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Preterm infants with a very low birth weight are at a great risk of dying or of
developing certain life-threatening complications due to their underdevelopment.
These critically ill infants are treated at neonatal intensive care units, in which
their physiological condition is monitored continuously.

In this thesis, machine learning is applied on the monitored parameter recordings
and other patient-specific information from Children’s Hospital, Helsinki Univer-
sity Hospital. The purpose is to use binary classifiers to predict neonatal mortality
and occurrence of three morbidities: bronchopulmonary dysplasia, necrotising en-
terocolitis, and retinopathy of prematurity. Majority of the current studies have
focused on comparing only a few classifiers. Therefore, a wider comparison of
classifier algorithms is performed in this work. In addition to a common mea-
sure, the prediction performance is evaluated with two less used measures: F1

score and area under the precision-recall curve. Additionally, the impact of data
preprocessing and feature selection on the prediction result is studied.

The results show large differences in the performance of classifiers. Random
forests, k-nearest neighbours, and logistic regression result in the highest F1

scores. The highest values of area under the precision-recall curve are achieved
by random forests along with Gaussian processes. If area under the ROC curve
is measured, random forests, Gaussian processes, and support vector machines
perform the best.

The monitored physiological parameters are time series and their sampling tech-
nique can be altered. This shows only a negligible impact on the results. However,
lengthening the monitoring time of physiological parameters to 36–48 hours has
a little but positive effect on the results. On the other hand, feature selection
has a significant role: birth weight and gestational age are crucial for a high
performance. Further, combining them with other features improves the perfor-
mance. For all that, the optimal data preprocessing procedure is classifier- and
complication-specific.
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Syntymäpainoltaan hyvin pienet keskoset ovat suuressa riskissä kuolla tai saa-
da hengenvaarallisia komplikaatioita alikehittyneisyyden takia. Näitä vakavasti
sairaita vauvoja hoidetaan vastasyntyneiden teho-osastoilla, joissa heidän fysio-
logista kuntoaan valvotaan jatkuvasti.

Tämä tutkielma soveltaa koneoppimista valvottujen parametrien tallenteisiin ja
muihin potilaskohtaisiin tietoihin, jotka on saatu HUS:n Lastenklinikalta. Tarkoi-
tuksena on käyttää binääristä luokittelua ennustamaan vastasyntyneiden kuollei-
suutta ja kolmen sairauden puhkeamista. Nämä sairaudet ovat bronkopulmonaa-
linen dysplasia, nekrotisoiva enterokoliitti sekä keskosten retionopatia. Suurin osa
nykyisestä tutkimuksesta on keskittynyt vertailemaan vain muutamia luokitteli-
joita. Tässä työssä vertaillaan siksi suurempaa määrää eri luokittelualgoritme-
ja. Yhden yleisesti käytetyn mitan lisäksi ennusteita arvioidaan myös kahdella
vähemmän käytetyllä arviointimitalla: F1-arvolla ja tarkkuus–herkkyys-käyrän
alapuolisella alueella. Myös datan esikäsittelyn ja piirteiden valinnan vaikutusta
ennustustulokseen tutkitaan.

Tulokset osoittavat suuria eroja eri luokittelijoiden välillä. Satunnaismetsillä, k-
lähimmän naapurin luokittimella sekä logistisella regressiolla saadaan korkeim-
mat F1-arvot. Suurimmat tarkkuus–herkkyys-käyrän alapuoliset alueet saavute-
tetaan satunnaismetsillä sekä Gaussisten prosessien luokittimilla. Jos taas ROC-
käyrän alapuolinen alue mitataan, satunnaismetsät, Gaussisten prosessien luoki-
tin ja tukivektorikoneet toimivat parhaiten.

Seuratut fysiologiset parametrit ovat aikasarjoja, joten niiden näytteenottotapaa
voidaan muuttaa. Tällä on vain pieni vaikutus tuloksiin. Fysiologisten para-
metrien seuranta-ajan pidentämisellä 36–48 tuntiin on kuitenkin pieni, mutta
myönteinen vaikutus tuloksiin. Piirteiden valinnalla on puolestaan merkittävästi
väliä: syntymäpaino ja gestaatioikä ovat ratkaisevia hyvien tulosten saamiseksi.
Niiden yhdistäminen muiden piirteiden kanssa parantaa tuloksia. Ihanteellinen
datan esikäsittely on kaikesta huolimatta luokittelija- ja komplikaatiokohtaista.
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1. Introduction

Digitalisation of healthcare generates vast amounts of patient-specific med-
ical data. At intensive care units (ICUs), they contain measurement values
from patient monitoring, laboratory test results, and clinical notes written
by doctors and nurses. These data enable opportunities for machine learning
to discover knowledge (Meyfroidt et al., 2009). Various machine learning
approaches with various purposes have been proposed to analyse all types of
data originated from human beings. They include, but are not limited to, bio-
metric authentication from electroencephalogram signals (Haukipuro et al.,
2019), prediction of morbidities associated with preterm birth from physi-
ological parameter measurements (Saria et al., 2010), sequencing genomic
data (Libbrecht and Noble, 2015), detection of arrhythmia from electrocar-
diogram recordings (Suotsalo and Särkkä, 2017), and segmentation of the
anatomical regions of the brain from magnetic resonance images (de Brébisson
and Montana, 2015).

Physiology of patients is monitored continuously during their stay at ICU
which applies also to the smallest patients of all, the preterm infants, which
are taken care of at neonatal ICUs (NICUs). These patients are prone to
life-threatening complications of preterm birth that are a consequence of
their bodies and vital functions not being as developed as those of term
infants (McGregor, 2013). Sadly, preterm birth is a major reason for the
worldwide mortality of children under the age of five years (WHO and MCEE,
2018). Fortunately, machine learning may provide a solution, or at least a
help, when applied on the physiological parameter measurements and other
relevant data of preterm infants. Machine learning algorithms may be utilised
at NICUs for predicting certain medical complications related to, for instance,
respiratory system or sight (McGregor, 2013). Evidence for the applicability
of machine learning on the neonatal health care exists. Among others, Fer-
reira et al. (2012) diagnosed neonatal jaundice from a large number of health-
related parameters, Temko et al. (2011) predicted neonatal seizures from elec-
troencephalography data, and Rinta-Koski et al. (2017b, 2018) used several
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physiological parameters and other information to predict a few prevalent
neonatal morbidities as well as neonatal mortality.

Even though medical doctors are experts in their field, there is a need for
data-driven analyses if multiple physiological parameters affect concurrently
the well-being and survival of infants. Humans are capable of analysing and
recognising patterns from data with three dimensions at most, but we are
not able to interpret accurately the data of higher dimensionality (Holzinger,
2016). Accordingly, a computer – together with machine learning algorithms
and different types of medical data – is required to perform those analyses.
Nonetheless, the intention is not to replace the doctors with algorithms but
to provide them with real-time decision support tools. The tools can monitor
the patients and suspect potential complications in advance so that doctors
can evaluate these patients more carefully (Mani et al., 2014).

During 1999–2013, the NICU at Children’s Hospital, Helsinki University Hos-
pital has been collecting and storing masses of data for more than 2,000
preterm infant patients with a very low birth weight (VLBW). This number
corresponds to around one-third of all Finnish VLBW infants born during
those years. This database is exceptionally wide in terms of temporal scale
and coverage, also globally. A few studies, including Immeli et al. (2017)
and Rinta-Koski et al. (2017b), have already utilised this database.

A decent amount of research has been conducted on predicting medical com-
plications with machine learning algorithms. However, most of those studies
have repeatedly applied the same algorithms to make predictions, and the
literature is lacking their wider comparison. Therefore, the first research
objective of this study is to determine which algorithms are the most suit-
able for predicting neonatal complications and if there are differences in the
predictability of different complications. This is executed by applying 12 ma-
chine learning algorithms on neonatal mortality and three morbidities, and
by comparing their predictive capabilities.

Patient cohorts are often imbalanced, meaning the ratio of sick patients to
all subjects is low. Due to the rareness of sick patients, identifying them
is challenging from the machine learning point of view. If machine learning
algorithms are applied on imbalanced data and evaluated inappropriately,
they tend to show misleading results. This is the case in many of the pre-
vious studies. They evaluate the results using accuracy and area under the
receiver operating characteristics curve (see Section 2.4) and receive question-
ably high results (Saito and Rehmsmeier, 2015; Rokach, 2010; Rollins et al.,
2015; Libbrecht and Noble, 2015). Using incorrect measures can have fatal
consequences if the sick patients are not identified and given medical treat-
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ment on time, but the measure still shows a high performance. Therefore,
the second goal of this work is to present less-used measures that function
more truthfully with imbalanced data. These measures and a more com-
monly used measure are applied to evaluate the performance of machine
learning algorithms. Further, the results of this work are compared to previ-
ous studies. Since making reliable comparisons between distinct datasets is
challenging (Salcedo-Bernal et al., 2016), the results are primarily compared
to studies that have been performed on the exactly same neonatal data from
the NICU at Helsinki University Hospital.

As the high-quality database has a wide coverage of different types of patient-
specific data, the third and more technical research objective of this work is
to specify the optimal data preprocessing and feature selection technique for
neonatal mortality and morbidity predictions. To be precise, the optimal
time series sampling of the temporal physiological parameters and the op-
timal length of the monitoring time of the same parameters are examined
in the preprocessing phase. Moreover, including the most relevant features
in the model can improve its prediction performance (Guyon and Elisseeff,
2003). Therefore, the optimal combination of health-related parameters is
studied in the feature selection phase.

By finding the best machine learning algorithms, by assessing the results with
appropriate evaluation criteria, and by determining the optimal preprocess-
ing and feature selection procedure, the analysis tool could be implemented
in real hospital environment some day. This decision support tool would
assist medical doctors to plan the treat of the critically ill preterm infants
before the complications have occurred or their symptoms become too severe.
Foremost, this would improve the care of the neonates, prevent them from
developing critical and life-long complications, and save human lives.

The work is structured as follows. Chapter 2 presents the theoretical back-
ground, concentrating on data science, and a literature review considering
previous studies. Chapter 3 describes the preterm infant data and the
methodology how the data have been analysed, followed by the results in
Chapter 4. The results are interpreted and the research questions are an-
swered in Chapter 5. Finally, Chapter 6 concludes the work.
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2. Background

2.1 Neonatology

The term neonatology, a subspecialty of paediatrics, has been introduced for
the first time in 1960, and it focuses on the medical care and treatment of
human newborns, neonates (Avery et al., 2005). This section provides a brief
introduction to neonates, their medical complications, patient monitoring,
and traditional scores to evaluate patients’ physical condition.

2.1.1 Neonatal infants

Neonates, which require critical care at neonatal intensive care units, are most
often preterm infants, who are prone to numerous complications and illnesses
due to their underdeveloped organs and young age (McGregor, 2013; Avery
et al., 2005). Approximately 15 million preterm infants are born worldwide
annually, which corresponds to more than 10 % of all neonates, but this rate,
however, varies country-specifically between 5 % and 18 % (WHO, 2018).

Gestational age (GA) and birth weight (BW) are important and widely used
attributes to describe neonates. GA means the time period from the first day
of the last normal menstrual period of the mother to the day of delivery, and
GA is usually reported in weeks (American Academy of Pediatrics, 2004).
If GA of a newborn is less than 32 weeks, the infant is said to have a very
low gestational age (VLGA) (Fattore et al., 2015). In addition, infants born
before the gestational age of 37 weeks are called preterm, between the 37th

and the 41st week are term, and after the 41st week are post term (Gomella
et al., 2013). Very low birth weight (VLBW) infants weigh less than 1500 g,
and extremely low birth weight (ELBW) infants less than 1000 g (Avery
et al., 2005; Gomella et al., 2013).
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2.1.2 Typical neonatal complications

ELBW infants tend to have all kinds of health issues that can be respiratory
(e.g., respiratory distress syndrome), cardiovascular (e.g., patent ductus ar-
teriosus), central nervous system (e.g., intraventricular haemorrhage), renal
(e.g., electrolyte imbalance), ophthalmologic (e.g., retinopathy of prematu-
rity), gastrointestinal–nutritional (e.g., necrotising enterocolitis or jaundice),
or immunologic (e.g., proneness to infections) problems (Avery et al., 2005).
Critical care of VLBW and VLGA infants is costly, and according to Fattore
et al. (2015), the cost of saving one preterm infant from very likely death is
e 20,000–e 40,000. In this study, neonatal mortality as well as bronchopul-
monary dysplasia, necrotising enterocolitis, and retinopathy of prematurity
are of a special interest.

Neonatal mortality has been on a decrease during the ongoing millennium
as Figure 2.1 presents (United Nations, 2019). Still, it corresponds to 2.5 mil-
lion annual deaths globally (UNICEF et al., 2018). Complications of preterm
birth caused almost 0.9 million of all neonatal deaths, which also accounts
for approximately 6 % of all 15 million annually born preterm infants (WHO
and MCEE, 2018; WHO, 2018). What is more, the mortality rate among
VLBW and VLGA infants is even higher. In Finland, it is 11.4 % one month
after the birth and 11.7 % after one year (Fattore et al., 2015).

Figure 2.1: Neonatal mortality rate globally and in Finland during 2000–2017.
Data from United Nations (2019).

Bronchopulmonary dysplasia (BPD) is a chronic lung disease, developed
in preterm infants due to factors compromising normal development in the
immature lung, such as treatment of additional oxygen and the use of me-
chanical ventilation (Avery et al., 2005). A low birth weight and gestational
age are associated with the risk of developing BPD (Gomella et al., 2013;
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Wajs et al., 2006, 2007). Approximately 30 % of ELBW infants are diag-
nosed with BPD (Gomella et al., 2013; Walsh et al., 2006).

Necrotising enterocolitis (NEC) is a disease of gastrointestinal tract of
preterm neonates, where inflammation and bacterial invasion of the bowel
wall leads to necrosis. Around 6 %–10 % of VLBW infants have NEC, and
the more preterm infants are at a higher risk of NEC (Gomella et al., 2013).

Retinopathy of prematurity (ROP) is a maldevelopment of the retinal
vasculature, caused by interrupted retinal vessel formation, the symptoms of
which vary in severity and can lead to blindness at worst (Gomella et al.,
2013). Supplementary oxygen given to infants is often believed to contribute
to the development of ROP (Cirelli et al., 2013; Gomella et al., 2013). In ad-
dition, a low birth weight correlates with the rate of developing ROP (Darlow
et al., 2005). To prevent ROP, controlling and optimising the oxygen sat-
uration of the patient is essential as well as maintaining the physiological
state of the patient stable to avoid infections, and thus, abnormal growth
and development of the patient (Hellström et al., 2013).

2.1.3 Evaluating the neonatal condition

Throughout the years, several scoring systems have been introduced to nu-
merically evaluate the condition of newborn infants. Demographic, physio-
logical, and clinical data are used to calculate the scores, which give mortality
and different morbidities a quantification and are used to identify the high-
risk patients (Dorling et al., 2005). Two types of scores exist: medical and
statistical. Medical experts have defined the parameters and their weights
used in medical scores, whereas the statistically relevant parameters have
been selected for statistical scores (Dorling et al., 2005). The medical scores
are easier to be understood by the personnel using them, but their disadvan-
tage is the worse performance in comparison to the statistical scores.

Multiple medical scores are discussed in the literature. National Therapeutic
Intervention Scoring System, NTISS, is calculated from 62 values and used
to predict mortality and assess severity of illnesses (Gray et al., 1992). The
Apgar score evaluates the neonatal condition from five signs (Apgar, 1953).
The illness severity index and predictor of mortality Score for Neonatal Acute
Physiology, SNAP, is calculated from 34 values for VLBW infants (Richard-
son et al., 1993a). Its extension, Score for Neonatal Acute Physiology – Peri-
natal Extension, SNAP-PE, is calculated from SNAP and three additional
values using logistic regression (Richardson et al., 1993b).



CHAPTER 2. BACKGROUND 7

Statistical techniques have been applied to select the parameters for the sim-
plified versions of SNAP and SNAP-PE, namely SNAP-II and SNAPPE-
II (Richardson et al., 2001). SNAP-II is calculated from six values and
SNAPPE-II from SNAP-II and three additional values, which are similar
to those of SNAP-PE (Richardson et al., 2001).

Logistic regression has been used to define the parameters for several sta-
tistical scores. Clinical Risk Index for Babies, CRIB, predicts mortality for
VLBW infants or infants with GA of less than 31 weeks from six values (In-
ternational Neonatal Network, 1993). Its simplified version, CRIB II, is cal-
culated from five redefined values for neonates with GA of 32 weeks (Parry
et al., 2003). Berlin score (Maier et al., 1997) uses five values to assess the
mortality risk of VLBW patients.

Additionally, many other scores exist, and they evaluate the condition of child
and adult patients. They include, but are not limited to, Acute Physiology
And Chronic Health Evaluation, APACHE, (Knaus et al., 1981) along with
the revised versions APACHE II (Knaus et al., 1985), APACHE III (Knaus
et al., 1991), and APACHE IV (Zimmerman et al., 2006), Glasgow Coma
Score (Teasdale and Jennett, 1974), Modified Early Warning Score, MEWS,
(Subbe et al., 2001), Pediatric Risk of Mortality, PRISM, (Pollack et al.,
1988) with its revised version PRISM III (Pollack et al., 1996), Simplified
Acute Physiology Score, SAPS, (Le Gall et al., 1984) and its revised version
SAPS II (Le Gall et al., 1993) as well as Sepsis-related Organ Failure Assess-
ment, SOFA, (Vincent et al., 1996) and quickSOFA (Singer et al., 2016).

Even though certain scores are widely adopted and used for research pur-
poses, a single score cannot explain the true condition of an infant as they
always emphasise some aspects over others (Dorling et al., 2005). The use of
scores has also been criticised as they are static values, calculated at single
time points only, and are not updated over time (Ghassemi et al., 2015).
Therefore, continuous patient monitoring is essential in gaining correct in-
formation about the condition of the patients.

2.1.4 Monitoring the neonatal physiological variables

The human physiology is monitored with various sensors to have an updated
view on the patient’s condition so that potential onset of medical compli-
cations can be prevented by intervening them in advance (Murković et al.,
2003). At NICUs, the infants are kept in incubators, where the temperature
and humidity conditions are appropriate. What is more, multiple functional-
ities are integrated into incubators which can be medical care devices, such as
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ventilators, or patient monitoring devices, such as pulse oximetry. The moni-
tored parameters usually include, but are not limited to, electrocardiography,
electroencephalography, heart rate (HR), blood pressure, temperature, res-
piratory rate, and peripheral blood oxygen saturation (SpO2) (Rinta-Koski,
2018; Murković et al., 2003).

The measurements quantify the state of preterm infant patients, which is a
requirement for machine learning applications. Thus, the measurements form
the integral basis for this study since the continuous parameter monitoring
enables to evaluate and model the patient’s condition with machine learning
algorithms instead of static scores.

2.2 Time series analysis

This section introduces time series and describes how information can be ex-
tracted from them. Furthermore, techniques to identify the relevant features
from all possible features are discussed in Section 2.2.3.

2.2.1 Time series

A time series consists of multiple consecutive observations of a parameter,
measured over a certain time period (Batal et al., 2009). Each observation
has a value and a corresponding time stamp. If multiple parameters are
measured simultaneously, the time series is called multivariate.

Similar temporal patterns are searched from physiological time series as they
may correspond to certain clinical diagnoses (Lehman et al., 2008). Con-
sequently, the appearance of these patterns can reveal upcoming compli-
cations before the condition of the patient deteriorates. Using time series
and more complex temporal information may improve the prediction perfor-
mance. Temporal patterns may include information that is not visible from a
single value; relationships between certain parameters and medication intake
can contain more information than only the newest monitored parameter
values (Batal et al., 2009).
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2.2.2 Feature extraction

Feature extraction means finding the essential information from, potentially,
massive amounts of data usually by reducing the dimensionality of the data
and by compressing the data into features (Duda et al., 2001). Based on the
features, dissimilar data can be distinguished from each other. Time series
features include, for example, regression slopes in certain intervals, maxi-
mum transient increase and decrease of the values, and similarity measures
within and between signals, of which autocorrelation coefficients measure the
within-signal similarity and cross correlation coefficients the between-signal
similarity (Lehman et al., 2008). Autoregressive–moving-average parameters,
introduced by Wold (1938), are also a technique to extract information from
time series.

Temporal abstraction patterns can be extracted from time series data using
four methods as follows (Batal et al., 2012).

1. Temporal abstractions transform raw, multivariate time series data into
a symbolic form where information is encoded to a higher abstraction
level (Moskovitch and Shahar, 2015). They are divided into two meth-
ods:

(a) value or state abstractions categorise values to groups, such as
low, normal, and high, and

(b) trend abstractions categorise time intervals of predefined length
to groups, such as increasing, steady, and decreasing (Batal et al.,
2009; Sacchi et al., 2007).

2. Multivariate state sequences observe the value abstraction sequences
over time for multiple time series.

3. Temporal relations are based on Allen’s temporal logic (Allen, 1984),
and they observe the timing of the occurrence of certain events, for
example, consecutive occurrences, or partly or totally overlapping oc-
currences.

4. Temporal patterns observe the sequence of temporal relations.

Shapelets are another technique to extract information from time series.
They are defined as exceptionally representative subsequences of the class,
in which the whole time series belongs to (Ye and Keogh, 2009). In other
words, shapelets find the relevant parts of time series that include enough
information to classify the whole time series. One more algorithm to identify
temporal patterns is segmented time series feature mine (Batal et al., 2009),
which is based on the Apriori algorithm by Agrawal and Srikant (1994).
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2.2.3 Feature selection

The number of extractable features is enormous. In feature selection, the
number of extracted features is reduced so that only the most relevant ones
are used in classification (Murphy, 2012). This improves the performance of
the prediction, makes the computation more efficient, and explains what is
essential in the underlying data (Guyon and Elisseeff, 2003; Salcedo-Bernal
et al., 2016). However, Temko et al. (2011) prefer including all available
features for support vector machine classification (see Section 2.3.9) since
the presence of redundant features does not distract the classifier, unlike the
lack of important features. As an acknowledgement, a variable, which does
not improve the classification result alone, can improve it together with other
variables (Guyon and Elisseeff, 2003).

Three common feature selection techniques are filter, wrapper, and embed-
ded methods, for which the reader is advised to refer to Guyon and Elisseeff
(2003). Filter methods, such as the correlation criterion of the square of
Pearson correlation coefficient, are suitable for binary classification. For in-
stance, features with the lowest correlation with the outcome variable can be
omitted from the model, which, however, may simultaneously decrease the
classification result (Salcedo-Bernal et al., 2016). Wrapper methods apply
the machine learning algorithm of interest to identify the optimal features.
They either select, as in forward selection, or omit, as in backward elimina-
tion, the features one by one, ending up to a locally optimal performance.
Embedded methods are a combination of filter and wrapper methods that can
improve the results in comparison to filter methods, but the improvement is
not guaranteed to be significant.

2.3 Machine learning classification methods

This section presents the principles of machine learning with a focus on de-
scribing how classifiers determine the class for data points.

2.3.1 Machine learning and classification in general

A high-level division of machine learning is supervised and unsupervised
learning (Hastie et al., 2001; Goodfellow et al., 2016; Murphy, 2012). The
goal in both of them is to build a model that discovers knowledge from
data, which are split into training data and test data. The training data
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consist of input-output pairs D = {(x(i), y(i))}Ni=1, where N is the number
of observations (also called as data points, data instances, or cases), each of

which is required to have d known features x(i) = (x
(i)
1 , . . . , x

(i)
d ) (also called

as attributes, predictive attributes, or explanatory variables) and one possibly
known outcome variable y(i) (also called as class, label, target, or response
variable) (Bellazzi and Zupan, 2008; Hastie et al., 2001; Goodfellow et al.,
2016; Murphy, 2012; Bishop, 2006).

In supervised learning, the known features X = (x(1), . . . ,x(N))T and the
known outcome variables y = (y(1), . . . , y(N))T of the training data are used
to build a model. The purpose of the model is to predict the unknown
outcome variable y of unseen data instance of test data from their known
features x by estimating the probability p(y |x) (Lucas, 2004; Hastie et al.,
2001; Goodfellow et al., 2016). If the outcome variable can only have discrete
values or is qualitative, the machine learning problem is called classification,
whereas a continuous outcome variable implies regression (Meyfroidt et al.,
2009; Hastie et al., 2001).

In unsupervised learning, on the other hand, the outcome variables y are
unknown, and the aim is to observe the features in the unlabeled data
D = {(x(i))}Ni=1 to learn the probability distribution p(x) (Murphy, 2012).
The model is build by finding certain patterns in the attributes, based on
which certain data points are grouped or clustered together (Meyfroidt et al.,
2009). In addition to clustering, unsupervised learning covers, for example,
association rules and self-organising maps (Hastie et al., 2001).

In the ICU context, an interesting question is to predict the survival of pa-
tients, which can be implemented as a supervised binary classification prob-
lem (Meyfroidt et al., 2009). In classification, the purpose is to build a model
based on the training data, and then generalise the model on unseen data
instances. The features of an unseen data point x are used to assign the
data point with a label y ∈ {C1, . . . , CK} that represents one of K discrete
classes Ck, where k = 1, . . . , K (Bishop, 2006). The classes are separated by
decision boundaries, also known as decision surfaces, from each other in the
feature space.

In this work, the data instances are NICU patients and the input data con-
sist of their physiological parameter measurements and other patient-specific
information. Furthermore, the outcome variable y(i) ∈ {0, 1}, where y(i) = 0
denotes the class C1, the patient i dies or is given a certain diagnosis, and
y(i) = 1 denotes the class C2, the patient i does not die or is not given the
diagnosis.

The generalisation capability is measured by generalisation error, test error
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or classification error, which means the probability to misclassify an unseen
data instance from the test data (Goodfellow et al., 2016; Rokach, 2010).
Additionally, the machine learning models are evaluated with training errors
which are errors due to misclassification, calculated from the training set.
Minimising the training error means optimising the parameters of the model
for the training set so accurately that the generalisation capability of the
model is reduced (Goodfellow et al., 2016). Thus, the test error increases,
which is referred to as overfitting. It is one of the major challenges in machine
learning.

In the field of medicine, the most widely used machine learning classifiers
include decision trees, random forests, artificial neural networks, Bayesian
networks, support vector machines, and Gaussian processes, and there is no
evidence that a certain classifier would be more suitable for a certain task
than any other (Meyfroidt et al., 2009). Therefore, a variety of classifiers are
applied and compared to determine the most suitable classifiers for neonatal
complication predictions to respond to the first research objective of this
work.

2.3.2 Gaussian processes

Gaussian processes (GPs) are generalisations of the Gaussian probability dis-
tribution, and they belong to probabilistic classification methods that pro-
duce probabilities of belonging to a class instead of bare class labels (Bishop,
2006; Rasmussen and Williams, 2006). The goal of Gaussian processes is to
learn the distribution over function for the given data p(f |X,y), and then
determine the posterior or predictive probability p(y∗ |X,y,x∗) to predict
the label y∗ for a test data point x∗ (Rasmussen and Williams, 2006; Mur-
phy, 2012). An example of GP classification result is presented in Figure 2.2.
Next, binary GP classification is described in more detail, and the test data
point is denoted with an asterisk (∗) for clarity.

First, a Gaussian process prior is adapted over a latent function f ∗ =
(f(x(1)), . . . , f(x(N)), f(x∗)), which is defined as in Equation (2.1),

p(f ∗) = N (f ∗ |0,Σ∗), (2.1)

where the covariance matrix Σ∗ consists of elements Σ(x,x′) = k(x,x′),
in which k(x,x′) is any positive semidefinite kernel function (Bishop, 2006;
Murphy, 2012). For a test data point, the distribution of this latent variable
f ∗ is defined by Rasmussen and Williams (2006) as in Equation (2.2),
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Figure 2.2: A possible result of a GP classification based on two features: heart
rate (HR) and peripheral oxygen saturation (SpO2). The left part shows the
locations of the data points of the blue and orange classes, and the right part shows
the contour plots for the predictive probabilities, where the black line represents
the decision boundary between decision regions R1 (blue class) and R2 (orange
class). Figure following Rasmussen and Williams (2006).

p(f ∗ |X,y,x∗) = p(f ∗ |X,y,f) p(f |X,y) df . (2.2)

Second, a logistic sigmoid function σ(f ∗) = (1 + exp(f ∗))−1 is applied on
the latent to transform the result from the whole span of the x-axis into the
interval of [0, 1] to receive an appropriate binary classification result (Bishop,
2006; Rasmussen and Williams, 2006).

Third, it is sufficient to calculate the posterior distribution only for one class
p(y∗ = 1 |X,y,x∗) since the posterior distribution for the other class is
simply its complement p(y∗ = 0 |X,y,x∗) = 1 − p(y∗ = 1 |X,y,x∗). Fol-
lowing Bishop (2006) and Rasmussen and Williams (2006), the probabilistic
prediction is calculated as a combination of the previous steps as in Equa-
tion (2.3),

p(y∗ = 1 |X,y, f ∗) =

∫
σ(f ∗) p(f ∗ |X,y,x∗) df ∗. (2.3)
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Kernel functions for Gaussian processes

The choice of the covariance matrix or kernel function Σ is essential in GP
classification since assumptions of the similarities between data points are
encoded in that (Rasmussen and Williams, 2006). Different kernels include,
but are not limited to, constant, linear, squared exponential or radial ba-
sis function (RBF), and Matérn kernels in Equations (2.4a), (2.4b), (2.4c),
and (2.4d), respectively,

kconst(x,x
′) = σ2, (2.4a)

klinear(x,x
′) = xTΣx′, (2.4b)

kRBF(x,x′) = exp(− r2

2`2
), (2.4c)

and

kMatérn(x,x′) =
1

2ν−1Γ(ν)

(√
2ν

`
r

)ν

Kν

(√
2ν

`
r

)
, (2.4d)

where x and x′ are a pair of inputs, σ2 is a variance, r = x − x′ is a
stationary covariance function, ` is a characteristic length-scale, ν is a positive
parameter, Kν is a modified Bessel function (see Abramowitz and Stegun
(1965)), and Γ is the gamma function (Rasmussen and Williams, 2006;
Murphy, 2012). According to Rasmussen and Williams (2006), the most
interesting Matérn kernels from the machine learning perspective are the ones
with parameters ν = 3/2 and ν = 5/2 as in Equations (2.4e), and (2.4f),

kMatérn32(x,x′) =

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
, (2.4e)

and

kMatérn52(x,x′) =

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
, (2.4f)

respectively.

Valid kernels can be constructed from other valid kernels by following simple
rules (Bishop, 2006). For example, a sum or a product of two valid kernels
results in a valid kernel (Rasmussen and Williams, 2006). In this work, four
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distinct kernels are applied, and they correspond to the kernels of Rinta-
Koski et al. (2018). These kernels are sums of linear, constant, and kernel-
specifically optionally one of the kernels presented above, and the constructed
kernels are as in Equations (2.5a), (2.5b), (2.5c), and (2.5d),

k1(x,x′) = klinear(x,x
′) + kconst(x,x

′), (2.5a)

k2(x,x′) = klinear(x,x
′) + kconst(x,x

′) + kMatérn32(x,x′), (2.5b)

k3(x,x′) = klinear(x,x
′) + kconst(x,x

′) + kMatérn52(x,x′), (2.5c)

and

k4(x,x′) = klinear(x,x
′) + kconst(x,x

′) + kRBF(x,x′). (2.5d)

2.3.3 Näıve Bayes

The näıve Bayes classification (NB) is based on the Bayes formula in Equa-
tion (2.6),

P (y = Ck |x) =
p(x |Ck)P (Ck)

p(x)
, (2.6)

where Ck represents the kth class label, and the posterior probability P (y =
Ck |x) for an unknown data instance x is calculated from likelihood p(x |Ck),
prior probability P (Ck), and evidence p(x) (Duda et al., 2001; Mitchell,
1997).

The goal of the näıve Bayes classifier is to calculate the maximum posterior
probability, and thereby, classify the unseen data point to the most likely
class (Duda et al., 2001). Additionally, the denominator in Equation (2.6)
is irrelevant under the assumption of conditionally independent features xj,
and it is omitted. The formula simplifies to Equation (2.7),

P (y = Ck |x) = argmax
Ck ∈K

P (Ck)
d∏
j=1

p(xj |Ck), (2.7)

where d is the dimensionality of the feature vector x. Additional data in-
stances contribute positively to the performance of the model as they make
the posterior probability density function sharper (Duda et al., 2001).
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2.3.4 Linear discriminant analysis

Linear discriminant analysis (LDA) divides the d-dimensional space Rd into
classes by hyperplanes whose decision boundaries are linear (Hastie et al.,
2001). The decision boundary divides the feature space into two subspaces or
decision regions R1 for y = 0 and R2 for y = 1 in binary classification (Duda
et al., 2001). An example of binary LDA classification is in Figure 2.3(a).

LDA models the class conditional densities as Gaussian distributions as in
Equation (2.8),

p(x | y = Ck,θ) = N (x |µk,Σk), (2.8)

where θ refers to the parameters of the model: the d-dimensional, class-
specific mean vector µk, and the class-specific covariance matrix Σk (Mur-
phy, 2012). LDA assumes that all classes have a common covariance ma-
trix (Hastie et al., 2001; Murphy, 2012). Thus, the class-specific covariance
matrices simplify to a common covariance matrix as Σk = Σ ∀k. The poste-
rior probabilities for class labels are formulated as in Equation (2.9),

p(y = Ck |x,θ) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk, (2.9)

where πk denotes the class-specific prior probability P (Ck) (Hastie et al.,
2001; Murphy, 2012).

ℛ1

ℛ2

(a) Binary LDA classification with the
linear decision boundary

ℛ1

ℛ2

(b) Binary QDA classification with the
quadratic decision boundary

Figure 2.3: Two binary discriminant analysis classifiers separate the blue and
orange classes. Figure modified from Murphy (2012).
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2.3.5 Quadratic discriminant analysis

The linear decision boundaries of LDA (see Section 2.3.4) are not always ad-
equate to separate the classes from each other, and in those cases, quadratic
discriminant analysis (QDA) might result in a better classification. QDA has
quadratic decision boundaries instead of linear, and the class-specific covari-
ance matrices are not assumed to be equal (Hastie et al., 2001). Thus, each
class Ck has its own covariance matrix Σk. Quadratic discriminant functions
are formulated as in Equation (2.10),

p(y = Ck |x,θ) = −1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk) + log πk, (2.10)

(Hastie et al., 2001). A possible classification of QDA is presented in Fig-
ure 2.3(b).

2.3.6 Decision trees

Classification and regression trees have been introduced by Breiman et al.
(1984), who recognised their applicability to medical diagnosis predictions.
In decision trees (DT), thresholds are set for the feature values, and each
threshold splits the data into two non-overlapping subsets R1 and R2 at
decision points (Breiman et al., 1984; Goodfellow et al., 2016; Murphy, 2012).
Figure 2.4(a) presents the tree-like structure of DT. More mathematically,
the decision points divide the feature space into regions with hyperplanes,
resulting in hyper-rectangles that correspond to the leaf nodes (Podgorelec
et al., 2002). Rectangle regions R1 and R2 are illustrated in Figure 2.4(b).

Splitting the data into smaller subsets is repeated until almost all data in-
stances of the subsets or leaf nodes belong to the same class Ck (Goodfellow
et al., 2016; Duda et al., 2001). Had all data instances in a leaf node the
same outcome variable, the model could be overfitting (Podgorelec et al.,
2002). Overfitting is prevented by pruning, in which the number of splits is
limited (Murphy, 2012). To test the performance of a decision tree, the fea-
tures of a new data instance are compared to the thresholds in the tree-like
structure, and the label of the leaf node becomes the class of the test data
instance.

The advantage of decision trees is the easily understandable rules (Mani et al.,
2014; Duda et al., 2001). Decision trees accept both continuous and discrete
data as input (Murphy, 2012). They are also relatively robust classifiers to
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Figure 2.4: A possible result of a decision tree of two features: heart rate (HR)
and peripheral oxygen saturation (SpO2).

labelling errors, and outliers (Meyfroidt et al., 2009; Murphy, 2012). The
disadvantages of decision trees include their poor performance on incomplete
data, the lack of alternative solutions as they are able to produce only one
model for a given problem, and their incapability to emphasise the more
important decisions over the less important ones (Podgorelec et al., 2002).

2.3.7 Random forests

Random forests (RF) consist of an ensemble of trees, each of which has
been trained with a slightly dissimilar subset of the training data (Murphy,
2012; Meyfroidt et al., 2009). The sampling of the subsets is independent
and identically distributed, resulting in slightly dissimilar trees for each sam-
pling (Breiman, 2001). After the trees are grown, their results are averaged
or the most common result is voted to be the result of RF model. Accord-
ingly, the model has a lower variance than single decision trees. The number
of trees in the forest is not relevant as the generalisation error of the model
converges as long as there are sufficiently many trees (Breiman, 2001).
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2.3.8 Logistic regression

Despite its name, logistic regression (LR) is a classification method, whose
origin lays in linear regression (Bishop, 2006; Goodfellow et al., 2016). Lo-
gistic regression models the posterior probabilities of the perfectly separable
classes with linear functions (Hastie et al., 2001). The regression coefficients
or weights w of the functions do not have a closed-form solution but they
are optimised with algorithms such as maximum likelihood estimation or
gradient descent (Murphy, 2012). Logistic regression is presented in Equa-
tion (2.11),

p(y = Ck |x,W ) =
exp(wT

kx)
K∑
i=1

exp(wT
i x)

, (2.11)

where W contains all the class-specific weight vectors wk, and K is the
number of classes Ck (Murphy, 2012).

2.3.9 Support vector machines

Support vector machines (SVMs) are generalisations of logistic regression
since perfect linear separability of the classes is not required (Hastie et al.,
2001). Moreover, SVMs output only the class labels, not the probabilities as
LR does (Goodfellow et al., 2016).

SVMs are based on mapping the input data into a high-dimensional feature
space where the optimal linear decision boundaries or hyperplanes are set
between the classes, so that the margin between the vectors of the classes
is maximised (Cortes and Vapnik, 1995). Mathematically, maximising the
margin equals to minimising the weight vector ‖w‖2, since the margin equals
to 2
‖w‖ (Cortes and Vapnik, 1995; Hastie et al., 2001; Bishop, 2006). Thus,

the optimisation problem is as in Equation (2.12),

min
w,b

1

2
‖w‖2

subject to y(i)(wTφ(x(i)) + b) ≥ 1, i = 1, . . . , N,

(2.12)

where φ denotes the fixed feature-space mapping, and b the bias parameter.
Weight vectors w, for which y(i)(wTφ(x(i)) + b) equals to 1 or −1 lie at the
maximum margin hyperplanes and are support vectors. SVM separates the
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classes so that one class has a positive value for wTφ(x(i)) + b and negative
for the other (Bishop, 2006; Goodfellow et al., 2016).

Since the perfect linear separability is not required for the classes in SVM
classification, some of the observations are let to be misclassified on the
incorrect side of the decision boundary. Therefore, slack variables ξ(i) ≥ 0
are introduced. Equation (2.13) updates the the optimisation problem and
the constraints,

min
w,b

1

2
‖w‖2 + γ

N∑
i=1

ξ(i)

subject to y(i)(wTφ(x(i)) + b) ≥ 1− ξ(i), i = 1, . . . , N

ξ(i) ≥ 0, i = 1, . . . , N,

(2.13)

where
∑N

i=1 ξ
(i) sets an upper bound for the number of misclassified data

points, and thus, γ > 0 is a constant controlling the split between the margin
and the slack variable penalty (Cortes and Vapnik, 1995; Hastie et al., 2001;
Bishop, 2006). If ξ(i) = 0, the data point i has a correct classification as it
lies at the margin or on its correct side. 0 < ξ(i) ≤ 1 means also a correct
classification, but the data point lies inside the margin but on the correct side
of the decision boundary. A data point with ξ(i) > 1 is misclassified since it
lies on the incorrect side of the decision boundary. Binary SVM classification
with slack variables is shown in Figure 2.5.

𝑚𝑎𝑟𝑔𝑖𝑛
ℛ1

ℛ2

ξ(𝑖) < 1

ξ(𝑖) = 0

1

𝒘

ξ(𝑖) > 1

𝒘𝑇𝝓 𝒙 𝑖 + 𝑏 = 0

𝒘𝑇𝝓 𝒙 𝑖 + 𝑏 = −1

𝒘𝑇𝝓 𝒙 𝑖 + 𝑏 = 1

Figure 2.5: The black decision boundary divides the space into regions R1 and
R2, leaving a margin between the classes in binary SVM classification. Figure
following Hastie et al. (2001) and Murphy (2012).
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2.3.10 k-nearest neighbours

In k-nearest neighbours classification (k-NN), a data instance is classified
to the same class as the majority of its k closest neighbours, and k =
1, . . . , N (Bishop, 2006; Hastie et al., 2001; Duda et al., 2001; Mitchell, 1997).
If an equal number of neighbours belongs to different classes, the class can be
selected, for example, randomly between them. The selected distance mea-
sure, such as Euclidean, Mahalanobis, or Manhattan distance, may affect the
classification result (Duda et al., 2001). Since k-NN is a non-parametric algo-
rithm, the underlying data are allowed to have any distribution (Goodfellow
et al., 2016).

2.4 Evaluating classification results

Measures evaluate and enable to compare the performance of distinct clas-
sifiers and the performance of the same classifier with any changes in pa-
rameters, features, or other factors (Marsland, 2015). This section provides
background for achieving the second research goal of this work by introducing
performance measures and by assessing their usability in classification.

2.4.1 Performance measures

Many of the classifiers, presented in Section 2.3, do not provide a pre-
dicted label but probabilities in the interval of 0.00–1.00 of belonging to
classes (Fawcett, 2006). This probability has to exceed a predefined thresh-
old so that a data point is assigned with a corresponding label. Thereby, the
choice of the threshold affects the labelling, and thus, the results. However,
the correct threshold varies application-specifically, and selecting the correct
one is not straightforward (Saito and Rehmsmeier, 2015). Therefore, single-
threshold and threshold-free measures are presented next. For a detailed
explanation of the measures, the reader is advised to refer to Sokolova and
Lapalme (2009) and Saito and Rehmsmeier (2015).

Confusion matrix is a simple matrix of classification results, and it forms
a foundation for classification evaluation. Confusion matrix, presented in
Table 2.1, has a size of 2× 2 in binary classification. The four sections in the
confusion matrix represent how a data point can be classified.

• True positive (TP ) means a data point, which belongs to class C1

and is classified to belong to C1.
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Table 2.1: Confusion matrix used in binary classification.

Predicted class

Positive (C1) Negative (C2)

True class
Positive (C1) True positive (TP ) False negative (FN)

Negative (C2) False positive (FP ) True negative (TN)

• False negative (FN) means a data point, which belongs to class C1

but is classified not to belong to C1.

• False positive (FP ) means a data point, which does not belong to
class C1 but is classified to belong to C1.

• True negative (TN) means a data point, which does not belong to
class C1 and is classified not to belong to C1.

Single-threshold measures

The following measures require a threshold for the probability of belonging
to a class to assess the classification performance. Altering the threshold
changes also the number of the four outcomes (TP , FN , FP , TN), and
accordingly, the following performance measures (Van Trees, 1968).

Accuracy is the rate of classifying the data instances into the correct classes
as defined in Equation (2.14).

Accuracy =
TP + TN

TP + FN + FP + TN
(2.14)

Precision or positive predictive value (PPV) is the rate of data instances
with a positive classification, for which the classification is correct as defined
in Equation (2.15). In the NICU context, precision means the rate of patients
with a complication diagnosis who are truly unwell. A low precision implies
that more patients are suspected to have a complication than have that in
reality, which means playing it safe in the practical sense.

Precision =
TP

TP + FP
(2.15)

Sensitivity, recall, or true positive rate (TPR) is the rate of data instances
belonging to the positive class which are classified correctly as defined in
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Equation (2.16). Thus, sensitivity measures the rate of identifying the un-
well patients from all unwell patients, which is vital from the medical point
of view. Not identifying an unwell patient can have critical consequences,
and therefore, false positives are much more acceptable than false nega-
tives (Rollins et al., 2015).

Sensitivity =
TP

TP + FN
(2.16)

Specificity or true negative rate (TNR) is the rate of data instances belong-
ing to the negative class which are classified correctly as defined in Equa-
tion (2.17). Thereby, specificity measures the rate of truly healthy patients,
which have been diagnosed as healthy.

Specificity =
TN

FP + TN
(2.17)

False positive rate (FPR) is the rate of data instances belonging to the
negative class which are classified incorrectly as defined in Equation (2.18).
At NICUs, FPR is the rate of healthy patients, which are diagnosed as sick.

False positive rate = 1− specifity =
FP

FP + TN
(2.18)

F1 score, F-score, or F-measure, defined in Equation (2.19), is the harmonic
mean of precision and sensitivity.

F1 score =
2 · precision · sensitivity

precision + sensitivity
(2.19)

Threshold-free measures

The following measures merge single-threshold measures so that all possible
thresholds in the range of 0.00–1.00 are taken into account.

Receiver operating characteristics (ROC), example in Figure 2.6(a), vi-
sualise the results of a binary classification task (Hanley and McNeil, 1982;
Fawcett, 2006). The false positive rates (FPRs) for all thresholds lie on
the x-axis, and they are plotted against the true positive rates (TPRs) for all
thresholds on the y-axis (Van Trees, 1968; Fawcett, 2006; Davis and Goadrich,
2006; Saito and Rehmsmeier, 2015). The ROC curve of a perfect classifica-
tion passes from (0,0) through (0,1) to (1,1). Random guessing produces a
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diagonal ROC curve, from left bottom corner to right top corner. Therefore,
only classifiers in the upper left triangle outperform random guessing.

Area under the ROC curve (abbreviated as AUROC in this work) is a
single value between 0 and 1, which makes comparing ROC curves of distinct
classifiers more convenient (Hanley and McNeil, 1982; Saito and Rehmsmeier,
2015; Fawcett, 2006). If AUROC is 1, the two groups have been identified
perfectly and they are totally distinct whereas an AUROC value of 0.5 impli-
cates random guessing and the groups have not been identified at all (Fawcett,
2006; Swets, 1988; Griffin and Moorman, 2001). Thus, all classifiers should
have an AUROC higher than 0.5. Noteworthy, AUROC quantifies only the
area, not the shape of the curve, and two distinct ROC curves can have the
same AUROC.

(a) ROC curves (b) PR curves

Figure 2.6: Results for seven classifiers in terms of ROC and PR curves.

Precision-recall (PR) curve is another classification performance measure,
illustrated in Figure 2.6(b). The values of recall for all thresholds lie on the
x-axis, and they are plotted against the values of precision for all thresholds
on the y-axis (Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015). The
perfect classification lies in the upper right corner.

Area under the PR curve (abbreviated as AUPR in this work) quanti-
fies the PR curve into a single value between 0 and 1, making comparisons
between classifiers more convenient.
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2.4.2 Applicability of measures

Since the classification results can be assessed with many measures, the choice
of the measure depends on what is wanted to be measured. Thereby, the
choice is also a matter of opinion. The different measures emphasise different
aspects as described in Section 2.4.1. However, only appropriate evaluation
criteria provide justified results that answer to research questions. Therefore,
it is essential to be aware of the capabilities and limitations of different mea-
sures (Fawcett, 2006). For example in complication predictions, the interest
is often in identifying the sick patients among all patients, which means clas-
sifying the positive class correctly. Therefore, the most suitable measures are
required to concentrate on evaluating that.

The suitability of measures for assessing the classification performance de-
pends partly also on the underlying data. Data imbalance (see Section 2.5)
means that the ratio of the positive and negative classes is not equal, forming
majority and minority classes. This disproportion affects the choice of the
appropriate measure. For example, accuracy is not the optimal evaluation
criterion for imbalanced datasets if the task is to identify the minority class
representatives (Libbrecht and Noble, 2015; Marsland, 2015; Rollins et al.,
2015; Rokach, 2010). If the sick patients were the minority class and the
healthy patients the majority class, classifying all patients to the class of the
healthy would result in a high accuracy even though none of the sick patients
was identified and classified correctly. Therefore, the use of other measures
is required, and Marsland (2015) expresses that either the pair of precision
and recall or the pair of specificity and sensitivity provides more information
than accuracy alone.

In medical data, the class of sick subjects is often the minority class. Accord-
ingly, class imbalance has to be considered in medicine since misclassifying
sick patients as healthy can be vital for them if they do not receive medical
care on time (Weiss and Provost, 2001). Therefore, it is important to identify
all sick patients, which implies that a high sensitivity is appreciated. Even
though misclassifying healthy patients as sick is not harmful for them, it is
waste of resources to consider and treat them as risk patients in vain. There-
fore, it is essential to classify only the sick patients as sick, which implicates
that a high precision is valuable. In accordance, precision and sensitivity are
more appropriate evaluation criteria than accuracy (Sun et al., 2009).

The single-threshold measure F1 score is a derivative of precision and sen-
sitivity, and using F1 score is supported from the data imbalance point of
view (Marsland, 2015; Sun et al., 2009). F1 score evaluates the ability of
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the classifier to truly identify the data points of the underrepresented class,
and it does not provide overly optimistic results either as accuracy and some
other measures do. The same applies to the threshold-free AUPR that is
another derivative of precision and sensitivity (recall).

Saito and Rehmsmeier (2015) researched the performance of ROC and PR
curves on balanced and imbalanced datasets, concluding PR curves result in
more informative and intuitive plots if data imbalance is present. However,
this is debatable since Fawcett (2006) encourages the use of ROC curves
over PR curves due to their resistance to changes in class balance. For all
that, according to Saito and Rehmsmeier (2015), ROC curves are used more
frequently in the studies, and the statement is supported by the findings in
Section 2.6. Only a few researchers have reported other measures: Rollins
et al. (2015) have reported F1 score and Desautels et al. (2016) AUPR.

2.5 Challenges in clinical data

Hogan and Wagner (1997) describe the data quality with two measures: cor-
rectness is the proportion of truly correct data observations to incorrect data
observations, and completeness is the proportion of recorded observations to
all recordable observations. Both correctness and completeness are important
factors regarding the performance of machine learning algorithms. Generally
speaking, medical data and physiological parameter recordings are seldom
totally correct or complete. The data are sparse and noisy, the sampling
is irregular, and the data samples are plagued by human error (Ghassemi
et al., 2015; Marlin et al., 2012). Additionally, some values may be out of
range, and there can be gaps in the time series (Salcedo-Bernal et al., 2016).
Additionally, some of the missing values are caused by probe dropouts such
as malfunctions or removals of the measuring equipment (Stanculescu et al.,
2014a). Consequently, all these decrease the correctness and completeness of
the data.

Missing values

Missing values mean gaps in the data or the sparsity of the data. They in-
crease the level of incompleteness of the data, which is characteristic for many
real-world data sets (Donders et al., 2006; Kotsiantis et al., 2006). Sometimes
preprocessing the data produces missing values. For example, Lehman et al.
(2008) replaced measurement values out of range by missing values, but filled
them later by interpolation.
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While statistical methods function well with data that contain noise and
missing values, predictive methods often fail with such data. Therefore, many
techniques have been developed to deal with missing values. Saar-Tsechansky
and Provost (2007) suggest four alternative approaches to handle missing
values as follows.

1. The whole data instance (x(i), y(i)) with a missing value is discarded.

2. The whole feature xj with a missing value is discarded.

3. The missing value x
(i)
j is acquired.

4. The missing value x
(i)
j is estimated by

(a) replacing it with the mean or mode of the feature j,

(b) replacing it with an arbitrary unique value, or

(c) calculating it from the distribution of the feature j.

To extend suggestion 4(a), multiple extrapolation methods have been pro-
posed to fill the missing values by, for example, with the mean of the whole
data or the mean of the adjacent values (Meyfroidt et al., 2009). Further-
more, a simple last-observation-carry-forward (LOCF) method has been ap-
plied (Desautels et al., 2016; Overall et al., 2009; Mani et al., 2014). In
LOCF, missing values are replaced with the previous known value.

In addition, more sophisticated and complex methods have been proposed.
The generative probabilistic models, such as autoregressive hidden Markov
models, are appropriate for estimating missing values as they utilise marginal-
isation (Stanculescu et al., 2014b). Marginalisation means drawing probabil-
ities for unknown values from the known values, and the direct dependencies
between all values are taken into account. However, these models require
the proportion of missing values to be relatively small. Further, generalised
linear mixed models can be applied on sparse data as they function despite
the missing values (Overall et al., 2009). Still, the use of simpler models is
advised due to their better performance.

Irregular sampling

Irregular sampling means that the time intervals between samples do not stay
constant. This irregularity causes many modelling methods to fail, which can,
however, be tackled by making assumptions about the functional form of the
data (Ghassemi et al., 2015). Of course, making assumptions introduces new
bias to the model.

A technique to tackle the varying sampling frequency is piecewise aggregate
approximation (PAA), in which the time series are cut into time frames of
equal length (Keogh et al., 2001). Then, the values in each time frame are
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averaged for each time frame. In cases where no values exist in the frame,
the same value is selected as in the previous or the following frame (Salcedo-
Bernal et al., 2016). Marlin et al. (2012) applied PAA with one-hour-long
intervals and mean filtering but they also pointed out the issue of potential
information loss. Despite not calling it PAA, Lehman et al. (2008) used a
similar approach with one-minute-long time intervals where medians of the
samples were calculated for each minute, and Lehman et al. (2015) had the
same interval length but calculated averages.

A time series can also be translated into a string of symbols to avoid the
challenges, caused by irregularly sampled time series. One symbolic method
is symbolic aggregate approximation (Lin et al., 2007). First, this method
uses PAA to split the time series into frames of equal length, each of which
is assigned with the mean value of that frame. Then, the mean values are
discretised by setting breakpoints B for their values, which are used to as-
sign each time frame with a symbol such as an alphabet. For example, two
breakpoints B = {β1, β2}, β1 < β2, are set for a PAA representation. Values
below β1 are given an A, the values between β1 and β2 a B, and the values
above β2 a C. The breakpoints B are advised to be derived from the Gaussian
distribution (Lin et al., 2007).

Ghassemi et al. (2015) proposed a time series modelling method to make pre-
dictions from clinical data. Their method uses multiple irregularly sampled
time series along with their between and within correlations. This multi-
variate method introduces a new latent space and uses the multi-task GP
models, outperforming univariate time series methods.

Imbalanced data

Class imbalance means the disproportional occurrence of class representatives
in the data, leading to majority and minority classes. Imbalanced data are
problematic especially in binary classification if the class of interest is the
minority class (Cerqueira et al., 2014). As the model has not been trained
with a sufficient number of minority class representatives, many classifiers fail
in classifying the minority class correctly (Weiss and Provost, 2001; Marsland,
2015). In these cases, the classifier does not necessarily learn – or is even not
trained with – all possible variations of the minority class representatives.

The class imbalance can be managed with resampling. In oversampling, the
minority class samples are copied at random until their number has increased
close to the number of the majority class samples, and in the opposite case,
in undersampling, the majority class samples are removed at random until
their number has decreased close to the number of the minority class sam-
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ples (Japkowicz and Stephen, 2002; Estabrooks et al., 2004). There is no
unambiguous solution which resampling technique to use since their perfor-
mance depends on the underlying data (Estabrooks et al., 2004). Select-
ing either often improves the result compared to using the imbalanced data.
Nevertheless, Japkowicz and Stephen (2002) conclude that oversampling out-
performs undersampling.

Improving the data quality with expert knowledge

Besides knowledge of data science, substance knowledge is required to se-
lect the most important features for the machine learning algorithms at the
data preprocessing phase (Cerqueira et al., 2014). Adding expert or back-
ground knowledge in machine learning has also been considered so that the
machine learning models would not depend only on the input data but also
on the clinical expertise (Lucas, 2004; Bellazzi and Zupan, 2008). Holzinger
(2016) discusses the possibility to create interactive machine learning algo-
rithms, where an expert is involved in the actual learning phase of machine
learning algorithms, in addition to the preprocessing phase. Nonetheless, this
“human-in-the-loop” approach lacks quantitative research on its performance
and suitability in health care and medicine.

Comparability

Salcedo-Bernal et al. (2016) point out the difficulty to compare the results
of different research papers in the clinical field since the applied data and
parameters vary from paper to paper, thus making it hard to conclude which
model gives the most accurate predictions. Recently, the open MIMIC II
(Multiparameter Intelligent Monitoring in Intensive Care) database (Saeed
et al., 2011), available on Physionet (Goldberger et al., 2000), has been used
by several researchers, such as Salcedo-Bernal et al. (2016), Lehman et al.
(2015), Ghassemi et al. (2015), and Calvert et al. (2016).

2.6 Previous work

The results of a comprehensive literature review to the previous work of
machine learning applications in neonatology, at ICUs, and in health care in
general are provided in this section. The common denominator for all the
studies presented here is the data-based approach to predict mortality or a
medical complication.
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2.6.1 Mortality predictions

Neonatal mortality has been studied with GP and SVM classifiers using
measurements from five physiological time series, GA, BW, and SNAP-II
and SNAPPE-II scores (Rinta-Koski et al., 2017a, 2018). Rinta-Koski et al.
(2017a) studied the impact of feature selection of 24-hour-long time series us-
ing GP with the kernel presented in Equation (2.5d). They showed the high-
est AUROC to be 0.94 with many different feature combinations. Selecting
only the time series features decreased the result slightly to 0.88. Rinta-Koski
et al. (2018) extended the research to cover also time series of other lengths,
and they included SVM classifier and GP classifiers with other kernels in
Equations (2.5a), (2.5b), and (2.5c) in the study. As a result, GP classifiers
outperformed SVM, and the optimal length of the monitoring time was 48
hours from the birth. Similarly to Rinta-Koski et al. (2017a), different fea-
ture combinations were tested. If only time series features were used, they
showed an AUROC of 0.926. That remains lower than 0.947 or 0.949, which
were achieved by combining time series features with GA and BW, or GA,
BW, and the medical scores SNAP-II and SNAPPE-II, respectively.

Neonatal mortality was also studied by Cerqueira et al. (2014) who, first, ap-
plied statistical analyses and medical experts to select the preferred features
for the model. Majority of the features were single values, such as binary
indicators of the presence of a certain complication or the occurrence of a
certain treatment. Then, they applied SVM and artificial neural networks
to predict the death of patients and achieved AUROCs of 0.83 and 0.84,
respectively.

Salcedo-Bernal et al. (2016) predicted the in-hospital mortality at an ICU
using multivariate time series of heart rate, respiratory rate, and SpO2. They
compared LR, neural networks, k-NN, and DT classifiers and received accu-
racies of 0.68, 0.75, 0.65, and 0.74, respectively. Optimising the parameters
of the models did not improve the results in logistic regression and neural
networks.

Lehman et al. (2015) utilised time series of heart rate and blood pressure as
well as the medical scores APACHE III, APACHE IV, and SAPS to predict
in-hospital mortality of ICU patients with a switching vector autoregressive
framework (Murphy, 1998; Nemati et al., 2012). The highest results are
received by selecting blood pressure along with one of the scores at a time
as features. Blood pressure alone results in an AUROC of 0.70, while SAPS
increases it to 0.77 (SAPS alone 0.65), APACHE III to 0.84 (APACHE III
alone 0.80), and APACHE IV to 0.85 (APACHE IV alone 0.82).
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Ramon et al. (2007) predicted the mortality at an ICU from a large dataset
which contain, among others, the patient basic information, physiological
parameter measurements, and medication details. The classification perfor-
mance was measured with AUROC, which was 0.79 for DT, 0.82 for first
order RF, 0.88 for NB, and 0.86 for tree augmented NB. They also pre-
dicted a number of different complications, concluding RF classifiers always
outperform DTs.

In addition to supervised learning, unsupervised machine learning can be
applied to identify the patients in danger to die. Marlin et al. (2012) stud-
ied mortality in ICU environment using clustering and mainly physiological
parameter measurements. They resulted in an AUROC of approximately
0.85–0.90. The performance was improved if the length of parameter moni-
toring was prolonged.

In addition to the aforementioned mortality research, many other studies
have been conducted. The reader is advised to refer to Medlock et al. (2011)
who have made a comprehensive review of existing studies on the prediction
models of mortality, focusing solely on VLBW and VLGA infants. The
number of the identified studies is 41 and the majority of them, 35 to be
accurate, have used logistic regression to predict mortality.

2.6.2 Morbidity predictions

Besides predicting morbidities in general, predicting neonatal morbidities
has been in the interest of a decent amount of research. These morbidities
include, but are not limited to, BPD, NEC, ROP, and sepsis. In the early
2000s, the focus was on identifying the most relevant features that are either
capable of detecting or predicting a certain morbidity. The features were
usually selected among the patient basic information, such as GA or the
presence of a certain complication. In the recent years, numerous machine
learning approaches have been proposed to predict morbidities from various
types of data, including monitored sensor values or laboratory test results.

Saria et al. (2010) predicted BPD, intraventricular haemorrhage, NEC, ROP,
and death from GA, BW, and the physiological parameters of heart rate,
respiratory rate, and oxygen saturation with Bayesian modelling. Predicting
any of the aforementioned morbidities or death, they achieved an AUROC
of 0.92. The medical scores Apgar, CRIB, SNAP-II, and SNAPPE-II alone
resulted in 0.70, 0.85, 0.83, and 0.88 respectively. They also compared the
performance of their method and the medical scores for infections, such as
NEC, sepsis, and urinary tract infection, and cardiopulmonary complications,
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such as BPD, resulting in AUROCs of 0.97 and 0.98 compared to 0.74 and
0.72, 0.90 and 0.91, 0.84 and 0.86, and 0.91 and 0.93 for Apgar, CRIB,
SNAP-II, and SNAPPE-II scores, respectively. Their final observation was
that including all features in the model shows a higher AUROC of 0.91
compared to including only GA and BW (AUROC 0.85) or only physiological
parameters (AUROC 0.85).

Rinta-Koski et al. (2017b) predicted BPD, NEC, and ROP with a GP clas-
sifier using the mean and standard deviation of five physiological time series
as well as GA, BW, and SNAP-II and SNAPPE-II scores. They also studied
the effect of feature selection on the results. They were able to achieve an
AUROC of 0.87 for BPD. Even though AUROCs were 0.74 and 0.84 for NEC
and ROP, respectively, predicting them was not successful as the sensitivities
were close to zero.

Bronchopulmonary dysplasia

The previous research has predicted neonatal BPD from a variety of features
that have mainly been patient basic information or indicators of the presence
of a certain complication or treatment. However, the use of physiological time
series as features is limited. In contrary, many classifiers have been applied
to study which classifier is the most suitable to predict BPD. Nevertheless,
no general consensus exists for the optimal classifier even though majority of
the research has focused on logistic regression and some papers apply neural
networks or SVMs (Ochab and Wajs, 2016).

Wajs et al. (2006) used BW, a binary variable of the presence of respiratory
support, alveolar-arterial ratio, a binary variable of the presence of patent
ductus arteriosus, SpO2, and heart rate as features in logistic regression to
predict neonatal BPD. They received an AUROC of 0.942.

Furthermore, Wajs et al. (2007) examined all possible combinations of 14 fea-
tures. The optimal features consisted of BW, a binary variable of the presence
of patent ductus arteriosus, surfactant administration, a binary variable of
the presence of respiratory support, ratio of time when SpO2 is below 85 %,
mean heart rate, and the ratio of mean SpO2 during the first week to mean
SpO2 during the first day. LR and RBF neural network were applied on these
features, resulting in AUROCs of 0.91 and 0.95, respectively.

Ochab and Wajs (2014b) compared various combinations of the same 14
features, and predicted BPD with both SVM and LR, both implemented in
Matlab. Despite the feature combination, LR outperformed SVMs in terms
of accuracy and sensitivity. Interestingly, the implementation environment
affected the results since Ochab and Wajs (2014a) repeated the experiments
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with the LIBSVM library by Chang and Lin (2011). This time, SVM was able
to achieve a better accuracy and sensitivity for certain feature combinations
than LR, outperforming usually also the Matlab implementation of SVM.
Furthermore, Ochab and Wajs (2016) studied the feature selection for the
same task using LIBSVM and LR classifiers. They drew a conclusion that
LR provides a higher accuracy when the number of features is less than
seven, whereas LIBSVM functions better when more than seven features are
included. Finally, Wajs et al. (2018) predicted BPD from the same features
using NB classifier which was outperformed by either LR or SVM, depending
on the performance measure.

Multiple studies have applied logistic regression and other statistical methods
to identify the features associated with neonatal BPD. These studies, how-
ever, have seldom used physiological time series as features but rather static
values. Bhering et al. (2007) used four variables, which include GA and the
presence of mechanical ventilation, and received an AUROC of 0.935. Cunha
et al. (2005) found eight features, such as BW, GA, and presence of patent
ductus arteriosus, to be associated with a developing BPD. Romagnoli et al.
(1998) used similar features and showed an AUROC of 0.960 for infants at
the age of 72 hours. Kim et al. (2005) used GA, BW, Apgar score and five
other features to predict BPD, resulting in AUROCs of 0.90, 0.91, and 0.94
at the ages of four, seven, and ten days, respectively.

Using not only LR but also tree models, Ambalavanan et al. (2008) were able
to associate lower BW, higher oxygen concentration, male gender, additional
surfactant doses, higher oxygenation index, and outborn status with a higher
risk of BPD and death. However, they acknowledged that more validation is
required due to the limited number of patients in the study.

Laughon et al. (2011) compared the effect of feature selection on the classifica-
tion performance and discovered that six optimal features are GA, BW, race
and ethnicity, sex, respiratory support, fraction of inspired oxygen. These
features resulted in AUROCs of 0.793 and 0.854 at the first and the 28th day
of life, respectively.

Necrotising enterocolitis

The research to predict NEC with machine learning algorithms is limited,
but a few applications are able to distinguish patients with NEC from those
without as well as the required treatment, surgical or medical. In fact, no
biological indicator of NEC is currently used in practise due to their low
predictive power (Sylvester et al., 2014). Therefore, the current practise
diagnoses NEC clinically instead of diagnostic tests (Ji et al., 2014).
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Since NEC and sepsis have similar pathophysiologic features, Stone et al.
(2013) used a successful technique to predict sepsis, namely heart rate charac-
teristics (HRC) index, and extended it to NEC predictions felicitously. Stone
et al. (2013) observed that the baseline of HRC index rises for the patients
requiring a surgical intervention, and the rise appears for 1–3 days prior to
the NEC diagnosis. Additionally, a significant increase in the HRC index is
detected for 16 hours prior to the diagnosis of surgical NEC and for 6 hours
prior to that of medical NEC.

Sylvester et al. (2014) investigated if it was possible to predict the treatment
type, surgical or medical, beforehand from clinical parameters or biomarkers.
Using 27 clinical input features for LDA, the algorithm distinguishes the two
types with an AUROC of 0.817, whereas three specific biomarkers show a
higher AUROC of 0.856. Were the clinical parameters and biomarkers used
together, the treatment groups are distinguished perfectly. The statistically
most significant parameters in the analysis were male gender and BW.

Ji et al. (2014) used the same 27 clinical parameters as Sylvester et al. (2014)
and applied LDA to predict the level of risk for NEC using three categories:
low, intermediate, and high. This prediction received an AUROC of 0.85.

Retinopathy of prematurity

Approaches to predict ROP mainly use retinal images or basic patient infor-
mation as input. In addition, statistical research has been conducted to select
the most predictive and revealing features of ROP. Unfortunately, continuous
physiological measurements as the input data lack research.

Bolón-Canedo et al. (2015b) performed a comprehensive study on the usabil-
ity of machine learning in predicting ROP from retinal images. First, they
compared six feature selection algorithms, all of which produced similar re-
sults. Second, they compared these features to features which were selected
by a group of experts. Similarities in these two feature sets were remarkable.
Third, they performed binary classification of the patients using DT, NB,
k-NN, SVM, and compared the results to the classification made by the ex-
perts. The algorithms achieved at least as good results as the experts. The
lowest classification errors (less than 0.11) were achieved by NB and SVM.
However, developing a golden standard for the process of predicting ROP is
difficult, which this study did not reach either.

Ataer-Cansizoglu et al. (2015) used Gaussian mixture model to extract fea-
tures from retinal images and used SVM to classify patients. They received
an accuracy of 0.95 which approximately equals to the accuracy of classifi-
cation made by experts. Also, Bolón-Canedo et al. (2015a) used Gaussian
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mixture model to extract features from retinal images. They combined those
features with traditional statistical features, and used DT, NB, SVM, and
RF for classification. SVM achieved the highest accuracy of 0.911 when all
features were included in the model, whereas the features from Gaussian
mixture model alone had an accuracy of 0.905. Furthermore, various im-
age analysis approaches have been proposed to detect the patients at risk of
ROP (Wittenberg et al., 2012).

Rollins et al. (2015) proposed a discrete conditional phase-type model that
functions with class imbalance. The model requires a classifiers as a compo-
nent in the model. SVM component was shown to outperform DT and RF
components when ROP was predicted for VLGA and VLBW infants. They
achieved an F1 score of 0.738.

Rather than machine learning, Löfqvist et al. (2006) used logistic regression
to select the features for ROP predictions. The optimal features are postnatal
weight gain, insulin-like growth factor level, and insulin-like growth factor
binding protein 3 level, all measured on a weekly basis. Further, Wu et al.
(2012) simplified the algorithm to include only the weekly weight gain and
were still able to predict ROP.

Binenbaum et al. (2011) used LR to observe that BW, GA, and postna-
tal weight gain provide the highest prediction performance for the risk of
ROP. Darlow et al. (2005) performed statistical analyses and LR to define
the most significant variables for ROP predictions. They were able to asso-
ciate a low GA, a low BW among other preterm infants with the same GA,
and the male gender with an increased risk of developing ROP.

Sepsis

Sepsis causes sudden clinical deterioration of neonates and is a major rea-
son behind neonatal morbidities and mortality (Griffin and Moorman, 2001;
Griffin et al., 2003). Therefore, detecting sepsis as early as possible is im-
portant so that more aggressive and targeted treatment can be started on
time (Desautels et al., 2016). However, diagnosing sepsis from clinical signs
and laboratory tests beforehand has been proven to be difficult (Escobar,
1999; Griffin and Moorman, 2001). To make more reliable diagnoses for
sepsis, several studies have been conducted on the heart rate characteristics
(HRC) and their abnormalities, such as reduced variability and transient de-
celerations (Griffin and Moorman, 2001; Kovatchev et al., 2003; Griffin et al.,
2003, 2004, 2005; Moorman et al., 2006). Furthermore, the most appropriate
features for a predictive model have been identified from physiological time
series and laboratory test results. Machine learning and statistical mod-
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els have been used to predict neonatal sepsis and sepsis in general, and the
predictive results have been compared to predictions of medical scores (Stan-
culescu et al., 2014a,b; Calvert et al., 2016; Desautels et al., 2016; Mani et al.,
2014; Wang et al., 2013).

Griffin and Moorman (2001) examined the relationship between HRC, such as
its statistical moments and percentiles, and the risk of neonatal sepsis using
multivariate logistic regression. The explanatory power of scores SNAP and
NTISS on the occurrence of sepsis was also studied. They observed that
HRC are abnormal for 24 hours prior to the clinical suspicion of sepsis with
an AUROC of 0.90 – especially skewness and percentiles revealed the patients
at risk. As sepsis deteriorates the physiological parameters of the patients,
there is a rise in both SNAP and NTISS scores before the sepsis suspicion.
SNAP is affected significantly more than NTISS. What is more, the infants
with sepsis tend to have a BW of approximately 200 g less and a GA of
approximately two weeks less than healthy infants.

To have more evidence for the results, Griffin et al. (2003) showed that there
is a significant connection (AUROC 0.75) between HRC index and neona-
tal sepsis and other sepsis-like illnesses. Further, Griffin et al. (2004) used
multivariate logistic regression to show that HRC index had an association
with death up to seven days in advance (the highest AUROC of 0.74) and
the cumulative HRC index was associated with in-hospital mortality (AU-
ROC of 0.83). In addition, using HRC index together with BW, GA, and
postnatal age in a multivariate logistic regression was shown to increase the
predictive power of sepsis: AUROC increased from 0.75 to 0.77 while the ad-
ditional features result in 0.67 alone Griffin et al. (2003). Also, the AUROC
of death predictions increased from 0.74 to 0.85 with the additional features,
which resulted in 0.70 alone (Griffin et al., 2004). However, combining the
parameters with the cumulative HRC index for predicting in-hospital mor-
tality reduced the AUROC from 0.83 to 0.79. The parameters alone had
an AUROC of 0.76. Additionally, Griffin et al. (2005) combined HRC index
with certain laboratory test results, which improved the AUROC of neonatal
sepsis predictions from 0.73 to 0.82. Laboratory tests alone resulted to an
AUROC of 0.75.

Kovatchev et al. (2003) studied sample asymmetries of heart rate variability
in order to detect neonatal sepsis or systemic inflammatory response syn-
drome. Their results showed the sample asymmetries grow before the diag-
nosis and treatment of the complication.

Calvert et al. (2016) used machine learning algorithms to predict sepsis of
ICU patients from the following physiological time series: systolic blood pres-
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sure, pulse pressure, heart rate, temperature, respiration rate, white blood
cell count, pH, blood oxygen saturation, and age. They were able to reach
an AUROC of 0.92 at three hours before a systemic inflammatory response
syndrome period, and an AUROC of 0.83 at less than three hours before that
period.

Desautels et al. (2016) predicted sepsis of ICU patients from eight physiologi-
cal time series: systolic blood pressure, pulse pressure, heart rate, respiration
rate, temperature, peripheral capillary oxygen saturation, age, and Glasgow
coma score. They applied binary classification on the patients, receiving an
AUROC of 0.88 and an AUPR of 0.60 at the sepsis onset. This result out-
performed the performance of multiple other medical scores, which were 0.80
and 0.33 for MEWS, 0.70 and 0.23 for SAPS II, 0.61 and 0.16 for systemic
inflammatory response syndrome by Bone et al. (1992), 0.73 and 0.28 for
SOFA, and 0.77 and 0.28 for quickSOFA in terms of AUROC and AUPR,
respectively. Differences between the scores were explained by the different
input data requirements. The algorithm functioned well also with sparse
data where up to 60 % of the data were missing.

Mani et al. (2014) compared many classifiers to predict neonatal sepsis. The
classifiers were tested on data both including and excluding the culture neg-
ative sepsis patients, receiving the following AUROCs for the two datasets:
RF (0.57, 0.65), classification and regression trees (0.65, 0.77), SVM (0.61,
0.68), k-NN (0.54, 0.62), LR (0.61, 0.61), lazy Bayesian rules (0.62, 0.58),
NB (0.64, 0.78), and tree augmented näıve Bayes (0.59, 0.53). All classifiers
had higher specificity than predictions made by physicians, and almost all
classifiers also exceeded the sensitivity of the experts’ predictions.

Wang et al. (2013) used embedded methods in feature selection to identify
the optimal biomarkers from ten alternatives, such as white blood cell count
and haemoglobin count, to predict neonatal sepsis. They applied canonical
correlation analysis to identify the optimal features and sparse support vector
machine classifier to test their predictive power. The highest accuracy of
0.875 was achieved with five features.

Also unsupervised learning has been applied to predict sepsis. Based on the
factorial switching linear dynamical system by Quinn et al. (2009), Stan-
culescu et al. (2014a) developed a deep learning styled hierarchical switching
linear dynamical system which takes the complex interactions of a dynamic
system into account. They used time series of heart rate and SpO2 measure-
ments to predict sepsis of VLBW infants since lowered heart rate and SpO2

are often indicators of sepsis. They resulted in an AUROC of 0.69.

To have a comparison for the results of Stanculescu et al. (2014a), Stanculescu
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et al. (2014b) performed the same analysis on the same time series to predict
sepsis, but this time using a few additional measurements and autoregressive
hidden Markov models. They received an AUROC of 0.74 when all data were
used and an AUROC of 0.72 without any missing values.

2.7 Background conclusions

The Section 2.1 discusses the need for research in the field of neonatology
where the preterm infant patients are prone to critical morbidities and mor-
tality. Their lives may be saved if the occurrence of the morbidities or death
can be predicted in advance as it enables more time for the medical doctors
to treat them. Therefore, conducting this study is important, and the other
sections in Chapter 2 present topics that are relevant in order to achieve the
three research objectives of this study.

The first research objective is to identify the most suitable classifiers for
predicting neonatal mortality and morbidities, and thus, 12 classifiers are
presented in Section 2.3. However, Meyfroidt et al. (2009) concluded that no
classifier is more suitable than any other, and Ochab and Wajs (2016) stated
that no model has been generally accepted for predicting BPD. Currently, LR
has been applied the most widely in this field as Section 2.6 and Medlock et al.
(2011) reveal, followed by SVM and DT classifiers. QDA is the only algorithm
of the presented classifiers that lacks research. Based on the previous studies,
it is difficult to compare the performance of different classifiers and name the
most suitable classifier due to the dissimilar underlying data (Salcedo-Bernal
et al., 2016). Therefore, this study compares the performance of the 12
classifiers on the same data.

What comes to the predictability of complications, the literature review in
Section 2.6 shows successful proposals in predicting mortality and BPD from
varying types of patient data. The mortality predictions have achieved AU-
ROCs of 0.88 with NB, 0.83 with SVM, 0.82 with RF, 0.79 and 0.74 with DT,
0.68 with LR, and 0.65 with k-NN. Previous BPD predictions have, on the
other hand, reached high AUROCs with logistic regression that are 0.94 and
0.91. There is less research on predicting NEC and ROP, and the results are
more modest. No indicator has been proven to be powerful enough to predict
NEC, and the research is focused on predicting the type of required treat-
ment (Sylvester et al., 2014). Many ROP studies, such as Ataer-Cansizoglu
et al. (2015) and Wittenberg et al. (2012), use retinal images as the input
data, raising the question if physiological parameters even reveal the devel-
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oping ROP. However, a demonstrated F1 score of 0.738 for ROP predictions
exists.

The second research goal arises from choice of a relevant measure for eval-
uating the classification algorithms. There are challenges in assessing their
performance on imbalanced medical data where the ratio of sick patients to all
subjects is low. As discussed in Section 2.5, the data imbalance often causes
classifier algorithms to misclassify subjects, which is life-threatening for the
sick patients that are classified as healthy (Weiss and Provost, 2001). Ac-
cording to Saito and Rehmsmeier (2015) and the observations in Section 2.6,
majority of the previous studies use accuracy and AUROC for performance
evaluation. Using them is not advised as they do not solely focus on eval-
uating the identification of sick patients but they show a good result for
identifying healthy patients as well. Instead, using precision, sensitivity, F1,
and AUPR is recommended since they provide more truthful results (see Sec-
tion 2.4 for reasoning). An example of the optimistic results of AUROC is
the result of Desautels et al. (2016): the reported AUROC value is 0.28 units
higher than AUPR value for the binary classification results and almost 0.50
units higher for all score-based classifications.

The third objective is to study factors in preprocessing and feature selection.
The effect the time series sampling on the classification lacks research in this
field, but multiple techniques to handle irregularly sampled time series have
been proposed. Also, the impact of the length of patient monitoring time
has not been studied adequately since most research uses only static, not
temporal features. Rinta-Koski et al. (2017b) concluded that a monitoring
time of 72 hours performs slightly better than 24 hours, Rinta-Koski et al.
(2018) observed the highest AUROC values at 48 hours, and Marlin et al.
(2012) noted that a longer monitoring time improves results.

However, the optimal feature selection has been studied widely since it can
improve the classification results (Guyon and Elisseeff, 2003). Using any kind
of physiological data or other patient information outperforms the results of
the medical scores as, for example, Lehman et al. (2015) and Desautels et al.
(2016) have shown. GA and BW are used in most of the studies, and they
correlate with the risk of complications (Gomella et al., 2013; Fattore et al.,
2015). Combining other features with GA and BW usually improves the
classification performance (Saria et al., 2010; Rinta-Koski et al., 2018). In
addition, using medical scores or pure time series data alone does not result
in the highest performance but combining them with other features improves
the results. All in all, adding more features in the model usually improves
the performance.
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3. Materials and Methods

3.1 Data

The Section 3.1 describes the patient cohort, based on which this study is
conducted. In addition, the data quality is evaluated critically.

3.1.1 Data collection and storing system

The neonatal intensive care unit at Children’s Hospital, Helsinki University
Hospital has been collecting and storing the clinical data of their patients
using Clinisoft clinical information management system since 1999. Besides
Helsinki University Hospital, the same Clinisoft system is in use and used
for research purposes also at the intensive care units at other university hos-
pitals in Finland (Seppänen et al., 2016), at Karolinska University Hospital
in Stockholm, Sweden (Honoré, 2017), and at Onze Lieve Vrouwe Gasthuis
Teaching Hospital in Amsterdam, the Netherlands (Bosman et al., 1998).

Clinisoft clinical information management system (GE Healthcare, Helsinki,
Finland; along with its predecessors) is a brand of electronic health records
(EHRs). According to the definition of International Organisation for Stan-
dardization (ISO/TR 20514:2005(E), 2005), EHRs are information reposito-
ries, accessible only by the authorised users, to store patients’ retrospective,
concurrent, and prospective health data in a standardised format. However,
the practises to store data in EHRs vary case-specifically. Häyrinen et al.
(2008) state that EHRs can contain anything only from a few files to com-
prehensive and longitudinal datasets, whereas Zhao et al. (2017) emphasise
that longitudinal data is stored in EHRs. However, the ISO standard does not
require the data to be longitudinal (ISO/TR 20514:2005(E), 2005). Despite
the amount of data in EHRs, their content is related to patients’ hospital or
health centre visits, including, for example, measurement values from patient
monitoring, laboratory test results, medical diagnoses, medication details, or
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clinical notes in unstructured, free text form (Jensen et al., 2012; Häyrinen
et al., 2008; Zhao et al., 2017; Meyfroidt et al., 2009).

Constructing and preparing the database for research purposes and the trans-
fer of the database from the hospital’s EHR to the university environment
has been completed previously as a part of the doctoral dissertation by Rinta-
Koski (2018). The database has been implemented in an open source database
management system PostgreSQL (PostgreSQL Global Development Group,
2019), and the data of interest have been retrieved from the database using
SQL queries. Constructing the database has also included pre-cleaning the
data as there have been inconsistencies in the registration practices. For in-
stance, the weights have initially been reported either in grams or kilograms,
and they have been shifted to the same units.

3.1.2 Data description

The research permission of this study enables to access to the data of VLBW
infants which entered the NICU at Children’s Hospital, Helsinki University
Hospital during 1999–2013. Therefore, the newer data entries are not consid-
ered in this study, and the total number of patients is 2059. Due to ethical
reasons, the data have been pseudonymised so all identifying factors, such
as names and personal identity codes, have been removed from the data.
Nevertheless, the data entries of individual patients have been allocated to
database-specific identity numbers to keep them connected.

The EHR contains information that has not been collected during the stay
at the NICU. It is non-temporal, patient-specific basic information such as
birth and gender details, birth weight, gestational age, blood group, Ap-
gar score, and time of entering the NICU. The median GA is more than
28 weeks (accurately 202 days) with a standard deviation of more than 8
weeks (accurately 61 days), and the median BW is 1.105 kg with a standard
deviation of 0.287 kg. During the stay at NICU, various types of temporal
data are collected from the patient. These data are related to the physiolog-
ical parameters of patients’ diagnoses, medical procedures, laboratory tests,
medication, and nutrition.

There are 111 measured and automatically stored sensor values, most of
which are physiological parameters, such as heart rate or oxygen saturation.
The rest describes the settings of the medical devices, such as humidity in
the incubator or ventilation mode. Despite a large number of different pa-
rameters, all of them have not been recorded for all patients as the interest to
monitor certain parameters has varied over the years. In addition, different



CHAPTER 3. MATERIALS AND METHODS 42

medical equipment with varying support for parameter monitoring has been
used at different times. 14 variables have been recorded for more than 1,000
patients and 34 variables for more than 500 patients. Also, the number of
recordings for each parameter varies heavily, and there are 12 parameters
with more than 10 million recordings and 32 parameters with more than
one million recordings. Table 3.1 presents the parameters that have been
recorded automatically for the highest number of patients.

Table 3.1: The most common automatically monitored parameters by the number
of patients.

Parameter Patients Data entries

Blood oxygen saturation from pulse oximetry 2,053 31,502,272
Heart rate from electrocardiography 2,049 29,388,984
Respiratory rate 2,049 29,271,414
Mean non-invasive blood pressure 1,946 208,760
Systolic non-invasive blood pressure 1,943 199,710
Diastolic non-invasive blood pressure 1,943 199,671
Mean arterial blood pressure 1,923 17,710,660
Systolic arterial blood pressure 1,905 11,967,411
Diastolic arterial blood pressure 1,905 11,967,406
Heart rate from pulse oximetry 1,538 22,037,327
Positive end-expiratory pressure 1,169 9,505,537
Inspiratory:expiratory ratio 1,113 8,777,942
Airway temperature 1,099 14,121,919
Mean airway pressure 1,082 8,643,503
Fraction of inspired oxygen, measured 911 8,549,805
Expiratory tidal volume 911 8,461,850
Lung compliance, measured 904 7,576,377
Fraction of inspired oxygen, set 873 6,715,493
Ventilator respiratory rate 820 7,220,557
Ventilator breath pattern 820 979,357

The medical monitoring devices measure and display sensor data continu-
ously, producing thousands of data recordings for each patient every day (Mc-
Gregor, 2013). Due to the high price of storage capacity in the late 1990s
and early 2000s, the continuous measurements have been stored in a discrete
form. At Helsinki University Hospital, they have been discretised so that
medians of 10-second-long time intervals have been averaged over two min-
utes. For a comparison, the discretisation has been calculated as 1-minute
averages at Karolinska University Hospital in Stockholm (Honoré, 2017) and
as 2-minute medians at Onze Lieve Vrouwe Gasthuis Teaching Hospital in
Amsterdam (Bosman et al., 1998).

In addition to automatically stored values, the EHR contains also manually
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inserted values for 732 parameters. They are either sensor values, read from
the monitor and inserted to the EHR by the hospital personnel, or results
of other measurements, such as head circumference or weight of the dia-
pers. These manual measurements have not been recorded with equal time
intervals. Similarly to automatically stored values, not all 732 manually
monitored parameters have been recorded for all patients but the parame-
ters vary depending on the prevailing practice. In fact, only 152 parameters
have been recorded for more than 1,000 patients and 230 for more than 500
patients. There are 18 parameters with more than 200,000 recordings and
36 parameters with more than 100,000 recordings.

The medical diagnoses of the patients have also been stored in the EHR.
The diagnosis categorisation follows International statistical classification of
diseases and related health problems 10th revision (ICD-10) system (WHO,
2016), and 450 different medical diagnoses have been assigned to the patients.
Table 3.2 presents the most common diagnoses.

Other information is contained in the EHR as well. There are 71 different
medical procedures, which include, among others, insertion of nasal ventila-
tors for 510 patients, ultrasound imaging of the heart for 57 patients, and
nitrogen oxide treatment for 70 patients. Laboratory tests and test results,
such as the amount of haemoglobin or leucocytes, are stored in the EHR.
Details of the ordered and given medication, such as the volume of saline
solution or the amount of medication for diarrhoea, as well as nutrition in-
formation, such as the amounts of water, protein and different vitamins, are
provided.

Even though the NICU stay of the patients is well documented and many
fields of the Clinisoft system are utilised and filled in, there are still many
more fields available, which have not been introduced at Helsinki University
Hospital. For this study, the relevant part of the data is the basic information
of the patients, the automatically monitored parameters, and the diagnoses.

3.1.3 Data quality evaluation

This world-class database is internationally comprehensive as it contains data
of 2059 VLBW infants born in 1999–2013. This number corresponds to ap-
proximately a third of all VLBW infants born in Finland during those years.
The database is proven to be suitable for research as several scientific publica-
tions have based their research on that. Rinta-Koski et al. (2017a) and Rinta-
Koski et al. (2018) predicted preterm infant mortality and Rinta-Koski et al.
(2017b) predicted several morbidities. Immeli et al. (2017) researched the
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Table 3.2: The most common diagnoses by the number of patients.

ICD-10
code

Description Patients

P59.0 Neonatal jaundice associated with preterm delivery 1,107
P07.3 Disorders related to short gestation and low birth weight, not else-

where classified. Other preterm infants
900

P07.10 Disorders related to short gestation and low birth weight, not else-
where classified. Other low birth weight (1000–1499 g)

858

P22.9 Respiratory distress of newborn, unspecified 720
P22.0 Respiratory distress syndrome of newborn 672
P07.2 Disorders related to short gestation and low birth weight, not else-

where classified. Extreme immaturity
527

P29.30 Cardiovascular disorders originating in the perinatal period. Per-
sistent fetal circulation

497

P27.1 Bronchopulmonary dysplasia originating in the perinatal period 416
P00.0 Fetus and newborn affected by maternal hypertensive disorders 388
P05.1 Slow fetal growth and fetal malnutrition. Small for gestational age 373
P01.5 Fetus and newborn affected by multiple pregnancy 359
P07.02 Disorders related to short gestation and low birth weight, not else-

where classified. Extremely low birth weight (750–999 g)
322

P22.8 Other respiratory distress of newborn 314
P36.3 Sepsis of newborn due to other and unspecified staphylococci 253
P36.90 Bacterial sepsis of newborn, unspecified 227
P07.01 Disorders related to short gestation and low birth weight, not else-

where classified. Extremely low birth weight (500–749 g)
199

P01.1 Fetus and newborn affected by premature rupture of membranes 198
H35.1 Retinopathy of prematurity 153
P05.0 Slow fetal growth and fetal malnutrition. Light for gestational age 149
P22.1 Transient tachypnoea of newborn 146

postnatal growth of preterm male infants, and Rinta-Koski et al. (2015) the
SpO2 levels of preterm infants.

Despite the comprehensiveness of the database, this EHR contains also chal-
lenges that are common to EHRs (see Section 2.5). For example, the auto-
matically recorded measurements are not perfect time series as they contain
gaps. The gaps can be caused by misplacement of the sensors, equipment
malfunctions, or simply because of the sensors have not been attached to the
patient during examinations or washing, for example. In addition, some of
the measurement values are clearly out of range. For instance, respiratory
rates above 250 breaths per minute or negative values for blood pressure are
unacceptable. Moreover, according to the database, 51 patients have entered
the NICU before their birth, and physiological variables have been measured
from 31 patients before the birth. To point out one more suspiciousness, the
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EHR claims there are patients whose gestational ages are more than 4 and
6 years, which is obviously impossible.

Even though the intervals for automatic data recordings should be 2 minutes,
the sampling is slightly irregular. There may exist inaccuracies up to a few
seconds, which is called irregularity within a time series. It is also remarkable
that all parameters for a specific patient are not measured simultaneously
but, for example, heart rate may be measured in 2-minute intervals starting
from 07:02:15 and SpO2 in the same intervals starting from 07:02:18. This is
called irregularity between the time series.

Finally, the SNAP-II and SNAPPE-II scores have not been defined for all
patients due to missing values in the data, resulting in only 1519 and 1023
patients to have them, respectively. Therefore, only a subset of patients can
be utilised to build a machine learning model as the scores are included as
features in the model.

3.2 Methods

This section encompasses the methodology of this study from data extraction
and preprocessing to implementation; this section describes how the data
have been transformed to results.

3.2.1 Extracting time series

Four alternative approaches are exploited for preprocessing and extracting
the time series from the automatically recorded parameter measurements.
Two of them intervene in the issue of irregular sampling within and between
the time series, and the other two do not. All four approaches result in
distinct time series.

The first preprocessing approach, named RegAll, has regular sampling and
contains all hours of life from the time interval. It is similar to what has
been used by Rinta-Koski et al. (2017a,b, 2018). The extraction of this time
series applies the ideas of PAA and LOCF algorithms. First, PAA algorithm
is applied to create a time series whose time frames are regular, 2-minute-
long and start from the birth. Then, these time frames are assigned with
values using LOCF algorithm. The last observed value before the start of
each time frame is carried forward to fill the time frames. This way, the
algorithm fills the gaps. However, another gap related issue is posed. The
same, last observed value is assigned to consecutive time frames during gaps
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even though that is not intended. Consequently, this issue is attempted to
be tackled by deleting the consecutive, same values, leaving only the first
value left, which poses another issue. If the measurement has stayed stable,
the algorithm does not recognise that and removes the consecutive values.

The second preprocessing method, RegExcl6h, has the same, regular sampling
as RegAll but excludes the first six hours of life. The neonatal vital functions
are hypothesised to be unstable after birth, which is assumed to produce
distorted signals. Therefore, those first hours are omitted.

The third preprocessing technique, named IrregAll, contains the irregularly
sampled, original time series and all hours of life are included. Similarly to
RegExcl6h, the fourth preprocessing approach, IrregExcl6h, is a variant of
IrregAll where the first six hours of life have been omitted.

3.2.2 Preprocessing the data

Preprocessing the data is essential as it improves the data quality, and
thereby, the results of supervised machine learning algorithms (Kotsiantis
et al., 2006). All preprocessing steps have been agreed on with medical doc-
tors, neonatologists Prof. S. Andersson (MD, PhD) and M. Leskinen (MD,
PhD), at Children’s Hospital, University of Helsinki, and Helsinki University
Hospital, Helsinki, Finland.

First, all patients, who have died before the 72nd hour of life, are excluded
as the process of dying is assumed to affect their physiological signals. The
signals are apparently unstable, which would distort the further evaluation.
The number of patients excluded at this stage is 59.

Second, this work is interested in identifying the critical patients as early as
possible so that medical care can be targeted better to them. It is essential
to gain an accurate prediction with a low number of measurements and in a
short measuring time (Marlin et al., 2012). Therefore, only the physiologi-
cal parameter monitoring times starting from the birth and lasting for time
periods of 12, 18, 24, 36, 48, and 72 hours are applied. This choice excludes
patients who have entered the NICU after the end of those time periods.

Third, the out of range values, discussed earlier in Section 3.1.3, are cor-
rected. On one hand, removing these outliers improves the data quality and
minimises their false effect on the results. For example, omitting the values
outside of preset limits is a technique to correct the out of range values (Kot-
siantis et al., 2006). On the other hand, no information is wanted to be
lost by ignoring too many values. Therefore, conservative limits are selected,



CHAPTER 3. MATERIALS AND METHODS 47

which ignore the values that are negative, close-to-zero, and clearly too large,
and thus, physiologically impossible. The limits have been set for 14 param-
eters that have been measured for more than 1,000 patients and they are
presented in Table 3.3.

Table 3.3: Lower and upper limits for physiological parameter values.

Physiological parameter Lower limit Upper limit

Blood oxygen saturation from pulse oximetry 10 200
Heart rate from electrocardiography 10 250
Respiratory rate 5 250
Mean non-invasive blood pressure 5 200
Systolic non-invasive blood pressure 5 200
Diastolic non-invasive blood pressure 5 200
Mean arterial blood pressure 5 200
Systolic arterial blood pressure 5 200
Diastolic arterial blood pressure 5 200
Heart rate from pulse oximetry 10 350
Positive end-expiratory pressure 0.1 200
Inspiratory:expiratory ratio 0.1 200
Airway temperature 20 50
Mean airway pressure 1 200

Fourth, a subset of the 14 physiological parameters is selected to ensure
the comparability of the results to Rinta-Koski et al. (2017a,b, 2018). Five
parameters are selected which are blood oxygen saturation, heart rate from
electrocardiography as well as mean, systolic, and diastolic arterial blood
pressure.

Finally, the problem of incompleteness is tackled. As machine learning algo-
rithms perform well when a sufficient amount of data is available, an adequate
number of measurements has to be taken from every patient. That is why a
minimum requirement of 50 single measurements for each physiological pa-
rameter is employed. Again, this requirement is rather conservative as the
automatic measurements are recorded every two minutes, and 50 measure-
ments represent only 3.5 % of their daily maximum number.

As a result, the number of patients after preprocessing is, on average, 925,
951, 958, 964, 968, and 970 for the time periods of 12, 18, 24, 36, 48, and 72
hours, respectively. Table 3.4 presents the exact number of patients and the
diagnoses for all four time series and six time intervals. The data are imbal-
anced for all diagnoses as the proportions of mortality and complications are
on a low level.
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Table 3.4: The number of patients and diagnoses after preprocessing for all
preprocessing and monitoring time combinations.

Pre- Monitoring Patients Mortality BDP NEC ROP
processing time

RegAll 12 h 926 60 (6.5 %) 268 (28.9 %) 31 (3.3 %) 73 (7.9 %)
RegAll 18 h 947 63 (6.7 %) 272 (28.7 %) 31 (3.3 %) 75 (7.9 %)
RegAll 24 h 954 63 (6.6 %) 275 (28.8 %) 31 (3.2 %) 77 (8.1 %)
RegAll 36 h 960 63 (6.6 %) 275 (28.6 %) 31 (3.2 %) 77 (8.0 %)
RegAll 48 h 966 63 (6.5 %) 275 (28.5 %) 31 (3.2 %) 77 (8.0 %)
RegAll 72 h 968 63 (6.5 %) 275 (28.4 %) 31 (3.2 %) 77 (8.0 %)

RegExcl6h 12 h 879 58 (6.6 %) 261 (29.7 %) 26 (3.0 %) 70 (8.0 %)
RegExcl6h 18 h 933 62 (6.6 %) 269 (28.8 %) 28 (3.0 %) 74 (7.9 %)
RegExcl6h 24 h 946 62 (6.6 %) 272 (28.8 %) 28 (3.0 %) 76 (8.0 %)
RegExcl6h 36 h 953 62 (6.5 %) 273 (28.6 %) 29 (3.0 %) 76 (8.0 %)
RegExcl6h 48 h 959 62 (6.5 %) 273 (28.5 %) 29 (3.0 %) 76 (7.9 %)
RegExcl6h 72 h 962 62 (6.4 %) 274 (28.5 %) 30 (3.1 %) 77 (8.0 %)

IrregAll 12 h 954 61 (6.4 %) 269 (28.2 %) 31 (3.2 %) 73 (7.7 %)
IrregAll 18 h 967 63 (6.5 %) 273 (28.2 %) 31 (3.2 %) 76 (7.9 %)
IrregAll 24 h 971 63 (6.5 %) 275 (28.3 %) 31 (3.2 %) 77 (7.9 %)
IrregAll 36 h 974 63 (6.5 %) 275 (28.2 %) 31 (3.2 %) 77 (7.9 %)
IrregAll 48 h 977 63 (6.4 %) 275 (28.1 %) 31 (3.2 %) 77 (7.9 %)
IrregAll 72 h 977 63 (6.4 %) 275 (28.1 %) 31 (3.2 %) 77 (7.9 %)

IrregExcl6h 12 h 942 60 (6.4 %) 265 (28.1 %) 28 (3.0 %) 72 (7.6 %)
IrregExcl6h 18 h 956 62 (6.5 %) 269 (28.1 %) 28 (2.9 %) 74 (7.7 %)
IrregExcl6h 24 h 962 62 (6.4 %) 272 (28.3 %) 28 (2.9 %) 76 (7.9 %)
IrregExcl6h 36 h 967 62 (6.4 %) 273 (28.2 %) 29 (3.0 %) 76 (7.9 %)
IrregExcl6h 48 h 971 62 (6.4 %) 274 (28.2 %) 30 (3.1 %) 77 (7.9 %)
IrregExcl6h 72 h 971 62 (6.4 %) 274 (28.2 %) 30 (3.1 %) 77 (7.9 %)

3.2.3 Feature extraction and selection

In feature extraction, two statistical values, mean and standard deviation,
are calculated from the preprocessed data of the five physiological time series.
These ten features along with the values of GA, BW, SNAP-II, and SNAPPE-
II scores are the features of the model, corresponding to Rinta-Koski et al.
(2017a,b, 2018). The size of the data matrix is N×d, where N is the number
of patients for a specific time series preprocessing and length of monitoring
time (see column “Patients” in Table 3.4 for different Ns), and the number
of features or dimensions d = 14. As the last step, the data are normalised
to have a zero mean and unit variance by calculating the z-score for all
patients i = 1, . . . N across all features j = 1, . . . , d (Duda et al., 2001) as in
Equation (3.1),
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z
(i)
j =

x
(i)
j − µj
σj

, (3.1)

where z
(i)
j denotes the normalised value, x

(i)
j the original value, µj and σj the

feature-specific mean and deviation, respectively.

Furthermore, feature selection is applied manually on the dataset to form four
alternate feature combinations as in Rinta-Koski et al. (2018). TS means the
10 features derived from the time series, TS+GA+BW is the previous along
with gestational age and birth weight, ALL consists of the previous and
SNAP-II and SNAPPE-II scores, and SC+GA+BW means the two scores,
gestational age, and birth weight.

3.2.4 Implementation

The data preprocessing and classification are implemented in Matlab R2018b
(MathWorks, Natick, United States). Additionally, GP models are imple-
mented with GPstuff (Vanhatalo et al., 2013), a publicly available toolbox.

All 12 classifiers (introduced in Section 2.3) are applied on the data. They
are GP classifiers with four different kernels that are presented in Equa-
tions (2.5a), (2.5b), (2.5c), and (2.5d) for linear (GPlinear), Matérn32 (GPm32),
Matérn52 (GPm52), and RBF (GPRBF) GP classifiers, respectively. Also NB,
LDA, QDA, DT, RF, LR, SVM, and k-NN classifiers are applied. The classifi-
cation is performed on distinct 96 datasets which represent all combinations
of four time series preprocessing alternatives, six monitoring time alterna-
tives, and four feature selection alternatives.

The parameters of two classifiers, k-NN and RF, have been optimised for
each complication by grid search. The optimised number of neighbours, k, in
k-NN is 16 for mortality, 17 for BPD, 10 for NEC, and 13 for ROP. If k-NN
algorithm ends up in a tie between the classes, the label is not selected at
random, as explained optionally in Section 2.3.10, but the majority class is
selected. The optimised parameters of RF are the number of patients in the
leaf nodes and the number of variables that are selected at the splits of the
trees. The first parameter values are 8 for mortality, 12 for BPD, and 14 for
both NEC and ROP, and the latter values are 2 for mortality and ROP, and
4 for BPD and NEC.

To reduce the statistical uncertainty arising from a relatively small number
of patients in the dataset and the split of the data to training and test sets,
k-fold cross-validation is applied. It is a common method to, first, split the
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dataset into k non-overlapping subsets, and then select k−1 of the subsets to
train the model, and use the remaining subset to test the model (Goodfellow
et al., 2016). This training and testing is repeated k times, so that each of
the k subsets are used for testing, one at a time. In fact, stratified k-fold
cross-validation is applied, in which the proportion of the classes is equal
for each fold. In this work, the 8-fold cross-validation is performed so the
sizes of training and test sets are 7/8 and 1/8 of all available data instances,
respectively. To reduce the uncertainty of the model even more, the cross-
validation has been repeated eight times with different random initialisation.
Then, the evaluation measures are calculated as averages over all eight 8-fold
cross-validation results, thus being an average of 8 × 8 = 64 repetitions.

Finally, the classification performance is assessed by F1 score and AUPR
value due to their suitability for evaluating the imbalanced data as described
in Section 2.4. Additionally, AUROC is also reported since it is used com-
monly in the literature, and it demonstrates how the choice of an inappro-
priate measure can lead to overly optimistic results.
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4. Results

4.1 Optimal classification algorithms

The first research objective is to discover the most appropriate classifiers for
mortality and morbidity predictions and to study the differences between the
predictability of complications, which is conducted in Section 4.1.1. Addi-
tionally, the results are compared to previous studies in Section 4.1.2. To
respond to the second goal of this work, the results are reported in less used
evaluation measures, F1 score and AUPR, as well as in a more commonly
used measure, AUROC.

4.1.1 Classifier and complication comparison

Reference values

Reference values are set for predictions to see if classifiers outperform these
simple prediction techniques. In reference value Majority, all patients are
assigned with the label of the majority class. That is either not to die or
not to be diagnosed. Random denotes random guessing of the outcome that
is weighted by the class balance. Reference values SNAP-II and SNAPPE-
II use only the respective score to make a prediction by maximising the
threshold of the decision boundary subject to accuracy.

Mortality BPD NEC ROP

Majority

Random

SNAP-II

SNAPPE-II

Highest F1 score

0

0.083

0.018

0.133

0

0.308

0.055

0

0.046

0.056

0.05

0

0.097

0

0.0230.545

Mortality BPD NEC ROP

Majority

Random

SNAP-II

SNAPPE-II

Highest AUPR 

0

0.064

0.03

0.175

0

0.206

0.185

0

0.032

0.052

0.046

0

0.075

0.014

0.075

0.381

Mortality BPD NEC ROP

Majority

Random

SNAP-II

SNAPPE-II

Highest AUROC 

0.5

0.51

0.502

0.538

0.5

0.516

0.511

0.5

0.509

0.519

0.516

0.5

0.508

0.498

0.5020.679

Figure 4.1: Reference performances for mortality, BPD, NEC, and ROP.

Figure 4.1 presents the F1 scores, AUPRs, and AUROCs for the reference
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values. They all remain at a low level for all other outcomes but BPD,
indicating their inappropriateness to predict mortality, NEC, or ROP. The
medical score SNAPPE-II provides a satisfactory F1 score of 0.545 for BPD,
while SNAP-II results in the highest AUPR of 0.381 for BPD. In terms of
AUROC, the threshold of a non-random prediction (0.5) is exceeded clearly
only once, implicating that BPD is predictable by SNAPPE-II with an AU-
ROC of 0.679. The majority reference value shows a total unsuitability to
predict any of the outcomes.

Predictability of complications of preterm birth

To identify the most suitable classifier for diagnoses predictions, the highest
performance values over any of the 96 combinations of time series prepro-
cessing, monitoring time, and feature selection combinations are presented
classifier-specifically in Figure 4.2. More comprehensive results with addi-
tional performance measures are presented in Appendix A.

Mortality BPD NEC ROP

GP linear
GPm32
GPm52
GPRBF

NB

LDA

QDA

DT

RF

LR

SVM

k-NN

Highest F1 score

0.343

0.353

0.36

0.354

0.389

0.386

0.404

0.372

0.495

0.427

0.264

0.453

0.014

0

0

0

0.137

0.167

0.166

0.184

0.235

0.151

0

0.183

0.054

0.003

0.003

0.006

0.331

0.336

0.321

0.249

0.374

0.339

0.012

0.329

0.581

0.686

0.683

0.684

0.684

0.681

0.678

0.598

0.694

0.688

0.57

0.68

Mortality BPD NEC ROP

GP linear
GPm32
GPm52
GPRBF

NB

LDA

QDA

DT

RF

LR

SVM

k-NN

Highest AUPR 

0.436

0.435

0.437

0.436

0.399

0.401

0.409

0.246

0.42

0.406

0.404

0.382

0.479

0.124

0.125

0.127

0.125

0.124

0.142

0.113

0.094

0.134

0.118

0.124

0.107

0.252

0.26

0.26

0.257

0.262

0.249

0.26

0.161

0.261

0.255

0.257

0.222

0.602

0.715

0.714

0.711

0.594

0.602

0.617

0.7

0.597

0.592

0.665

Mortality BPD NEC ROP

GP linear
GPm32
GPm52
GPRBF

NB

LDA

QDA

DT

RF

LR

SVM

k-NN

Highest AUROC 

0.721 0.748

0.793

0.794

0.793

0.79

0.785

0.784

0.747

0.618

0.802

0.789

0.807

0.722

0.842

0.837

0.84

0.834

0.617

0.843

0.836

0.819

0.923

0.928

0.928

0.927

0.918

0.919

0.919

0.922

0.922

0.92

0.894

0.856

0.888

0.888

0.888

0.848

0.856

0.846

0.883

0.856

0.858

0.869

0.846

0.846

0.846

0.851

Figure 4.2: Classifier-specific prediction performances for mortality, BPD, NEC,
and ROP.

The predictions of BPD reach a high performance in all measures (highest F1

score: 0.694, AUPR: 0.715, AUROC: 0.888), signifying the potential of being
predictable from the data collected at NICUs. Additionally, mortality pre-
dictions show a decent performance (highest F1 score: 0.495, AUPR: 0.437,
AUROC: 0.928), whereas the performance of NEC (highest F1 score: 0.235,
AUPR: 0.142, AUROC: 0.807) and ROP (highest F1 score: 0.374, AUPR:
0.262, AUROC: 0.851) are much weaker in terms of F1 score and AUPR.
Accordingly, the latter two complications are more unpredictable with the
procedure employed in this work although their relatively high AUROC val-
ues are misleadingly implicating a good predictability. Their low F1 scores
and AUPRs indicate low precision, sensitivity, or both.
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Classifier comparison

The preferred classifiers do, indeed, depend on the applied evaluation mea-
sure. The random forest classifier performs the best for all outcomes if F1

score is the criterion. Also k-NN and LR provide a comparable result for
most of the outcomes in terms of F1 score, while NB, LDA, and QDA have
more variability in their outcome-specific performance. The GP classifiers
show a competitive F1 score only in BPD predictions.

On the other hand, using AUPR as criterion leads GP to be the most highly
performing classifier in mortality (0.715) and BPD (0.437) predictions and
one of the best classifiers for NEC (0.127) and ROP (0.260) as well. Further-
more, RF classifier shows a comparable performance for all outcomes. Be-
sides, the remaining classifiers achieve a somewhat lower performance with
the exception of DT that produces the poorest AUPRs. The differences in
classifier-specific results are rather small for NEC and ROP predictions, and
they all remain on a low level.

In case AUROCs are considered, the differences between the classifiers are
small. GP, RF, and SVM achieve the highest AUROCs for most of the
outcomes, followed closely by the other classifiers except for DT.

4.1.2 Comparison to previous work

Due to the difficulty to compare the results between dissimilar datasets (see
Section 2.5 for discussion), a more extensive comparison is conducted to the
results of Rinta-Koski et al. (2017b) and Rinta-Koski et al. (2018) as they
have investigated the same data with similar research questions. Since pre-
cision and sensitivity have been reported in these studies, the corresponding
F1 scores are calculated and used as the evaluation criterion, together with
AUROCs. In the comparisons in Table 4.1, the performance is reported for
two feature combinations, TS+GA+BW and TS, as only they have been used
in all of the previous studies. Since the interest is in comparing the highest
achievable prediction performance, the reported F1 score and AUROC are
the highest values over available monitoring lengths. Thus, the lengths may
vary between the measures.

None of the classifiers applied in this work is able to outperform the re-
sults of the mortality predictions in the previous study by Rinta-Koski et al.
(2018). Random forests have the highest F1 scores: 0.495 for the features of
TS+GA+BW and 0.388 for TS. These values are evidently lower than the
F1 scores of Rinta-Koski et al. (2018): 0.524–0.587 for TS+GA+BW and
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0.431–0.501 for TS. The results are lower also in terms of AUROC, but the
differences are smaller: the AUROCs of GP and RF classifiers are around
0.04 lower than those of Rinta-Koski et al. (2018). The difference is due
to dissimilar data preprocessing. Interestingly, the classification result de-
clines even though the number of patients, and thus the amount of data,
was increased from 598 to around 950 in this study. However, this increment
simultaneously reduces the mortality rate from 8.8 % to around 6.5 %. As a
result, this increase in data imbalance may have a significant impact on the
prediction performance.

In BPD predictions, the results are almost the opposite to mortality pre-
dictions in terms of F1 scores. The results of this study are higher in all
but three predictions, all of which are modelled with TS+GA+BW features.
While the F1 score of Rinta-Koski et al. (2017b) is 0.59 for TS+GA+BW
and 0.46 for TS, many F1 scores of this work show significantly higher predic-
tion performance: around 0.67–0.69 and 0.61–0.63, respectively. Similarly to
mortality predictions, RF, LR, LDA, and QDA belong to the best classifiers.
Moreover, the GP classifiers have a comparable performance to the other
classifiers if applied on TS+GA+BW features but not if only time series
features are used. A reason for the prediction differences between this and
the previous studies is the adjustments in the data preprocessing. Another
reason may lie in the decreased data imbalance: only 20 % of patients had
BPD in the study of Rinta-Koski et al. (2017b), while the rate is around
28 % in this study. Interestingly, all classifiers of this study, except for DT,
show almost the same AUROC as the GPRBF classifier of Rinta-Koski et al.
(2017b).

In NEC and ROP predictions, both studies share the same data imbalance
rate: around 3 % and 7–8 %, respectively, but the absolute number of pa-
tients differs due to dissimilar data preprocessing. None of the GP or SVM
classifiers shows a satisfactory F1 score in this study but their AUROCs
exceed those of Rinta-Koski et al. (2017b). Apart from RF classifier that
reaches F1 scores of 0.22–0.23 for NEC predictions, the other classifiers have
F1 scores of 0.13–0.18 which are close to the result of the study by Rinta-
Koski et al. (2017b), 0.13. Additionally, most of the classifiers of this study
receive slightly higher AUROCs than the previous study: 0.75–0.81 in com-
parison to 0.74 for TS+GA+BW features and 0.76–0.78 in comparison to
0.74 for TS features.

Despite the relatively small difference in NEC predictions between the stud-
ies, this study is able to achieve three or four times higher F1 scores for ROP
predictions than the study by Rinta-Koski et al. (2017b). In case TS fea-
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tures are combined with GA and BW, the performance is improved from 0.09
to around 0.33 for many classifiers and to 0.37 for random forests. In case
without GA and BW, the performance increases from 0.06 to around 0.26
for many classifiers, and RF reaches the highest F1 score of 0.298. However,
the AUROC values of the classifiers do not differ much from the AUROCs
of Rinta-Koski et al. (2017b) that are 0.84 for TS+GA+BW features and
0.74 for TS. Only DT stands out with a clearly lower performance of 0.60
and 0.58 for the same feature combinations.

Comparison to other studies

The predictions of this work perform well also in comparison to studies ap-
plied on dissimilar data. The mortality predictions are the most successful
since the results outperform six out of seven studies. Ramon et al. (2007) re-
ceived AUROC of 0.88 for NB classification (this study 0.918) and 0.82 for RF
(this study 0.922). However, their DT classification with an AUROC of 0.74
outperforms the result of this study, 0.721. Also Salcedo-Bernal et al. (2016)
achieved a higher AUROC of 0.74 for DT than this study. However, their
results for LR and k-NN, 0.68 and 0.65, respectively, remained lower than
the corresponding results of this study that are 0.922 and 0.894, respectively.
Finally, SVM classification of this study (AUROC: 0.920) outperformed that
of Cerqueira et al. (2014) (AUROC: 0.83).

The complication predictions of this study were not better than existing
results. In this study, LR resulted in an AUROC of 0.856 in BPD predic-
tions, while Wajs et al. (2006) achieved an AUROC of 0.94 and Wajs et al.
(2007) 0.91. Further, this study predicted ROP and received an F1 score of
0.374, which is outperformed by the algorithm of Rollins et al. (2015), which
achieved an F1 score of 0.738.
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4.2 Optimal data preprocessing and feature

selection

This section responds to the third research objective which is to investi-
gate the optimal preprocessing and feature selection approach for predicting
neonatal mortality and morbidities. Section 4.2.1 presents the results for
the impact of time series preprocessing, Section 4.2.2 for the the impact of
the length of monitoring time, and Section 4.2.3 for the impact of feature
selection.

4.2.1 Impact of time series preprocessing

Four alternate time series were introduced in Section 3.2.1. Here, the classifi-
cation results are analysed to reveal if the time series preprocessing affects the
performance. The performance is assessed in terms of F1 score, AUPR, and
AUROC, and the highest values over all monitoring time and feature selection
combinations are reported in Figures 4.3, 4.4, 4.5, and 4.6 for 12 classifiers.
In all figures, the colour bars represent different time series preprocessing,
and the value below the name of the classifier is the maximum difference
between the performances of the time series preprocessing approaches.

Generally speaking, far-reaching conclusions cannot be drawn from the dif-
ferences between the distinct time series preprocessing techniques but three
obvious observations are to be named. First, the highest difference between
the approaches is only 0.034 in F1 scores, 0.044 in AUPRs, and 0.038 in AU-
ROCs. Moreover, the magnitude of most differences is 0.000–0.015, implicat-
ing the different preprocessing has only a minor effect on the performance.
Second, the highest performance is not systematically achieved by using a
certain preprocessing; one preprocessing functions better for some classifiers
and worse for some others. Third, the optimal time series preprocessing de-
pends on the selected evaluation measure; the highest values for all measures
are not unambiguously achieved by the same preprocessing approach.
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Mortality

Figure 4.3 presents the mortality predictions where the largest number of the
highest classification performances is achieved by either RegAll in terms of
F1 score or IrregAll in terms of AUPR and AUROC. This is in favour of not
excluding the time series data from the first six hours of life of the infant.
However, determining the preferred sampling, regular or irregular, is not
fruitful as it depends heavily on the evaluation measure and the classifier.
In fact, the choice between regular and irregular sampling is minor: the
classification performance changes only by an F1 score of 0.020, an AUPR
of 0.032, and an AUROC of 0.007 if the time series preprocessing is changed
from regular to irregular.

Figure 4.3: Impact of time series preprocessing on the prediction performance of
neonatal mortality. The vertical axis is different for AUROC values.
RF, k-NN, and LR dominate the prediction performance in terms of F1 scores at
and above 0.4 whereas GP classifiers achieve the highest AUPRs of around 0.4.
AUPRs of GPs are only marginally higher than those of the other classifiers. Only
DT shows a low AUPR of around 0.2. All classifiers but QDA and DT result in
an almost equal AUROC that is around 0.9.



CHAPTER 4. RESULTS 59

Bronchopulmonary dysplasia

Time series processing does not affect predicting BPD as much as it affects
predicting mortality since the maximum classifier-specific differences (see the
values below the names of the classifiers) are smaller for BPD in Figure 4.4
than for mortality in Figure 4.3. The highest difference is 0.015 in F1 scores,
0.027 in AUPRs, and 0.014 in AUROCs, compared to the respective values
of 0.026, 0.044, and 0.014 in mortality predictions. The impact of includ-
ing or excluding the time series data from the first six hours of life remains
controversial due to the negligible differences in the values of the evalua-
tion measures. Nevertheless, the regularly sampled time series, RegAll and
RegExcl6h, seem to give, on average, marginally higher performance on both
measures than the irregularly sampled time series, IrregAll and IrregExcl6h.

Figure 4.4: Impact of time series preprocessing on the prediction performance of
BPD. The vertical axis is different for AUROC values.
Most of the classifiers perform equally well in terms of F1 score in predicting this
lung disease, receiving almost an F1 score of 0.7. GP and RF classifiers dominate
the comparisons of AUPR (at and above 0.7) and AUROC (almost 0.9). The
margin to many of the other classifiers is approximately 0.1 in terms of AUPR and
even less in terms of AUROC. DT classifier performs significantly worse in terms
of AUPR and AUROC.
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Necrotising enterocolitis

Figure 4.5 presents the results of NEC predictions. Alike in the mortality
and BPD predictions, only minor differences exist between the performance
of the different time series preprocessing for NEC. The use of the time series
data from the early hours of life does not have any remarkable effect on the
performance; the difference is less than 0.01 for most classifiers. Yet, using
regularly sampled time series instead of irregularly sampled improves the
results a little; there is a positive improvement of AUPR of around 0.010–
0.015 for other classifiers than k-NN that receives the highest AUPR with
irregular sampling. However, the AUROC values are not affected consistently
by the four sampling approaches.

Figure 4.5: Impact of time series preprocessing on the prediction performance of
NEC. The vertical axis is different for AUROC values.
Even though the AUROC values are almost 0.8 for other classifiers than DT, QDA,
and k-NN, the classifiers are unable to predict NEC: the highest F1 score is only
0.235 and the following scores are around 0.170. GP and SVM classifiers have a
zero result. Additionally, the classification result is equally poor for all classifiers
on the AUPR measure; they show an approximate AUPR of 0.1.
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Retinopathy of prematurity

The prediction results between the preprocessing approaches barely differ for
ROP in Figure 4.6; most of the maximum differences are less than 0.010, and
no preprocessing approach shows consistently higher results than any other.
Thus, no decent conclusions are drawn about the optimal preprocessing.

Figure 4.6: Impact of time series preprocessing on the prediction performance of
ROP. The vertical axis is different for AUROC values.
RF classifier receives the highest F1 score also for ROP predictions that is more
than 0.35. NB, LDA, LR, and k-NN classifiers show an equal F1 score of roughly
0.33. Again, the performance is very close to zero for GP and SVM classifiers. In
terms of AUPR, all classifiers with the exception of DT are close to an equal perfor-
mance of 0.25. These low values implicate a poor predictive power for retinopathy
even though all other classifiers but QDA and k-NN exceed an AUROC of 0.8.

4.2.2 Impact of the length of the monitoring time

One crucial factor in intensive care is the lack of time. Clinical decisions
are to be made as early as possible so that treating the patients can be
started before their physical condition deteriorates critically. Therefore, the
impact of the length of the physiological parameter monitoring is examined
next. In an optimal situation, a satisfactory result is achieved in the shortest
conceivable time.
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Monitoring times of 12, 18, 24, 36, 48, and 72 hours are of interest. Fig-
ures 4.7(a), 4.8, 4.9(a) and 4.10 present the maximum results over all pos-
sible time series preprocessing and feature selection combinations, excluding
the SC+GA+BW features since they are not time-dependent. The results
are barely affected by the length of the monitoring time. Nevertheless, using
only TS features shows a difference in mortality and NEC predictions, and
that is why they are reported additionally in Figures 4.7(b), and 4.9(b).

Generally speaking, two findings can be made from the comparisons. First, a
longer monitoring time includes more information that improves the predic-
tion. The magnitude of this improvement in terms of F1 score, AUPR, and
AUROC remains low for many classifiers – especially in BPD and ROP pre-
dictions. Second, the same classifiers tend to have the highest performances
regardless of the predicted complication: RF, k-NN, LDA, and LR classifiers
are strong if F1 score is considered, whereas GP and RF classifiers produce
many of the highest AUPRs and AUROCs.

Mortality

Figure 4.7(a) presents the performance of mortality predictions. Measured
with F1 scores, the short monitoring times of 12–24 hours affect the results
only a little. Depending on the classifier, the performance increases signifi-
cantly in the intermediate monitoring times: all GP classifiers improve their
performance from approximately 0.2 to 0.3 between the 18th and 36th hours
of life, and many other classifiers, such as RF, k-NN, and SVM improve in
the interval of 24–36 hours. In the long monitoring times, the performances
remain rather stable, and they even begin to decline for a few classifiers, such
as k-NN and DT.

In AUPR evaluations, the performance is also quite steady throughout the
monitoring times with the highest growth seen between the 24th and 36th

hours of life. Interestingly, most classifiers show a decrease in performance
from the 36th to the 48th hour with the exception of LDA and SVM. Their
performance keeps on increasing through the entire time period. GP clas-
sifiers show the highest AUPRs at around 0.43, followed by RF, LR, SVM,
and LDA around 0.035 units behind.

The performance of the classifier is hardly affected by the monitoring time
if AUROC is considered. Most of the classifiers are within a narrow margin
around the AUROC of 0.9; only QDA and DT perform significantly worse.

Moreover, an interesting and expected phenomenon is visible in Figure 4.7(b)
where all classifiers depend solely on the features derived from the physiolog-
ical time series. The longer monitoring times contribute to the performance
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(a) Features include all time-dependent feature combinations.

(b) Features include only the physiological time series.

Figure 4.7: Impact of length of monitoring time on the prediction performance
of neonatal mortality. The vertical axis is different for AUROC values.

on both evaluation criteria. The improvement of F1 scores stabilises for most
classifiers at 36 or 48 hours, whereas the GP and SVM classifiers continue
to grow over the whole time span. The improvement of AUROC stabilises
also after the 36th monitoring hour. Moreover, the AUPRs of all classifiers
with an exception of DT, grow significantly from approximately 0.15 to 0.30
in the interval of 12–72 hours. Unfortunately, these results do not answer to
the question how long the constant growth would last since monitoring times
longer than 72 hours are not studied.
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Bronchopulmonary dysplasia

The highest prediction performances of BPD in Figure 4.8 show, basically, no
dependency of the length of the monitoring time. The results remain at the
same level for all time intervals. All classifiers but SVM, GPlin, and DT have
F1 scores of around 0.65–0.70. On the other hand, GP and RF classifiers
stand out at around 0.70 and 0.88 if classifiers are compared by means of
AUPR and AUROC, respectively.

Figure 4.8: Impact of length of monitoring time on the prediction performance
of BPD. The vertical axis is different for AUROC values.

Necrotising enterocolitis

Figure 4.9(a) presents the results for NEC predictions. All in all, the variabil-
ity is high in the F1 scores in 12–48 hours, after which most of the classifiers
improve their performance. RF and k-NN classifiers achieve the highest F1

scores, followed by QDA, DT, and LDA. The GP classifiers show a zero in
F1 scores. A clearer pattern is observed in AUPRs as the performance in-
creases almost at a constant rate for the majority of the classifiers over the
monitoring times of 12–72 hours. However, the absolute improvement is, on
average, only from under 0.100 to roughly 0.125 in terms of AUPR. A small,
increasing trend is seen also in the AUROC values, in which QDA shows an
ultimate improvement of approximately 0.15.

Using only TS features reveals a similar time-dependency for NEC predic-
tions in Figure 4.9(b) as for mortality predictions in Figure 4.7(b). A longer
monitoring time results in higher performance on all measures for all classi-
fiers. A typical magnitude of improvement is 0.05-0.10 in terms of F1 score
and AUPR whereas the growth of AUROC values is roughly 0.20–0.25 for
many classifiers. Thus, predicting NEC is highly dependent on the length of
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(a) Features include all time-dependent feature combinations.

(b) Features include only the physiological time series.

Figure 4.9: Impact of length of monitoring time on the prediction performance
of NEC. The vertical axis is different for AUROC values.

physiological parameter monitoring if they are the only features in the model.
In addition, the AUROCs keep on growing throughout the monitored time
periods without starting to stabilise.

Retinopathy of prematurity

The attempts to predict retinopathy of prematurity seem to be unaffected by
the length of physiological monitoring as the lines are nearly horizontal in all
three parts in Figure 4.10. All the same, a proper conclusion is challenging
to draw because the level of performance remains low: F1 scores are at
zero for GP and at 0.30–0.35 for other classifiers, and the AUPR values are
within a narrow margin around 0.20–0.25 for most of the classifiers. Although
AUROC values are much higher, around 0.80–0.85, for ten classifiers, they
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implicate an overly optimistic result of the identification of the sick patients
because the other values of the measures remain low.

Figure 4.10: Impact of length of monitoring time on the prediction performance
of ROP. The vertical axis is different for AUROC values.

4.2.3 Impact of feature selection

The impact of feature selection on the performance is studied in this sec-
tion. Four proposed feature combinations, ALL, TS+GA+BW, TS, and
SC+GA+BW, presented in Section 3.2.3 in more detail, are used to pre-
dict neonatal mortality and three morbidities. The highest classification re-
sult over all time series preprocessing and monitoring time combinations are
presented for each feature combination classifier-specifically in Figures 4.11,
4.12, 4.13, and 4.14. The values below the classifier names are the maximum
differences between the performance of the feature combinations.

A few general observations are made from the feature selection comparisons.
First, the selected features affect the prediction performance fairly systemat-
ically over different classifiers and complications of interest. A high number
of features increases the performance. Using only the features derived from
time series often results in a clearly lower performance than a combination
of them and either GA and BW or the scores SNAP-II and SNAPPE-II,
GA, and BW. Second, the four static features in SC+GA+BW alone seem
to be very explanatory since they show a strong performance regardless of
the evaluation measure. Third, the choice of evaluation measure may alter
the optimal feature combination.
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Mortality

Figure 4.11 presents the results of mortality predictions. The highest per-
forming feature combinations are ALL, SC+GA+BW, and TS+GA+BW
which have only small differences in performance: the highest difference in
their F1 scores is often less than 0.050 and even less on the AUPR and AU-
ROC scales. Thus, using AUPR or AUROC as the target function of the
prediction task seems to make the models robust to the selected features.
Predicting purely from TS features decreases the performance clearly on all
measures.

Figure 4.11: Impact of feature selection on the prediction performance of neona-
tal mortality. The vertical axis is different for AUROC values.
RF, k-NN, and LR classifiers reach the highest results in terms of F1 score that are
0.495, 0.453, and 0.427, respectively. The other classifiers show F1 scores of ap-
proximately 0.35 while SVM performs significantly worse. Considering AUPR or
AUROC, all GP classifiers rank at the top above 0.4 or 0.9, respectively, followed
closely by the other classifiers. Only the performance of DT is not comparable to
the other classifiers as it only exceeds an AUPR of 0.2 and an AUROC of 0.7.
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Bronchopulmonary dysplasia

The results for BPD predictions are presented in Figure 4.12. The impact of
feature selection is small among ALL, SC+GA+BW, and TS+GA+BW. In
fact, the maximum performance difference within a classifier for these three
feature combinations is 0.038 in F1 scores, 0.067 in AUPRs, and 0.028 in
AUROCs. The maximum classifier-specific differences are even smaller be-
tween ALL and TS+GA+BW features: 0.013, 0.012, and 0.014 for F1 score,
AUPR, and AUROC, respectively, making these feature combinations almost
interchangeable. Predicting this lung disease based on solely TS features de-
creases the performance remarkably.

Figure 4.12: Impact of feature selection on the prediction performance of BPD.
The vertical axis is different for AUROC values.
All classifiers but DT and SVM achieve almost an equal F1 score of 0.7. In addition,
the GP and RF classifiers hit the same level in terms of AUPR while the majority
of the other classifiers show AUPRs of around 0.6. In addition, GP and RF reach
almost AUROCs of 0.9, outperforming the other classifiers.



CHAPTER 4. RESULTS 69

Necrotising enterocolitis

According to the results in Figure 4.13, defining the optimal features is chal-
lenging since the differences in classifier-specific performance (see the values
below the names of the classifiers) are smaller in NEC predictions than in
any other predictions. The maximum differences are 0.076 in F1 scores, 0.041
in AUPRs, and 0.051 in AUROCs. Unlike in other diagnoses, the TS fea-
tures perform as well as the other feature combinations. Surprisingly, the
performance of TS features only is often comparable to the other feature
combinations. Accordingly, the physiological parameters may have a domi-
nant role in predicting NEC, which requires, however, more research due to
the low performance of the results at hand.

Figure 4.13: Impact of feature selection on the prediction performance of NEC.
The vertical axis is different for AUROC values.
Predicting the occurrence of NEC with any feature combination is hard. 11 out
of 12 classifiers achieve an approximated AUROC of 0.8, but the F1 scores barely
exceed 0.2 and the values of AUPR remain low at around 0.1 regardless of the
classifier and the selected features.
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Retinopathy of prematurity

The results for ROP predictions in Figure 4.14 reveal a familiar pattern:
TS features alone have lower performance than other feature combinations.
The difference is, on average, around 16 %, 10 %, and 6 % lower in terms
of F1 scores, AUPR, and AUROC, respectively. The results of the other
feature combinations place within a narrow margin on all measures; the static
features of SC+GA+BW usually produce a slightly worse performance than
the other two.

Figure 4.14: Impact of feature selection on the prediction performance of ROP.
The vertical axis is different for AUROC values.
The F1 score is basically zero for GP and SVM classifiers while most of the other
classifiers exceed 0.30. The top performance is achieved by RF at around 0.37.
The performance is almost equal in terms of AUPR and AUROC: AUPRs are
approximately 0.25 and AUROCs exceed 0.80 for all classifiers but DT.
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5. Discussion

The first research objective of this work is to identify the most suitable ma-
chine learning algorithms to predict neonatal mortality and several compli-
cation since no consensus exists in the current literature. The performance
of 12 classifiers has been compared, and the preferred classifier depends on
the employed performance measure. In terms of F1 score, the highest result
is achieved in most cases with RF classifier, followed by k-NN, and LR clas-
sifiers. Only LR has been used widely in the previous research. Also NB,
LDA, and QDA show good results in many of the predictions. Optimising
the parameters of RF and k-NN may be a reason for their success, especially
as the parameters of the other classifiers were not tuned in a similar manner.
RF and GP classifiers with either Matérn or RBF kernel result in the highest
classification performance in terms of AUPR. RF, GP, and SVM classify the
sick patients the best in terms of AUROC. However, any classifier does not
clearly outperform the others, verifying the observation of Meyfroidt et al.
(2009) that no classifier is more suitable for a certain task than any other.

In addition, the differences in the predictability of complications are of in-
terest in this study. The classification performance presented in Chapter 4
depends heavily on the complication of preterm birth. The highest F1 scores
(AUPRs, AUROCs) are 0.495 (0.437, 0.928) for mortality, 0.694 (0.715,
0.888) for BPD, 0.235 (0.142, 0.807) for NEC, and 0.374 (0.262, 0.851) for
ROP. Consequently, BPD of VLBW neonatal infants shows the most poten-
tial of being predictable with machine learning since all three measures have
a high value. In addition, the results of mortality predictions support the
conclusions of previous work by Rinta-Koski et al. (2018) that mortality can
be predicted to some extent from physiological parameters.

The results of NEC and ROP predictions remain at a fairly modest level
in terms of F1 score and AUPR, but their AUROCs are close to those of
mortality and BPD. That demonstrates clearly the importance of the correct
choice of the evaluation criteria. The high AUROC values give an erroneous
impression of good predictability of NEC and ROP, but the low F1 scores
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and AUPRs prove the impression to be incorrect. Thus, their potential
predictability is not proven with the approaches presented in this work.

The second goal of this study is to present and use appropriate measures for
assessing the classification results. At the same time, it explains why NEC
and ROP are unpredictable despite their high AUROCs. Even though accu-
racy, AUC, and AUROC are reported in dozens of studies (see Section 2.6),
they are not always the optimal measures. Classifiers function better on bal-
anced than on imbalanced data, and the use of the commonly used measures
is justified on balanced data (Weiss and Provost, 2001). However, these eval-
uation criteria do not measure the relevant aspects on imbalanced data. In
the studied patient cohort, the ratio of patients with a diagnosed complica-
tion is low; it is around 6.5 % for mortality, 28.5 % for BPD, 3.2 % for NEC,
and 7.9 % for ROP.

To present and evaluate the results with more appropriate measures, this
thesis applies F1 score and AUPR. Their origin is in precision and recall.
Accordingly, these measures reveal if the classification is able to (i) clas-
sify only the truly sick patients as sick and (ii) identify all of the sick pa-
tients (Sokolova and Lapalme, 2009; Saito and Rehmsmeier, 2015). However,
an acknowledged concern regarding AUPR can slightly mislead the results
in this particular study. AUPR applies multiple probability thresholds as
explained in Section 2.4.1. The AUPRs of this study are averaged over
patient-specific AUPRs, which are not completely equal to the more correct
method, gross AUPR. The gross AUPR is calculated using all thresholds for
all patients simultaneously without averaging (Ghassemi et al., 2018).

Data imbalance is definitely not the only reason for the low predictability
of NEC and ROP because it is higher for mortality (around 6.5 %) than
for ROP (around 7.9 %), but still mortality predictions have a significantly
higher performance. Another reason for the low performance may lie the
feature selection; the selected physiological parameters can cause the low
predictability of NEC and ROP if they do not reveal the symptoms of these
two complications. For example, many other studies have used retinal images
to detect ROP. Of course, a potential source of error can be in the diagnoses
that have been given to the patients by the doctors: some patients may
potentially been misdiagnosed with a complication, some sick patients may
be lacking a diagnosis, or the medical practices have varied over the period of
1999–2013 in a way that certain diagnoses have been given with less evidence
at one time than another.

The third research goal is to compare the impact of both data preprocess-
ing, in other words, the time series sampling and the length of monitoring
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time, and feature selection on the classification performance. The different
preprocessing of the time series has a marginal effect on the results. No
generalisations can be drawn whether regularly or irregularly sampled time
series are more suitable for the presented analysis, or whether it is advisable
to exclude the measurements from the first six hours of life. Moreover, only
mean and standard deviation were extracted from the time series, and they
are affected only a little by the changes in time series sampling examined in
this study. As an important acknowledgement, the choice of preprocessing
may have a greater impact on the results if more sophisticated features (see
Section 2.2.2) were extracted from the time series.

Furthermore, the effect of the length of the monitoring time is examined as
longer time series include more information. The results are twofold: the pre-
dictions of mortality and NEC are improved with longer monitoring times,
whereas those of BPD and ROP are not affected as remarkably. However,
the improvements are moderate: often around 0.05 on all measures. More-
over, somewhat clear improvements in the mortality and NEC predictions
are revealed if only features extracted from time series are used in the clas-
sification model. An interesting pattern is observed in the varying lengths of
the monitoring time: the results are improved the most when the monitoring
time is 36 or 48 hours, after which the classification performance usually sta-
bilises. This has also been verified by Rinta-Koski et al. (2018). Therefore,
a reasonable monitoring time of the patients is 1.5–2 days. In that time, the
most justified predictions of neonatal complications are provided, which can
be used to support the decision making at NICUs. A few classifiers show,
however, a constant growth in performance throughout the whole 72-hour
time period. Since it is the longest monitoring time of this study, it remains
unclear how long the growth would last.

The feature selection, on the other hand, affects the results more than data
preprocessing. The results of feature selection comparison are similar to
those of Saria et al. (2010), Rinta-Koski et al. (2017a), and Rinta-Koski
et al. (2018). GA and BW are undoubtedly indispensable features since
the highest performance is achieved by the data combinations where they
appear. However, it remains unclear if they are to be combined with medical
scores, or time series features, or both to achieve the highest results, since the
differences between these combinations are minor. One combination happens
to function better for a specific classifier and a specific complication, based
on which the optimal model can be constructed. All the same, using only
time series based features is not advised.

Despite the potential of the predictions proposed in the previous studies and
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in this work, most of the medical data analyses end when the numerical
results have been analysed, and the results are never implemented in the real
life (Bellazzi and Zupan, 2008). This is unfortunate as the algorithms might
make a difference at ICUs by improving the quality of care and by saving
lives of the newborn. Therefore, the results of a method should not only be
tested on one but on multiple patient cohorts to demonstrate their reliability,
which is, in most cases, challenging due to the confidential nature of health
related data. On top of that, Cerqueira et al. (2014) raise concern about the
ethical consequences of medical predictions. If a health care unit has limited
resources, is the baby at a higher risk given a priority for the treatment
over other patients? The ethical aspects will not be discussed further in this
technical thesis.
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6. Conclusions

VLBW neonatal infants are prone to multiple medical complications and
death due to their underdevelopment and young age. Many of these com-
plications are life-threatening and require immediate care, or at least the
treatment is better to be started as early after the birth as possible. Since
the physiological condition of preterm infants is monitored continuously with
various sensors and manual measurements, neonates produce vast amounts
of medical data. Dozens of studies have shown potential of utilising these
data by machine learning algorithms. The algorithms can predict the occur-
rence of typical neonatal complications, thus enabling the doctors to start
the proper care in time.

A state-of-the-art NICU patient cohort is used in this study to compare
the predictive capability of several classifiers and predictability of differ-
ent neonatal complications. Random forests, Gaussian processes, k-nearest
neighbours, logistic regression, and support vector machine classifiers appear
to be the most suitable classifiers for the prediction tasks. The optimal classi-
fier, however, depends on the complication of interest as well as other design
choices of the model construction, such as the length of patient monitoring
time. This work presents the highest prediction performance for BPD (F1

score: 0.694, AUPR: 0.715, AUROC: 0.888), followed by decent results for
mortality predictions (F1 score: 0.495, AUPR: 0.437, AUROC: 0.928). NEC
(F1 score: 0.235, AUPR: 0.142, AUROC: 0.807) and ROP (F1 score: 0.374,
AUPR: 0.262, AUROC: 0.851) are not predictable by the proposed technique.

The fortunate rareness of complications is unfortunate from machine learn-
ing point of view since the available data are often imbalanced. The class
imbalance hinders the use of vanilla machine learning algorithms without a
substantial amount of data preprocessing. As an alternative to heavy pre-
processing, less used evaluation criteria in this field, F1 score and AUPR, are
utilised since they result in more truthful quantifications of the performance
for imbalanced data than many other measures. They focus on assessing the
success of identifying the sick patients, not the healthy.
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The preprocessing approach of time series appears to be insignificant: regu-
larly and irregularly sampled time series result in almost equal performance.
On the other hand, feature selection is more important. Gestational age and
birth weight are fundamental features for the model while adding the med-
ical scores SNAP-II and SNAPPE-II or features from the time series might
slightly improve the result. Furthermore, this work concludes a longer mon-
itoring time can contribute – depending on the complication – positively to
the classification result, suggesting a monitoring time of 36–48 hours. For all
that, the effect of feature selection or the length of monitoring time on the
classification performance depends on the classifier algorithm and predicted
complication.

The concept of successfully predicting neonatal complications using machine
learning algorithms receives more evidence in this thesis. However, more
research is still required to improve the results of the predictions. Helsinki
University Hospital has been collecting neonatal data to a new electronic
health record since 2017. This system is able to store continuous patient
monitoring values. In consequence, this enables a bunch of new analysis and
feature extraction techniques to be applied on the patient cohort. These tech-
niques include heart rate characteristics and beat-to-beat analyses, shapelets,
and other more precise temporal features. In addition, the predictive power
of other physiological parameters is worth studying as well as more sophisti-
cated feature selection algorithms. Furthermore, the single parameters of the
classifiers can be tuned further. All in all, researching EHRs with machine
learning algorithms provides work for years to come. This research requires
both data science and medical experts so that the quality of care can be
improved at NICUs, complications of preterm birth can be healed, and the
lives of the neonatal infants can be saved.



77

Bibliography

Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications Inc., New York, United
States. ISBN 978-0-486-61272-4.

Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules. In
Proceedings of the 20th International Conference on Very Large Data Bases, pages 487–
499.

Allen, J. F. (1984). Towards a General Theory of Action and Time. Artificial Intelligence,
23(2):123–154.

Ambalavanan, N., Van Meurs, K. P., Perritt, R., Carlo, W. A., Ehrenkranz, R. A., Steven-
son, D. K., Lemons, J. A., Poole, W. K., and Higgins, R. D. (2008). Predictors of Death
or Bronchopulmonary Dysplasia in Preterm Infants with Respiratory Failure. Journal
of Perinatology, 28(6):420–426.

American Academy of Pediatrics (2004). Age Terminology During the Perinatal Period.
Pediatrics, 114(5):1362–1364.

Apgar, V. (1953). A Proposal for a New Method of Evaluation of the Newborn Infant.
Current Researches in Anesthesia and Analgesia, 32(4):260–267.

Ataer-Cansizoglu, E., Bolon-Canedo, V., Campbell, J. P., Bozkurt, A., Erdogmus, D.,
Kalpathy-Cramer, J., Patel, S., Jonas, K., Chan, R. V. P., Ostmo, S., and Chiang, M. F.
(2015). Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of
Prematurity: Performance of the “i-ROP” System and Image Features Associated With
Expert Diagnosis. Translational Vision Science & Technology, 4(6):Article 5.

Avery, G. B., MacDonald, M. G., Seshia, M. M. K., and Mullett, M. D. (2005). Avery’s
Neonatology: Pathophysiology & Management of the Newborn. Lippincott Williams
& Wilkins, Philadelphia, United States, 6th edition. ISBN 978-0781746434 (printed),
ISBN 978-1469875422 (electronic).

Batal, I., Fradkin, D., Harrison, J., Moerchen, F., and Hauskrecht, M. (2012). Mining
Recent Temporal Patterns for Event Detection in Multivariate Time Series Data. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 280–288.

Batal, I., Sacchi, L., Bellazzi, R., and Hauskrecht, M. (2009). Multivariate Time Se-
ries Classification with Temporal Abstractions. In Proceedings of the Twenty-Second
International FLAIRS Conference, pages 344–349.

Bellazzi, R. and Zupan, B. (2008). Predictive data mining in clinical medicine: Current
issues and guidelines. International Journal of Medical Informatics, 77(2):81–97.

Bhering, C. A., Mochdece, C. C., Moreira, M. E. L., Rocco, J. R., and Sant’Anna, G. M.
(2007). Bronchopulmonary dysplasia prediction model for 7-day-old infants. Jornal de
Pediatria, 83(2):163–170.



BIBLIOGRAPHY 78

Binenbaum, G., Ying, G.-s., Quinn, G. E., Dreiseitl, S., Karp, K., Roberts, R. S., Kir-
palani, H., et al. (2011). A Clinical Prediction Model to Stratify Retinopathy of Pre-
maturity Risk Using Postnatal Weight Gain. Pediatrics, 127(3):e607–e614.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York,
United States. ISBN 978-0387-31073-8.

Bolón-Canedo, V., Ataer-Cansizoglu, E., Erdogmus, D., Kalpathy-Cramer, J., and Chi-
ang, M. F. (2015a). A GMM-based feature extraction technique for the automated
diagnosis of Retinopathy of Prematurity. In 2015 IEEE 12th International Symposium
on Biomedical Imaging (ISBI), pages 1498–1501.

Bolón-Canedo, V., Ataer-Cansizoglu, E., Erdogmus, D., Kalpathy-Cramer, J., Fontenla-
Romero, O., Alonso-Betanzos, A., and Chiang, M. F. (2015b). Dealing with inter-expert
variability in retinopathy of prematurity: A machine learning approach. Computer
Methods and Programs in Biomedicine, 122(1):1–15.

Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A.,
Schein, R. M. H., and Sibbald, W. J. (1992). Definitions for Sepsis and Organ Failure
and Guidelines for the Use of Innovative Therapies in Sepsis. Chest, 101(6):1644–1655.

Bosman, R. J., Oudemans-van Straaten, H. M., and Zandstra, D. F. (1998). The use of
intensive care information systems alters outcome prediction. Intensive Care Medicine,
24(9):953–958.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification And

Regression Trees. Chapman & Hall/CRC, Boca Raton, United States. ISBN 978-0-412-
04841-8.

Calvert, J. S., Price, D. A., Chettipally, U. K., Barton, C. W., Feldman, M. D., Hoffman,
J. L., Jay, M., and Das, R. (2016). A computational approach to early sepsis detection.
Computers in Biology and Medicine, 74:69–73.

Cerqueira, F. R., Ferreira, T. G., de Paiva Oliveira, A., Augusto, D. A., Krempser, E.,
Barbosa, H. J. C., do Carmo Castro Franceschini, S., de Freitas, B. A. C., Gomes, A. P.,
and Siqueira-Batista, R. (2014). NICeSim: an open-source simulator based on machine
learning techniques to support medical research on prenatal and perinatal care decision
making. Artificial Intelligence in Medicine, 62(3):193–201.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27:1–27:27.

Cirelli, J., McGregor, C., Graydon, B., and James, A. (2013). Analysis of continuous
oxygen saturation data for accurate representation of retinal exposure to oxygen in the
preterm infant. In Courtney, K. L., Shabestari, O., and Kuo, A., editors, Enabling
Health and Healthcare Through ICT: Available, Tailored and Closer, pages 126–131.
IOS Press, Amsterdam, Netherlands. ISBN 978-1-61499-202-8 (printed). ISBN 978-1-
61499-203-5 (electronic).

Cortes, C. and Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3):273–
297.

Cunha, G. S., Mezzacappa-Filho, F., and Ribeiro, J. D. (2005). Risk Factors for Bron-
chopulmonary Dysplasia in very Low Birth Weight Newborns Treated with Mechanical
Ventilation in the First Week of Life. Journal of Tropical Pediatrics, 51(6):334–340.

Darlow, B. A., Hutchinson, J. L., Henderson-Smart, D. J., Donoghue, D. A., Simpson,
J. M., and Evans, N. J. (2005). Prenatal Risk Factors for Severe Retinopathy of Pre-
maturity Among Very Preterm Infants of the Australian and New Zealand Neonatal
Network. Pediatrics, 115(4):990–996.

Davis, J. and Goadrich, M. (2006). The Relationship Between Precision-Recall and ROC



BIBLIOGRAPHY 79

Curves. In Proceedings of the 23rd International Conference on Machine learning, pages
233–240.
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Wu, C., Löfqvist, C., Smith, L. E. H., VanderVeen, D. K., and Hellström, A. (2012).
Importance of Early Postnatal Weight Gain for Normal Retinal Angiogenesis in Very
Preterm Infants: A Multicenter Study Analyzing Weight Velocity Deviations for the
Prediction of Retinopathy of Prematurity. Archives of Ophthalmology, 130(8):992–999.

Ye, L. and Keogh, E. (2009). Time Series Shapelets: A New Primitive for Data Min-
ing. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 947–956.

Zhao, J., Papapetrou, P., Asker, L., and Boström, H. (2017). Learning from heterogeneous
temporal data in electronic health records. Journal of Biomedical Informatics, 65:105–
119.

Zimmerman, J. E., Kramer, A. A., McNair, D. S., and Malila, F. M. (2006). Acute Physi-
ology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for
today’s critically ill patients. Critical Care Medicine, 34(5):1297–1310.



87

A. Highest classification results

The classification results over all possible time series preprocessing, moni-
toring time, and feature selection combinations are presented complication-
and classifier-specifically in Appendix A. For each complication and classifier
combination, the highest F1 scores are reported in Table A.1, the highest
AUPR values in Table A.2, and the highest AUROC values in Table A.3.

If several combinations share the exactly same performance in terms of F1

score in Table A.1, AUPR in Table A.2, or AUROC in Table A.3, the com-
bination with the highest performance of the secondary measure, AUPR, F1

score, and F1 score, respectively, is presented in the table and highlighted
with an asterisk (*).

In case several combinations have the exactly same performance in terms
of the two measures, the combination with the highest performance of the
tertiary measure, AUROC, AUROC, and AUPR, respectively, is presented
in the table and highlighted with a dagger (†).
If multiple combinations have the same performance in all three scores, they
all are presented in the table and highlighted with a double dagger (‡).
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