1

THEN

green := NOT green;
startbuilding_third;
ENDIF
ENDIF
ENDPROC

PROC startbuilding_first()
MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos20\NoEOffs, v1000, z50, toolo;
Movel passPointl1l@, v1000, z50, tool@;
g_MoveTo 10;

WaitSyncTask\InPos, sync7, tasklist;
MovelL passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync8, tasklist;
g_GripIn;

WaitSyncTask\InPos, syncl@, tasklist;
WaitSyncTask\InPos, sync9, tasklist;
MovelL passPoint20, v1000, z50, tool@;

MovelL aboveWP20, v2500, fine, toolQ;

MovelL aboveWP30, v2500, fine, toolQ;
g_MoveTo 12;

MovelL aboveWP40, v1000, fine, toolQ;
g_GripIn;

MovelL aboveWP50, v100, fine, tool0;
MovelL aboveWP60, v100, fine, tool0;
MovelL aboveWP70, v100, fine, tool0;
MovelL aboveWP80, v100, fine, tool0;
MovelL aboveWP90, v100, fine, tool0;
MovelL aboveWP100, v100, fine, toolQ;
Move]l aboveWP110, v100, fine, toolQ;
MovelL aboveWP120, v100, fine, toolQ;
MovelL aboveWP130, v100, fine, toolQ;
MovelL aboveWP140, v100, fine, toolQ;
MovelL aboveWP150, v100, fine, toolQ;
MovelL aboveWP170, v100, fine, toolQ;

MovelL aboveWP180, v100, fine, toolQ;
MovelL aboveWP190, v100, fine, toolQ;
MovelL aboveWP200, v100, fine, toolQ;
MovelL aboveWP210, v100, fine, toolQ;
MovelL aboveWP220, v100, fine, toolQ;
MovelL aboveWP440, v100, fine, toolQ;
MovelL aboveWP450, v100, fine, toolQ;
MovelL aboveWP460, v100, fine, toolQ;
MovelL aboveWP450, v100, fine, toolQ;
MovelL aboveWP440, v100, fine, toolQ;
MovelL aboveWP220, v100, fine, toolQ;
g_MoveTo 4.1;

MovelL aboveWP160, v10, fine, tool0;
MovelL aboveWP230, v10, fine, tool0;
g_GripIn;
MovelL startPoint, v3000, fine, toolQ;
first_done := NOT first_done;
build_second_floor;

ENDPROC

PROC startbuilding_second()
MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos20\NoEOffs, v1000, z50, toolo;
Movel passPointl10, v1000, z50, tool@;
g_MoveTo 10;

WaitSyncTask\InPos, sync7, tasklist;
MovelL passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync8, tasklist;
g_GripIn;

WaitSyncTask\InPos, syncl@, tasklist;
WaitSyncTask\InPos, sync9, tasklist;
MovelL passPoint20, v1000, z50, tool@;
MoveL floor2, v2500, fine, tool@;
MoveL floorl2, v2500, fine, tooloQ;
g_MoveTo 12;

MoveL floor2, v1000, fine, tool@;
g_GripIn;

MoveL floor22, v100, fine, tool@;
MoveL floor32, v200, fine, tool@;
MoveL floor42, v100, fine, tool@;
MoveL floor52, v100, fine, tool@;
MoveL floor62, v100, fine, tool@;
MoveL floor72, v100, fine, tool@;
Movel floor82, v100, fine, tool0;
MoveL floor92, v100, fine, tool@;
MoveL floorl02, v100, fine, tool®
MoveL floorll2, v100, fine, tool®
MoveL floorl22, v100, fine, tool®
MoveL floorl132, v100, fine, tool®
MoveL floorl142, v30, fine, tool@;
MoveL floorl152, v30, fine, tool0;
MoveL floorl62, v30, fine, tool@;
MoveL floorl72, v30, fine, tool@;

MovelL
MovelL

floorl82,
floorl92,

g_MoveTo 4.2;

MovelL
MovelL
MovelL
MovelL

MovelL startPoint, v3000, fine, toolQ;

second_done := NOT second_done;

floor212,
floor202,
floor212,
floor222,

v30, fine, toolo;
v30, fine, toolo;

v20, fine, toolo;
v5, fine, toolo;
v5, fine, toolo;
v20, fine, toolo;

build_third_floor;

ENDPROC

PROC startbuilding_second_straight()

MoveL floor2, v2500, fine, tool@;
MoveL floorl2, v2500, fine, toolQ;
g_MoveTo 12;

MoveL floor2, v1000, fine, tool@;
g_GripIn;

MovelL
MovelL
MovelL
MovelL
MovelL
MovelL
Movel
MovelL
MovelL
MovelL
MovelL
MovelL
MovelL
MovelL
MovelL
MovelL
MovelL
MovelL

floor22,
floor32,
floor42,
floor52,
floor62,
floor72,
floor82,
floor92,
floorl02,
floorll2,
floorl22,
floorl32,
floorl4?2,
floorl52,
floorl62,
floorl72,
floorl82,
floorl92,

g_MoveTo 4.2;

MovelL
MovelL
MovelL
MovelL

floor212,
floor202,
floor212,
floor222,

v100,
v200,
v100,
v100,
v100,
v100,
v100,
v100,
v100,
v100,
v100,
v100,
v30,
v30,
v30,
v30,
v30,
v30,

fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,

fine,

fine,

fine,

fine,
fine,
fine,
fine,
fine,
fine,
fine,

tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;

tool0

tool0

tool0

tool0
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;

v20, fine, tool@;
v5, fine, toolo;
v5, fine, toolo;
v20, fine, tool@;

MovelL startPoint, v3000, fine, toolQ;
second_done := NOT second_done;

build_third_floor;

ENDPROC

PROC startbuilding_third()

MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos20\NoEOffs, v1000, z50, toolo;
Movel passPointl10, v1000, z50, tool@;

g_MoveTo 10;

WaitSyncTask\InPos, sync7, tasklist;
MovelL passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync8, tasklist;

g_GripIn;

WaitSyncTask\InPos, syncl@, tasklist;
WaitSyncTask\InPos, sync9, tasklist;
MovelL passPoint20, v1000, z50, tool@;

MovelL aboveWP250, v2500, fine, tool@\WObj:=wobj0;
v2500, fine, toolo;

MovelL aboveWP260,
g_MoveTo 15;
MovelL aboveWP270,
g_GripIn;

MovelL aboveWP280,
MovelL aboveWP290,
MovelL aboveWP300,
MovelL aboveWP290,
MovelL aboveWP430,
MovelL aboveWP310,
MovelL aboveWP320,
MovelL aboveWP330,
MovelL aboveWP320,
MovelL aboveWP310,
MovelL aboveWP340,
MovelL aboveWP350,
MovelL aboveWP360,
MovelL aboveWP350,
MovelL aboveWP340,
MovelL aboveWP370,
MovelL aboveWP380,
MoveL aboveWP390,
MovelL aboveWP380,
MovelL aboveWP370,
MovelL aboveWP400,
g_MoveTo 5.1;
MovelL aboveWP420,
MoveL aboveWP410,
g_GripIn;

Stop;

ENDPROC

v2500, fine, toolo;

v2500, fine, toolo;

v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,
v50,

v20,
v50,

fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,
fine,

fine,
fine,

tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;
tool0;

tool0;
tool0;

PROC startbuilding_third_straight()
MovelL aboveWP250, v2500, fine, tool@\WObj:=wobj0;
MovelL aboveWP260, v2500, fine, toolQ;
g_MoveTo 15;
MovelL aboveWP270, v2500, fine, toolQ;
g_GripIn;
MovelL aboveWP280, v2500, fine, toolQ;
MovelL aboveWP290, v50, fine, tool0;
MovelL aboveWP300, v50, fine, tool0;
MovelL aboveWP290, v50, fine, tool0;
MovelL aboveWP430, v50, fine, tool0;
MovelL aboveWP310, v50, fine, tool0;
MovelL aboveWP320, v50, fine, tool0;
MovelL aboveWP330, v50, fine, tool0;
MovelL aboveWP320, v50, fine, tool0;
MovelL aboveWP310, v50, fine, tool0;
MovelL aboveWP340, v50, fine, tool0;
MovelL aboveWP350, v50, fine, tool0;
MovelL aboveWP360, v50, fine, tool0;
MovelL aboveWP350, v50, fine, tool0;
MovelL aboveWP340, v50, fine, tool0;
MovelL aboveWP370, v50, fine, tool0;
MovelL aboveWP380, v50, fine, tool0;
MovelL aboveWP390, v50, fine, tool0;
MovelL aboveWP380, v50, fine, tool0;
MovelL aboveWP370, v50, fine, tool0;
MovelL aboveWP400, v50, fine, tool0;
g_MoveTo 5.1;
MovelL aboveWP420, v20, fine, tool0;
MovelL aboveWP410, v50, fine, tool0;
g_GripIn;

Stop;

ENDPROC

PROC put_to_white_pos()
MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos20\NoEOffs, v1000, z50, toolo;
Movel passPointl10, v1000, z50, tool@;
g_MoveTo 10;

WaitSyncTask\InPos, sync7, tasklist;
MovelL passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync8, tasklist;
g_GripIn;
WaitSyncTask\InPos, syncl@, tasklist;
WaitSyncTask\InPos, sync9, tasklist;
MovelL passPoint20, v1000, z50, tool@;
MovelL passPoint30, v1000, z50, tool@;
MovelL passPoint50, v1000, z50, tool@;
MovelL passPoint60, v1000, fine, toolo;

g_MoveTo 10;

MovelL passPoint50, v1000, z50, tool@;
white_in_place :=not white_in_place;

IF first_done THEN

build_second_floor;

ELSEIF not first_done THEN

build _first_floor;

ELSEIF first_done and second_done THEN
build_third_floor;

ENDIF

ENDPROC

PROC put_to_red_pos()

MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;

MoveAbsJ photoPos20\NoEOffs, v1000, z50, toolo;

Movel passPointl10, v1000, z50, tool@;

g_MoveTo 10;

WaitSyncTask\InPos, sync7, tasklist;

MovelL passPoint, v1000, z50, toolo;

WaitSyncTask\InPos, sync8, tasklist;

g_GripIn;

WaitSyncTask\InPos, syncl@, tasklist;

WaitSyncTask\InPos, sync9, tasklist;

MovelL passPoint20, v1000, z50, tool@;

MovelL passPoint30, v1000, z50, tool@;

MovelL passPoint70, v1000, z50, tool@;

MovelL passPoint80, v1000, fine, toolo;
g_MoveTo 10;
MovelL passPoint70, v1000, z50, tool@;

red_in_place :=not red_in_place;

IF first_done THEN
build_second_floor;

ELSEIF not first_done THEN

build_first_floor;

ELSEIF first_done and second_done THEN
build_third_floor;

ENDIF

ENDPROC
PROC put_to_blue_pos()

MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos20\NoEOffs, v1000, z50, toolo;
Movel passPointl10, v1000, z50, tool@;

g_MoveTo 10;

WaitSyncTask\InPos, sync7, tasklist;
MovelL passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync8, tasklist;
g_GripIn;
WaitSyncTask\InPos, syncl@, tasklist;
WaitSyncTask\InPos, sync9, tasklist;
MovelL passPoint20, v1000, z50, tool@;
MovelL passPoint30, v1000, z50, tool@;
MovelL passPoint40, v1000, z50, tool@;
MovelL at_blue_piece, v100, fine, toolo;
g_MoveTo 10;
MovelL above_blue_piece, v1000, z50, tool@;
blue_in_place :=not blue_in_place;

build first_floor;

ENDPROC

PROC put_to_green_pos()
MoveAbsJ photoPos\NoEOffs, v1000, z50, toolo;
MoveAbsJ photoPos20\NoEOffs, v1000, z50, toolo;
Movel passPointl10, v1000, z50, tool@;
g_MoveTo 10;

WaitSyncTask\InPos, sync7, tasklist;
MovelL passPoint, v1000, z50, toolo;
WaitSyncTask\InPos, sync8, tasklist;
g_GripIn;
WaitSyncTask\InPos, syncl@, tasklist;
WaitSyncTask\InPos, sync9, tasklist;
MovelL passPoint20, v1000, z50, tool@;
MovelL passPoint30, v1000, z50, tool@;
MovelL above_green_piece, v1000, z50, toolo;
MovelL at_green_piece, v100, fine, toolo;
g_MoveTo 10;
MovelL above_green_piece, v1000, z50, toolo;
green_in_place :=not green_in_place;
IF first_done THEN
build_second_floor;
ELSEIF not first_done THEN
build_first_floor;

ENDIF

ENDPROC

ENDMODULE

68

B Appendix

B.1 Java codes

This Appendix is intended to document Java programs, described in 3.5. The
programs have been created in Eclipse software. All the files in .java formate can be
found in Git repository.[26]

package mygame;

import
import
import
import
import
import
import
import
import

import

public

java.io.BufferedReader;
java.io.IOException;
java.io.InputStream;
java.io.InputStreamReader;
java.io.0bjectInputStream;
java.io.0bjectOutputStreanm;
java.io.PrintStream;
java.net.Socket;
java.net.UnknownHostException;

com. jme3.math.Vector3f;

class socket {

private static Socket socket;

public static void InitializeSocket() {

by

ObjectInputStream inStream = null;
ObjectOutputStream outStream = null;

try {
socket = new Socket("192.168.125.1", 4000);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

public static Socket getSocket() {

}

return socket;

public static void sendCommand(String s) throws
UnknownHostException, IOException {

ObjectInputStream inStream = null;
ObjectOutputStream outStream = null;

PrintStream p = new PrintStream(socket.getOutputStream());
p.printin(s);

InputStream input = socket.getInputStream();
BufferedReader reader = new BufferedReader(new

InputStreamReader(input));

String line = reader.readlLine();
System.out.println(line);

if (line.equals("received ")) {
System.out.println("continue");
} else {

System.exit(0);

’

}

public static void sendCommandl(String s, Vector3f vec, String
rt) throws UnknownHostException, IOException {

ObjectInputStream inStream = null;
ObjectOutputStream outStream = null;

PrintStream p = new PrintStream(socket.getOutputStream());
p.println(s + ";" + rt + ";" + vec.toString());
// System.out.println(p);

InputStream input = socket.getInputStream();

BufferedReader reader = new BufferedReader(new
InputStreamReader(input));

String line = reader.readlLine();

// System.out.println(line);

if (line.equals("received ")) {
System.out.println("done");
} else {
System.exit(0);

’

package mygame;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.net.UnknownHostException;
import java.util.ArraylList;

import java.util.HashMap;

import java.util.Iterator;

import java.util.List;

import java.util.Set;

import com.jme3.asset.AssetManager;

import com.jme3.math.FastMath;

import com.jme3.math.Vector3f;

import com.jme3.scene.Node;

import com.prosysopc.ua.ServiceException;

import com.prosysopc.ua.client.AddressSpaceException;
import com.prosysopc.ua.nodes.UaNode;

import com.prosysopc.ua.nodes.UaReference;

import aalto.types.DigitalProductDescription.CadPartType;
import aalto.types.DigitalProductDescription.CoordinateType;
import aalto.types.DigitalProductDescription.DigitalPartType;
import aalto.types.DigitalProductDescription.RectanglelLegoType;
import aalto.types.DigitalProductDescription.SquarelLegoType;
import opcua.Client;

/%
*
* @author ssierla
*/
public class DigitalTwin {
private int legoNum = 1; // for debugging

public Node node = new Node();

private HashMap<String, DigitalPart> map = new HashMap<String,
DigitalPart>();

private ArrayList connections =

private int connectionsSize = 0;

int count = 0;

private RobotArm assemblyArm;

private AssemblyStation assemblyStation;

private float assemblySurfaceHeight;

private MobileRobot mobileRobot;

new ArrayList();

ArrayList<DigitalPart> legos = new ArraylList(100);
ArrayList<DigitalPart> unassembledLegos = new ArrayList(100);
private DigitalPart lego;

private DigitalPart twinlLego;

private Trajectory trajectory;

float maxHeight = 4;

int legosSize;

float rot;

float rotPrev = 0;

int rotCounter = 0;

boolean trajectoryMotion = false;

boolean bottomReady = false;

boolean exploringTrajectory; // with digital twin

boolean rotationMotion; // as opposed to straight line motion

public static boolean connectingUpward = false;

boolean gotoLego = false;

boolean assemblyInProgress = false;

Vector3f trajectoryPoint;

// int approachAttempt = 0;

private boolean collisionDetection = false;

private boolean virtualAssemblyComplete = false;

private boolean physicalAssembly = false;

private boolean waitingForLego = false;

private boolean initialRotation = false;

private Cell cell;

private float biggestX = Main.dim * 10; // dimension of the
DigitalPart - default is for legos

private float biggestZ = Main.dim * 10;

public void initPhysicalAssembly() {

System.exit(0);

Main.helloText.setText("Physical assembly");

for (int i = 0; i < legosSize; i++) {
legos.get(i).assembled = false;
legos.get(i).state = LegoState.ToBeFetched;
node.detachChild(legos.get(i).node);
if (legos.get(i).northSouthOrientation()) {

legos.get(i).node.rotate(@, -1 *x FastMath.HALF_PI,
0);

b
legos.get(i).translate(legos.get(i).startLocation);

}

physicalAssembly = true;

bottomReady = false;

// Main.assemblyArm.rotateBack();

assemblyArm.initRotate(this);

connectingUpward = false;

// RobotArm.step = 0.02f;

// RobotArm.maxRotationStep = 300;

cell.attachNodeToRoot (true);

cell.getMobileRobot().start = true;
¥

public void receivePhysicallLego(String id) {
// System.out.println("Received " + id);
// RobotArm.step = 0.1f;
for (int i = 0; i < legosSize; i++) {
if (legos.get(i).id.equals(id)) {
legos.get(i).state = LegoState.AtAssembly;
node.attachChild(legos.get(i).node);

legos.get(i).node.rotate(-1 *
legos.get(i).orientation.getX(), -1 *
legos.get(i).orientation.getY(),

-1 x legos.get(i).orientation.getZ());

//
legos.get(i).translate(legos.get(i).startLocation);

/%

* if(legos.get(i).northSouthOrientation())
{ legos.get(i).node.rotate(0,

* —1xFastMath.HALF_PI, 0); }

*/

by

private boolean connectUpward(DigitalPart lego) {
if (!'lego.isLego()) {
return false;
b

for (int i = @; i < connectionsSize; i++) {
LegoConnection connection = (LegoConnection)
connections.get(i);

// if"lego" is to be connected to the bottom of an
assembled lego return true
if (lego.equals(connection.lego2) &&
connection. legol.assembled) {
String cpl = connection.connectionPoint1l;
if ((cpl.equals("bottom") || cpl.equals("bottomA")
|| cpl.equals("bottomB") || cpl.equals("bottomC"))) {
return true;
b

by

if (lego.equals(connection.legol) &&
connection.lego2.assembled) {
String cp2 = connection.connectionPoint2;
if ((cp2.equals("bottom") || cp2.equals("bottomA")
|| cp2.equals("bottomB") || cp2.equals("bottomC"))) {
return true;
}

by
by

return false;

}

public DigitalTwin(List<DigitalPartType> parts, Set<UaReference>
conns, AssetManager assetManager, Cell c,
Client uaClient) throws ServiceException,
AddressSpaceException {
cell = c;
mobileRobot = c.getMobileRobot();
assemblyStation = cell.requestAssemblyStation();

assemblyArm = assemblyStation.assemblyArm;
assemblySurfaceHeight = assemblyStation.getSurfaceHeight();

/*
* Iterating through all the parts and creating a
corresponding 3D-object.
*/
boolean firstPart = true;
DigitalPart p = null;
for (DigitalPartType part : parts) {
if (uaClient.compareType(part,
aalto.types.DigitalProductDescription.Ids.SquareLegoType)) {
SquareLegoType square = (SquarelLegoType) part;
String name = square.getDisplayName().getText();
String color = square.getColor();
p = new Square(name, color, assetManager);
} else if (uaClient.compareType(part,
aalto.types.DigitalProductDescription.Ids.RectangleLegoType)) {
RectangleLegoType rect = (RectanglelLegoType) part;
String name = rect.getDisplayName().getText();
String color = rect.getColor();
String orient = rect.getOrientation();
p = new Rectangle(name, color, orient,
assetManager);
} else {
CadPartType cad = (CadPartType) part;
String name = cad.getDisplayName().getText();
String color = cad.getColor();
String orient = cad.getOrientation();
String typeName =
cad.getTypeDefinition().getDisplayName().getText();
String path = cad.getPathToModel();
p = new CADpart(typeName, name, color,
assetManager, orient, path);
if ((2 * p.getXextent()) > biggestX) {
biggestX = p.getXextent() * 2 + Main.dim;

if ((p.getZextent() x 2) > biggestZ) {
biggestZ = p.getZextent() * 2 + Main.dim;

b

p.twin = this;

map.put(p.id, p);

if (firstPart) {
firstPart = false;
p.translateTarget(new Vector3f(-7, 0, -10));
p.assembled = true;
p.assemblyLocation = p.targetLocation;

b

node.attachChild(p.node);

legos.add(p);

/*

* This is here only for CAD-parts to work properly. It
gets all cadTypes from
* the address space and calls add3dparam once for each
connectionPoint of each
* type.
>k
* This is run every time the constructor is called and it
adds all cadTypes
* that are in the address space even if the digitalTwin
has no cad parts.
*/
for (UaNode type : uaClient.getCadTypes()) {
String typename = type.getDisplayName().getText();
for (CoordinateType connectionPoint :
uaClient.getConnectionPoints(type)) {
String name =
connectionPoint.getDisplayName().getText();
String coordinates = connectionPoint.getX() + "," +
connectionPoint.getY() + ","
+ connectionPoint.getZ();
CADpart.add3dParam(typename + name, coordinates);

by

/%
* Iterating through all OPC UA references between
connectionPoint and creating
* corresponding Connection-object.
*/
for (UaReference conn : conns) {
UaNode connectionPointl = conn.getSourceNode();
UaNode connectionPoint2 = conn.getTargetNode();
UaNode partl = uaClient.getPart(connectionPointl);
UaNode part2 = uaClient.getPart(connectionPoint2);
LegoConnection connection = new LegoConnection();
connection. legol =
map.get(partl.getDisplayName().getText());
connection. lego2 =
map.get(part2.getDisplayName().getText());
connection.connectionPointl =
connectionPointl.getDisplayName().getText();
connection.connectionPoint2 =
connectionPoint2.getDisplayName().getText();
connections.add(connection);
connectionsSize++;

}
assemblyStation.setSlotSpacing(biggestX, biggestZ);

Iterator it = map.entrySet().iterator();
DigitalPart lego;
int index = 0;
while (it.hasNext()) {
HashMap.Entry pair = (HashMap.Entry) it.next();

lego = (DigitalPart) pair.getValue();

// lego.startlLocation = new Vector3f(6.0f - 12.0f x
(index%2),

// assemblySurfaceHeight + Main.dim, -4.0f - 2.0f x*
(index/2));

lego.startLocation =
assemblyStation.slotPosition(index, lego.getYextent());

lego.translate(lego.startLocation);

// it.remove(); // avoids a
ConcurrentModificationException

index++;

I

// Now go through the lego connections and translate each
lego into the correct
// place
// We iterate until we find an unconnected connection
involving one lego that
// was already assembled
// With this tactic, we have to iterate over the
connections several times until
// everything is connected
boolean allConnected = false;
while ('!allConnected) {
allConnected = true;
Iterator<LegoConnection> itr = connections.iterator();
while (itr.hasNext()) {
Vector3f connectionPoint;

LegoConnection connection = itr.next();
if (connection.connected) {

continue;
}

allConnected = false;
if (connection.legol.assembled && !
connection.lego2.assembled) {
connectionPoint =
connection. legol.getConnectionPoint(connection.connectionPointl);
//
System.out.println(connectionPoint.toString());
// Now translate lego2 to the connectionPoint
of legol

connection.lego2.translateTarget(connectionPoint);

//
System.out.printin(connection. lego2.targetLocation.toString());

// Now translate lego2 so that its appropriate
connectionPoint is being

// connected

connection. lego2.translateConnectionPoint(connection.connectionPoint
2);

//
System.out.printin(connection. lego2.targetLocation.toString());

connection.lego2.assembled = true;
connection.lego2.assemblylLocation =
connection. lego2.targetLocation;
connection.connected = true;
¥

if (!'connection.legol.assembled &&
connection. lego2.assembled) {
connectionPoint =
connection. lego2.getConnectionPoint(connection.connectionPoint2);
// Now translate legol to the connectionPoint
of lego2

connection.legol.translateTarget(connectionPoint);

// Now translate legol so that its appropriate
connectionPoint is being

// connected

connection. legol.translateConnectionPoint(connection.connectionPoint
1);
connection.legol.assembled = true;
connection. legol.assemblyLocation =
connection. legol.targetLocation;
connection.connected = true;
b

b
b
legosSize = legos.size();
lego = legos.get(0);
lego.moving = true;

float bottom = 1000;
for (int i = 0; i < legosSize; i++) {
legos.get(i).assembled = false;
if (legos.get(i).assemblylLocation.getY() < bottom) {
bottom = legos.get(i).assemblyLocation.getY();
}

b
for (int i = 0; i < legosSize; i++) {
if (legos.get(i).assemblyLocation.getY() < bottom +
0.001f) {
legos.get(i).bottomLayer = true;
mobileRobot.addToQueue(legos.get(i));
b
b
float distanceToFloor = bottom - assemblySurfaceHeight -
lego.getYextent(); // 3#Main.dim;
for (int i = @0; i < legosSize; i++) {

legos.get(i).assemblyLocation.setY(legos.get(i).assemblyLocation.get
Y() - distanceToFloor);
}
}

public DigitalTwin(String fileName, AssetManager assetManager,
Cell c) {
cell = c;
mobileRobot = c.getMobileRobot();
assemblyStation = cell.requestAssemblyStation();
assemblyArm = assemblyStation.assemblyArm;
assemblySurfaceHeight = assemblyStation.getSurfaceHeight();

try {
BufferedReader reader = new BufferedReader(new
FileReader(fileName));
int lineCounter = 0;
String line;

boolean firstPart = true;
//uncomment

String start = new String("Start");

// socket.InitializeSocket();

// socket.sendCommand(start);

while ((line = reader.readLine()) '= null) {
String words[] = line.split(" ");

if (words[@l.equals("//")) {
continue;
¥

if (words[0].equals("create")) {
if (words[1].equals("square") ||
words[1].equals("SquareLego")) {
Square s = new Square(words[2], words[3],

assetManager);
s.twin = this;
map.put(s.id, s);
if (firstPart) {
firstPart = false;
s.translateTarget(new Vector3f(-7, 0,
-10));

s.assembled = true;
s.assemblyLocation = s.targetLocation;
s
node.attachChild(s.node);
legos.add(s);
} else if (words[1].equals("rectangle") ||
words[1].equals("RectangleLego")) {
Rectangle r = new Rectangle(words[2],
words[3], words[4], assetManager);
r.twin = this;
map.put(r.id, r);
if (firstPart) {
firstPart = false;
r.translateTarget(new Vector3f(-7, 0,
-10));
r.assembled = true;

r.assemblyLocation = r.targetLocation;
b
node.attachChild(r.node);
legos.add(r);
} else { // we assume it is a CADpart
CADpart p = new CADpart(words[1],
words[2], words[3], assetManager, words[4]);
p.twin = this;
map.put(p.id, p);
if (firstPart) {
firstPart = false;
p.translateTarget(new Vector3f(-7, 0,
-10));
p.assembled = true;
p.assemblyLocation = p.targetLocation;
b
node.attachChild(p.node);
legos.add(p);
if ((2 * p.getXextent()) > biggestX) {
biggestX = p.getXextent() *x 2 +
Main.dim;
b
if ((p.getZextent() x 2) > biggestz) {
biggestZ = p.getZextent() *x 2 +
Main.dim;

}

/%
x if (words[1].equals("faceplateback") ||
words[1].equals("FaceplateBack")) {
* FaceplateBack f = new
FaceplateBack(words[2], assetManager); f.twin = this;
* map.put(f.id,f); if (firstPart) { firstPart
= false; f.translateTarget(new
*x Vector3f(-7,0,-10)); f.assembled = true;
f.assemblylLocation =
x f.targetLocation; }
node.attachChild(f.node); legos.add(f); } if
* (words[1].equals("boltangular") ||
words[1].equals("BoltAngular")) {
* BoltAngular b = new BoltAngular(words[2],
assetManager); b.twin = this;
* map.put(b.id,b); if (firstPart) { firstPart
= false; b.translateTarget(new
*x Vector3f(-7,0,-10)); b.assembled = true;
b.assemblylLocation =
* b.targetLocation; }
node.attachChild(b.node); legos.add(b); } if
* (words[1].equals("bolt") ||
words[1].equals("Bolt")) { Bolt b = new
* Bolt(words[2], assetManager); b.twin = this;
map.put(b.id,b); if (firstPart)
x { firstPart = false; b.translateTarget(new

Vector3f(-7,0,-10)); b.assembled =

* true; b.assemblylLocation =
b.targetLocation; } node.attachChild(b.node);

*x legos.add(b); } if
(words[1].equals("shaft")|| words[1].equals("Shaft")) {

* Shaft s = new Shaft(words[2], assetManager);
s.twin = this; map.put(s.id,s);

x 1f (firstPart) { firstPart = false;
s.translateTarget(new

*x Vector3f(-7,0,-10)); s.assembled = true;
s.assemblylLocation =

* s.targetLocation; }
node.attachChild(s.node); legos.add(s); } if

* (words[1].equals("pendulum") ||
words[1].equals("Pendulum")) { Pendulum p =

* new Pendulum(words[2], assetManager,
words[3], words[4]); p.twin = this;

* map.put(p.id,p); if (firstPart) { firstPart
= false; p.translateTarget(new

*x Vector3f(-7,0,-10)); p.assembled = true;
p.assemblylLocation =

* p.targetLocation; }
node.attachChild(p.node); legos.add(p); }

*/

¥

if (words[0@].equals("param")) {
CADpart.add3dParam(words[1] + words[2],
words [3]);
b

if (words[@].equals("connect")) {
LegoConnection connection = new
LegoConnection();
connection.legol = map.get(words[1]);
connection.lego2 = map.get(words[3]);

connection.connectionPointl = words[2];
connection.connectionPoint2 = words[4];
connections.add(connection);
connectionsSize++;

/%

* String cpl = connection.connectionPointl;
if((cpl.equals("bottom") ||

* cpl.equals("bottomA") ||
cpl.equals("bottomB") || cpl.equals("bottomC"))) {

* connection.legol.connectUpward = false; }

*

* String cp2 = connection.connectionPoint2;
if((cp2.equals("bottom") ||

* cp2.equals("bottomA") ||
cp2.equals("bottomB") || cp2.equals(*"bottomC"))) {

* connection.lego2.connectUpward = false; }

*/

¥

} catch (IOException e) {
System.out.println("IOexception");
b

assemblyStation.setSlotSpacing(biggestX, biggestZ);

Iterator it = map.entrySet().iterator();
DigitalPart lego;
int index = 0;
while (it.hasNext()) {
HashMap.Entry pair = (HashMap.Entry) it.next();
lego = (DigitalPart) pair.getValue();
// lego.startlLocation = new Vector3f(6.0f - 12.0f x
(indexs2),
// assemblySurfaceHeight + Main.dim, -4.0f - 2.0f x
(index/2));
lego.startLocation =
assemblyStation.slotPosition(index, lego.getYextent());
lego.translate(lego.startLocation);
// it.remove(); // avoids a
ConcurrentModificationException
index++;
}

// Now go through the lego connections and translate each
lego into the correct
// place
// We iterate until we find an unconnected connection
involving one lego that
// was already assembled
// With this tactic, we have to iterate over the
connections several times until
// everything is connected
boolean allConnected = false;
while ('allConnected) {
allConnected = true;
Iterator<LegoConnection> itr = connections.iterator();
while (itr.hasNext()) {
Vector3f connectionPoint;

LegoConnection connection = itr.next();
if (connection.connected) {

continue;
b
allConnected = false;
if (connection.legol.assembled && !
connection.lego2.assembled) {
connectionPoint =
connection. legol.getConnectionPoint(connection.connectionPointl);
//

System.out.println(connectionPoint.toString());
// Now translate lego2 to the connectionPoint
of legol

connection.lego2.translateTarget(connectionPoint);

//
System.out.printin(connection. lego2.targetLocation.toString());

// Now translate lego2 so that its appropriate
connectionPoint is being

// connected

connection. lego2.translateConnectionPoint(connection.connectionPoint
2);
//

System.out.printin(connection. lego2.targetLocation.toString());
connection.lego2.assembled = true;
connection.lego2.assemblyLocation =

connection. lego2.targetLocation;
connection.connected = true;

}

if (!connection.legol.assembled &&
connection. lego2.assembled) {
connectionPoint =
connection. lego2.getConnectionPoint(connection.connectionPoint2);
// Now translate legol to the connectionPoint
of lego2

connection.legol.translateTarget(connectionPoint);

// Now translate legol so that its appropriate
connectionPoint is being

// connected

connection. legol.translateConnectionPoint(connection.connectionPoint
1);
connection.legol.assembled = true;
connection.legol.assemblylLocation =
connection. legol.targetLocation;
connection.connected = true;
}

b
b
legosSize = legos.size();
lego = legos.get(0);
lego.moving = true;

float bottom = 1000;
for (int i = 0; i < legosSize; i++) {
legos.get(i).assembled = false;
if (legos.get(i).assemblyLocation.getY() < bottom) {
bottom = legos.get(i).assemblyLocation.getY();
}

}

for (int i = @0; i < legosSize; i++) {

if (legos.get(i).assemblyLocation.getY() < bottom +
0.001f) {
legos.get(i).bottomLayer = true;
mobileRobot.addToQueue(legos.get(i));
b
b
float distanceToFloor = bottom - assemblySurfaceHeight -
lego.getYextent(); // 3*Main.dim;
for (int i = 0; i < legosSize; i++) {

legos.get(i).assemblyLocation.setY(legos.get(i).assemblyLocation.get
Y() - distanceToFloor);
b
b

// goes through all elements in list "legos" and puts
unassembled legos into the
// list "unassembledLegos"
// if they have a connection to an assembled lego
// then it goes through the list again and returns the one with
the lowest "y"
// assembly location
public DigitalPart nextUnassembledLego() throws
UnknownHostException, IOException {
unassembledLegos.clear();
for (int i = 0; i < legosSize; i++) {
if (legos.get(i).assembled == false) {
for (int j = 0; j < connections.size(); j++) {
LegoConnection conn = (LegoConnection)
connections.get(j);
if (conn.legol == legos.get(i)) {
if (conn.lego2.assembled) {
unassembledLegos.add(legos.get(i));
}

b
if (conn.lego2 == legos.get(i)) {
if (conn.legol.assembled) {
unassembledLegos.add(legos.get(i));

+
¥
¥
b
b
if (unassembledLegos.isEmpty()) {
//uncomment
String stopp = new String("Stop");
// socket.InitializeSocket();
// socket.sendCommand(stopp);
System.out.println("all connected");
return null;
}

DigitalPart retVal = unassembledLegos.get(0);

int index = 0;
for (int k = 1; k < unassembledLegos.size(); k++) {
if (unassembledLegos.get(k).assemblylLocation.getY() <
retVal.assemblyLocation.getY()) {
retVal = unassembledLegos.get(k);
index = Kk;
b
b
if (!physicalAssembly) {
mobileRobot.addToQueue(retVal);
b

return retVal;

by

public void immediateAssembly() {
for (int i = 0; i < legosSize; i++) {
legos.get(i).translate(legos.get(i).targetLocation);
if (legos.get(i).northSouthOrientation()) {
legos.get(i).node.rotate(@, FastMath.HALF_PI, 0);
b

by

public void collisionDetected() {
collisionDetection = false;
assemblyArm. rotateBack();
assemblyArm.initRotate(this);
rotationMotion = false; // in case a rotation was in

progress, we clear this boolean

createUnderneathApproachTrajectory();

¥

public void createUnderneathApproachTrajectory() {
trajectory = new Trajectory();
Vector3f v = lego.startLocation;
v = v.add(new Vector3f(@, 2.0f *x Main.dim, 0));

assemblyArm. initMove(v, this);

// Main.markerGeom.setLocalTranslation(v);

count++;

/%

* if (count > 4) { RobotArm.step = 0.01f; //
RobotArm.maxRotationStep = 500; }

*/

gotoLego = true;
Vector3f v@ = new Vector3f(lego.startLocation);
v0.setY(maxHeight);
trajectory.addPoint(v0);
Vector3f vl = new Vector3f(lego.assemblylLocation);
vl.setY(maxHeight);
if (!physicalAssembly) {
lego.approachAttempt += 1;

if (lego.approachAttempt == 1) { // towards negative X axis
trajectory.addPoint(vl.add(new Vector3f(20f * Main.dim,
0, 0)));
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(0,
FastMath.HALF_PI, 0));
b
Vector3f v3 = new
Vector3f(lego.assemblylLocation.add(new Vector3f(30f *x Main.dim, 2f x
Main.dim, 0)));
trajectory.addPoint(v3);
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new
Vector3f(FastMath.HALF_PI, @, 0));
} else {
trajectory.addRotateMove(new Vector3f(0, 0, -
FastMath.HALF_PI));
b
trajectory.addPoint(
new Vector3f(lego.assemblyLocation.add(new
Vector3f(20f * Main.dim, -4.5f * Main.dim, 0))));
trajectory.addPoint(new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, -4.5f % Main.dim,
2))));
trajectory.addPoint(new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, @f *x Main.dim,
0)))); // used to

// be 2f
// instead
// of 0Of
// fory

// coordinate
lego.node.rotate(FastMath.PI, 0, 0);
} else if (lego.approachAttempt == 2) { // toward positive
X axis
trajectory.addPoint(vl.add(new Vector3f(-27f x
Main.dim, @, 0)));
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(0,
FastMath.HALF_PI, 0));
b
Vector3f v3 = new
Vector3f(lego.assemblyLocation.add(new Vector3f(-27f * Main.dim,
0.5f * Main.dim, 0)));
trajectory.addPoint(v3);
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(-
FastMath.HALF_PI, 0, 0));

} else {
trajectory.addRotateMove(new Vector3f(o, 0,
FastMath.HALF_PI));
b
trajectory.addPoint(
new Vector3f(lego.assemblyLocation.add(new
Vector3f(-20f x Main.dim, -4.5f % Main.dim, 0))));
trajectory.addPoint(new
Vector3f(lego.assemblylLocation.add(new Vector3f(@, —-4.5f x Main.dim,
2))));
trajectory.addPoint(new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, @f * Main.dim,
0))));
if (physicalAssembly) {
lego.node.rotate(FastMath.PI, 0, 0);
b

} else if (lego.approachAttempt == 3) { // toward positive
Z axis
trajectory.addPoint(vl.add(new Vector3f(0, @, -15f x*
Main.dim)));
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(0,
FastMath.HALF_PI, 0));
b
Vector3f v3 = new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, 2f % Main.dim,
-15f * Main.dim)));
trajectory.addPoint(v3);
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(0, 0, -
FastMath.HALF_PI));
} else {
trajectory.addRotateMove(new Vector3f(-
FastMath.HALF_PI, @, 0));
b
trajectory.addPoint(
new Vector3f(lego.assemblyLocation.add(new
Vector3f(0, -4.5f x Main.dim, -5f * Main.dim))));
trajectory.addPoint(new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, -4.5f % Main.dim,
2))));
trajectory.addPoint(new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, @f * Main.dim,
0))));
if (physicalAssembly) {
lego.node.rotate(FastMath.PI, 0, 0);
b

} else if (lego.approachAttempt == 4) { // toward negative
Z axis
trajectory.addPoint(vl.add(new Vector3f(0, @, 15f x
Main.dim)));
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(0,
FastMath.HALF_PI, 0));

b
Vector3f v3 = new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, 2f * Main.dim,
15f * Main.dim)));
trajectory.addPoint(v3);
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(o, 0,
FastMath.HALF_PI));
} else {
trajectory.addRotateMove(new
Vector3f(FastMath.HALF_PI, @, 0));
b
trajectory.addPoint(
new Vector3f(lego.assemblyLocation.add(new
Vector3f(0, -4.5f x Main.dim, 5f % Main.dim))));
trajectory.addPoint(new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, -4.5f % Main.dim,
0))));
trajectory.addPoint(new
Vector3f(lego.assemblyLocation.add(new Vector3f(@, @f * Main.dim,
2))));
if (physicalAssembly) {
lego.node.rotate(FastMath.PI, 0, 0);
b

} else {
Main.helloText.setText("Unable to assemble this product
due to collisions");
Main.freeze = true;
}

trajectory.initTrajectory();
trajectoryMotion = true;

}

/I public boolean virtualAssemblyComplete() { return
virtualAssemblyComplete; }
p:élic void execute(float tpf) throws IOException, IOException {
/I if (connectingUpward) { Main.helloText.setText("Up"); }
etse * Main.helloText.setText("Down"); }
/j/physical assembly

// GREEN CODE STARTS HERE
if (waitingForlLego) {

if (lego.state == LegoState.AtAssembly) {
waitingForLego = false;

} else {

return;

}
// GREEN CODE ENDS HERE

if (!physicalAssembly && virtualAssemblyComplete) {
// Main.freeze = true;
initPhysicalAssembly();
RobotArm.step *x= 2;
// RobotArm.maxRotationStep = 1000;
return;

by

if (gotoLego) { // moving to lego start position
if (initialRotation) { // rotate before going to lego

if (assemblyArm.rotate(trajectoryPoint, false)) {
initialRotation = false;
return;

} else {
return;

¥

by

// BLUE CODE STARTS HERE
gotoLego = assemblyArm.move();
// BLUE CODE ENDS HERE

/%

* if(!gotolLego && (lego.orientation.getZ() > 0.1f))
{ Main.freeze = true;

*x return; }

*/

if (collisionDetection) {
assemblyArm.checkCollision();

b
if (!'gotoLego && 'assemblyArm.legoAttached()) {
/*
* if(legoNum == 2) { lego.connectArm(assemblyArm);

* lego.node.setlLocalTranslation(@, -3.0f x
Main.dim - lego.getYextent(), 0);

* Main.freeze = true; return; } else {

*/

String rotation = new String();
if (lego.northSouthOrientation()) {
trajectory.addRotateMove(new Vector3f(0,
FastMath.HALF_PI, 0));
String rota = new String('90");

// System.out.println(lego.id + " " + rota);

rotation = rota;

} else {
String rotno = new String("00");
rotation = rotno;

by

Vector3f y =
lego.targetLocation.subtract(legos.get(0@).targetLocation);

System.out.println(lego.id + " " + y);
//uncomment

// socket.InitializeSocket();
// socket.sendCommandl(lego.id, y, rotation);

lego.connectArm(assemblyArm);

/%

x if(lego.orientation != null)
{ if(lego.orientation.getZ() > 0.1f) {

* System.out.println(lego.getXextent());
System.out.println(lego.getYextent());

* System.out.println(lego.getZextent());

* lego.node.setLocalRotation(Quaternion.ZERO);

k
lego.node.setLocalTranslation(-1fxlego.getXextent(), —3*Main.dim,

*x 1fxlego.getYextent()); } } else {

*/

lego.node.setLocalTranslation(@, -3.0f *x Main.dim -
lego.getYextent(), 0);

// }

/%

x if(lego.orientation.getZ() > 0.1f) { Main.freeze
= true; return; }

*/

// lego.node.setLocalTranslation(@, -4.0f x
Main.dim, 0);

}

return; // we do not go on to do any of the other
motions that apply to the case that we
// have gripped a lego
b

if (trajectoryMotion) {
if (assemblyInProgress) {
assemblyInProgress = assemblyArm.move();
if (collisionDetection && connectingUpward &&
lego.islego()) {
assemblyArm.checkCollision();

return;

¥

if (rotationMotion) {
boolean bothJoints = true;
if (lego.orientation !'= null) {
if (lego.orientation.getZ() > 0.1f) {
bothJoints = false;
}

¥
boolean ready = assemblyArm.rotate(trajectoryPoint,
bothJoints);
if (collisionDetection && lego.islLego()) {
assemblyArm.checkCollision();
¥

if (ready) {

rotationMotion = false;
} else {

return;
¥

I
trajectoryPoint = trajectory.nextPoint();
if (!virtualAssemblyComplete) {
collisionDetection = true; // it will be set to
true when the arm is at lego start position with lego on
// board
I

if (trajectoryPoint == null) { // we are done with this

lego

/%

* if(lego.id.equalsIgnoreCase("rect11"))
{ Main.freeze = true; return; }

*/

legoNum++;

// approachAttempt = 1; // reset for next lego

lego. location = lego.node.getWorldTranslation();

trajectoryMotion = false;

lego.assembled = true;

lego.disconnectArm();

node.attachChild(lego.node);

if (connectingUpward) {
assemblyArm. rotateBack();
connectingUpward = false;
lego.node.rotate(FastMath.PI, 0, 0);
// assemblyArm.step = 0.05f;

} else {
assemblyArm.initRotate(this); // initRotate

resets everything else apart from the y rotation

assemblyArm. rotateBack();

}

} else {

if (trajectory.rotationMotion()) {
assemblyArm.initRotate(this);
rotationMotion = true;
return;

b

assemblyArm.initMove(trajectoryPoint, this);

if (lego.id.equalsIgnoreCase("rect2")) {

//
Main.helloText.setText(lego.assemblyLocation.toString() + " : " +
// lego.targetlLocation.toString());

by

assemblyInProgress = true;
return;

by

// if we get down here it means that the previous lego was
assembled and now we
// need to find the next lego
collisionDetection = false;
if (bottomReady) {
// RED CODE STARTS HERE
lego = nextUnassembledLego();
// RED CODE ENDS HERE
if (lego == null) {
if (physicalAssembly) {
Main.freeze = true;
cell.getMobileRobot().start = false;
return;
¥
virtualAssemblyComplete = true;
return;
}
if (physicalAssembly && (lego.state !=
LegoState.AtAssembly)) {
// System.out.printin("WAITING for: " + lego.id);
waitingForLego = true;

b

if (connectUpward(lego)) {
connectingUpward = true;
createUnderneathApproachTrajectory();
// lego.node.rotate(FastMath.PI, @, 0);
return;

}

trajectory = new Trajectory();
if (lego.rotationAxis.equalsIgnoreCase("z")) {
trajectoryPoint = new Vector3f(FastMath.HALF_PI, 0,
0);
initialRotation = true;

lego.moving = false;
if (lego.rotationAxis.equalsIgnoreCase("z")) {
// assemblyArm.step = 0.05f;
// RobotArm.maxRotationStep = 500;
Vector3f v = lego.startLocation.add(new Vector3f(0,
0, lego.getZextent()));
assemblyArm.initMove(v, this);
assemblyArm.connectionPoint = "z";

} else {

assemblyArm. initMove(lego.startLocation.add(lego.getGripperOffset())
, this);
assemblyArm.connectionPoint = null;

}

gotolLego = true;

Vector3f v@ = new Vector3f(lego.startLocation);

v0.setY(maxHeight);

trajectory.addPoint(v0);

/*

* Vector3f vl = new Vector3f(lego.startLocation);
vl.setY(maxHeight);

* trajectory.addPoint(vl);

*/

Vector3f v2 = new Vector3f(lego.assemblylLocation);
v2.setY(maxHeight);
trajectory.addPoint(v2);

/*

x if(lego.northSouthOrientation())
{ trajectory.addRotateMove(new

* Vector3f(@,FastMath.HALF_PI,0)); String rota = new
String("90");

* //System.out.println(rota); socket sock = new
socket();

* sock.sendCommand(lego.id,v2,rota);

%

%

* } else { String rotno = new String("00");

System.out.println(lego.id + " " +

x rotno); socket sock = new socket();
sock.sendCommand(lego.id,v2, rotno);

*

x }

*/

if (!lego.islLego() & (!lego.orientationZero)) {

trajectory.addRotateMove(lego.orientation);
}

trajectory.addPoint(lego.assemblylLocation.add(lego.getGripperOffset(
)));

trajectory.initTrajectory();
trajectoryMotion = true;
return;

¥

// if we get down here it means that the bottom layer is
not yet assembled
boolean unassembledBottomLegoExists = false; // ready =
true;
// look for an unassembled bottom layer lego
for (int i = 0; i < legosSize; i++) {
if (legos.get(i).bottomLayer && !
legos.get(i).assembled) {
unassembledBottomLegoExists = true;

trajectory = new Trajectory();
lego = legos.get(i);
lego.moving = false;

assemblyArm. initMove(lego.startLocation.add(lego.getGripperOffset())
, this);

Main.markerGeom.setLocalTranslation(lego.startLocation.add(lego.getG
ripperOffset()));

gotolLego = true;

Vector3f vl = new Vector3f(lego.startLocation);

vl.setY(maxHeight);

trajectory.addPoint(vl);

Vector3f v2 = new Vector3f(lego.assemblylLocation);

v2.setY(maxHeight);

trajectory.addPoint(v2);

// trajectory.addPoint(new
Vector3f(lego.assemblylLocation.add(new Vector3f(0o,

// ©0.5f*Main.dim, 0))));

trajectory.addPoint(lego.assemblylLocation.add(lego.getGripperOffset(
)));
trajectory.initTrajectory();
trajectoryMotion = true;
if (physicalAssembly && (lego.state !=
LegoState.AtAssembly)) {
// System.out.println("WAITING for: " +

lego.id);
waitingForLego = true;
b
return;
b
b
if (unassembledBottomLegoExists == false) {
bottomReady = true;
b

95

B.2 RAPID codes

This Appendix is intended to document RAPID program, described in 3.6. The
program has been created in ABB RobotStudio software. All the files in .MOD
formate can be found in Git repository.[26]

MODULE MainModule
VAR socketdev serverSocket;
VAR socketdev clientSocket;

VAR string data;

VAR string start;
VAR string stopcheck;
VAR bool okX;

VAR bool okY;

VAR bool okZ;

VAR bool okid;

VAR num foundx;
VAR num foundxend;
VAR num xlength;
VAR num foundy;
VAR num foundyend;
VAR num ylength;
VAR num foundz;
VAR num foundzend;
VAR num zlength;
VAR num findid;
VAR num findrot;
VAR num findsp;
VAR num idlength;
VAR num rotlength;
VAR num tryX;

VAR num tryY;

VAR num tryZ;

VAR num wpID;

VAR string rotinfo;
VAR string partx;
VAR string party;
VAR string partz;

VAR string nameWP;
VAR string rotation;
VAR string partID;

VAR bool dummy:=FALSE;
VAR bool rotreq:=FALSE;

PERS wobjdata wobjl:=[FALSE,TRUE,"", [[402.123,-85.4556,45.7888],
[0.714337,0.00384811,-0.00185838,-0.6997891],[[0,0,0],[1,0,0,0]11;

CONST robtarget aboveSquare:=[[392.82,84.68,85.85],
[0.008429,0.720698,0.693198,0.000710105], [1,-2,2,4],
[-157.745,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget atSquare:=[[392.82,84.68,46.20],
[0.00843173,0.720699,0.693197,0.0007107621, [1,-2,2,4],
[-157.745,9E+09,9E+09,9E+09,9E+09,9E+09]] ;

CONST robtarget aboveRect3:=[[390.39,123.44,88.20],

[0.0129949,0.702215,0.711759,0.01111231, [1,-2,2,4],
[-157.585,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget atRect3:=[[390.39,123.44,47.84],
[0.0129977,0.702214,0.71176,0.01111211, [1,-2,2,4],
[-157.585,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget atRect8:=[[391.14,172.92,45.46],
[0.0128495,0.708706,0.70537,0.004854251, [2,-2,2,4],
[-158.649,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveRect8:=[[391.14,172.92,84.90],
[0.0128481,0.708706,0.70537,0.004854151, [1,-2,2,4],
[-158.649,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget atRect7:=[[425.86,172.54,47.86],
[0.0128518,0.708709,0.705368,0.00482815]1, [2,-2,2,4]1,
[-158.652,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveRect7:=[[423.27,172.56,88.78],
[0.0128498,0.708707,0.705369,0.00485353],[2,-2,2,4]1,
[-158.652,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget atRect6:=[[452.98,172.55,48.75],
[0.0128577,0.708712,0.705364,0.00483975]1,[2,-2,2,41,
[-158.657,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveRect6:=[[455.40,172.56,90.45],
[0.0128522,0.70871,0.705367,0.00485411,[2,-2,2,41,
[-158.656,9E+09,9E+09, 9E+09, 9E+09, 9E+09] 1 ;

CONST robtarget atRect9:=[[359.26,172.53,45.95],
[0.012845,0.708706,0.70537,0.004817021, [1,-2,2,41,
[-158.656,9E+09,9E+09, 9E+09, 9E+09,9E+09] 1 ;

CONST robtarget aboveRect9:=[[359.75,172.57,93.39],
[0.0128469,0.708708,0.705369,0.00485374]1,[1,-2,2,41,
[-158.656,9E+09,9E+09, 9E+09, 9E+09,9E+09] 1 ;

CONST robtarget atRect10:=[[325.50,172.57,45.66],
[0.0128436,0.708708,0.705368,0.00484549],[1,-2,2,4]1,
[-158.655,9E+09,9E+09, 9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveRect10:=[[327.54,172.57,91.06],
[0.0128477,0.708708,0.705369,0.00485525],[1,-2,2,4]1,
[-158.655,9E+09,9E+09, 9E+09, 9E+09, 9E+09]] ;

CONST robtarget atRect5:=[[327.49,124.36,46.05],
[0.0128455,0.708708,0.705368,0.00485574]1,[1,-2,2,4]1,
[-158.65,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget aboveRect5:=[[327.49,124.36,89.91],
[0.0128451,0.708708,0.705369,0.00485555],[1,-2,2,4],
[-158.65,9E+09,9E+09,9E+09, 9E+09, 9E+09]] ;

CONST robtarget atRect4:=[[358.18,124.35,46.47],
[0.012843,0.708709,0.705367,0.004840291, [1,-2,2,4],
[-158.647,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveRect4:=[[359.41,124.36,87.84],
[0.0128455,0.708709,0.705367,0.00485432],[1,-2,2,4]1,
[-158.647,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget atRect2:=[[423.36,124.36,47.83],
[0.0128491,0.708709,0.705367,0.00485238],[1,-2,2,41],
[-158.648,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget aboveRect2:=[[423.36,124.36,95.78],
[0.0128489,0.708712,0.705364,0.00485348],[1,-2,2,4]1,
[-158.647,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

CONST robtarget atRectl:=[[455.30,124.36,48.38],

[0.0128577,0.708716,0.70536,0.004855691, [2,-2,2,4],
[-158.647,9E+09,9E+09,9E+09,9E+09,9E+09]1] ;

CONST robtarget aboveRectl:=[[455.29,124.37,107.15],
[0.0128557,0.708719,0.705357,0.00485413], [1,-2,2,4]1,
[-158.647,9E+09,9E+09,9E+09,9E+09,9E+09]1] ;

CONST robtarget safepos:=[[-85.23,-112.11,194.621,
[0.0451027,-0.414455,-0.908361,0.0327424]1,[1,-2,3,41,
[-176.223,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

CONST jointtarget home:=[[0,-130,30,0,40,0],
[-135,9E+09,9E+09, 9E+09, 9E+09,9E+09]] ;

VAR
VAR
VAR
VAR
VAR

VAR
VAR
VAR

robtarget trytarget;
robtarget trytarget2;
robtarget pushtarget;
robtarget pushtarget2;
robtarget abovetargetrot;

orient rotresta:=[0.00860358,-0.694976,0.718946,0.00714151];
confdata rotrestb:=[1,-2,1,4];
extjoint rotrestc:=[-146.79,9E+09,9E+09,9E+09,9E+09, 9E+09] ;

PROC main()

Hand_SetHoldForce(12);

Calibration;
Initialization;

WHILE dummy DO

SocketCreate serverSocket;

SocketBind serverSocket,"192.168.125.1",4000;
SocketListen serverSocket;

SocketAccept serverSocket,clientSocket,\Time:=WAIT_MAX;
SocketReceive clientSocket\Str:=data;

stopcheck:=StrPart(data,1,4);

IF stopcheck="Stop" THEN
dummy : =FALSE;
MoveAbsJ home\NoEOffs,v7000,fine,tool@\W0Obj:=wobjo0;
SendConfirmation;

ELSE

'Read rotation info
!Get the ID number

findid:=StrFind(data,1,STR_DIGIT);
findsp:=StrFind(data,1,";");
idlength:=findsp-findid;
partID:=StrPart(data,findid, idlength);
okid:=StrToVal(partID,wpID);

findrot:=StrFind(data, findsp+1,";");
rotlength:=findrot-(findsp+1);
rotation:=StrPart(data, findsp+1, rotlength);
IF rotation="90" THEN

rotreq:=TRUE;
ELSEIF rotation="00" THEN

rotreq:=FALSE;
ENDIF

!Get the ID number

findid:=StrFind(data,1,STR_DIGIT);
findsp:=StrFind(data,1,";");
idlength:=findsp-findid;
partID:=StrPart(data, findid, idlength);
okid:=StrToVal(partID,wpID);
nameWP:=StrPart(data, 1, findid-1);
IF nameWP="Square" THEN
Move] aboveSquare,vmax,fine,tool0;
g_MoveTo 19.7;
MovelL atSquare,vmax,fine,toolo;
g_Jogln;
MovelL aboveSquare,vmax,fine,toolo;
ELSEIF nameWP="Rectan" THEN
IF wpID=1 THEN
'go to squarel
Move]l aboveRectl,vmax,fine,tool0;
g_MoveTo 19.7;
MovelL atRectl,vmax,fine,tool®;
g_GripIn;
Movel aboveRectl,vmax, fine,tool0;
ELSEIF wpID=2 THEN
'go to square2
Move]l aboveRect2,vmax, fine,tool0;
g_MoveTo 19.7;
MovelL atRect2,vmax,fine,tool®;
g_GripIn;
Movel aboveRect2,vmax, fine,tool0;
ELSEIF wpID=3 THEN

Movel aboveRect3,v1000,fine,tool0;

g_MoveTo 19.7;

MovelL atRect3,v100,fine,tool0;

g_GripIn;

Movel aboveRect3,v1000,fine,tool0;
ELSEIF wpID=4 THEN

'go to square4d

Movel aboveRect4,vmax, fine,tool0;

g_MoveTo 19.7;

MoveL atRect4,vmax,fine,tool0;

g_GripIn;

Movel aboveRect4,vmax, fine,tool0;
ELSEIF wpID=5 THEN

'go to squareb

Move]l aboveRect5,vmax, fine,tool0;

g_MoveTo 19.7;

MovelL atRect5,vmax,fine,tool0;

g_GripIn;

Movel aboveRect5,vmax, fine,tool0;
ELSEIF wpID=6 THEN

!go to squareb

Move]l aboveRect6,vmax, fine,tool0;

g_MoveTo 19.7;

MovelL atRect6,vmax,fine,tool0;

g_GripIn;

Move]l aboveRect6,vmax, fine,tool0;
ELSEIF wpID=7 THEN

'go to square?

Move]l aboveRect7,vmax, fine,tool0;

g_MoveTo 19.7;

MovelL atRect7,vmax,fine,tool0;

g_GripIn;

Movel aboveRect7,vmax, fine,tool0;
ELSEIF wpID=8 THEN

!go to square8

Move]l aboveRect8,vmax,fine,tool0;

g_MoveTo 19.7;

MovelL atRect8,vmax,fine,tool0;

g_GripIn;

Move]l aboveRect8,vmax,fine,tool0;
ELSEIF wpID=9 THEN

'go to square9

Movel aboveRect9,vmax,fine,tool0;

g_MoveTo 19.7;

MovelL atRect9,vmax,fine,tool0;

g_GripIn;

Movel aboveRect9,vmax,fine,tool0;
ELSEIF wpID=10 THEN

!go to squarel@

Movel aboveRect10,vmax,fine,tool0;

g_MoveTo 19.7;

MovelL atRectl10,vmax,fine,tool0;

g_GripIn;

Movel aboveRect10,vmax,fine,tool9;

ENDIF

ENDIF

foundx:=StrFind(data,1,"(");
foundxend:=StrFind(data,1,",");
xlength:=foundxend-(foundx+1);
partx:=StrPart(data, foundx+1,xlength);
okX:=StrToVal(partx, tryX);
foundz:=StrFind(data, foundxend+1,",");

zlength:=foundz-(foundxend+1);
partz:=StrPart(data, foundxend+1,zlength);
okZ:=StrToVal(partz,tryZ);
foundy:=StrFind(data, foundz+1,")");
ylength:=foundy-(foundz+1);
party:=StrPart(data, foundz+1,ylength);
okY:=StrToVal(party, tryY);

trytarget:=[[tryX«24,tryY*24, tryZ+«24+301],

[0.00702104,-0.00906265,-0.999928,0.00352561], [1,-2,2,4],

Movel safepos,vmax,fine,tool@\WObj:=wobjl;
Movel trytarget,vmax, fine,tool@,\Wobj:=wobj1;

IF rotreq=TRUE THEN
lapply rotation of the last joint

abovetargetrot:=[[tryXx24,tryYx24,tryZx24+30],rotresta, rotrestb, rotr
estcl;

Movel
abovetargetrot,vmax, fine, tool0\WObj:=wobj1;

trytarget2:=[[tryXx24-1.6,tryYx24,tryZ*x24+2.5],rotresta, rotrestb, rot
restels MovelL trytarget2,v100,fine,tool@\WObj:=wobj1;
g_GripOut;
MovelL
abovetargetrot,vmax, fine, tool@\WObj:=wobj1;

FOR i FROM 1 TO 2 DO

pushtarget:=[[tryXx24,tryY*«24+5.44,tryZ*x24+20],
[0.00707566,0.000428977,-0.999969, 0.003444611, [1,-2,1,41],

MovelL
pushtarget,v100,fine,tool@,\Wobj:=wobj1;

g_MoveTo 1;

pushtarget2:=[[tryXx24,tryY*24+5.44,tryZ*x24+7.64],
[0.00707566,0.000428977,-0.999969,0.00344461], [1,-2,1,4],
[-105.113,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

MovelL
pushtarget2,v10,fine,tool0,\Wobj:=wobj1;

MovelL
pushtarget,v100, fine,tool0,\Wobj:=wobj1;

pushtarget2:=[[tryXx24,tryY*24+5.44-10,tryZ*x24+7.64],
[0.00707566,0.000428977,-0.999969,0.003444611, [1,-2,1,4],
[-105.113,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

Movel
pushtarget2,v10,fine,tool@,\Wobj:=wobj1;

Movel
pushtarget,v100,fine,tool@,\Wobj:=wobj1;

pushtarget2:=[[tryXx24,tryY*24+5.44+10,tryZ*x24+7.64],
[0.00707566,0.000428977,-0.999969,0.00344461], [1,-2,1,4],
[-105.113,9E+09,9E+09, 9E+09,9E+09,9E+09]1];
MovelL
pushtarget2,v10, fine,tool@,\Wobj:=wobj1;
MovelL
pushtarget,v100, fine,tool@,\Wobj:=wobj1;
ENDFOR
Movel safepos,vmax,fine,tool@\WObj:=wobjl;
ELSE
'just continue

trytarget2:=[[tryX*«24+1, tryY*24+2,tryZ*x24+1.5],
[0.00702104,-0.00906265,-0.999928,0.003525611], [1,-2,2,4],
[-145.573,9E+09, 9E+09, 9E+09,9E+09, 9E+09] | ;

MoveL trytarget2,v100,fine,tool@\WObj:=wobjl;

g_MoveTo 19.7;

MoveL trytarget,vmax,fine,tool@,\Wobj:=wobjl;
FOR i FROM 1 TO 2 DO
pushtarget:=[[tryXx24,tryYx24,tryZ*x24+20],
[0.00209069,-0.727174,-0.686409,0.00744442],[1,-2,2,4],
[-98.2663,9E+09,9E+09,9E+09, 9E+09,9E+09]] ;

MovelL
pushtarget,v100,fine,tool@,\Wobj:=wobj1;

g_MoveTo 1;

pushtarget2:=[[tryXx24, tryYx24+1, tryZx24+7.64],
[0.00209069,-0.727174,-0.686409,0.00744442],[1,-2,2,4],
[-98.2663,9E+09,9E+09, 9E+09,9E+09,9E+09]1] ;

MovelL
pushtarget2,v10, fine,tool@,\Wobj:=wobj1;

MovelL
pushtarget,v100, fine,tool@,\Wobj:=wobj1;

pushtarget2:=[[tryXx24+7,tryY*24+1,tryZ*x24+7.64],
[0.00209069,-0.727174,-0.686409,0.00744442],[1,-2,2,4],
[-98.2663,9E+09,9E+09,9E+09,9E+09,9E+09]1] ;

MovelL
pushtarget2,v10,fine,tool@,\Wobj:=wobj1;

Movel
pushtarget,v100, fine,tool@,\Wobj:=wobj1;

pushtarget2:=[[tryXx24-7,tryYx24+1,tryZ*x24+7.64],
[0.00209069,-0.727174,-0.686409,0.007444421,[1,-2,2,41,
[-98.2663,9E+09,9E+09, 9E+09,9E+09,9E+091] ;

Movel
pushtarget2,v10,fine,tool@,\Wobj:=wobj1;

Movel
pushtarget,v100,fine,tool0,\Wobj:=wobj1;

ENDFOR
Movel safepos,vmax,fine,tool@\WObj:=wobjl;
ENDIF

SendConfirmation;

ENDIF
ENDWHILE

ERROR
IF ERRNO=ERR_SOCK_TIMEOUT THEN
RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN
SocketClose clientSocket;
SocketClose serverSocket;
SocketCreate serverSocket;
SocketBind serverSocket,"192.168.125.1",4000;
SocketListen serverSocket;

SocketAccept serverSocket,clientSocket,\Time:=WAIT_MAX;

RETRY;

ENDIF
ENDPROC

PROC Calibration()
g_SetForce 5;
g_SetMaxSpd 10;
g_JogOut;
g_JogIn;
g_Calibrate;
g_JogIn;

ENDPROC

PROC Initialization()
SocketCreate serverSocket;
SocketBind serverSocket,"192.168.125.1",4000;
SocketListen serverSocket;
SocketAccept serverSocket,clientSocket,\Time:=WAIT_MAX;
SocketReceive clientSocket\Str:=data;
start:=StrPart(data,1,5);
IF start="Start" THEN

dummy :=TRUE;

Movel safepos,vmax,fine,tool@\WObj:=wobjl;
ELSE

dummy : =FALSE;
ENDIF

SendConfirmation;
ENDPROC

PROC SendConfirmation()
SocketSend clientSocket\Str:="received ";
SocketClose clientSocket;

SocketClose serverSocket;
ENDPROC

ENDMODULE

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Background
	1.2 Thesis Structure

	2 Integrated Vision Approach
	2.1 Background
	2.2 Concept
	2.3 Set-up Description
	2.4 Camera Set Up
	2.5 Camera to Robot Calibration
	2.6 Hands Synchronization
	2.7 Integrated Vision Jobs
	2.7.1 Location Detection
	2.7.2 QR Code Reading

	2.8 Results

	3 From Digital Twins to Product Assembly
	3.1 Background
	3.2 Concept
	3.3 Assembly Planning and Modelling Framework
	3.4 From Virtual to Physical: From Digital Twin to Assembly
	3.5 Planning and Modelling from the Framework Side
	3.6 YuMi Robot Controller Side
	3.7 Case Studies
	3.7.1 Case Study 1 "Square Tower"
	3.7.2 Case Study 2 "Pyramid Tower"

	3.8 Results
	3.9 Possible Enhancements

	4 Conclusions
	A Appendix
	A.1 CAD Drawings
	A.2 Programs for the left and for the right hands

	B Appendix
	B.1 Java codes
	B.2 RAPID codes

