
Tabish Badar

Implementation of the autonomous
functionalities on an electric vehicle
platform for research and education

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of

Science in Technology.

Pakistan 20.May.2019

Thesis supervisor:

Prof. Arto Visala

Thesis advisor:

D.Sc. (Tech.) Mika Vainio



aalto university

school of electrical engineering

abstract of the

master's thesis

Author: Tabish Badar

Title: Implementation of the autonomous functionalities on an electric vehicle
platform for research and education

Date: 20.May.2019 Language: English Number of pages:10+87

Department of Electrical Engineering and Automation

Professorship: Automation Technology Code: AS-84

Supervisor: Prof. Arto Visala

Advisor: D.Sc. (Tech.) Mika Vainio

Self-driving cars have recently captured the attention of researchers and car ma-
nufacturing markets. Depending upon the level of autonomy, the cars are made
capable of traversing from one point to another autonomously. In order to achieve
this, sophisticated sensors need to be utilized. A complex set of algorithms is
required to use the sensors data in order to navigate the vehicle along the desired
trajectory.

Polaris is an electric vehicle platform provided for research and education purposes
at Aalto University. The primary focus of the thesis was to utilize all the sensors
provided in Polaris to their full potential. So that, essential data from each sensor
is made available to be further utilized either by a speci�c automation algorithm
or by some mapping routine.

For any autonomous robotic system, the �rst step towards automation is localiza-
tion. That is to determine the current position of the robot in a given environment.
Di�erent sensors mounted over the platform provide such measurements in di�e-
rent frames of reference. The thesis utilizes the GPS based localization solution
combined with the LiDAR data and wheel odometry to perform autonomous tasks.
Robot Operating System is used as the software development tool in thesis work.

Autonomous tasks include the determination of the global as well as the local
trajectories. The endpoints of the global trajectories are dictated by the set of
prede�ned GPS waypoints. This is called target-point navigation. A path needs
to be planned that avoids all the obstacles. Based on the planned path, a set of
velocity commands are issued by the embedded controller. The velocity commands
are then fed to the actuators to move the vehicle along the planned trajectory.

Keywords: robot operating system, waypoint navigation, estimation and lo-
calization, sensor fusion and integration, autonomous control, self-
driving cars



aalto-yliopisto

sähkotekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Tabish Badar

Työn nimi: Itsenäisten toimintojen toteuttaminen sähköajoneuvojen alustalla
tutkimukseen ja koulutukseen

Päivämäärä: 20.May.2019 Kieli: Englanti Sivumäärä:10+87

Sähkötekniikan ja automaation laitos

Professuuri: Automaatiotekniikka Koodi: AS-84

Valvoja: Prof. Arto Visala

Ohjaaja: TkT Mika Vainio

Itsekseen ajamaan kykenevät autot ovat olleet tutkijoiden ja autonvalmistajien huomion
keskipisteessä erityisesti viime vuosina. Autonomian tasosta riippuen ne ovat kyenneet li-
ikkumaan, enemmän tai vähemmän, itsenäisesti paikasta toiseen ilman ihmisen jatkuvaa
ohjaamista. Jotta tämä on saatu toteutettua, ajoneuvot on täytynyt varustaa monipu-
olisilla anturijärjestelmillä. Antureiden lisäksi tarvitaan luonnollisesti kehittyneitä algo-
ritmeja käsittelemään ja hyödyntämään niiltä tulevaa dataa, niin että ajoneuvo saadaan
liikkumaan turvallisesti haluttua reittiä pitkin.

Työssä käytetty Polaris Ranger on rinnakkain istuttava sähköistetty mönkijä (e-ATV),
joka on hankittu Aalto yliopistoon tutkimus- ja koulutustarkoituksiin ja sittemmin ka-
lustettu erilaisilla antureilla ja toimilaitteilla autonomisen ajamisen mahdollistamiseksi.
Tämän diplomityön keskeinen tavoite on hyödyntää ajoneuvon antureiden tuottama an-
turitieto mahdollisimman hyvin erityisissä itsenäisen ajamisen mahdollistavissa algorit-
meissa ja ympäristön kartoitusrutiineissa.

Toimiva autonominen robottijärjestelmä perustuu yleensä sen paikantamiseen työymp-
äristössään. Erilaiset käytössä olevat anturit tuottavat tarvittavaa tietoa omissa koor-
dinaatistoissaan. Työssä yhdistetään autonomisten tehtävien suorittamista varten GPS
pohjainen paikkatieto ympäristön laserkeilaukseen (LiDAR) ja ajoneuvon renkailta ja
ohjauksesta saataviin kuljetun matkan laskentaan tarvittaviin liiketietoihin maailman-
laajuisesti käytetyn robottien ohjelmistojen kehittämiseen ja avoimen koodin jakamiseen
kehitetyn ROS (Robot Operating System) viitekehyksen avulla.

Yllä mainitut autonomiset tehtävät sisältävät tässä tapauksessa erityisesti ajoneuvon
halutun liikeradan suunnittelun ja sen määrittämisen GPS-reittipisteiden avulla (target-
point navigation). Suunnitellun polun pitää luonnollisesti kiertää kaikki tiedossa olevat
esteet. Suunnitelman toteuttamiseksi sulautettu ohjain (embedded controller) antaa jou-
kon nopeuskomentoja, jotka sitten syötetään moottoreihin ja ohjauslaitteisiin ajoneuvon
liikuttamiseksi haluttua reittiä pitkin.

Avainsanat: ROS, reittipistenavigointi, estimointi ja paikannus, anturitietojen
fuusiointi, itsenäinen ohjaus, itseajavat autot



Preface

Firstly, I would like to thank Professor Arto Visala, who provided me an opportunity
to work on such a wonderful piece of equipment. Throughout the thesis work, I
enjoyed working independently on the platform. This aided me a lot to grasp a
thorough understanding of various systems of the vehicle under test. The professor
was very kind and encouraged my methodologies to produce tangible results. The
professor showed a great amount of con�dence in my thesis process and allowed
me to instruct a group of students on Project Work. Through this, I was able to
contribute my bit to the research group by instructing younger students.

I am also very grateful towards my thesis advisor Mika Vainio for his guidance
on this thesis, and for passing valuable suggestions to improve the structure and
outlook of this thesis document. In particular, I wish to thank Heikki Hyyti and
Andrei Sandru for their advisory conversations and practical help. Andrei was very
supportive and helped me a lot in understanding the basic set up of the e-ATV.

Lastly, I would like to mention the unending and loving support of my parents, my
wife, and my daughter. It is to them I owe all of my e�orts.

Pakistan, 20.May.2019

Tabish Badar



v
Contents
Table of contents v

List of Figures vii

List of ROS Configuration Files ix

Symbols, notations and abbreviations x

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State-of-the-Art 6
2.1 State Estimation and Filtering Techniques . . . . . . . . . . . . 7
2.2 Sensors Module . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Localization and Mapping Module . . . . . . . . . . . . . . . . 9
2.4 Navigation Module . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Control System Module . . . . . . . . . . . . . . . . . . . . . . 13

3 Working with ROS 16
3.1 Architecture and Philosophy . . . . . . . . . . . . . . . . . . . 16
3.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Services and Actions . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Transformation System . . . . . . . . . . . . . . . . . . . . . . 25

4 Localization and Mapping 27
4.1 Electronics Systems . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Sensor Integration . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 List of Available Data Packets . . . . . . . . . . . . . . 28
4.2.2 Test Drive Profile . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Lateral Dynamics Evaluation . . . . . . . . . . . . . . . 33

4.3 Kinematics Model of Polaris . . . . . . . . . . . . . . . . . . . 33
4.4 EKF-based Vehicle State Estimation . . . . . . . . . . . . . . . 36

4.4.1 Robot Localization Package . . . . . . . . . . . . . . . 37
4.4.2 Navsat Transform Node . . . . . . . . . . . . . . . . . . 38
4.4.3 Odometry: Map→ Base_link . . . . . . . . . . . . . . 41
4.4.4 Odometry: Odom→ Base_link . . . . . . . . . . . . . . 45

4.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 GMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



vi
5 Navigation and Control 56

5.1 Navigation Module Implementation . . . . . . . . . . . . . . . 56
5.2 Control System Module Implementation . . . . . . . . . . . . . 63

5.2.1 Mission Controller . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Mission Profile . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Switching Controller . . . . . . . . . . . . . . . . . . . 66
5.2.4 Motion Controller . . . . . . . . . . . . . . . . . . . . . 67

6 Autonomous Drive 69
6.1 Description of Self-driving Test . . . . . . . . . . . . . . . . . . 69
6.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusions 78
7.1 Future Work Recommendations . . . . . . . . . . . . . . . . . . 81

References 83



vii
List of Figures

1.1 Polaris: An electric vehicle platform inside Autonomous Sys-
tems Lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 The Big Picture: The software flow of the autonomous functio-
nalities implemented in Polaris. . . . . . . . . . . . . . . . . . . 6

3.1 ROS Working Philosophy: A simple depiction about how ROS
nodes acting as either subscriber or publisher or both communi-
cate with one another and with ROS Master using topics. . . . . 17

3.2 ROS RViz: A dynamic visualization environment to monitor the
real-time behavior of topics. The arrangement of the layout is
up to the user. Here, the list of topics is shown in the top left
corner. In the bottom-left, one can see the output of the camera
in a panoramic mode. The main window depicts the map of the
environment along with the trajectory of the vehicle. . . . . . . . 18

3.3 Gazebo: Polaris being imported into the Gazebo environment
as a robot model. One can dynamically interact with the envi-
ronment in Gazebo in order to provoke changes in the simulated
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 ROS RViz: Polaris model imported into the RViz environment.
One can see various frames attached to different parts of the ro-
bot. These frames are linked with one another through a trans-
formation tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Robot environment simulated inside Gazebo. One can visualize
the blue Polaris standing in front of a ramp. The simulated roads
and other obstacles are also visible. . . . . . . . . . . . . . . . . 20

3.6 ROS Services: Communication between ROS service client and
server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 ROS Actions: Communication between ROS action client and
server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Left: Relationship between ENU and ECEF coordinate systems
is shown. Right: Relationship between body frame of the car to
the world frame in illustrated. . . . . . . . . . . . . . . . . . . . 24

3.9 Various frames attached to the robot in relation to UTM frame
of reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.10 A working transformation tree implemented in ROS is redrawn
to illustrate the relationship between various coordinate frames
attached to the Polaris. . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Electronics systems available in Polaris. . . . . . . . . . . . . . 27
4.2 Satellite image of the test site from Google Maps. . . . . . . . . 29
4.3 Position profile during the test drive. . . . . . . . . . . . . . . . 30
4.4 Yaw angle and yaw rate during the test drive. . . . . . . . . . . . 31
4.5 Acceleration data from the test drive. . . . . . . . . . . . . . . . 31



viii
4.6 Top Left: Ground Speed. Top Middle: Vehicle Path in UTM

Coordinates. Top Right: Roll and Pitch Angle. Bottom Left:
Yaw Rate. Bottom Middle: Accelerations. Bottom Right: Course
Angle. It depicts the relation between speed, turn radius and yaw
rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 4-Wheeled Robot: Depiction of various parameters. . . . . . . . 34
4.8 Dead Reckoning: Position profile. . . . . . . . . . . . . . . . . 35
4.9 Dead Reckoning: Heading dynamics. . . . . . . . . . . . . . . . 35
4.10 Wheel Odometry: Wheel speed. . . . . . . . . . . . . . . . . . 36
4.11 Magnetic declination calculations. . . . . . . . . . . . . . . . . 39
4.12 Position profile in UTM coordinates. . . . . . . . . . . . . . . . 40
4.13 Output position profile of navsat_transform_node. . . . . . . . . 40
4.14 Map→ base_link Odometry: Position data. . . . . . . . . . . . 41
4.15 Map→ base_link Odometry: Yaw dynamics. . . . . . . . . . . 42
4.16 Map→ base_link Odometry: Velocity dynamics. . . . . . . . . 42
4.17 Odom→ base_link Odometry: Position data. . . . . . . . . . . 46
4.18 Odom→ base_link Odometry: Yaw dynamics. . . . . . . . . . 47
4.19 Odom→ base_link Odometry: Velocity dynamics. . . . . . . . 47
4.20 Odometry comparison. . . . . . . . . . . . . . . . . . . . . . . 50
4.21 Speed profiles comparison. . . . . . . . . . . . . . . . . . . . . 51
4.22 Odom→ base_link Odometry: Pose data when wheel speed was

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.23 Odom→ base_link Odometry: Velocity data when wheel speed

was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.24 2D Occupancy Grid Map. . . . . . . . . . . . . . . . . . . . . . 55
5.1 A 2D cost map generated by in ROS. . . . . . . . . . . . . . . . 57
5.2 Simulation of trajectories by the local planner [52]. . . . . . . . 60
5.3 Functionality of Primary (or Secondary) Mission Controller. . . 64
5.4 The selection of target waypoints from the test drive. . . . . . . 66
5.5 Motion Controller Function. . . . . . . . . . . . . . . . . . . . 67
6.6 Self-driving Test (RViz Snapshot): Initial settings. . . . . . . . . 69
6.7 Self-driving Test (RViz Snapshot): Path (calculated by primary

mission controller) followed by Polaris. . . . . . . . . . . . . . 70
6.8 Self-driving Test (RViz Snapshot): Path calculated by secondary

mission controller (thin black line). . . . . . . . . . . . . . . . . 71
6.9 Self-driving Test (RViz Snapshot): Path followed by Polaris; er-

roneous results. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.10 Autonomous test drive trajectory shown in GPS coordinates. . . 74
6.11 Command velocities routed by switching controller. . . . . . . . 75
6.12 Command velocities generated by primary mission controller. . . 75
6.13 Command velocities generated by secondary mission controller. 76
6.14 Comparison of odometries generated by various localization sour-

ces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



ix
6.15 Comparison of speed profiles generated by various localization

sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

List of ROS Configuration Files
1 navsat_params.yaml . . . . . . . . . . . . . . . . . . . . . . . . 39
2 ekf_map_params.yaml . . . . . . . . . . . . . . . . . . . . . . 45
3 ekf_odom_params.yaml . . . . . . . . . . . . . . . . . . . . . . 48
4 gmapping.launch . . . . . . . . . . . . . . . . . . . . . . . . . 54
5 common_costmap_params.yaml . . . . . . . . . . . . . . . . . 58
6 global_costmap_params.yaml . . . . . . . . . . . . . . . . . . . 58
7 local_costmap_params.yaml . . . . . . . . . . . . . . . . . . . 59
8 base_local_planner_params.yaml . . . . . . . . . . . . . . . . . 62
9 move_base.yaml . . . . . . . . . . . . . . . . . . . . . . . . . . 65



x
Symbols, notations and abbreviations

Abbreviations

IMU Inertial Measurement Unit
SLAM Simultaneous Localization And Mapping
DOF Degrees Of Freedom
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
GPS Global Positioning System
ROS Robot Operating System
ABS Automatic Braking System
SPAN Synchronous Position, Attitude and Navigation
GNSS Global Navigation Satellite System
DGNSS Differential GNSS
RTCM Radio Technical Commission for Maritime Services
e-ATV Electric All-Terrain Vehicle
LiDAR Light Detection and Ranging System
PLC Programmable Logic Controller
LLA Latitude, Longitude and Altitude
ECEF Earth-Centered Earth-Fixed
UTM Universal Transverse Mercator
MEMS Micro-Electro-Mechanical Sensors
NLS National Land Survey
WP Waypoint
3D/2D Three Dimensional/ Two Dimensional
fps Frames per second
CAN Controller Area Network

Symbols and notations

φ, θ, ψ Roll, pitch and yaw angles respectively.
φ̇, θ̇, ψ̇ Roll , pitch and yaw rates respectively.
x, y, z Position along x-, y- and z- axis.
vx, vy, vz Linear velocities along x-, y- and z-axes respectively.
ax, ay, az Linear acceleration along x-, y- and z-axes respectively.
R Turn Radius
xk x-position at time instant k.
xk+1 x-position at time instant k+1.



1
1 Introduction

1.1 Background

Autonomous vehicles, which have achieved outstanding developments in the
past decade, are to become a reality on the roads in the near future. With tech
giants such as Tesla, Google, Ford, and others investing largely in this area of
technology, innovative challenges for the research community are still on the
rise. Autonomous Systems Research Group at Aalto University wants likewise
to contribute a fair share of research to this area.

Figure 1.1: Polaris: An electric vehicle platform inside Autonomous Systems
Lab.

Electric All-Terrains-Vehicles (e-ATV) have found increasing use in forestry
and surveillance. They are of great use to the rangers and forest personnel who
have to work in an unfamiliar terrain [1]. In recent times, the importance for
the development of e-ATVs, that are capable of traversing through unacquainted
terrains in rough weather conditions, have gained significant importance. These
are electric machines with zero emissions, less noise and are economical to ope-
rate. Thus far, humans have driven these vehicles, but the latest technology has
made it possible to implement self-driving and autonomous capabilities in such
vehicles.



2
Thus, this thesis aims at implementing autonomous capabilities for an electric
ground vehicle platform shown in Figure 1.1. It is called Polaris Ranger [55],
which is an e-ATV under development at Aalto University to become a self-
driving ground vehicle. Polaris will serve both as research and as a teaching
platform in the future. The platform is already equipped with a state-of-the-art
set of sensors, actuators, and electric modules. These include Automatic Bra-
king System (ABS), Programmable Logic Controller (PLC), embedded compu-
ter, wheel encoders, power steering control system, speed control system, Sy-
nchronous Position, Attitude and Navigation (SPAN) unit, Light Detection and
Ranging (LiDAR) equipment along with an omnidirectional camera.

At Autonomous Systems Lab, many researchers and students have contributed a
significant amount of work to this project so far. Firstly, ABS was installed [2].
This was to make sure the safety of the driver as well as to ensure the road safety
of the vehicle in a high wheel slipping conditions. Subsequently, two low-level
EPEC-5050 PLC based control units were installed on Polaris. The purpose of
these sub-systems is to control the steering and forward motion of the vehicle.
Besides, it keeps track of the counts the wheel has rotated around its center
and what is the current steering angle. Software tools such as CODESYS were
utilized in order to program PLCs.

Having set a tangible basic actuator system for the Polaris, the next task was
to install all available sensors. A group of students achieved basic hardware
integration [3]. They were also responsible for setting the Robot Operating Sy-
stem (ROS) as the software integration platform for the Polaris Ranger. ROS
framework was selected because of its popularity among the researchers in the
robotics community. The same group did testing and calibration of SPAN, Li-
DAR and omnidirectional camera. The capability to capture a panoramic image
was also successfully tested.

With all sensors providing necessary data within the ROS framework, the sub-
sequent task was to utilize this data for localization and mapping of Polaris in a
dynamic environment. The initial setup was laid by the group of students in [4].
A perception platform for the Polaris was evaluated in ROS. The mapping of the
environment was conducted effectively using LiDAR data only. Although, robot
localization problem was not handled effectively, a (deterministic) kinematics
model of the platform was implemented using the dead reckoning method.

Having set the appropriate background about the project, the key objectives set
for this thesis work are discussed in the next section.



3
1.2 Objectives

In order to achieve the autonomous capability, one needs a model of the robot
under test (Polaris Ranger in this case), sensors (and fusion algorithms) to loca-
lize it and provide situational awareness (to understand what it sees). Further-
more, it is required to set appropriate control and navigation parameters based
on a priori info about the environment and mission objectives. Mission objecti-
ves define a path that the robot must traverse (autonomous navigation) while at
the same time avoid obstacles (both static and dynamic) through fast reaction
and longer-term re-planning (if needed).

Therefore, the prime objective of the thesis work was to utilize all the sensors
onboard up to their full potential; so that, indispensable data from each sensor
is made available. Thus, every possible useable data from each of the available
sensors were added in order to achieve the above-mentioned tasks.

The first task was to equip the SPAN unit with the differential corrections pro-
vided by the National Land Survey of Finland [6]. Such a Differential GNSS
(DGNSS) based operation is necessary in navigating the vehicles with minimum
position errors over the ground. It is vital for the safe operation of autonomous
ground vehicles. The rover - a moving GPS user such as SPAN installed on Po-
laris - receives the corrections through a wireless internet connection according
to Networked Transport of RTCM via Internet Protocol (Ntrip) protocol. These
corrections were then routed through a piece of hardware to the SPAN unit.

Relevant parts of the Robot Operating System, being the main decision-making
or so to say the intelligence part of the project, were greatly improved during
the thesis process. C/C++ and Python languages were used extensively for the
programming of various portions of the ROS. For this purpose, a thorough un-
derstanding of multifarious concepts associated with ROS was first acquired.

The robot localization problem was handled within the ROS framework. A great
deal of effort was put to test this part of the thesis. Tests were carried out during
snowy weather to check the effects of the wheel slip on the odometric calcu-
lations. The subsequent objective was to implement the navigation package
provided by ROS. Fused odometry data is thus fed to the navigation algorithm
which is planning a viable path for the mobile robot to traverse.

Navigation in ROS is accomplished by gathering the odometry data, the map of
the environment and a 3D point cloud (output of LiDAR) of the surroundings.
It is responsible for planning the global and local paths for the mobile robot.
The output of the navigation module is a set of velocity commands. Therefore,
the next objective of the thesis was to implement a mission controller, which
was responsible for setting the target waypoints for the vehicle to traverse and



4
provide them as goals to the path planning routines.

The next job was to implement the motion controller. It translates the velocity
commands provided by the mission controller to the format useable by two low-
level PLCs. These PLCs are then responsible for steering the vehicle in a specific
direction at the command velocities. Finally, autonomous capabilities added to
an existing set of code were tested on the actual hardware.

In addition, a group of students who are developing a simulation platform for
Polaris using ROS and Gazebo [24] was also instructed during the thesis process.
This has indeed added a new dimension to the overall project as a simulation
platform will reduce the further efforts required in testing the added algorithms.

In the next section, the basic structure of this thesis is presented.

1.3 Structure

This document comprises information about the significant characteristics of a
self-driving electric vehicle under test. The particulars about the essential ad-
vancements made to the existing autonomous ground vehicle platform are pre-
sented. These developments are typically in the form of software modifications
to the existing set of code.

In Chapter 1, the objectives for the thesis and the main accomplishments made
during the process are presented on a general level. The actual big picture of
the accomplishments made during the process is presented in Chapter 2. In that
chapter, a presentation of each individual element of the big picture is given
along with a concise theoretical background of the topic.

A brief but relevant discussion about ROS is presented in Chapter 3. This chap-
ter includes relevant information about ROS. It will be vital in understanding the
related parts of the thesis. The information includes, for example, some basic
ROS concepts and data conventions.

Chapter 4 is all about the sensor integration and sensor fusion. The chapter
focuses on the set of sensors that is available in Polaris. It describes the data
being provided by each sensor and how they are mixed together by means of
ROS packages to form the odometry data. The odometry data is prepared with
respect to some fixed or moving frame of reference. The chapter also refers to
SLAM and its usage in the current settings.

Chapter 5 deals with the navigation and motion control of the self-driving cars.
Navigation is carried out at both global as well as local level. The mission



5
controller is part of the control system that is managing the navigational part. It
also deals with the management of the velocity commands. Velocity commands
are provided to the motion controller. The motion controller is described along
with the description of the functionality of the low-level controller.

Lastly, the results are presented in detail in Chapter 6. The results illustrate
how Polaris is traversing autonomously through the set of predefined target
waypoints. Data is presented in the form of real-time maps and paths of the
Polaris during the actual run. At the end of this chapter, recommendations about
future work are presented.



6
2 State-of-the-Art

A big picture to summarize the structure of this thesis is roughly captured in
Figure 2.1. As an important remark, one could state that the big picture presen-
ted here, may not fully capture every state-of-the-art concept related to present
top-of-the-line autonomous ground vehicles. However, it presents the current
implementation of the autonomous capabilities in our Polaris Ranger e-ATV.
The final system will most probably be more complex depending upon the fu-
ture requirements. Nevertheless, all the basic ideas behind each module in the
big picture are concisely presented with appropriate references in the following
sections. But first, a little discourse on state estimation and filtering technique is
presented in the next section.

Figure 2.1: The Big Picture: The software flow of the autonomous functionali-
ties implemented in Polaris.



7
2.1 State Estimation and Filtering Techniques

Each constituent module (block) in the big picture utilizes either one, or a com-
bination, of the modern state estimation and filtering techniques. Therefore, it
seems important to write a few lines about the most commonly used algorithms.

Kalman Filter, initially proposed by R. E. Kalman [7], is by far the most depen-
dable and tried state estimation technique [10]. Also referred to as the Kalman-
Bucy filter, it deals with state estimation given the dynamic model of the system
is linearized and is corrupted by an additive source of the noise. It implements
belief computation for continuous states [8]. At time instant t, the belief is re-
presented by the mean and the covariance of the state. The posterior distribution
of the state is Gaussian if the process, as well as the measurements, are assu-
med to be corrupted with additive Gaussian noise. It is an optimal filtering
technique as it minimizes the covariances of the posterior distributions of the
corresponding state over time.

Kalman-Bucy Filter [9] provides a mathematical basis to approximate solutions
to nonlinear filtering problems. There exist various approximation methods to
deal with nonlinear models, for example, based on Monte Carlo approximation,
series expansions of processes and densities, Gaussian (process) approximation
and many others [11]. Perhaps, Extended Kalman Filter (EKF) is the most
commonly used (and simplest possible) extension to Kalman filtering which de-
als with the nonlinear system models [14]. EKF approximates the state transiti-
ons and measurements using linear Taylor series expansions. On the other hand,
we get the unscented Kalman-Bucy filter (UKF) by selecting the Gaussian
sigma-point type approximations of the drift functions (describing how noise
would propagate) [12].

Non-Gaussian nature of the noise and nonlinearity of the system model ren-
ders optimal filtering techniques intractable. Particle Filters are a set of Monte
Carlo algorithms used to provide solutions to the filtering problems when the
processes are non-Gaussian and nonlinear [13]. Sequential importance sam-
pling (SIS) is the most basic Monte Carlo method used in the particle filtering
algorithm. SIS is based on importance sampling, which approximates a poste-
rior distribution at a time step with a weighted set of samples (called particles),
and recursively updates these particles to obtain an approximation to the poste-
rior distribution at next time step. For each measurement, the importance factors
(weights) are assigned to each particle. Thus, by incorporating the weights into
the resampling step (drawing particles from posterior distribution at the next
time step), the distribution of the particles is updated/corrected [15].

In the next sections, each module in the big picture is discussed separately with



8
a concise theoretical background.

2.2 Sensors Module

ROS is running on an embedded computer, which is a Linux based machine,
placed inside a compartment built as a part of the e-ATV. The foremost part
of building an autonomous robot is to provide the embedded computer with
a set of data that is accurate and is provided at maximum possible data rate
with a minimum delay. This real-time data includes the orientation, position
and velocity information about the robot in some particular frame of reference.
Such data in Polaris is coming from more than one sources, with each source
measuring the orientation, position or velocity in its own frame of reference.
Moreover, the embedded computer is receiving this data at different rates.

As an imperative precursor to robot’s localization and mapping problems, it is
important to discuss the Inertial Measurement Unit (IMU), Light Detection and
Ranging (LiDAR), and Global Positioning System (GPS) units. As described in
[16], IMU provides the information about orientation, angular velocities and li-
near accelerations of the robot. Rate gyros provide the angular velocities, while
the accelerometers provide the information about how much force is applied to
the machine in a specific direction. Both measurements are provided in the vehi-
cle’s body frame. However, such sensors are accurate up to a certain extent and
are prone to noise, biases, and distortion with time. In addition, the orientation
data, which include roll, pitch and yaw angles, is mostly estimated.

Optical radar or LiDAR is a device that constitutes a number of laser range fin-
ders [17]. A laser range finder consists of a transmitter that illuminates a target
with laser light (at a certain frequency), and a receiver that detects the light that
is reflected back from the target. Based on the time-of-flight, the distance to the
target from the laser is calculated. A rotating (nodding) mirror is often placed in
between the transmitter and the receiver to project the light in different directi-
ons. The time-of-flight is measured by either using a pulsed laser, modulated
continuous wave or by measuring the phase shift of the reflected light. With
multiple optical sensors or multiple laser beams, a 3D image of the environment
can be realized using sophisticated scanning algorithms [8].

According to Andrew et. al. [40], Global Navigation Satellite System (GNSS)
is the standard generic term for satellite navigation systems that provide auto-
nomous geo-spatial positioning with global coverage. This term includes e.g.
the GPS [37], GLONASS, Galileo, Beidou and other regional satellite systems
that are used worldwide [25]. The advantage of having access to multiple satel-
lite systems is accuracy, redundancy, and availability at all times. Synchronous



9
Position, Attitude and Navigation (SPAN) unit installed to Polaris can utilize
signals from both GPS and GLONASS satellite systems simultaneously.

DGNSS system is an augmented GNSS system, which receives the position
information from the ground-reference stations. Since the satellites and earth
are constantly in motion with respect to one another, the position measurement
from a normal GPS receiver is only accurate up to ± 7 meters. This location
accuracy can be improved to a few centimeters if the correction information is
supplied to the rover. A ground-reference station receives position information
from a fixed GPS Antenna and keeps a record of the motion of the satellites over
a long period of time. These records - position data, state covariances, observed
satellites information, and time period of observations - are then broadcast over
a communication network in the form of corrections.

2.3 Localization and Mapping Module

Robot localization is the procedure of defining where a mobile robot is positio-
ned with respect to its surroundings. Localization is one of the most essential ca-
pabilities required from an autonomous robot because the information about the
robot’s own position is an indispensable precursor to creating decisions about
future actions [19, 20, 21]. In a typical robot localization scenario, a map of the
environment is available (known) and the robot is equipped with proprioceptive
sensors (such as wheel encoders, gyroscopes, accelerometers, etc.) which mo-
nitor its own motion [21]. In practice, however, these sensors are noisy which
makes the localization problem a bit more challenging. The localization be-
comes cumbersome in case the model (map) of the environment is incomplete
[17].

Odometry is a generic term associated with the estimated trajectory (position)
of the robot over time using motion sensors [21]. In wheel based odometry, me-
asurement data from the wheel encoders (wheel speed) is used. In dead recko-
ning, the heading (yawing) measurements from a gyroscope or a magnetometer
are also incorporated [17]. Wheel speeds (or transmission speeds) and steer an-
gles are used to compute the linear and angular velocities of the robot. These
velocities are then integrated to estimate the position and orientation of the ro-
bot in body coordinates. However, in order to estimate the pose (position and
orientation) of the robot in the world (earth-fixed) frame, the (linear and angu-
lar) velocities must be transformed to earth-fixed coordinates before they are
integrated. Another strategy is to transform the robot’s pose in the world (earth-
fixed) coordinates to the body coordinates and correct (update) the robot’s pose
in the body’s frame of reference. This problem highlights the importance of
sensor fusion using modern state estimation and filtering techniques.



10
Mapping of the surroundings of a robot involves registering (indexing) a list of
objects in the environment and their locations [8]. Such listing of the environ-
ment as maps is either feature-based or location-based. In a feature-based map,
each indexed (listed) feature is assigned a location in two-dimensional Cartesian
coordinates. In location-based maps, the index corresponds to a specific location
in the environment. Location-based maps are volumetric maps as they contain
information about the occupied as well as the free space. Feature-based maps,
however, only specify the shape of the surroundings at the locations where the
objects were detected. Feature-based mapping makes it easier to adjust/correct
the position of an object as soon as a new feature (object) is sensed in the envi-
ronment.

Occupancy grid maps are location-based maps that make it easier for the robot
to find an optimal (shortest) path through the unoccupied space. In such maps,
a binary (0 meaning free space and 1 implying an occupied space in the map)
occupancy value is assigned to every evenly spaced cell (a grid element) of the
realized map [8]. In practice, each cell in the occupancy grid represents an indi-
vidual Bayesian filter that keeps track of the probability of being occupied over
time [21]. By treating each cell as a random variable, such mapping technique
generates a consistent map from noisy and uncertain measurement data.

Thrun et. al in [8] describes Simultaneous Localization and Mapping (SLAM)
as the problem associated with the localization of robot within an indefinite, sta-
tic environment. This, in general, is a difficult problem (more difficult than loca-
lization), since the robot path and map of the environment are both unidentified.
In the real world, the mapping between observations and landmarks (objects)
is unknown; thus picking wrong data associations can have catastrophic conse-
quences. Estimation techniques such as Kalman Filtering and Particle Filtering
are mainly utilized in SLAM algorithms.

SLAM problem has two variants: online SLAM and full SLAM. The online va-
riant of SLAM seeks to estimate the most recent pose of the robot and the map
of the surroundings, whereas the full (global) version seeks to estimate the en-
tire path and map of the environment [8]. EKF SLAM applies EKF to the online
SLAM problem. It is a feature-based SLAM and constitutes an augmented state
vector comprising pose coordinates of robot plus coordinates (in two dimensi-
ons) for each landmark. For pose data, the dynamics model is kinematics, while
for landmarks a noise model is used.

The full SLAM has a very high computational cost and is seldom used. The on-
line EKF SLAM has reduced computational complexity but needs sufficiently
distinct landmarks and can diverge if nonlinearities (in system modeling) are
large. Recently, Rao-Blackwellized particle filters have been introduced as an
effective means to solve the SLAM problem [31]. It is also referred to as Fas-



11
tSLAM. This approach uses a particle filter in which each particle carries an
individual map of the environment. Each map (within a particle) contains the
pose information of each observed (registered) landmark along with the current
pose of the robot. Each landmark is represented by an EKF. So, if there are M
landmarks, each particle has to maintain M EKFs.

2.4 Navigation Module

Path planning is one of the crucial parts of a modern navigation system. It
is usually a geometric problem and is associated with the guidance of the un-
manned system to reach the target position from a particular location in a safe
and optimum manner [36]. In other words, the main responsibility of the path
planner is to acquire the least-cost and the shortest path from the initial location
to the target location in a specific orientation. Obviously, any mobile robot on
the ground takes into account the environment in order to generate a viable path.
Paden et. al. [27] presented an excellent survey on the path planning techniques
for urban vehicles.

The history of path planning goes back to 1956, in the Netherlands, when Edsger
W. Dijkstra conceived an algorithm for finding these paths in an efficient and
faster way. The logic behind is whatever path to be taken must be shortest
from one point to another. Generally, it is a method to search the shortest path
computed between two points on a graph so that the sum of the weights of the
constituent edges is minimized. The applications of path planning are ubiquitous
nowadays, from path planning of indoor robotics like a robotic vacuum cleaner
to path planning in an outdoor environment as in the case of Polaris.

Moreover, Alonzo Kelly [21] states that the path planning must bear properties
like soundness, completeness, and optimality. Soundness means that planned
path must be feasible and admissible. In order to be complete, the planned path
from the initial point to the final point must not contain any voids. Moreover, to
be called optimal, the planned path must constitute the shortest distance between
two points. Commonly, the path planner is graph-based. Graph-based path
planning is a problem in which the objective is to find a path in the workspace
(usually a map). In this setup, path planning is carried out in a configuration
space. The configuration space is thus a planner readable object, which is built
while moving the robot through the given environment (workspace) with obsta-
cles.

Obstacle detection and representation is the process of using sensors’ infor-
mation (mainly laser scans from LiDAR) in order to detect the positions of the
obstacles near the robot [21, 36]. This information is then used for creating and



12
updating a map of the environment. There are commonly two ways to repre-
sent the obstacles in the model (map) of the environment which are obstacle
map and cost map. Obstacle map contains a set of discrete obstacle encoding
various features of the obstacle such as pose, size, shape, and some motion attri-
butes. In the cost maps, the map is a rasterized (divided into small finite regions
or cells) cost field that stores a binary or continuous cost of traversal in each cell.
To form a cost map, a common approach is to first construct a 3D volumetric
representation of the LiDAR data, and derive a 2D cost representation from a
3D point cloud [21]. The cost map is often defined over configuration space, as
the cost of a configuration of a robot is naturally a configuration space quantity
[21].

Obstacle avoidance is the process of adapting the precomputed trajectory (from
global planner) while the robot is still moving in order to avoid unexpected
obstacles that occlude the path. The desired path is found by performing a search
for a minimum-cost path in the configuration space. According to Thrun et. al.
[18], graph search method discretizes the configuration space of the vehicle
into a graph. The search graph connects the states, where the states represent
a finite collection of vehicle configurations (like position and orientation) and
the edges represent transitions between states. The encoded spatial coordinates
within the states are used to generate neighbors states and to access intersections
with the obtacle or cost maps.

The graph search method solves the least cost problem between two states (ed-
ges) on a directed graph. A directed graph is one that is made up of the vertices
connected by edges to a certain (directed) depth. Such a discrete representa-
tion of the graph structure has limitations. For example, the discretized state
space makes completeness at the stake as it might miss to consider few vertices
in the directed graph. Moreover, the feasibility of the path is often not inhe-
rently encoded. Several efficient algorithms for graph construction exists within
the framework of geometric methods of path planning. For example, the verti-
cal cell decomposition [28], generalized Voronoi diagrams [32], and visibility
graphs [35].

On a directed graph, the breadth-first search method explores the neighbo-
ring vertices (nodes) before moving on to vertices at the next depth level. It
corresponds to the wavefront expansion on a 2D grid, and considers the first-
found solution as optimal if all edges have equal costs. The Dijkstra’s search
is a sorted variation of the breadth-first search, in which the first-found path
is guaranteed to be optimal no matter the cell cost. Moreover, a search tree
from a search graph is often constructed by the global path planner. Because in
the real-time applications, computational cost and effective range of the sensors
limit the motion planning of the robot on a larger scale (on the scale of kilo-



13
meters). Depth-limited planning restricts the planning horizon by generating a
limited (depth level of) search tree. The real-time A* algorithm uses such a li-
mited depth search process, as it propagates the total cost of path traversal from
the neighboring states to the root (back up the tree) in an optimal manner [21].

However, in an expansive and dynamic environment, there is a continuous need
for replanning the trajectory between the endpoints. This renders A* inefficient
and impractical in such outdoor applications. D* (and its variant, D* Lite) algo-
rithm is based on the plan repair approach, which constructs a new plan that is
not so different from the previous plan. So, whenever a new feature is observed,
the corresponding cost changes in the graph are incorporated [21]. Thus, the key
feature of the D* algorithm is incremental replanning [19]. The incremental re-
planning has a lower computational cost than completely replanning as would
be carried out in the A* algorithm [19]. Thus, the A* method is preferable for
indoor robot applications whereas D* planner is suitable for dynamic outdoor
field robots [21]. The current robotics community uses either of the Dijkstra’s,
A* and D* algorithms on a cost map for the global motion planning of the robot.

Waypoint navigation is dictated by a set of pre-determined GNSS coordinates
called target waypoints or simply waypoints [41]. These waypoints are used
to set the goals for the global motion planner. The global path is planned by
one of the graphs based (graph or tree) search methods. The local path, howe-
ver, is selected by either Trajectory Rollout or Dynamic Window approach
[29, 30]. Both assume implicitly that the robot has a differential drive kinema-
tics model [21]. The basic functionality of each local planner is to generate a
trajectory that adapts to the dynamic environment by avoiding obstacles. Each
trajectory is associated with an objective function, which includes goal heading,
path heading, and obstacle clearance. The number of trajectories to be simulated
is user-dependent and only one with the maximum objective function value is
selected [23].

2.5 Control System Module

In our big picture, the control system module handles two mission controllers
that read a file containing all the target waypoints of the trajectory to be traver-
sed. These target waypoints are in Longitude-Latitude format. The waypoints
are selected from one of the previous runs of the Polaris during the testing phase.
These selected waypoints are stored in a text file, which in turn are used as a mis-
sion profile each time the software starts. Thus, the mission profile provides a
set of goals for the global planner in the navigation module.

However, GNSS based positioning affects the accuracy of the selected target



14
waypoints [40]. Thus, in order to be accurate, each target waypoint should be
selected through averaging of the measured positions of a single target point
over 24 hours of satellite observations. The averaging of supposedly tens of
waypoints is of course impractical. Consequently, this led to the use of a goal
cancellation policy once the vehicle arrives in the ballpark of the target position.
Such a policy dictates to cancel the previous goal once the vehicle reaches the
target point within few meters, and sets the next target waypoint as the next goal
for the vehicle to approach1.

As a consequence of the goal cancellation policy, a single instance of the mis-
sion controller was incapable to continuously (smoothly) drive the vehicle from
one goal to another. The reasoning will be provided in more detail in Section 5.2
in light of the discussion presented in Section 3.3. Therefore, a double control-
ler - a primary plus secondary mission controller - strategy was utilized during
the thesis process. Such configuration relies on running two identical control-
lers side-by-side. Analogous to a relay race, as soon as the primary controller
completes its job, the control authority is switched to the secondary controller,
and so on. Therefore, the smooth transitions from one target-point to the next
can be achieved in a rather unconventional manner.

Switching controller is the algorithm responsible for the switching of the con-
trol action between the primary and the secondary controllers. It has an added
functionality of the dead man’s switch. As the name suggests, dead man’s switch
is a device used in (modern) railway systems to apply brakes (or stop sending
commands) in case the driver of the train becomes unresponsive (for any medi-
cal reason). In this case, the algorithm will stop sending the commands issued
from a particular controller once it realizes that the commands have been con-
stant for a longer period. In other words, this chunk of code is receiving the
command velocities from both primary and secondary controllers and is making
the real-time decision of selecting the appropriate controller to issue the velocity
commands to the Polaris’ actuators. There are many ways to implement such
an algorithm, and further research needs to be conducted for this topic in order
to find the best possible solution. However, in this thesis work, mainly due to
timing issues, a rather naïve strategy was implemented through which the main
requirements of the project were somehow, although not completely, met.

Finally, as depicted in Figure 2.1, motion controller receives the velocity com-
mands (twist commands) from the switching controller and converts them into
speed and turn radius commands. Two PLC-based control units are installed on
Polaris [3, 59]. One is dedicated to controlling the wheel speed (as an accele-
ration pedal controller) of the Polaris, while the other is controlling its power

1A somewhat comparable idea has also been put forward by [54] for their Husky Outdoor
GPS Waypoint Navigation project.



15
steering mechanism. The acceleration pedal controller is essentially a PID con-
troller (in autonomous drive mode) [3], which translates the speed command
into the forward motion of the vehicle. In manual drive mode, however, the
speed command is (obviously) generated by means of pressing the acceleration
pedals.

The power steering controller is also implemented as a PID controller, which
attempts to adjust the estimated curvature of motion of Polaris to match the
turn radius command from the motion controller [3]. The steering angle of
the front-wheel shaft link and the speed of the rear-wheel axle are sensed by
dedicated wheel encoders. These wheel encoders measurements are sent to the
embedded controller. The two PLCs communicate over the Controller Area
Network (CAN) bus with each other and with the embedded computer. These
measurements are utilized by the localization algorithms, which completes the
feedback loop.

With the discussion about each module in the big picture, the presentation of
the state-of-the-art involved in this thesis work is concluded. We will first talk
about working with ROS in the next chapter, before moving on to present the
implementation of autonomous capabilities in Polaris e-ATV.



16
3 Working with ROS

In this chapter, a brief description of the ROS (Robot Operating System) is pre-
sented. Many books [38, 39] and numerous on-line resources [42] are available,
and they will naturally describe ROS in a more detailed way. Here, the main
intention is to introduce the key concepts, which will help the reader to better
understand the results of this thesis work.

3.1 Architecture and Philosophy

ROS is an open-source software development platform provided mainly for the
researchers, teachers as well as for start-ups community associated with autono-
mous mobile robots. It is more like an environment used to test the algorithms
rather than an actual operating system. ROS can be attributed as a middleware
that comprises of a collection of software communicating with one another. Mo-
reover, it provides exceptional modularity in the form of software drivers for a
range of hardware, which are currently being used in the robotics industry.

The software can be written in either C or C++ or Python languages. Each
individual collection of software in ROS is termed as a package. Philosophically,
each package in ROS provides a unique or some special software features to the
robot under test. In our case, for example, the mission controller portion is
implemented as a package that handles a particular set of functionalities within
ROS environment.

Moreover, the ROS provides device drivers that are instrumental in the basic
integration of hardware to the main software. In our case, the ROS community
had already developed device drivers for Novatel SPAN-IGM-S1 unit as well
as for Velodyne’s HDL-32E LiDAR. SPAN is the main GPS based navigation
system in Polaris, while HDL-32E is the unit providing the necessary 3D point
cloud to the main software.

One only needs to install the required ROS packages, manipulate the basic in-
tegration settings and the device is ready to be used by the program. On the
downside, these packages are often written as a general purpose hardware inte-
gration tools and most times lack some more advanced features. This issue will
be highlighted in the sensor integration chapter (Chapter 4).

ROS is responsible for process management and inter-process communications.
Each package can have single or multiple nodes. A node can be regarded as a
subset of tasks done by a package. These nodes communicate with one another
on a local network using topics. Each ROS package has a set of topic subscribers



17

ROS Master

Node 1
Publisher

Node 2
Subscriber

topic

int number;
double size;
string description;

*.msg

Registration Registration

Publish
Subscribe

Figure 3.1: ROS Working Philosophy: A simple depiction about how ROS no-
des acting as either subscriber or publisher or both communicate with one anot-
her and with ROS Master using topics.

as well as a set of topic publishers.

These topics communicate pieces of information within the ROS framework.
Each package introduces a new node that adds a new set of topics to the existing
ROS environment. These topics are just messages or chunk of information pac-
ked together in a ROS readable format. A typical situation is depicted in Figure
3.1, where two nodes are getting registered with the Master.

Topics have anonymous publish/subscribe semantics, which decouples the pro-
duction of information from its consumption. In general, nodes are not aware
of who they are communicating with. Instead, nodes that are interested in data
subscribe to the relevant topic; nodes that generate data publish to the relevant
topic. Master is the ROS Core initiated by the program, which handles all of the
packages communicating within one framework via a local network. In Figure
3.1 one node is acting as a subscriber and the other is a publisher. The publis-
her is transmitting a topic, which is a message in ROS. There may be multiple
subscribers to this topic that are utilizing the same information. There may be
multiple publishers and subscribers to the topic.



18
3.2 Tools

ROS tools are responsible for the well-established ecosystem of ROS. ROS pro-
vides an excellent visualization tool called RViz for the program as shown in
Figure 3.2. RViz helps to categorize multifarious topics in order to visualize the
provided information.

Figure 3.2: ROS RViz: A dynamic visualization environment to monitor the
real-time behavior of topics. The arrangement of the layout is up to the user.
Here, the list of topics is shown in the top left corner. In the bottom-left, one can
see the output of the camera in a panoramic mode. The main window depicts
the map of the environment along with the trajectory of the vehicle.

For example, the lines in Figure 3.2 are the paths predicted by different locali-
zation routines. Similarly, the map is provided by another topic, which is the
output of the SLAM algorithm. The blackout area is the cost map issued by
another package. Moreover, one can observe the panoramic output from a ca-
mera in the lower left corner, which is another topic.

Figure 3.3 shows the unified robot description format (urdf model) of Polaris
being imported inside the Gazebo’s world environment. The Gazebo simulator
is one of the most important simulation tools provided for the ROS community
[24]. It is a 3D simulator to simulate the rigid body dynamics of the robot.
Moreover, the surroundings can also be simulated in Gazebo in order to evaluate
the performance of the robot in any dynamic or static environment settings, as
shown in Figure 3.5. Gazebo is an open-source software like ROS and is being
used by the research community worldwide.

One can add up a number of topics to the simulation in order to simulate a variety



19

Figure 3.3: Gazebo: Polaris being imported into the Gazebo environment as a
robot model. One can dynamically interact with the environment in Gazebo in
order to provoke changes in the simulated environment.

Figure 3.4: ROS RViz: Polaris model imported into the RViz environment. One
can see various frames attached to different parts of the robot. These frames are
linked with one another through a transformation tree.

of sensors. For example, the IMU/GPS will be emulated as nodes generating
topics in the simulation. The robot model in a unified robot description format
(urdf model) can be imported to RViz. Figure 3.4 shows the urdf model of
Polaris imported as a robot model inside RViz.



20

Fi
gu

re
3.

5:
R

ob
ot

en
vi

ro
nm

en
t

si
m

ul
at

ed
in

si
de

G
az

eb
o.

O
ne

ca
n

vi
su

al
iz

e
th

e
bl

ue
Po

la
ri

s
st

an
di

ng
in

fr
on

t
of

a
ra

m
p.

T
he

si
m

ul
at

ed
ro

ad
s

an
d

ot
he

ro
bs

ta
cl

es
ar

e
al

so
vi

si
bl

e.



21
As discussed in Section 1.2, a group of students was instructed to build a si-
mulation environment for autonomous Polaris Ranger e-ATV utilizing ROS and
Gazebo. Lukas Wachter et. al. [5] managed to produce tangible results for
their project work. Figures 3.3, 3.4 and 3.5 were managed by the same group.
Thus, the possibility of building a simulation platform for the Polaris will enable
us to rapidly test navigation and control algorithms using (somewhat) realistic
scenarios.

3.3 Services and Actions

Figure 3.1 depicted the working philosophy within the ROS framework in the
context of subscribers and publishers. ROS provides two more types of commu-
nication protocols between nodes, namely services and actions.

Node 1
Service Client

Node 2
Service Server

service name

Request
. . .
Response

*.srv

Request

Response

Request

Response

Request

Response

Service definition

Figure 3.6: ROS Services: Communication between ROS service client and
server.

As illustrated in Figure 3.6, a ROS service realizes communication between a
service server and a client. The structure of the service is similar to the messa-
ges, only the service definition is found in *.srv files. Each service client fills a
service request to modify the data structure of the *.srv file. Service server re-
ceives the request, and process it by calling the appropriate function. As soon as
the server services the request, it responds back (via some predefined response)
to the client.

Essentially, ROS Service provides a blocking call for processing a request [22],
which makes it suitable for applications where short triggers or abrupt calculati-



22
ons are required. For example, in our motion controller, the turn radius is one of
the ROS service parameters. Whenever it is required to modify the turn radius,
a service client makes a call. Service server applies the commanded turn radius
and gives feedback (as the response) to the service client as soon as the com-
manded turn radius is achieved. In some situations, however, it is often required
by the user to cancel the execution of the task. An example of such a situation
is for example, when the task is taking longer time to execute or when it is no
longer required. Such functionality is provided by the ROS Actions library.

Node 1
Action Client

Node 2
Action Server

Action

Goal
—
Result
—
Feedback

*.action

Goal

Cancel

Status

Result

Feedback

Action definition

Figure 3.7: ROS Actions: Communication between ROS action client and ser-
ver.

Figure 3.7 describes the working philosophy of ROS Actions. The communi-
cation protocol is somewhat similar to service calls along with the possibility
to cancel the task or to receive feedback on the progress while the task is being
executed. The action definition is placed inside a *.action file. It provides a
better way to implement non-blocking, preemptable goal-oriented tasks [22].

In Figure 3.7 Goal, Result and Feedback are messages with which the server
and the client communicate. The Goal message is sent by the user via an action
client. The Feedback message informs the client about the progress of the task.
The Result message is sent from the server upon completion of the goal. Com-
mon applications of ROS actions are in the implementation of navigation, gras-
ping or motion execution algorithms. In the case of move_base package [51],
the goal (where the robot should move in the world) is fed to the controller via



23
an action client. The client can check the progress of the move_base controller
at any time instant. It can also cancel (reset) the goal sent to the action server.

3.4 Conventions

A thorough understanding of the coordinate systems and data conventions fol-
lowed by the ROS community is an essential precursor to sensor integration
in ROS. ROS follows REP-103 standards [44], which defines the standards of
measurements and conventions. Figure 3.8 highlights the different coordinate
systems attached to a hypothetical vehicle. The most elementary coordinate sy-
stem is attached to the body of the vehicle.

To understand the body’s frame, consider a person sitting in the driving position,
the forward direction is positive x-direction. To the left side of the driver is the
positive y-direction. The positive z-direction points upward. The orientation of
the ground vehicle follows the right-hand rotation rule. The rule says that point
the thumb in the positive x-axis, then the fingers will curl to show the positive
roll angle direction. Following this rule, a positive roll is left side up; the positive
pitch is nose-down and positive yaw angle corresponds to the counter-clockwise
turn of the vehicle. The same goes with the angular velocities.

Accelerations convention followed by ROS is a bit tricky to understand. Natu-
rally, forward motion corresponds to positive acceleration in the body’s x-axis.
When the vehicle is turning in a counter-clockwise direction, the left-side acce-
leration (acceleration along the y-axis) must be positive. In addition, for the
flying vehicles, the upwards flight corresponds to positive acceleration along the
z-axis.

The coordinate system attached to the world frame must have its origin atta-
ched to the center of the earth, or can be related to Earth-Centered-Earth-Fixed
(ECEF) frame of reference. This is the reason why East-North-Up (ENU) is
used for describing the world frame in ROS. Another such type of system is the
North-East–Down (NED) coordinate system. NED coordinate system is mostly
used for the flying vehicles. Figure 3.8 (left) depicts the relationship between
ECEF and ENU coordinate system. ENU can be considered as a plane attached
to the surface of the Earth. With East and North pointing towards the East and
North of the Earth.

GNSS measurement instruments calculate the position of the vehicle in Latitude,
Longitude, and Altitude (LLA) format. However, such position data is with
reference to the satellites and must be transformed into a grid that is attached to
Earth via the ECEF coordinate system. There are well-established algorithms



24

Figure 3.8: Left: Relationship between ENU and ECEF coordinate systems is
shown. Right: Relationship between body frame of the car to the world frame
in illustrated.

to do such transformations as described in [46]. One such transformation is
from LLA to Universal Transverse Mercator (UTM) grid system. The UTM
projection is defined as a navigational grid projected onto the Earth’s curved
surface. Thus, it aids in pinpointing the vehicle’s location in the world frame. In
our ROS settings, this also defines a map frame for the vehicle.

The three-dimensional coordinates system attached to the vehicle’s body is re-
lated to the world (map) frame by means of the ENU coordinate system. The
base_link coordinate is referred to as the center of the body’s frame of reference.
Figure 3.8 (right) shows the orientation of the car with respect to the ENU coor-
dinate system. At zero heading, the x-axis in the body’s frame is aligned with
the East direction of the world frame. The positive y-axis, to the left side of the
driver, must be aligned with the North of the world frame, and the Up in world
frame is up in body frame.

Figure 3.9 depicts the various coordinate frames attached to a mobile robot.
These frames are linked to one another according to ROS REP-105 standard
[45]. base_link is attributed to the frame that is fixed to the mobile robot plat-
form, and is supposedly attached to the center of gravity (c.g.) of the robot.
odom is referred to as the odometry frame. This is a hypothetical frame and is
updated as the robot moves from its starting position. map frame is associated
with the map of the environment in which the robot is moving. This map is ge-
nerally provided by the SLAM algorithm based on the LiDAR data. For outdoor
robots, such as Polaris, the map frame is linked to the world frame via special



25

Figure 3.9: Various frames attached to the robot in relation to UTM frame of
reference.

coordinate transformations. The nature of such transformations within the ROS
framework is discussed in the next section.

3.5 Transformation System

ROS Transformation system keeps track of the coordinate frames attached to
various parts of the robot with time [47]. It maintains a relationship between
coordinate frames in a tree structure.

Figure 3.10 depicts the ROS transformation tree implemented in Polaris. Each
coordinate frame is linked to others via this transformation tree. It is important to
mention here that there can be only one parent for each node in a transformation
tree. For example, odom can be originating from only one coordinate frame, in
our case, from the map frame. Either these transformations can be provided by
some ROS package or these transformations may be static.

The base link (described as base_link in the ROS framework) of Polaris is the
center point of the rear axle. Basically, all odometric measurements are calcu-
lated with respect to this coordinate frame that is hypothetically attached to the
center of the rear axle. All sensors (LiDAR, Camera, IMU, and GPS) are re-
presented as coordinate systems attached to particular locations on Polaris. All
transformations originating from the base_link are static transformations. These
are representing the fixed placement of the sensors with respect to the base_link
on Polaris. The velodyne_tf represents the frame depicts where the camera is



26

Figure 3.10: A working transformation tree implemented in ROS is redrawn
to illustrate the relationship between various coordinate frames attached to the
Polaris.

fixed on Polaris. imu is showing IMU’s pose, and gps is localizing the orienta-
tion of the GPS unit on Polaris.

In the ROS framework, the transformations between map, odom and base_link
coordinate frames are maintained by two separate instances of the Robot Loca-
lization algorithm. A part of this routine, Navsat Transform, provides the relati-
onship between map and utm coordinates. While, the relation between map and
odom_slam coordinates is provided by the GMapping algorithm.

In the next chapter, the implementation of each odometric coordinate frame will
be discussed in detail.



27
4 Localization and Mapping

As said earlier, the main goal of the thesis work is to utilize each sensor to its
full potential. This chapter begins with a short introduction of the individual
sensors, as are depicted in Figure 4.1. It then enlists the available data from
every sensor at the provided data rate. Furthermore, it presents the integration
of the sensor data in Polaris. Finally, it highlights the fusion of the available data
in ROS.

(a) Velodyne HDL-32E (b) Basler Ace Series Camera

(c) SPAN-IGM-S1 (d) EPEC 5050 Control Unit

Figure 4.1: Electronics systems available in Polaris.

4.1 Electronics Systems

A brief explanation about each electronics system installed in the Polaris is pro-
vided below. The description is based on the device manuals as provided in
[56, 57, 58, 59].

(a) The Velodyne HDL-32E is shown in Figure 4.1a. It utilizes 32 lasers alig-
ned from +10◦ to -30◦ to provide a vertical field of view, and its rotating
head captures a 360◦ horizontal field of view in real-time. It generates a
point cloud of up to 700,000 points per second with a range of 100 meters
and a typical accuracy of ± 2cm. The optimal update frequency of these
point clouds is 10 Hz.

(b) Polaris is equipped with a Basler Ace Series Camera that is shown in Fi-
gure 4.1b. It is connected to the embedded computer via Gigabit Ethernet
for configuration and image retrieval purposes. The camera has an omnidi-
rectional lens attached to it that enables it to capture pictures of the whole
360◦ range of the surrounding area. Manual adjustment of the aperture size



28
and focus is done by rotating the knobs of the lens’ housing. The field of
view of the camera system is -60◦ to +15◦. It would be beneficial for future
research work, for example, for texturing of the point cloud (created by the
LiDAR) and obstacle detection.

(c) Synchronous Position, Attitude, and Navigation (SPAN) technology brings
the amalgamation of Global Navigation Satellite System (GNSS) based po-
sitioning and inertial navigation technologies. The absolute accuracy of
GNSS positioning and the stability of the Inertial Measurement Unit (IMU)
are tightly coupled. It can receive differential corrections to improve the po-
sitioning accuracy. Figure 4.1c shows the SPAN device which provides an
exceptional 3D navigation solution that is stable and continuously availa-
ble. It performs well in situations when satellite signals are blocked by the
surroundings. Moreover, it uses both GPS and GLONASS satellite systems
simultaneously.

(d) The e-ATV vehicle had been equipped with two EPEC 5050 controllers
(shown in Figure 4.1d). These controllers take care of the low-level com-
munication between base-level motion sensors and actuators, and the hig-
her level embedded computer via CAN-bus. The automation software of
each PLC is developed in the CODESYS environment. The software exe-
cutes at 10 Hz.

4.2 Sensor Integration

4.2.1 List of Available Data Packets

Following is the list of all available data packets acquired from the SPAN, Li-
DAR and camera.

1. GPS position expressed in UTM coordinate system at 10 Hz via a serial chan-
nel at 115200 bps.

2. Integrated GPS position provided in the Latitude, Longitude, and Altitude
(LLA format) at 50 Hz via USB bus at 115200 bps.

3. GPS Track over Ground Velocity and Course Angle at 10 Hz via a serial
channel at 115200 bps.

4. Integrated North, East and Up Velocities at 50 Hz via USB bus at 115200
bps.

5. Corrected IMU angular rates and linear accelerations at 50 Hz via USB bus
at 115200 bps.



29
6. Position, attitude and velocity covariances 1 Hz via a serial channel at 115200

bps.

7. Estimated orientation (Roll, Pitch, and Azimuth) at 50 Hz via USB bus at
115200 bps.

8. Wheel encoder data and steering angle measurements at 10 Hz via CAN bus
provided by the two EPEC units.

9. LiDAR Data in the form of a 3D point cloud at 20 Hz via Ethernet channel.

10. 360◦ Camera data at 10 fps via Ethernet channel.

11. DGPS corrections from NLS Finland in RTCM Format at 1 Hz via a serial
channel at 115200 bps.

Figure 4.2: Satellite image of the test site from Google Maps.

4.2.2 Test Drive Profile

Figure 4.2 depicts the satellite view of the area in which the driving tests were
conducted. The red pointer is on the outside of the Autonomous System Lab.



30
It is chosen to be the starting as well as the finishing point for the test drives.
The location was selected to avoid traffic in normal working hours. Moreover,
around the top-left and bottom-left corners were closed spaces, where the loss of
satellite signals was observed. This came up with few test drives during which
the GPS was completely lost. However, only good data is shown here in order
to highlight the fact that the SPAN data is integrated properly.

The position profile of a typical test drive is shown in Figure 4.3. The red cross
is the starting point of the test drive and the green circle is the finishing point.
Polaris followed right-hand driving rule. In order to check the 360◦ turn, a loop
was made. The yaw angle and yaw rate profiles during this test are shown in
Figure 4.4. The green curve shows the evolution of the yaw angle during this
drive. After the initialization of SPAN, it started with the reading of -50◦. Yaw
rate also follows the correct sign conventions during the test drive as depicted in
the red curve.

Figure 4.5 depicts the behavior of linear accelerations along each of the con-
stituent body axes. An important thing to notice here is the noise levels in the
acceleration data. Considering the specifications of the accelerometers, this may
be due to induced vibrations into the system because of the non-standard fixture
of the SPAN in Polaris as depicted in Figure 4.1.

24.8236 24.824 24.8244 24.8248 24.8252

Longitude

60.1876

60.1878

60.188

60.1882

60.1884

60.1886

60.1888

L
a
ti
tu

d
e

Vehicle path in Lat-Lon Coordinates

Vehicle Path GPS Fix

Initial Point

Final Point

Figure 4.3: Position profile during the test drive.



31

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-150

-100

-50

0

50

100

150
Y

a
w

 D
y
n
a
m

ic
s

IMU Data

Yaw Angle

Yaw Rate

Figure 4.4: Yaw angle and yaw rate during the test drive.

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-6

-4

-2

0

2

4

6

8

10

A
c
c
e

le
ra

ti
o

n
s
 i
n

 m
/s

e
c
/s

e
c

IMU Data

Forward Acceleration

Leftside Acceleration

Verticle Acceleration

Figure 4.5: Acceleration data from the test drive.



32

Fi
gu

re
4.

6:
To

p
L

ef
t:

G
ro

un
d

Sp
ee

d.
To

p
M

id
dl

e:
V

eh
ic

le
Pa

th
in

U
T

M
C

oo
rd

in
at

es
.

To
p

R
ig

ht
:

R
ol

la
nd

Pi
tc

h
A

ng
le

.
B

ot
to

m
L

ef
t:

Y
aw

R
at

e.
B

ot
to

m
M

id
dl

e:
A

cc
el

er
at

io
ns

.
B

ot
to

m
R

ig
ht

:
C

ou
rs

e
A

ng
le

.
It

de
pi

ct
s

th
e

re
la

tio
n

be
tw

ee
n

sp
ee

d,
tu

rn
ra

di
us

an
d

ya
w

ra
te

.



33
4.2.3 Lateral Dynamics Evaluation

The lateral dynamics are of main importance in a 3-DOF vehicle motion. This
highlights the significance of performing a 360◦ loop during the test drive. The
mathematical formula, v = R× ω is put to use in this case. Here, v being the
ground speed, R is the turn radius and ω is the instantaneous angular velocity.
Here ω = ψ̇. This 360◦ is a counter-clockwise turn; thus, the yaw rate must be
positive, and the yaw angle must be increasing.

The used ground speed, v, is provided by SPAN and during the test, the speed
was kept near steady around 4 meters per second. The distance measured across
the diameter of the loop is around 12 meters, which makes the radius around 6
meters. The site at which the test was conducted was not even, so the change in
the roll and pitch angles were also observed.

The measured yaw rate is shown in the bottom left corner of Figure 4.6, and it
is following the proper trend. For a counter-clockwise turn the left-side acce-
leration, which is the acceleration along the body’s y-axis must be measured
positive. This can be observed in the red curve presented in the bottom-middle
section of Figure 4.3. One can see that the legend in this part of the figure shows
the red curve as forwarding acceleration. This was due to the misalignment of
the SPAN measurement axis with the body axis of Polaris. This test helped to
perform the sensor corrections, which was applied to orientation, angular rates,
and accelerations.

At time instant, t = 100 seconds, R = 6, v ≈ 3.6 the ω ≈ 36 degrees per
second, which is quite close to the measured yaw rate ψ̇ = 40 degrees per
second. This concludes the discussion of sensor integration. In the next sections,
various methodologies applied to address the localization problem of Polaris are
presented along with results.

4.3 Kinematics Model of Polaris

A commonly used model for a four-wheeled robot (a car-like vehicle such as
Polaris) is the bicycle model, as discussed in [19], is depicted in Figure 4.7.
The bicycle has a rear wheel fixed to the body (middle of the rear axle) and
the plane of the front wheel rotates about the vertical axis to steer the vehicle
(along turn radius, R). Therefore, the position and heading angle of the vehicle
is calculated with respect to the instantaneous center of curvature (ICC). Here, L
is the longitudinal wheel separations (wheelbase) or the distance between mean
(middle point) of the front and rear axles. The vehicle’s velocity is only assumed
to be in (positive or negative) x-direction, with no sideways velocity (velocity



34
along y-direction is zero).

Figure 4.7: 4-Wheeled Robot: Depiction of various parameters.

When a four-wheeled vehicle goes around a corner the two steered wheels fol-
low circular paths of different radius and therefore the angles of the steered
wheels, illustrated by φi and φo in Figure 4.7, should be marginally altered. The
need to trace out circles of different radii for the front wheels led to the inven-
tion of the commonly used Ackerman steering mechanism. Such a mechanism
allowed the tires to follow the curve without slipping sideways. This results
in lower wear and tear on the tires. A differential gearbox (between the motor
and the driven wheels) enables the driven wheels to rotate at different speeds on
corners [19].

In dead reckoning, the readings of encoders on the wheels, as well as the hea-
ding angle, are utilized to update the position and orientation of the robot over
time [34]. As discussed in Section 2.5, PLC units transmit these measurements
data over the CAN bus. The atv_can node listens to this CAN bus and publishes
linear velocity of each wheel and steering angle of the vehicle as topics. The po-
laris_kinematics_node then uses this data to estimate the kinematics of Polaris
in odom→ base_link transformation frames. This node calculates the position
and orientation of the vehicle as dictated by following a set of difference equa-
tions:

xk+1 = xk + v × δt× cos(ψk + φk/2) (4.1)
yk+1 = yk + v × δt× sin(ψk + φk/2) (4.2)
ψk+1 = ψk + tan(φk)× v × (δt/L), (4.3)

where xk and yk are position of the vehicle in xy-plane, ψk is the orientation
(heading) of the vehicle, φk is the steering angle at time k, v is the calculated



35

-120 -100 -80 -60 -40 -20 0

Easting

-60

-40

-20

0

20

40

60

80
N

o
rt

h
in

g

Vehicle path in UTM Coordinates -- Wheel Odometry Data

Vehicle Path

Initial Point

Final Point

Figure 4.8: Dead Reckoning: Position profile.

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-150

-100

-50

0

50

100

150

Y
a
w

 a
n
g
le

 a
n
d
 r

a
te

Wheel Odometry Data

Course Angle

Yaw Velocity

Figure 4.9: Dead Reckoning: Heading dynamics.

average velocity of all four wheels, δt = 0.1 is sampling time interval and L is
the wheel base. x(k+1), y(k+1) and ψ(k+1) are updated position and heading



36

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-3

-2

-1

0

1

2

3

4

5

6

V
e

lo
c
it
ie

s

Vehicle Linear Velocities -- Wheel Odometry Data

Forward Velocity

Left Velocity

Figure 4.10: Wheel Odometry: Wheel speed.

of the vehicle respectively at time instant k + 1. The rate of change of heading,
ψ̇ = v/R, is called turn rate or yaw rate can be obtained by differentiating yaw
angle with sampling step size δt. Figures 4.8, 4.9 and 4.10 illustrate position,
yaw and velocity data during test drive respectively.

This model is called kinematic because it deals with the velocities of the vehi-
cle and not the forces or torques that cause the velocity. However, a drawback
of using such a model is that it is susceptible to various sources of errors and
thus needs proper calibrations [33]. These errors are mostly induced by wheel
slippage, noise from wheel encoder signals, erroneous initial values of measu-
rements, measurement imprecision, and divergences in the system parameters.
This highlights the importance of applying modern state estimation and filtering
techniques to the robot localization problem.

4.4 EKF-based Vehicle State Estimation

Thomas et. al. [26] did a brilliant job in the implementation of an EKF-
based state estimation algorithm for mobile robots within ROS framework [48].
This section begins with a brief discussion about the robot_localization package
along with its navsat_transform_node. Two instances of EKF-based vehicle



37
state estimation are executed. First estimating the states of vehicle in map →
base_link and second in odom→ base_link transformation frames respectively.
Figure 3.10 depicted the standard transformation tree implemented during this
thesis work.

4.4.1 Robot Localization Package

Salient features of the robot_localization package are mentioned below:

(a) It is a general purpose state estimation package, which has no limit on the
number of input data sources.

(b) State estimation is based on either EKF or UKF algorithms.

(c) State vector is 15-dimensional, which constitutes:

(a) Positions: x, y and z coordinates.

(b) Orientation: roll (φ), pitch (θ) and yaw (ψ) angles.

(c) Linear Velocities: vx, vy and vz.

(d) Body Rates or Angular Velocities: φ̇, θ̇ and ψ̇.

(e) Linear Accelerations: ax, ay and az.

(d) It allows per-sensor input customization by setting the limits on the process
and measurement covariances.

(e) Covariance is the key to sensor fusion. This is to say that if there are two
sensors providing similar data, the robot_localization package will pick the
one with lower covariance. In other words, data with less noise is used.

(f) It allows imposing a threshold onto the measurement update step of the
EKF. This threshold is implemented as a regular Mahanalobis Distance
(MD) of the new measurements. Here MD is computed as DM(x) =√
(x− T (x))TS−1(x)(x− T (x)), where x is the new measurement (state),

T (x) is the mean of the state vector and S(x) is the covariance matrix asso-
ciated with that particular state. If the MD of new measurement is greater
than the threshold, it will be treated as noise and will be rejected.

(g) It provides a continuous estimation of the states. If there is a loss or jumps
in the sensor data, the filter will continue to estimate the robot’s state via an
internal motion model.

(h) It fuses continuous sensor data e.g. wheel speeds and gyroscope data to
produce locally accurate state estimates.



38
(i) It fuses continuous data with global pose estimates e.g. from SLAM and

GPS to produce accurate and complete global state estimates.

(j) It provides the navsat transform node, which is a sensor pre-processing
node. Navsat transform node allows users to easily transform geographic
coordinates (mostly GPS based coordinates) into the robot’s world frame.

4.4.2 Navsat Transform Node

Salient features of the navsat_transform_node are listed below:

(a) Idea is to convert GPS data to UTM coordinates.

(b) Use the initial UTM coordinates, EKF/UKF output, and IMU to generate
a static transform, utm, from UTM grid to Polaris’ world frame (which is
map frame in Polaris).

(c) It then transforms all future GPS measurements using this map → utm
transform as depicted in Figure 3.10.

(d) It takes GPS position data along with the information of the yaw offset and
magnetic declination and transforms it into a frame that is consistent with
Polaris starting pose in map frame.

Figure 4.11 depicts the calculation of the magnetic declination from an online
source. Magnetic declination is the angle between true north and the horizontal
trace of the local magnetic field as already depicted in Figure 3.9.

Mathematically, it is creating a rotation matrix given the initial orientation (φ =
0, θ = 0 and ψ = −50◦) and position in UTM coordinates along with yaw offset
(90◦) and magnetic declination (9◦). It then multiplies position vector at each
time instant with that rotation matrix. Figure 4.12 shows the position profile
during the test drive in UTM coordinates. Furthermore, Figure 4.13 illustrates
output of the navsat_transform_node. It shows the initial orientation of the vehi-
cle being transformed to origin of the odometry data. ROS Configuration File 1
refers to parameters set for the navsat_transform_node.

navsat_transform:

frequency: 50 # The frequency at which it is checks for new

/novatel/gps/fix

delay: 3.0

magnetic_declination_radians: -0.0877 # take negative of

half of 9.17 +/- 0.44 degrees error according to source:

https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml



39

Figure 4.11: Magnetic declination calculations.

yaw_offset: -1.5707963 # Take negative to adjust to correct

sign, for both magnetic declination and yaw offset.

zero_altitude: false

broadcast_utm_transform: true

publish_filtered_gps: true

use_odometry_yaw: false

wait_for_datum: false

ROS Configuration File 1: navsat_params.yaml



40

3.793 3.7932 3.7934 3.7936 3.7938 3.794 3.7942

Easting 105

6.6743

6.67432

6.67434

6.67436

6.67438

6.6744

6.67442

6.67444
N

o
rt

h
in

g

106 Vehicle path in UTM Coordinates -- BESTUTM Data 

Vehicle Path UTM Topic

Initial Postion

Final Position

Figure 4.12: Position profile in UTM coordinates.

-60 -40 -20 0 20 40 60

Easting

-60

-40

-20

0

20

40

N
o
rt

h
in

g

Vehicle path in UTM Coordinates -- Navsat Odometry Data

Vehicle Path

Initial Point

Final Point

Figure 4.13: Output position profile of navsat_transform_node.



41
4.4.3 Top-level EKF: Map→ Base_link Odometry

Following settings were used to fuse the data in map→ base_link transformation
frames using robot_localization package. Figures 4.14, 4.15 and 4.16 illustrate
integrated position, yaw dynamics and velocity data respectively.

(a) Positions from navsat_transform_node.

(b) Roll and pitch angles from IMU.

(c) Linear velocities from wheel encoders.

(d) Linear velocities from GPS.

(e) Body rates from IMU.

(f) Linear accelerations from IMU.

-60 -40 -20 0 20 40 60

Easting

-60

-40

-20

0

20

40

N
o
rt

h
in

g

Vehicle path in UTM Coordinates -- Map Odometry Data

Vehicle Path

Initial Point

Final Point

Figure 4.14: Map→ base_link Odometry: Position data.

# For parameter descriptions, please refer to the template

parameter files for each node.

ekf_se_map:

frequency: 100



42

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-150

-100

-50

0

50

100

150
Y

a
w

 a
n
g
le

 a
n
d
 r

a
te

Map Odometry Data

Course Angle

Yaw Velocity

Figure 4.15: Map→ base_link Odometry: Yaw dynamics.

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-2

-1

0

1

2

3

4

5

6

V
e

lo
c
it
ie

s

Vehicle Velocities -- Map Odometry Data

Forward Velocity

Leftside Velocity

Figure 4.16: Map→ base_link Odometry: Velocity dynamics.



43

sensor_timeout: 0.1

two_d_mode: false

transform_time_offset: 0.0

transform_timeout: 0.0

print_diagnostics: true

debug: false

map_frame: map

odom_frame: odom

base_link_frame: base_link

world_frame: map

# -----------------------------------------------------------

# GPS odometry: Must come from Navsat Handler.

odom0: odometry/gps

odom0_config: [true, true, true,

false, false, false,

false, false, false,

false, false, false,

false, false, false]

odom0_queue_size: 10

odom0_nodelay: true

odom0_differential: false

odom0_relative: false # Position data must not be relative.

#

-----------------------------------------------------------------

# Wheel Odometry.

odom1: /polaris_kinematics/odom_wheel

odom1_config: [false, false, false,

false, false, false,

true, true, true,

false, false, false,

false, false, false]

odom1_queue_size: 10

odom1_nodelay: true

odom1_differential: false

odom1_relative: false # Position data must not be relative.

# -----------------------------------------------------------

# GPS Odometry: From BESTVEL Data.

odom2: /novatel/odom_gps



44

odom2_config: [false, false, false,

false, false, false,

true, true, true,

false, false, false,

false, false, false] # Include positions

feedback from Navsat Node.

odom2_queue_size: 10

odom2_nodelay: true

odom2_differential: false

odom2_relative: false # Position data must not be relative.

# ----------------------------------------------------------

# Position Data from AMCL Pose Node.

# pose0: /amcl_pose

# pose0_config: [true, true, true,

# true, true, true,

# false, false, false,

# false, false, false,

# false, false, false]

# pose0_queue_size: 10

# pose0_nodelay: true

# pose0_differential: false

# pose0_relative: false

# --------------------------------------

# IMU configure:

imu0: /novatel/imu

imu0_config: [false, false, false,

true, true, false,

false, false, false,

true, true, true,

true, true, true] # Include rates and

accelerations measured in Correctrd IMU

Handler.

imu0_nodelay: true # Disable Nagle's Algorithm as data is

coming at high speed.

imu0_differential: false

imu0_relative: false # Measured with respect to the initial

states, especially yaw angle



45

imu0_queue_size: 10

imu0_linear_acceleration_rejection_threshold: 20.0

imu0_remove_gravitational_acceleration: false # Corrected

data removes the gravitational acceleration.

use_control: false

ROS Configuration File 2: ekf_map_params.yaml

ROS Configuration File 2 refers to parameters set for the robot localization node
for estimating vehicle state in map→ base_link frame.

4.4.4 Low-level EKF: Odom→ Base_link Odometry

The following settings were used to fuse the data in odom → base_link frame
using the second instance of the robot_localization package. The difference is
that this instance of EKF-based state estimation uses odom as the world frame.
Moreover, this EKF is not having any position data updates. So, the pose es-
timation is totally carried out by integrating velocities and orientation. Figures
4.17, 4.18 and 4.19 illustrate integrated position, yaw dynamics and speed data
respectively.

(a) Integrated Positions from EKF (no position corrections).

(b) Roll and pitch angle from IMU.

(c) Linear velocities from wheel encoders.

(d) Linear velocities from GPS.

(e) Body rates from IMU.

(f) Linear accelerations from IMU.

# For parameter descriptions, please refer to the template

parameter files for each node.

ekf_se_odom:

frequency: 100

sensor_timeout: 0.1

two_d_mode: false



46

transform_time_offset: 0.0

transform_timeout: 0.0

print_diagnostics: true

debug: false

map_frame: map

odom_frame: odom

base_link_frame: base_link

world_frame: odom

#

-----------------------------------------------------------------

# Wheel Odometry.

odom0: /polaris_kinematics/odom_wheel

odom0_config: [false, false, false,

false, false, false,

true, true, true,

false, false, false,

false, false, false] # Include velocities

from wheel odometry topic.

odom0_queue_size: 10

-60 -40 -20 0 20 40 60

Easting

-60

-40

-20

0

20

40

N
o
rt

h
in

g

Vehicle path in UTM Coordinates -- Base Odometry Data

Vehicle Path

Initial Point

Final Point

Figure 4.17: Odom→ base_link Odometry: Position data.



47

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-150

-100

-50

0

50

100

150
Y

a
w

 a
n
g
le

 a
n
d
 r

a
te

Base Odometry Data

Course Angle

Yaw Velocity

Figure 4.18: Odom→ base_link Odometry: Yaw dynamics.

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-2

-1

0

1

2

3

4

5

6

V
e

lo
c
it
ie

s

Vehicle Velocities -- Base Odometry Data

Forward Velocity

Leftside Velocity

Figure 4.19: Odom→ base_link Odometry: Velocity dynamics.



48

odom0_nodelay: true

odom0_differential: false

odom0_relative: false # Position data must not be relative.

#

-----------------------------------------------------------------

# GPS Odometry: From BESTVEL Data.

odom1: /novatel/odom_gps

odom1_config: [false, false, false,

false, false, false,

true, true, true,

false, false, false,

false, false, false] # Include velocities

from BESTVEL topic.

odom1_queue_size: 10

odom1_nodelay: true

odom1_differential: false

odom1_relative: false # Position data must not be relative.

# -------------------------------------------

# IMU configure:

imu0: /novatel/imu

imu0_config: [false, false, false,

true, true, false,

false, false, false,

true, true, true,

true, true, true] # Include rates and linear

accelerations made in Correctrd IMU Handler.

imu0_nodelay: true # Disable Nagle's Algorithm as data is

coming at high speed.

imu0_differential: false

imu0_relative: false # Measured with respect to the initial

states especially yaw angle

imu0_queue_size: 10

imu0_linear_acceleration_rejection_threshold: 20.0

imu0_remove_gravitational_acceleration: false # Corrected

data removes the gravitational acceleration.

use_control: false



49
ROS Configuration File 3: ekf_odom_params.yaml

ROS Configuration File 3 refers to parameters set for another instance of the
package for estimating vehicle states in odom→ base_link frame.

4.5 Data Analysis

Within the ROS framework, odometry is a type of message that includes all the
necessary information about the robot motion like position in UTM coordinates,
linear and angular velocities. Moreover, the header information of such sentence
includes fields such as frame_id and child_frame. This is of great importance
during the sensor fusion step as the robot localization package must have the
information about the parent frame and child frame as were depicted in Figure
3.10.

Figure 4.20 shows the positions observed by each of the above-mentioned sour-
ces of odometry data. In this figure, the Map EKF Output is the position profile
in the odometry data of map→ base_link transformation frame. It overlaps the
position profile of Navsat Node Output except during the 360◦ loop. This is
due to the slippage of the vehicle on the hard snow during the turning of the
Polaris. It is supported by rapid jumps in speed profiles, which is illustrated by
Map Odometry shown in red in Figure 4.21.

Figure 4.20 also highlights the importance of setting magnetic declination and
yaw offset for navsat transform node. Based on the start (red cross) and finish
(green circle) points of the test drive as depicted in Figures 4.14, 4.17 and 4.8;
initially vehicle moves with positive Easting from the origin. Furthermore, ob-
serve the magenta and red (hidden beneath) in the initial leg of the position data.
These two trajectories match quite well until around (-60 Easting, +20 Northing)
clockwise turning point. Since, the EKF estimating odom→ base_link position
does not have the position correction, it was expected.

Another significant point to note is the position profile of different odometry
data during the reverse motion of Polaris. Figure 4.21 illustrates the negative
ground speeds of all profiles around 160 to 190 seconds. It also illustrates a
drawback in using GPS ground speed as it is always positive as it is based on
satellite data. It is blind to the direction of the motion of the vehicle. Track
over Ground Angle provides an excellent alternative to using ground speed with
a correct sign; however, this angle is only accurate when the vehicle is moving
with speed of at least 5 meters per second. It also explains the oscillations
in Map Odometry and Baselink Odometry speed profiles around the same
period.



50
The shape of the hook near the origin captures the reverse motion. The position
data is near perfect for the map EKF output as well as for the
navsat_transform_node’s position output, as compared to base EKF output. Las-
tly, the position output based on the kinematic dead reckoning model is far away
from the exact trajectory. This was due to the heavy slippage of wheels and an
initial non-zero angle of the steering wheel.

-120 -100 -80 -60 -40 -20 0 20 40 60

Easting

-60

-40

-20

0

20

40

60

80

N
o

rt
h

in
g

Vehicle path in UTM Coordinates -- Comparison Of Odometry Data

Base EKF Output

Ackermann Kinematics Output

Navsat Package Output

Map EKF Output

Figure 4.20: Odometry comparison.

In Figure 4.21, one can observe the correct speed sign during the reverse motion
of Polaris. This encouraged to use the speed from wheel encoders instead of
the GPS ground speed. The position profile of odom → base_link odometry
is depicted in Figure 4.22. One can observe the gap in the return path, which
is clearly due to the slippage of wheels. Moreover, the speed profile was near
perfect.

Integrated yaw dynamics from both instances of EKF were shown in Figures
4.15 and 4.18 in Sections 4.4.3 and 4.4.4. It should be observed that both in-
stances of EKFs were not provided with any yaw angle measurement update.
This is because the definition of yaw angle may vary from sensor to sensor. In
other words, yaw angle (or, simply yaw) may have different meanings. For ex-
ample, SPAN is providing yaw as an inertial azimuthal angle calculated from
IMU gyros and SPAN filters. A magnetometer can also provide the yaw angle
in the form of a heading angle with respect to Earth’s True North. Course over
Ground Angle or Track Angle calculated by GNSS solution can also be used as
the yaw angle.



51

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-3

-2

-1

0

1

2

3

4

5

6

S
p

e
e

d
 (

m
/s

)

Comparison Of Speed Profiles

Wheel Encoder

Baselink Odometry

Map Odometry

GPS

Figure 4.21: Speed profiles comparison.

-80 -60 -40 -20 0 20 40

Easting

-40

-20

0

20

40

60

N
o
rt

h
in

g

Vehicle path in UTM Coordinates -- Base Odometry Data

Vehicle Path

Initial Point

Final Point

Figure 4.22: Odom → base_link Odometry: Pose data when wheel speed was
used.



52
Another issue that needs to be discussed is the delays in different speed mea-
surements. Since the outputs from both EKFs are expected to be delayed, the
GPS ground speed (shown black in Figure 4.21) is updated with less delay when
compared to speed from wheel encoders (shown blue in Figure 4.21). The main
reason for that may be the number of packages that are involved in the calcula-
tion of ground speed based on wheel encoders data. The PLCs are computing
the counts of wheel encoders and are transmitting this information via CAN-Bus
to another package that is a ROS service. It is responsible for listening to the
packet and transmitting this information over the ROS mainframe. The execu-
tion frequency of PLCs computers is only 10Hz (way too slow), which may be
injecting extra delays into the overall computational cycle.

4.6 GMapping

GMapping is a highly efficient Rao-Blackwellized particle filer to learn grid
maps from LiDAR data [31]. Figure 4.24 shows the 2D occupancy grid map
obtained by combining the laser data from LiDAR and the map → base_link
transformation. It is generated by means of the gmapping package in ROS
[49]. In our settings, the map_frame is map, base_frame is base_link. Howe-

0 50 100 150 200 250

Time (sec)

-2

-1

0

1

2

3

4

5

V
e

lo
c
it
ie

s

Vehicle Velocities -- Base Odometry Data

Forward Velocity

Leftside Velocity

Figure 4.23: Odom → base_link Odometry: Velocity data when wheel speed
was used.



53
ver, it is providing the map→ odom_slam transformation as depicted in Figure
3.10, since the odom → base_link transformation is already provided by the
robot_localization package as implemented in Section 4.4.3.

<?xml version="1.0" ?>

<launch>

<arg name="scan_topic" default="/lidar2scan/scan" />

<arg name="map_topic" default="/map" />

<group ns="gmapping">

<node pkg="gmapping" type="slam_gmapping"

name="slam_gmapping" output="log">

<!-- Setting Frames -->

<param name="map_frame" value="map" />

<param name="odom_frame" value="odom_slam" />

<param name="base_frame" value="base_link" />

<!-- Process 1 out of every this many scans (set it to a

higher number to skip more scans) -->

<param name="throttle_scans" value="1"/>

<param name="map_update_interval" value="0.5" /> <!--It was

1.5 -->

<!-- The maximum usable range of the laser. A beam is

cropped to this value. -->

<param name="maxUrange" value="40" />

<!-- The maximum range of the sensor -->

<!--If regions with no obstacles within the range of the

sensor should

appear as free space in the map.-->

<param name="maxRange" value="80" />

<param name="temporalUpdate" value="0.05" /> <!--It was

-1-->

<param name="linearUpdate" value="5.0" />

<param name="angularUpdate" value="1.0" />

<param name="particles" value="50" />

<param name="minimumScore" value="100" />

<param name="stt" value="0.01" />

<param name="srr" value="0.01" />

<param name="str" value="0.01" />

<param name="srt" value="0.01" />

<param name="delta" value="0.1" />

<remap from="scan" to="$(arg scan_topic)"/>

<remap from="map" to="$(arg map_topic)"/>

</node>



54

</group>

</launch>

ROS Configuration File 4: gmapping.launch

It can be observed that the trajectory in the grid map is one that is obtained from
map → base_link odometry data. The update rate of the map was set to 0.5
seconds. Launch File 4 depicts the settings of the gmapping package.



55

Fi
gu

re
4.

24
:2

D
O

cc
up

an
cy

G
ri

d
M

ap
.



56
5 Navigation and Control

In this chapter, the implementation of autonomous functionalities in Polaris is
discussed. The implementation of the navigation module and control system
module are presented with relevant background and results. The ROS configu-
ration files are attached along with the discussion, and not in a separate appendix
to the thesis document. As the intention is to inform the readers about the impor-
tant ROS parameters. With the important theory covered in Chapter 2, mostly
the implementation part is covered in this chapter.

5.1 Navigation Module Implementation

The implementation of the navigation module was highlighted in Figure 2.1 ear-
lier in Section 2.4. As said earlier, it is the responsibility of the path planning
algorithm to define a sequence of schemes to move the mobile robot from one
position to another while avoiding at the same time all obstacles along its path.
In ROS, the implementation of the global motion planning of the robot is based
on the graphs based methods. Firstly, a cost map is generalized from the occu-
pancy grid map (in 2D). The 2D occupancy grid map, as was shown in Figure
4.24, is provided as a topic by the gmapping package to the navigation module
in the ROS setup.

The generation of the cost map in the navigation module is managed by the
costmap_2d package [50]. With this map, a trajectory traversing through the
cells with the lowest costs can be generated with avoiding obstacles. Figure
5.1 shows the cost map which indicates the free space for the e-ATV to travel
through in a test. The cost map limits the free space by the blue-colored region
which is corresponding to the walls and obstacles recognized by the LiDAR.
There are two implementations of the cost maps in the Polaris. The global cost
map is used for the global motion planning while the local cost map is used for
the local navigation.

The blue rectangular box in the middle of the Figure 5.1 represents the footprint
of the Polaris Ranger as per its specifications provided in the datasheet [55].
It is important as the cost assigned to the cells will depend on the characteris-
tics of the robot. These characteristics were defined in the ROS Configuration
File 5. Since the Polaris is of larger size, parameters such as obstacle_range,
raytrace_range and inflation_radius were set accordingly. The inflation is the
process of propagating cost outwards from each occupied cell to the inflation
radius as shown by the region colored in cyan in Figure 5.1. The value of this
parameter was set lower to allow the vehicle to pass through closed spaces wit-



57

Figure 5.1: A 2D cost map generated by in ROS.

hout halting. However, in the future, an optimal value should be selected via
thorough testing to address the safety concerns of the Polaris during a comple-
tely autonomous drive.

origin_z: 0.0

z_resolution: 1 # The z resolution of the map in meters/cell.

z_voxels: 2 # The number of voxels to in each vertical

column, the height of the grid is z resolution * z voxels.

obstacle_range: 1.0 # The default maximum distance from the

robot at which an obstacle will be inserted into the cost map.

raytrace_range: 3.0 # The default range in meters at which to

raytrace out obstacles from the map using sensor data

inflation_radius: 1.0 # controls how far away the zero cost

point is from the obstacle

cost_scaling_factor: 1 # slope of the cost decay curve with

respect to distance from the object. lower makes robot stay

further from obstacles

#---standard polaris footprint---



58

#---(in meters)---

footprint: [ [2.15, -0.75], [-0.65, -0.75], [-0.65, 0.75],

[2.15, 0.75] ]

transform_tolerance: 0.2

map_type: costmap

publish_voxel_map: false

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: laser, data_type: LaserScan,

topic: scan, marking: true, clearing: true}

ROS Configuration File 5: common_costmap_params.yaml

For the autonomous test drive, the observation_sources parameter was limited
to utilize only 2D laser scan data. However, the 3D point cloud data obtained
from the LiDAR could also be used in conjunction with the laser scan data.
ROS Configuration File 6 defines the parameters for the global cost map. The
frequency at which the map is updated is 20 Hz, while the publishing frequency
was set to 5 Hz. The aim was to reduce the computational complexity involved
in displaying the cost map and to put more resources in computing the cost map.
The static_map parameter was set to false, as it is only useful for the off-line
ROS runs when the map of the environment is available beforehand.

global_costmap:

global_frame: map

robot_base_frame: base_link

update_frequency: 20.0

publish_frequency: 5.0

width: 100.0

height: 100.0

static_map: false #true

rolling_window: true

ROS Configuration File 6: global_costmap_params.yaml

Local cost map parameters are set in ROS Configuration File 7. The
rolling_window parameter specifies that the Polaris will always be in the center
of both global and local cost maps. For both cost maps, the global_frame is set
to the map frame and the robot_base_frame is set to base_link frame. The map
→ base_link transformation is provided by the robot_localization package as



59
discussed in Section 4.4.3. Through such configurations, the obstacles detection
and avoidance takes place within the area defined by the height and width (pa-
rameters) of the (global as well as local) cost maps. The selection of the height
and width of the global cost map is dictated by how far the target waypoints are
selected, otherwise, the global planner will not work. A rectangular global cost
map might be a good idea to implement in the future.

local_costmap:

global_frame: map # odom

robot_base_frame: base_link

update_frequency: 5.0

publish_frequency: 10.0

static_map: false

rolling_window: true

width: 30.0

height: 30.0

resolution: 0.05 # The resolution of map is meters per cell.

ROS Configuration File 7: local_costmap_params.yaml

The move_base package is responsible for moving a robot to the desired po-
sitions [51]. The move_base node links together a local and global planner to
accomplish their navigation tasks. It may optionally perform recovery behaviors
when the robot perceives being stuck. Local planner chooses appropriate velo-
city commands for the e-ATV to traverse the current segment of the global path.
It combines the odometry in map→ base_link frame with both global and local
cost maps. It can recompute the path on the go to keep the Polaris avoiding ob-
stacles and allowing it to reach its destination. The base_local_planner package
provides implementations of either Trajectory Roll-Out, or Dynamic Window
Approach (DWA) algorithm [52, 29, 30].

The idea of the DWA algorithm is based on Monte Carlo planner with cost eva-
luation which is illustrated in Figure 5.2. However, the basic idea for both local
trajectory planners is similar. Descriptions about the local planner parameters
are included in the ROS Configuration File 8. The salient features of the local
planner are listed as follows:

(a) Define the Polaris’ control space in map frame. The trajectory is computed
as a set of three variables which comprises of x-position, y-position, and
yaw angle (a 3-DOF motion simulator).

(b) For each velocity measurement, simulate future trajectories from the Pola-



60

Figure 5.2: Simulation of trajectories by the local planner [52].

ris’ current state at 10 Hz. These trajectories are simulated to predict what
would happen if the measured (linear and angular) velocities are applied
for the duration of 5 seconds. These velocities are applied within limits.

(c) Evaluate the cost of traversing each simulated trajectory after every 0.02
seconds. The cost evaluation is based on the closeness to obstacles
(occdist_scale), vicinity to the local path (pdist_scale), and the proximity
to the goal (gdist_scale).

(d) Discard those (simulated) trajectories that might involve a collision with
obstacles.

(e) Pick the highest-scoring trajectory and send the associated velocities as
twist commands to steer the Polaris towards the target position.

(f) After sensing a new (linear or angular) velocity measurement, clear the
trajectories which were computed in the previous step, and repeat the whole
process again.

TrajectoryPlannerROS:

global_frame_id: map # Should be set to the same frame as

the local costmap's global frame.

publish_cost_grid_pc: true # Whether or not to publish the

cost grid that the planner will use when planning. Default

is false.

max_vel_x: 5.0



61

min_vel_x: 0.15 # Allowing velocities too low will stop the

obstacle avoidance because low velocities won't actually be

high enough to move the robot

max_vel_theta : 1.0

min_vel_theta : -1.0

min_in_place_rotational_vel: 0.4

escape_vel: -0.2

acc_lim_th: 3.2

acc_lim_x: 2.5

acc_lim_y: 2.5

holonomic_robot: false

# Goal Tolerance Parameters

yaw_goal_tolerance: 0.1 # in rads

xy_goal_tolerance: 0.2 # in meters

latch_xy_goal_tolerance: false

# Forward Simulation Parameters

sim_time: 5.0 # setting time of each simulation that it

must evaluate. Higher will create longer curves but too low

can limit performance (<2)

sim_granularity: 0.02 # the step size to take between points

on a trajectory, or how frequent should the points on this

trajectory should be examined

angular_sim_granularity: 0.02

vx_samples: 10 # how many samples of x velocity are taken

for simulated trajectories

vtheta_samples: 30 # how many samples of theta velocity are

taken for simulated trajectories

controller_frequency: 10.0 # how often the planning

algorithm is performed (hz)

# Trajectory scoring parameters

meter_scoring: true # Whether the gdist_scale and

pdist_scale parameters should assume that goal_distance and

path_distance are expressed in units of meters or cells.

Cells are assumed by default (false).

occdist_scale: 0.1 # The weighting for how much the

controller should attempt to avoid obstacles. default 0.01

pdist_scale: 0.5 # The weighting for how much the

controller should stay close to the path it was given .

default 0.6



62

gdist_scale: 1.0 # The weighting for how much the controller

should attempt to reach its local goal, also controls speed

default 0.8

heading_lookahead: 5.0 # was 0.325 # How far to look ahead

in meters when scoring different in-place-rotation

trajectories

heading_scoring: true # Whether to score based on the

robot's heading to the path or its distance from the path.

default false

heading_scoring_timestep: 5.0 # was 0.8 # How far to look

ahead in time in seconds along the simulated trajectory when

using heading scoring (double, default: 0.8)

dwa: true # Whether to use the Dynamic Window Approach

(DWA)_ or whether to use Trajectory Rollout

simple_attractor: false

publish_cost_grid_pc: true

# Oscillation Prevention Parameters

oscillation_reset_dist: 0.25 # How far the robot must travel

in meters before oscillation flags are reset (double,

default: 0.05)

escape_reset_dist: 0.1

escape_reset_theta: 0.1

ROS Configuration File 8: base_local_planner_params.yaml

The global planner is implemented as a navfn package within the navigation
module [53]. It is a simplified A* type. The navfn package performs a Dijkstra’s
search through the available working area in order to find the best path. It begins
at the robot’s origin and radiates outward, checking each non-obstacle cell in
turn until the goal is reached. Essentially, it uses the breadth-first search to
check the cells of the cost map for the optimal path.

The optimal path of the navfn planner is based on its potential. The potential
is the relative cost of a path based on the distance from the goal and from the
existing path itself. The navfn algorithm updates each cell’s potential in the
potential map, as it checks that cell. Through such a technique, it can step
back through the potential field to find the best possible path. The potential is
determined by the cost of traversing a cell and the distance away that the next
cell is from the previous cell. In our ROS settings, the default parameter values



63
for the navfn package were used.

5.2 Control System Module Implementation

It is worthwhile to discuss a few points about the selection of double (practically
similar) instead of a single controller to move the vehicle through the set of
waypoints. Firstly, it is important to mention here that the move_base is an
action server (ROS actions were discussed in Section 3.3). It listens to the goals
set by the mission controller (action client) and performs appropriate movements
in order to achieve the goal. A single instance of move_base node was enough
to make the vehicle move from one waypoint to the next. However, it added
a significant amount of delays in the control loop whenever a goal has to be
published; updated or canceled.

Furthermore, move_base being an action server keeps on chasing the target un-
less it achieves all the set of parameters. These parameters include the final
position with respect to the target as well as the commanded orientation. On the
other hand, in reality, we are not actually aiming to achieve the target position
within the accuracy of few centimeters or even meters. Since the footprint of
Polaris is quite large as compared to other robots, it is desirable to switch to
the next goal as soon as the e-ATV is in the ballpark of the established target
position. Therefore, once the vehicle achieves the goal within a user-defined to-
lerance limit, the preemption of the move_base goal-oriented tasks is required.
Such task preemption in the hard real-time embedded systems has timing con-
sequences [22]. Therefore, to meet the timing requirements of the control loop,
the double controller strategy seemed to be a better idea to implement.

Henceforth, the implementation of the double controller is such that each mis-
sion controller (primary and secondary) calls an instance of move_base action
server. As the name suggests, the mission controller will read the target waypoints.
It will convert them into goals in the appropriate transformation frames. At first
(for instance), the primary mission controller will send a goal to the move_base
action server as an action client. As soon as the Polaris reaches the goal within
a tolerance limit, the control authority is switched to the secondary mission con-
troller. Through switching the control authority, the latencies involved in the
goal cancellation and updating phases were avoided. By design, the waypoints
for each controller are set in a way that as soon as one finishes its job, the other
controller already sets the next target waypoint as its goal.

This also highlights the importance of implementing a switching controller that
decides when to direct the correct commands from the active controller to the
base level actuator control algorithm (motion controller in our case). In addition,



64
a security feature in the form a software dead man’s switch is also included in
the switching controller’s design. Further, the constituent parts of the control
system module are discussed.

5.2.1 Mission Controller

Figure 5.3 depicts the implementation of mission controller algorithm in ROS.
The salient features of mission_controller package are listed below.

Path Planning
&

Obstacle Avoidance

ROSNavigation Stack

Map → Base link
EKF Localization

Move Base
Action Client

GMapping LIDAR Scan Data

Get Mission, Set Goals,
& Calculate D2G

MissionController

Long1 Lat1
Long1 Lat2
...
LongN LatN

Target Waypoints

Goal Tolerance

Switching Controller

Odometry Data

2D Occupancy Grid Map

Simple Goal

3D Point Cloud

Odometry Data

Transformed Goal Coordinates

Command Velocities

2D Laser Scan

Figure 5.3: Functionality of Primary (or Secondary) Mission Controller.

(a) The idea is to run two instances of move_base package, each with a diffe-
rent set of target waypoints.

(b) The primary_mission_controller node issues the goals from target waypoint
1 to 2, then 3 to 4, and so on till second-last to last point.

(c) The secondary_mission_controller node issues goals from target waypoint
2 to 3, then 4 to 5, and so on till third-last to second-last point.

(d) Main input is the integrated odometry in map→ base_link frame obtained
from an instance of robot_localization node.

(e) Reads the target waypoints in Long-Lat format from a text file.

(f) Transforms each target waypoint using map→ utm transformation.

(g) Sends the transformed goal to the navigation module for path planning and
obstacle avoidance.

(h) ROS Configuration File 9 shows the parameter settings for both instances
of the move_base controller.



65

shutdown_costmaps: false

controller_frequency: 20.0

controller_patience: 15.0

planner_frequency: 20.0

planner_patience: 5.0

oscillation_timeout: 0.0

oscillation_distance: 0.5

recovery_behavior_enabled: true

clearing_rotation_allowed: false # was true initially

ROS Configuration File 9: move_base.yaml

As discussed earlier, the criterion for achieving the target is based on the goal
tolerance set for both mission controllers. The primary mission controller is
calculating the Distance to Go (D2G) to the goal using the distance formula,√
(x1 − x2)2 + (y1 − y2)2. As soon as the goal tolerance is met, primary mis-

sion controller issues a controller_done signal to the secondary mission con-
troller. After the secondary mission controller gets the signal, it takes over the
control authority to move the Polaris to the next goal. In the meanwhile, the
primary mission controller cancels the last goal and calculates the new goal to
be sent later.

As discussed earlier, the goal achievement with a precise position and orienta-
tion was never intended. So, there was no need for applying the clearing rotati-
ons (defined by the clearing_rotations_allowed parameter) to the Polaris once it
is in the ballpark of a target waypoint. Moreover, the frequency at which the con-
trol loop was executed (defined by the controller_frequency parameter) was 20
Hz. Since the power steering control and speed control loops were operating (in-
side the PLCs) at 10 Hz, sending the velocity commands at a higher rate would
be futile. The recovery behavior (defined by the recovery_behavior_enabled pa-
rameter) was enabled but was ineffective as the ability of the reverse motion was
not implemented in the autonomous driving mode.



66

24.8236 24.824 24.8244 24.8248 24.8252

60.1876

60.1878

60.188

60.1882

60.1884

60.1886

60.1888

Target Waypoints Selection

Vehicle Path GPS Fix

Target Waypoints

Figure 5.4: The selection of target waypoints from the test drive.

5.2.2 Mission Profile

The selection of target waypoints from a test drive of Polaris is depicted in Fi-
gure 5.4. This is called the mission profile, which shows each selected waypoint
as a black star. These waypoints are carefully selected in order to traverse the
vehicle from the start point to the finish point. Note that for the closed areas
and turning points, the distance between two consecutive target waypoints was
kept as small as possible. For straight and level drive, the distances between
waypoints were kept longer. Moreover, the first and the last waypoints were
kept similar in order to close the loop so to speak.

5.2.3 Switching Controller

Switching controller block as depicted in Figures 5.3 and 5.5 is implemented
as a node within mission_controller package in ROS. The functionality of this
node is listed below.

(a) Reads twist (linear and angular velocity) commands from each mission
controller as shown in Figure 5.5.

(b) Checks for the valid (non-zero as well as varying) twist commands along
with the controller_done signal from both mission controllers.



67
(c) Routes only valid twist commands to the motion controller.

(d) Issues goal cancellation requests to the inactive (primary or secondary)
move_base package.

(e) As the dead man’s switch, its task is to make sure that if either the primary
or secondary mission controller becomes unresponsive, it will not publish
the velocity commands to the motion controller at all. In other words, it
should avoid the situation when a constant command is being provided by
any mission controller for an unexpectedly long period of time.

Switching Controller

Primary Mission Controller Secondary Mission ControllerMotion Controller

CAN-Bus Service Client

Twist Commands Twist Commands

Twist Commands

Turn Radius & Forward Speed Commands

Figure 5.5: Motion Controller Function.

5.2.4 Motion Controller

As depicted in Figure 5.5, motion_controller is a dedicated ROS package and
its salient features are listed below.

(a) Subscribes to the velocity commands from the switching_controller node.

(b) Translates the received velocity commands into turn radius and speed
commands.

(c) Acts as a ROS Service Client to send the turn radius and speed commands
to the PLCs via CAN Bus.

The scale factors are such that speed command is provided in millimeters per
second in the range of [-32767, 32768]. It is important to notice here that the
speed command may be issued with a negative sign to make use of the reverse
direction of motion. However, this feature was not tested due to project timing
constraints. But, after special modifications to the motion controller algorithm
reverse driving features can be realized in the future. According to the datasheet
of the Polaris Ranger [55], it can achieve the maximum velocity of about 11.1
meters per second.



68
On the other hand, the steering angle command is issued in terms of the turn
radius in the range of [0, 65535]. The zero turn radius value means rotation
to the extreme left, and 65535 turn radius value to the extreme right the front
wheel may steer. Hence, the nominal command for maintaining the zero angle
steering position is 32678, and it must be published continuously to the CAN-
Bus node by the motion controller. The turn radius is generated by using the
formula v = R × ω. Here, v is the linear x-velocity and ω is the angular z-
velocity, in our case ω = ψ̇ is the yaw rate, and R is the turn radius. According
to the datasheet of Polaris [55], the maximum turn radius it may acquire is 3.81
meters.

Having set all the basic autonomous functionalities on the e-ATV, we move on to
discuss the self-driving tests performed with Polaris within the ROS framework.



69
6 Autonomous Drive

In this section, results for a self-driving test conducted with Polaris with the
settings described in previous chapters are shown.

6.1 Description of Self-driving Test

The autonomous driving capability of Polaris was tested. However, the test was
limited to following at most two initial target waypoints. This was due to the
road conditions present during the test. Moreover, the objective was to evaluate
the performance of the designed control scheme. It was a partial success as
the mission controller was working fine along with the motion controller. The
navigation module was also working properly. Nevertheless, the only issue left
unproven was the switching controller.

Figure 6.6 highlights the initial settings in ROS as soon as the software starts the
actual execution. The green line is the global path planned for Polaris seen by
the primary mission controller. It is calculated by the first instance of move_base
package responsible for moving the vehicle from WP 1 to WP 2. The cost map
is also well-defined based on the laser scan of the environment. The panoramic
image is also displayed in the bottom-left corner of the snapshot. The footprint
of Polaris is shown as the blue rectangle. The two rectangles shown on the right
as boundaries of the cost map and the one on the left can be easily recognized
as cars standing by and considered naturally as obstacles.

Figure 6.6: Self-driving Test (RViz Snapshot): Initial settings.



70

Fi
gu

re
6.

7:
Se

lf
-d

riv
in

g
Te

st
(R

V
iz

Sn
ap

sh
ot

):
Pa

th
(c

al
cu

la
te

d
by

pr
im

ar
y

m
is

si
on

co
nt

ro
lle

r)
fo

llo
w

ed
by

Po
la

ri
s.



71
Figure 6.7 (shown on previous page) depicts the traversing of Polaris autono-
mously through the planned path dictated by global path planner. The thick
green, blue and yellow (shown with arrowheads) trajectories (overlying on top
of each other) are those calculated by odom → base_link odometry, map →
base_link odometry and navsat_transform_node respectively. The red path is,
however calculated by the robot’s kinematic model, and is going way off from
the actual path. Thin brown and blue (a bit longer than brown) trajectories are
the path planned by the local planners.

Figure 6.8: Self-driving Test (RViz Snapshot): Path calculated by secondary
mission controller (thin black line).

Figure 6.8 depicts the start of a global path planned by the secondary mission
controller shown by a thin black line around the top of the cost map. At this
point, the command velocities generated by the secondary mission controller
must have taken authority. The switching controller must have canceled all the
goals set by the primary mission controller. Moreover, the second instance of
move_base controller (instantiated by secondary mission controller) must have
been in charge of vehicle motion from the second target waypoint to the next
one.

However, this could not be achieved due to a programming bug in the switching
controller, which was set to sense the zero velocity commands from the first
instance of move_base. This resulted in the continuation of the utilization of
commands generated by the primary mission controller even beyond the point
when the first waypoint was hit successfully. The goal tolerance was set to 5
meters for both instances of the mission controller. The D2G was calculated
continuously by using distance formula in transformed UTM coordinates.



72

Fi
gu

re
6.

9:
Se

lf
-d

riv
in

g
Te

st
(R

V
iz

Sn
ap

sh
ot

):
Pa

th
fo

llo
w

ed
by

Po
la

ri
s;

er
ro

ne
ou

s
re

su
lts

.



73
As soon as the D2G levels goes below 5 meters, a request to cancel the set
goal to move base action server is sent via the switching controller. The reason
for goal cancellation, as discussed earlier in Section 5.2, was the fact that the
footprint of Polaris was considered to be too large. Also, the move base is an
action server and keeps on tracking its goal unless the status of the server shows
a success. The tolerance setting for the goal achievements can be parametrized.
However, the cancellation of the goal was considered a more robust technique as
it was never truly intended to achieve the actual goal position with the accuracy
of a few centimeters. Figure 6.9 highlights the Polaris getting stuck into an
obstacle (the wall of the building nearby). Furthermore, the thin green line (set
by the global planner of the primary mission controller) is cut along with the
thin blue line (of the long term local planner) as shown inside the black oval
region highlighted in the same figure.

These findings were supported by the data analysis of the autonomous test drive,
as explained in the next section.

6.2 Data Analysis

Figure 6.10 highlights the path followed by Polaris during the autonomous drive.
Few mission waypoints are depicted as black stars, along with the starting point
(red star) and the end point of the trajectory (green circle).

One can observe that the first target waypoint was hit with a desirable level
of accuracy. The zig-zag trajectory before culmination to the final point was
self-induced. At the time of the test, the reason for not following the path was
not known and the Polaris was reversed manually in order to allow move_base
package to re-plan the local paths to be traversed. But, each time the Polaris
got stuck into the wall as if it would be following a fixed velocity command.
This was later proven to be true when the command velocities generated by
each instance of move base were compared with the output of the switching
controller.

The routing of the velocity commands were depicted earlier in Section 5.2.3. Fi-
gure 6.10 illustrated the generation of commands by the move base instantiated
by the primary mission controller. Figure 6.12 depicts the commands genera-
ted by move_base node instantiated by secondary mission controller and Figure
6.11 shows the commands routed to the motion controller by the switching con-
troller.

One can observe that through-out the self-driving test only commands generated
by the primary mission controller were routed to the motion controller. Further-
more, the secondary mission controller was trying to get the vehicle back on



74

24.8236 24.8238 24.824 24.8242

Latitude

60.1878

60.18785

60.1879

60.18795

60.188

60.18805

60.1881

60.18815

L
o

n
g

it
u

d
e

Trajectory Followed by Polaris

Vehicle Path GPS Fix

Target Waypoints

Initial Point

Final Point

Figure 6.10: Autonomous test drive trajectory shown in GPS coordinates.

track by issuing correct yaw velocity commands while Polaris was stuck into
the wall. However, the switching controller was not behaving correctly.

Figure 6.14 illustrates the output of mentioned localization routines during the
autonomous drive. Here, the outputs from map→ base_link odometry and that
from navsat_transform_node are overlaid over each other. In this drive, the re-
sults of kinematic model looks more promising than the one from odom →
base_link localization routine.

Figure 6.15 illustrates the speed profiles from the described localization routi-
nes. One can see that Polaris took around 40 seconds to traverse the trajectory
autonomously till it got stuck into the wall. The manual drive switch installed
on Polaris was switched on at this moment leaving the vehicle at stop from time
40 seconds till time 60 seconds. It was then reversed from time 60 seconds on-
wards shown by oscillations in the map → base_link and odom → base_link
odometry. This was explained in Section 4.5, and the reason was that we are
using GPS ground velocity as the forward speed and it is always positive even
when Polaris is moving backwards.

At this point, Figure 6.13 becomes more intriguing as the command velocities
are still changing even when the target point is achieved and the global as well as
the local paths planned by the instance of move_base authorized by the primary



75

0 20 40 60 80 100 120 140 160 180

0

0.5

1

1.5

2

Commands Routed by Switching Controller

Forward Velocity Command

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

Yaw Velocity Command

Figure 6.11: Command velocities routed by switching controller.

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

Commands Generated by Primary Mission Controller

Forward Velocity Command

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

Yaw Velocity Command

Figure 6.12: Command velocities generated by primary mission controller.



76

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

Commands Generated by Secondary Mission Controller

Forward Velocity Command

0 2 4 6 8 10 12 14 16 18 20

-0.6

-0.4

-0.2

0

0.2

0.4
Yaw Velocity Command

Figure 6.13: Command velocities generated by secondary mission controller.

0 10 20 30 40 50 60 70

Easting

-2

-1

0

1

2

3

4

5

6

7

8

N
o

rt
h

in
g

Vehicle path -- Comparison Of Odometry Data

Base EKF Output

Ackermann Kinematics Output

Navsat Package Output

Map EKF Output

Figure 6.14: Comparison of odometries generated by various localization sour-
ces.



77

0 20 40 60 80 100 120 140 160 180

Time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
p

e
e

d
 (

m
/s

)

Comparison Of Speed Profiles

Wheel Encoder

Baselink Odometry

Map Odometry

GPS

Figure 6.15: Comparison of speed profiles generated by various localization
sources.

mission controller have been stopped. Moreover, the duration of the activity in
both the primary mission controller and in the localization nodes is the same.
However, the secondary mission controller has a short duration (around 20 se-
conds) as it was initiated a bit later when controller_done signal was issued by
the primary mission controller.



78
7 Conclusions

The principal objective of the thesis work was to furnish the Polaris - an e-ATV
- with the autonomous capabilities utilizing the crucial data from the available
sensors. The vital data is in the form of the Polaris’ pose information, a point
cloud of its surroundings, the wheel speeds, and the steering angle as it moves
in the environment. This data was supplied with minimum transport delays, and
at the maximum update frequency to the embedded computer.

ROS being the decision-making or intelligence part of the system is installed
on the computer. ROS is an open-source firmware that equips the programmer
with a multitude of software features. The drivers for the Novatel’s SPAN, Velo-
dyne’s HDL-32E, and Basler’s Camera were already contributed to the research
community by ROS developers. The Novatel’s SPAN drivers were considera-
bly improved to acquire angular rates and acceleration data in accordance with
the ROS data conventions. Moreover, to improve the positioning accuracy of
the SPAN, the differential corrections provided by the National Land Survey of
Finland were also integrated into the system. Furthermore, various ROS topics
encapsulating the required information about the vehicle’s position, orientation,
linear and angular velocities, accelerations, world frame, and child frame were
produced. These augmentations served as an important precursor to the Polaris’
localization and mapping in the world.

Assuming a 3DOF vehicle model, a dead reckoning method could have addres-
sed the robot’s localization problem. Such a model estimates the position - in
x- and y-coordinates - and heading angle of the vehicle using the wheel speed
and steering angle. However, this model was inaccurate in keeping track of the
vehicle’s states - the x- and y- positions and heading angle in the odom (odome-
try) frame - with time due to the slipping of the wheels and steering actuation
delays. This explains the inclusion of the rates and accelerations data from the
IMU; plus position and velocity data from the GPS unit. The IMU gives its data
in the body’s frame, while the GPS receiver provides the location of the rover in
a satellite-based coordinate system.

The rover’s position provided in the Latitude Longitude Altitude (LLA) format
has to be converted into a world frame. In ROS, Universal Traverse Mercator
(UTM) coordinate system is adapted to show the robot’s position in the world
frame. Subsequently, the pose of the robot is then transformed into the map
frame by multiplying the robot’s current pose with a rotation matrix. This ro-
tation matrix contains the info about the robot’s initial pose. Hence, the map
frame is a coordinate frame whose origin is attached to the starting position of
the robot in the world frame. Similarly, a base link frame that defines the robot’s
origin in the body frame, is hypothetically attached to the midpoint of the rear



79
axle.

As the sensor measurements are nonlinear and prone to errors, two separate in-
stances of the Extended Kalman Filter (EKF) were employed for filtering and
nonlinear state estimation through sensor fusion. Each EKF keeps track of the
15-dimensional state of the vehicle moving in 3D space. The state vector con-
tains the vehicle’s positions, linear and angular velocities, Euler angles, and
body accelerations in 3D coordinates. The top-level EKF keeps track of the ro-
bot’s motion in map frame with respect to the base link. While the low-level
EKF estimates the state vector in odom frame moving with respect to the base
link. The top-level EKF is provided with the position corrections from the GPS
receiver. The low-level EKF implements what the regular dead reckoning model
does, but using the rates and accelerations data from IMU.

The data analysis carried out in Section 4.5 highlights the significance of the
EKF-based vehicle’s states estimation. Position, orientation and velocity profi-
les from both EKFs - fusing data from IMU, GPS, and wheel encoders - were
compared in that section. The performance of both EKFs was above par as com-
pared to the simple dead reckoning method. The GPS Ground Speed was used
as the forward velocity parameter in both EKFs. This had an advantage in terms
of measurement accuracy and data update rate. However, during reverse motion
of the Polaris, this caused oscillations in the position and speed profiles due to
its nature of being always positive. Nevertheless, the wheel speed is a good al-
ternative to the GPS Ground Speed in situations where the GPS is completely
lost. Hence, the wheel speed was also incorporated into the sensor fusion step
but with a higher - hardcoded - covariance value. Plenty of efforts were put to
test this part of the thesis during harsh Nordic weather conditions.

With the localization problem of the Polaris well-addressed, the mapping of the
environment was carried out by utilizing a highly efficient Rao-Blackwellized
particle filter. The GMapping package was responsible for producing a 2D occu-
pancy grid of the environment. It utilizes the laser scan data from the LiDAR
and map to base link transformation provided by the top-level EKF. This occu-
pancy grid is then generalized by the navigation module into global and local
cost maps. The cost map parameters were set in accordance with the dimensi-
ons of the Polaris and the maximum possible distance between two consecutive
waypoints.

Target waypoints were selected from the position profile of a manual test drive.
Together these waypoints (WPs) act as a mission profile. Each waypoint was
transformed into the map frame and supplied to the global motion planner as
goals. Over the global cost map, the global planner applies a simplified A* se-
arch algorithm, such as Dijkstra’s, to find the optimal path. This optimal path
minimizes the cost of traversing the vehicle to the target position. This opti-



80
mal path is provided to the local planner which is a Monte Carlo planner with
cost evaluation. The local planner simulates trajectories of the vehicle using the
instantaneous linear and angular velocities of the vehicle. The velocities that ge-
nerate the most effective trajectory are sent as twist commands to the base-level
actuator controller.

A package named mission_controller was created whose main responsibilities
were: to become a client of an instance of the move_base package, read the
mission profile, transform the waypoints into the map frame, send these transfor-
med waypoints as goals to the global motion planner node within the move_base
package. Initially, the clearing rotations were set to true with a goal tolerance of
1 meter. However, the Polaris’s inability to do the reverse motion in autonomous
mode hampered its ability to perform clearing rotation at the target waypoint.
Moreover, Polaris has a larger footprint that renders clearing rotations useless.
In addition, the target waypoints are themselves prone to position inaccuracies
(up to ± 7 meters in the absence of differential corrections). Overall, this led
to the adaption of a goal cancellation policy. Through such a policy, the goal
was canceled as soon as the Distance-to-Go (D2G) to the waypoint drops be-
low 5 meters. On the downside, this strategy is based on preemption of move
base tasks; and thus, added significant delays in traversing the vehicle from the
current waypoint to the next.

To address this problem, two mission controllers were implemented with identi-
cal codes and different set of waypoints. The primary mission controller will
be responsible for moving the Polaris from WP1 to WP2. And the secon-
dary mission controller will autonomously navigate the vehicle from WP2 to
WP3, and so forth. Through such topology, a smooth self-driving was expected
through all the waypoints. To decide when to switch the control authority, a
switching_controller was implemented as a node within the mission controller
package. The switching controller was also equipped with a dead man’s switch,
which checks the validity of the velocity commands from each instance of the
move base node. It also checks if the update rate of these commands falls below
a certain frequency.

With the configurations discussed above, the autonomous driving capability of
Polaris was tested. Unfortunately, the switching controller failed to switch the
control authority to the secondary as soon as the D2G calculated by the primary
dropped below 5 meters. This was verified by the data analysis of the autono-
mous test drive, as carried out in Section 6.2. The data analysis also revealed
that the secondary was producing adequate twist commands. But, these com-
mands were not routed to the motion controller by the switching controller. Due
to the project’s timing constraints, this issue was left unattended.

Another package called motion_controller was created to receive and convert



81
the twist commands into turning radius and speed commands. These com-
mands were then routed to the PLCs to control the wheel actuators via CAN-bus.
Again, to meet the project’s timing requirements, the reverse motion capability
was not tested on the Polaris. The PLC program was operated at a lower rate (10
Hz) and hence, proved futile in producing smooth steering and forward motions.

With the above-mentioned discussion, we finish extracting the conclusions from
the entire thesis work. A few future work recommendations drawn from the
conclusion are presented in the next section.

7.1 Future Work Recommendations

As far as the hardware is concerned, the fixture of SPAN to the Polaris chassis
needs to be standardized. It should be tested whether the current fixture is indu-
cing oscillations into the accelerometers. Besides, a mobile carrier reader needs
to be installed in order to acquire differential corrections in real-time.

Differential GPS will definitely give an edge to the precise localization of Pola-
ris. Positioning will be robust and less prone to position and velocity inaccura-
cies. A mobile network connection will give access to the wireless internet when
the Polaris is being driven outside. Afterward, receiving GPS corrections via an
internet connection from NLS and then routing it to SPAN would be straight-
forward. Moreover, SPAN needed alignment each time it was powered up. This
adds a considerable amount of time to the initialization procedures. This issue
definitely needs to be sorted out in the future. In addition, special attention needs
to be paid to increase the operation frequency of the PLC programs.

The double controller scheme needs to be verified systematically. For this rea-
son, the switching controller code needs to be thoroughly debugged. The dead
man’s switch part also needs to be improved. This will allow the detection of
the constant (incorrect) commands from the active controller. The issue with the
goal update in ROS Action Server also needs more debugging.

For now, the localization is based on the LiDAR and IMU data. In the future,
vision-based odometry could be added to the algorithm set. In case the GPS
signals are lost, it would allow trespassing through the unidentified terrain. Mo-
reover, some type of vision-based obstacle avoidance would be valuable. For
path planning, D* and D* Lite algorithms need to be implemented and tested.

Although the main idea behind the project is to build a platform for researchers
and students, the lack of an accurate system model of Polaris hampers the rese-
arch on relevant autonomous capabilities. This highlights the significance of sy-
stem modeling. For advanced research, Computational Fluid Dynamics (CFD)



82
and Finite Element Methods (FEM) analysis could provide a new dimension to
the project as far as system modeling is concerned.

That would assist in utilizing advanced control algorithms for self-driving vehi-
cles. Advanced controller architectures such as a Model-based Controller or
Sliding-Mode Controller, etc. would be possible to realize. System identifica-
tion techniques could be applied to the vehicle as well. That would assist in
quantifying the relationship between inputs (such as command velocities) and
the outputs (such as rate of steering or forward speed). Such heuristic models
could become the foundation of a more sophisticated control system architec-
ture.

A simulation platform for the autonomous ground vehicle in Gazebo has already
being realized. It will allow the testing and evaluation of the advanced naviga-
tion and control algorithms in a simulated environment, which should speed up
this Polaris Ranger (e-ATV) based project. However, extensive testing is requi-
red to verify if the simulation results match up with the actual test runs on the
vehicle.

Command and Control Station (CCS) for real-time parameter tracking would
help us to achieve our long-term objective, which is to be, hopefully not in so
distant future, fully capable of performing completely autonomous operations
with our Polaris Ranger in dynamic environments. Real-time telemetry would
naturally allow the user to monitor the state of the vehicle online from a greater
distance, and remotely control of the Polaris in case of some serious problems.
Because there is always a possibility for Polaris to get stuck in rough weather
conditions, CCS might well be used as an advanced security awareness system.
In case the vehicle is about to get beaten by the elements, it could adjust the
whole mission profile in real-time and perform some safety measures if availa-
ble.

As a final remark, the future work recommendations are based on the literature
survey carried out in the state-of-the-art section (Chapter 2). Nevertheless, the
future research path is naturally highly dependent on the funds being provided
for this project.

Let’s hope for the best.



83
References

[1] Paul Wolfram and Nic Lutsey, Electric vehicles: Literature review of
technology costs and carbon emissions, International Council on Clean
Transportation, 15 July 2016.

[2] Nicola Geromel, ATV Braking System: Introduction and System Mo-
deling, Masters Thesis Report Submitted to Arto Visala, 2014. Available
https://aaltodoc.aalto.fi/handle/123456789/13923.

[3] Andrei Sandru, Eva Koppali, Lassi Kaariainen and Martin Granholm, Te-
aching and Research Platform for Autonomous Vehicles, PT33: Final
Project Report submitted to Arto Visala and Heikki Hyyti, Project Work
Course, 2016, AEE Department, Aalto University.

[4] Ville Kukkonen, Amin Modabberian, Pietu Roisko, Pyry Viita-aho and
Ilmari Vikström, Perception Platform for Autonomous Vehicles, Project
Number 16: Final Project Report submitted to Arto Visala and Andrei
Sandru, Project Work Course, 2017, AEE Department, Aalto University.

[5] Lukas Wachter, Onur Sari, Panu Pellonpaa and Karhu Valtteri , Building
Simulation Platform for Polaris e-ATV in ROS using Gazebo, Project Num-
ber 12: Final Project Report submitted to Mika Vainio and Tabish Badar,
Project Work Course, 2019, AEE Department, Aalto University.

[6] National Land Survey of Finland, Maps and Spatial data: DGNSS Service.
Refer to website: https://www.maanmittauslaitos.fi/en/maps-and-spatial-
data/positioning-services/dgnss-service.

[7] Rudolph E. Kalman, A New Approach to Linear Filtering and Prediction
Problems, Transactions of the ASME pp. 35-45, USA, 1960.

[8] Sebastian Thrun, Wolfram Burgard and Dieter Fox Probabilistic Robotics,
First Edition, Intelligent Robotics and Autonomous Agents Series, 2001.

[9] Rudolph E. Kalman and R. S. Bucy, New Results in Linear Filtering and
Prediction Theory, Transactions of the ASME pp. 95-108, USA, 1961.

[10] Simo Sarka and Arno Solin, Applied Stochastic Differential Equations, In-
stitute of Mathematical Statistics Textbooks, Cambridge University Press,
Feb 2019.

[11] D. Crisan and B. L. Rozovshii, The Oxford Handbook of Nonlinear Filte-
ring, Oxford University Press, Oxford and New-York, USA, 2011.



84
[12] Simo Sarka and Arno Solin, On Unscented Kalman Filtering for State

Estimation of Continous-time Nonlinear Systems, IEEE Transactions on
Automatic Control, 52(9), pp 1631-1641, 2007.

[13] Simo Sarka, Bayesian Filtering and Smoothing, Institute of Mathemati-
cal Statistics Textbooks, Vol. 3. Cambridge University Press, Cambridge,
2013.

[14] Yaakov Bar-Shalom, X. Rong Li and Thisgalingam Kirubarajan, Estima-
tion with Applications to Tracking and Navigation: Theory, Algorithms
and Software, John Wiley and Sons, Inc., 2001.

[15] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE
Transactions on Signal Processing. 50(2):174-188.

[16] Shmuel Merhav, Aerospace Sensor Systems and Applications, Springer-
Verlag New York, Inc., First Edition, 1996.

[17] Roland Siegwart and Illah R. Nourbaksh, Introduction to Autonomous
Mobile Robots, A Bradford Book, The MIT Press, Cambridge, MA, USA
2004.

[18] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor,
Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, Principles of
Robot Motion: Theory, Algorithms, and Implementation, The MIT Press,
2007.

[19] Peter Corke, Robotics, Vision and Control, Springer Tracts in Advanced
Robotics, Volume 73, 2011.

[20] Robin R. Murphy, Introduction to AI Robotics, MIT Press, Cambridge,
Massachusetts, USA, 2000.

[21] Alonzo Kelly, Mobile Robotics: Mathematics, Models and Methods, Cam-
bridge University Press, USA, 2013.

[22] Phillip A. Laplante and Seppo J. Ovaska, Real-Time Systems Design and
Analysis: Tools for the Practitioner, Fourth Edition, the Institute of Electri-
cal and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons,
Inc.

[23] Davide Brugali, Luca Gherardi, A. Biziak, Andrea Luzzana and Alexey
Zakharov, A Reuse-Oriented Development Process for Component-Based
Robotic Systems, SIMPAR 2012, LNAI 7628, pp. 361–374, 2012.

[24] Gazebo, Gazebo: Simulations Made Easy. Please see: gazebosim.org.



85
[25] United Nations Office For Outer Space Affairs, Current and Planned Glo-

bal and Regional Navigation Satellite Systems and Satellite-based Aug-
mentations Systems, International Committee on Global avigation Satellite
Systems Provider’s Forum, 2016.

[26] Thomas Moore and Daniel Stouch, A Generalized Extended Kalman Filter
Implementation for the Robot Operating System, Intelligent Autonomous
Systems 13, 2016.

[27] Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry Yershov and Emilio
Frazzoli, A Survey of Motion Planning Techniques for Self-driving Ur-
ban Vehicles, Laboratory for Information and Decision Systems, Massa-
chusetts Institute of Technology, Cambridge MA, USA, 2016. Available
https://ieeexplore.ieee.org/document/7490340.

[28] B. Chazelle, Approximation and decomposition of shapes, Advances in
Robotics, Vol. 1, pp. 145-185, 1987.

[29] B. P. Gerkey, Planning and Control in Unstructured Terrain, Proceedings
of the Eighteenth International Conference on Automated Planning and
Scheduling (ICAPS 2008).

[30] Dieter Fox, Wolfram Burgard and Sebastian Thrun, Dynamic Window Ap-
proach to Collision Avoidance, IEEE Robotics & Automation Magazine (
Volume: 4 , Issue: 1 , Mar 1997 ).

[31] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard, Improved Techni-
ques for Grid Mapping with Rao-Blackwellized Particle Filters, IEEE
Transactions on Robotics, Volume 23, pages 34-46, 2007.

[32] O. Takahashi and R. J. Schilling, Motion planning in a plane using gene-
ralized voronoi diagrams, Transactions on Robotics and Automation, Vol.
5, pp. 143-150, 1989.

[33] Phillip J. McKerrow and D. Ratner, Caliberating a 4-wheeled Mobile Ro-
bot, Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, October 2002.

[34] Bong-Su Cho, Woo-sung Moon, Woo-Jin Seo and Kwang-Ryul Baek, A
dead reckoning localization system for mobile robots using inertial sen-
sors and wheel revolution encoding, Journal of Mechanical Science and
Technology, vol. 25, no. 11, pp. 2907–2917, 2011. DOI 10.1007/s12206-
011-0805-1. Available: https://link.springer.com/article/10.1007/s12206-
011-0805-1.

[35] J. C. Latombe, Robot Motion Planning, Springer Science and Business
Media, Vol. 124, 2012.



86
[36] Edited by Shuzi Sam Ge and Frank L. Lewis Autonomous Mobile Robots:

Sensing, Control, Decision Making and Applications, Taylor and Francis
Group, CRC Press, 2006.

[37] David M. Bevly and Stewart Cobb, Global Positioning Systems, Inertial
Navigation, and Integration, Norwood, MA, 2010.

[38] Anil Mahtani, Luis Sanchez, Enrique Fernandez and Aaron Martinez, Ef-
fective Robotics Programming with ROS, Third Edition, Packt Publishing
Ltd., UK, 2016.

[39] Carol Fairchild and Dr. Thomas L. Harman, ROS Robotics by Examples,
Second Edition, Packt Publishing Ltd., UK, 2017.

[40] Mohinder S. Grewal, Lawrence R. Weill and Angus P. Andrews, GNSS for
Vehicle Control, John Wiley and Sons Inc., Second Edition, 2007.

[41] M.H.A. Hamid, A.H. Adom, N.A. Rahim and M.H.F. Rahiman , Naviga-
tion of mobile robot using Global Positioning System (GPS) and obstacle
avoidance system with commanded loop daisy chaining application met-
hod, 5th International Colloquium on Signal Processing & Its Applicati-
ons, 2009.

[42] Dominic Jud, Martin Wermelinger, Marko Bjelonic, Péter Fankhauser and
Marco Hutter, Programming for Robotics - ROS, HG G1, Lecture Notes in
Robotics System Lab, 2019. Available http://www.rsl.ethz.ch/education-
students/lectures/ros.html

[43] F. Dellaert, D. Fox, W. Burgard and S. Thrun, Monte Carlo localiza-
tion for mobile robots, IEEE International Conference on Robotics and
Automation, vol.2, 1999. Available http://www.ing.unibs.it/~cassinis/ Di-
da/2005/robb/lezioni/Articoli,%20ecc./dellaert_frank_1999_2.pdf

[44] Tully Foote and Mike Purvis, Standard Units of Measure and Coordinate
Conventions, ROS REP-103 standard, created October, 2010. Available
http://www.ros.org/reps/rep-0103.html.

[45] Wim Meeussen, Coordinate Frames for Mobile Platforms, ROS REP-105
standard, created October 2010. Available http://www.ros.org/reps/rep-
0105.html.

[46] Charles F. F. Karney, Algorithms for Geodesics, SRI International, 201
Washington Rd, Princeton, NJ 08543-5300, USA, Dated September 2011.

[47] Tully Foote, Eitan Marder-Eppstein and Wim Meeussen, ROS Documen-
tation on tf2 Package. Available http://wiki.ros.org/tf2.



87
[48] Tom Moore, ROS Documentation on robot_localization Package. Availa-

ble http://wiki.ros.org/robot_localization.

[49] Vincent Rabaud, ROS Documentation on gmapping Package. Available
http://wiki.ros.org/gmapping.

[50] Eitan Marder-Eppstein, David V. Lu and Dave Hershber-
ger, ROS Documentation on costmap_2d Package. Available
http://wiki.ros.org/costmap_2d.

[51] Michael Ferguson, David V. Lu and Aaron Hoy, ROS Documentation on
move_base Package. Available http://wiki.ros.org/move_base.

[52] Eitan Marder-Eppstein, ROS Documentation on dwa_local_planner
Package. Available http://wiki.ros.org/dwa_local_planner.

[53] Kurt Konolige and Eitan Marder-Eppstein, ROS Do-
cumentation on dwa_local_planner Package. Available
http://wiki.ros.org/navfn?distro=melodic.

[54] ClearPath Robotics Inc., Husky Outdoor GPS Waypoint Navigation. See
https://www.clearpathrobotics.com/assets/guides/husky/HuskyGPSWaypointNav.html.

[55] Polaris Inc., Device Description of Polaris Ranger EV. Refer to:
https://ranger.polaris.com/en-us/ranger-ev/.

[56] Velodyne LiDAR Inc., Device Manual For Velodyne HDL 36E. Available
https://velodynelidar.com/hdl-32e.html.

[57] Baseler Inc., Device Manual For Basler Ace acA1600-20gm.
Available: https://www.baslerweb.com/en/products/cameras/area-scan-
cameras/ace/aca1600-20gm/.

[58] NovAtel Inc., Device Manual For SPAN-IGM-S1. Available:
http://www.novatel.com/products/span-gnss-inertial-systems/span-
combined-systems/span-igm-s1/.

[59] EPEC Oy., Device Manual For EPEC-5050 Control Unit. Available:
https://epec.fi/products/control-system-products-5050/.


	Table of contents
	List of Figures
	List of ROS Configuration Files
	Symbols, notations and abbreviations
	Introduction
	Background
	Objectives
	Structure

	State-of-the-Art
	State Estimation and Filtering Techniques
	Sensors Module
	Localization and Mapping Module
	Navigation Module
	Control System Module

	Working with ROS
	Architecture and Philosophy
	Tools
	Services and Actions
	Conventions
	Transformation System

	Localization and Mapping
	Electronics Systems
	Sensor Integration
	List of Available Data Packets
	Test Drive Profile
	Lateral Dynamics Evaluation

	Kinematics Model of Polaris
	EKF-based Vehicle State Estimation
	Robot Localization Package
	Navsat Transform Node
	Odometry: Map  Base_link
	Odometry: Odom  Base_link

	Data Analysis
	GMapping

	Navigation and Control
	Navigation Module Implementation
	Control System Module Implementation
	Mission Controller
	Mission Profile
	Switching Controller
	Motion Controller


	Autonomous Drive
	Description of Self-driving Test
	Data Analysis

	Conclusions
	Future Work Recommendations

	References

