

Aalto University, P.O. BOX 11000, 00076 AALTO

www.aalto.fi

Abstract of master's thesis

ii

Author Salik Ahmed Khan

Title of thesis Granularity in Visualisation of 3D BIM Models: Design Science Approach

Master programme Building Technology Code ENG27

Thesis supervisor(s) Prof. Vishal Singh, Prof. Sudhir Misra

Thesis advisor(s) D.Sc. Seppo Törmä, D.Sc. Mehmet Yalcinkaya

Date 27.05.2019 Number of pages xii + 97 Language English

Abstract

Building Information Modeling (BIM) has gradually grown into one of the key information

management platforms in the Architecture, Engineering and Construction industry. With

the growing amount of information in and outside the digital construction industry, concepts

of information retrieval like relevance and granularity have become relevant in this domain.

An increased need for interoperability and easy access to information has caused the

industry to look towards concepts like the semantic web and linked data. But within all this,

the geometrical visualisation, which is an integral part of the BIM process, has lagged

behind on the front of granularity and still seems to be done mainly using the conventional

ways. We try to explore ways to introduce granularity in the visualisation of 3D BIM

models, and connecting it to the semantic information which is already granular, thus

creating a mapping between the two at a granular level. A web-based prototype is

implemented and analysed as a proof of the presented concept, with the semantics being

represented inside a graph-based data structure.

We further present a discussion on the potential applications and use cases of the

conceptualised framework in the field of construction and building lifecycle management.

The work aims to take the first step towards modularising the visualisation process, and has

tried to pave the way for detailed analyses and further improvements that may follow in this

direction.

Keywords Building Information Modeling, Granularity, Visualisation, 3D Building Models,

Facility Management, Construction Management, Graph Database, Web 3D Rendering

Acknowledgements

I start in the name of Allah, the Almighty. All praises and thanks belong
to Him, for His endless blessings bestowed upon me, especially during this
period of my master’s project. I acknowledge that my success is only from
Allah. The next I would like to thank my parents for providing constant
support throughout my life, always trying to provide the best for me, and
allowing me to pursue what I wanted. Without your prayers and support, I
would never have achieved anything which I did.

I express my gratitude to Prof. Sudhir Misra for his constant support through-
out my stay at IIT Kanpur, and the process of my travel to Finland with the
academic as well as the administrative issues. He is the one who introduced
me to the domain of Infrastructure Management, and helped me develop an
understanding and interest through his multiple courses and projects. I also
thank Prof. Vishal Singh from the bottom of my heart for his acceptance to
supervise my thesis as a part of the exchange program, and for his guidance
and important advice throughout the project and beyond. He is a true in-
novator and thinker, and has over the period of this time helped me develop
a systematic thinking approach towards research in general. I did not have
much experience of doing research, and in the area of BIM in particular,
when I first came to Finland. But through his support and guidance, I was
able to accomplish a full master’s project related to BIM. I would also like
to thank all the other professors and instructors at IIT Kanpur who have
enriched me with their teaching and guidance during the course work.

Another persons who have helped me through my project are my advisors,
Mehmet and Seppo. They introduced me to the idea of granularity and its im-
portance, and through their expert knowledge and skills in this domain, have
helped me develop a more wholesome understanding of this topic. Further,
they helped me tackle with the various technical and theoretical difficulties
that came up during the implementation process. I would like to thank both
of them wholeheartedly for their support. I would also take this opportunity
to thank Daniel Zibion, who worked previously in this research group, and

iii

whose work I built upon. He provided me with all the details of his work,
explaining me how it worked and how I can contribute to it. His support has
been really important for me to achieve what I did.

I found many supportive friends and colleagues during my stay at Finland,
including my lab mates Siyan, Mustafa, Antti, Ala, Jerry, Jyrki, Saeed, Ana,
Chris and everyone else. I would like to thank all of them for the insightful
discussions we had. Those really helped me along my way, and opened my
thoughts to a lot of different perspectives. Special thanks to Siyan and
Antti for those badminton matches, and to Chris and Jerry for the football
night. I want to specially thank brother Mustafa who has been like an elder
brother all through my time in Finland, helping me out with every issue, be
it academic or personal, and sincerely advising me from his experiences in life
as a student, and otherwise. I found some gems of friends and neighbours in
Abdullah, Omer, Taha, Waqar, Shahrukh, Jaisal, Khoa, Udit, Manoj, Kunj,
Sebastian and many others who have made my stay in Finland much more
wonderful and easy.

I would like to thank Aalto University and the administrative staff over
here for giving and helping me with this lifetime opportunity to study as an
exchange student, and for funding my stay here in Finland. I would like to
thank the staff of OIR office and DOAA office, IIT Kanpur, especially Sarkar
ji for his support with all the paper work and procedures. I also express my
gratitude towards the DORA office, IIT Kanpur which provided me with
advance funding to make my travel to Finland possible.

Finally, I would also like to mention of my friends from IIT Kanpur who have
constantly been in touch with me and provided an emotional support and
motivation whenever I needed. Thank you Prakhar, Prasad, Tasnim, Tau,
Ayush, and all other wingies and friends for these memorable years at IIT
Kanpur. I would never forget these wonderful years of my life which have
transformed me into a better person than I was before.

Thank you!

Espoo, May 27, 2019

Salik Ahmed Khan

iv

Contents

Acknowledgements iii

List of Tables viii

List of Figures ix

Abbreviations and Acronyms xi

1 Introduction 1
1.1 Motivation . 3
1.2 Identifying the Research Gap 5
1.3 Scope of the Thesis . 7
1.4 Research Questions . 8
1.5 Research Methodology . 9
1.6 Thesis Outline . 9

2 Background 11
2.1 Information Retrieval (IR) . 12

2.1.1 Definition and History of IR 12
2.1.2 Characteristics of Retrieved Information 13

2.1.2.1 Relevance . 14
2.1.2.2 Speed . 14
2.1.2.3 Context . 15

2.1.3 Granularity without Losing Context 15
2.2 Granular Information in BIM Context 16

2.2.1 Granular BIM - Linked Building Data 17
2.2.1.1 Towards Granular Web 17
2.2.1.2 Semantic Information within BIM 18
2.2.1.3 Graph Based Data Structures 18
2.2.1.4 Evolution of Granular BIM 19

2.2.2 Geometric Information in BIM 20

v

2.2.2.1 Representation within IFC 22
2.2.2.2 Representation within RDF 23
2.2.2.3 Later Developments and Current Work 23

2.2.3 Connecting Geometry to Semantics 24
2.3 Visualisation of BIM & Current Efforts for Granularity 25

2.3.1 Importance of Visualisation 25
2.3.2 Current BIM Software - Are they really granular? . . . 26
2.3.3 Possible Improvements for Granularity 28

3 Proposed Solution Approach 29
3.1 Requirements . 29
3.2 Primary Challenges . 31
3.3 Concept . 32

3.3.1 Creating Geometry from IFC 33
3.3.2 Exporting Semantics from IFC 34
3.3.3 Loading Geometry onto Web-based Platform 34
3.3.4 Connecting Geometry to the Semantics 35

3.4 How is it Different from 2D Approach? 35

4 Technological Tools 37
4.1 Data Models & File Formats 37

4.1.1 Industry Foundation Classes (IFC) 38
4.1.1.1 A Brief History 38
4.1.1.2 Architecture and Data Model 40
4.1.1.3 Putting into Context 41

4.1.2 Collaborative Design Activity (COLLADA) 43
4.1.2.1 Background and Data Structure 43
4.1.2.2 Relevance . 45

4.1.3 GL Transmission Format (glTF) 46
4.1.3.1 Background and Data Structure 46
4.1.3.2 Relevance . 48

4.2 Pre-Processing Tools . 49
4.2.1 IfcOpenShell . 49
4.2.2 Collada2GLTF Converter 50
4.2.3 IFC2Graph Converter 50

4.3 Web Development Tools . 51
4.3.1 Web 3D Rendering and Associated Technologies 52

4.3.1.1 Background 52
4.3.1.2 WebGL . 52
4.3.1.3 Three.js . 54

4.3.2 React.js . 55

vi

4.4 Graph Database . 59
4.4.1 Neo4j . 60
4.4.2 Cypher . 62
4.4.3 Neo4j JavaScript Driver 63

5 Prototype Implementation 65
5.1 Pre-Processing . 65

5.1.1 Converting Implicit Geometry to Explicit 65
5.1.1.1 Choice of File Formats 66
5.1.1.2 IFC to Collada Conversion 68
5.1.1.3 Collada to glTF Conversion 69

5.1.2 Converting IFC Semantics to Neo4j Graph 69
5.2 Rendering . 70

5.2.1 Mode of Rendering . 70
5.2.2 Choice of Renderer . 70
5.2.3 Connecting Renderer to Graph Database 71
5.2.4 Creating a Scene in Three.js 72
5.2.5 Loading elements from External Files 72
5.2.6 Relative Positioning of Elements 73

5.3 Interactivity . 74
5.3.1 On-Click Capture - Possible Options 74
5.3.2 Three.js Bounding Box 76
5.3.3 Intersection Using Raycaster 76
5.3.4 Challenges Faced . 78

5.4 Integration with 2D platform 78
5.4.1 Characteristics of 2D Platform 78
5.4.2 Possible Options for Integration 78
5.4.3 Three.js inside React.js 79

6 Discussion 80
6.1 In Context of AEC/FM Industry 80

6.1.1 Facility Management 80
6.1.1.1 An FM Use Case Scenario 82
6.1.1.2 Remarks . 83

6.1.2 Construction Progress Monitoring 83
6.1.3 Construction Site Situational Awareness 84

6.2 In Context of Information Retrieval 85
6.3 Limitations of the Research 85

7 Conclusions 87
7.1 Further Scope . 88

vii

List of Tables

2.1 Evolution of Granular BIM . 21

5.1 Comparison of Available 3D File Formats 67
5.2 File Size Comparison for Different Formats 68

viii

List of Figures

1.1 Understanding Granularity . 2
1.2 Towards Granular Web [Bauer and Kaltenböck, 2011] 6

2.1 Information Retrieval Process [Information Retrieval Lab -
CSUI, 2016] . 12

2.2 Linked Building Data as a Subset of Linked Data 17
2.3 Example Representation of Relation within IFC [Borrmann

et al., 2015] . 18
2.4 Column represented using extruded solid geometry [BuildingSMART-

Tech, 2019b] . 22
2.5 Structural member related to a point connection using IfcRel-

ConnectsStructuralElements [BuildingSMART-Tech, 2019a] . . 23
2.6 Geometric Representation inside IfcOWL (RDF graphs) [Pauwels

and Roxin, 2016] . 24
2.7 Humans are 90% Visual Beings [Olivares, 2013] 25
2.8 Example Interface of BIMSurfer Platform - Model loaded from

BIMServer . 27

3.1 A room swipes across all disciplines [Zibion, 2018] 30
3.2 The IFC file is broken down into several smaller files, one for

each geometrical element having a GUID 33

4.1 History of Organisation . 39
4.2 Evolution of IFC [Laakso et al., 2012] 40
4.3 IFC Architecture [Recreated from IFC4.1 Official Documen-

tation] . 41
4.4 UML Diagram for IfcRoot and IfcObjectDefinition [BuildingSMART-

Tech] . 42
4.5 Data Representation in COLLADA format 45
4.6 IFC GUID as represented in one of the converted .dae file . . . 46
4.7 Data Representation in GLTF 47

ix

4.8 IfcOpenShell Command Line Code Example 50
4.9 Example of DOM Structure in an HTML document 53
4.10 Retained vs Immediate Mode Rendering [Microsoft Windows

Graphics Documentation, 2018] 54
4.11 Three.js Scene . 55
4.12 Clients communicating with a server via the internet [Client–Server

Model, 2019] . 56
4.13 Example of Server Connections in Multi-Page vs Single-Page

Applications . 57
4.14 Working of Virtual DOM . 58
4.15 Labelled Property Graph Model 60
4.16 Neo4j Browser Interface . 61
4.17 ASCII art graph representation of IFC relationship 62
4.18 Example Cypher Query . 63
4.19 Using Neo4j JavaScript Driver 63

5.1 Overall Workflow of the Prototype 66
5.2 COLLADA2GLTF - From DAE to GLTF/GLB for each GUID 69
5.3 Web3D rendering frameworks 71
5.4 Defining basic geometry within Three.js 72
5.5 Example GLTFLoader Usage 73
5.6 Partial Rendering of an Office Building Model 74
5.7 Illustration of 3D projection on 2D screen (Recreated from

source [Game Development]) 75
5.8 Building Storey with its bounding box in Three.js (Captured

GUID can be seen in the console) 76
5.9 On-click element capture using Raycaster 77

6.1 Information in FM [Zibion, 2018] 81
6.2 Potential BIM in FM Application Areas [Becerik-Gerber et al.,

2011] . 81
6.3 Simplified FM Workflow Example (Adopted from Zibion [2018]) 82

x

Abbreviations and Acronyms

2D Two Dimensional
3D Three Dimensional
ACID Atomic, Consistent, Isolated and Durable
AEC Architecture, Engineering and Construction
AEC/FM AEC/Facility Management
API Application Programming Interface
BB Bounding Box
BIM Building Information Modeling
BOT Building Topology Ontology
CAD Computer-aided Designing
CMMS Computerised Maintenance Management System
CSG Constructive Solid Geometry
CSS Cascading Style Sheets
CTS Conformance Test Suite
DCC Digital Content Creation
DOM Document Object Model
FM Facility Management
GIS Geographical Information Systems
glTF Graphic Library Transmission Format
GUID Globally Unique Identifier
HTML Hypertext Markup Language
HVAC Heating, Ventilation and Air Conditioning
IAI International Alliance for Interoperability
IDM Information delivery manuals
IFC Industry Foundation Classes
IfcOWL IFC Web Ontology Language
IfcWoD IFC Web of Data
IFMA International Facility Management Association
IoT Internet of Things
IR Information Retrieval

xi

JSON JavaScript Object Notation
JSX JavaScript XML
LBD Linked Building Data
MEP Mechanical, Electrical and Plumbing
MVD Model View Definitions
NDC Normalised Device Coordinates
NoSQL Not Only SQL
npm Node Package Manager
NURBS Non Uniform Rational B-Spline
OWL Web Ontology Language
PBR Physically Based rendering
RDF Resource Description Framework
SID Scoped Identifier
SPARQL Simple Protocol and RDF Query Language
SQL Structured Query Language
STEP Standard for the Exchange of Product model data
SVG Scalable Vector Graphics
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Indicator
UUID Universally Unique Identifier
W3C World Wide Web Consortium
VARK Visual, Aural, Read/write, and Kinesthetic
VR Virtual Reality
WWW World Wide Web
x3d Extensible 3D Graphics
XML Extensible Markup Language
XSD XML Schema Definition

xii

Chapter 1

Introduction

The advent of modern computers has set a new pace of development which
is unmatched in human history. This phase of exponential growth has been
marked with unusually large amounts of data which has opened the doors to
such technology which could never be thought of a few decades ago. Every-
one wants to get their hands wet in this flow, which has created a wave of
digitisation of all sorts of information, from taking a simple note to highly
sophisticated software and computations. Civil Engineering, on the other
hand has been around since the dawn of human civilisation, with the mod-
ern discipline in existence since the early 19th century. The architecture,
engineering and construction industry has for a long time stuck with the
conventional ways of doing things. But now it has gradually started to move
with the flow. This process started with the digitisation of drawings in the
form of CAD, and has now developed into a more sophisticated modeling
paradigm, which is known as Building Information Modeling (BIM), where
the aim is to create a virtual model of all the systems/features present in
the building. It is noteworthy here that a building can mean any kind of
civil engineering structure, although primarily residential, office or industrial
buildings are referred to.

This kind of a BIM system aims to serve the building for its entire lifetime
– from the very conception of the idea to the demolition or recycle, passing
through various kinds of operations, maintenance or even renovation works.
But, as has been observed from the literature, most of the focus is laid on
the construction process. So, we will start with an example from the same.
Suppose in the construction of a building, separate teams have been assigned
the job of carpentry and masonry, which is generally the case. Now, let’s say
three separate carpenters C1, C2 and C3 have been assigned the work of
doors, windows and flooring respectively from within that team. From the
masonry team, M1, M2 and M3 have been assigned the work of footings, walls

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Understanding Granularity

and slabs respectively. Now, C2 wants to coordinate with M2 to fit a window
frame within an opening, while the wall is being built. If for this process,
all the six people are summoned and then C1, C3 and M1, M3 sit behind
a curtain, and only C2 and M2 talk with each other, how illogical would it
seem to have called the other four people (Figure 1.1). Now, just assume
when the size and number of teams gets larger with more specialised work
distribution within them, and everyone is called aimlessly for every discussion
between members of different teams. How unproductive a situation it would
be, with no one being able to properly do his work, and a lot of time being
wasted even for petty issues of work overlap. A similar situation occurs on
the level of inter-domain information, and all the domain models are loaded
to sort out even small things between them, which can easily be sorted out by
summoning (or loading) just a couple of elements. This is what granularity
in building models is all about – providing only what is necessary and saving
resources in this effort.

Now, this does not remain limited to the construction process only, but
such a scenario would occur in every lifecycle stage of a building. This
would involve people-to-people, people-to-machine, and machine-to-machine
interactions, with everyone having different areas and levels of expertise.
Thus, it is important that the concept of granularity be understood well
and applied wherever need be in order to increase efficiency and ease the
workflow.

CHAPTER 1. INTRODUCTION 3

1.1 Motivation

The concept of relevance and granularity of information has become really
important in this age of information overload. The huge amount of infor-
mation that is being produced every passing day [Marr, 2018], despite of
its richness and numerous existing and potential benefits, also poses a great
challenge as to how it should be handled and utilised efficiently. Informa-
tion retrieval is an important aspect of this utilisation process, as we can
experience in our day-to-day lives; from searching a simple thing on the web
to addressing issues related to big data analysis, all require retrieval of data
in some form or the other. In such a scenario, it is of great importance to
identify the correct requirements of data and then provide solutions to fulfil
those requirements in the most efficient way possible. This is where the con-
cept of granularity kicks in. We not only need to get the right information
but the right amount of information and in the right context, meaning that
the information seeker has an option to go beyond what has been presented
to him and dive deep into the topic based on what has been presented.

This abundance of information has effected almost all the disciplines of
professional life. Thus, it is only natural that the Architecture, Engineering,
and Construction (AEC) domain does not remain untouched by it. Building
Information Modelling (BIM) has been the key element in this process for the
AEC domain. As of the current scenario, BIM is a rapidly developing tech-
nology across the industry as well as the academic discourse. Its adoption has
been constantly progressing on all scales, from implementation within organ-
isations to development of national and global standards, legal protocols for
liability issues, BIM certification, training and education [Smith, 2014]. This
progress has been fuelled by the huge amount of opportunities it provides in
terms of the technical superiority, better knowledge management, interop-
erability, building lifecycle analysis, economic benefits, and better decision
support mechanisms among many others, as identified by Ghaffarianhoseini
et al. [2017].

But what is missing in all this discussion is a fundamental definition of
BIM itself. At first, it might seem that BIM needs no introduction, but there
are different perceptions among the industry professionals as to what BIM
actually is. There have been a number of efforts to define BIM, and it seems
that most of them agree to the fact that it involves a digital representation of
the building lifecycle process which is often rich in information. For instance,
the BuildingSMART alliance describes it as “a digital representation of phys-
ical and functional characteristics of a building”, and “a shared knowledge
resource for information about a facility”. This perception is slowly building

CHAPTER 1. INTRODUCTION 4

towards considering it as a more inclusive paradigm within the AEC industry,
rather than just another tool.

Having stated the above, in the scope of this thesis, BIM would mainly
be considered in context of a building information model, i.e., a 3D model on
a digital platform, which is enriched with semantic information (see 2.2.1)
about the building, along with the geometry. Such a model is the natural
outcome of any BIM-based design process, and it serves as the central re-
source for the different professionals involved from the initial conception of
the building to the end of its lifecycle. It is to serve this purpose that a lot
of commercial software packages have surfaced in the market which provide
a platform to host these resource rich models, and to carry out design and
building process with ease. But these have limited the building information
to software specific platforms, which hinders the process of standardisation
and interoperability, which in-turn has led to more difficulty in information
access. Despite of all their drawbacks, these software tools have still served
some good purpose, more about which would be discussed in 2.3.2. Needless
to say, a common standard of building information would provide a much
smoother information access to all. Industry Foundation Classes (IFC) has
helped realise this standardisation unto a great extent.

Another important point to mention here is that the BIM model actually
consists of several partial/aspect models which are maintained with the per-
spective of different domains related to the building design and construction.
Although BIM has been primarily incorporated within the construction phase
of the building lifecycle, there have been continued efforts in recent years like
[Becerik-Gerber et al., 2011], [Codinhoto et al., 2013], [Dong et al., 2014],
[Motamedi et al., 2014], [Zibion, 2018] to explore the inclusion of the oper-
ations and management phase within this BIM paradigm, something which
has been claimed since the very conception of BIM, but implemented less so.
Thus, we see that semantic data like scheduling times, costs, energy data,
data related to facilities management, etc., which is being generated all the
time during the building lifecycle, gets added on to the bulk of information
in the BIM models. All this has led to an over-increasing information within
the BIM models, which has led to problems in handling and utilisation. With
this, we again come back to our starting point about how granularity in in-
formation retrieval is important. Törmä [2013] has also identified problems
related to multiple partial models in the process of BIM lifecycle, which are
largely inter-related, but lead to a loosely coupled information pool due to
lack of information exchange between models. He further argues that IFC
(see 4.1.1) has been able to address this issue of interoperability only par-
tially, and presents a case for linked building data. Linked building data is
a kind of granular data, which is linked together, and can be accessed and

CHAPTER 1. INTRODUCTION 5

utilised granularly using unique identifiers. Our case is quite similar to this
in principle but addresses another dimension of development.

1.2 Identifying the Research Gap

There has been an effort by the World Wide Web Consortium (W3C) towards
the development of a semantic web which largely focusses on the interoper-
ability and granularity of information in the domain of the web. This concept
of semantic web goes hand in hand with linked data, as pointed out by Törmä
[2014]. Figure 1.2 shows the evolution towards the web of data, and how it
is similar to the evolution of the World Wide Web (WWW) as we know it
today. It is as a subset of this broader sphere of linked data that we can
think of a paradigm of linked building data. Undoubtedly, BIM has a key
role to play as a foundation for this, especially the open BIM or the IFC.
There have been continued efforts towards the realisation of this goal by or-
ganisations such as BuildingSmart, and also by independent researchers like
Schevers and Drogemuller [2005] and Beetz et al. [2009], who have tried to
migrate the IFC ontologies to those based on the Web Ontology Language
(OWL), which is the standard for semantic web. Thus, we see that there
has been an effort towards granularity in building data from the information
infrastructure developers, which has led to a departure from the IFC towards
the graph based data structure of Resource Description Framework (RDF),
with the development of the IfcOWL schema. One of the reasons for this is
also to get rid of the large monolithic package which the IFC file offers and
transfer it into a more granular, semantic form. But even this transfer to
RDF has shortcomings of its own, which has led to further development of
simplified schema, which will be talked about more in 2.2.

What we have discussed until now is about the modularisation of the
information in BIM models and its subsequent interoperability. This infor-
mation can be utilised to serve all sorts of purposes ranging from designing,
scheduling, budgeting to facilities management. But an important compo-
nent which has been missing from this discussion so far is the visualisation
of building data through this information. This also forms an important
component of the information retrieval process, which is the representation
of retrieved information, and the same will be the primary focus of our work.
A significant part of the information contained in the BIM models relates
to the geometric information of the building. There is no argument about
the fact that visualisation of building data holds primary importance, and
its significance has been talked about since the early days of BIM, as can be
seen from the literature itself. A report from CRC Construction Innovation

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Towards Granular Web [Bauer and Kaltenböck, 2011]

[2007] states that “The key benefit of a building information model is its ac-
curate geometrical representation of the parts of a building in an integrated
data environment”. Azhar [2011] in his review of trends and benefits of BIM,
mentions it as the first application of a building information model.

While we see that the effort for granularity of data and its interoperability
has been extensively researched and developed, there have been only limited
efforts in the direction of implementing this granularity in visualisation of
this data. Commercial software packages are mostly used as of now for the
purpose of visualisation. One of the problems with using these is that they
are expensive. Further, the files in IFC open standard need to be converted
to software specific formats for visualisation. Thirdly, granularity is missing
from the process of visualising. To make up for granularity, many of these
software try to work around the problem by providing features for filtering
different objects according to requirement. Although this strategy works
well as far as viewing is concerned, it misses the whole point of incorporating
granular approach within the process of visualisation, as we still need to load
the entire model initially. There have been efforts for developing open source
viewers for BIM data from IFC files, and many other independent efforts to
address some of these problems, and these will we talked about further in
section 2.3.

Despite all these efforts, what we see is that there has been a widening
gap between the increasing granularity of BIM models and a lack of its visu-

CHAPTER 1. INTRODUCTION 7

alisation. Furthermore, the efforts for developing simplified schemas have led
to the omission of geometric data altogether from the building data graphs.
Thus, we feel that there is a need for this gap to be filled. We try to provide
a means for the same by introducing a granular approach for visualisation of
BIM models.

1.3 Scope of the Thesis

One might argue at this point that why is granularity even important in vi-
sualisation. There are a range of reasons for that, and we will try to present
some of them over here. Any building consists of multiple domains, like ar-
chitecture, structural, mechanical, engineering and plumbing (MEP), heat-
ing, ventilation and air conditioning (HVAC), etc. These are represented by
separate IFC files in general (partial models talked about earlier). So, cross-
domain interaction in visualisation is limited to loading the entire models
first and then proceeding further. We cannot extract individual elements
from different models and view them independently, unless we provide gran-
ular access. There are several other situations where the benefits of such
an approach are clearly visible, and these have been talked about further in
chapter 6.

Recent work by Zibion [2018] has been done in this direction for the appli-
cation in facilities management, in collaboration with VisaLynk-Oy, Finland.
But that work is primarily limited to 2D floor plans, leaving the benefits of
the 3D model. We aim to provide through this work a contribution towards
filling this gap in the granular visualisation of 3D BIM models, which would
aim to complement the work done by Zibion [2018] by providing the third
dimension on top of the 2D visualisation, but not limiting to the scope of
facilities management. Rather, we tend to provide a more generic approach
towards granular 3D visualisation, and try to fill the gap between the fast
developing granularity of building data and a lack of its visualisation.

Keeping in mind the prospective development of the semantic web in
the coming years and the growing popularity within the research commu-
nity of linked building data as a subset of it, we have proposed a solution
to break down the IFC files into individual geometrical entities which can
then be modularly utilised for the purpose of visualisation. This provides
a novel approach in visualisation which has not been found in any previous
works. Further, the semantic information contained within the IFC is pre-
served through the use of a graph database. The use of graph based data
structure is really important to note here. First of all, the data inside IFC
file is highly inter-related, and storing it in a graph database is a strong

CHAPTER 1. INTRODUCTION 8

concept. Moreover, the proposed representation of semantic web and linked
building data rests on representing data in the form of RDF graphs based
on the OWL Schema. Thus, the concept of visualisation in relation with a
graph database would prove to be beneficial when looking forward to incor-
porate visualisation of BIM within semantic web. Although that is not the
aim of current work, we aim to provide a step in that direction by incorpo-
rating graph data structure. Furthermore, most recent efforts for simplifying
the BIM data like SimpleBIM [Pauwels and Roxin, 2016], Building Topology
Ontology (BOT) [Rasmussen et al., 2017] have used a similar approach to se-
mantic data representation by removing the geometric data from the graphs.
By providing a similar method for semantic data representation using Neo4j
graph database, our work is aligned parallel to the current mainstream ef-
forts, and thus, has the potential to provide a general approach for further
efforts in this direction.

Also, since the concept of linked building data is based on the web, the
visualisation must be rendered on a web platform. For this purpose, we
chose to use WebGL based renderer, which provides us with multiple benefits
in terms of efficient rendering of 3D models through web browsers. The
use of IFC as a starting point can be justified as it is the open standard
for representing BIM models, and has had a long and robust development
history. It would also be good for the purpose of interoperability among
other benefits. A detailed discussion about the various technological tools
employed in this work has been presented in chapter 4. Naturally, no human
effort is perfect in itself. Same is the case for us, and this effort also has some
limitations which have been highlighted in the discussion section.

1.4 Research Questions

Having identified the research gaps, and the scope in which this work is
proposed, we lay out primarily two research questions which we try to answer.
The implementation of a prototype solution will also be done as a part of
exploring these questions.

1. How can granularity be incorporated within the visualisation process
of 3D BIM models?

2. How does granular visualisation help in the AEC/FM industry?

CHAPTER 1. INTRODUCTION 9

1.5 Research Methodology

The purpose of this research is to investigate a new approach for 3D building
visualisation within BIM paradigm. Design science research methodology
was adopted for this work. We tried to develop a prototype as a proof of
concept for a novel solution approach towards addressing the problem of lack
of granular visualisation in 3D BIM models. We started by establishing the
problem context and relevance, identifying the gaps in the current research
and development efforts. The goal of current effort was hence identified.
Then, a conceptual layout was prepared on how to achieve the set goal, and
efforts were made towards realisation of a prototype to support this goal.
Henceforth, we identified the requirements for the prototype implementation
which led us to choosing the required technological tools for the purpose.
These were then implemented on experimental levels to provide confidence
in the proposed concept.

As far as evaluation of this method is concerned, the very nature of it
to be a web-based visualisation tool puts certain restrictions on the memory
availability for it. But that has not been the aim of this work anyways. We do
not try to increase the memory availability for web based visualisation, rather
we work the other way around and try to minimise the memory requirement
itself, thus increasing memory efficiency. Further, comparing the performance
of this method with others which load entire models would not be fair as we
are moving away from the concept of loading entire models. Thus, we would
stick to descriptive evaluation methods for this work which will be covered in
the discussion section. Further analytical and observational evaluation has
been left for future studies.

Naturally, design is not a one-way process and there is required an itera-
tive process consisting of a feedback and re-design mechanism. We just claim
to have taken a step to fulfil the first iteration of this larger process, and fur-
ther iterations will be possible after extensive evaluation of performance and
utilisation, which have been left as a part of future work. We have, however,
tried to put forward an interesting discussion related to this concept and its
possible benefits in the industry from the initiation of the building to the
end of its lifecycle, which has in-turn been the true motive of the concept of
BIM from its initial days.

1.6 Thesis Outline

Chapter 2 provides a background of the problem domain, and prepares a base
for the proposed solution. It is divided into three parts, which explain three

CHAPTER 1. INTRODUCTION 10

different aspects leading towards the build-up of the problem. Discussion
from the literature in the form of domain knowledge and the pros and cons of
the current efforts have been taken up. Chapter 3 then lays out the envisioned
concept for the solution, along with the challenges and requirements that are
a part of it.

Further, chapter 4 gives out a detailed review and explanation of all the
technological tools which were necessary for implementing the solution and
the context in which they were applied. After this, the actual implementation
process has been discussed, including how the various challenges were faced
and the requirements fulfilled. Then in chapter 6, analysis is made in terms of
the limitations of the work, how it contributes towards the related knowledge
domains, and the possible applications and use cases in the field of building
construction and lifecycle management. We conclude after that providing a
summary of the current work, and a direction for future work.

Chapter 2

Background

This chapter talks about the related knowledge domains on which our work is
built, and provides a base for understanding the concepts which are explained
later. The construction industry often faces issues related to interoperability
of information. The information, on the other hand, is getting more and more
diverse and complex with domains like energy simulations and carbon emis-
sions, etc. adding additional load to the already bulky building information.
This leads to the importance of concepts of data science like information
retrieval and relevance to be applied in the context of construction industry.
Also, many of the applications related to building lifecycle management do
not require all of this information. Rather, granularity is sought after for the
tasks which are targeted at specific locations or parts of the building for both
construction and post construction operations. The workers on the field, for
example, don’t need to know what’s going on at some other part of the field,
unless it’s directly related to their own work. The same would hold true at
some level for the supervisor, or the sub-contractor as well, whose work is
limited to only a particular section, or time of the construction.

Finally, all this information needs to be transmitted to various personnel
and stakeholders involved in the process, and it needs to be in a form which
can be easily interpreted by the recipient. 3D visuals are a great way for easy
understanding of information. Especially when it comes to buildings, not
everyone is trained in reading engineering drawings or 2D plans, and having
a more realistic representation is better. So, having a granular approach to
3D visualisation seems relevant and that is what has been built up in this
chapter.

11

CHAPTER 2. BACKGROUND 12

2.1 Information Retrieval (IR)

Information is the second term within BIM, and when it combines with term
building, we get a huge expanse of information which relates to the build-
ing lifecycle. Modern buildings, including all forms of built facilities like
roads, dams, etc. are some of the most complex things which we create, and
the teams involved in this creation process are even more complex [Crotty,
2013]. There is a large data source comprising of multiple documents of
various types which are constantly being revised and updated by multiple
people, and which require to be transferred between several teams, and firms
who have different backgrounds and requirements. Then there is involvement
of different individuals during different time periods, which further compli-
cates the matters. Thus, we can see how we are getting overloaded with
information in this digital age, and how buildings are a huge source of such
information. It is in such a scenario that Information Retrieval (IR) becomes
critical and trying to understand and improve it becomes important. Let us
start with defining it first, then discussing about its characteristics and how
they are related to our case.

Figure 2.1: Information Retrieval Process [Information Retrieval Lab - CSUI,
2016]

2.1.1 Definition and History of IR

The term ‘Information Retrieval’ can be used in a very wide sense. Any
situation which requires us to extract any kind of information from its source
can be broadly termed as IR. For example, if we ask the name of a person,
it might also be considered as IR as we are extracting the information of
his name from his memory. If we look into the literature, we find that IR
has a long history in terms of an academic field of study, and that is the

CHAPTER 2. BACKGROUND 13

IR we are primarily concerned with for the scope of this work. Manning
et al. [2010] have defined it as ‘finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers)’. It is clear from this
and many other similar definitions that IR in the modern world primarily
refers to computer-based IR, which is also fair because that is where the
major source of all information lies.

The discussion of IR as a method to retrieve information using computers
goes back to the mid-20th century, with people like Holmstrom [1948] de-
veloping some early descriptions of computer search models. By the 1970s,
many models had been developed and tested, like the Cranfield tests, but
these were still limited in terms of the amount of data which they served.
It was only in 1990s that web search engines appeared which served large
data. But one thing is visible from all these efforts that the idea of relevance
of information was present from the start of this discussion on IR, and has
been core to it.

2.1.2 Characteristics of Retrieved Information

When we look at IR, we see that it can be classified and evaluated based on
a number of criteria. The first can be seen as the nature of the information
itself, from which we want to search. It can be in the form of a structured
data, like most of the relational databases, or it might be unstructured data,
like many things found in the real world. In fact, no data is purely structured
or the otherwise. Rather, the IR process faces a semi-structured data scheme,
and identifies documents and patterns (structure) from within that based on
the queries.

Another aspect is the scale of the retrieval, which could range from look-
ing something up on a personal computer, an enterprise or institution level
framework, to a web-based search. All three require various levels of security,
accuracy, architecture, etc. Yet another important aspect is the kind of the
access, which is more related to the domain of application. During the earlier
days of IR, it was considered to be mostly focussed on jobs such as librarian,
clerks, etc. who were required to be professional searchers. Even with the
advancement of computing technologies in other fields, this perception was
only totally removed once and for all with the inception of the World Wide
web in early 1990s, and with which came the web search engines [Baeza-
Yates et al., 1999]. This expanded the scope of information retrieval beyond
comprehension, and is still one of the major user of IR.

With the dawn of the digital age in the 21st century, most traditional dis-
ciplines went more or less digital in terms of their data storage and retrieval.

CHAPTER 2. BACKGROUND 14

Same was the case for the AEC/FM industry. The retrieval of information
from the resource-rich BIM models for exchange, interoperability, and com-
munication between various stakeholders gained significance. We found that
the following characteristics prove to be key when looking at the retrieved
information.

2.1.2.1 Relevance

When we look at the history of IR, we see that relevance of the retrieved
information has been the core purpose of the process. This is the reason
that Cooper [1971] mentions that the concept of relevance lies at the heart
of the problem of intellectual access. But what consists of relevant has been
another challenge which has invited multiple efforts to define and develop
various techniques time and again. Cuadra [1967] defined relevance as ‘Rele-
vance is the correspondence in context between an (information) requirement
statement and an article, i.e. the extent to which the article covers material
that is appropriate to the requirement statement’.

Another thing is the criterion on which the relevance of an outcome is
judged. A document might contain the queried keywords, but still not fulfill
the purpose of the user. Should such an outcome be considered relevant or
not, is another sub-question in itself, the answer to which is more inclined
towards no. This has led to the development of a lot of techniques for sorting,
ranking, filtering out the results to get relevant outcomes like [Salton et al.,
1982], [Deerwester et al., 1989], [Page et al., 1999], etc. Thus, we can say that
a relevant search outcome corresponds to giving the user what he requires,
rather than just matching the keywords. This also goes hand in hand with
the idea of granularity, as it entails serving only what is required and filtering
out all the other results.

2.1.2.2 Speed

There is no doubt to the fact that time is one of the most valuable asset
for human beings. So naturally, when information retrieval becomes more
and more a part of our daily lives, the question for speed of the process is
inevitable. Speed of search is essential to the modern day search engines.
This is evident from the fact that references to the speed of retrieval (About
2,380,000 results (0.11 sec)) are shown along with the search results to instill
confidence in the users. Many researches have been carried out by varying the
speed of retrieval and observing the users like [Schurman and Brutlag, 2009].
These have found that there is a decrease in the number of searches per user
with an increase in the search time. The site speed was even implemented as

CHAPTER 2. BACKGROUND 15

a criterion for ranking of pages in a search result [Singhal and Cutts, 2010].
But there is another side to the discussion of speed, i.e., it adversely effects

the quality of the search results. The search engines have to compromise on
the relevance of the results in order to get them quickly. This idea has been
put forward by Teevan et al. [2013] who have introduced a ‘Slow Search’
mechanism, in order to achieve higher relevance. Thus, we see that these
two ideas are of opposing nature, and we need to find a balance between
them in order to get useful results.

2.1.2.3 Context

The idea of context is a part of providing relevant information and has been
discussed since the 1990s. Belkin and Croft [1992] showed that the informa-
tion need depends on the moment when the search is performed, and is thus
contextualised by time. Similarly, there are can be many other factors like
location, user information, history of search, etc. effecting the context of in-
formation. These may be considered as generic context. There can also be
query specific context, which corresponds to providing information linked to
the topic of search, while not missing on the relevance of the search itself.
This can be understood in our case of BIM models as providing information
of elements which are linked to a particular building element which is being
queried primarily. Thus, providing semantics can be considered as a contex-
tual information. This gives the user the opportunity to dive deep into a
topic with only limited information being provided as a part of the search
results, thus making them more comprehensive.

2.1.3 Granularity without Losing Context

Having talked about the characteristics of information for retrieval in gen-
eral, we now discuss about these ideas from the perspective of our case and
how they are related with the discussion of BIM and the construction in-
dustry. The idea of granularity, or limiting the results seems to go against
that of comprehensiveness on the outside. But, in-fact actual relevance of
results requires them to be comprehensive, without overflowing the user with
additional information.

When we look at the AEC industry, and BIM models in particular, we
find that they contain highly connected data. Also, people from many fields
are accessing the same data, and their relevance varies according to their
job requirements. So, they desire different aspects of the same data. Also,
many important stakeholders across the lifetime of the infrastructure are not
trained in engineering or design, and handling information within 3D or even

CHAPTER 2. BACKGROUND 16

2D models might get difficult for them. In such a scenario, if we overload
the users with irrelevant information, this might lead to inefficiency and
difficulties in their working. For example, if we take the case of operations
and management practitioners, Zibion [2018] mentions that these people are
not used to handling 3D BIM models, and feel that it does not serve their
core purpose. Rather, they prefer the conventional CMMS tools, which are
primarily detached from the BIM paradigm. If we provide targeted partial
models focussed on individual tasks, it would help integrate such works within
the BIM framework reducing these problems to a large extent, and might also
help to remove the apprehension from professionals from other fields to use
centralised BIM models throughout the lifecycle of the building.

When we try to provide such partial models, another problem which arises
is about the context. Isolated partial models can prove to be insufficient if
the person concerned with them does not have enough knowledge about how
these elements fit inside the entire system. The semantic information of the
BIM models comes to rescue over here, providing the necessary context to the
partial models, without the need to actually load the entire system. Thus,
we find that the BIM models inherently have the potential to serve partial
models from within themselves. There’s just a need to exploit it. At the same
time, there’s also a need to strike a balance between the levels of granularity
and the comprehensiveness which we expect.

We have left out the discussion about speed in this section, and it seems
that reducing the size of the models might only lead to enhancing the speed
with which they serve as the memory and hardware requirements become
lighter. Even if significant benefits are not observed in the speeds, it would
certainly not lead to a decrease in the speed. But this is only a secondary
consideration in our work, as we are primarily concentrated on providing the
feature of granularity.

2.2 Granular Information in BIM Context

Now, we take the concept of granularity and dive into the AEC industry, with
the aim to explore how this concept has been taken up within this community
by the different professionals. We also look into some of the state-of-the-art
mechanisms currently available for incorporating granularity of information
within the BIM paradigm, while discussing how all of it actually evolved. We
will also touch upon the different types of information available within the
BIM models, and how they are connected to each other, and to our problem
and the proposed solution.

CHAPTER 2. BACKGROUND 17

2.2.1 Granular BIM - Linked Building Data

2.2.1.1 Towards Granular Web

We had discussed briefly about the Semantic Web, and how we are moving
towards it as shown in figure 1.2. Here we would like to expand upon that
idea and see how it relates to BIM. The semantic web is an effort towards
developing a web of data where all kinds of data would be able to be analysed
using computers [Berners-Lee and Fischetti, 1999]. Both the definition and
the technology have developed over time and the W3C [2011] mentions it
as a common platform for sharing and reuse of data across domains and
applications.

The current web is mostly about the interchange of documents. In con-
trast to this, the semantic web proposes the idea of connections between
data, where data from different sources can be brought together in a com-
mon format under a common platform, and where individual applications
do not keep the data to themselves. Rather, the data from a banking plat-
form, for example, can be clubbed with that of a calendar application. A

Figure 2.2: Linked Building Data as a Subset of Linked Data

very similar idea is also present within the BIM paradigm. Although limited
mainly to the AEC/FM domain, BIM still works to bring every related thing
under a single umbrella. For example, the scheduling and budgeting, civil
and architectural designing, operations management, were all originally done
by different specialised applications which did not dynamically communicate
with each other. Within the BIM paradigm, they are connected to each other
in real time through a common pool of information. Thus, it seems that the
idea of BIM is in-line with the semantic web. The remaining disjoints are
further filled by the idea of linked building data (LBD), which can be thought

CHAPTER 2. BACKGROUND 18

as a subset of the larger pool of linked data (Figure 2.2), which in-turn forms
our semantic web. The discussion about these data structures follows next.

2.2.1.2 Semantic Information within BIM

Before moving towards the data structure of the semantic web and that of
linked building data, we think it is important to touch over the topic of se-
mantic information and how it is represented within the BIM paradigm. The
construction industry is information intensive, and BIM provides a medium
for the exchange of this information [Zhang and Issa, 2011]. But this informa-
tion is present in the form of several partial or aspect models, which represent
the same facility from different perspectives. These are very loosely coupled
pools of inherently related information, and efforts to semantically connect
these using the concepts of linked data have been made by the likes of Törmä
[2013]. We find that IFC has been able to achieve this goal to a large extent,
by providing schema definitions for over 600 entity types. These entities are
linked to each other through standalone relationship entities which detail the
connections. An example of such a connection is shown in figure 2.3. More
about the IFC schema has been discussed later in 4.1.1. But even the IFC
format has not been able to fully serve the purpose of representing semantic
interconnectedness of the building data, because of its too generic format,
which makes the process of information retrieval difficult. Thus, there has
been a shift away from the IFC schema towards lighter and easily parsable
formats, while still keeping it as the base.

Figure 2.3: Example Representation of Relation within IFC [Borrmann et al.,
2015]

2.2.1.3 Graph Based Data Structures

Most of the newer formats which are emerging are based on representing
data within graph-based structures. Graph databases are a type of NoSQL
databases and have recently gained popularity, especially in situations where
the data is highly inter-connected, and thus storing and retrieving it through

CHAPTER 2. BACKGROUND 19

relational databases becomes more and more expensive. Same is also the
case with the semantic web, where Resource Description Framework (RDF)
graphs are being used to represent data and its connections in a common
format. The RDF is represented in terms of triples comprising of two entities
and a relationship connecting them. The conceptual schema for these is
defined using the Web Ontology Language (OWL). The other side of the coin
is linked data. Linked data refers to interlinking of data in such a manner
that it becomes more useful for semantic queries, and the information is
shared in a computer interpretable way. A subset to this is liked open data,
which is available to reuse freely. Both semantic web (consisting of RDF
and OWL) and the linked data are complimentary to each other with the
former conceptualising the meaning of entities and the latter contextualising
them [Törmä, 2014].

When we think of putting BIM inside this realm, a whole lot of opportu-
nities of linking building data with linked open data from other fields open
up. For example, application areas like land registry, road infrastructure,
etc. will develop a completely new understanding. One of the major benefits
of graphs is that it has made information granular. All the entities are in the
form of nodes in a graph which can be accessed individually without both-
ering other entities. Other benefits of graphs include easy interpretability
and allowance for far more complex queries than the regular relational sets.
Thus, the way of the graph is being taken up in the AEC industry as well,
which has led to the development of a number of data models as discussed
below.

2.2.1.4 Evolution of Granular BIM

BIM has been around for a while now. The efforts to tackle problems of
interoperability in building data have been made time and again, and are
still progressing. IFC was a great step in this direction. Since then the
ways of data representation and the levels of their granularity have evolved.
We were able to identify four distinct stages of such an evolution based on
the literature in this domain (Table 2.1). The first one was obviously IFC
standard, which is represented as a STEP file based on the EXPRESS schema
of data definition. Since the EXPRESS language is not based on formal
semantics [Krima et al., 2009], there have been efforts to translate it to IFC-
based OWL ontologies. One such effort was the development of OntoSTEP
by Krima et al. [2009] and Barbau et al. [2012], which was a more generic
effort not focussed only on IFC, but still taking it as a reference. Because of
the complex representation within the IFC, information retrieval has always
been a challenge which has traditionally been handled by the specialised

CHAPTER 2. BACKGROUND 20

software packages. The concept of linked data offered a solution to such
problems which led to the departure from IFC towards LBD like Hoang and
Törmä [2015].

The problems associated with bulky and proprietary software paved the
way for efforts like Zhang and Issa [2011] who built simpler and direct re-
trieval mechanism from the IFC files using IFC-based OWL ontologies. These
were not the first of their kind. The idea for converting IFC to OWL had
been lingering around since Schevers and Drogemuller [2005] introduced it. It
was further cemented with the development of IfcOWL in 2008-09 by Beetz
et al. [2009]. The IfcOWL ontology quickly took the center stage in the
LBD community by opening the IFC data to third party applications us-
ing the RDF graph representation. A number of IfcOWL structures were
hence developed and there was felt a need to standardise and formalise the
conversion process from EXPRESS to OWL for the construction industry
which was done by Pauwels and Terkaj [2016]. The IfcOWL is semanti-
cally very similar to the IFC, and thus carried the baggage of the IFC in
terms of complexity and bulky logics. Pauwels et al. [2017] identified two
main directions for enhancing the IfcOWL ontology – splitting the ontology
into diverse and easy-to-use subset modules, and serialising geometric data
into less complex semantic structures. One of the efforts along this line was
SimpleBIM by Pauwels and Roxin [2016], which made a number of simplifi-
cations including removing the geometric representation data. Mendes et al.
[2015] also proposed a similar simplified ontology by the name of IFC Web
of Data (IfcWoD).

These efforts for modified IfcOWL were limited to specific use cases, and
there was a need for something which is more generic along with being light.
This led to Rasmussen et al. [2017] proposing a simple Building Topology
Ontology (BOT), only covering the core concepts of a building and providing
room for extension to domain specific ontologies. Thus, we now have a
generic and granular ontology which is derived from IFC, but does not carry
its baggage.

2.2.2 Geometric Information in BIM

There is no denying that the geometric data in BIM holds utmost impor-
tance. This fact has been noted by many researchers throughout the history
of BIM. Zhang [2018] notes that geometry data is not only important for the
required visualisation in BIM tools, but also for many BIM researches that
rely on geometric information. The aim of our work is also closely related
to the geometric data of BIM. We intend to modularise the process of visu-
alisation of BIM, just as the information is being granularised through the

CHAPTER 2. BACKGROUND 21

T
ab

le
2.

1:
E

vo
lu

ti
on

of
G

ra
n
u
la

r
B

IM

CHAPTER 2. BACKGROUND 22

use of RDF graphs and OWL ontologies as discussed above. Even within
the LBD community, there have been efforts like Pauwels et al. [2011] to
represent geometry separately from the semantics and then link them over
the semantic web. Thus, it is important to know that how this geometry
is actually represented inside the BIM models, specifically the IFC and the
RDF formats, and how it is developing further.

2.2.2.1 Representation within IFC

A major portion of the data within an IFC model is comprised of the geom-
etry. This is essential in defining the physical entities of the building, per-
forming structural analyses and visualising, etc. Inside the IFC, geometry
can be defined using a lot of different constructs, based on the requirement.
For simple visualisation, it can be represented as triangles and meshes. For
more complex calculations, it may have constructive solid geometry (CSG)
or NURBS representation. It even allows for element-specific definitions for
certain building elements. For placement purpose, each element has its own
local coordinate system defined by IfcLocalPlacement, which is defined rel-
ative to the parent element. This hierarchically relative system allows us
to navigate along the structure, as shown in figure 2.3. Secondly, relative
placement can also be represented using topological relations which are de-
fined in the form of standalone relation objects like IfcRelFillsElement or
IfcRelVoidsElement, etc. Elements can also be represented as extruded solid
geometries, like the column shown in figure 2.4 which is extruded from an
I-shape profile.

Figure 2.4: Column represented using extruded solid geometry
[BuildingSMART-Tech, 2019b]

It even allows for the representation of structural elements, their material
and joint properties, specifying loading patterns, etc. as shown in figure 2.5.
The structural element can be connected to the point of connection using

CHAPTER 2. BACKGROUND 23

IfcRelConnectsStructuralElements and to the loading activity using IfcRel-
ConnectsStructuralActivity.

Figure 2.5: Structural member related to a point connection using IfcRel-
ConnectsStructuralElements [BuildingSMART-Tech, 2019a]

2.2.2.2 Representation within RDF

The IFC provides extensive definitions of all kinds of geometry. But again
the reasons for moving towards RDF have been mentioned previously. The
representation within RDF (specifically IfcOWL) is semantically very similar
to IFC. The IFC objects translate into OWL classes and are represented as
nodes inside the RDF graph. The relationship objects of IFC also translate
into nodes, and the relationships are represented as connections withn the
RDF graph. Figure 2.6a shows the representation of a cartesian point within
RDF. It is a translation from the concept of LIST within IFC. Figure 2.6b
shows how there are muliple instances of the same IfcRelAggregates inside
the RDF graph. Efforts like SimpleBIM [Pauwels and Roxin, 2016] and
IfcWod [Mendes et al., 2015] tried to remove such inefficiencies and make the
graphs lighter.

2.2.2.3 Later Developments and Current Work

We know see that newer models which are more granular and generic in
nature are being introduced in the LBD community. The representation is
still based on the RDF graph structure, bu these are being lightened and
simplified for use. Many of such efforts have removed the geometric data
altogether from the RDF graphs citing the reason that it is not used very
often in linked data applications. One of the major highlights among these is

CHAPTER 2. BACKGROUND 24

(a) Representation of a cartesian
point

(b) Spatial Topology Structure within If-
cOWL

Figure 2.6: Geometric Representation inside IfcOWL (RDF graphs) [Pauwels
and Roxin, 2016]

the BOT onltology [Rasmussen et al., 2017], but it also has followed the path
of getting rid of the geometry. Instead, there have been efforts to represent
geometry separately on the semantic web like Pauwels et al. [2011]. These
can then be connected to the other information over the semantic web itself.

The system which we use is similar in approach to the mainstream efforts.
We translate the semantic information from IFC to a graph based data struc-
ture, Neo4j leaving behind the geometry which is later connected externally
through a visualisation platform. Neo4j (see 4.4.1) offers a native graph rep-
resentation of labelled property graph, and connecting it with a visualisation
framework would provide a good start to connecting the building semantics
to the geometry. This approach can further be extended to other types of
graph databases like RDF, and can be of great help once the semantic web
and linked building data becomes the norm in the industry and elsewhere.

2.2.3 Connecting Geometry to Semantics

We talked about semantics and geometry in BIM models, which are like
the two sides of a coin, and compliment each other in all kinds of BIM
related applications. We have already seen in table 2.1 how the granularity
in semantics has evolved to make the information easily accessible to various
stakeholders and applications alike. But the geometry has been sidelined in
all this, and most of the visualisation tools are still using the conventional

CHAPTER 2. BACKGROUND 25

ways, as we will see in the next section. Thus, even when we access the
building information granularly, in order to visualise we still need to load
the entire models. This gap becomes more visible when we try to work on
inter-domain queries, for example. Suppose we want to work on a small part
of an air conditioning system which is connected to certain elements of both
the electrical and the HVAC models. In order to visualise such a thing which
is small as compared to the entire building model, we need to load the entire
models of all the related domains and then apply our query to show only
a part of it. The semantic information like material properties, individual
connections’ properties, etc. on the other hand, can be queried granularly
through the graph structure of RDF, for example. This situation creates a
mismatch on the level of granular service of geometry and the semantics.
We aim to fix this by proposing a granular way of visualisation, which will
only load the required elements from different models, without requiring the
whole of them. Further, it would be connected to the semantic structure to
create a mapping between the two at the same level of granularity.

2.3 Visualisation of BIM & Current Efforts

for Granularity

2.3.1 Importance of Visualisation

Figure 2.7: Humans are 90%
Visual Beings [Olivares, 2013]

Humans are visual beings. Olivares [2013]
cites the conclusion of a research which says
that we process visuals 60,000 times faster
than text. Figure 2.7 explains his findings
better. This can also be verified by the fact
that most of the content on the web today
is visual in nature. Even the famous VARK
learning model by Fleming [2001] gave pri-
mary prefernce to visual mode of learning.
Thus, visualising 3D building models holds
its own importance.

Even before the days of digital 3D model-
ing, architects used to create scaled physical
models of the project in order to better con-
vey their design intentions to the stakehold-
ers. The digitalisation of these has opened
a whole new set of opportunities, many of
which are being realised through BIM. If the

CHAPTER 2. BACKGROUND 26

visualisation was left out to the imagination of the people involved, everyone
would have a different mental model of the project, which might cause prob-
lems in communication and execution. Additionally, 3D visualisation also
provides other benefits like sellability of the project, improving speed and
accuracy of the work, as the contractor does not need to spend time under-
standing the 2D drawings, and checking for possible mismatches. It might
also be useful with the regulatory authorities who can have a better idea
of the impacts of the buildings beforehand, leading to both expedited and
improved regulatory process. These are the reasons that visualisation has
been emphasised within the BIM paradigm from the early days like [Azhar
et al., 2008], [Dawood and Iqbal, 2010]. The only drawback of 3D visualisa-
tion is seen in the increasing size of the models, which then requires better
hardware and software to operate smoothly. Our aim would also be to tackle
this problem, by reducing the size of the models while they are being used.

2.3.2 Current BIM Software - Are they really granu-
lar?

The BIM software solutions in the market can be categorised into commercial
and open source solutions. Considering first the proprietary software, which
often also provide cloud services to speed things up and reduce the load on
client machines. This seems to be very good at first, but those viewers can
only render their own formats. For example, Autodesk Forge Viewer can
only render SVF format, similarly Bentley uses iModels. These are all closed
formats without any open documentation. Although these software claim to
support other formats like IFC, or even from other vendors, but they still
convert it to their own format behind the hood in order to render. This
limit on the format has actually bundled the cloud data storage facility to
the model viewing platform. It is like saying that if we want to use Windows
operating system, we can only use Internet Explorer as the browser. The
cloud facilities outwardly appear to improve data interoperabilty, but on the
contrary, they are further limiting it by introducing closed file formats. There
is another level of problem which might occur between different stakeholders
using different software packages. For instance, if a contractor uses Autodesk
Forge which has its own viewer, and the subcontractor likes to use Trimble
Mobile Viewer on the field, both of them would be stuck with data exchange
problems even after having procured both the software solutions, thus raising
the cost and time requirements for the project. Thus, it is necessary to have
a common and open standard for easily viewing 3D models over the web
which is free from these limitations.

CHAPTER 2. BACKGROUND 27

Figure 2.8: Example Interface of BIMSurfer Platform - Model loaded from
BIMServer

Turning our attention towards the open source software, we have BIM
Server as the main platform which has BIMviews as the default interface for
viewing. Although it solves a lot of the problems of proprietary software by
using open standard formats like IFC. But when we look from the point of
view of granularity, even these don’t fare very well. BIMSurfer, for instance
is another viewer based on the BIM Server platform which loads everything
with the first load as shown in figure 2.8. What many software like this do
is serve a look alike of the granular functionality, without implementing it
from the core. This is done by loading the entire model first, and then just
providing a toggle to display or hide the required elements.

Mainly two kinds of loading APIs are used by the majority of software
– Bulk Loading or Streaming. Most of the proprietary software use bulk
loading, which loads the entire model in one go. It is then processed and
converted to suit the format of the viewing platform, which is then presented
to the user. As can be understood from the nature of it, this has higher

CHAPTER 2. BACKGROUND 28

memory requirements apart from the problems of closed format mentioned
above. Then we have BIMviews which uses the streaming method, wherein
the data is constantly being transferred from the server to the viewer in real
time, but still it’s the data of the entire model.

Apart from these, there have been some independent research efforts to-
wards the direction of granular building visualisation. A significant work
for light-weighting the building models for web-based rendering was done
by Liu et al. [2016]. Although they still worked on entire models as whole,
without trying to use them partially. But they used a granular approach to
remove redundancy from within the IFC elements. Their method provided
good results for using large models with ease over the web despite the many
limitations (like memory, etc.) that come with the web. Another effort which
focussed more on granular retrieval and rendering of building models was de-
veloped for 2D floor plans by Zibion [2018]. It is one of the methods which
actually incorporates granularity from its core, but it limits this to primarily
2D floor plans. Although the argument to use 2D floor plans for navigation
like purposes is strong, but we still can not ignore the 3D altogether.

2.3.3 Possible Improvements for Granularity

We feel that there has been a lack of efforts in general towards the con-
cept of granular visualisation in BIM. Many methods for handling geometry,
and the web-based visualisation of BIM models have been suggested lately,
and some of those concepts can be included for the making of a granular
framework. What we suggest is to use partial loading, wherein the problems
associated with large size are not present, and real-time updates can be done
by reloading the partial models with utmost ease. Pauwels et al. [2011] sug-
gested how 3D building information can be handled better over the semantic
web, and in connection to the other related information. Hestman [2015]
demonstrated the use of WebGL technology to display building models over
the web. Pauwels et al. [2010] also connected the semantic information to
the geometry by visualising it within a game engine environment, but it still
wasn’t about partial models. We take some lessons from each of these and
apply in our case as explained in the next chapter.

Chapter 3

Proposed Solution Approach

This chapter aims to provide a detailed explanation of the concept employed
as a part of this thesis. We have seen until now how the current solutions
for 3D rendering of building models have adopted only limited approaches.
We also identified the fact that granularity has been missing fundamentally
from most of these efforts. Herein, we have tried to lay out some of the re-
quirements for a granular visualisation solution, then identified the primary
challenges in realising that goal, and have then gone on to discuss the envi-
sioned concept, which is focussed around exploiting the linking between data,
its effective retrieval, and a user friendly and easily to access interface for its
visualisation. As this work, although primarily focussed on 3D models, also
aims to incorporate an already built 2D solution, we think it would be good
to also point out some differences in the implementation as compared to the
2D approach.

3.1 Requirements

For the development of an effective BIM visualisation solution, we ought to
keep in mind the requirements from the perspective of different stakeholders
and professionals who will ultimately be utilising that solution. Further, any
acceptable solution should also keep up with the demands and trends coming
up in the AEC industry. Working along similar lines, Morgan had identified
five categories – hardware, software, user, researcher, and developer require-
ments for a visualisation software. Although his work was more generic in
that he considered information visualisation as a whole, we can still get some
useful inputs for our case of BIM visualisation.

It is important to note at this point that all the requirements do not have
the same preference, and that some might be dependent on others, like our

29

CHAPTER 3. PROPOSED SOLUTION APPROACH 30

hardware and software requirements will depend on how we want our user
to access the platform, or how big the data size we want to render. This size
of data would further depend on the client demands, etc. Thus, it would be
a highly inter-related pattern, and it is crucial to identify the basic variables
from within this. One such variable, for example, would be the resource
effectiveness. It is in direct accordance with the principle of granularity, and
focussed data retrieval. This is, in fact, a part of any design optimisation
process. Apart from data retrieval, the method of data storage and querying
itself can be of great significance. The building data is highly connected as
we have seen in section 2.2. Thus the storage requirements can be laid down
keeping that in mind, and moreover, how we can exploit those connections
within data for the best results.

Figure 3.1: A room swipes across all disciplines [Zibion, 2018]

Another view of looking at this is through the lens of the use cases for
which it is meant to be used. One of these is Facility Management (FM). Gen-
erally, the FM personnel require to work in operations phase of a building,
and thus deal with the amalgamation of various disciplines like architecture,
structure, MEP, HVAC, etc. which are usually independently developed dur-
ing the construction phase. Thus, we see a room which requires some main-
tenance and which has elements from all different systems connected to it.
In such a case, providing interoperability between disciplines in a granular
fashion would be essential as is displayed in figure 3.1. On the other hand,
if we look at construction progress monitoring, bridging this split might not

CHAPTER 3. PROPOSED SOLUTION APPROACH 31

be as essential. Thus, we need to provide flexibility of including information
from one or more IFC model files and combine partial data from each of
them on a single platform.

One other consideration is the accessibility of the platform. If we want
to feed the partial models to construction workers as a part of situation
management, it should be easily accessible through their mobile devices.
This leads us to look for more general platforms for hosting our solution than
developing very specific software packages. Another natural requirement is
then the smoothness and ease with which it can be used. The intuitiveness
and ease of use should also consider the nature of the model itself. Despite
all the recent efforts, 3D models, in general, seem to be more difficult to use
for navigation purposes. More comparison between 3D and 2D models is
coming in the following sections. For now, we need to understand that the
user interface should be easy and intuitive for it to be widely accepted for
use.

Obviously, one other major job would be to provide interoperability among
different people. This should be taken care by the accessible nature of the
platform, which is proposed to be web-based, and can be used with mobile
as well as stationary devices. Another thing which is necessary for all this is
vendor neutrality of the solution.

Thus, we can summarise our requirements for an effective BIM visualisa-
tion platform as follows:

1. Resource effectiveness in storage and retrieval of building data

2. Granular and inter-disciplinary access method

3. Accessible platform (possibly web-based)

4. Vendor Neutrality

5. Simple and easy-to-use interface

3.2 Primary Challenges

Having laid out the requirements and the concept for our visualisation plat-
form, we now look at some of the basic challenges in its implementation. We
have tried to only list down the challenges over here, and each one of these
is then separately addressed in the implementation section.

The building models we use for our purpose are in IFC format (see 4.1.1).
The IFC format stores geometry as an implicit information within it. This

CHAPTER 3. PROPOSED SOLUTION APPROACH 32

implicit geometry needs to be converted to explicit form so that it can be vi-
sualised on any software platform. Thus, we need to extract this information
using some pre-processing tools which will be discussed later.

The 3D models which we intend to use are generally bulky and complex.
Such large sized models need to be simplified for storage and effective data
management. We try to separate the geometry from semantics and then link
them back after visualisation. This way, we ensure that the visualisation
process can be optimised and the semantic information is also not lost.

Another challenge is to render 3D elements granularly. Once we have
simplified the models and extracted explicit geometry, we need to render
only what is required. We need to find a suitable technology for that, while
also keeping in mind the relative positions of different elements which might
get distorted when loading individually and independently.

After we have rendered the required, we need to provide a mechanism
for selecting elements on click in a 3D environment, such that we can use
their identity to retrieve further information about them from our semantics
database. The creation of a semantic database is a separate problem in itself,
but we will be utilising an already available solution for the current purpose.

Then finally, we would also like to integrate this 3D rendering platform
with a 2D one, so that we don’t miss out on any ease provided by 2D, as
argued in the coming sections, while also maintaining the 3D with its own
benefits. This problem can be approached in two ways, putting 3D inside
2D, or 2D inside 3D platform. More about this will be discussed in section
5.4.

3.3 Concept

This section introduces the envisioned solution approach which is being put
forward through this thesis, and is developed keeping in mind the require-
ments put forward in the previous section. When we look at 3D building
models, which are developed as a part of a multi-disciplinary collaborative
process, we usually have an idea of models split by the domain. For example,
we have different models each for architecture, plumbing, air conditioning,
etc. But despite of this division, the models are still very large and are stored
as separate IFC files for each discipline.

In order to reduce the size, provide interoperability and thus, manage
them effectively and granularly, we propose to divide these models separat-
ing the geometric and semantic data held within the IFC files. The semantic
data is proposed to be stored in a graph based data structure. This graph
database offers a connected structure which facilitates the blending in of

CHAPTER 3. PROPOSED SOLUTION APPROACH 33

the semantic building data, which is also highly connected in nature. This
further helps in efficient retrieval of information which is difficult to query
directly from the IFC files. The geometry, on the other hand, which is the
vital component for our purpose of visualisation, is proposed to be broken
down further into separate files for each geometric element (Figure 3.2). The

Figure 3.2: The IFC file is broken down into several smaller files, one for
each geometrical element having a GUID

connection between them, however, remains intact through the unique iden-
tifiers for objects within IFC, the GUIDs (see 4.1.1.3 for more information on
GUID) which are transferred as metadata to both the geometric files as well
as the graph database. The next part of this work focuses on developing a
web-based platform as a proof of concept for the ideas presented here. This
would provide an interface for the user to enter his requirements, according to
which the information would then be retrieved from the graph database and
rendered to the user. This platform is also meant to be interactive, wherein
further information related to the rendered elements can be accessed. A brief
analysis of the different steps followed as a part of this approach follows next.

3.3.1 Creating Geometry from IFC

As we had mentioned earlier, the geometric data occupies majority of the
space within the IFC files. So it only seems natural to break it down into
its components in order for a smoother and more efficient management and
utilisation. Also, if we just try to keep it as a single file, we do not get access to
individual elements while rendering which defeats the purpose of granularity.

CHAPTER 3. PROPOSED SOLUTION APPROACH 34

Thus, the individual geometry files are generated beforehand and stored in a
separate repository from where they can then be retrieved on demand. This
generation is done in two steps. First, the IFC file is converted into multiple
COLLADA (see 4.1.2) files which are then converted to glTF (see 4.1.3)
files. We use the IfcConvert application of the IfcOpenShell library for the
first step, and Collada2GLTF converter, which is an open source command
line tool, for the second step. Trials were first carried out using COLLADA
format, which has an XML schema representation and relatively smaller size
than other alternatives. While testing our prototype with COLLADA files,
we encountered that glTF format was better suited for our purpose, which
led us to its final choice.

3.3.2 Exporting Semantics from IFC

Semantic data, although not the main focus of this work, is an important
part of the IFC file. This data is generally accessed through specialised BIM
software which parse the IFC file for its retrieval. But it is not easy to get it
directly from IFC files to a web-based platform, which happens to be our case.
Thus, we store it in an external database as a part of pre-processing the IFC
file. The choice of graph database (Neo4j in our case) as the external storage
mechanism has been made keeping in mind the highly connected structure of
the IFC file, which is difficult to model using relational schema, but inherently
fits the graph data model. There have been efforts in recent years by Khalili
and Chua [2013], Tauscher et al. [2016], etc. for the development of graph-
based schemas and information retrieval approaches for the IFC files. An
effort for automatic conversion of IFC models to labelled property graphs,
using Neo4j was carried out by Ismail et al. [2017]. Another effort for such
a conversion had already been developed as a part of previous work on this
project by Zibion [2018] and we have used the same for our case.

3.3.3 Loading Geometry onto Web-based Platform

As we have already seen in section 2.3, most of the current open source
efforts like BIMSurfer, BIMviews, DDS IFC Viewer, or commercial software
like Autodesk Revit, Tekla BIMSight, ArchiCAD, etc. either use the process
of Bulk Loading or Streaming for the purpose of loading BIM models onto
renderers. We argue that these established methods do not serve well for
the purpose of granularity. So, we move away from these methods and try
to load granularly according to the user’s requirements. This also enables us
to manipulate individual element files separately and load only the required
files. We use the WebGL technology, with ThreeJS as the high-level API

CHAPTER 3. PROPOSED SOLUTION APPROACH 35

for the rendering. This is then integrated inside ReactJS framework, which
is a front-end JavaScript library, thus providing a better and faster way of
organising our content on the web page. The web platform provides an
interface for the user to enter his requirements, and subsequently the graph
database is queried to know what elements are required, which can then be
identified and loaded from the repository using their GUIDs.

3.3.4 Connecting Geometry to the Semantics

We see that a lot of effort has been made by the research community towards
the simplification and granularity of the semantic data, as we have seen
earlier with the linked building data, SimpleBIM [Pauwels and Roxin, 2016]
approach, BOT ontology [Rasmussen et al., 2017], and the related schemas
like IfcOWL, etc. Even the efforts like [Ismail et al., 2017] mentioned in the
previous section have considered only semantic data of the IFC files while
converting it to a graph data structure, but leaving out the actual geometry
from the picture, mentioning it only as a part of future scope. Thus, we try
to fill the gap by connecting the two while keeping them on the same ground
of granularity. The rendered elements can be clicked to select and display
further information related to them from the graph database, thus achieving
an interactive rendering of the partial models.

3.4 How is it Different from 2D Approach?

As mentioned previously, 3D models tend to get difficult to handle when it
comes to navigation purposes. Although immersive 3D experience has been
developed well in other fields like gaming, movies, etc. But it still requires
higher capacity on hardware ends, and is not very easily accessible on mul-
tiple platforms. Our discussion here is focussed on the AEC domain and
aims at providing vendor neutral and easily accessible rendering platform
while utilising minimum possible resources. A similar reason was cited by
Zibion [2018] for moving away from 3D rendering and towards 2D. But we
argue here that it doesn’t solve all the problems. 2D floor plans might work
well when thinking about navigation, but once you’ve reached the required
place, you would like to have a much more realistic view of the thing, espe-
cially when the depths of various elements located close-by vary drastically.
For example, a light bulb and its switch inside a room might not be very
realistically represented with a 2D plan, and more so, when it comes to iden-
tifying the electrical line connecting the two. A 3D model would simplify the
understanding of such situations very well. We thus argue in favour of an

CHAPTER 3. PROPOSED SOLUTION APPROACH 36

amalgamation of the 2D with 3D.
When we think about the differences in implementation as compared to

2D, we see that the 2D floor plans can be easily represented using Scalable
Vector Graphics (SVG) format, which provides a DOM type structure and
access, and which also has support of dynamic loading inside ReactJS frame-
work. Thus, we can have a single file for a floor plan and load only elements
of it on-the-go. On the other hand, for 3D models, no such support was
available. Thus, in order to load separate geometrical elements of a model
individually, we needed to find a way to access them separately, which has
been presented in this chapter. All the 3D elements are rendered onto a
single HTML5 canvas element, which in-turn does not allow us to dive in-
side it like the way in a DOM. Thus, we need to rely on other methods like
capturing through positional attributes inside the scene on the canvas. An-
other thing of importance is that when trying to combine the 2D and 3D
rendering platforms, there is a mismatch between the natures of rendering of
the two which then needs to be addressed. All in all, we try to incorporate
all the dimensions of geometric visualisation and more, moving in the same
direction as that of multi-dimensional BIM which encapsulates concepts up
to 7D BIM, as mentioned by Saxon [2018] in his article titled ‘Getting the
dimensions of BIM into focus’.

Chapter 4

Technological Tools

After establishing the context of the problem and proposing a solution ap-
proach for it, we now move on to another important aspect of our develop-
ment process, which is the technological foundation on which our prototype
for granular visualisation is proposed to be built. Such a solution encom-
passes a wide variety of technology ranging from digital construction indus-
try to web development tools to database management. It is the combination
of all these which leads to a better and wholesome solution for the industry.
This chapter discusses in detail the various tools which were used for our
development purpose, providing their relation with the digital construction
industry and the context in which they have been applied here. They have
been listed in the order in which they come into use, starting with the file
formats for representing building data, the pre-processing tools used on these
files, the web development tools used for rendering, and the graph-based data
structure for data handling.

4.1 Data Models & File Formats

To store the building information in digital form, certain data models have
been devised. These include all kinds of proprietary and open source formats.
Some of these are designed to handle all kinds of data from geometry to
semantics to external related information like costs, scheduling, etc. Others
might specialise in storing only certain aspects of the information, like 3D file
formats for geometry. Further, many data formats are generic in the sense
that they are not meant just for building related data, but might serve for
other domains as well. We are going to discuss here about three such formats
which are relevant to our work.

37

CHAPTER 4. TECHNOLOGICAL TOOLS 38

4.1.1 Industry Foundation Classes (IFC)

Industry Foundation Classes is the open international standard for storing,
representing, and sharing building information. It has been described as the
standardised, digital description of the built environment, including buildings
and civil infrastructure (buildingSMART, 2019). The IFC can store all kinds
of data including geometry, semantics and topology. For example, it can cod-
ify the identity, characteristics and relationships like material, cost, thermal
properties, connections, locations, etc. of the objects like columns, slabs,
beams, etc. and the processes, people and organisations connected to them.
The IFC was conceptualised in the late 90’s with the main focus on interop-
erability, exchange, collaboration, vendor neutrality, and standardisation of
the digital building data in the Architecture, Engineering and Construction
(AEC) industry. Before the adoption of IFC, the various stakeholders like
the architect, structural engineer, owner, contractor, who were generally us-
ing vendor specific software, had a hard time communicating their ideas with
each other. For example, an architectural model developed using ArchiCAD
could not be opened by a contractor who was using Autodesk Revit. Thus,
the IFC provided a middle-ground for the stakeholders to effectively exchange
their information. As of present, over 150 software applications support the
exchange of IFC data according to the buildingSMART International, which
is the organisation responsible for developing and maintaining the IFC stan-
dard. The IFC has also been accepted as an ISO 16739 standard, and with
a long history of development behind it, we see it as a suitable choice for a
starting point to building information.

4.1.1.1 A Brief History

It all started in 1994 with Autodesk forming an industry consortium which
aimed at developing a set of C++ classes which could support integrated de-
velopment. Twelve US-based companies joined this consortium. By the end
of 1995, they had opened membership for all those interested worldwide. This
alliance got renamed as the International Alliance for Interoperability (IAI)
in 1997 and it was at that time they decided to work towards the development
of a vendor-neutral data model, which was called the Industry Foundation
Classes (IFC), and which aimed towards serving the entire building lifecy-
cle. This presided with the initial release of the IFC 1.0 standard during the
same period. It was quite short lived and a couple of advances followed in
the coming years with IFC 1.5 and IFC 2.0. In a release in 1999, the IAI
mentioned its vision as “To enable software interoperability in the AEC/FM
industry” and its mission as “To define, promote and publish a specification

CHAPTER 4. TECHNOLOGICAL TOOLS 39

for sharing data throughout the project lifecycle, globally, across disciplines
and across technical applications” [Laakso et al., 2012]. IFC 2.0 was the
first comprehensive and truly international standard, and its main scope was
to include schemas for building services, cost estimation, and construction
planning [Liebich, 2010]. The following period of early 2000’s was of a rel-
atively slow growth with minimal industry adoption of IFC. Then with the
release of IFC 2x3 in 2005 and its acceptance as an ISO standard, it got a new
push. Further, the name of the organisation was changed to buildingSMART
International to better represent its purpose, and it still remains.

Figure 4.1: History of Organisation

There were many reasons for the slow resonance from the market during
the early days, which also included the complex and wholesome structure
of the data model, along with little economic motivation. The IFC model
was directly adopted from the STEP in terms of the representation of data
and the underlying Express schema, which was the reason for its complex
structure. There was felt a need to make it more concise and targeted for the
needs of industry. Thus, at the same time around 2005-06, the concept of
“the useful minimum” was introduced as mentioned by [Hietanen and Lehti-
nen, 2006]. This facilitated the narrowing down of the data within IFC for
exchange purposes, which made it more efficient and adaptable by the indus-
try. An outcome of this was the Information Delivery Manuals (IDM) and the
Model View Definitions (MVD). These specifications define what all detail
of information is to be included for a particular transaction, and thus, sup-
plement the basic validation formats like Express. The recent developments
of IFC 4 and beyond is a proof that this standard is constantly developing
with the growing needs and demands within the industry, and it has since
been formally accepted even at the level of several national governments.

CHAPTER 4. TECHNOLOGICAL TOOLS 40

Figure 4.2: Evolution of IFC [Laakso et al., 2012]

4.1.1.2 Architecture and Data Model

We have mentioned earlier that the IFC was directly inherited from the
STEP data model, and thus resembles a lot of its features. EXPRESS data
definition language is one of these, and with it comes the emphasis on the
entities and their relationships within the data model. Although IFC has
also been expressed in XSD schema, but it has also been derived in-turn
from the EXPRESS, so similar characteristics follow. Thus, we see that the
IFC has a huge number of entity definitions, which was around 800 in their
latest release, and this leads to increased complexity and difficulty in percep-
tion of its structure. In order to ease this process, the official specifications
of the IFC release point out to four conceptual layers based on different
levels of hierarchy as shown in figure 4.3. The core layer contains all the
major generic entities IfcRoot, IfcProduct, IfcProcess, IfcElement, etc. and
provides a base from where further domain specific, specialised entity defini-
tions can be extended, which then form part of the domain layer. There is
another intermediate layer of overlap between these two which caters to gen-
eral product, process or resource specialisation schemas serving inter-domain
exchange of construction information. This would contain definitions like
IfcWall, IfcDoor, etc. which are further utilised for domain layer entities like
IfcDoorType, IfcDoorLining, etc. Finally, at the bottom of the hierarchy lies
the resource layer which contains all fundamental definitions which are used
by other definitions of higher levels. This layer does not include a globally
unique identifier for its schema definitions.

Having covered the underlying architecture of the IFC data model, we
now discuss how objects and their relationships exist within the IFC struc-
ture. The objects inside IFC are arranged in a strict hierarchy, and are
assigned various attributes and features based on where they lie within the
hierarchy. For instance, IfcRoot is the base class of all the entities within
IFC except the resource definitions. It has certain attributes like a Global
Id which doesn’t change during its entire lifetime, Owner History, Name
and Description which are passed on to all the classes that inherit from it.
Similarly, we have IfcProduct which is the base class for all entities represent-
ing physical or spatial elements like IfcSite, IfcBuilding, IfcBeam, IfcWall,
etc. These all sub-classes lie at different levels of hierarchy further within

CHAPTER 4. TECHNOLOGICAL TOOLS 41

Figure 4.3: IFC Architecture [Recreated from IFC4.1 Official Documenta-
tion]

the structure. Unified modelling language (UML) diagrams of IfcRoot and
IfcObjectDefinition classes are shown in figure 4.4, which show the various
features and classes inheriting with each of them.

Another interesting thing about the IFC data model is that relationships
are first-class objects, i.e., they are represented as standalone entities rather
than just connections. This makes the IFC structure much more compre-
hensive but more complex at the same time. These are inherited from the
IfcRelationship class and connect to the related elements on both sides.

4.1.1.3 Putting into Context

Given the comprehensive structure and the wide international acceptance of
the IFC standard, it is a strong candidate to serve all kinds of building in-
formation from geometry to semantics, over the entire lifecycle of the asset.
It also ensures the inclusion of all the relevant data that we might require
in our application. Although there are other formats like RDF, which was
discussed before, which are lighter and much better in certain aspects like
querying the data, they do not suite fit for our purpose because of largely
excluding the geometric information from the picture, which is the primary

CHAPTER 4. TECHNOLOGICAL TOOLS 42

Figure 4.4: UML Diagram for IfcRoot and IfcObjectDefinition
[BuildingSMART-Tech]

requirement for visualisation. Another important consideration is about the
tools required to extract visualisable geometry from the building model. If-
cOpenShell is an open source software library meant for helping through
the development using IFC files, especially the geometry within them. The
IFC specification uses a unique identifier for object instances that follows
the universal unique identifier standard (UUID) with its implementation as
a globally unique identifier (GUID) [BuildingSMART-Tech]. This is a 128-
bit number associated with every object within IFC and remains unchanged
throughout its lifetime. This GUID can be very useful in reconnecting the
elements to their related information and to other elements once we separate
them to achieve granularity. All in all, the IFC provides a single monolithic
package of information and we see it as a suitable source to start with, in the
context of the current effort.

CHAPTER 4. TECHNOLOGICAL TOOLS 43

4.1.2 Collaborative Design Activity (COLLADA)

COLLADA is described as an advanced 3D asset description, which mainly
provides a format for interchange of 3D data. For easy transmission of infor-
mation between different applications, it uses an XML-based schema which
also ensures minimal loss of information. It provides support for encoding and
representing a wide variety of visuals including geometry, animations, kine-
matics, shading, etc. It has been developed and managed by the non-profit
Khronos Group since 2006, although the initial release was made earlier in
2004. It is mainly used in the entertainment industry like games and movies
as an effective intermediate format in the content pipeline, and was developed
primarily for the same purpose. Although it might also be used in industries
other than those mentioned above. Also, it provides a relatively smaller file
size along with maintaining all the information as well as meta-information,
which further makes it a preferred choice. Here, we try to present a brief
description and its relevance to our work.

4.1.2.1 Background and Data Structure

The first attempt to create an interactive computer graphics platform was
made in 1963 in the form of Sketchpad by Ivan Sutherland. Although he
is now considered as the father of the modern computer graphics, little did
he know at that time about the problems faced by developers in the coming
years with regards to the interchange of graphics data across platforms. This
problem of 3D interchange is a rather old one and there have been ad-hoc
efforts made by developers all through these days towards formats for inter-
change. But it was only after the surfacing of web and the XML in the 1990s
that a need for standardising of data exchange formats was felt in the 3D
graphics as well. The outcome of one such effort was the COLLADA format.

The COLLADA format was developed mainly keeping in mind the pro-
vision for an intermediate format in the interactive gaming industry. Any
interactive graphics rendering has two parts to it – the platform which pro-
vides the interface and interactivity to the user, and the content itself. In
the earlier solutions, these two parts were not separated. But with more
advancements in techniques, and content getting bulkier and more complex,
these are now handled separately. The content, in-turn needs to be developed
and then fed into the renderer. In order for this feeding and the subsequent
rendering to be efficient, the content needs to be optimised which requires it
to be passed through various stages of processing. This is known as a content
pipeline which takes in a raw file from an authoring tool, and optimises these
files for fast loading and reduced size. It was as a part of this content pipeline

CHAPTER 4. TECHNOLOGICAL TOOLS 44

that the COLLADA format was meant to serve as a standard format. And
this has been mentioned as one of the design goals among others which were
listed as a part of the latest specifications of COLLADA in 2008 [Barnes and
Finch, 2008]:

• To liberate digital assets from proprietary binary formats into a well-
specified, XML-based, royalty-free, open-standard format.

• To provide a standard common language format so that COLLADA
assets can be used directly in existing content tool-chains, and to facil-
itate this integration.

• To be adopted by as many digital-content users as possible.

• To provide an easy integration mechanism that enables all the data to
be available through COLLADA.

• To be a basis for common data exchange among 3D applications.

• To be a catalyst for digital-asset schema design among developers and
DCC, hardware, and middleware vendors.

Since the release of the latest specifications of COLLADA, the focus
has remained mainly on its integration with the existing platforms which
has led to a set of peripheral tools and specifications like the COLLADA
Conformance Test Suite (CTS) in 2011. Another notable effort is that of
OpenCOLLADA which is community effort led by the Khronos Group for
providing open source tools for the COLLADA format and is freely avail-
able on GitHub. Naturally, such an efficient data format could not have
remained limited to only a single field for which it was developed, and it
has been rapidly incorporated for all kinds of purposes related to digital 3D
representation like training simulators, movies, architecture, and even GIS.
With the years, COLLADA has kept up with the expectations of the users,
which is evident from its wide acceptance and support within all kinds of 3D
applications and tools.

As far as the schema of the COLLADA format is considered, it is based on
the Extensible Markup Language (XML), which was designed to carry data,
especially over the web and provides the flexibility for all kinds of data.
COLLADA schema defines its own rules for the XML elements, and any file
which confirms to those rules is referred to as a Digital Assets Exchange
(.dae) file. XML describes the content, its structure and semantics through
blocks of information enclosed within tags which can be arranged within
each other forming a hierarchy (Figure 4.5a). These XML elements might

CHAPTER 4. TECHNOLOGICAL TOOLS 45

also have attributes providing metadata, which can then be used to identify
them. The COLLADA schema defines syntax for addressing these elements
through unique identifiers in the form of URI and Scoped Identifier (SID)
(Figure 4.5b). Another feature is the profiles which define the context for
representation of information within the format. These profiles are readily
understood by the tools which operate using COLLADA. It also establishes
the naming conventions for elements within these common profiles. There are
a lot of other specifications meant to describe effects related to animations,
kinematics, physics, etc. but those are out of scope of the current work, as
we will just be dealing with physically static building models.

(a) XML Tree Structure [W3Schools] (b) URI and SID Example in COLLADA

Figure 4.5: Data Representation in COLLADA format

4.1.2.2 Relevance

Having provided an idea about the roots of COLLADA and its data structure,
we now proceed to discuss how it is relevant in the context of current work.
We required a format to store our geometric data which is retrieved from
the IFC files, and which could easily and efficiently render our building mod-
els. Having the idea of web-based rendering of building geometry, we looked
for something compatible with the web standards. COLLADA provided an
XML-based data structure, and having in mind the similar XML-based for-
mat of SVG for 2D working good previously, it provided a good choice.
Moreover, it provides a small file size despite being XML-based, which fur-
ther increased its merit. Another positive thing about the XML-based format
is that it is content-scalable. We see that it is being readily accepted as a
standard format all across the industries related to 3D graphics, and even the
AEC industry is not behind on that front. Architecture, CAD and BIM tools
like ArchiCAD, Autodesk InfraWorks, BricsCAD, Chief Architect Software,
etc. are increasingly providing support for the COLLADA format. Further,

CHAPTER 4. TECHNOLOGICAL TOOLS 46

it also caters to our specific need of identifying individual elements on their
separation from the whole model by providing an addressing system which
stores the GUIDs from the IFC in the form of URIs as attributes inside the
COLLADA files (Figure 4.6).

Figure 4.6: IFC GUID as represented in one of the converted .dae file

4.1.3 GL Transmission Format (glTF)

The Graphics Library Transmission Format (glTF) is an open-source, vendor-
neutral format for 3D content to be efficiently delivered from the content
creation tools to the rendering tools, also referred to as asset delivery. The
standard 3D file formats before this were generally focussed on providing
collaboration between different platforms or serving in the content pipelines
and were mostly optimised for offline processing. But none of them really
focussed on optimising downloading and transfers over the web. glTF was
aimed to provide a generic model to store, carry and render 3D models with-
out any specific parsing requirements, just based on the capabilities of the
GPU of the host device. With its small size and relatively easy rendering, it
aimed to fill the gap created by an absence of a simple and common format
for 3D scenes and models. This is the reason that it has been described as
the “JPEG of 3D” by its creators. It is a relatively new, JSON-based, cross-
platform standard and is developed and maintained by US-based, non-profit
Khronos Group.

4.1.3.1 Background and Data Structure

The initial idea for a JSON -based 3D modelling format was presented in 2012
at a meeting of Khronos Group discussing about the COLLADA format and
opportunities around WebGL. After two years of development process, the
initial release of glTF was made in 2015. Around the same time, there was
a need felt within the industry to have a standard delivery format for 3D

CHAPTER 4. TECHNOLOGICAL TOOLS 47

media, something which can be seen through the words of John Carmack,
who in 2016 said that “The world has long needed an efficient, usable standard
for 3D scenes that sits at the level of common image, audio, video, and text
formats. Not an authoring format, or necessarily a format you would use
for a hyper optimized platform specific application, but something at home on
the internet, capable of being directly created and consumed by many different
applications”.

The glTF seemed to serve well towards this purpose, which is why the
industry giants quickly started to adapt this format, and even contribute
towards its further development. It was not long before the next version glTF
2.0 was published in 2017, which introduced a number of new features like
Physically-Based Rendering (PBR) materials, and API-neutral rendering.
The design goals mentioned as a part of the specifications include provision
for compact file sizes, faster loading, runtime-independence, complete 3D
scene representation, and extensibility [GLTF 2.0 Specifications].

(a) Scene Structure in GLTF [GLTF 2.0 Specifi-
cations]

(b) IFC GUID number stored as
‘name’ attribute of mesh

Figure 4.7: Data Representation in GLTF

As far as the data structure of glTF is considered, it includes JSON files
with optional external supporting data in the form of binary files containing
geometry and animation data, and image files containing texture informa-
tion. The file defines 3D models contained within a scene, and has certain
division within its structure which is identified in terms of some top-level
elements namely: scenes, nodes, cameras, meshes, buffers, bufferViews, ac-

CHAPTER 4. TECHNOLOGICAL TOOLS 48

cessors, materials, textures, images, samplers, skins, and animations. These
elements are further connected to each other forming a hierarchical arrange-
ment as depicted in figure 4.7a. Inside the file, these are defined as arrays of
data, objects within which may be referenced using their indices.

The scenes and nodes elements define the basic structure of the 3D scene.
A scene may contain multiple nodes as its children elements, which may fur-
ther have other nodes within them, thus forming a hierarchical structure.
The nodes can have attributes like “name” assigned to them. This can be
useful when we are trying to store our GUIDs and IFC type information as-
sociated to the geometrical elements inside the files. These nodes may then
define properties for transformations and references to meshes and cameras,
which define the rendering and the scene conditions respectively. The mesh
defines something known as primitives inside it, each of which defines a ren-
dering mode which is either in terms of Points, Lines or Triangles. It is
important to note here that all the geometry is brought to the level of three
simple geometries. The graphics cards inside PCs can only render triangles,
because this is the only shape that is guaranteed to be geometrically correct
in 3D for any set of three points.

Further, the buffers define the actual geometry and are related to the mesh
via the accessors and bufferViews, which are responsible for adding structure
and layout information to the geometry. There is also other information like
materials, animation, skinning, etc. which is attached to various elements.
The external or even internal buffer/image resources within the glTF are
referenced to by Uniform Resource Identifiers (URIs). The glTF 2.0 also
specifies a binary format with the extension of .glb which acts as a container
element for the JSON, binary buffer and image resources providing a single
file with smaller size.

4.1.3.2 Relevance

Coming on to the relevance of the glTF format within the AEC domain,
and specifically for our purpose, there are a couple of things to mention.
We have already seen how IFC is the best available format for exchange
and interoperability of building information models. Its merit largely lies in
the fact that it is an all-inclusive format which can represent all kinds of
information related to the building lifecycle. This very fact also becomes the
cause of its inefficiency when it comes to simple concentrated tasks like just
viewing the model. We have seen in the previous section how the glTF format
provides a simple way of representing and rendering of 3D scenes and models.
Also, the representation is similar to that used inside the graphics processing
units of PCs, thus making the rendering further efficient and getting rid of the

CHAPTER 4. TECHNOLOGICAL TOOLS 49

parsing requirements. Another important criterion for us was to attach the
GUID number to the file, which was achieved through the “name” attribute
of the mesh (Figure 4.7b).

Coming to the industry dynamics and acceptance, we have seen in section
2.3.2 how the various solutions available in the market approach the problem
of visualisation. Most of their viewers can only display their own proprietary
format, and they convert everything into that behind the hood. If we look
into the past of digital construction industry, we find that the DWG format
dominated the industry at one point, and there was little scope and support
for alternative formats because of the monopoly of a major industry player.
But times have changed now, and already having the support of major tech
giants, glTF format cannot be suppressed by the construction industry play-
ers. Also, the construction industry itself has become more aware of the
importance of open standards and it would readily accept anything useful
which comes its way. We also find that the support in terms of development
is continuously increasing for glTF with a wide variety of open-source tools
from importers, exporters, converters to validators, loaders and viewing en-
gines. Thus, we see that for the purpose of visualisation, glTF provides an
open, neutral, simple and sufficiently supported format with a small size and
faster rendering.

4.2 Pre-Processing Tools

As we chose the IFC file to be the single source of building model for our
application, there was a need of certain pre-processing to be done on that
data in order to implement it and make it useful for our purpose. There were
two primary requirements – to extract the geometry out of the IFC model
into a visualisable format, and to extract the semantics of the IFC in order
that they may be easily queried and connected to the visualisation platform.
The main constraints for both of these were that the tools should be easily
accessible and applicable. This section introduces the tools which were used
in our case and provides the context of their application.

4.2.1 IfcOpenShell

The file formats we described above require certain tools to be converted
from one to the other. IfcOpenShell is an open source software library which
is meant to facilitate the development using IFC files. It uses Open Cascade
to convert the implicit geometry inside the IFC files into explicit visualisable
geometry. It provides a range of products including importers for certain

CHAPTER 4. TECHNOLOGICAL TOOLS 50

Figure 4.8: IfcOpenShell Command Line Code Example

software packages to a stand-alone converter to OBJ format. IfcConvert
is one of the prominent solutions it offers, which facilitates conversion of
IFC file to a number of 3D and 2D geometry formats including Wavefront
OBJ (.obj), Collada (.dae), STEP (.stp), IGES (.igs), XML (.xml), SVG
(.svg). It provides a command line tool to execute these conversions and
also provides a number of advanced features which serve specific purposes.

We had identified to use Collada format initially for storing the explicit
geometries because of various reasons which have been mentioned earlier
and which will also be covered in detail in the next chapter. Considering
that choice, and the method in which we wanted to convert the geometry,
i.e., element-wise conversion identified by their GUIDs, IfcConvert provided
a good option as we could restrict the conversion to individual elements
using its “–include” option and providing the GUID number as the argument
(Figure 4.8). It has been originally written in C++ programming language,
and has a slow development history because of limited industry support. But
that is counter-balanced by an enthusiastic community support. But above
all the factors, the granular access to the IFC geometry makes it our preferred
choice.

4.2.2 Collada2GLTF Converter

Once we started implementing Collada in our renderer, we came across glTF
format, which was more effective both in terms of size as well as rendering.
But the problem was again how to convert granularly element-wise from IFC
to glTF. In absence of such a tool, we then followed a two-step process and
converted the Collada files to the glTF format using the COLLADA2GLTF
converter provided in public domain by the Khronos Group, an organisation
which is also responsible for the development of both these formats in the first
place. The discussion on glTF format has already preceded, and considering
those merits, this was the most suitable tool for the application.

4.2.3 IFC2Graph Converter

When we consider converting the semantic data within the IFC into a graph
based data structure, we find a lot of different options in terms of the tools.

CHAPTER 4. TECHNOLOGICAL TOOLS 51

The IFC2Graph Converter is a tool developed previously as a part of this
project, and had been implemented for a granular 2D platform by Zibion
[2018]. It is written in Python programming language, and employs libraries
like IfcOpenShell, PythonOCC, and Py2neo. The objects within the IFC
files are converted to nodes inside a graph database. The graph database
used by this tool is Neo4j, which is an open source native graph database
platform, further discussion on which follows in the coming sections.

As we have already seen, the properties within the IFC may be repre-
sented as separate entities, which are related indirectly to the objects. Thus,
getting properties of the objects and storing them as attributes directly re-
lated to the nodes was an important step towards simplification of the data
structure, and in-turn improving the querying efficiency. Similarly, the re-
lationships between objects have a very complex representation within the
IFC, which is again simplified in the graph database. Multiple independent
efforts like Khalili and Chua [2013], Ismail et al. [2017], etc. have been made
to model IFC data as a graph, and even the discussion of linked building
data and semantic web surrounds this concept. But we stick to the custom
made converter for this effort, as it is just a proof of the concept implementa-
tion. And further improvements might be made based on detailed analysis,
as has already been mentioned initially. For this prototype implementation,
the Neo4j graph database serves well, and so does the converter implemented
for it.

4.3 Web Development Tools

The internet has really become an integral part of our lives in this day and
age. We have seen a completely new realm of industries come up in the past
couple of decades solely based on the widespread use of the internet. And
even the existing industries have adopted the growing technologies leading
to a drastic change in the manner of how things work. Within all this,
the construction sector has still largely stuck to the traditional methods of
how things are done, and has been quite reprehensive in adopting the newer
technologies. Although lately they have begun to identify the benefits and
the pace of adoption is increasing. With such an increasing and efficient reach
of the internet, it is really important to capitalise on its benefits and provide
such solutions which are easily accessible and at the same time resource
effective.

The World Wide Web as we know it today is built up on a combination
of several different tools, which are primarily concerned with data, its rep-
resentation and interaction. These three tasks are handled by HTML, CSS

CHAPTER 4. TECHNOLOGICAL TOOLS 52

and JavaScript respectively in the traditional web development environment.
Further, there is a division of content and technology based on what side of
the application they are serving. There are some things which interact with
the user and take care of what goes on the client-side. The other side to it
is the back end which takes care of the database and related stuff which is
detached from the presentation of data to the client or its interaction. This
is also known as the server-side of the application. Our main aim is to incor-
porate better and granular visualisation for the user which has more to do
with the front end development. JavaScript is primarily a front end scripting
language, and will be our main tool for the purpose. In this section, we dis-
cuss the primary tools used for the development of our web-based prototype
application.

4.3.1 Web 3D Rendering and Associated Technologies

4.3.1.1 Background

JavaScript is an imperative programming language, which means it is used
to change the state of a program. It is in-fact the element which makes
the static HTML pages to interact with the user and hence, making them
dynamic. Further, with technologies like Ajax, it can even retrieve external
data through web, and can connect the front end to the server side thus,
achieving a truly dynamic nature. It can access and effect changes in the
Document Object Mode (DOM), which is an application programming in-
terface attached to the HTML document and which identifies the structure
of the HTML document.

The idea of 3D rendering on web has been there for some time, and
can be traced back to the first international conference on the World Wide
Web in 1994, which led to the development of the Virtual Reality Markup
Language (VRML). It was succeeded by X3D in 2003, which had a more
modular form and provided better efficiency. But there was a huge shift in
the way we looked at 3D web rendering in 2011 with the release of Web
Graphics Library (WebGL), which provided an API for 2D/3D rendering
without the use of plug-ins. Before that, browsers needed external pug-ins
to render graphics. But it provided a way to use the built-in graphics card
of the PC for rendering in the browsers.

4.3.1.2 WebGL

According to the Khronos Group, which is the developer of WebGL, it has
been described as “a cross-platform, royalty-free web standard for a low-

CHAPTER 4. TECHNOLOGICAL TOOLS 53

level 3D graphics API based on OpenGL ES, exposed to ECMAScript via
the HTML5 Canvas element”. In simple words, it allows browser neutral
rendering of 3D graphics on web, depending only on the computer hardware
rather than any external plug-ins. Its development started in early 2009
and the latest version has been released in 2017. It has been designed as a
rendering context for the HTML5 canvas element. Thus it can interact with
other HTML elements as a part of the DOM structure (Figure 4.9).

Figure 4.9: Example of DOM Structure in an HTML document

Another important point to mention here is that WebGL is an immediate
mode rendering API, which means that the application is in direct control
of the drawing commands on the user interface (UI). As opposed to this
concept, retained mode APIs duplicate the application state in the graph-
ics library which is then in control of the UI changes, making the process
memory intensive. Although the retained mode provides an easier and faster
development process, immediate mode provided a better alternative in our
case as it involves loading dynamic elements.

WebGL provides flexible primitives which make it easy to develop further
specialised APIs on top of it, thus easing the development process. There
have been a number of high-level APIs built using WebGL like BabylonJS,
PlayCanvas, three.js, etc. which have provided frameworks facilitating util-
ities ranging from basic tasks like scene loading to more advanced features.

CHAPTER 4. TECHNOLOGICAL TOOLS 54

Figure 4.10: Retained vs Immediate Mode Rendering [Microsoft Windows
Graphics Documentation, 2018]

Apart from the rendering utilities, there have been game engines and con-
tent creation tools like Blender, Autodesk Maya have actively supported the
WebGL API. We have used three.js high-level API for the current work, the
details of which follow next.

4.3.1.3 Three.js

Three.js is a JavaScript library and a high-level API based upon WebGL
which is used to display 3D computer graphics and animations in a web
browser. It is written in JavaScript language and is available as a single
file, which may be included in the webpage via a link to either a local or an
external source. It allows for rendering 3D content inside a browser using
just the capabilities of the graphics processing unit (GPU) of the computer,
in-turn making it independent of external plug-ins and/or applications. Its
initial release was made in 2010 on GitHub, and it has had a significant
number (1071 as on 24/04/2019) [GitHub - Three.js] of contributors, with
Ricardo Cabello being the main person behind it.

The basic structure of a three.js application defines a hierarchy of elements
as shown in figure 4.11a. The main components include a scene, renderer and
camera which are the only necessary elements to display any content (Figure
4.11b). The scene contains all the other elements defining the content within
itself. These may include, but are not limited to lights, controls, mesh,
external models, etc. The mesh further defines the geometry, material, and
other things related to particular objects which are part of the scene. All
the three.js objects are loaded onto a canvas element of the HTML5, which
defines its position on the webpage using the DOM.

Being dependent only on the browser and GPU, there are bound to be
some limitations in this technique of using WebGL/Three.js. One of these
is related to memory restrictions. Large models cannot be loaded because

CHAPTER 4. TECHNOLOGICAL TOOLS 55

(a) Scene Structure [Lyons, 2014] (b) Scene Definition

Figure 4.11: Three.js Scene

of the limited amount of browser cache, which can’t be exceeded and might
crash the application in case massive datasets are attempted to load. Another
drawback is in terms of support for older systems and browsers, which do
not have dedicated GPUs and support for WebGL technology respectively.
But this can still be overlooked as use of older systems is very limited and is
constantly being replaced with newer software and hardware infrastructure.
The solution to the former problem has been discussed in later chapters.

Despite some limitations, three.js has increasingly become the world’s
most popular framework for 3D rendering on web using JavaScript and is
being used in a wide variety of applications including gaming, entertainment,
scientific data visualisations, model viewing, architecture, and much more.
Further, it provides the access to 3D visualisation from computers to mobile
devices, thus making it reach far wide. All in all, with an active community
and industry support both in terms of its development and use, it forms a
great choice for the case of BIM visualisation which has also been previously
verified by researchers in this field like Shojaei et al. [2015] for their effort of
3D cadastral visualisation.

4.3.2 React.js

An important part of any application is the user interface (UI). After all,
that is the only thing which the user will ever experience. While an intu-
itive, smooth and fast UI would be extremely good from the point of view
of a user, it can prove to be an equally difficult challenge for the devel-

CHAPTER 4. TECHNOLOGICAL TOOLS 56

oper. React is meant for this very purpose of easing the process of building
better UIs. It is a JavaScript library for building UIs, and is maintained
by Facebook along with community support. It was developed by Jordan
Walker at Facebook with the initial release being made in May, 2013. React
is mainly focussed on developing single-page applications (SPA), as opposed
to the traditional multi-page approach. We will start by explaining the basic
client-server model followed by a short discussion on the SPA, which would
further lead us to a better understanding of React.

Figure 4.12: Clients communicating with a server via the internet
[Client–Server Model, 2019]

The client-server model is a distributed application structure, which means
it partitions the tasks of a system between the resource providers (or servers)
and the service requesters (or clients), who communicate over a network to
get the task done [Client–Server Model, 2019]. This is the model on which
the World Wide Web currently works (Figure 4.12). The same can be seen
in figure 4.13, if the user clicks on the about link on the index page, a fresh
request is sent to the server which then returns the about page. In case
of React which works on SPA, it takes over the connection and serves the
user with the component one wants to view, without requiring to request the
server or loading the page again.

In the traditional multi-page approach, every time there is a need for an
update, the client sends a new request to the server, which returns the entire
page all over again, thus requiring a reload. The pages are represented in
HTML, with CSS styling it and JavaScript serving the interactions. Some of
the problems of this approach include loading the same page again and again,
no real-time updates, and a complex server-side logic. The SPA approach
has shifted most of the logic on the client side, thus allowing more efficient
and targeted back-end codes. Now the website interacts dynamically with
the server, while updating the pages without reloading them all together. In

CHAPTER 4. TECHNOLOGICAL TOOLS 57

Figure 4.13: Example of Server Connections in Multi-Page vs Single-Page
Applications

the SPA world, JavaScript plays a central role in controlling both the other
components – data (HTML) and styling (CSS). It also gives the user the
feel of a desktop application because of uninterrupted interactions, and is
definitely useful for mobile application development. But at the same time,
the computations on the client-side have become more complex, leading to
the development of front-end JavaScript libraries like React, Vue, Angular,
etc.

With a number of distinctive features tailored to help through the devel-
opment process, React is a widely accepted and growing front-end technology.
Instead of separating the mark-up from the logic, it actually combines them
into bundled units or components which serve particular parts of the UI.
These components maintain a state which can store data and also pass it
on to their children components through props. Each of these components
implements certain life-cycle methods, which control the execution of code

CHAPTER 4. TECHNOLOGICAL TOOLS 58

during certain stages of its lifetime. ‘Render’ is the most important lifecycle
method and the only one which is required. It contains the information for
what should be displayed for that component. All this is achieved through
the use of JSX, which is an extension of JavaScript to include HTML-like
tags within the logic.

Along with the component-based structure, React also implements some-
thing called Virtual DOM (Figure 4.14). This has more to do with optimising
the network requests and thus, increasing speed and smoothness of the web
application. React maintains its own copy of the DOM which is rendered
with the initial load. After this, if any updating is required, it does not send
the request directly to the server. Rather, it compares the changes required
with its own copy and only updates the required elements, thus making it
work faster.

Figure 4.14: Working of Virtual DOM

React mainly aims to provide a front-end development tool to build better
UIs and control the browser flow. It is a popular framework with active
support which makes it a good choice for development. For our case, we
use Three.js for rendering partial 3D building models, and embed it within a
React.js framework to create a complete and wholesome user interface for our
application. Since we are not focussed on developing back-end architecture
for this case, React further appeals us by detaching itself from any kind
of back-end. Also, we plan on integrating granular 2D floor plans which
have been built upon React framework (due to ease of using SVG within
React) with our application. This further increases its merit as a preferred
choice. Although there are some low points of React in terms of high memory
requirements (because of its use of Virtual DOM), and one-way data flow
inside components, but these are far superseded by its numerous benefits.

CHAPTER 4. TECHNOLOGICAL TOOLS 59

4.4 Graph Database

Until now we have been talking about the file formats, pre-processing, and
front-end web development tools. This section introduces the concept of
Graph Database, specifically Neo4j, as the main data storage for the seman-
tics of our IFC model. This serves as our back-end infrastructure for commu-
nicating with the webpage which is being run on React.js. Along with that,
we discuss about the Cypher query language which is used to query data
from Neo4j graph, while finally focussing on the Neo4j driver for JavaScript
which actually enables the connection between our JavaScript code and the
graph database.

Relational Databases have been the predominant solutions for data stor-
age available in the market since many years. But they have been problem-
atic in adapting to highly connected data due to their inability to efficiently
model relationships. The departure from relational datasets has been tried
since 1960s, but it surged in the early 21st century with the NoSQL databases
coming into picture. However, even these failed to serve the connectedness
of data natively. Rather, it required further processing at application level
to access the connections as these were represented implicitly. Opposed to
this, the graph databases natively serve the relationships as first-class cit-
izens, and make way for two-way connections which facilitate much more
extensive and interesting queries. Thus, we see in the last decade, property
graph databases such as Neo4j, JanusGraph, and Sparksee have become more
widespread in industry and academia [Larriba-Pey et al., 2014].

The concept of storing data in a graph structure is a new one, but it is
deeply rooted in our world. Unlike the tabular relational databases, the real
world is rich and interconnected, and displays both uniformity and irregular-
ity in different places. For example, we can see graphs in social, economic,
political, planning, transport networks, and many other fronts. Even the
social web giants like Facebook and Twitter are now using graph based data
structures to represent their enormous datasets. Thus, modelling such data
in the form of a graph appears to be a strong concept.

Coming to the construction industry, we see that the IFC data model has
a highly interconnected nature and can very well be modelled as a graph.
There have been some efforts on this as mentioned in section 2.2.3, like Is-
mail et al. [2017] who have tried to develop an ontology to translate the IFC
semantics into a graph structure. Another, much larger effort is being made
by the Linked Building Data Community Group, which aims at connecting
the distributed BIM data from various sources through a semantic web plat-
form in an open network called the web of data. It touches on the future

CHAPTER 4. TECHNOLOGICAL TOOLS 60

of this technology moving towards concepts like IoT and its applications in
Smart Cities. In our case, we use the Neo4j graph to export data from IFC
files of various disciplines into a single graph, which can then be utilised along
with the visualisation framework.

It is also important to note that graph databases do not mean to replace
the existing relational databases, which work really well for many situations.
But rather they intend to compliment them for the cases where relational
model becomes difficult or inefficient to use.

4.4.1 Neo4j

Graph databases belong to the family of NoSQL databases, with the dif-
ference being in the representation of relations explicitly in case of graphs.
A graph is basically a representation in terms of vertices (nodes) and lines
(relationships) which connect those vertices. A number of graph database
solutions have surfaced in the past years, and each has its own character-
istics. Fernandes and Bernardino [2018] have compared five of these, and
they suggest Neo4j as the best option. Further, Neo4j has been consistently
ranked highest in terms of popularity by DB-Engines [2019].

Figure 4.15: Labelled Property Graph Model

Neo4j is a native graph database, which means that it is optimised for
storing and managing graphs, unlike some other graph databases which se-
rialise the graph to a relational or some other database. It employs the
property labelled graph model, which is the most popular form, others being
hypergraphs and triples – the latter being used extensively for the efforts re-
lated to semantic web and linked building data. The labelled property graph
model has the following properties (as defined by Robinson et al. [2015]:

• It contains nodes and relationships.

CHAPTER 4. TECHNOLOGICAL TOOLS 61

• Nodes contain properties (key-value pairs), and can be labelled with
one or more labels.

• Relationships are named and directed and always have a start and end
node, and can also contain properties.

Neo4j was initially released in 2007, is written in Java programming lan-
guage, and is available under a GPL-3 licensed open source community edi-
tion, apart from a commercial enterprise version as well. It is described
as providing Atomic, Consistent, Isolated, and Durable (ACID) compliant
transactions, which prevent loss during situations like power or network
breakdown and is really important in places like financial systems, etc.

Further, having a graph structure lets it isolate certain sub-graphs out of
the entire graph in order to localise querying for specific tasks, thus providing
scalability and serving even huge databases with equal efficiency. This ease of
traversing nodes and relationships sets the graph model apart from any other
type of databases. Once it is setup on any platform, local or on cloud, it can
be easily accessed using HTTP calls, which are facilitated by the drivers pro-
vided by Neo4j for working with different platforms like JavaScript, Python,
etc. Another useful feature of Neo4j is that it provides a built-in browser
platform which can be run on any port and which provides documentation,
tutorials, templates and many more stuff to learn as you develop (Figure
4.16), and also facilitates querying using Cypher language.

Figure 4.16: Neo4j Browser Interface

CHAPTER 4. TECHNOLOGICAL TOOLS 62

4.4.2 Cypher

Once we have populated the database, we need to run queries and access rele-
vant information to utilise in our prototype. Neo4j provides a query language
called Cypher which is very good at representing and describing graphs. It
is a declarative and a relatively simple graph query language, and has the
capacity to handle even huge databases with its compact queries. We have
mentioned already that graphs are made of nodes and relationships, but an-
other layer of hierarchy in between consists of patterns. Patterns express
simple or complex traversals or paths within the graph and their recogni-
tion by cypher works similar to human brain’s pattern recognition abilities.
Cypher syntax is very similar to natural English language constructs which
makes it easily readable and understandable by the user.

Cypher was initially developed in 2011 by Andrés Taylor at Neo4j, but it
was made open only in 2015 with the openCypher project. It was designed
to be easily read and understood by the developers, database professionals,
and business stakeholders, which was facilitated by the intuitive description
of graphs using diagrams [Robinson et al., 2015]. Cypher is quite similar
to its SQL counterpart to make it easy for experts to switch over. There
are also certain other query languages like SPARQL for RDF triples and the
imperative language, Gremlin which are being used but we stick with Cypher
as it is declarative in nature, and complements the Neo4j graph.

Figure 4.17: ASCII art graph representation of IFC relationship

Moving on to the q of IFC Relationshipuery structure, Cypher has various
clauses the most common of which are MATCH, WHERE and RETURN. MATCH is
used to determine the anchor points or the sub-graphs, patterns around which
are then filtered using WHERE clause, and finally the data to be sent back is
identified using RETURN clause. ASCII art graph patterns (Figure 4.17) are
fundamental in this process for Cypher. In the example below (Figure 4.18),
a simple Cypher query for finding friends of friends is illustrated. We see
that Cypher looks for the node labelled person and filters it further using

CHAPTER 4. TECHNOLOGICAL TOOLS 63

the name ‘Alan’. It then returns the friends of friends of the person named
Alan using the KNOWS relationship.

Figure 4.18: Example Cypher Query

We see that cypher provides a good option for querying semantic building
data from the graph database in our prototype. We have only discussed about
the read operations, but it has much more capabilities like changing the state
of the graph, providing several more clauses to serve a wide range of querying
operations, but that is out of the scope of this thesis. The writing to the
graph is already taken care by the IFC2Graph converter in our case, and we
only need to read the data from the graph.

4.4.3 Neo4j JavaScript Driver

Coming to one of the last technical tools we will be discussing, the Neo4j
JavaScript driver is the API which provides access of the Neo4j graph database
to our application. It facilitates the connection from the web platform (which
is based on JavaScript) and the remote database via simple HTTP calls. It
helps take Cypher queries from the application based on the user require-
ments, and serves the returned data back to the application. An example of
how it works inside the JavaScript language is shown in figure 4.19.

Figure 4.19: Using Neo4j JavaScript Driver

The working of this driver can be explained as sequence of simple steps.
We first ask the database for a new driver, which in-turn provides us a new

CHAPTER 4. TECHNOLOGICAL TOOLS 64

session. Then the queries can be run through that session, which would re-
turn an object representing the result. This result is in the form of an ES6
promise in our case (for JavaScript) which can be accessed via ‘.then’ key-
word. Once the results are processed, the session and subsequently the driver
can be closed. The example above returns the list of GUID numbers (stored
as ifc_global_id attribute inside the graph) of all the IfcDoor elements
inside the graph database which is hosted on a local server (in this example),
which can be accessed via the driver authenticating using the username and
password set for the database.

Another important and fairly obvious thing to use the driver is that it
must first be included in our web application. It can either directly be embed-
ded in the HTML as an external link, which is generally not recommended
in case of managing dependencies as the browser might not understand the
import statement. Solution to this is to install it as a node module via node
package manager (npm). The discussion about node and npm is beyond the
scope of this thesis. We will only mention that it adds the driver to our ap-
plication in a more wholesome way saving us from any dependency problems,
especially when using a framework like React.js, which is our case.

Chapter 5

Prototype Implementation

This chapter would be devoted to explaining the efforts for implementation
of the prototype application. This has been developed as a proof of concept
for the solution approach mentioned previously. Different processes followed,
choices made, challenges faced and efforts for their resolution have been high-
lighted. We start with the pre-processing required on our basic model, mov-
ing on to the rendering strategy. Then, we discuss about the intractability
of the rendered model and its connection with the semantic data, followed
with the discussion of integration with 2D system.

Figure 5.1 shows the overall schema for the workflow of the prototype.
We have three separate processes, one each for pre-processing of geometric
and semantic data, and another for the application flow. These are then
connected to each other through various stages in order to serve the larger
purpose of the prototype application. Detailed discussion about each process
has been taken up in the following sub-sections.

5.1 Pre-Processing

This sub-section discusses the steps which were required to be taken before
we could utilise the data for actual rendering. The concept of modularising
building information, which is an important part of this thesis starts off
implementing from here.

5.1.1 Converting Implicit Geometry to Explicit

The geometric information contained within the IFC file is implicit in nature,
which means that it cannot be directly utilised for visualisation. Thus, it
needs to be converted into a format which is readable by any software package

65

CHAPTER 5. PROTOTYPE IMPLEMENTATION 66

Figure 5.1: Overall Workflow of the Prototype

for visualisation.

5.1.1.1 Choice of File Formats

The first thing which comes to mind when we think about converting the
geometric information within IFC file is to what format should it be con-
verted. There are a number of formats which can be utilised to store and
later render explicit 3D geometric information. A parametric comparison has
been presented in Table 5.1. Each format has its distinct features which can
be helpful in many ways. We select the one which suits best for our purpose.
The main factors to consider while choosing the best format were that it
should be:

• Free & Open Source

• Small in size

• Simple and fast rendering support

• Easily convertible from IFC

• Sufficiently well documented

• Good community support for development

We compared the available formats. The proprietary file formats were
dismissed because it goes against the idea of open data. From the available

CHAPTER 5. PROTOTYPE IMPLEMENTATION 67

Table 5.1: Comparison of Available 3D File Formats

open source formats, we considered file size as a primary factor. This was
done because of memory limitations in web-based rendering due browser,
bandwidth, etc. We needed to render multiples (in the order of hundreds) of
individual element files, so their size was a main concern. Another issue with
size is that as the approximation of geometry increases with reducing size.
But sufficiently approximate formats are still good for building visualisation,
as this in itself is not being used for critical calculations. But at the same
time, there were other key concerns like proper support for rendering in a
web environment. Many formats cleared this condition like OBJ, Collada,
glTF, STL, etc. During the initial selection, another thought in our mind was
about the scheme of representation. Although binary provides a smaller size,
we initially considered using XML-based format for its likeness to the HTML
DOM structure, with the hope that it would help in granular rendering, as
was seen in the case of 2D rendering with SVG format. Thus, the Collada
format was chosen initially as it provided a relatively smaller size among
XML-based formats, along with satisfying the other conditions.

While implementing Collada, however, the XML-based structure was not
accessible due to hooding by HTML5 canvas element within the browser.
Thus, we went for further smaller sized formats. glTF proved to be a good
option, something which has recently developed and grown, and is being
supported by major web platforms like Facebook and Microsoft. This is
because it minimises both the size of the 3D assets as well as the processing

CHAPTER 5. PROTOTYPE IMPLEMENTATION 68

time to unpack and utilise them, as mentioned by its developers. It provides
both JSON as well as binary encoding. We tried both, but finally used
binary format which is represented as .glb. The reason was the smaller file
size of .glb with respect to .glTF, which reduced at least by about 25%
(Table 5.2). The time taken for conversion was also reduced, though not
that significantly. Also, most of the open formats like Collada, glTF, OBJ,
or STL have dedicated loaders available for use with rendering engines, which
provided us with the freedom to choose.

S.
No.

IFC
(MB)

DAE
(MB)

GLTF
(MB)

Reduction
(% w.r.t.
DAE)

GLB
(MB)

Reduction
(% w.r.t.
DAE)

Reduction
(% w.r.t.
GLTF)

1 41.9 75.6 26.0 65.6 16.8 77.8 35.4
2 – 28.0 10.6 62.1 7.60 72.9 28.3
3 – 8.90 2.20 75.3 1.60 82.0 27.3
4 – 3.40 .496 85.4 .371 89.1 25.2
5 – .872 .201 76.9 .149 82.9 25.9
6 – .296 .110 62.8 .081 72.6 26.4
7 – .219 .075 65.8 .055 74.9 26.7
8 – .014 .011 23.8 .007 52.4 37.6

Table 5.2: File Size Comparison for Different Formats

Note in the above table 5.2 that there is no IFC file size for the partial
elements. Although it would be interesting to note the comparison between
IFC file size and the sum of all partial file sizes. Another observation is that
the size of DAE file is more than that of IFC when converting the entire
model. This is because of the presence of XML-based schema in DAE/Col-
lada which represents the geometry explicitly as compared to the implicit
representation in IFC. This data has been collected by generating objects of
differing range of file sizes to see the overall pattern of changes. A significant
reduction in file sizes occurs from DAE to GLTF, which further shrinks down
in the binary variant, i.e, GLB.

5.1.1.2 IFC to Collada Conversion

One of the reasons for choosing Collada initially was also the ease with which
it can be converted from IFC. IfcOpenShell library has already been discussed
in section 4.2. It provided easy command line interface to convert IFC into
multiple Collada files based on the GUID numbers (Figure 4.8). It was
finally used along with the other tool in a small pipeline implementation, as
explained next.

CHAPTER 5. PROTOTYPE IMPLEMENTATION 69

5.1.1.3 Collada to glTF Conversion

After identifying glTF as our preferred format, the concern was about how to
convert each element into a separate glTF binary file. Direct conversion tools
from IFC were not available, so the already existing Collada files were used
inside the Collada2GLTF Converter, which has been discussed in section 4.2.
Another benefit of this was that it could convert directly to binary format
.glb, with the -b option added to the command (Figure 5.2).

Figure 5.2: COLLADA2GLTF - From DAE to GLTF/GLB for each GUID

Both this, and IfcConvert were used inside a simple pipeline code in
Python language to execute it for the entire model in one go. The resulting
files were store in a local repository, from where they could be accessed by
the web application.

5.1.2 Converting IFC Semantics to Neo4j Graph

Many options have come up in the recent years when it comes to converting
IFC semantics into a graph data structure. These efforts have been discussed
in detail in section 2.2. Being independent efforts, the availability of the code
from these efforts for our purpose was an issue. Many of these approaches
have great potential, but for this work, we stick to Neo4j graph database
which provides a labelled property graph model. The conversion was imple-
mented by Zibion [2018], and the code was available to us from the author.
It takes in an IFC file and converts the entities and their relationships into
corresponding nodes and relations inside the graph. The geometric data is
not translated. A benefit was that multiple IFC files could be translated into
a single Neo4j graph which would later help to provide inter-domain data
interactions.

The graph was currently hosted on a local server using Neo4j desktop
application, but would be later be transferred to a cloud server for better
accessibility and performance. The converter works in a python environment
which was set up on a Virtual Machine using Linux operating system. The
same was also used for the initial set-up of the graph database.

CHAPTER 5. PROTOTYPE IMPLEMENTATION 70

5.2 Rendering

5.2.1 Mode of Rendering

Rendering the models to the users was another important step, and the mode
of rendering is critical when looking at improving the extent to which it is
used. For example, if the designer working in his office, and the supervisor
working on the field would have different requirements and capabilities in
terms of infrastructure, etc. A heavy software can be used inside an office,
for example, but not on hand held devices on site. Internet has brought the
world to our hands today, and with the advent of 3D graphical rendering over
the web, its reach in related professions has increased. Thus, when we look for
providing a granular access to visualisation, there is no better option with a
wider reach than the web. Then we look at the direction in which the building
data infrastructure is developing. We find that it is rapidly endorsing the
idea of semantic web and linked building data, and efforts have even been to
represent 3D geometry over the web [Pauwels et al., 2011]. It is highly likely
that all data transactions in the near future would be happening over the
web. Hence, we chose web-based rendering as the mode of our visualisation.

5.2.2 Choice of Renderer

Web3D is the term used to identify any kind of interactive 3D technology
used over the web. It may include file formats, APIs, game engines, etc.
Conventionally, external browser plug-ins were required to use 3D technol-
ogy in a web environment. This has now phased out with the maturity
of the technologies like HTML5 canvas element, and WebGL, which allow
plug-in free 3D rendering inside web browsers, using only the capabilities of
the GPU on the computers. This is why WebGL has been widely accepted
and implemented by all major browsers, who have in-fact also contributed
to its development in the first place [Jackson, 2017]. It has grown into an
open standard for 3D content on the web satifying the requirements of sim-
plicity, compatibility, quality, interactivity and standardisation. As already
described in section 4.3.1, we have used Three.js library, which is a high level
API built upon WebGL.

There are a number of options for 3D rendering using WebGL. Babylon.js,
PlayCanvas, Scene.js, A-Frame (VR), Three.js, etc. are just a few of these.
There is even a tertiary level framework called Whitestorm.js which is built
on top of three.js. We could even use WebGL as it is, without going for a
higher level API. We see the pros and cons associated with each of them, but
a benefit of using an open standard standard is that most of these secondary

CHAPTER 5. PROTOTYPE IMPLEMENTATION 71

Figure 5.3: Web3D rendering frameworks

frameworks are also open source. When we look at three.js, it is a kind of
moderation between high and low level API – it is high-level enough to get
rid of the issues related to browser and hardware interaction, while at the
same time low-level enough to allow for flexibility within the code. If we look
on the other hand, at Babylon.js, for example, it is at a much higher level
with much logic already defined, and less flexibility in implementing your
code. Then there are libraries like Paper.js which help in granular access
by providing DOM-like representation of graphics, but they are primarily
limited to 2D graphics. Many frameworks allow for importing and exporting
functionalities, which was also required in our case. So, having loaders for
Collada or glTF files within these frameworks didn’t prove to be a major
problem. All in all, three.js was best suited for providing 3D rendering en-
vironment with sufficient framework for interactivity, external files support
and integration with other front-end frameworks like React.js. This choice is
further cemented by a large and active community support, which is essential
when trying to learn and use it for the first time.

5.2.3 Connecting Renderer to Graph Database

Once we have the three.js library, we need to look for a way to connect it to
our semantic building data, which is stored in a Neo4j graph database. Neo4j
has an active and supportive development community which has provided
drivers for major programming languages including JavaScript. It provides
us with an end point of an API through which we can run queries which can
read, write and update data in the graph. However, there were two options
on how to include it into our application, which have been defined earlier in
section 4.4.3. Another choice was of the protocol used to connect - HTTP or
binary. The driver uses binary protocol, whereas HTTP can directly be used
with request node-module in JavaScript. We went for the binary one as it
is officially supported and aims to be minimal, while allowing subscription
to a stream of responses, errors, and completion events, as mentioned by the

CHAPTER 5. PROTOTYPE IMPLEMENTATION 72

developers.

5.2.4 Creating a Scene in Three.js

Once we have the identity of the elements required to be rendered from the
graph database, we need to display them, within what is called a scene inside
three.js. A scene is something which allows us to set up what is rendered and
where. A description of three.js has already been presented in section 4.3.1.3.
Here we try to focus more on its application.

If we look back at the scene graph in figure 4.11a, the highest element in
hierarchy is the renderer, which is different from the context in which ren-
derers have been talked about above. Three.js offers various renderers like
CSS3DRenderer, SVGRenderer, etc. but the WebGLRenderer is the main
highlight which uses WebGL technology and is the most versatile, with sup-
port from most of the modern browsers. Then, there are a number of cameras
available in three.js, each with its own speciality. We use the Perspective
camera, which serves a real world like view to the scene. It takes in certain
properties like the field of view (FOV), aspect ratio, near and far clipping
planes. Once we have these basic elements set up, we can then go on to
define geometries and materials as a part of the mesh using the pre-defined
constructs available within three.js (Figure 5.4). It also supports loading of
external assets stored in various formats using the loaders defined for each
of them. This is what we will be looking forward to in the next section.

Figure 5.4: Defining basic geometry within Three.js

5.2.5 Loading elements from External Files

We have our building elements available in the form of glTF assets, which
can be loaded onto the three.js canvas using the GLTFLoader available as
a part of the examples of three.js (Figure 5.5a). The usage in our case is
slightly changed as we are using it inside a React.js environment, for the

CHAPTER 5. PROTOTYPE IMPLEMENTATION 73

client-side rendering, which uses webpack to bundle, compile, and transpile
the code. In such a scenario, the loader is added as an npm package, which
offers a better way to include the loader code into the application and eases
its usability, as compared to directly importing the loader into the HTML.
We can then use it as has been shown in figure 5.5b. The resulting scene on
loading varying number and kind of elements of an office building model is
shown in figure 5.6. Although initially this proved to be a challenge when
working inside React.js framework, but was later resolved as explained in
section 5.4.3. The files are named by the GUID number of the element they
contain, and are thus easily traceable.

(a) Inside Three.js (b) Inside React.js

Figure 5.5: Example GLTFLoader Usage

5.2.6 Relative Positioning of Elements

Another possibility of a problem was that while loading the objects inde-
pendently, their relative position, which was present in the complete model,
might get lost. We had thought of solutions to it like loading each element
on a separate canvas, and then arranging them, or even on the same canvas
by positioning using three.js constructs. But for both COLLADA as well as
glTF files, the elements retain their relative positions. This is due to the
fact that the information about their positioning and the respective coordi-
nate system remains unchanged when converting individual elements out of

CHAPTER 5. PROTOTYPE IMPLEMENTATION 74

Figure 5.6: Partial Rendering of an Office Building Model

IFC. This can be attributed to the IfcConvert function which does the job
originally, and then it is further preserved while converting to glTF as well.

5.3 Interactivity

For a better user experience in a 3D rendering environment, interactivity is
really important. We identify two levels of interactivity which can be offered
in our case – controlling what has already been served, and controlling what
should be served. Separate approaches are required to address both of these,
and separate utilities of three.js have been used to implement them. For the
former, it is quite straight forward using the controls provided in the examples
with three.js. There are two options – Orbit Controls (for third-person view)
and Pointer Lock Controls (for first-person view). Orbit Controls better suite
our requirement for building models, wherein we can rotate and zoom the
model using mouse input.

5.3.1 On-Click Capture - Possible Options

The next and more complicated part was about controlling what should be
served. This needs user to identify and select from already rendered objects.
Thus, capturing elements on click inside a 3D environment becomes really
important. We looked for possibilities of how this could be realised. The
basic principle for this is to capture the mouse click position on the screen,
and check for the element in that area of the screen. Building elements don’t

CHAPTER 5. PROTOTYPE IMPLEMENTATION 75

Figure 5.7: Illustration of 3D projection on 2D screen (Recreated from source
[Game Development])

generally have uniform shapes. Especially when rendering 3D models, dif-
ferent elements are displayed at different angles of projection and combining
this with their complex shapes, it is really challenging to exactly outline the
elements on the screen. Thus, a necessary and useful approximation is made
by considering a tight rectangular box around the element. This concept
of bounding box (BB) has been extensively used in image annotations, and
even in AEC domain for applications like clash detection [Helm et al., 2010].

Thus, we find that IFC also provides its own IfcBoundingBox entity as
a part of IfcGeometricRepresentationItem. But the problem with IFC rep-
resentation is that it uses relative positioning for elements thus giving each
one a different coordinate system. A necessary thing for mapping these BBs
with the screen click position is to have a common coordinate system. Al-
though all the elements can be traced back to one root coordinate system in
the IFC, it requires computations. A better way is to have a single reference
system while generating the BBs itself. Another method for the same using
the Python implementation of Open Cascade, which is an open source library
for 3D modeling and visualisation, has been used by Zibion [2018]. There
the use of bounding boxes was primarily for inter element transactions like
clash detection, etc. For comparing with the screen coordinates, we needed
to get into the Three.js renderer and how it actually projects the scene onto

CHAPTER 5. PROTOTYPE IMPLEMENTATION 76

the screen.

5.3.2 Three.js Bounding Box

Three.js library is meant for all kinds of interactive 3D visualisation. Thus,
it also provides a bounding box concept of its own for the elements which are
loaded onto the scene. Benefit with this is that all elements are represented
in a single reference system on the canvas. Further, we have the details of
camera and projection, which connects the scene information to the plane of
the display screen, thus connecting it to mouse events. But since the scene is
in 3D, overlaps between objects are possible, thus, we need to use the depth
of the elements relative to display screen in order to identify them correctly.
In order to account for all this, we use a method of casting a ray and then
checking for its intersection with any objects, as explained below.

Figure 5.8: Building Storey with its bounding box in Three.js (Captured
GUID can be seen in the console)

5.3.3 Intersection Using Raycaster

Three.js provides a feature for creating a ray between any two points using
the Raycaster class. It is mainly used for mouse picking in a 3D environment,
as mentioned in the official documentation. We use a predefined method of
raycaster.setFromCamera(mouse, camera), which generates a ray from
the position of the camera to the point of the mouse. The mouse position

CHAPTER 5. PROTOTYPE IMPLEMENTATION 77

needs to be converted into normalised device coordinates (NDC) (between -1
and 1) for both x and y direction, using the following equations:

xnorm = (xabs/wcan) ∗ 2− 1; (5.1)

ynorm = −(yabs/hcan) ∗ 2− 1; (5.2)

where:

xnorm, ynorm Mouse coordinates in NDC
xabs, yabs Absolute mouse coordinates w.r.t client area
wcan, hcan Width and height of the client area respectively

These normalised coordinates are then used for generating/updating the
raycaster. Once we generate the ray, the raycaster.intersectObjects

(object, recursive) function is used to check the intersection with objects
passed in the ‘object’ field. The ‘recursive’ field takes a boolean value –
true to consider the descendent elements of the objects, and false otherwise,
which is also the default case. This returns a sorted list of all intersecting
elements, with closest first.

(a) Code implementation of equations 5.1 and 5.2

(b) Applying intersection check within the ‘render’ method

Figure 5.9: On-click element capture using Raycaster

CHAPTER 5. PROTOTYPE IMPLEMENTATION 78

5.3.4 Challenges Faced

A few difficulties were faced while implementing this solution. The object
capture was not working accurately during initial tries. Some points within
the BB were not being captured, while some other just outside the BB were
being recognised as a part of it. We must remember that the user has con-
trols like moving and zooming in and out the scene. The problem being
encountered was that after a change in orientation using user controls, the
casted ray was not being updated each time, which led to inaccuracies. The
problem was identified and rectified within the code to re-create the ray ev-
ery time controls are updated. Thereafter fresh intersection checks are done,
leading to correct results.

5.4 Integration with 2D platform

Although we have created a stand-alone prototype based on our concept,
but still having a seamless 2D + 3D rendering is a treat on the top. We
have already talked about how both 2D and 3D have their own benefits and
drawbacks, and an option for both would increase the richness of our model,
filling the gaps left by each one.

5.4.1 Characteristics of 2D Platform

The 2D rendering [Zibion, 2018] is done using floor plans which are converted
from IFC to SVG format. The SVG is an XML-based format, and it becomes
a part of the HTML DOM tree when rendering using React.js front-end
framework. This makes it possible to avail and load only parts of the plan as
and when they are required using simple DOM transactions. Thus, we get a
granular access to geometrical elements.

5.4.2 Possible Options for Integration

There can be two ways for integration – 3D rendering using the platform
used for 2D or the other way round. Whenever we load a 3D model onto
a web page, it renders using the HTML5 canvas element. A drawback of
canvas is that it hoods the entire scene within itself, and there is no access to
the individual scene elements while online even for XML file formats. This
goes against the concept on which SVG floor plans were implemented. So,
if we try to put 2D files inside a 3D canvas environment, it would loose its
granular capability. Thus, we go for the other way, i.e., placing 3D rendering

CHAPTER 5. PROTOTYPE IMPLEMENTATION 79

within the environment used for 2D. This is one of the major reasons for
using React based rendering along with Three.js.

5.4.3 Three.js inside React.js

React.js has its own environment which runs using webpack for code bundling
and compilation. Using raw Three.js does not require any such steps. Thus,
if we try to put raw Three.js code directly inside React, it doesn’t work. We,
therefore, import Three.js and other related dependencies like GLTFLoader,
OrbitControls as node modules through npm. Initial trials were done by
defining simple geometry within Three.js and worked fine. But while loading
external files, there was a problem as the files could not be loaded in a
webpack environment. The problem identified was that webpack does not
resolve relative file paths, and so the loader couldn’t reach the file in the
first place, let alone render it. In order to solve this issue, we resolved and
imported the path to file separately inside the React component, and then
used this already resolved path inside the glTF loader function, which then
rendered it correctly. Thus, we were able to successfully load partial models
using Three.js inside a React framework and this can now be combined with
React-based 2D renderer easily.

Chapter 6

Discussion

We have seen until now how the knowledge from various domains is related
to the problem we are addressing, and how it has been tackled in the current
work. Now, some of the important aspects of the evaluation and discussion,
as also mentioned previously, will be taken up in this chapter, followed with
some of the limitations of the research.

6.1 In Context of AEC/FM Industry

We are primarily working within the BIM paradigm, which in-turn is a part
of the AEC/FM industry. Thus, it is important to see how the current work
relates to the industry and how it can actually be utilised in that context.
Thus, we will discuss it in the perspective of three possible use cases spanning
different stages of the building lifecycle, as follows.

6.1.1 Facility Management

Facility Management (FM) is a recent and growing domain which deals with
integration and collaboration of people and processes from specialised fields
in order to enhance the process of operations and maintenance in a built
facility. This idea of FM has been supported by the International Facility
Management Association (IFMA) as well as some independent researchers
like Atkin and Brooks [2015]. Consequently, FM receives an influx of large
information from various fields (Figure 6.1), which causes the same problems
related to IR.

Becerik-Gerber et al. [2011] points out the different application areas in
FM where BIM can be implemented, by conducting a survey among the users
and non-users of BIM (Figure 6.2). They have further laid out the challenges

80

CHAPTER 6. DISCUSSION 81

Figure 6.1: Information in FM [Zibion, 2018]

in implementation of BIM in FM, dividing them into two categories relating
to organisational and technical aspects. Despite some challenges, there is no
denying the benefits of BIM in FM, as have been documented by Codinhoto
and Kiviniemi [2014] in terms of significant reductions in man hours and
waiting time per FM task.

Figure 6.2: Potential BIM in FM Application Areas [Becerik-Gerber et al.,
2011]

Although mainstream CMMS tools don’t use any kind of 3D or 2D models

CHAPTER 6. DISCUSSION 82

currently because of a general lack of knowledge of CAD-type tools among the
FM personnel, but the opportunities of data use and interoperability offered
by BIM can not be ignored. But this has to be done in such a way which
does not create difficulties in the tasks of FM practitioners. This can only
be achieved by simplifying the complex BIM models, and making their use
more intuitive and independent of knowledge of CAD. This is true for both
2D and 3D models. We argue that a combination of simplified 2D and 3D
models working at different scales of granularity can provide a comprehensive
solution to the problems of FM practitioners in BIM.

6.1.1.1 An FM Use Case Scenario

Let us look at a simple flow of work order as shown in figure 6.3. The oc-
cupants inform the facility manager about the room number and the system
which has problem (let’s say that an electric light is not working). The man-
ager then identifies the room on the 2D floor plan of the respective level and
the addressed faulty system (Electrical in this case). He then opens a par-
tial 3D model of that single room (from the MEP and architectural models),
wherein he identifies the problematic part and refers to the technician. The
technician takes a closer look at the reference by the manager and identifies
the faulty light and the tools required to fix it.

Figure 6.3: Simplified FM Workflow Example (Adopted from Zibion [2018])

He sees from the log of tasks that this light was replaced just a few days
ago, and shouldn’t have gone out so early. So, he takes a look at the electrical
network of that room through the partial 3D model. From within the bunch
of intermingled wire network, he can highlight the required connection from

CHAPTER 6. DISCUSSION 83

the light to its switch because of the semantic information relating these
elements. He then finds his way to the location using the 2D plan and once
he reaches the room, he can again open the partial 3D model on his mobile
device using just a web browser.

After physically inspecting the nature of problem, he gets to know of some
water leakage near the port, so he loads only the related elements from the
plumbing model on top of the partial electric model and identifies a plumbing
joint near the connecting electrical line which was repaired a day before. He
now knows the position behind the walls where the water would have caused
the wires to short circuit, and can thus, address the real problem efficiently.

6.1.1.2 Remarks

The presence of lightweight partial 3D models facilitates the assessment of
problems in operations on-the-go, leading to shorter down-times and faster
maintenance, ultimately leading to a better quality of service to the users
and ease in job for the facility managers. In addition, using BIM data saves
the otherwise heavy efforts for data transfer from construction to operations,
and the subsequent log management, which are now directly connected and
stored with the model itself.

6.1.2 Construction Progress Monitoring

Moving our attention back to the construction process, we see that the pro-
ductivity of the construction process has been discussed often. Progress
monitoring is critical to increasing production rates. It allows the project
managers to act in time to avoid time and cost overruns in cases of deviation
from the schedule. Kopsida et al. [2015] have categorised this process into
four steps involving data acquisition, information retrieval, progress estima-
tion, and visualisation of results. We only intend to focus on the estimation
part, which consists of matching the information captured from the as-built
model to the as-designed model. The data is in the form of point clouds or
images and videos. In order for proper comparison, the designed model needs
to be used partially according to the stage of construction. Further, even the
designed model evolves during the early stages. Thus, we can even create
a versioning system of the designed model, with new elements being added
in successive versions and previous ones getting modified. These versioned
elements can better convey the design changes to the personnel on site, and
also directly be used for inspection and monitoring purposes.

A lot of focus in research has been towards the automation of the progress
monitoring process, wherein the data is acquired, processed and compared at

CHAPTER 6. DISCUSSION 84

fixed intervals automatically, and can be viewed on demand. Generally, the
as-built model is superimposed on top of the as-designed model, a process
known as registration. After this, element wise comparison can be made.
Various methods have been deployed for this purpose, based on the type
of collected as-built data including 2D images, point clouds, etc. Many of
these try to compare it to 4D BIM models (with 4th dimension being time)
using methods like reconstructing point clouds from images [Golparvar-Fard
et al., 2012], surface matching [Turkan et al., 2012], counting number of
points inside point clouds [Zhang and Arditi, 2013], etc. Some research has
also considered using methods involving crane camera images and comparing
floor-wise to the as-designed models. We propose that having granular as-
designed models in combination with the work schedule determining which
elements must be present at a particular time, can be used for comparisons
with as-built models. Different elements can be tagged with scheduled dates
for their completion inside the BIM model, and this can then be used to
extract a group of all the elements supposed to be completed by a given date
at which we capture the as-built model, and then compare them.

This is an area of possible application of the proposed method of gran-
ularity of building models, and is open for further specialised development
using the basic concept presented in this thesis.

6.1.3 Construction Site Situational Awareness

The temporary loss or lack of situational awareness is a causal factor in many
construction accidents [HSE, 2014]. Construction site situational awareness
involves assessing and utilising the knowledge of how things are working
on the ground. This awareness can be of the workers, supervisors, or the
managers. Also, this information needs to be temporally contextual. But
not all situations are needed to be conveyed to everyone. Suppose a worker
is assigned for a plumbing job for a particular section of a particular floor on a
given day. He might not necessarily require the details related to a carpenter
working in an entirely different part of the building. So, the information also
needs to be spatially contextual. Thus, granularity is desired in the building
models which are conveyed to him. A web-based granular platform can help
provide only the necessary part of the design to the worker on site on any
given day, and it might also include his own schedule to help him better plan
the day’s work.

The identification of the positions of workers on site can be done us-
ing various tracking technologies like attaching beacons, etc. The located
space can be connected to the corresponding spatial element in the IFC (like
IfcSpace for rooms, etc.) and building elements within that space can be

CHAPTER 6. DISCUSSION 85

granularly extracted using the proposed approach and fed to their mobile
devices.

6.2 In Context of Information Retrieval

The concept of IR has proved to be a theoretical backbone of this work.
But how does the proposed work fare in terms of IR needs to be seen. We
try to improve the IR process by incorporating the relevance, speed and ac-
curacy to the visualisation process. By providing tailored models for every
scenario, we improve the relevance of the information being served. It not
just retrieves the matching elements, but rather looks at their relations and
helps serve the larger purpose for which they are being retrieved. This con-
textualisation has been two-fold – one is the interrelation between different
elements and extracting other elements based on these connections, the other
is the information about the elements like material properties, cost require-
ments, ownership details, maintenance logs, etc. which is present inside the
IFC and can be successfully translated to graph data structure. Further,
by having partial models instead of entire, the size is significantly reduced
which should normally lead to an improvement in speeds, although it still
needs to be tested. Thus, we try to overcome the problems faced by current
visualisation platforms.

Another place where IR plays a special role is in the use cases mentioned
above. Both progress monitoring and situational awareness require infor-
mation retrieval in their own form. For example in progress monitoring,
data from built structure is captured and relevant information for compari-
son needs to be retrieved from it. In fact, Kopsida et al. [2015] mention IR
as one of the four steps of the progress monitoring process. Techniques like
photogrammetry, image processing, and computer vision have been applied
to extract 3D models from captured images or point clouds – all of these in-
volving IR in some capacity. Same is the case of situational awareness, where
contextual relevance of information is necessary to improve the performance
on ground. Thus, we see that incorporating granularity in BIM models helps
improve the process of IR.

6.3 Limitations of the Research

As we have mentioned before and would like to re-iterate over here, no re-
search effort is perfect in itself and there ought to be new challenges and
weaknesses which are discovered as we go along. Same is the case for us.

CHAPTER 6. DISCUSSION 86

While we argue that granularity in BIM is important and provide our ev-
idences for that, it is important to note that the same level of granularity
cannot be efficient for all purposes. Thus, although we try to increase the
level of granularity to the element level, some applications might actually
not be in need of it and would prefer working with entire models. Applying
the same concept of granular loading to entire models might actually break
down the application due to memory limits. The combined size of all the
partial files was observed to be greater than that of the single IFC file of
the entire model. This might have its own reasons like redundancy of certain
information which is transferred to each of the files in order to maintain their
cohesiveness, and so on. But the point is that in situations like preparing
project budget estimations, for example, where whole model is needed to
be utilised at the same time, it won’t be a good idea to go granular to the
element level.

Further, this work is only an experimental and localised implementation
of the proposed concept serving as a proof of its feasibility. The user inter-
face and overall aesthetics of the application can be improved in a full scale
deployment of this concept to make it more intuitive and user friendly. Also,
we have restricted to descriptive methods of evaluation based on the char-
acteristics of the problems and the solution, and the requirements it tries to
fulfill. Detailed analytical testing and evaluation, like that for speed, etc. was
out of scope of the current work and has been left out for future. A feedback
from the professionals in the industry and how they think about the element-
level granular approach might also provide useful insights and is something
which is missing from the current work. But despite these challenges, we
feel that the idea of granularity which we wanted to convey has been tackled
sufficiently well, and the conceptual and methodological contributions from
this work can be considered something to be looked at.

Chapter 7

Conclusions

Until now, we have discussed about BIM, its role in the AEC industry, and
how granularity is important in this context. We’ve also seen how the in-
dustry is gradually moving towards granularity with the concepts like linked
building data and semantic web, and how current visualisation platforms are
lagging on this front. We have then laid down the requirements for a BIM-
based visualisation platform, and introduced a new concept to incorporate
granular approach within the visualisation of 3D BIM models. We also show
how having both 3D and 2D partial models integrated on a single platform
can provide a more wholesome solution. In order to support this concept and
prove its feasibility, we have then implemented a prototype solution which
is based upon open standards. We have highlighted the various challenges
faced during the implementation and how they were tackled. Later, we have
discussed the opportunities and possible applications in the industry for the
presented concept by providing example scenarios and how this approach
can help in such cases. The contribution towards the knowledge domains
like information retrieval has also been talked about briefly. Finally, some of
the limitations of the current work have been highlighted.

We conclude over here, looking back at the research questions we had
mentioned in the beginning and how they have been answered. The first
question dealt with the possibilities of 3D BIM models being modularised
for visualisation. We see that by having an IFC file split into individual geo-
metric components, we can indeed access and visualise them independently,
thus, providing a way for granularity. This concept has been successfully
implemented in the form of a web-based application. We see that the gap
between the modular building information (in the form of graph based data
structures) can be successfully connected on the same level of granularity to
a visualisation solution, with both being based on the web.

The second question concerned more about the application of such an ap-

87

CHAPTER 7. CONCLUSIONS 88

proach within the industrial scenarios. We have explained how in the case of
Facility Management, the granular approach helps improve the performance
in the maintenance tasks, by providing targeted and quick analysis of the
situations. Performance within the construction process can also be anal-
ysed and eventually improved through tasks like progress monitoring and
site situation management. The workers can remain focussed on their work
and perform well if they are briefed with the proper requirements of the de-
sign through simple visualisations of only the sections relevant to them on a
daily basis. They can even refer to that on-the-go using their mobile devices.
Thus, we see that the presented approach can really help in many scenarios
during the construction process and beyond. We now move on to provide an
outlook into the future prospects and improvements related to the current
work.

7.1 Further Scope

BIM has really grown into a vast area of interest, both from the point of
view of the industry and academia. We see the industry moving from the
open IFC standard of building models towards the RDF graph-based data
representation in view of the semantic web. Approaches like SimpleBIM,
etc. have emerged and we follow a similar approach using a different kind
of graph database, Neo4j. RDF-graph based IfcOWL and other advance-
ments to it can be used in place of Neo4j graphs, and can enable connections
of IFC geometry to semantics over the semantic web. Further, the current
prototype can be developed into a full scale, possibly cloud-based implemen-
tation, which can then be used for pilot testing within the industry. As a
part of the analysis and testing, interviews with the industry professionals
can be conducted to get their feedback, thus continuing the cycle of design
iterations.

Apart from this, features from GIS can be incorporated on a city level,
for example, to provide seamless indoor plus outdoor visualisation. Another
important development in our view from the point of view of granularity is the
back-end architecture. The current system stores the entire graph database
and the related partial models on a single server. What we plan to implement
is a ‘Server Less’ architecture where the graph would be modularised into
multiple sub-graphs and stored at separate locations connected over the web.
The processing load along with the data would thus be distributed, providing
another aspect to the granularity of BIM. Further, many other application
domains outside construction and FM can be thought of for applying similar
principles of granularity. And better management of the vast amounts of

CHAPTER 7. CONCLUSIONS 89

data, most of which is being collected without proper aim and use, can be
achieved.

Bibliography

Brian Atkin and Adrian Brooks. Total facility management. John Wiley &
Sons, 2015.

Salman Azhar. Building information modeling (BIM): Trends, benefits, risks,
and challenges for the AEC industry. Leadership and management in en-
gineering, 11(3):241–252, 2011.

Salman Azhar, Abid Nadeem, Johnny YN Mok, and Brian HY Leung. Build-
ing Information Modeling (BIM): A new paradigm for visual interactive
modeling and simulation for construction projects. In Proc., First Inter-
national Conference on Construction in Developing Countries, volume 1,
pages 435–46, 2008.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information re-
trieval, volume 463. ACM press New York, 1999.

Raphael Barbau, Sylvere Krima, Sudarsan Rachuri, Anantha Narayanan,
Xenia Fiorentini, Sebti Foufou, and Ram D Sriram. OntoSTEP: Enriching
product model data using ontologies. Computer-Aided Design, 44(6):575–
590, 2012.

Mark Barnes and Ellen Levy Finch. Collada–digital asset schema release 1.5.
0 specification. Khronos Group, Sony Computer Entertainment Inc, 2008.

Florian Bauer and Martin Kaltenböck. Linked open data: The essentials.
Edition mono/monochrom, Vienna, 710, 2011.

Burcin Becerik-Gerber, Farrokh Jazizadeh, Nan Li, and Gulben Calis. Ap-
plication areas and data requirements for BIM-enabled facilities manage-
ment. Journal of construction engineering and management, 138(3):431–
442, 2011.

Jakob Beetz, Jos Van Leeuwen, and Bauke De Vries. Ifcowl: A case of
transforming express schemas into ontologies. Ai Edam, 23(1):89–101,
2009.

90

BIBLIOGRAPHY 91

Nicolas J Belkin and WB Croft. Information retrieval and information fil-
tering: two sides of the same coin. Communications of the ACM, 35(12):
29–38, 1992.

Tim Berners-Lee and Mark Fischetti. Weaving the Web. HarperSanFran-
cisco. Chapter 12. 1999.

André Borrmann, Markus König, Christian Koch, and Jakob Beetz. Building
Information Modeling: Technologische Grundlagen und industrielle Praxis.
Springer-Verlag, 2015.

BuildingSMART-Tech. Ifc guid. http://www.buildingsmart-tech.org/

implementation/get-started/ifc-guid. (Accessed on 05/20/2019).

BuildingSMART-Tech. Ifc introduction. http://www.buildingsmart-tech.

org/ifc/. (Accessed on 05/20/2019).

BuildingSMART-Tech. Structural curve member. http://www.

buildingsmart-tech.org/ifc/examples/structural-analysis-model/

structural-curve-member.htm, 2019a. (Accessed on 05/11/2019).

BuildingSMART-Tech. Column with straight extru-
sion. http://www.buildingsmart-tech.org/ifc/examples/

building-element-standard-case/column-extruded-solid.htm, 2019b.
(Accessed on 05/11/2019).

Client–Server Model. Client–server model - wikipedia. https://en.

wikipedia.org/wiki/Client%E2%80%93server_model, 2019. (Accessed on
05/21/2019).

Ricardo Codinhoto and Arto Kiviniemi. Bim for fm: a case support for
business life cycle. In IFIP International Conference on Product Lifecycle
Management, pages 63–74. Springer, 2014.

Ricardo Codinhoto, Arto Kiviniemi, Sergio Kemmer, and Cecilia Gravina
da Rocha. BIM-FM implementation: an exploratory invesigation. Inter-
national Journal of 3-D Information Modeling (IJ3DIM), 2(2):1–15, 2013.

William S Cooper. A definition of relevance for information retrieval. Infor-
mation storage and retrieval, 7(1):19–37, 1971.

CRC Construction Innovation. Adopting BIM for facilities management:
Solutions for managing the Sydney Opera House. Cooperative Research
Center for Construction Innovation, Brisbane, Australia, 2007.

http://www.buildingsmart-tech.org/implementation/get-started/ifc-guid
http://www.buildingsmart-tech.org/implementation/get-started/ifc-guid
http://www.buildingsmart-tech.org/ifc/
http://www.buildingsmart-tech.org/ifc/
http://www.buildingsmart-tech.org/ifc/examples/structural-analysis-model/structural-curve-member.htm
http://www.buildingsmart-tech.org/ifc/examples/structural-analysis-model/structural-curve-member.htm
http://www.buildingsmart-tech.org/ifc/examples/structural-analysis-model/structural-curve-member.htm
http://www.buildingsmart-tech.org/ifc/examples/building-element-standard-case/column-extruded-solid.htm
http://www.buildingsmart-tech.org/ifc/examples/building-element-standard-case/column-extruded-solid.htm
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

BIBLIOGRAPHY 92

Ray Crotty. The impact of building information modelling: transforming
construction. Routledge, 2013.

Carlos A Cuadra. Experimental Studies of Relevance Judgments. Final Re-
port. System Development Corporation, 1967.

NN Dawood and Nahim Iqbal. Building information modelling (BIM): A
visual & whole life cycle approach. pages 7–14. CONVR2010 Organizing
Committee, 2010. ISBN 9784990553708C3000.

DB-Engines. DB-Engines Ranking - popularity ranking of graph DBMS.
https://db-engines.com/en/ranking/graph+dbms, 2019. (Accessed on
05/20/2019).

Scott C Deerwester, Susan T Dumais, George W Furnas, Richard A Harsh-
man, Thomas K Landauer, Karen E Lochbaum, and Lynn A Streeter.
Computer information retrieval using latent semantic structure, June 13
1989. US Patent 4,839,853.

Bing Dong, Zheng O’Neill, and Zhengwei Li. A BIM-enabled information
infrastructure for building energy Fault Detection and Diagnostics. Au-
tomation in Construction, 44:197–211, 2014.

Diogo Fernandes and Jorge Bernardino. Graph Databases Comparison: Al-
legroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB. In Proceed-
ings of the 7th International Conference on Data Science, Technology and
Applications,{DATA}, pages 373–380, 2018.

Neil D Fleming. Teaching and learning styles: VARK strategies. IGI global,
2001.

Game Development. Graphics - How do 3D game
engines render 3D environments to a 2D screen?
https://gamedev.stackexchange.com/questions/10030/

how-do-3d-game-engines-render-3d-environments-to-a-2d-screen.
(Accessed on 05/27/2019).

Ali Ghaffarianhoseini, John Tookey, Amirhosein Ghaffarianhoseini, Nicola
Naismith, Salman Azhar, Olia Efimova, and Kaamran Raahemifar. Build-
ing Information Modelling (BIM) uptake: Clear benefits, understanding its
implementation, risks and challenges. Renewable and Sustainable Energy
Reviews, 75:1046–1053, 2017.

https://db-engines.com/en/ranking/graph+dbms
https://gamedev.stackexchange.com/questions/10030/how-do-3d-game-engines-render-3d-environments-to-a-2d-screen
https://gamedev.stackexchange.com/questions/10030/how-do-3d-game-engines-render-3d-environments-to-a-2d-screen

BIBLIOGRAPHY 93

GitHub - Three.js. Github - mrdoob/three.js: Javascript 3d library. https:

//github.com/mrdoob/three.js. (Accessed on 04/24/2019).

GLTF 2.0 Specifications. gltf/specification/2.0 at master · khronos-
group/gltf · github. https://github.com/KhronosGroup/glTF/tree/

master/specification/2.0. (Accessed on 05/20/2019).

Mani Golparvar-Fard, Feniosky Peña-Mora, and Silvio Savarese. Automated
progress monitoring using unordered daily construction photographs and
ifc-based building information models. Journal of Computing in Civil En-
gineering, 29(1):04014025, 2012.

Pim van den Helm, Michel Böhms, and Léon van Berlo. IFC-based clash
detection for the open-source BIMserver. In Computing in civil and build-
ing engineering, proceedings of the international conference. Nottingham
University Press, Nottingham, UK, volume 181, 2010.

Lars Madsen Hestman. The Potential of Utilizing BIM Models With the
WebGL Technology for Building Virtual Environments-A Web-Based Pro-
totype Within the Virtual Hospital Field. Master’s thesis, NTNU, 2015.

Jiri Hietanen and Sakari Lehtinen. The useful minimum. Technical report,
Working paper. Tampere University of Technology. Virtual Building Lab-
oratory, 2006.

Nam Vu Hoang and Seppo Törmä. Implementation and Experiments with an
IFC-to-Linked Data Converter. In Proceedings of the 32nd International
Conference of CIB W78, pages 285–294, 2015.

JE Holmstrom. Section III. Opening plenary session. In The Royal Soci-
ety Scientific Information Conference, 21 June–2 July 1948: Report and
papers submitted, 1948.

HSE. Situational awareness. http://www.hse.gov.uk/construction/lwit/

assets/downloads/situational-awareness.pdf, September 2014.

Information Retrieval Lab - CSUI. Information retrieval. http://ir.cs.ui.

ac.id/new/, 2016. (Accessed on 05/11/2019).

Ali Ismail, Ahmed Nahar, and Raimar Scherer. Application of graph
databases and graph theory concepts for advanced analysing of BIM mod-
els based on IFC standard. Proceedings of EGICE, 2017.

https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
http://www.hse.gov.uk/construction/lwit/assets/downloads/situational-awareness.pdf
http://www.hse.gov.uk/construction/lwit/assets/downloads/situational-awareness.pdf
http://ir.cs.ui.ac.id/new/
http://ir.cs.ui.ac.id/new/

BIBLIOGRAPHY 94

Dean Jackson. Next-generation 3D Graphics on the Web — WebKit. https:
//webkit.org/blog/7380/next-generation-3d-graphics-on-the-web/,
February 2017. (Accessed on 05/10/2019).

A Khalili and DK H Chua. IFC-based graph data model for topological
queries on building elements. Journal of Computing in Civil Engineering,
29(3):04014046, 2013.

Marianna Kopsida, Ioannis Brilakis, and Patricio Antonio Vela. A review of
automated construction progress monitoring and inspection methods. In
Proc. of the 32nd CIB W78 Conference 2015, pages 421–431, 2015.

Sylvere Krima, Raphael Barbau, Xenia Fiorentini, Rachuri Sudarsan, and
Ram D Sriram. Ontostep: OWL-DL ontology for step. National Institute
of Standards and Technology, NISTIR, 7561, 2009.

Mikael Laakso, AO Kiviniemi, et al. The IFC standard: A review of history,
development, and standardization, information technology. ITcon, 17(9):
134–161, 2012.

Josep Llúıs Larriba-Pey, Norbert Mart́ınez-Bazán, and David Domı́nguez-
Sal. Introduction to graph databases. In Reasoning Web International
Summer School, pages 171–194. Springer, 2014.

Thomas Liebich. Unveiling ifc2x4-the next generation of openbim. In Pro-
ceedings of the 2010 CIB W78 Conference, volume 8, 2010.

Xiaojun Liu, Ning Xie, Kai Tang, and Jinyuan Jia. Lightweighting for Web3D
visualization of large-scale BIM scenes in real-time. Graphical Models, 88:
40–56, 2016.

David Scott Lyons. Intro to WebGL with Three.js. In Front Porch Confer-
ence, Dallas, Texas, 2014. (Accessed on 05/12/2019).

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval. Natural Language Engineering, 16(1):
100–103, 2010.

Bernard Marr. How much data do we create every day? The mind-
blowing stats everyone should read. Forbes, May 21st, 2018. (Accessed
on 02/20/2019).

Tarcisio de Farias Mendes, Ana Roxin, and Christophe Nicolle. IfcWoD,
semantically adapting IFC model relations into OWL properties. arXiv
preprint arXiv:1511.03897, 2015.

https://webkit.org/blog/7380/next-generation-3d-graphics-on-the-web/
https://webkit.org/blog/7380/next-generation-3d-graphics-on-the-web/

BIBLIOGRAPHY 95

Jeffrey Morgan. Requirements for Visualization Software. https:

//usabilityetc.com/articles/visualisation-software-requirements/.
(Accessed on 05/13/2019).

Ali Motamedi, Amin Hammad, and Yoosef Asen. Knowledge-assisted BIM-
based visual analytics for failure root cause detection in facilities manage-
ment. Automation in construction, 43:73–83, 2014.

Ernesto Olivares. We are 90% visual beings. https://ernestoolivares.com/
we-are-90-visuals-beings/, January 2013. (Accessed on 05/12/2019).

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

Pieter Pauwels and Anna Roxin. SimpleBIM: From full ifcOWL graphs to
simplified building graphs. In Proceedings of the 11th European Conference
on Product and Process Modelling (ECPPM), pages 11–18, 2016.

Pieter Pauwels and Walter Terkaj. EXPRESS to OWL for construction
industry: Towards a recommendable and usable ifcOWL ontology. Au-
tomation in Construction, 63:100–133, 2016.

Pieter Pauwels, Ronald De Meyer, and Jan Van Campenhout. Visualisation
of semantic architectural information within a game engine environment.
In 10th International conference on Construction Applications of Virtual
Reality (CONVR 2010), pages 219–228, 2010.

Pieter Pauwels, Davy Van Deursen, Jos De Roo, Tim Van Ackere, Ronald
De Meyer, Rik Van de Walle, and Jan Van Campenhout. Three-
dimensional information exchange over the semantic web for the domain
of architecture, engineering, and construction. Ai Edam, 25(4):317–332,
2011.

Pieter Pauwels, Thomas Krijnen, Walter Terkaj, and Jakob Beetz. Enhancing
the ifcOWL ontology with an alternative representation for geometric data.
Automation in Construction, 80:77–94, 2017.

Mads Holten Rasmussen, Pieter Pauwels, Christian Anker Hviid, and Jan
Karlshøj. Proposing a central AEC ontology that allows for domain specific
extensions. In 2017 Lean and Computing in Construction Congress, 2017.

Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new oppor-
tunities for connected data. ” O’Reilly Media, Inc.”, 2015.

https://usabilityetc.com/articles/visualisation-software-requirements/
https://usabilityetc.com/articles/visualisation-software-requirements/
https://ernestoolivares.com/we-are-90-visuals-beings/
https://ernestoolivares.com/we-are-90-visuals-beings/

BIBLIOGRAPHY 96

Gerard Salton, Edward A Fox, and Harry Wu. Extended boolean information
retrieval. Technical report, Cornell University, 1982.

Richard Saxon. Getting the dimensions of BIM into focus. http://www.

bimplus.co.uk/people/getting-dimensions-bim-focus/, July 2018. (Ac-
cessed on 05/16/2019).

Hans Schevers and Robin Drogemuller. Converting the industry foundation
classes to the web ontology language. In 2005 First International Confer-
ence on Semantics, Knowledge and Grid, pages 73–73. IEEE, 2005.

Eric Schurman and Jake Brutlag. Performance related changes and their user
impact. In velocity web performance and operations conference, 2009.

Davood Shojaei, Abbas Rajabifard, Mohsen Kalantari, Ian D Bishop, and Ali
Aien. Design and development of a web-based 3d cadastral visualisation
prototype. International Journal of Digital Earth, 8(7):538–557, 2015.

A Singhal and M Cutts. Using site speed in web search ranking. Google
Webmaster Central Blog, 2010.

Peter Smith. BIM implementation–global strategies. Procedia Engineering,
85:482–492, 2014.

Eike Tauscher, Hans-Joachim Bargstädt, and Kay Smarsly. Generic BIM
queries based on the IFC object model using graph theory. In The 16th
International Conference on Computing in Civil and Building Engineering,
Osaka, Japan, 2016.

Jaime Teevan, Kevyn Collins-Thompson, Ryen W White, Susan T Dumais,
and Yubin Kim. Slow search: Information retrieval without time con-
straints. In Proceedings of the Symposium on Human-Computer Interac-
tion and Information Retrieval, page 1. ACM, 2013.

S Törmä. Web of building data—integrating IFC with the web of data.
In Proceedings o f the 10th European Conference on Product and Process
Modelling—eWork and eBusiness in Architecture, Engineering and Con-
struction, Vienna, Austria, page 141, 2014.

Seppo Törmä. Semantic linking of building information models. In 2013
IEEE Seventh International Conference on Semantic Computing, pages
412–419. IEEE, 2013.

http://www.bimplus.co.uk/people/getting-dimensions-bim-focus/
http://www.bimplus.co.uk/people/getting-dimensions-bim-focus/

BIBLIOGRAPHY 97

Yelda Turkan, Frederic Bosche, Carl T Haas, and Ralph Haas. Automated
progress tracking using 4d schedule and 3d sensing technologies. Automa-
tion in construction, 22:414–421, 2012.

World Wide Web Consortium W3C. W3C Semantic Web Activity Homepage.
https://www.w3.org/2001/sw/, 2011. (Accessed on 05/07/2019).

W3Schools. Xml tree. https://www.w3schools.com/xml/xml_tree.asp. (Ac-
cessed on 05/20/2019).

Chengyi Zhang and David Arditi. Automated progress control using laser
scanning technology. Automation in construction, 36:108–116, 2013.

Jiansong Zhang. Towards Systematic Understanding of Geometric Represen-
tations in BIM Standard: An Empirical Data-Driven Approach. In Con-
struction Research Congress 2018: Construction Information Technology,
2018.

Le Zhang and RR Issa. Development of IFC-based construction industry
ontology for information retrieval from IFC models. In Proceedings of the
2011 Eg-Ice Workshop, University of Twente, The Netherlands, volume 68,
2011.

Daniel Zibion. Development of a BIM-enabled Software Tool for Facility
Management using Interactive Floor Plans, Graph-based Data Manage-
ment and Granular Information Retrieval. Master’s thesis, TUM, 2018.

https://www.w3.org/2001/sw/
https://www.w3schools.com/xml/xml_tree.asp

	Cover page
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Abbreviations and Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Identifying the Research Gap
	1.3 Scope of the Thesis
	1.4 Research Questions
	1.5 Research Methodology
	1.6 Thesis Outline

	2 Background
	2.1 Information Retrieval (IR)
	2.1.1 Definition and History of IR
	2.1.2 Characteristics of Retrieved Information
	2.1.2.1 Relevance
	2.1.2.2 Speed
	2.1.2.3 Context

	2.1.3 Granularity without Losing Context

	2.2 Granular Information in BIM Context
	2.2.1 Granular BIM - Linked Building Data
	2.2.1.1 Towards Granular Web
	2.2.1.2 Semantic Information within BIM
	2.2.1.3 Graph Based Data Structures
	2.2.1.4 Evolution of Granular BIM

	2.2.2 Geometric Information in BIM
	2.2.2.1 Representation within IFC
	2.2.2.2 Representation within RDF
	2.2.2.3 Later Developments and Current Work

	2.2.3 Connecting Geometry to Semantics

	2.3 Visualisation of BIM & Current Efforts for Granularity
	2.3.1 Importance of Visualisation
	2.3.2 Current BIM Software - Are they really granular?
	2.3.3 Possible Improvements for Granularity

	3 Proposed Solution Approach
	3.1 Requirements
	3.2 Primary Challenges
	3.3 Concept
	3.3.1 Creating Geometry from IFC
	3.3.2 Exporting Semantics from IFC
	3.3.3 Loading Geometry onto Web-based Platform
	3.3.4 Connecting Geometry to the Semantics

	3.4 How is it Different from 2D Approach?

	4 Technological Tools
	4.1 Data Models & File Formats
	4.1.1 Industry Foundation Classes (IFC)
	4.1.1.1 A Brief History
	4.1.1.2 Architecture and Data Model
	4.1.1.3 Putting into Context

	4.1.2 Collaborative Design Activity (COLLADA)
	4.1.2.1 Background and Data Structure
	4.1.2.2 Relevance

	4.1.3 GL Transmission Format (glTF)
	4.1.3.1 Background and Data Structure
	4.1.3.2 Relevance

	4.2 Pre-Processing Tools
	4.2.1 IfcOpenShell
	4.2.2 Collada2GLTF Converter
	4.2.3 IFC2Graph Converter

	4.3 Web Development Tools
	4.3.1 Web 3D Rendering and Associated Technologies
	4.3.1.1 Background
	4.3.1.2 WebGL
	4.3.1.3 Three.js

	4.3.2 React.js

	4.4 Graph Database
	4.4.1 Neo4j
	4.4.2 Cypher
	4.4.3 Neo4j JavaScript Driver

	5 Prototype Implementation
	5.1 Pre-Processing
	5.1.1 Converting Implicit Geometry to Explicit
	5.1.1.1 Choice of File Formats
	5.1.1.2 IFC to Collada Conversion
	5.1.1.3 Collada to glTF Conversion

	5.1.2 Converting IFC Semantics to Neo4j Graph

	5.2 Rendering
	5.2.1 Mode of Rendering
	5.2.2 Choice of Renderer
	5.2.3 Connecting Renderer to Graph Database
	5.2.4 Creating a Scene in Three.js
	5.2.5 Loading elements from External Files
	5.2.6 Relative Positioning of Elements

	5.3 Interactivity
	5.3.1 On-Click Capture - Possible Options
	5.3.2 Three.js Bounding Box
	5.3.3 Intersection Using Raycaster
	5.3.4 Challenges Faced

	5.4 Integration with 2D platform
	5.4.1 Characteristics of 2D Platform
	5.4.2 Possible Options for Integration
	5.4.3 Three.js inside React.js

	6 Discussion
	6.1 In Context of AEC/FM Industry
	6.1.1 Facility Management
	6.1.1.1 An FM Use Case Scenario
	6.1.1.2 Remarks

	6.1.2 Construction Progress Monitoring
	6.1.3 Construction Site Situational Awareness

	6.2 In Context of Information Retrieval
	6.3 Limitations of the Research

	7 Conclusions
	7.1 Further Scope

