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Abstract
While automotive manufacturers are already implementing Autonomous Driving (AD)

features in their latest commercial vehicles, fully automated vehicles are still not a re-
ality. In addition to AD, recent developments in mobile networks enables the possibility
of Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication. Vehicle-
to-Everything (V2X) communication, or vehicular Internet of Things (IoT), can provide
solutions that improve the safety and efficiency of traffic. Both AD and vehicular IoT need
improvements to the surrounding infrastructure and vehicular hardware and software.
The upcoming 5G network not only reduces latency, but improves availability and mas-
sively increases the amount of supported simultaneous connections, making vehicular IoT
a possibility.

Developing software for AD and vehicular IoT is difficult, especially because testing
the software with real vehicles can be hazardous and expensive. The use of virtual
environments makes it possible to safely test the behavior of autonomous vehicles. These
virtual 3D environments include physics simulation and photorealistic graphics. Real
vehicular hardware can be combined with these simulators. The vehicle driving software
can control the virtual vehicle and observe the environment through virtual sensors, such
as cameras and radars.

In this thesis we investigate the performance of such simulators. The issue with
existing open-source simulators is their insufficient performance for real-time simulation
of multiple vehicles. When the simulation is combined with real vehicular hardware and
edge computing services, it is important that the simulated environment resembles reality
as closely as possible. As driving in traffic is very latency sensitive, the simulator should
always be running in real-time. We select the most suitable traffic simulator for testing
these multi-vehicle driving scenarios. We plan and implement a system for distributing
the computational load over multiple computers, in order to improve the performance and
scalability.

Our results show that our implementation allows scaling the simulation by increasing
the amount of computing nodes, and therefore increasing the number of simultane-
ously simulated autonomous vehicles. For future work, we suggest researching how
the distributed computing solution affects latency in comparison to a real-world testing
environment. We also suggest the implementation of an automated load-balancing system
for automatically scaling the simulation to multiple computation nodes based on demand.

Keywords autonomous driving, machine learning, performance, game engine
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Tiivistelmä
Vaikka uusimmista automalleista löytyy jo itsestään ajavien autojen ominaisuuksia,

robottiautot vaativat vielä runsaasti kehitystä ennen kuin ne kykenevät ajamaan liiken-
teessä täysin itsenäisesti. Robottiautojen ohella ajoneuvojen ja infrastruktuurin välinen
(V2X) kommunikaatio ja tuleva 5G mobiiliverkkoteknologia sekä mobiiliverkkojen tukia-
semien yhteyteen sijoitettavat laskentapilvet mahdollistavat liikenteen turvallisuuden
ja sujuvuuden parantamisen. Tätä V2X kommunikaatiota voidaan esimerkiksi hyödyn-
tää varoittamalla ajoneuvoja nurkan takaa tulevista pyöräilijöistä, jalankulkijoista ja
huonoista tieolosuhteista.

Robottiautojen ja V2X kommunikaation hyödyntämistä on hankala tutkia oikeassa
liikenteessä. Fyysisten autojen ja tieverkostoa ympäröivän infrastruktuurin rakentami-
nen on kallista, lisäksi virhetilanteista johtuvat onnettomuudet voivat aiheuttaa henkilö-
ja tavaravahinkoja. Yksi ratkaisu on virtuaalisten testausympäristöjen käyttö. Tällai-
set simulaattorit kykenevät mallintamaan ajoneuvojen käyttäytymistä reaaliaikaisen
fysiikkamoottorin avulla ja tuottamaan valokuvamaista grafiikkaa simulaatioympäristös-
tä. Robottiauton ohjelmisto voi hallita simuloidun auton käyttäytymistä ja havainnoida
simuloitua ympäristöä virtuaalisten kameroiden ja tutkien avulla.

Tässä diplomityössä tutkitaan liikennesimulaattorien suorituskykyä. Avoimen lähde-
koodin simulaattorien ongelmana on niiden huono skaalautuvuus, eikä niiden suoritus-
kyky riitä simuloimaan useita autoja reaaliajassa. Tässä diplomityössä tehdään lyhyt
katsaus olemassa oleviin simulaattoreihin, joiden joukosta valitaan parhaiten yllämai-
nittujen ongelmien tutkimiseen soveltuva simulaattori. Simulaattorin suorituskyvyn ja
skaalautuvuuden parantamiseksi suunnitellaan järjestelmä, joka hajauttaa simulaatto-
rin työkuorman useammalle laskentapisteelle. Kyseinen järjestelmä toteutetaan ja sen
toimivuutta testataan mittaamalla.

Mittaustulokset osoittavat, että hajautettu laskenta parantaa simulaattorin suoritusky-
kyä ja että reaaliaikaisesti simuloitujen autojen lukumäärää voidaan kasvattaa lisäämäl-
lä laskentapisteiden lukumäärää. Jatkotutkimukseksi ehdotetaan tutkimaan simulaation
hajauttamisen vaikutusta viiveisiin, ja kuinka simulaattorin aiheuttamat ylimääräiset
viiveet suhtautuvat tosielämän viiveisiin. Lisäksi suositellaan automaattisen kuormituk-
sentasaajan toteuttamista, jonka avulla simulaatiota voidaan automaattisesti hajauttaa
useille laskentapisteille tarvittavan laskentakapasiteetin mukaisesti.

Avainsanat robottiauto, simulaatio, koneoppiminen, suorituskyky, pelimoottori
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1. Introduction

In 2017, 5G Automotive Association published a white paper [1] describing

three example use cases for utilizing vehicle-to-anything (V2X) communica-

tion and Multi-access Edge Computing (MEC) for connected Autonomous

Driving (AD). These use cases are 1) real-time situational awareness of

road and traffic conditions combined with high definition maps. 2) Uti-

lizing vehicular cameras from other vehicles to enable the host vehicle

"see through" obstacles while passing them. 3) Using the infrastructure

and other traffic users for Vulnerable Road User (VRU) discovery. VRU

discovery can be used to detect and warn the driver about nearby VRUs,

such as pedestrians and cyclists.

These use cases introduce strict requirements for the infrastructure.

Both, communication links and the computation services must have very

low latency, high availability and high reliability. In addition, the real-time

requirement and the huge amount of data used by a single vehicle place

requirements for the computational power and storage capacity. A single

autonomous vehicle is estimated to generate as much as 4 000 GB of data

every day by 2020 [29] in addition to data downloaded through V2X. As it is

unrealistic for the local vehicular hardware to be able to store and process

all of the data, cloud-based computation solutions are needed. Additionally,

to satisfy the low-latency requirement, these computation platforms should

be placed as close to the users as possible. In other words, it is necessary to

use Edge Computing services that are placed near the mobile broadband

provider access points. [1]

To be able to research the use cases of connected AD, the infrastruc-

ture and the vehicles must support this technology. While 5G [2] is being

integrated in to the infrastructure in the near future, widespread vehic-

ular Internet-of-Things (IoT) is still further away from reality. Even if

the required technology was already tested and available, it would take
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Introduction

time until a significant portion of the vehicles in traffic were capable of

V2X communication. This slows down the research, development and

implementation of connected driving.

Developing software for AD and vehicular IoT is difficult, especially

because testing the software with real vehicles can be hazardous and

expensive. One solution to this is to use virtual environments. The use

of virtual environments makes it possible to safely test the behavior of

autonomous vehicles. These virtual 3D environments include physics

simulation and photorealistic graphics. Real vehicular hardware can be

combined with these simulators. The vehicle driving software can control

the virtual vehicle and observe the environment through virtual sensors,

such as cameras and radars.

Virtual environments can also be used for training Machine Learning

(ML) models. Both AD and connected AD benefit from the recent devel-

opments of ML and computing hardware. One key application of ML for

AD is in perceiving the surrounding environment. While the perception of

environment, e.g. lane markings, can be done using classical methods [33,

4], the use of pure ML models or a mix of ML and classical methods can

bring better results [32, 56]. What is common with all image recognition

and object detection ML models, is that they typically have to be trained

with large datasets of annotated images. While there are several publicly

available datasets collected from real world [13, 7, 16, 41, 62, 24, 37],

virtual environments can also be used to generate datasets for training

and testing ML models. Virtual KITTI [25] and Synthia [51] are existing

examples of such datasets, and that ML models trained on virtual datasets

can achieve decent results with real world data [10].

1.1 Research problem

The issue with existing open-source simulators is their insufficient per-

formance for real-time simulation of multiple vehicles. Simulators are

struggling with simultaneously rendering the simulation environment

from multiple virtual cameras. To further highlight the issue, the hard-

ware of latest partially AD-capable commercial vehicles can contain as

many as eight on-board cameras, in addition to other sensors. Simulating

even one such vehicle in real-time can be computationally too demand-

ing. This is especially problematic when researching V2X applications, as

vehicle-to-vehicle communication requires the presence of multiple, if not

2



Introduction

dozens or hundreds of vehicles.

While it is possible to simultaneously simulate more vehicles by running

the simulation slower than real-time, we believe that being able to run the

simulation in real-time is crucial. When the simulation is combined with

real vehicular hardware and edge computing services, it is important that

the simulated environment resembles reality as closely as possible. Auto-

mated driving is very latency sensitive and running the simulation slower

than real-time can hide issues caused by latencies in the non-simulated

parts of the researching environment. Additionally, increased performance

is also beneficial for non-real-time applications, such as generating ML

training datasets.

The goal of this thesis is to find a suitable existing open-source simulator

and improve its performance to enable the real-time simulation of multiple

vehicles.

1.2 Contributions

In this thesis, we compared several traffic simulators suitable for research-

ing AD and vehicular IoT. From these simulators, we chose one named

CARLA. Out of all considered simulators, CARLA appeared to have the

highest amount and quality of relevant functionality and ready-to-use

assets.

We improved the performance of CARLA simulator by improving its

scalability. We planned and implemented a system for distributing the

computational load over multiple computers. Our results show that our

implementation allows scaling the simulation by increasing the amount of

computing nodes, and therefore the number of simultaneously simulated

autonomous vehicles.

In addition to the implementation and analysis of distributed simula-

tion presented in this thesis, the author of this thesis contributed to the

following three related research papers.

Research paper I: "A machine learning environment for evaluating
autonomous driving software"

The author worked together with another research assistant on creating

and measuring a system, that is a combination of CARLA and machine

learning software TensorFlow. This paper [27] is partially based on these

measurements.

3
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Research paper II: "AI Accelerator Latencies in Hybrid Vehicular
Simulation"

The author worked together with another research assistant on creating

and measuring a system, that is a combination of CARLA and machine

learning software TensorFlow. This paper [28] is based on these measure-

ments.

Research paper III: "Scalability of a Machine Learning Environment for
Autonomous Driving Research"

The author of this thesis worked as the first author on this paper [15]. This

paper demonstrates the performance benefits of the scaling solution imple-

mented in this thesis. The author made these performance measurements

and the scaling solution.

1.3 Structure

The structure of this thesis is as follows. In the background chapter

(chapter 2) we go over the necessary background information around the

topic. We will then present the tools we have used in chapter 3 and select

one of the available open source simulators in section 3.4. We discuss the

structure of this simulator in chapter 4, followed by the technical details

of our plan for distributed computing in chapters 5, 6 and 7. Finally, we

present performance measurements of our implementation (chapter 8),

followed by discussion (chapter 9) and a conclusion (chapter 10).

4



2. Background

2.1 Autonomous vehicles

The idea of autonomous vehicles has been around for a long time, but they

have been in serious development since the advancements in vehicular

machine vision in 1980s [17]. In the 21st century, two challenges held by

DARPA showed [39] that AVs are capable of navigating in a desert road

without any human intervention. In the first challenge (2004), the best

teams were able to make only 5 % of the total trip. In the second challenge

(2005), some participants were able to fully finish the race without any

human intervention. Since these challenges, the development focus shifted

to maneuvering in urban environments with other vehicles. For example, in

2011 the Grand Cooperative Driving Challenge [31] focused on cooperative

driving in intersections.

The development of the most advanced features was enabled by the

recent advances in machine learning. While features, such as forward

collision warning systems and automated emergency braking features are

possible without machine learning models, navigating in traffic among

human drivers is an extremely complex issue. Machine learning can help

with solving issues that are intangible and very hard to thoroughly define.

In the USA, a crash causation survey [57] came to the conclusion that

94 % of the surveyed traffic accidents between years 2005 to 2007 are

estimated to be caused by driver error. From these cases, 41 % are at-

tributed to recognition error and 33 % to decision error. Based on this,

it is reasonable to claim that one of the main motivations for developing

autonomous vehicles is to increase safety. In fact, European Union has set

a long-term goal of reducing yearly traffic-related fatalities to zero by 2050

[38]. This long-term goal is split into concrete short-term goals that are
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periodically reviewed. The main mechanism for reducing fatalities is by

increasing the autonomous capabilities of all vehicles and moving towards

fully autonomous traffic. This includes both encouraging the research of

new technologies and making current technology mandatory in all new

vehicles.

For 2020s the European Union goals include situational automated driv-

ing in motorway and at low speed in cities. Current driver assistive

systems, such as reversing camera/sensor, lane assist, intelligent speed

assistance and automated emergency braking system will be made manda-

tory in all new vehicles. By 2030 25% of short trips in cities should be

covered by shared automated vehicles. Another interesting detail is that

by 2022 all new vehicles should be connected to the internet and that

most of them should be capable of communicating with nearby vehicles

and infrastructure. This means that vehicular IoT is closer to becoming a

reality and V2X applications could potentially be utilized in all vehicles

manufactured after 2022.

Society of Automotive Engineers (SAE) defines [52] six levels for auto-

mated vehicles. Levels from 0 to 2 include driver assistive technology,

such as collision and lane departure warning systems. Levels 3 and 4 are

reserved for highly automated vehicles, which can mostly operate without

human intervention. Level 5 refers to full automation, which should be

capable of handling all roadway and environmental conditions that are

managed by a human driver. Level 5 no longer requires a human driver,

pedals or even a steering wheel.

While current commercial vehicles can be equipped with all the sensors

necessary for full level 5 autonomous driving, their software and processing

power is lacking behind.

Vehicle manufacturer Tesla claims on its website [40] that all its vehicles

"have the hardware needed for full self-driving capability at a safety level

substantially greater than that of a human driver". This hardware includes

8 cameras providing 360 degrees of visibility up to 250 meters in range.

In addition to this, it has a forward-facing radar and twelve ultrasonic

sensors. However, an article from 2017 [36] claims that Tesla’s autopilot

software version 8.1 utilizes only two cameras out of the eight available.

Also, Tesla’s director of AI said on Q3 2018 that the vehicles are not able to

use their latest neural network models due to computational constraints

of the current hardware, but they plan to improve this in their upcoming

hardware iteration [54].
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Unlike Tesla, a Google’s sister company Waymo appears to be using

LiDARs (Light Detection and Ranging) in addition to cameras. Waymos

vehicles are equipped with "three different types of LIDAR sensors, five

radar sensors, and eight cameras" [46].

Autonomous vehicle control can be divided in route planning, decision

making and short-term motion-planning and control. While the first de-

pends on maps and can be computed offline, the rest are dependent on the

real-time perception of the environment. Vehicle motion planning and con-

trol is discussed in depth in [47]. Perception is mainly based on machine

vision, which has made huge advancements in recent years due to the

progress in machine learning and deep neural networks [53, 56]. Machine

vision can be used to recognizes and classify objects from the sensor data,

e.g., from LiDAR and cameras. This can then be used for Simultaneous

Localization and Mapping (SLAM) to more accurately track the position

of the vehicle and to create a virtual real-time map of the surrounding

environment [66, 58, 30].

2.2 Game engines

In this section we will go over the basics of game engines in a depth that is

required for understanding the methods used in this thesis.

Simulating autonomous vehicles requires the ability to simulate the

physical dynamics of a vehicle and the ability to produce photorealistic

images for the sensor feed. We would also like the ability to easily generate

different types of traffic scenarios and to control the vehicles by either

human or computer input.

In practice, this means that a subset of the real world, or a imaginary

world, is mathematically modeled. These models can then be used to

numerically calculate the next discrete simulation state, based on the

previous state and elapsed time (delta time) since the previous state. [26]

The simulation is a soft real-time system, in a sense that missing a

deadline is not catastrophic. These deadlines include updating physics

above a desired minimum frequency to keep the physics stable. While

missing a dozen physics update deadlines might be completely unnotice-

able, constantly missing the deadlines may cause odd behavior. However,

the simulation can usually resume normal operation if the physics update

frequency rises back above the minimum. [26]

Game engines are frameworks for creating games. It can sometimes be
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difficult to distinguish a game from the game engine, as the component of

the game engine might be built to be specifically suitable for one particular

game. Gregory [26] suggests in his book "Game Engine Architecture" that

the term "game engine" should be reserved for software that is extensible

and suitable for many different games. In other words, we can use a game

engine as a framework for the autonomous vehicle testing environment.

2.2.1 Modern game engines

Modern game engines typically comprise of separate modules for rendering,

physics, audio, animations, AI and online multiplayer.

The main component of a game engine is typically the "game loop" that

iterates over repeatedly. On each iteration, each module is allowed to

update its state. While a modern game engine most likely runs these

modules on separate threads, it usually makes sense to tie their update

frequencies together. [26] For example, it does not make sense to render

the game at a higher frequency than what the game state is updated. If

the physics or game logic states have not changed, the subsequent renders

would be identical to each other.

On the other hand, not all modules have to update at the same frequency.

For example, it might be enough to update the AI only once every couple of

seconds to avoid unnecessarily repeating identical calculations.

2.2.2 Game editor

Usually game engines include some sort of a graphical editor to make

game level design easier. The editor allows the user to view the 2D or 3D

scenery from a virtual camera, that can be placed in any angle or position.

This view typically enables the manipulation of the scenery, for example

by positioning new game objects in the scene.

The editor also enables easily editing the properties of each game object.

These properties include position, orientation, mass, 3D model and scripts.

2.2.3 Physics simulation

For any physics-based game or simulation, one of the main parts of a game

engine is the physics simulation engine. The physics engine is responsible

for simulating physical systems, such as rigid body dynamics. This is

usually done by numerically integrating mathematical models that are

based on physical laws, such as Newtons second law of motion [67][26].

8
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For example, the position of a rigid body under the effect of gravity could

be computed as follows:

pn+1 = pn + vn ∗ △t

vn+1 = vn + g

Where pn is the position and vn is the velocity at state n. The △t is the

elapsed time since the previous state and g is an approximation of the

gravitational acceleration (typically 9.81 m/s). In a 3D environment, the

position and velocity of an object can be stored as a three dimensional

vector.

A typical physics step in a game engine iterates over every game object

and updates its position based on its previous state and the current forces

acting upon it[26]. In addition, each game object is checked for collisions

with other game objects. Collisions can be resolved by, for example, directly

adjusting their positions or by adding opposing forces to the overlapping

objects until there is no overlap in subsequent iterations.

Collisions occur when the collider meshes (circles, spheres or more com-

plex triangle meshes) of two separate game objects overlap. While a naive

implementation of checking each object for collisions against every other

object in the scene would be an O(n2) operation, there are many techniques

for optimizing this process. Still, many game engines can be seen to slow

to a crawl if there are lot of complex objects overlapping each other at the

same time.

By default, modern game engines such as Unreal Engine 4 will only

calculate the physics state sn+1, if the state sn−1 has already been rendered

[22]. It also cannot render the sn+1 if it has not yet been fully calculated.

This means that computationally expensive physics step can restrict the

rendering speed and vice versa.

To further increase the stability of physics calculations, a single physics

step might be divided in smaller substeps. Each substep advances the

state with a fraction of the total △t. However, only the physics state from

the final substep will be rendered. [22]

2.2.4 Game time versus real time

In this thesis, we are especially interested in real-time simulations. There-

fore, it is important to define the difference between real time and game

9
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time.

Real time is the progression of time in the real world. The game time can

be tied to the real time. This happens when on each physics update the △t

is equivalent to the real time that has passed since the previous physics

update.

However, nothing stops the game engine from progressing the physics

state by time_scale*△t, where time_scale is an arbitrary constant. If

time_scale is less than 1, the game time will progress slower than real

time. Likewise, if time_scale is larger than 1, the game time will progress

faster than real time.

The physics engine also often has a configurable maximum for △t, which

might affect the progression of game time in some cases. As the physics

simulation is numerically integrated, it can become unstable with too large

values for △t. For example, if an object with 1 meter radius is moving at

10 m/s and the △t is 1 second, the object would move 10 meters on each

physics step. As a result, it could incorrectly move through a 8 meter thick

wall without the game engine ever detecting a collision. By restricting the

△t to a more reasonable 1/30 seconds, the collision would occur as expected.

However, if the physics step takes longer than the maximum allowed △t,

the game will no longer progress in real time.

2.2.5 Non-deterministic physics simulation

As a result of the real-time requirement and floating point precision errors,

game engines are typically not deterministic. Running the exact same

physics simulation multiple times might not always end up with identical

results.

Instead of advancing physics state by a fixed delta-time of, e.g., 1/60 sec-

onds per update, the frequency varies on the currently available resources

of the computer and the complexity of the physics calculations. After one

second, instead of having calculated 60 fixed-length updates, there might

be any amount of updates in range of, e.g., 1/10 to 1/200 seconds with

the total sum of delta-time being one second. As the delta-time varies

randomly, the floating point precision errors will begin to pile up. This

is usually not an issue in video games, but it might become an issue in

scientific simulations that are expected to be fully repeatable.

Some game engines can be configured to be deterministic by forcing a

fixed update frequency. However, missing deadlines with a fixed frequency

will cause the simulation to slow down in comparison to real-time. The
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simulation would always advance by 1/60 seconds, even if more time had

elapsed since last update.

2.2.6 Rendering

Rendering is the process of generating images from 2D or 3D models. In

its simplest form, it can be performed by shooting a ray from each pixel of

a virtual camera. The resulting color of a pixel is retrieved from the first

object that the ray collides with. As a single image consists of millions of

pixels, rendering is usually done with the GPU. This is because each pixel

requires very similar calculations and GPU is ideal for executing massive

amounts of similar calculations in parallel. [26]

In order to make the rendering appear realistic, we have to take the

physical properties of the light and materials of the reflective surfaces in

to account. An object reflects light differently when viewed from different

angles, depending on the direction of incoming light. This can be calcu-

lated using the Bidirectional Reflectance Distribution Function (BRDF)

[42]. Modern game engines aim to use the concept of Physically Based

Rendering (PBR) [49], which uses BRDF as one of the key principles. In

other words, PBR is the attempt to model the flow of light as realistically

as possible. Some effects that affect real-life cameras, such as lens flare

and depth-of-field can be added as a post processing effect to the rendered

image. It is important to note that even when using PBR techniques, the

rendered image depends on the quality of the 3D-models, their materials

and textures.

As games run in real-time, game engines have to balance between the

quality and speed of the rendering pipeline. This means that PBR tech-

niques are often high-performing approximations of the underlying phys-

ical model [26, 49]. In order to make games visually pleasing to look at,

they typically render between 30 to 144 frames per second. In context of

real-time vehicular simulation, the frame rate should be high enough to

match the update rate of real-life sensors.
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3. Tools

3.1 Unreal Engine 4

Unreal Engine 4 is the fourth major version of the game engine made by

Epic Games. It is publicly available, free to use and its source code can be

viewed and modified freely. However, it is not open source and its users

might have to pay royalties based on the revenue made by using Unreal

Engine. [22]

Epic Games uses Unreal Engine for its own popular multiplayer games,

such as Unreal Tournament series [64] and Fortnite [19]. As a result, the

game engine has been modified to include networking features suitable for

hosting at least 100 concurrent players and 40 000 replicated simulation

actors in real-time on a single server instance. [65] [21]

Unreal Engine is one of the few publicly available game engines that

includes state-of-the-art technology. As an example of such technology,

in 2018 NVIDIA and Epic Games showcased new real-time raytracing

technology, RTX, being used in Unreal Engine [14]. Additionally, Unreal

Engine supports NVIDIA GameWorks [44], which is a SDK for various

advanced visual effects, physics simulation and rendering techniques.

Unreal Engine is also constantly receiving updates and new features

from Epic Games. It also has a very active community and its users can

make pull requests to its git repository or release their modifications as

additional plugins. [22]

Unreal Engine uses NVIDIAs PhysX [45] for the physics simulation [23]

and supports the most popular graphics APIs, such as DirectX, OpenGL

and Vulkan. It also supports multiple platforms, such as Windows, ma-

cOS, Linux, Android, iOS, most recent game consoles and virtual reality

platforms. [22]
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Unreal Engine source code consists mostly of C++, but it also offers a

high-level visual scripting system called Blueprint. [22]

3.2 Unreal Engine networking system

This section, and its subsections, are mostly based on the official Unreal

Engine networking documentation in [21].

Unreal Engine 4 includes a system for synchronizing the game state

between the game server and game client instances in multiplayer online

games. In this thesis, we will use this system for distributing the rendering

load.

The system is based on an authoritative client-server model, where

the authoritative server is responsible for making all meaningful actions.

While the clients are running the game locally, all actions are sent to the

server. The server then responds to these actions and sends the updated

state to the clients.

The system can run in four different modes:

• Standalone mode runs both the server and the client locally on the

same game instance. This is used for singleplayer games and the

server will not accept connections from other clients.

• Dedicated Server is running the server without any human-interaction

capabilities, such as sounds, graphics or input. It can be used for

situations that require a high-performing server.

• Listen Server is running both the server and the client locally, but it

is also accepting incoming connections from other clients. In other

words, listen server can be used by one of the players to host a

multiplayer session.

• Client mode will not run any server-side logic and must be connected

to an external server.

Basic principles

While the system is capable of replicating the state from the server to the

clients, the replication logic must be defined by the developer. Actors and

their variables are not replicated unless specifically requested. This is

partly to save bandwidth. It makes no sense to spend bandwidth and cpu

cycles on transferring data that can be cheaply calculated locally or loaded

13



Tools

from disk. On the other hand, clients do not necessarily need to know

everything that the server is doing.

Replicated properties can be either defined at low-level c++ code by

declaring functions and variables with special UPROPERTY keywords, or

with the high-level Blueprint visual scripting language.

All properties that are marked as replicated, will be replicated to the

clients when the value is changed. Again, it does not make sense to waste

bandwidth replicating property values that have not been changed.

These properties can be modified locally by the clients, but the changes

will not apply to other game instances. When the client receives an up-

dated value for this property from the server, any local changes will be

overwritten.

There are three different types of replicated function calls

• Client functions are executed at a specific client, when called by the

server.

• NetMulticast functions are client functions that are executed by all

clients.

• Server functions are executed at the server, when called by a client.

There are however restrictions on how the functions can be called. For a

client to be able to call server functions, the client must have ownership

over the actor-object that implements the function.

Optimizations

Depending on the available bandwidth and processing power, it might not

be possible to update every object on every update iteration. This is why

the networking system can be configured to prioritize certain actions. Each

actor can be given a priority, which affects the update frequency. Actors

with high priority will be updated more often than others.

Actors can also be defined as not-relevant for certain clients. This also

helps to save bandwidth, as it might not be necessary for every client to be

aware of all replicated objects.

It is also possible to define a custom replication driver, which allows to

fine-tune how the replication works.

TCP versus UDP

The networking system uses UDP for transferring data between the server

and the clients. This makes sense, because in multiplayer games it is
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typically vital to keep the latency low at the cost of dropped packages. It

is important to make the player feel that the player’s character responds

to input immediately. Additionally, there is usually no point in resending

dropped packages as they are no longer relevant. This can be compared

to streaming a video: There is no point in receiving and processing video

frame n, if we have already displayed frame n+1.

3.3 Unity

Alongside Unreal Engine, Unity [60] is another popular cross-platform

modern game engine. Unity is used in some of the simulators that were

looked at during this thesis.

It is being developed by Unity Technologies and it was first released in

2005. Similarly to Unreal Engine, it has a very active community and it is

being constantly updated with new features.

Unlike Unreal Engine, Unity is fully based in C# and the user-made

extensions and game logic are also written in C#. While Unity does not

contain a Blueprint-like visual scripting tool, C# can be seen as more user-

friendly than C++, as it is a higher-level language with automatic memory

management. Unity also uses NVIDIA PhysX for physics simulations.

Unity has publicly released its source code, but only as a read-only license.

Modifications are not allowed.

3.4 Simulation environments

We chose to focus on CARLA [18] in this thesis, due to the amount of

relevant features CARLA offers, the fast-paced ongoing development and

the active community around it.

In this section, we will go over the main features of CARLA and briefly

compare it to alternative autonomous vehicle simulation software.

3.4.1 CARLA

CARLA [18] is an open-source platform for autonomous driving research.

It was first released in 2017. It is under constant development, and several

new releases were made while writing this thesis. CARLA is built on top

of Unreal Engine, which means that it is capable of producing high quality

graphics and realistic physics simulation. It has a very active community
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on both GitHub and instant messaging platforms, which complements the

partially incomplete documentation.

Its features include pedestrians and vehicles equipped with naive AI,

that is capable of navigation and following basic traffic rules. CARLA also

provides free-to-use digital assets, such as several vehicle models, buildings

and a variety of urban decals such as trees, trash bins, benches and bus

stops. It also includes basic traffic control objects, such as functional traffic

lights, speed-limit signs and stop-signs. As a result, CARLA is capable

of modeling a lively traffic in an urban city out-of-the-box, without any

need for configuration. CARLA also supports several different weather

conditions, such as light or heavy rain and different times of day. It also

attempts to model glossy reflections from the surface of wet road during

rain.

While CARLA is meant for researching autonomous vehicles, the naive

AI is not meant to represent any realistic autonomous vehicle software.

Instead of simulating computationally expensive sensors, the AI directly

utilizes the physics state retrieved from Unreal Engine. As a result, the AI

handles normal traffic scenarios with perfect knowledge of the surrounding

world and a very low computational load. A decent computer can handle

dozens, if not hundreds, of simultaneous pedestrians and vehicles with

decent performance.

The naive AI can be replaced by communicating with the CARLA client

API over TCP. This API can be used to send control input to the simulation

actors, to receive information about the simulation state and to receive

data from freely placeable sensors. The API is a mix of Python and C++,

allowing the easy use of the massive amount of tools available for Python,

such as Tensorflow and its higher level APIs. On the other hand, C++ can

be used when maximum performance is important.

Currently CARLA includes three visual sensors: an RGB camera, a

rotating LiDAR (Light Detection and Ranging) and a sensor capable of

detecting objects in front of it. These sensors are meant to imitate sensors

that can be utilized in real, physical autonomous vehicles. It is important

that these sensors function as closely to their real-life counterparts as

possible, as this enables the testing of real autonomous vehicle software

in simulated environment. Ideally autonomous vehicle AI should function

identically in real and simulated environment. In addition to these real-life

sensors, CARLA provides tools for detecting collisions and lane invasions.

Lane invasion is a scenario, where a vehicle drifts to the wrong lane on a
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road. CARLA also offers access to the physical state of each actor, including

its position, velocity and orientation in the 3D environment. While the AI

should not utilize any information that cannot realistically be acquired

in real-life, this additional information is very useful for validating the

actions of the AI. It can be used to automatically detect misbehavior and it

can be used to provide training data for machine learning models.

3.4.2 Other simulation environments

In addition to CARLA, other simulation environments were also considered.

There are so many simulators related to the research of autonomous

vehicles, that only some are discussed here. The general impression is that

there is a lot of on-going development in the area of these simulators. Even

during writing this thesis, some simulators received major updates and at

least one transitioned from closed-source to open-source. All of these vary

in offered features, which were more or less relevant to our interests. The

largest differences come from the choice of the game engine, the amount

of features and the amount of premade assets offered. For example, some

simulators were rejected simply because they use out-dated game engines

that are unable to provide realistic graphics. A majority also lacked the

support for simulating and controlling multiple vehicles simultaneously.

Airsim

Microsoft’s Airsim [55] is yet another open-source simulator for autonomous

vehicles. It is mainly developed for Unreal Engine, but it also has an ex-

perimental release for Unity. It supports multiple simultaneous vehicles,

different weather effects and lightning depending on time of day. As the

name suggests, it also includes accurate aerodynamic simulation for aerial

vehicles in addition to ground vehicles.

It is very similar to CARLA in terms of features, and it could have been

a good alternative for the purposes of this thesis.

BeamNG.Research

From all other simulators introduced in this section, BeamNG.Research [5]

focuses most on in-depth physics calculations. These calculations include

the temperature of each component in the engine, the transmission of

power to the ground through a detailed drivetrain, and even the defor-

mation of rubber in tires as forces are applied. It also features soft body

physics, meaning that collisions can dynamically bend, break and tear
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the hull and components of the vehicles. The parts are not only visually

deformed, but they also affect the physics simulation in mostly realistic

manner. BeamNG.Research uses their own physics algorithms on top of

Torque3D [59] game engine.

While BeamNG.Research outperforms other simulators in physics sim-

ulation, the computational power required to calculate these physics is

significantly higher. This will likely be an issue with real-time simulation

of multiple autonomous vehicles, which is why it is not the best candidate

for our goal of a collaborative driving research platform.

Deepdrive

Similarly to CARLA, Deepdrive [50] is an autonomous vehicle research

platform developed on top of Unreal Engine. Key difference to CARLA is

the optimized rendering pipeline, which can be significantly faster than

what CARLA offers. This is because the sensor rendering pipeline uses

shared memory, instead of TCP, for transferring the sensor data to the

vehicle AI. On the other hand, using shared memory introduces a limit

to the overall amount of data the sensors can send on each game loop

iteration.

While more efficient rendering is a desired property, Deepdrive lacks in

other features, such as pedestrians, traffic lights, non-autonomous vehicles

and prebuilt urban cities. In other words, it does not offer as complete

traffic simulation as CARLA.

On the other hand, it could be worthwhile to try to integrate the rendering

pipeline from Deepdrive to CARLA. This would require significant changes

to the client-server communication of CARLA and is outside of the scope of

this thesis.

The rest of the simulators

NVIDIA DRIVE Constellation [43] is a simulator by NVIDIA, that is only

available to NVIDIAs partners. It is advertised as being able to produce

high-quality graphics and being compatible with on-board vehicular hard-

ware provided by NVIDIA. As it is not publicly available, it was not suitable

for use in this thesis. It appears to be also running on Unreal Engine, but

there is no clear information about it.

Baidu Apollo (Not really a simulator, more like a vehicle AI platform that

can be connected to real or simulated vehicles)

Gazebo [34] is a multipurpose robotic simulator, which has also plugins

for autonomous vehicle, pedestrian and city simulation. However, the
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graphics engine seems to be out-dated in comparison to Unreal Engine

-based simulators.

Webots [63] is another multipurpose simulator, that offers a variety of

tools and assets for autonomous vehicles. Its first open-source release

was published during the making of this thesis and was therefore not

considered as a viable option.
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4. Structure of CARLA

In this chapter we go over the architecture of CARLA, in order to set a

basis for the changes required to distribute the computational load over

multiple computers.

4.1 High-level architecture

As illustrated on Figure 4.1, the CARLA architecture can be seen as two

separate components: the CARLA client and the CARLA server. The

CARLA client can be used to control the actors inside the simulation and

to receive data from the sensors, such as on-board cameras connected

to the vehicles. The client is connected to the CARLA server over TCP.

The server is a plugin for Unreal Engine that coordinates the simulation

inside the Unreal Engine simulation instance. The server reacts to control

inputs received from the client, while the Unreal Engine is responsible for

calculating physics and rendering graphics. As of CARLA 0.9.0, multiple

clients can be connected to a single server simultaneously and a single

client can control multiple actors.

While one CARLA server supports multiple client connections coming

CARLA client
Controls

Observations

Unreal Engine 
Simulation instance 

CARLA server Sensors

Pedestrians

Vehicles

Figure 4.1. Original high-level architecture of CARLA 0.9. CARLA server is a plugin for
Unreal Engine that contains all the logic and tools for running the traffic
simulation. CARLA client can control the simulation actors and receive live
sensor data from them over TCP. Multiple clients can communicate with the
server simultaneously.
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Unreal Engine 
Simulation instance 

CARLA client
CARLA server

Controls

Observations Unreal Engine 
Simulation instance 

CARLA client

CARLA server

Controls

Observations Unreal Engine 
Simulation instance 

CARLA client
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Controls
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Graphics servers

Main server

Sensors

Pedestrians

Vehicles

CARLA server

Unreal Engine 
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CARLA server Sensors

Pedestrians

Vehicles

Figure 4.2. Improved architecture of CARLA for distributing the computational load. The
main server holds the ground truth of the simulation state. This state is
synchronized to any amount of client servers existing on separate computers.
Computationally intensive sensors, such as cameras, are dedicated to a single
server at a time, allowing the computational load to be divided among all
servers. The CARLA clients can communicate with any server, including the
main server.

from multiple computers, the simulation itself can only be run on a single

computer. Therefore, the performance of the simulation is limited by

the hardware resources of a single computer. The goal is to remove this

restriction by implementing a system for distributing the rendering load

over multiple computers, as illustrated in Figure 4.2. From this figure, we

can see that the idea is to have a scalable amount of servers for graphics

rendering and one main server for calculating the simulation state. The

simulation state will always be synchronized between the main server and

the rendering servers. In other words, every actor in the simulation world

should ideally have the same position and velocity on each of the servers

at every point in time.

4.2 Low-level architecture

On the UML diagram in Figure 4.3 we can see the main components of

CARLA, including a system for spawning Actors, a system for storing

references to such Actors, a system for tagging these Actors for custom ren-

dering, a system for sending information about these actors (pos, vel, acc)

and the actual server which manages the RPC and sensor data streaming

connections.

CarlaEpisode contains information about the current episode and meth-

ods for initializing a new episode. In this context, episode means an

arbitrary simulation scenario with a specific simulation map, weather and

simulation actors. A new episode begins when the simulation is reset to
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UTheNewCarlaGameModeBase

- UCarlaGameInstance *GameInstance
- UTaggerDelegate
- UCarlaEpisode

+ GetWorld()
+ InitGame()
+ BeginPlay()
+ EndPlay()
+ Tick()
- SpawnActorFactories()

UCarlaGameInstance

- ICarlaGameControllerBase
- UCarlaSettings
- FDataRouter
- FTheNewCarlaServer
- bool bServerIsRunning

UTaggerDelegate

-

UCarlaEpisode

-

+ SetMapName()
+ GetSpectatorPawn()
+ RegisterActorFactory()
+ GetActorDefinitions()
+ SpawnActorWithInfo()
+ SpawnActor()
+ DestroyActor()
+ GetActorRegistry()

ACarlaActorFactory

-

-

UCarlaSettings

-

-

FTheNewCarlaServer

-

-

FDataRouter

-

ICarlaGameControllerBase

-

+ Constructor(FDataRouter)
+ Initialize(UCarlaSettings)
+ ChoosePlayerStart()

A new episode is
created on level

restart

These handled
sending

measurements in
0.8.4

SERVER ONLY

Tags actors for
semantic

segmentation

CarlaPlayerState

-

+ GetFrameNumber()
+ GetSimulationStepInSeconds()
+ GetPlatformTimeStamp()
+ GetGameTimeStamp()

Figure 4.3. A sketch UML diagram of the most important components of CARLA used
during the initialization. As CARLA 0.9.0 introduced a new communication
protocol between the server and the client, this diagram contains a some
amount of deprecated classes that are no longer in use, but have to be ac-
counted for.

the initial state.

CarlaServer implements the server-side of the API used for communicat-

ing between the simulation and the CARLA clients. It is responsible for

opening and listening to a given TCP port and for streaming sensor data

to the CARLA clients through another port.

ActorRegistry implements a searchable data-structure for storing the

reference and metadata of all CARLA-related simulation actors. It maps

an ID-pointer pair for each actor, where the ID is an integer. This enables

the CARLA clients to refer to the simulation actors by their unique IDs.

This also enables easy listing and deletion of all existing simulation actors.

ActorFactory allows spawning new simulation actors to the simulation

by their name at runtime. It dynamically creates a database of all possible

simulation actors, including their names and alternative options, such as

different colors of a vehicle. All actors spawned through the ActorFactory

are registered to the ActorRegistry.

4.3 Execution timeline

Each game loop iteration (aka. "tick" or "update") consists of three distinct

parts: rendering, game logic and physics. As game logic and physics
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Game update n+1

Render frame n Render frame n+1

Physics bound

Rendering bound

Time

Task

Game update n+2

Game update n+1

Render frame n Render frame n+1
Time

Task

Game update n+2

Figure 4.4. This figure shows how the performance of the simulation is always limited
by either rendering or game state update. The game update consists of
physics simulation and executing all game logic code, including the CARLA
server. Rendering is always performed for frame n-1, while the game engine
is computing the state n. This is because a game state can only be rendered
after it is fully computed.

depend on each other, they are often executed sequentially. This is of

course a slight simplification, as Unreal Engine offers the ability to define

whether a specific game logic code is executed before, during or after

physics calculations [20]. However, the point is that game update and

rendering can be seen as two separate "blocks" that are done in parallel.

The performance of the simulation depends on both of these blocks, as

the next update will only begin after both blocks have been fully completed.

Figure 4.4 demonstrates both of these possibilities. Usually the physics

simulation takes up most of the time in the game update step, as physics

simulation of multiple vehicles is computationally expensive.

In this thesis, our goal is to improve the performance in those cases

where the simulation is rendering bound. This is possible, because the

rendering load depends on multiple independent sensors. As the sensors

do not affect each other, they can be independently rendered on separate

rendering nodes. Distributing the game logic or physics calculations would

be a completely different problem, because the physics state of each object

can affect every other object in the simulation.
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5. Plan for distributed simulation

Three different approaches for distributing the rendering were considered

during this thesis. Options 1 and 2 utilize the features of the Unreal Engine

for synchronizing the simulation state between the different simulation

instances. Option 3 would be to implement a completely new system for

synchronizing the state.

Option 2 was chosen for the ease of use and the minor impact on the

client API.

5.1 Option 1: Two client connections

Option 1 would be to keep most of the CARLA server functionality only

on the main server and to use the rendering server simulation instances

only for retrieving sensor data, as illustrated in Figure 5.1. This option

requires the least development effort, because most of the features are

already working on the main server. We would only need to ensure that

the sensors work correctly on the client simulation instances and that

the simulation state is correctly synchronized using the Unreal Engine

replication system.

Main server Rendering server

Client

State

ObservationsControls

Two client connections

Figure 5.1. Option 1: Client connects to both the main server and the rendering server.
Controls are sent to the main server, while sensor feed is retrieved from the
rendering server.
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Main server Rendering server Client
State Observations

Controls

One client connection

Controls

Figure 5.2. Option 2: Client connects only to the rendering server. The rendering server
redirects the controls to the main server.

The downside of this approach is that the CARLA client would then

need to manage two separate connections, one for the main server and

one for the rendering server. This would either need drastic changes to

all existing clients, or major modifications to the client API to enable

automatic connection management. In either case, the client must be

aware of the IP addresses of both the main server and the rendering

server.

5.2 Option 2: One client connection

Option 2 reduces the number of TCP connections from client to one, as

illustrated in Figure 5.2. The simulation state is synchronized using the

Unreal Engine replication system. The sensor output is retrieved straight

from the rendering server, but the controls are relayed to the main server

through the rendering server.

This simplifies the system from the user’s perspective, as clients only

need to manage one TCP connection at a time. The client also does not

even need to know whether it has connected to the main server or one of

the rendering servers, as the communication is handled the same in both

cases. This approach is also closer to the original architecture of CARLA,

making it backwards compatible with all setups that only utilize a single

server.

The disadvantage is that all controls have to pass through the rendering

server, instead of being directly sent to the main server. This introduces

additional latency. However, the latency may be reduced if the Unreal

Engine can extrapolate the next simulation state from the controls, before

it receives the updated state from the main server.

5.3 Option 3: Custom system

The third option is to create a custom synchronization system without

using the existing features of Unreal Engine. The CARLA client-server
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API already offers features for getting and setting the state of every actor

in the simulation. Therefore, the simplest implementation would be to

build a specialized client software, which retrieves the state from the main

server and then sends it to the rendering servers. This would offer an

easily malleable solution, as the client can be modified without recompiling

the CARLA server. It would also be easier to modify the synchronization

at runtime, depending on the needs of the client.

However, latency-wise it would be better to implement this functionality

straight in the CARLA server. This way the data would flow directly

between two servers, without needing the client in the middle.

The disadvantage is that sending the full simulation state on every

frame would be computationally expensive and would consume needless

amounts of network bandwidth. Therefore, this approach probably requires

a significant amount of optimization to be better than the Unreal Engine

replication system.

The advantage of this approach is full control over the synchronization

process. For example, it could be implemented using TCP instead of UDP,

solving the danger of dropping packages. It is also possible to design the

optimizations in such way that best benefit the use-case of CARLA. For

example, by only synchronizing actors that are nearby some user-defined

points-of-interest, such as certain vehicles or intersections.

It is also good to notice that Unreal Engine supports creating a custom

replication pipeline, however, this is outside of the scope of this thesis.
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6. Connecting multiple simulation
instances

The Unreal Engine contains a feature for easily connecting separate in-

stances together. The server can be launched by giving it the name of the

desired simulation scene file and a special ?listen command as follows:

CARLA.sh level-name?listen

The server is now running as a listen server, meaning that it can accept

connections from other instances while also acting as a client itself. [In con-

trast to a dedicated server, which is strictly a server without any graphical

elements].

The clients can then be connected to the server by giving the IP of the

server. During the connection process, the clients download the simulation

scene from the server.

CARLA.sh main-server-IP:port

It would also be easy to implement a new command in the CARLA client

API for connecting the client instances to a server at a specific IP address

during runtime. This would enable the user to switch the server at runtime,

without restarting the entire simulation software.

6.1 Running a unique CARLA server on each simulation instance

Connecting the simulation instances together with the default Unreal

Engine implementation is not enough. While the vehicles created and

moved on the main server can also be seen on the rendering servers, there

is no way to control anything on the rendering servers.

This is because the Unreal Engine networking capabilities are designed

for an authoritative server-client model, which means that only the au-

thoritative main server is authorized to control the simulation/game. This
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Connecting multiple simulation instances

Initialization 

SpawnActorFactories()

ACarlaActorFactory
ACarlaActorFactory

ACarlaActorFactory
ACarlaActorFactory

BeginPlay

ATheNewCarlaGameModeBase

UCarlaGameInstance

UCarlaEpisode

ACarlaActorFactory
ACarlaActorFactory

ACarlaActorFactory
ACarlaActorFactory

ATheNewCarlaGameModeBase

UCarlaGameInstance

UCarlaEpisode

NotifyBeginEpisode()

Start() TheNewCarlaServer

Access to  
actor controls

Client & Server unique Client & Server replicated Server only

Construct

Figure 6.1. CARLA server initialization sequence in 0.9.0. The initialization can be
divided in 4 separate steps: starting up the Unreal engine process, loading
the simulation scene, calling InitGame event, calling BeginPlay event. Only
the last two are shown in this figure. Object instances colored with red appear
only on the main simulation instance. Arrows between objects illustrate
function calls. This graph shows that the client simulation instances are
missing almost all of CARLA server functionality.

is ideal for cheat-prevention in online multiplayer games, as it prevents

malicious clients from affecting the game in arbitrary ways. In addition to

cheat-prevention, there is no reason to waste bandwidth on synchronizing,

or initializing, objects that the clients cannot affect in any way. [21] For

example, the clients do not need to know the logic for determining when a

game session ends, as only the main server has the authority to end it.

Figure 6.1 illustrates the objects, and their respective method calls, that

are only initialized on the main server. It can be seen that key components

of the CARLA server rely on such objects, which means that the rendering

servers are not initializing the CARLA server plugin correctly. As a result,

CARLA clients cannot communicate with the rendering servers.

From the Figure 6.1 it can be seen that most of the server initialization

is done by the class ATheNewCarlaGameModeBase, which is a subclass

of AGameModeBase. Without going too much in to details, this class is re-

sponsible for initializing other key components, such as the UCarlaEpisode

and ACarlaActorFactory. It is also indirectly responsible for making the

ATheNewCarlaServer listen for incoming RPCs on a specific TCP port, that

is only known after initializing the CarlaSettings object.

As per Unreal Engine networking architecture, AGameModeBase is only

initialized on the main server. However, a closely related class AGameS-

tateBase is designed to transfer information about the current game state
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Figure 6.2. This graph shows the improved initialization sequence of the CARLA server.
Key initialization procedures are moved from the server-only class (GameM-
ode) to the shared class (GameState) (illustrated as green) that is first created
on the main server, and then replicated on the client simulation instances.

to all game instances. This class is replicated, meaning that it will be

instantiated on all servers. By migrating the CARLA server initialization

procedures from the AGameModeBase to a subclass of AGameStateBase.

This keeps the support for changing simulation levels and restarting the

current simulation level during runtime, as the GameState will always

be destroyed and recreated at the beginning of a new level. Recreating is

important to remove all references to any old actors of the previous level.

However, it is unnecessary to recreate the connection between the Python

clients and the CARLA server. To keep the CARLA server connections open

between simulation episodes, the CARLA server should still be instantiated

from GameInstance. The GameInstance is created only once, before even

loading a simulation scene.

While the GameState is now replicated from the server to the clients, the

constructor of the GameState is still executed locally on every simulation

instance and the variables are, by default, not replicated. Events, such as

InitGame and BeginPlay are called only on the server, but we can make the

clients run the replicated counterpart OnRep_ReplicatedHasBegunPlay,

which is called on the clients after the server has run BeginPlay.

With the above changes, all of the CARLA server components are now

created on every simulation instance and the CARLA clients successfully

can establish communication with any of the simulation instances.
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While the simulation instances are now synchronized and capable of receiv-

ing connections from the CARLA clients, they are still not fully functional.

In this section, we focus on enabling the normal functionality of CARLA.

7.1 Function categories

The CARLA API commands can be divided in to three different categories:

client-executable, main-server only and main-server only with a return

value.

Client-executable commands should work as is. Main-server commands

that do not return anything must be redirected from the rendering server

to the main server. Commands that have a meaningful return value need

additional steps for fetching the return value asynchronously.

The following list is incomplete, but it gives a good idea on what types of

functions exist in each category.

1. Executed at main server (with return value)

• Spawn actor

• Get most recent vehicle control input

2. Executed at main server (no return value)

• Destroy actor

• Control vehicle

• Control traffic light

• Control pedestrian

3. Executed at client server

• Get metadata (i.e. Map name, ping, blueprint library, ...)
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• Get all actors

• Get actor state: location, speed, traffic light state, ...

• Sensor: is listening, stop (Sensors are client-only in our imple-

mentation)

4. Executed at client and/or Main server (Depends on desired

outcome)

• CollisionEvent

• LaneInvasionEvent

• Visual debugging tools (e.g. Draw a 3d-line inside the simulation

environment)

The fourth category is not implemented during this thesis, as they are

extra features that are not required to run the simulation. They can be

executed both on the client and Main server, depending on what the user

desires to achieve with them. For example, visual debugging tools are

probably desired to be used on a specific server that is currently visible

for the viewer, regardless of whether it is the client or the Main server.

One idea for implementing these functions is to always execute them on

all servers, as they are not expected to have any meaningful return value.

7.2 Client functions and sensors

Client-executable functions are the easiest to implement. Like the name

implies, these functions can be fully executed at the client simulation

instances. They do not need to send or receive any data from the main

server. In practice, the CARLA client can already call client-executable

functions normally, and the server can successfully execute them without

any modifications.

Client-executable functions are also special in a sense that they cannot

affect other simulation instances. This can be used as an advantage for

anything that should only affect one simulation instance. In our case, we

can simplify the distribution of rendering by creating all sensors through

client functions. If the sensors exist only on one server, they cannot affect

the computational load of other servers.

While isolating sensors to their own simulation instances is enough for

this thesis, in some situations it might be beneficial to expose them to

other servers as well. For example, a client controlling a vehicle might
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momentarily want to access the live feed provided by a camera on a smart

intersection. The sensors could also be created on all servers, while making

sure that they will perform the computationally expensive rendering only

when requested by one or more CARLA client. Another viable option would

be to just expose the location, orientation and parameters of the sensors to

other servers.

Client-executable functions can also return any values synchronously,

unlike the main-server functions as discussed below.

7.3 Main-server functions (without return value)

All functions that affect the simulation state must be executed at the main

server. If they are executed on the client server, their changes cannot affect

the other servers. Therefore, these functions have to be redirected to the

main server from the client servers.

7.3.1 Redirecting to main server

Unreal Engine supports RPC between separate Unreal Engine instances

depending on two conditions: the client simulation instances have to make

RPCs from an actor instance that is both replicated to the main server and

owned by the client. The actor must exist on the client server, because the

client will initiate the RPC by calling the method from that actor instance.

Likewise, the actor must exist on the main server, as the RPC will be

executed with a reference to that particular actor instance. Both servers

also have to agree that the client is the owner of the actor.

In practice, the simplest option is to make all RPCs through the client’s

own PlayerController instance. This is because every client instance will

always have at least one PlayerController that is replicated between the

simulation client and the simulation server, and the client has the own-

ership. The PlayerController is a native class of Unreal Engine that is

used to control actors, and the clients must have ownership over its own

controller to be able to control the player’s actor.

For example, let’s take a look on how the DestroyActor function can be

implemented. We created a new CarlaPlayerController class for redirecting

all commands to the main server. In the CarlaPlayerController we declare

a new function with a specialized UFUNCTION syntax as follows.
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UCLASS()

class CARLA_API ACarlaPlayerController : public APlayerController

{

... // Other declarations are not shown

UFUNCTION(Server, Reliable, WithValidation)

void DestroyActor(uint32 ActorId);

};

The Server flag in the UFUNCTION means that the method will be

executed on the server. It can be called from the server, or the client that

has ownership of the object instance, but it will always execute on the

server. Reliable means that Unreal Engine should guarantee that the

RPC is always executed. For example, if the network packet containing

the call is dropped, Unreal Engine will resend the packet until it goes

through. WithValidation specifies that there is an implementation of

DestroyActor_Validate function, which is used to prevent cheating and

otherwise invalid calls. While we do not need the validation flag/function,

Unreal Engine will not compile without it. Therefore, in our use case we

can define the function as always returning true. The implementation of

the actual DestroyActor method also needs to be named with an additional

"_Implementation" suffix.

The method in CarlaPlayerController can be implemented as follows:

void CarlaPlayerController::DestroyActor_Implementation(uint32 ActorId);

{

Episode->DestroyActor(ActorId);

}

void CarlaPlayerController::DestroyActor_Validate(uint32 ActorId);

{

return true;

}

And the corresponding method in CarlaEpisode can be simplified as

follows:

void CarlaEpisode::DestroyActor(uint32 ActorId);

{

if (GetWorld()->IsServer()) {
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auto ActorView = GetActorRegistry().Find(ActorId);

DestroyActor(ActorView.GetActor());

}

else {

// Redirect to main server

PlayerController->DestroyActor(ActorId);

}

}

Both the server and the clients have their independent instances of Car-

laEpisode and replicated counterparts of a CarlaPlayerController instance.

We utilize this fact to redirect the command from the client CarlaEpisode

to the main server CarlaEpisode. If the DestroyActor is called on the main

server simulation instance, it can be executed normally. Otherwise, it is

redirected from the client to the main server through the CarlaPlayerCon-

troller class.

7.3.2 Vehicle controls

A non-obvious limitation of Unreal Engine is that a vehicle actor cannot

be controlled without an instance of a Controller. Directly adjusting the

throttle value of a vehicle has no effect until it is assigned an controller.

There are two types of controllers: AIController and PlayerController.

PlayerControllers act as an interface between the player and the actor,

therefore the PlayerController exist directly on the client simulation/game

instance. PlayerControllers have full replication support and handle the

communication between client servers and the main server automatically.

AIControllers are autonomous controllers that designed to run on the

server only, as typically there would be no reason to expose AI logic on the

clients in a multiplayer game.

We decided to implement the vehicle controls using AIControllers on

the main server, because there were issues with assigning each client

simulation instance with multiple properly replicated PlayerControllers.

As the AIControllers only exist on the main server, we have to redirect

all vehicle control commands from the rendering servers to the main

simulation instance. This is implemented using RPCs in similar fashion

as the DestroyActor command described above.

Even if we were able to assign multiple replicated PlayerControllers

to each client simulation, this would limit the way the actors can be
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controlled. Each actor can only have one assigned controller at a time. If

these controllers existed on the clients, these actors could only be controlled

from one simulation instance at a time. While this might not feel like a

meaningful limitation, there are application where it can be useful that

a single vehicle can be controlled from multiple instances. For example,

smart intersections could be implemented by having dedicated clients to

momentarily control vehicles entering that particular intersection. It is

also better to implement autopilot straight on the main server to reduce

latency and to avoid switching between multiple controllers.

The drawback of this implementation is that we cannot utilize the op-

timization features of the replicated PlayerControllers. Unreal Engine

has controller classes, such as the WheeledVehicleController, which have

features created specifically for replicated vehicle movement. According to

the Unreal Engine documentation, these controllers are capable of extrap-

olating physics on the client servers before receiving updated physics state

from the main server. This extrapolation feature would help to reduce

the latency as perceived by the vehicles on the client server. For example,

the vehicle can appear to start turning immediately, instead of continuing

forward until the next state update is received.

7.4 Main-server functions (with return value)

Main-server executable functions are slightly more complicated to imple-

ment, if they have to return a value to the client server. The implemen-

tation of RPC in Unreal Engine does not allow return values, as it is

impossible to know when and if there will be a response. Even if a response

was guaranteed within a few milliseconds (the round-trip-time between

the two servers), it would be counter-productive to stall the game loop

while waiting.

Figure 7.1 illustrates two possible solutions for retrieving return values,

as well as the original non-distributed implementation. The commands

can either be directly sent from the client to the main server or the return

value can be fetched later as a separate command.

The first option appears to be easier to implement. However, a direct

connection to the main server would require a second outgoing TCP con-

nection from the CARLA client. Having to manage connections between

multiple servers and the CARLA client goes against our design principles,

as discussed in 5. In addition to this, we would still not know when the
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Figure 7.1. Different options for returning values of main-server executable functions.
SpawnActor is used as an example of such function. Left option is the original
implementation, with just one server. Option one uses a direct TCP connection
from the CARLA client to the main server. The value is returned immediately,
but the effect of the call is asynchronously transferred to the rendering server.
Option two asynchronously redirects the call from the rendering server to the
main server as an RPC. Due to the asynchronicity, the return value has to be
later fetched with a separate function call.

new simulation state will be replicated to the rendering server. Even if we

have a reference to the new actor as a result of the SpawnActor-command,

we cannot know when the rendering server will be aware of this new actor.

Therefore, any client-executable commands that require this new actor

reference can fail.

While the second option is more suitable for our design principles, it

cannot directly return a value to the CARLA client. While the rendering

server redirects the command to the main server, it cannot know before-

hand if this command will succeed and what it will return. Therefore, we

need a system for fetching the result afterwards. This system is discussed

in the next section.

7.5 Dealing with asynchronous calls

For dealing with the asynchronous nature of the main-server functions, we

need a system for fetching the results afterwards.

We cannot know when the call reaches the main server. We need to be

able to deal with dropped packages and failed calls. We also need to take

in to account the fact that multiple CARLA clients can be simultaneously

making calls through one or more rendering servers.

We can assign a unique ID to each main-server call that requires a return

value.

Then we can define a Status enumeration and three new functions to the

CARLA API:
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• Enum Status : "Pending", "Failed", "Success"

• Status GetStatus(uint32 ID) : Returns the status of a method call

• String GetError(uint32 ID) : Returns the error string of a failed call

as given by the main server

• Int GetResult(uint32 ID) : Returns the result of a successful call as

given by the main server

Now we can store the results of all calls to the replicated CarlaPlayer-

Controller class instance, that is also responsible for redirecting the calls.

Initially, when the RPC is made from the client server, the status of the

call is stored as "Pending" in a suitable data structure paired with the ID.

After the main server receives and executes the call, it can modify this

data structure that exists in the replicated CarlaPlayerController. If the

variable containing this data structure is declared as Replicated in the

source code, its value will be replicated to the client simulation instance.

This replication will only happen from the main server to the client server.

Any modifications made by the client instance will be discarded, but this

does not matter as at this point the status would no longer be "Pending",

but "Failed" or "Success" instead.

Now the CARLA client can call main-server executable functions nor-

mally, but it has to periodically poll the rendering server until a result is

received.

7.5.1 Additional modifications

Some methods need additional modifications in order to properly replicate

their effects from the main server back to the rendering servers. SpawnAc-

tor is one of such commands.

As the name suggests, SpawnActor creates (spawns) a new actor in the

simulation. SpawnActor takes an ActorDescription as its parameter. The

ActorDescription is used to describe the desired properties of the actor.

These properties include actor type, such as the model and color of a Vehicle,

or a Sensor and its parameters. In addition to SpawnActor creating a new

actor in the main server, it is also assigned a unique ID. This ID is stored

in the queryable ActorRegistry, which the CARLA client uses to refer to

these actors.

While the new actor is replicated to the client simulation instances, it

will not have an ID registered in the client instance of the ActorRegistry
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by default. Therefore, we need to make some adjustments to the code. We

can add a replicated ID property to each actor and add a short client-only

code to the constructor, which registers this newly constructed actor to the

registry. The code can be made client-only with a simple if-statement, that

checks if the code is being executed on the main server.
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8. Measurements

In this chapter we go over measurements designed to prove that the com-

putational load is distributed to multiple nodes and that the performance

is increased.

Briefly, we ran an experiment where we periodically increase the simula-

tion load by increasing the amount of AD vehicles in the simulation. We

repeated this experiment with varying amount of rendering computers.

8.1 Experiment setup

The experiment was made by running sets of measurements with one to

four CARLA server instances running on separate computers, connected to

each other through LAN. Each computer is running the exact same build

of our modified version of CARLA, on top of Ubuntu 16.04 and the latest

drivers. Details of the machines are described in the table 8.1.

A custom Python client was written for performing the experiment. The

client is designed to simultaneously connect to multiple CARLA servers

to avoid issues with synchronizing measurements between multiple client

processes. The client is capable of collecting performance statistics from

Main server Rendering
server 2

Rendering
server 3

Rendering
server 4

CPU Intel(R)
Core(TM) i7-
5820K CPU
@ 3.30GHz

Intel(R)
Xeon(R)
CPU E31230
@ 3.20GHz

Intel(R)
Core(TM) i7
CPU 970 @
3.20GHz

Intel(R)
Core(TM) i7
CPU 920 @
2.67GHz

GPU GeForce
GTX 1080 TI
12 GB

GeForce
GTX 1050 TI
4 GB

GeForce
GTX 1050 TI
4 GB

GeForce
GTX 680 2
GB

Memory 32 GB 16 GB 12 GB 18 GB

Figure 8.1. This table shows the hardware specifications for each server used in the
experiments.
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all servers individually. These statistics include total number of vehicles

in the simulation, time spent calculating each simulation frame and total

images received from the simulation server.

The experiments are designed to be run in a set of episodes, where

each episode consists of a specific amount of frames. For each episode,

the computational load is incrementally increased. For example, if we

ran an experiment with 10 episodes, where each episode is 2000 frames

long. For each episode, we increase the computational load by creating

one additional vehicle and camera for each server. This would result in a

performance measurement with the amount of vehicles ranging from 4 to

40 in discrete steps of four vehicles.

To imitate a realistic simulation scenario, each vehicle is equipped with

one camera and is moving around the simulation scene with the default

autopilot enabled. We run most of the experiments with a relatively

multiple resolutions, starting from 180x120, which should already be

enough for some image classification CNN models. The default autopilot

is enabled, in order to create a more realistic simulation scenario with

some load on the physics engine, the vehicle position replication system

and to avoid any potential optimization that Unreal Engine might use for

a stationary camera.

At the start of a new episode, we add new vehicles to the simulation. Be-

fore we start logging data, we allow the system to settle for several seconds

in order to avoid any initial variance interfering with the measurements.

During the episode, each CARLA server sends an RPC to the client after

each simulation step. Each RPC is logged, which means that we can keep

count of the total amount of frames received from each server. The episode

will run until we have received a predetermined amount of frames from

the main simulation server. From the duration of the episode and the

amount of frames received from each server, we can calculate statistics

such as average received frames per second. Additionally, some of the

statistics, such as the time spent calculating a single simulation frame,

are calculated on the CARLA server, as provided by the CARLA client API.

This is useful, as it allows us to ignore any additional delay added from

transferring the RPC over from the CARLA server to our client and any

additional overhead caused by the client. Our client should not affect the

results in any way.

In order to speed up the experiments, the simulation will not be reset

between episodes. This can have some effect on the results, as some loca-
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Figure 8.2. This graph shows the average computation time of a single simulation step,
when the experiment is run on the main server without sharing the simulation
state to other servers. The measurements were done separately for four
different resolutions. One simulation step consists of rendering one image
from all vehicular cameras.

tions in the simulation scene can be more graphically intensive. However,

the simulation is restarted when the number of rendering computers is

changed.

All of the experiments are run using the default weather and quality

settings of CARLA 0.9.1 in the latest version of the urban simulation scene

named "Town01", which was the default scene of CARLA during the start

of this thesis. Each simulation instance also has a graphical window with

the size 360x240, which causes a small additional load on the GPUs. As

the size of the window is relatively small and it stays constant, it should

not significantly affect our measurements. The window size however could

be reduced even further or potentially even disabled altogether.

8.2 Results

We start off with the baseline results achieved by running the experiment

on the main server in isolation. The simulation state is not shared to the

other servers. In Figure 8.2, it can be seen how the resolution and the

number of cameras (one camera per vehicle) affects the update frequency

of the simulation. Interestingly, the number of cameras have a far more

significant effect on the performance than the resolution. Even as reso-

lution 1440x960 has ~63 times more pixels than 180x120, it only slows

down the simulation step by only roughly 40 %. However, the slowdown

is almost linear to the number of cameras. Each added camera adds an

average of 11 ms to 14 ms to the computation time, depending on the
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Figure 8.3. This graph shows the image throughput achieved by running the experiment
on the main server, without sharing the simulation state to other servers.
Image throughput is the sum of images received from all cameras. Dots on
the lines represent the last experiment that achieved more than 10 fps on
average.

resolution. It is likely that resolution has a low impact on the performance

because these experiments were run on a relatively powerful GPU (GTX

1080 TI). A lower-end GPU might show larger difference between different

resolutions, but this was not explicitly measured during this thesis.

Figure 8.3 shows the total image throughput achieved by running the

simulation on the main server. Total image throughput is the sum of

images produced per second, or the simulation update frequency multiplied

by the number of cameras. Each camera produces one image on each

simulation update. While the graph shows some odd behavior towards

higher numbers of vehicles, it can be seen that the maximum throughput is

slightly over 80 images per second with the lowest resolution, and slightly

below 70 for the highest resolution. The plots would likely behave more

neatly if this experiment was repeated multiple times. With low amount of

vehicles the throughput is low because there is not enough rendering load.

This is because each camera is rendered only once per simulation step.

Each simulation step also includes additional computations, including

the physics step. With only one vehicle in the scene, these additional

computation steps are acting as a bottleneck as the GPU spends most of

the time waiting for new rendering commands.

Both figures (8.2 and 8.3) highlight the limit of 10 simulation steps per

second. This is the minimum frame rate that the CARLA documentation

suggests [9] to be used in CARLA version 0.9. Lower frame rates might

result CARLA in no longer running in real-time, as the maximum physics

update delta time is limited to keep the physics stable. As a coincidence,
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Figure 8.4. This graph shows how the total image throughput scales when new servers
are added to the setup.

this minimum is quite close to the camera update frequency seen in other

literature [39, 12, 11, 8]. In Figure 8.2, this limit is shown as a dotted

line. In Figure 8.3, the dots on the lines represent the last experiment that

achieved more than 10 fps on average. With this in mind, the main server

is capable of simultaneously simulating 6 to 8 vehicles with a throughput

of 60 to 80 images per second depending on the resolution.

Figure 8.4 shows the total image throughput achieved when the compu-

tational load is distributed to additional servers. This experiment was run

four times with increasing number of servers: The first line represents

the performance on the main server, while the fourth line utilizes all four

servers. The image throughput shown on y-axis is the sum of images

received from all servers per second. If server A was to produce 10 images

per second and server B 40 images per second, the throughput shown on

this graph would be 50 images per second.

X-axis represents the number of vehicles, and thus the number of cam-

eras, that are simultaneously present in the simulation. Each camera

produces one image on each simulation step. As no load balancing is done,

the vehicles are evenly distributed across the different servers. The com-

putationally most powerful server has the same workload as the weakest

server.

By looking at this graph, we can see that the throughput clearly increases

as the number of servers is increased. The lowest throughput of 80 fps is

achieved by running the simulation only the main server and the highest

throughput of 150 fps is achieved by running the simulation on all servers.

This means that the implementation of distributed rendering is working.
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Figure 8.5. This graph shows the total image throughput with all four servers and
180x120 resolution.
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Figure 8.6. This graph shows the total image throughput for all four servers with
1440x960 resolution.

However, we can also notice that the throughput is not multiplied by four,

even if the number of servers is increased from one to four. This is most

likely due to significantly weaker hardware on the other servers, but there

might also be some additional overhead caused by the Unreal Engine’s

replication system. It could be interesting to measure this on identical

hardwares.

We can also see that each setup becomes saturated at different number

of vehicles. With one server, the maximum throughput is achieved around

6-7 vehicles. Similarly, two, three and four server setups achieve their

maximums around 10, 15 and 20 vehicles respectively.

Figure 8.5 gives us a better insight on the relative performance differ-

ences for each server. Each line represents the image throughput attained

from that particular server. Similarly to the main server figures discussed
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Figure 8.7. This graph shows the total image throughput for all four servers with mea-
sured resolutions.

above, the last experiments with over 10 fps are highlighted on the lines.

While hard to interpret from this graph, the servers 1 (Main Server), 2 and

3 reach this limit at 7, 2 and 1 cameras respectively. Server 4 is barely

under 10 fps even with only one camera. The reason for plots of servers 3

and 4 being cut short is that they become practically non-responsive with

higher number of vehicles. While they are still producing some images,

their average computation time for a single simulation step increases to

the range of 1-2 seconds. Filtering out these non-responsive servers also

affects the total throughput shown on the graph.

Figure 8.6 shows the same experiment with the highest resolution

(1440x960). It shows fairly similar results to the lowest resolution, with

the exception of Server 4 not being able to produce any images. This can

be due to both, the significantly weaker GPU and CPU in comparison to

other servers.

Figure 8.7 shows the total throughputs from all four resolutions, when

using all four servers. This graph reveals an issue with the experiments.

For example, the resolution 720x480 experiences a slight drop in perfor-

mance around 12-22 vehicles, and rises above lower resolutions between

25-34 vehicles. It is highly likely that this is simply random noise that

could be reduced by running more repetitions of the experiments.

Figures 8.10 and 8.11 demonstrate the latency between the measuring

client and the CARLA simulation instances. The latency is measured by

checking how long it takes to receive a response to an RPC ping from the

CARLA server. The highest latency for the lowest resolution is slightly

below 1 ms, and for the highest resolution slightly over 2,5 ms. With the
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Figure 8.8. This graph shows the average computation time of a single simulation step
for all four servers with 180x120 resolution.
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Figure 8.9. This graph shows the average computation time of a single simulation step
for all four servers with 1440x960 resolution.
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Figure 8.10. This graph shows the latency between the CARLA Python client and the
CARLA simulation instances. The latency is measured on the Python client
by measuring how long it takes for a CARLA server to respond.
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Figure 8.11. This graph shows the latency between the CARLA Python client and the
CARLA simulation instances. The latency is measured on the Python client
by measuring how long it takes for a CARLA server to respond.

highest resolution the mean variance increases slightly when the number

of camera sensors is increased. This same effect is not visible with the

lowest resolution. However, in both cases the main server has a very low

latency of around 0,2 ms regardless of the amount of camera sensors. This

is most likely due to the combination of the main server having a very

strong GPU and running on the same computer as the measuring client.

There is no additional latency from communicating over LAN for the main

server. It can also be seen that the strongest of the rendering servers,

Server 2, has slightly more latency on average. The reason for this is

not known, but it might be that a faster server uses more time rendering

the images and therefore has less time to respond to the RPCs. There is

also significantly more variance with all rendering servers when larger

resolution is used. The variance might result from the fact that the ping

RPC can arrive to the server at different times of the simulation step. In

any case, a latency of below 3 ms is very reasonable in comparison to the

total time the servers spend in the simulation step.
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9. Discussion

From the results in the previous chapter can be seen that our implementa-

tion can perform significantly better than a single computer setup. Our

setup of four heterogeneous servers offers almost twice the rendering

output of a single server.

As previously discussed, we can assume that a reasonable minimum

update frequency for the sensors is 10 images per second. We can also

assume that autonomous vehicles can have up to eight cameras, which we

know is the case with Tesla’s current vehicles. The results show that our

reasonably powerful single-server setup can support up to eight vehicles

with one camera, or just one eight-camera vehicle. While using all of

our four servers, we can get a total throughput of almost 160 images

per second. This would be enough for either 16 single-camera or two

eight-camera vehicles. However, our rendering servers were barely able

to produce 10 frames per second with a single camera. While one could

think that the rendering performance is mostly dependent on the GPU,

it is clearly not the only limiting factor. Servers 2 and 3 have significant

differences in performance, even as they have the same GPU (GTX 1050

TI). It might be that the performance of the GPU is more relevant when

using even higher resolutions than 1440x960. High resolution cameras

are important when detecting obstacles over longer distances [61], and

therefore when driving at higher speeds.

While in our case the performance does not scale linearly to the number

of servers, we have also shown that this is probably due to the drastic

hardware differences between our testing servers. It is reasonable to

assume that with four servers, that are as powerful as our main server, we

could support almost four times more vehicles than a single server setup.

It is however unknown how far the system can be scaled. It is not hard to

imagine a use case for simulating very large cities with hundreds of cars
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communicating through V2X, but at some point the Main Server or the

Unreal Engine will likely become the bottleneck. The maximum scalability

is at least dependent on the network bandwidth and CPU demand of the

Unreal Engine networking module and the CPU demand of the physics

step. While it is possible to always add more rendering servers, the Main

Server still must be capable of synchronizing the simulation state to all

these server in addition to running the physics simulation. While games

like Fortnite have shown that Unreal Engine can support at least 100

simultaneous players, they rarely have that many vehicle-like physically

complex actors. It is reasonable to expect that physically complex actors

require more resources to accurately synchronize across servers, as they

consist of multiple individual physical parts that are connected together

through various joints (e.g. vehicle wheel suspension system). In contrast,

three 3D-vectors can be enough to fully describe the position, velocity and

orientation of a simple actor, such as a player character in Fortnite. On the

other hand, Fortnite must synchronize hundreds of player-usable resources

(e.g. guns, ammunition and destructible buildings), gunshots and buildings

created by the players.

It would also be possible to reduce the CPU load of the rendering servers

by disabling all client-side physics simulation. While the physics are

disabled, the vehicles would still continue to receive state updates from

the main server, meaning that they would not completely become out of

sync. However, as the main server has the sole authority on the simulation

state, it must be capable of calculating physics for all vehicles in real-time

even after these optimizations. Likewise, the update frequency of the Main

Server could be optimized by removing all unnecessary operations from

the Main Server. For example, the Main Server could be implemented as a

dedicated server without any graphical window or rendering load.

The use of heterogeneous servers and different client demands opens up

a need for load balancing. It would be helpful to automatically monitor the

available resources on each server and use that information to assign new

clients to the least strained server. Likewise, the computationally most

demanding clients could be directed to the most powerful servers. This

could be implemented using a container management platform, such as

Kubernetes [35], in addition to creating a ready-to-use container containing

the CARLA server.

As discussed in previous chapters, we believe that the simulation should

always run in real-time. This is because controlling an AV and V2X commu-
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nication are both very latency sensitive tasks [1, 2]. As a reminder, in our

vision only the vehicular sensor data is simulated. We could also extend

the simulation to account for, e.g., latencies, bandwidth and availability

limitations caused by the position and number of 5G and WiFi access points

in relation to the locations of the vehicles and the number of concurrent

users. However, the important point is that we can use real vehicular

hardware and real fog computing services with the simulator. This allows

us to verify that real hardware is able to cope with the latency- and com-

putational speed requirements of V2X applications. This also means, that

in order to properly test the V2X applications, the latencies caused by the

simulation should be as close to a non-simulated environment as possible.

The latency-aspect of vehicular fog computing is discussed in more detail

in [68], along with the possibility of using the vehicles themselves as part

of the fog computing network.

Figures 8.10 and 8.11 show that the latency between the CARLA client

and the rendering nodes is low (< 3 ms). While this is promising, the

RTT between the client and the servers is only a small portion of the total

latency. For example, the distributed nature of the simulation means that

there is additional latency introduced when synchronizing the simulation

state between the Main Server and the rendering nodes.

In the simulation framework, there are three connection links that can

introduce latency: simulation instance synchronization, sensor output and

control input. In a single-server setup, the sensor output and control input

latencies are dependent on the RTT (Round-Trip Time) between the vehicle

AI and the CARLA server. If the client and the server exist on the same

computer or the same local network, this latency can be assumed to be

insignificant as shown in Figures 8.10 and 8.11. The update frequency

of the simulation adds to the latency, as the physics are only updated

once per game loop iteration. For example, with a relatively high update

frequency of 60 fps, it would take at maximum 16.7 ms and on average 8.3

ms to start processing a control command. With 60 fps, the latencies are

relatively low. However, with 10 fps, the maximum latency rises to 100 ms.

Distributing the simulation over multiple computers further increases the

latency. Each control command must now first travel from the vehicle AI to

the client server, and then to the Main Server. If both the Main server and

the rendering server are running at 10 fps, it could take as long as 200 ms

for the control command to reach the Main Server. We have also discussed

the latencies between the simulation and the vehicle control client in [28]
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and [15].

In addition to these latencies, the effect of the Unreal Engine’s network-

ing module is unclear as it was not measured in this thesis. The state

synchronization can be done in many ways and the Unreal Engine of-

fers possibilities for optimizations and customizations. As discussed in

previous chapters, the networking module uses UDP for synchronization

and dynamically determines when to update the state of each simulation

actor. In other words, some packets might be dropped and some actors

might not always be synchronized. It is possible that the simulation states

have slight differences between separate rendering nodes. Desynchronized

simulation states could result in falsely detecting a flaw in the vehicle AI,

even if the AI only did a wrong action because of the latency. In the worst

case scenario, AVa might momentarily perceive AVb vehicle running red

lights, when in reality AVb has already come to a full stop. In this case the

rendering node might also report a collision between two vehicles, when

there was none. There is more discussion about state synchronization in

online game engines in, for example, [48] and [3]. There is also a more

extensive survey of latency reduction techniques from a wider perspective

in [6], which also touches the topic of online multiplayer games.

Measuring the amount of desynchronization between two servers can

prove to be quite difficult. One way could be to log the simulation state

and the timestamp on every frame on all servers. The simulation states

can then be compared for any differences at every point in time. However,

this might require accurately synchronizing the clocks between the two

servers. Another approach could be to display the sensor output from

two server side-by-side monitors. These monitors could then be recorded

with a high-speed camera and then visually inspected for any differences.

Similarly, timestamps could be used to measure the average time it takes to

synchronize the simulation state between the Main Server and a rendering

node. A unique identifier could also be added to control commands in order

to track a particular command and to measure how long it takes for it to

reach the Main Server.

It is also important to remember that simulated sensors do not completely

match their real-world counterparts. For example, vibrations, movement

and different lighting conditions might be hard to model. This is also

the case with different weather conditions. A machine learning model

trained on simulated rain might perform completely different with real

rain. However, [51] shows that at least semantic segmentation of real
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images can be performed well with a machine learning model that is

trained from simulated datasets. The same paper shows that a combination

of virtual images and real images can provide greater accuracy than real

images alone. Another example of transferring knowledge from simulated

to real environment is show in [10].
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10. Conclusion

Developing software for autonomous vehicles and connected driving is

difficult, because testing the software with real vehicles can be hazardous

and expensive. Machine learning models used in AVs [61] also have to be

trained on huge datasets, that have to be collected and often manually

annotated. The use of virtual environments makes it possible to safely test

the behavior over thousands of driving hours in simulated traffic. Virtual

environments make it possible to hand-craft difficult corner cases, such

as traffic accidents, that rarely happen in real traffic, and to even create

automatically annotated training data from these situations [51]. Virtual

environments enable the research and testing of V2X communication

applications, e.g. Vulnerable Road-user Discovery [1], before physically

integrating the required communication links [2] and edge computing

services to the road infrastructure.

The research of AVs and connected driving in simulated environments

is limited by the performance of such simulators, as these simulators can

typically only utilize the resources of a single computer at a time. The

real-time simulation of even one or two AVs can be computationally too ex-

pensive, as modern AVs might contain as many as eight on-board cameras.

While the number of simulated vehicles could be increased by dropping the

real-time requirement, we believe that running the simulation in real-time

is essential. As driving a vehicle is a very latency-sensitive operation,

the latencies in a simulated environment should be as close to reality as

possible. If the rest of the hardware is operating at an unrealistically

high speed in comparison to the simulation, it might hide issues caused

by having too high latencies. It is more practical to run the simulation in

real-time, than to match the slower simulation by artificially slowing down

the computational speed of the AV hardware, the edge and cloud servers

and the communication links between all of these.
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In this thesis we investigated the possibility to increase the simulation

performance by distributing the computational load over multiple comput-

ers. We selected CARLA as the most suitable simulator for researching AVs

and V2X out-of-the-box. We discussed the architecture of CARLA and dif-

ferent solutions for distributing the computational load. We implemented

and measured one of these solutions.

While the results are promising, further work is required to test how

far the system can be scaled. As our aim was to allow the simultaneous

simulation of multiple AVs in real-time, it is crucial to verify that the

distributed nature of our solution does not introduce too much additional

latency. It would also be beneficial to automate the deployment of the simu-

lation instances in a fog or cloud computing platform and to automatically

balance the computational load between the servers.

It is also important to remember that simulated sensors do not completely

match their real-world counterparts. For example, vibrations, movement

and different lighting conditions might be hard to model. This is also

the case with different weather conditions. A machine learning model

trained on simulated rain might perform completely different with real

rain. Modeling loss of traction on icy and wet surfaces is yet another

problem, along with simulating the visual look of snow and ice. However,

even if the vehicles and their sensors behave slightly different in the

simulation than in the real world, the connected driving use cases are

mostly unaffected. We believe that simulations are useful for testing

applications of V2X communication.
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