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The goal of this thesis is to optimize the job recommendation systems by auto-
matically extracting the skills from the job descriptions. With rapid development
in technology, new skills are continuously required. This makes the skill tagging
of the job descriptions a more difficult problem since a simple keyword match
from an already generated skill list is not suitable. A way of automatically pop-
ulating the skills list to improve the job search engines is needed. This thesis
focuses on solving this problem with the help of natural language processing and
neural networks.

Automatic detection of skills in the unstructured job description dataset is a
complex problem as it involves being robust to the ambiguity of natural language
and adapting to words not seen in the historical data. This thesis solves this
problem by using recurrent neural network models for capturing the context of
the skill words. Based on the context captured, the new system is capable of
predicting if the word in the given text is a skill or not.

Neural network models like Long short-term memory and Bi-directional Long
short-term memory are used to capture the long term dependencies in the sen-
tence to identify skills present in the job descriptions. Various natural language
processing techniques were utilized to improve the input feature quality to the
model. Results obtained from using context before and after the skill words have
shown the best results in identifying skills from textual data. This can be applied
to capture skills data from job ads as well as it can be extended to extract the
skill features from resume data to improve the job recommendation results in the
future.
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Abbreviations and Acronyms

LSTM Long Short-Term Memory
BILSTM BI-directional Long Short-Term Memory
RNN Recurrent Neural Network
GRU Gated Recurret Unit
POS Part Of Speech
NER Named Entity Recognition
NLP Natural Language Processing
AI Artificial Intelligence
FFNN Feed Forward Neural Network
CRF Conditional Random Fields
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Chapter 1

Introduction

Job search engines are rapidly developing daily and a lot of research is being
done in improving job matches to meet the gap between job demand and
supply [52]. Major problems faced by job search engines are in finding the
attributes from unstructured text data of job descriptions and resumes of
candidates that improve the matches or search results. Artificial Intelligence
(AI) and Knowledge Discovery have been utilized to improve these matching
problems between requirements and availability of skills in the market. A sur-
vey of job recommender systems has presented the inappropriateness of the
traditional approach of boolean search methods in the information retrieval
methods in recruitment platforms [1]. The reason for it being inefficient is
that simple keyword-based filters based on skills are not sufficient enough to
consider the complexity of the person-job fit for selection decisions since they
often depend on underlying criteria like personal characteristics, social skills
and so on [35]. Hence, more sophisticated algorithms are being used to do
the job matching which requires good feature engineering to perform well.

Rich methods extracting all the key features from the textual information
in job descriptions and resumes would help new recommender approaches.
Three most effective recommender approaches have been highlighted by Al-
Otaibi and Ykhlef [1] are Content-based filtering, Collaborative filtering, and
Knowledge-based approaches. Content-based filtering and Knowledge-based
recommender systems need good domain-specific feature engineering require-
ments. This shows the need to have an automated system that can generate
domain-specific features from unstructured data.

Many of the job portals are using matching algorithms to find the match
between a job seeker and job opening faster. If most important features like
skills can be extracted from the text automatically then this would poten-
tially speed up the feature generation process. This skill detection technique
can be extended to get more features from a text other than skills as well.
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CHAPTER 1. INTRODUCTION 8

This thesis focuses on solving this issue of key feature extraction to enrich
the knowledge base if skills with automatically updating the new skills as
they are found out in job descriptions. With the rapid pace of technology
development, the job market is becoming more dynamic. Skills expected
on the job are continuously changing which requires the job portals and e-
recruitment platforms to become more robust in handling these new skills
and automate the skill list creation. Extracting skills to be used as input
features to job matching algorithms would require frequent updating in this
dynamic environment. Thus an automatic way of extracting the skills from
the job descriptions is needed. A simple keyword-based matching using old
skills taxonomy would not work when new skills are going to appear in the
job descriptions in the future.

A smart way to generate the skills taxonomy based on the job descriptions
and resumes uploaded on the job search platforms is needed. The language
used in the job descriptions is quite standard and not artistic or varying in
nature as compared to the blogs or articles, this opens a door for using the
natural language processing to learn the skills occurrences based on the con-
text in which it appears in the text. The solution proposed in this thesis is to
use various context learning techniques to learn the context for the job skills
and generate the skill set which can be used for auto-tagging the applications
for generating better matching results. Job skills will appear in the descrip-
tions quite often where they are being expressed as needed or what the com-
pany is doing. Those will be followed by a similar structure even though the
choice of words is made differently in different descriptions. Hence, learn-
ing these patterns to identify the skill words is proposed to automate the
task of skill feature extraction. Various neural network techniques that were
used for sequence learning have been used to solve similar problems. Long
short-term memory (LSTM) [22] and Bi-directional long short-term memory
(BILSTM) neural network techniques that learn the long term dependencies
in the sequences are used to detect skill words in the job description data.

1.1 Structure of the Thesis

This thesis initially describes relevant literature in Chapter 2 regarding the
similar problems related to keyword extraction and various techniques im-
plemented which have proven to work for context-based keyword detection.
This chapter provides a background to techniques implemented. The litera-
ture review also covers research conducted in other areas where the problem
is similar to context learning and sequence labeling. Chapter 3 defines the
problem in terms of machine learning problem and how machine learning
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can help to solve this problem. Following Chapter 4 covers techniques imple-
mented in this thesis to solve the problem of skill detection. It describes the
custom model built for the problem being solved. The other sections in this
chapter describe the initial data collection processes and various data clean-
ing techniques implemented to set the environment right for implementations.
Experiments done with various parameters and comparison of methods are
described in the next Chapter 5. Finally, evaluation metrics and visualization
of results are illustrated with charts and tables in the Chapter 5. Chapter 6
includes discussion about the results obtained and limitations of the appli-
cation in real-world applications and the future scope of the experiments.
Chapter 7 explains and concludes the thesis with outcomes found out from
the experiments.



Chapter 2

Background

2.1 Background of Recruitment Systems

An automated system for intelligent screening of candidates for recruitment
using ontology mapping is described by Kumaran and Sankar [29]. The sys-
tem uses keywords and an ontology for automating the task of matching the
jobs to resumes. Ontology documents are constructed for the features of
candidates and job openings are also represented using an ontology. Finally,
these ontologies are mapped to retrieve the relevant candidates for the given
job description. This is an advanced technique proposed over the currently
restricted Boolean Keyword Search method. They have used “Concept Link-
ing” which is a process of connecting related documents by using commonly
shared concepts. Underlying data models used in their study were ontologies
which are in the form of concepts, properties, relations between concepts,
relations between properties, axioms, instances of concepts and properties.
Ontology mapping seeks to find the mapping of elements of one ontology
over another which have the same intended meaning. Ontology is generated
for features like personal information, employment, skills, interests, etc. To
extract this information they have used concept extractor that uses named
entity recognition. Their method has shown to give 90% accuracy on job
matching. This shows the importance of using feature extraction from the
job texts to improve job matching. Automated efficient of skill extraction is
one of the necessities for such search engines.

Laumer and Eckhardt [32] have used the technique of collaborative fil-
tering combined with the content-based matching approach to recommend
relevant jobs to candidates. Collaborative filtering is a technique in recom-
mender systems to predict the interests of the user based on the collective
preferences of many users. The content-based approach involves using differ-

10



CHAPTER 2. BACKGROUND 11

ent features of the matching entities. Features could be attributes of match-
ing entities for example for product recommendation the product attributes
like color, model, etc. and for persons searching products, it would be their
personal preferences retrieved from profile description. Content-based recom-
mendation systems work efficiently when the items to be recommended are
represented in the structured format rather than unstructured format [49].
Before an estimation of the user requirements is made using some mathemat-
ical models or algorithms, the input must be converted into a format that
is easy to process for algorithms [49]. Thus representation of the entities is
a crucial step in content-based recommendation systems. Using structured
data as input would have a small number of characteristics that can be used
as an n-dimensional input vector. This is more efficient since the input is re-
stricted to a limited number of characterisitics with well-defined values [49].
On the other hand, when unstructured data is used as input, this involves a
lot of ambiguity such as the same feature that can be depicted in multiple
ways. For recommendation system, only the relevant information necessary
for making a recommendation is of high importance. Understanding the nat-
ural language is still a complex problem that even AI systems cannot fully
grasp it until now [49]. Thus, having structured data extracted from the tex-
tual data is necessary for building efficient recommendation systems. This is
where the need for automatic feature extraction can play a crucial role.

Another study of finding experts based on the user profile abstracts is
mentioned in [62]. This is one of the key topics in information retrieval. In
this paper, the process of spreading is used which finds the related terms
using the ontology in WordNet1 or Wikipedia2 and then uses it for enabling
user profile matching. One of the drawbacks of traditional content matching
algorithms for profile matching mentioned is the use of bag of words (BOW)
representation of the profiles and job descriptions to find the relevant matches
which do not take into consideration the semantics in its representation [62].
Semantic relationships which are not explicit in the text gets ignored. They
extended the current BOW representation by including additional related
terms by referring to an ontology. Input to the matching system involves
giving weights to the terms as well. This is based on the user profile extrac-
tion which is a set of topics pertaining to the user and then extending the
system to find relevant ontologies for improved matching. This again shows
the importance of key information extraction from the descriptions as using
direct content matching is not a very efficient way for recommendation sys-
tems. Their findings show that more sophisticated approaches capturing the

1https://www.w3.org/2006/03/wn/wn20/
2https://wiki.dbpedia.org/services-resources/ontology

https://www.w3.org/2006/03/wn/wn20/
https://wiki.dbpedia.org/services-resources/ontology
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semantics of the text are needed for improved matching and simple content
matching is not efficient.

2.2 Background of Sequence Labeling Mod-

els

Deep learning which is one of the currently used machine learning techniques
have achieved great success in the area of image analysis, speech recognition
and language understanding [73]. Deep learning uses supervised and un-
supervised techniques to learn the multi-level representations and features
for problems like classification and pattern recognition [73]. This family of
learning models includes convolutional neural network (CNN) [71], Recur-
rent Neural Network (RNN) [17], autoencoders, etc. which are often used
in text understanding models. Sequence labeling tasks involve understand-
ing the sequence patterns in the text data and utilizing those features for
labeling the sequence of inputs to output labels. The research has shown the
applicability of deep learning models in text learning and sequence labeling
and hence these methods have been explored in this thesis.

Collobert et. al. [11] proposed a simple feed-forward neural network
(FFNN) for sequence labeling tasks which requires little feature engineering
and can learn from trained word vectors from a huge corpus. The limitation
of that method is that it can only consider a fixed sized window around each
word for prediction. This approach discards useful long-distance relations
between words [6].

A well-studied solution for the neural network model to be able to con-
sider variable length input and have a long term memory is the RNN. RNNs
have shown great success in various sequence learning tasks such as speech
recognition [18], machine translation [8], and language modeling [42]. LSTM
is a form of RNN with a nontrivial recurrent unit containing forget gate which
allows it to retain information from a long distance. BISLTM model can take
into account the arbitrary length of context on both sides of a word which
is an advantage over the limited context in FFNN. LSTM and BILSTM are
used in this thesis for capturing the context to predict the skills present in
the job texts.

Part of speech (POS) tagging where the word is assigned a tag that repre-
sents its part of speech based on the relation to its surrounding words is one
of the sequence labeling tasks in NLP. Using BILSTM for tagging the POS
has been shown to give results comparable to state-of-the-art POS tagging
solutions [66]. Named entity recognition (NER) which is one of the chal-
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lenging tasks in NLP has also been proven to work well using BILSTM. This
traditionally required large amounts of knowledge consisting of lexicon and in
the form of feature engineering. Using word and character level features with
BILSTM, it has been shown to give results competitive on the CoNLL-2003
dataset which is largely used for comparing the NER performance [7]. The
performance of these RNN models on sequence tagging tasks has shown the
applicability for many other sequence tagging tasks as well. In this thesis,
we use these models for tagging where our problem is similar to finding the
tags which indicate skill or non-skill in a sequence of words. In the following
sections, we will see how these neural net models are able to capture the
context and make predictions based on the context before.

2.2.1 Neural Network Architectures for Sequence La-
beling

Neural network models chosen for job skill detection are such that they can
remember the past inputs. In order for a network to learn the sequence of
words, their needs to be a mechanism present in the model which enables
it to memorize the words preceding that. RNNs are network models that
provide this mechanism over the normal feed-forward neural network. RNNs
can remember the past hidden state which essentially helps to steer the final
output which is the tag of the word.

The Recurrent Neural Networks (RNNs) family is considered to solve
this problem as they work on sequential data [31]. RNNs take sequence X
= (x1, x2, x3,...,xn) input and return output sequence labels Y = (y1, y2,
y3, ...,yn) that depicts the sequence information at each step of input. The-
oretically, they can learn from long sequences but in practice they fail to
capture long dependencies. Thus LSTM models have been utilized in appli-
cations where long term dependency of information needs to be captured.
Long term dependencies are essential to capture in NLP tasks since words
distant from the current input word can be indicative of what is going to
follow. In job skill detection the words indicating the need versus company
descriptions are dependent on the words far from the skill words. For exam-
ple, in job description like “You will have the opportunity to leverage our
massive datasets, work with the latest web technologies like d3 and react”
has words You will have way before the technologies which shows that it is
the requirement. In contrast, if those words were “We have been working
with massive datasets where technologies like d3 and react are being used”.
This would make those skills as non required skills and the sentence being
part of the company description. Short content of “technologies like” is not
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sufficient when one wants to extract specific attributes from the large texts
having multiple occurrences with a different contexts in the same text. When
such ambiguities exist then capturing long term dependencies using LSTMs
would help to use the long history for the prediction model.

LSTMs capture the sequence before the current input for prediction of
the current input and if one wants to consider the sequence information that
follows the current word then BILSTMs are useful. Performance of LSTM
versus BILSTM wholly depends on the text structure if the words followed
by or preceding are more helpful in predictions. To improve the prediction
using LSTM and BILSTM the type of input feature also has an influence on
the prediction quality.

The words fed to a neural network are often represented as word embed-
dings [39] which are learned from a corpus [34]. Word embeddings are dis-
tributed representations of words which are real-valued and low-dimensional
vectors. Each dimension is representative of syntactic or semantic properties
of the word [34]. They essentially make the word representations of simi-
lar words to have similar representation such that word vectors of similar
meanings are closer to each other in the vector space. This usually has fewer
dimensions around tens and hundreds. The distributed representation of a
word is learned based on the usage of words in the corpus. This ultimately al-
lows words that are used in similar contexts to have similar representations.
Word embeddings learned using the Word2Vec model have given state-of-
the-art word embeddings [16]. Research done in sequence tagging involving
non-domain specific tasks like POS tagging, NER, chunking etc. have used
pre-trained word embeddings from Google3 trained on 100 billion words from
Google News, Senna embeddings4 trained on Wikipedia and Reuters RCV-
1 corpus, Glove5 trained on Wikipedia and web text. For domain-specific
tasks, word embeddings learned from the data available for training are used
as input [51].

Sequence tagging studies have used the information other than just the
word representations [6] as input to the network. Collobert et. al. [11] have
used capitalization features like: allCaps, upperInitial, lowercase, mixed-
Caps, and other. Other information like suffix information, POS tag infor-
mation, etc. are also being used to improve the performance of the tagging.

3https://code.google.com/archive/p/Word2Vec/
4http://ronan.collobert.com/senna/
5http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/Word2Vec/
http://ronan.collobert.com/senna/
http://nlp.stanford.edu/projects/glove/
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2.2.2 Simple RNN Architecture

RNNs are distinguished from the feedforward neural networks by having a
feedback loop in them. The loops are used to feed the previous state for using
the information from the past. In simple RNN architecture, the recurrent
units are typically simple tanh or Rectified Linear Unit (ReLU) functions.
More sophisticated recurrent hidden units such as LSTM are explained in the
following sections. Ultimately this facilitates the flow of information from
the previous state while going through the next input. The input will be
provided with one word at a time so the input at time xt will receive the ht−1

the previous hidden state when xt−1 was fed to the network. In Figure 2.1,
the W hh is the additional weight matrix which will help to learn the weights
for connecting the previous hidden state to the next. The network on the
left side is the RNN shown without unfolding and on the right side unfolded
architecture is shown to better understand the information going through the
network. It looks similar to a multi-layer feed forward network with the only
exception that the W hh is the same across the layers. Input x dimension is of
equal size to the size of the word representation used in the task. Essentially,
now the output is not just a function of the input but is the function of the
current input and previous state. Input is only used to change the state of
the memory stored, unlike the usual network where it has a direct effect on
the output.

Figure 2.1: RNN Architecture [72]

At each step, the output ht−1 generated from the previous input xt−1

is fed to the processing and this is followed until the last element in the
sequence. The equation for calculating the ht at time step t is as follows:

ht = f((Whh)(ht−1) + (Whx)(xt))
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Here the f is usually the tanh or ReLU function. The output yt at time
step t will be the probability distribution over the classes which can be de-
rived from the softmax function.

yt = softmax((Wyh)(ht))

For the network built for solving this problem, we have used negative
likelihood loss which takes log probabilities and hence logsoftmax function is
used for the experiment, which gives the values for two classes. The highest
value bearing class is used as an output label for the xt input.

2.2.3 LSTM

LSTM is a special type of RNN with more sophisticated hidden unit than
simple RNNs which overcomes the vanishing gradient problem of RNNs which
is the cause for simple RNNs inability to remember the long contexts. As the
information flows from input to output, the error flows from output to input
through different time steps in the case of RNNs. Here different time steps
can be considered as different layers in the neural network when looking
at the unfolded architecture of RNNs. Gradients diminish in the value as
they go further from output towards the input layer. This leads to less
weight updating for the previous layers and ends up not learning much from
the previous inputs. This is termed as vanishing gradient problem. LSTM
and Gated Recurrent unit (GRU) [15] are used to tackle this issue by using
complex units that enable the network to remember the long term contexts.
In LSTM, there are four interacting neural network layers instead of one and
in addition to the hidden state they also have cell state. The architecture of
the LSTM is as shown in Figure 2.2.

LSTM makes the decision of what information to drop first which is
done in the sigmoid layer called “forget gate” in the cell state. The sigmoid
function takes ht−1 and xt (current input) and outputs the number between
0 and 1 where 0 means forget and 1 means completely keep it.

ft = σ(W fxt + U fht−1)

The next decision is what information to store in the cell state which consists
of two steps. The first step is to know which values need to be updated that
is done by another sigmoid function/layer called as an input gate. Then the
tanh function/layer chooses the candidate values C̃t which needs to be added
to the cell state.

it = σ(W ixt + U iht−1)
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Figure 2.2: LSTM Architecture for Sequence Tagging [72]

C̃t = tanh(W nxt + Unht−1)

The new cell state is obtained using these as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t

In the end, the LSTM decides the output based on the cell state. It
initially runs a sigmoid layer which makes the decision regarding which parts
of the cell state goes to output called as an output gate.

ot = σ(W oxt + U oht−1)

LSTM gives the cell state to the tanh function and multiplies that with the
output of the sigmoid gate so LSTM ends giving the output as given in the
equation below.

ht = ot ∗ tanh(Ct)

2.2.4 BILSTM

BILSTM has two LSTM networks together. The input sequence is fed nor-
mally in time order to one network, and in reverse to the other network. The
outputs of the two networks are concatenated at each time to get the output
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for the corresponding input. The advantage of this is on top of learning the
previous context the network can learn the context after the current input
as well to decide the output for the current word. Basic architecture for
sequence tagging using BISLTM is as shown in Figure 2.3. LSTM units as
depicted in the BILSTM architecture have the same architecture as shown
in 2.2. The architecture shows how the backward and forward context is used
for predicting the label at any time step t.

Figure 2.3: BILSTM Architecture for Sequence Tagging

2.3 Applications of Sequence labeling

Keyword extraction from the text can be formulated as a sequence labeling
problem where keywords are identified based on the context in which it ex-
ists. Understanding the context essentially means capturing patterns from
the sequence of words. Context memorizing task is achievable with the use
of recurrent neural networks RNNs as mentioned before. Research of these
neural net models in applications involving context learning and comparisons
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of those to traditional methods like n-grams has been done and is an ongoing
area of research. One such study in the application of RNNs for language
understanding is presented in [41]. Statistical language modeling consists of
predicting the next word in textual data given context which is a sequen-
tial data prediction problem. Mikolov et. al. [41] have shown reduction of
perplexity by 50% in comparison to state-of-the-art backoff language models
like machine translation [9] or Optical Character Recognition (OCR). Per-
plexity is a way to measure how well a probability model predicts a test set,
in case of NLP tasks it is used for evaluating language models. They used
simple RNN architecture for language modeling with application in speech
recognition.

An artificial neural network has been proposed by Bengio [2], who used
feed-forward neural network with fixed length context. The major drawback
of this method is that it uses the fixed length context which needs to be
specified before training [41]. This would restrict the model to see only five
to ten words before the word when predicting the next word. RNNs do
not use fixed length context and therefore information can cycle inside the
network arbitrarily for a long time. Another advantage mentioned in [41] is
that using the RNNs require only setting the parameter of hidden size layer
whereas feedforward NN requires a lot of parameters.

RNNs used in slot filling [59] tasks also have shown to work well compared
to traditional methods for spoken language understanding [38]. Slot filling
is similar to named entity recognition (NER) with the only difference being
the information being searched for is with respect to some other words. For
instance, if two location names are mentioned in the sentence describing the
train journey then instead of tagging city names as location entity, they
would be assigned concepts like “arrival city” and destination city based
on the sentence structure. Thus, the relation between the entity and other
words has to be captured for a slot filling task. One major application of
slot filling is to have better human-machine dialogue. Another usage of slot
filling is in knowledge base population tasks6. Slot filling task is treated as
a sequence classification task which is similar to the problem being solved in
this thesis. One example of a slot/concept annotation problem is identifying
in/out/begin (IOB) representation in which for example trying to find the
arrival and destination cities mentioned in the sentence. Slot filling takes
sequence of words and tags them with slot/concepts (arrival city/departure
city in the above example) [38]. Mesnil et. al. [38] used word embeddings
as input instead of n-gram models. N-gram is a vector encoding that takes
sequences of tokens of fixed length N into account. Each n-gram is treated as

6https://nlp.stanford.edu/projects/kbp/

https://nlp.stanford.edu/projects/kbp/
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a normal word [75]. N-gram models suffer from data sparsity as the number
of all possible n-grams will be V N given the size of the vocabulary is V.
Word embeddings show good generalization properties across various NLP
tasks [12].

2.4 Methods for Context Capturing

Context capturing in neural networks can be done with the help of recur-
rent neural networks which have the mechanism of memorizing the previous
inputs. Different techniques of implementing memorizing units exist as men-
tioned before. LSTM are used to capture long term dependencies. LSTM
networks have been employed to many natural language processing tasks
involving sequence tagging like POS tagging [66], chunking [6], NER tag-
ging [6], Punctuation Restoration [64] [65] [68], Sentence Boundary Detec-
tion [25], Spoken Language Understanding [70] and so forth. RNNs have
been used for parsing [56], sentiment analysis [57], paraphrase detection [55],
question answering [24] and logical inference [4]. All of these tasks which re-
quire sequence labeling have used some form of RNNs to capture the context
in order to use context as input to predicting the label for a given word.

Even applications using automatic speech recognition usually use RNNs
over n-gram models for various tasks. One of these studies in speech recog-
nition is in the first pass decoding where they improved the rare word pre-
diction with approximated RNN based language models [53]. First pass
decoding is the pass where recorded speech is converted into words with the
help of acoustic model, lexicon and language model [30]. In their experiments
on large English-based corpora, these approximated RNN language models
have shown benefits over conventional N-gram models [1, 3, 2, 4] in first-pass
decoding. RNNs have been used in the language models for first pass de-
coding. RNNs used are not only for sentence level understanding but also
used to capture the word representations by using character level character-
istics [67]. In their research for understanding the internal structure of the
word [67], using pre-trained word embeddings have shown to give significant
performance improvements.

Various LSTM network architectures have been evaluated for a variety of
sequence labeling tasks in NLP. It has drawn a lot of attention in research
because its output is useful as an input to many downstream applications [23].
Huang et al. [23] compared various neural net models like LSTM networks
and BILSTM. LSTM networks with a Conditional Random Fields (CRF)
layer (LSTM-CRF), and BILSTM networks with a CRF layer (BILSTM-
CRF) for sequence labeling task. The results were compared to the NLP
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benchmark sequence tagging data sets. Results showed that BILSTM CRF
is more robust and has less dependence on word embeddings [23] as compared
to the observation in [12]. The application example presented was in product
ads recommendation where names can be extracted from the user query.
Entities can be extracted from the product description as well. These entities
extracted from both the query and description can be used to identify spans
of the text containing the user information and attributes retrieved from
the product description which would ultimately help in retrieving relevant
product ads [23]. The tag information extracted from the description is
used in improving the product search engine by retrieving the most relevant
results.

Although RNNs have been applied to produce promising results on a va-
riety of tasks including language model [41] and speech recognition [19], they
cannot remember the long-range dependencies of input sequences. LSTMs,
on the other hand, are similar to RNNs but the hidden layer updates are re-
placed by purpose-built memory cells which helps in remembering the long-
range context. CRF networks on the top help to utilize the tagging informa-
tion of the neighboring elements for tagging the current input unit. Huang et
al. [23] have used 130k vocabulary for training the word embeddings. Results
were that BILSTM and BILSTM CRF models have resulted in better tag-
ging accuracy compared to others with accuracy around 97% [23]. Difference
between these two is not huge, so depending on whether one can utilize the
tag information in the output tags from neighboring elements would affect
the choice of the LSTM model. For Job Skill detection, the output tags are
just two (skill / non-skill) and hence, using the CRF layer would not help
the model as such.

Another study in comparing the different LSTM models for the POS
tagging, chunking, and NER tagging tasks have shown similar results with
BILSTM network performing better when compared with state-of-the-art
performance on these tasks [6]. Models that incorporate BILSTM with char-
acter level features extracted using CNN have shown results competitive
with the state-of-the-art in POS tagging, chunking, and NER [6]. They also
showed that these work better even without using any hand-crafted features
or external knowledge which makes them robust and easily applicable to
other domains.
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2.5 Domain Specific Applications of Sequence

Labeling

Sequence labeling apart from usual NLP tasks have been utilized for domain-
specific applications to label text for retrieving attributes needed for improv-
ing domain specific recommendation systems. Bidirectional RNNs have been
used in the event extraction and attribute retrieval from biomedical Elec-
tronic Health Records (EHR) which has helped to understand the semantics
of the EHRs [25]. Another relevant application of attribute finding from the
domain-specific text was done for product discovery in E-commerce listings.
The authors used complex neural net models such as BILSTM for sequence
labeling for extracting the features from product listings [51]. Labeling the
attributes like color, fabric, brand, shape, etc. and associating these at-
tributes to relevant items to form meaningful products has improved perfor-
mance on recommendation and searching of products. They used BILSTM
for keyword labeling which gave around 98% accuracy for prediction. They
evaluated the accuracy separately for in-vocab labeling and out-of-vocab la-
beling which shows insignificant differences between these two categories as
well. In-vocab list contains the keywords present in the training and valida-
tion dataset and the out-of-vocab list refers to the keywords not present in
the training and validation dataset. A similar application of sequence label-
ing has been done in chemical NER [21]. They used BILSTM with the CRF
layer for locating chemical named entities in the literature which is an es-
sential step in chemical text mining tasks for recognizing chemical mentions,
properties and relations amongst them. Their model achieved an F1 score of
90.04.

2.6 Techniques for Automatic Job Skill De-

tection

Research in the area of job skill detection from resumes and job descriptions
is ongoing to automate and improve the recruitment systems. One such
study in information extraction from resumes was conducted where English
and Japanese datasets were compared [28]. Methods implemented for these
were BISLTM-LSTM-CRF where character level embeddings were learned
using LSTM layer [28]. The experiments in their research were conducted
for prediction using different settings like 1. without character embeddings
or word embeddings, 2. with character embeddings but without word embed-
dings, 3. with pre-trained word embeddings, without character embeddings,
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and 4. Character level embeddings with pre-trained embeddings. The high-
est F1 score obtained was 76.07 for English resumes with pre-trained word
embeddings and character embeddings with BILSTM-LSTM-CRF [28].

Research conducted by Zhao et al. in skill identification and normaliza-
tion for the CareerBuilder7 online job recruitment service showed accuracy of
82% and recall of 72% in skill tagging task with Word2Vec method for tag-
ging the skills [74]. This accuracy was obtained with 100M input data [74].
Word2Vec vectors trained on the training dataset were used for detecting the
skill words by finding the similarity between the skill word vectors and the
word vectors of the word under consideration.

After researching the different studies done in the area of sequence la-
beling and keyword extraction tasks, most promising methods like BILSTM
and LSTM have been found to give good results and are widely used in com-
plex NLP tasks currently. Different ways of providing input to the network
including character level and word level embeddings have been shown to give
good results in these studies. These neural net models have been selected due
to the robustness of adapting to new data as well as memorizing capability
for the varying lengths of context. All these factors suggest these methods
would help the skill detection task and help build a system to detect new
skills automatically with less feature engineering efforts.

7http://www.careerbuilder.com/



Chapter 3

Problem Definition

Current systems using just the job titles for finding the relevant candidates or
job seekers finding job openings based on job titles is clearly not an efficient
way of matching jobs. As complex jobs may require a lot of skills, job titles
are not necessarily representative enough to improve job search engines. A
person having one skill might be needed in many job roles involving that
skill and job recruiters looking for a position might have the same issue when
looking for candidates who have similar skills but with different titles. This
ambiguity of expressing job titles as well as jobs involving multiple skills
needs a search engine that could potentially extract the features from job
descriptions and resumes automatically to improve the match rate essentially.
Using the complete job description text or resume text for matching is not
sufficient since many misleading words that are not indicative of the skills
would result in misleading matches in the system. Traditional job matching
algorithms rely on creating an exhaustive skill taxonomy manually or using
some existing skill taxonomy which needs to be updated either manually or
by keeping track of new technology advancements. An automatic system
that could update this skill list based on new job descriptions is needed.

Due to the ambiguity of natural language used for job descriptions and
different styles of description articulations, simple rule-based techniques can-
not be used to capture the skills from these textual descriptions. Even if it
works to some extent, it is not scalable to other similar problems of essen-
tial keyword extraction problems. Hence, a more generic solution that could
learn the context automatically on the historical data to be able to extract
new skills is needed. This will not only save the time of generating skills but
could be applied to other applications requiring the recommendation/search
based on textual descriptions.

In this thesis, the above problem is solved using neural networks. Deep
neural networks have been used in the areas where they can potentially in-

24
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fluence the current processes by automating the tasks which require human
cognition but at the same time are monotonous [14]. Clearly going through
descriptions and finding the skill is a repetitive and monotonous task. It is
also not straightforward enough to be solved by rule-based systems. Hence,
this is an apt problem for AI. As seen in the previous sections, research in
text processing and information retrieval have been empowered with the use
of deep neural networks. The following sections will explain how we trans-
form this business problem in a way that allows using AI for tackling the
manual task of skill detection.

AI systems are highly dependent on the nature and quality of input similar
to machine learning problems. Making the system more reliable, various
methods for improving the performance of the model trained needs to be
analyzed. First, we define various components used in the system. The
definition of the problem is based on guidelines given in [27].

Data is characterized by features and labels. For job skill detection,
textual data is the raw input. Job description data in text format cannot be
used as input directly to the system. It needs to be transformed into some
numerical representation for the model to learn patterns. There are multiple
ways of representing the textual data in numerical format. Bag-of-words
method [45] which does not take into consideration the order of words and is
simply the frequency of the words in the input. Topic modeling techniques
like latent Dirichlet allocation (LDA) [45] or Latent Semantic Analysis (LSA)
which capture the global context have been used in language modeling [46].
This can be used as an input vector for representing the text. Commonly
used representation for sequence labeling problem in neural networks is word
embeddings learned using Word2Vec model. Word embeddings learned from
the corpus of all job descriptions are used in this thesis. Word2Vec [44]
essentially is a dense vector capturing the word context as well. As our goal
is to use the context for predicting if the word is a skill or not, using this
vector as input feature which is representative of the semantics of words is
essentially feeding better features to the network compared to just bag of
words. Word embeddings are a better representation over a bag of words
because the dimensionality is low comparatively.

Each data point is a sentence of variable length of words. Each word is
represented as a continuous dense vector learned from the Word2Vec model.
Let W be the 2D-array (two dimensional) of word vectors of word embedding
dimension of D and number of rows (v) equal to unique words in the job
description dataset. Then,

W = (w1, ..., wv)

wi is the ith word vector of dimension D where i is the id of the word.
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Once these vectors are created the datapoint in the dataset is the vector
of concatenated vectors of each word in the sentence(datapoint) xj where
jε1, 2, ..n. n is the total number of input data points. Let the number of
words in the sentence at j datapoint be mj and let kj be the array of word
indexes in the sentence. The lengths of the sentences are different. Input
at datapoint j will be of dimension mj×D and will be represented as follows:

xj = (wkj1
, wkj2

, ...wkjmj
)

For instance, if sentence at location 4 is “python expert needed” and
assuming the word vectors for words are as follows for embedding size of 4:

python = (0.05, 0.07, 0.09, 0.3)

expert = (0.04, 0.03, 0.07, 0.4)

needed = (0.02, 0.23, 0.03, 0.2)

Then, the input at x4 would be as follows in 3.1:

x4 = ((0.05, 0.07, 0.09, 0.3),

(0.04, 0.03, 0.07, 0.4),

(0.02, 0.23, 0.03, 0.2))

(3.1)

This is of size 3× 4 where 3 is the length of the words in a sentence and
4 is the embedding dimension. The corresponding output vector would be
of size mj as well with mjε {0,1} as the label for each word will indicate if
the word is a skill or not. The network is given one word at a time and the
corresponding label is predicted thus the feature mapping is from sequence
of word vectors to sequence of the same size having 0,1 values. Feature
space is any real value of sentence length × D and label space is {0,1} of
sentence length size. Label for input xj is a vector of length mj with each
value being 1 or 0. Label 1 means the word is a skill. It is a non-skill word
if the label value is 0. For instance, the correct label output for the above
example would be:

y4 = (1, 0, 0)

This is a classification problem, with each word classified as 0 or 1. Label
for word is predicted on the basis of the context (surrounding words). If
LSTM is used, then all the preceding word vectors’ influence is considered
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for predicting the label of the current word and if the BILSTM is used then
the word vectors of words preceding and following the words will be input to
the hypothesis function for predicting the label of the current word. Details
of function are explained in Chapter 5. The function will take the word
vector of the current vector and modified the hidden state until the current
word for predicting the label.

Features in addition to the word embedding vector added are part of the
speech tag and capitalization indication of the first letter. These additional
features are added to boost the accuracy of the model as they are providing
features that are providing characteristics more specific to skills. When these
features are used in addition then the input vector of the word is (D+2) and
when only one of these features is added then the input vector of an individual
word becomes (D+1). This is the only difference when additional features are
added. The output label size remains as is. For a neural network, the input
at any given instant is the word input vector and output is the prediction
label 1 or 0.

For the deep neural network used in this problem, the input is given to the
network one word at a time and the input is a vector of real values of size D
in case of only word embeddings are used, D+1 if the Embedding and one of
the POS or letter case indication is used otherwise it is D+2 if all the features
are used. The output nodes are two, one for each class. The output node
gives probabilities between the range [0,1] for each class. A label is given to
the word based on the max probability of the label node amongst the two.
As negative log-likelihood loss function is useful training the classifier with
’C’ classes (C = number of classes), it is being chosen for this task1. This
requires the log probabilities of each class as input and hence log softmax
function is used on the output layer to get the tag log probability values for
each class whose values could range from [-∞, 0]. The hypothesis space is
as follows when only word embedding is used as input and two classes are
predicted (C=2):

h:RD → RC

Activation function used in LSTM and BILSTM is tanh by default which is
non-linear activation leading to an extremely large class of predictor maps
[27].

Training of the neural network involves learning the weights and biases
of the network during the training process. It starts with random values, the
values get adjusted over and over again till they have reached peak perfor-
mance. This updating is possible with first calculating the error of prediction.

1https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.
html

https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html
https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html
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Error is the difference between the predicted values and the expected values.
The goal of the neural training is to optimize and minimize the cost. This is
achieved through the backpropagation mechanism. For LSTM and BILSTM
this happens through backpropagation through time as there are recurring
layers in the network.

The negative log-likelihood loss function is used as a loss function for
where negative log-likelihood of the ground truth label sequence y for a given
sentence x. It has been used for sequence labeling tasks [26][69]. The labeling
cost for the sentence is the sum of cost per word at time step t (words are
given in sequence) for RNN models. Any optimizers like stochastic gradient
descent, Adam, AdaDelta, etc. then can use the loss function as shown in
equation 3.2 below to optimize the model.

L(x, ŷ; θ) = −
∑
t

∑
yt

δ(yt = ŷt)logP (yt|x; θ) (3.2)



Chapter 4

Implementation

4.1 Neural Network Architecture For Job Skill

Detection

For job skill detection task, we have implemented the LSTM and BILSTM
neural network models. As mentioned in previous Chapter 2, these RNN
models help to memorize the context which can be used for predicting the
label for the word under consideration. Here, we describe how the custom
models are built for sequence tagging with different features given as input
to the model for job skill detection task. In job descriptions, a sentence
from the job ad is considered as one training instance. When the sentence
is fed for prediction, the neural network is fed with one word at a time in
sequence. The output is the corresponding label for each word in a sentence.
The label indicates if the word is a skill or not. Label 1 indicates it is a
skill and label 0 indicates that it is not a skill. In addition to the word
vector, POS information and capitalization information of the first letter of
a word are included. With POS information the example input and output
are shown in Table 4.1. As the POS tag string cannot be given as input
directly, the unique integer is assigned for each tag and then that integer id
is given as input. For capitalization information, if the word has the first
letter capitalized then 1 is fed for that particular word otherwise 0.

Table 4.1: Illustration of Input information and Output vector to NN

Word Input We are looking for strong skills in Python
POS Input PRP VBP VBG IN JJ NNS IN NNP

Output 0 0 0 0 0 0 0 1

Input to the network is the sequence of words. Each word is represented as

29
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word embeddings. Word embeddings are a vector representation of the word
in vocabulary in a low dimensional space that captures the context, semantics
and syntactic similarity in relation to other words. Word embedding is a
technique for language modeling and feature learning, which turns words in
vocabulary to vectors of continuous real numbers (e.g., java = (..., 0.15, ...,
0.23, ..., 0.41, ...)). Each dimension of the embedding vector represents a
latent feature of a word. The vectors may encode linguistic regularities and
patterns. POS tag for word and the capitalization of the first letter of the
word are also added as an input to the final network.

Word embeddings of the word were generated from the Word2Vec model [43]
and various dimensions have experimented to see which one works better for
job skill detection task. LSTM and BILSTM implementations are using these
input features of words as input and output the predicted label. Architec-
tures for these are as shown in Figure 4.2 and Figure 4.3. The architecture
shown is for an example input of “We are looking for Python Expert” to the
network. The number of input neurons will depend on the embedding size
and extra features used in the input like POS and capitalization informa-
tion. The expected output vector would label Python as 1 and the rest of
the words as 0. Two neurons in the output layer predict the probability of
given word being label 1 or 0. Label for a particular word is label neuron
which has the maximum probability. In case of LSTM, words [“We”, “are”,
“looking”, “for”] will influence the prediction of the skill word Python. In
BILSTM case, all the words before and after the word Python are influencing
the prediction of the label for word Python. Complete architecture with all
the features used as input to the network for BISLTM is as shown in Fig-
ure 4.1. The complete architecture depicts how the features are concatenated
into one single vector and fed as input to the network as well as how the out-
puts from backward and forward LSTM units are concatenated to produce
the final predictions. Architecture is shown for example input of “Python
Expert Needed” as input sentence where the output will be [1, 0, 0] labeling
the skill Python as 1.

4.2 Tools

Tools used for implementing the neural net model in this work are Pytorch
version 1.0.1 and for word embeddings, library used is Gensim (v3.7.2). Other
libraries used are pandas (v0.23.4), numpy (v1.14.3) and nltk (v3.3). Ten-
sorflow (v1.13.1) and Tensorboard are used to visualize the network training
as well as the accuracy and loss for analysis.
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Figure 4.1: Complete BILSTM Architecture

4.3 Data Preparation

As resume data is sensitive, it is not easily available for training the model,
and hence for experiments performed in this thesis we use the job descriptions
rather than resumes. Job descriptions with all the skills tagged in the text
were not easily available on the open data platforms. Online job search
portal with having updated skills stack in the job portal itself would have
been useful for ensuring tagging of a maximum number of skills present in
the job description data. Online job search portal “Stackshare”1 shows all
the tech stacks used by top companies as well as the job positions open for
these companies. Thus this was chosen to collect the data for our work.
For obtaining the job descriptions, the job ad data was web scraped from
Stackshare. For training the model, we needed sentences tagged with skills.
As the exhaustive list of skills for this specific portal was not available, the
skills list was prepared from the technologies mentioned in the tech stacks
in this website. Some rule-based methods were used to extract the skills
from descriptions as well. This skill list was then used to tag the sentences
automatically by keyword matching. Details of this process are mentioned
in the following sections.

1https://stackshare.io/

https://stackshare.io/
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Figure 4.2: LSTM Network for Job Skill Detection

4.3.1 Data Collection

Data needed for training consists of the job descriptions and the list of skills
in order for labeling in the training phase. From the job descriptions, the
labeling phase requires labeling the skills as 1 and the rest of the words as
0. Thus, knowing all the skills is a necessity for proper labeling. Having the
exhaustive list of all the skills present in the job description is not guaranteed
with the list present from the website nor from the keywords tagged for
individual job description in the job ad and thus labeling is not 100% accurate
as there might be missing skills from the job description.

Two data sources required were as follows:
1. Job Description
2. Job Skills list

Job Skill Collection:
To make this tagging better, the data gathered was focused on one job stack
area which is full stack development. The skills list is scraped from the list
of stack categories of skills present on the website. Categories found on search
(https://stackshare.io/search/q=full%20stack%20development#) are as shown
in Figure 4.4.

For each category, the list of skills is extracted as to get the complete
list of skills for full stack development. For example, clicking on “Languages
& Frameworks” the page gives details about the skills under that category
for full stack development as shown in Figure 4.5. The figure shows the top

https://stackshare.io/search/q=full%20stack%20development#
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Figure 4.3: BILSTM Network for Job Skill Detection

skills shown on the page. The names like “Javascript”, “Node.js”, “Python”
from the page are extracted from the “span” tags with “itemprop” property
as “keywords” gives the name of the skill from the list. This is done for all
the categories as shown in Figure 4.4.

Job Description Collection:
For extracting the job descriptions, a specific keyword search for skills from
the full stack development is done so that the job results would limit the
scope to that area only. Top skills were chosen from various categories like
databases, backend languages and front-end frameworks to have diverse cov-
erage of descriptions for training. Twenty two skills chosen were “angu-
larjs”, “c”, “c++”, “c-sharp”, “django”, “dot-net”, “go”, “html5”, “java”,
“javascript”, “jquery”, “mongodb”, “mysql”, “nodejs”, “nosql”, “perl”, “php”,
“postgresql”, “python”, “react”, “ruby” and “spring”. Job search for key-
word “html5” will show various job results as shown in Figure 4.6. As not all
the job results were shown on the first page, the data was scraped for clicking
the load more button 1000 times and getting the descriptions present in the
results retrieved from that.

Job descriptions after clicking on each of these job ads were collected
for all of these searches. Example of the job description of the first re-
sult obtained from the above search (https://stackshare.io/match/jobs/
hostinger-junior-web-developer-php) is as shown in Figure 4.7.

https://stackshare.io/match/jobs/hostinger-junior-web-developer-php
https://stackshare.io/match/jobs/hostinger-junior-web-developer-php
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Figure 4.4: Full Stack Development - Stack Categories List

The content of the complete job ad was extracted. The skills listed at
the top of the description page were extracted as well to add it to the list
of skills in case they were missed from the previously created skills list. The
skills were scraped from the “div” HTML tag with a class named “col-md-4
col-md-offset-4” from the page and the description is extracted from the all
the paragraph tags from the div with class name “match job-info desc”.
The total number of job descriptions scraped was 16,934.

4.3.2 Data Labeling

For the data labeling task, the skills list obtained from the web scraping was
used for tagging the skills as 1 in the job descriptions. The list had many
ambiguous words which could also be normal nouns or verbs. For example,
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Figure 4.5: Skill List under Languages & Frameworks

there were skills named “go”, “make” and “mean” which can be programming
languages or tools. These skill keywords would appear in other sentences
with different meaning and thus neural network might learn incorrectly the
context if those were tagged as skills in the description. Hence, another list
of skills was manually created which should be excluded from the skills list.
This was created to give a reduced list of skills. Initially, when the models
were run then a lot of predictions happened for the skills which we did not
have in the list of skill. Thus those unknown predicted words were extracted
from the output of the predictions of the first run on test data. The manual
phase of filtering that list was performed to contain only skills. Those new
skills found were added to the skills list used for tagging the documents. The
purpose of this was that the labeling of skills gets better and there are no
missed or wrong labeling done for the skills. Apart from this, a few rule-
based methods were used to extract skills appearing in front of the obvious
phrases indicating the start of the skill lists from job descriptions. Phrases
like “familiarity with”, “working with consists of”, “understanding of”, “you
have used”, “such as”, “primarily using”, “experience in”, “experience with”,
“knowledge of”, “a plus”, “technologies like”, “programming in”, “stacks”,
“basic tech” etc. were searched by keyword matching to extract the ten
words after that in the job descriptions. These were manually filtered for
finding the skills.

In order to verify that the model is learning the context and able to
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Figure 4.6: Job Search Results for Keyword HTML5

detect skills that it hasn’t seen before we set aside some test skills which
would appear only in the test documents and not in the train documents at
all. Once the skills were extracted, the skills were split randomly into train
and test files. Total unique test skills were 1246 and total unique train skills
used were 2568.

The data was split into sentences for it to be fed to the neural network.
The sentences not containing any skills were excluded. If a test skill appeared
in the sentence then it was discarded from the training dataset and were put
in the test dataset. Labeling was done where the skill words would appear
they were tagged as one and the rest were zero. As not all skills were single
words, multi-word skills with length three/two were also considered. In the
cases of key phrases spanning multiple words, we tag each of the words by
the same skill label (1). This is a weaker form of labeling in comparison
to BIO scheme which has a start and end label for key phrases but it is a
stringent case for evaluating label accuracy [51]. We have chosen the weaker
form of labeling. For example, if the skill was “Linux Mint” then both the
words would be labeled as one instead of giving different labels for multi-word
skill. During the accuracy or evaluation calculations, the prediction would
be counted as correct only if both of them were tagged as 1 by the predictor
and the correct skill prediction count would be one instead of two. But if we
have “Linux” as skill in the list and “Linux Mint” in the skill list then both
matchings would have been done. “Linux” labeled as 1 would be correct
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Figure 4.7: Job Description Page

prediction and another prediction of “Linux Mint” would also be counted
if both these words are predicted with label one. If “Linux” is predicted
as 1 but Mint is predicted as 0 then the correct prediction count would be
incremented by one and missed skill prediction count be incremented by one
as well because it missed “Linux Mint” skill. If both of them are zero then
the missed skill prediction count would be incremented by two. This is how
the tri-gram/bi-gram skills are handled in the labeling and prediction phase.
Labeling done on the basis of the skill list available is shown in Table 4.2.

4.4 Input Feature Engineering

As with other problems involving natural language processing, tasks for fea-
ture engineering like stemming, tokenization, creating appropriate word rep-
resentations have been performed to get a suitable input to the network for
it to perform efficiently. The input to the network are the sentences from the
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Table 4.2: Scenarios for Labeling and Prediction Calculations
Type of skills

present in input

Skills known

for labeling
Words

Labels for

words

Predicted labels

for words

Correct skill

prediction count

Missed skill

prediction count

Single bi-gram

skill
“Linux Mint” Linux Mint [1, 1] [1, 1] 1 0

Single bi-gram

skill
“Linux Mint” Linux Mint [1, 1]

[0, 0] OR [1, 0]

OR [0, 1]
0 1

Mixed bi-gram

skill
“Linux”, “Linux Mint” Linux Mint [1, 1] [1, 1] 2 0

Mixed bi-gram

and single skill
“Linux”, “Linux Mint” Linux Mint [1, 1] [1, 0] 1 1

Mixed bi-gram

and single skill
“Linux”, “Linux Mint” Linux Mint [1, 1] [0, 0] 0 2

job descriptions. Each sentence representation can have information about
the word, various features like part of speech tag for the word, case of the
letters in the word, etc. For the experiments in this thesis, there are a few
features selected which would benefit the prediction or which would add in-
formation that is indicative of the context for the skill words.

Word embeddings for the words in the sentence are considered as one
of the input features. As this is a domain-specific task, already existing
Word Embeddings like Glove2, Wikipedia word vectors3, GoogleNews4 etc.
were not used because they miss the relationship between the words that
are more frequent in the job description data. Thus Word2Vec model was
trained on all sentences of the job descriptions so that words having semantic
similarity would end up having vectors close to each other which would help
the prediction ultimately. Gensim module of Word2Vec with Continuous
Bag of Words algorithms for training was used to first train the word vectors
on the job descriptions corpus and then in the neural network model, the
vector obtained from this model was used for training as input. The total
unique length of the vocab built with Word2Vec model is of size 48671.
Dimensions used for vectors were in the range of the embedding sizes tested
for hyperparameter testing which was 200, 300, 400. All these words were
mapped to these low dimensional dense vectors using Word2Vec. Another
experiment with not using the pre-trained vectors using the Word2Vec model
is also tested to measure the performance differences when only pytorch on
the fly training is used to learn the word embeddings for the words.

Stemming was not performed on the words for these experiments to avoid
the ambiguity between the skill “programming” versus the word “program”
for instance. The total number of words in the dictionary was not too huge to

2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/docs/en/pretrained-vectors.html
4https://code.google.com/archive/p/word2vec/

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/pretrained-vectors.html
https://code.google.com/archive/p/word2vec/
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accommodate all the words without stemming. While doing the tokenization,
sentences were obtained by splitting the job descriptions by newline as well
as the sentence ending characters. Also, specific care was taken such that “.”
appearing in other instances like website link or email ids etc should not be
split and “.” appearing in the versions of software, etc. cases were handled
as well.

The Capitalization of the letters was preserved for obtaining the vector
for letter case information. While building the vector for indicating if the
first letter of the word is uppercase or not, these tokens were used where
original cases are preserved. Vocabulary is however built with lowercased
tokens obtained from the text. As it was observed in the dataset that many
skills are mentioned with the first letter being capitalized. Hence, this would
be a good input feature for the model to learn if the word is a skill or not.

Part of speech tagging was also used as one of the features for giving
input to the neural network. NLTK package was used to obtain the POS
tags for the words using the pos tags function. This was also one of the
reasons to not apply stemming to tokens for it to learn the proper tags. Stop
words from the text were not removed so that the sequence of the part of
speech tagging would help in learning where exactly in the sentence the skills
appear. Unique IDs of the part of speech tags are 32 and those ids are used
for creating the vector for the sentence as input.

Experiments include different combinations of word embeddings, POS
and letter case vectors to see if there is an effect of those features for pre-
diction of the labels. An example input vector for these input features is as
shown in Table 4.3. Assuming the IDs for those tags are “NN”: 1, “VBG”:
2, “IN”: 3, “JJ”: 4, “NNS”: 5. The meaning and list of all the POS tags are
as per the Penn Tree Bank [33]. The letter case vector is built using the case
information of the first letter in the sentence and if it is uppercase then it
is tagged as one. The sample example of vector generation is as shown in
Table 4.4.

Table 4.3: Part of Speech Vector
Experience working in big data systems such as Hadoop Presto etc

NN VBG IN JJ NNS NNS JJ IN NN NN NN
1 2 3 4 5 5 4 3 1 1 1

Table 4.4: Letter Case Vector
Experience working in big data systems such as Hadoop Presto etc

1 0 0 0 0 0 0 0 1 1 0
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4.5 Hyperparameter Selection

Optimization and hyperparameter selection play an important role in making
the difference between the good and state-of-the-art results with LSTM Net-
works [50] and it is not straightforward as it requires tuning many parameters
like the dropout rate, the pre-trained word embeddings, and many other hy-
perparameters. Making the correct hyperparameter optimization is often like
the “black art that requires expert experiences” [54]. An in-depth analysis in
hyperparameter optimization for sequence tagging tasks is published in [50]
where the authors have shown which parameters result in high-performance
improvements over other parameters.

4.5.1 Number of Epochs

The number of epochs initially is set high around 30 to see the performance
of the neural network training. A few samples from train data have been
set aside to check the performance of the model during training. Model
checks the performance during intermediate steps on this set-aside validation
dataset. This is used for tuning the hyperparameters of the neural network
model [20]. A model may be underfitting if performance on the training
set is better than the validation set and performance has plateaued. The
over-fitting can be observed when the validation set loss keeps increasing but
training loss gets better, thus the training needs to be stopped where the test
loss is close to train loss and does not increase with train loss improvement.
Thus we check the performance of the model on the validation data to see
how well the network is generalizing over that dataset. Plotting the loss for
train and validation dataset gives an idea about the model training progress.
After running for more epochs, the epoch at which the best performance
is achieved is recorded and the final model can be obtained by stopping
the training at the appropriate epoch number. After running the model for
30 epochs, the best performance was obtained for the various combinations
between 11-15.

4.5.2 Word Embedding Dimension

Word embedding dimension between 100-300 is widely used in NLP tasks [50]
and it could potentially increase the performance as mentioned in [11]. Thus,
these combinations were tested in the experiments.
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4.5.3 Hidden Layer Dimension

Number of recurrent units has shown not to affect the network performance
largely. Having this value too large or too small will not be suitable ei-
ther [50]. If it is too small it will not be able to store the necessary infor-
mation and if it is too large then it will overfit the train data and the test
performance will decrease. A value of 100 has been shown to give good results
in POS, NER, chunking, Entities detection and event recognition which in-
volves sequence labeling [50]. Thus, in this thesis experiments, we have used
100 hidden units.

4.5.4 Mini Batch Size

Mini Batch gradient descent is a variation of the gradient descent algorithm
that divides the training data into small chunks of batches that are further
used to calculate model error and to update model coefficients. Gradient
descent is used for optimizing the model and there exist different types like
Stochastic, Batch and Mini Batch variations of the Gradient Descent algo-
rithm. Mini-batch updates the model more frequently than the Batch version
and thus it allows for more robust convergence and helps to avoid local min-
ima. For the POS tagging task, the optimal size of 1 was found [50]. Thus,
the choice of mini-batch size of 1 was selected. The experiments were run
without padding the sentences. If padding is done in the future, then tests for
mini-batch sizes up to 8-16 can be tested to see the performance differences.

4.5.5 Optimizers

Adam [3] and Adam with Nesterov momentum [37] (Nadam5) optimizers
have performed the best for sequence labeling tasks using LSTM networks,
followed by RMSProps [63] [50]. Nadam had the best convergence time
in [50]. SGD [60] has shown high sensitivity to learning rate. The adaptive
learning rate for Adam has performed well. Thus for the experiments, Adam
with adaptive learning rate, Nadam and SGD with a few different learning
rates were used to find the best performing optimizer and experiments were
performed on these optimizers to observe if it showed similar performance
results as shown in this research for sequence labeling task [50].

5https://github.com/rwightman/pytorch-commands/blob/master/train.
py

https://github.com/rwightman/pytorch-commands/blob/master/train.py
https://github.com/rwightman/pytorch-commands/blob/master/train.py
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4.5.6 Dropout

Dropout helps the neural network to generalize better [37]. Dropout multi-
plies neural net activations by random zero-one masks while training. The
dropout probability p determines what portion of those mask values are
one [5]. The dropout value of 0.5 works well for a wide range of tasks [58] but
the speech community has experienced that careful selection of the dropout
is required for speech related tasks [5]. Thus, even for our task involving lan-
guage understanding we experiment and find out which one works the best
for this task. In dropout, there is an option to not use dropout, use naive
dropout or use variational dropout. Variational dropout performed the best
on all tasks of sequence labeling used in [50] superior to no-dropout or naive
dropout. Due to time constraints, only naive dropout strategy with values
[0.05, 0.1, 0.25, 0.5] was tested to find the most effective values.



Chapter 5

Evaluation

In this chapter, we evaluate the different techniques mentioned in previous
chapters for extracting skills from the job descriptions. A comparison of dif-
ferent techniques and analysis of the results is done at the end, to determine
which method works best for this task.

5.1 Quality Metrics

All approaches experimented are evaluated primarily on the precision, recall,
F1 Score and accuracy attained for test and train skills. Accuracy of test
and train skills is done separately to understand the out of vocabulary skill
detection capacity of the system. Out of vocabulary is the list of words
that the model has not seen in the training dataset. This is an essential
factor for evaluation since this proves that the model is actually learning the
context and not just the word itself. This is the metric that would determine
the suitability of the system in automatically detecting the unseen skills.
Simply counting the words labeled as skills is not sufficient since there are
multi-word skills present as well. Hence, the correctly predicted skill is as
per the explanation is given in Section 4.3.2 of Data Labeling. Once the
correct number of skills are predicted and missed skills predicted count is
obtained, true positive, false positive and false negative are calculated and
then calculations for precision, accuracy, etc. are done. Train and test skill
lists are split in the beginning as the evaluation would involve considering two
cases of evaluation: 1. train skill performance and 2. test skill performance.
The counts of correct prediction of skills are counted separately for each of
these cases to get the accuracy for the corresponding category. If the word is
predicted as 1 (skill) but it does not exist in any of the above lists then it is
counted in unknown skill prediction counter. Precision, Recall and F1 scores

43
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need calculation of true positive, false positive and false negative which is
done as given in following equations equations 5.1, 5.2 and 5.3:

true positive count = correct test skills predicted+

correct train skills predicted
(5.1)

false positive count = unknown skill predicted (5.2)

false negative count = missed test skills+

missed train skills
(5.3)

Precision, recall and F1 score are calculated as per the formulae given in
5.4, 5.5 and 5.6:

precision = true positive count/(true positive count+

false positive count)
(5.4)

recall = true positive count/(true positive count+ false negative count)
(5.5)

f1 score = 2 ∗ (precision ∗ recall)/(precision+ recall) (5.6)

Another metric measured is the average efficiency of the skill detection
which is the average percentage of the skills detected out of skills actually
present. Average efficiency is counted by calculating the percentage of skill
detection rate per line and taking the average based on the number of rows in
which it is present. This is done separately for train and test skill to use that
as a metric for the performance of the system. It indicates given the number
of skills present in the sentence how many will be detected on average by
the system built. Efficiency per line is calculated using formulae given in
equations 5.7 and 5.8 given as follows:

test skill efficiency per line = (correct testskills predicted ∗ 100)/

total test skills present
(5.7)

train skill efficiency per line = (correct train skills predicted ∗ 100)/

total train skills present
(5.8)
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Once this is calculated per line and are summed up. Then the average
efficiency is calculated for test using Equation 5.9 and for train using Equa-
tion 5.10 which are given as follows:

total test efficiency = sum of test skill efficiency per line/

number rows having test skills
(5.9)

total train efficiency = sum of train skill efficiency per line/

number rows having train skills
(5.10)

This is calculated separately for train and test skills. For example, the
total efficiency is 70% for train skills which indicates that for every train skill
present in the line has a 70% chance of getting detected as a skill by the
system.

5.2 Results

Methods used for evaluation were quality metrics mentioned above for com-
parison. To monitor the model training, test vs. train loss and accuracies
were plotted to find at which epoch both the train and test loss stabilizes.
To visualize the loss, train and test loss at an equal interval of 10,000 steps
were noted and plotted as shown in Figure 5.1. Model is trained on 60,756
documents for 15 epochs and after every 10,000 steps model is evaluated
on 5000 validation documents. Train loss and validation loss is recorded at
these points. The train and test loss plotted for the best hyperparameter
combination obtained for BILSTM experiment is shown in Figure 5.1. The
plot depicts that the model was learning and improving the predictions as
the loss showed a steady decreasing trend. Along with train loss, validation
loss is also decreasing which shows the model is not overfitting the train
data. After step 45 the training loss has plateaued but test loss is improving
slightly after that, hence training the model for few more steps has improved
the model. This is observed to find out the ideal number of epochs initially.
15 epochs were found to be sufficient for this experiment to get reasonable
loss values. Similar charts plotted for various combinations helped to verify
if the model is not underfitting or overfitting.

5.2.1 Hyperparameter Selection

Hyperparameter selection for the neural network was obtained by running
multiple experiments with different settings of the learning rate, optimizers,
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Figure 5.1: Train loss Vs Validation loss

dropout and learning rate updating techniques. Once the optimal parame-
ters were found, LSTM and BILSTM performances were compared by fixing
these hyperparameters with the best parameters discovered from these ex-
periments. For testing the hyperparameters, BILSTM classifier with all the
features (word embeddings, POS and case tag) were used to first find the
hyperparameters and then those best parameters were used for comparing
other combinations of inputs and classifiers that are comparing the LSTM
and BILSTM classifiers with different combinations of input features. First,
the type of optimizer and type of learning rate updating techniques were
selected for experiments by running it for optimizers Adam, Nadam, RM-
SProps and SGD. As previously discussed in Chapter 4 these have proven to
work well for a sequence labeling task.

Adam optimizer has been shown to work well with the Adaptive learning
rate, thus we experimented with two learning rates for the Adaptive setting
for Adam optimizer first. We also ran it with Non-Adaptive learning rate up-
dating technique. The Adaptive learning rate is implemented with stepLR1

function in pytorch which decays the learning rate at every step size(=5) by

1https://pytorch.org/docs/0.3.0/_modules/torch/optim/lr_
scheduler.html#StepLR

https://pytorch.org/docs/0.3.0/_modules/torch/optim/lr_scheduler.html#StepLR
https://pytorch.org/docs/0.3.0/_modules/torch/optim/lr_scheduler.html#StepLR
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gamma(=0.1) which are set manually in the parameters of the function. The
experiments were run for 15 epochs and the step size used was 5. When the
starting learning rate is 0.01 then the following learning rate values at differ-
ent step size intervals will be 0.001, 0.0001 and so on. From the Table 5.1,
0.01 worked better compared to 0.05 for Adam. Adaptive strategies with
different starting learning rates were tested for Adam as that was shown
to work well for that optimizer [50]. Along with optimizers, different em-
bedding dimensions were tested in parallel as that affects the performance
too [50]. Embedding sizes of 50, 100 and 200 were tested for each optimizer
and learning rate updating technique.

The learning rate of 0.01 was kept constant while comparing different
optimizers. Non Adaptive learning rate in the majority of the cases worked
better for Adam, Nadam, and SGD. The best results obtained in these com-
binations for Adaptive and Non-Adaptive are plotted as shown in Figure 5.3.
Results show that the best results for different optimizers had obtained from
the Non-Adaptive learning rate technique except for Nadam were both were
equally performing well. Even though the best results were the same for
Adam, the embedding size required to get the same result in the Adaptive
strategy was 50 as opposed to 200 in Non-Adaptive strategy. Results ob-
tained in [50] had suggested that Adam worked well with adaptive but in
our results, Non-Adaptive worked better than the Adaptive when compar-
ing the best test skill accuracy metric. RMSProps with 100 embed size and
Non-Adaptive learning rate worked better than the best score obtained with
Nadam and Adam which is not similar to what was found in [50] where
Nadam gave the best results on sequence labeling. For this specific dataset,
SGD with Non-Adaptive 0.01 learning gave the best results with 56% Test
skill accuracy and F1 score of 82. This is obtained with a 50 embedding
dimension compared to other dimensions. Test skill accuracy metric is used
for comparison for these experiments since the ability of the system to de-
tect the words not seen in the training dataset is an important indicator for
systems requiring to deal with unseen words. This will be indicative of the
system’s performance on identifying skills automatically and thus considered
as the main differentiating factor while choosing the best hyperparameters.

When the best optimizer and learning rate updating technique was ob-
tained, those parameters were fixed and then the comparison of pre-trained
word embeddings with non-pre-trained word embeddings was done. The
results clearly showed significant differences between the pre-trained and
non-pre-trained word embeddings. The highest test skill accuracy obtained
without pre-trained word embeddings was 14% compared to 56% when pre-
trained word embeddings were used.

When the best optimizer and learning rate updating strategy was ob-
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Table 5.1: Hyperparameter Optimization Results
Pre-trained

Word Embeddings

Word Embedding

Dimension
Optimizer Type of LR LR (F1, precision, recall)

Test Skill

Accuracy(%)

Train Skill

Accuracy(%)

Yes 50 Adam Adaptive 0.05 (52, 90, 37) 20 48

Yes 100 Adam Adaptive 0.05 (62, 89, 47) 24 61

Yes 200 Adam Adaptive 0.05 (61, 85, 48) 27 60

Yes 50 Adam Adaptive 0.01 (75, 91, 65) 39 80

Yes 100 Adam Adaptive 0.01 (74, 92, 61) 34 78

Yes 200 Adam Adaptive 0.01 (74, 91, 63) 35 80

Yes 50 Adam Non-Adaptive 0.01 (75, 89, 65) 41 80

Yes 100 Adam Non-Adaptive 0.01 (72, 90, 60) 33 77

Yes 200 Adam Non-Adaptive 0.01 (76, 89, 66) 40 82

Yes 50 Nadam Adaptive 0.01 (74, 91, 62) 36 78

Yes 100 Nadam Adaptive 0.01 (69, 92, 56) 28 72

Yes 200 Nadam Adaptive 0.01 (72, 92, 59) 31 75

Yes 50 Nadam Non-Adaptive 0.01 (69, 91, 56) 30 71

Yes 100 Nadam Non-Adaptive 0.01 (71, 90, 58) 30 75

Yes 200 Nadam Non-Adaptive 0.01 (74, 90, 63) 36 79

Yes 50 RMSProps Adaptive 0.01 (78, 89, 70) 46 84

Yes 100 RMSProps Adaptive 0.01 (79, 90, 70) 45 86

Yes 200 RMSProps Adaptive 0.01 (80, 90, 72) 46 88

Yes 50 RMSProps Non-Adaptive 0.01 (78, 88, 69) 44 85

Yes 100 RMSProps Non-Adaptive 0.01 (80, 87, 73) 50 88

Yes 200 RMSProps Non-Adaptive 0.01 (60, 92, 45) 19 60

Yes 50 SGD Adaptive 0.01 (79, 89, 71) 44 88

Yes 100 SGD Adaptive 0.01 (77, 90, 68) 39 85

Yes 200 SGD Adaptive 0.01 (79, 90, 70) 43 86

Yes 50 SGD Non Adaptive 0.01 (82, 85, 79) 56 94

Yes 100 SGD Non-Adaptive 0.01 (81, 86, 77) 52 93

Yes 200 SGD Non-Adaptive 0.01 (82, 87, 78) 55 92

No 50 SGD Non-Adaptive 0.01 (63, 89, 49) 5 74

No 100 SGD Non-Adaptive 0.01 (70, 87, 59) 13 86

No 200 SGD Non-Adaptive 0.01 (65, 60, 72) 14 87

tained, the next hyperparameter selection experiments for finding optimal
learning rates were done. Learning rates {0.001, 0.004, 0.01, 0.02, 0.025,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09} were tested with best optimizer SGD
and Non Adaptive learning rate updating strategy with 50 embedding di-
mension is as shown in Table 5.2. Values far from 0.01 in both directions did
not give comparable results for test skill accuracy. As shown in Figure 5.2
peak is found at 0.01 learning rate when test skill accuracy for all learning
rates is plotted. Accuracy rates showed an increasing trend after 0.04 learn-
ing rate but they were not as high as 0.01 learning rate. The values of test
skill accuracy rates are not constant for every run and thus to avoid biased
interpretations based on a single run, experiments were run twice and average
values of two runs were plotted. These experiments confirmed that the learn-
ing rate chosen was optimal and no other optimal learning rate was found
from the experimented learning rates. Another hyperparameter, dropout
was tested with different probability values on the LSTM layer. Dropout is
a good way to generalize the model [5] and thus the model was tested with
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different dropout values for observing the performance variations based on
that is as shown in Table 5.3. Dropout values experimented were {0.01, 0.05,
0.1, 0.25, 0.5}. As can be seen from the table, dropouts did not improve the
results compared to when the dropout was not used. Test skill accuracy with
a dropout of 0.25 was closer to the best result of 0 dropouts. This shows that
adding this dropout for LSTM layers did not reduce the performance much
and thus can be used if a more generalized model is required. For further
experiments, we keep the dropout of 0 as that gave the best results.

Table 5.2: Leanring Rate Performance comparison for Best Optimizer

Learning Rate
Average Test

Skill Accuracy

Average Train

Skill Accuracy

0.001 44 84

0.004 44 86

0.01 52 91

0.02 47 88

0.025 44 88

0.03 44 87

0.04 43 89

0.05 46 88

0.06 45 87

0.07 48 90

0.08 48 89

0.09 52 89

5.2.2 Comparison of Input Features and Models

Results in Table 5.4 indicate that BILSTM with all the three features per-
formed better than the rest of the combinations of values. Adding the fea-
tures has not shown significant changes in the performance for the LSTM
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Table 5.3: Dropout Performance comparison for Best Optimizer

Dropout (F1, precision, recall)
Test Skill

Accuracy

Train Skill

Accuracy

0.01 (81, 88, 74) 49 90

0.05 (81, 88, 74) 49 90

0.1 (80, 87, 75) 49 91

0.25 (81, 88, 76) 52 90

0.5 (80, 89, 72) 48 87

0 (82, 86, 79) 56 94

model. There is a marginal improvement after using the POS tags and case
tags for the BISLTM model. Adding more features on top of the pre-trained
word embeddings has certainly improved the results for BILSTM. BILSTM
has shown to give better results than LSTM. F1 score is more or less the
same for both LSTM and BILSTM. As we are interested in finding out how
many test skills were detected, BILSTM has shown to detect 56% of the
test skills compared to 51% in LSTM. This metric is used for comparing
the performance and based on that BILSTM performed the best for job skill
detection compared to LSTM.

Table 5.4: Performance Metrics for all experiments

Features Model F1 Score Precision Recall
Test Skill

Accuracy

Train Skill

Accuracy

Word Embeddings LSTM 81 87 75 51 91

Word Embeddings

+ POS
LSTM 81 88 75 51 90

Word Embeddings

+ POS

+ Case Info

LSTM 80 88 74 48 90

Word Embeddings BILSTM 81 87 76 51 93

Word Embeddings

+ POS
BILSTM 80 88 72 47 88

Word Embeddings

+ POS

+ Case Info

BILSTM 82 85 79 56 94
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Figure 5.2: Leanring Rate Vs. Test Skill Accuracy

For representing the output of the predictions, an HTML file was created
to visualize the outcome of predictions in a better way. The sample output
of the best model prediction output file is as shown in Figure 5.4. Prediction
for the first sentence in the figure shows that [“iam”, “route”, “dynamodb”,
“redshift”, “unix”] are some unknown words(not present in our skill list) that
are predicted as 1 which we can easily see that those are actually skills. Words
[“aws”, “elasticache, ”emr“, ”sqs“, ”elb“, ”puppet“] are the test skills which
have been predicted correctly by the model. The word ”designing“ is a test
skill that is missed but from the sentence, it is clear that it is not a skill in this
context as the main skills are ”unix“ and ”linux“. Word ”vms“ is in the train
skill list which it failed to detect as skill. Words [”s3“, ”cloudfront“, ”rds“,
”redis“, ”sns“, ”route53, “bare”] are train skills which have been predicted
by the model correctly. Some more examples are shown in Figure 5.5. This
figure shows unknown predictions like [“redshift”, “dynamodb”, “pyramid”,
“oracle”] are indeed skills and many of the test skills which are in sequence
of skills are predicted as skills as well. Word “oracle” was omitted from the
skills list as it is the name of the company as well. The model has predicted it
as a skill in where it is actually a skill and not as a company name mentioned
in the sentence.
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Figure 5.3: Optimizer wise comparison of Test Skill Accuracy by Learning
Rate Updating Strategy

Final results for the model resulted in an accuracy of 94% for train skills
and 56% for test skills which is an indicator of the BILSTM model being
capable of capturing the context to learn the skills present in the job de-
scription sentences. Total train skills present in the test dataset was 1,34,070
out of which 1,25,775 skills were successfully predicted. Out of 84,185 test
skills present 47,035 skills were predicted correctly. The analysis of unknown
skills predicted showed that out of 31,492 skills 2000 were unique. After
manual inspection, it was found out that around 1800 of those were actual
skills and 200 were false positives. This adds to the accuracy of predicting
the unknown skill in the dataset. Overall the performance of the system has
shown to detect around 60% of the skills that were not shown to the system
in the training.
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Figure 5.4: Prediction Sample Output with All Cases of Predictions. Bold
RED is for missed train skill, BOLD GREEN is for correct train skill pre-
diction, NORMAL GREEN is for test skill prediction, NORMAL RED is
for missed trained skill and BOLD BLACK surrounded by is unknown skill
prediction

Figure 5.5: Prediction Output with Unknown and Known Skill Prediction



Chapter 6

Discussion

6.1 Results Interpretations

Results obtained for skill detection using BILSTM (Test Skill Accuracy=56%,
F1 = 82, Train Skill Accuracy= 94%) were comparatively better than LSTM
(Test Skill Accuracy= 48%, F1 = 80, Train Skill Accuracy= 90%). This in-
dicates that using the context before and after the word were indicative of
the skill presence and has improved the results. The possible reason behind
this could be that there are many words that occur right after the skills which
make the prediction of the word skill better than LSTM. For example, in job
description sentence “Experience with Virtualization and Containerization
is a plus” where words [“is”, “a”, “plus”] after the skills Virtualization and
Containerization are indicative of the previous words being skills as much as
the words before the skills [“Experience”, “with”]. There are different ways
of expressing the same needs and possibilities of contexts appearing after
the skills which are quite likely since different recruiters would use different
styles of expressing job requirements. Hence, BILSTM certainly utilizes the
context on both sides and does not miss out on important indicator contexts
for skill words. Results obtained are aligned with this hypothesis that BIL-
STM should not give worse results than LSTM if not better since BILSTM
utilizes more information for prediction than LSTM.

Test skills prediction was improved after training the Word2Vec model
on all the documents, this is another requirement that the word embed-
ding learning should be learned on the new data to get better skills pre-
dictions. This suggests that a sufficient amount of examples for new skills
should be present before trying to predict the new documents containing
new skills. The difference of test skill accuracy between the pre-trained and
non-pre-trained word embeddings was significant. The highest accuracy for

54
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test skills obtained was 14% with non-pre-trained compared to 56% in the
case of pre-trained. This indicates that word embeddings which represent
the semantics of the words present in the corpus are an essential feature for
the BILSTM/LSTM model to work well on the unknown words.

Another observation is also that only having the context of the words is
not enough for prediction. Since the word itself also has some importance
as the common stopwords or most frequently occurring words like “other”,
“etc”, and “so on” which could appear in the sequence of skill words where
skills are listed one after the other. For example, “We need a person having
skills in Python, Java, SQL and MongoDB” has skill words one after the
other in the sentence so the model could learn if the word is surrounded
by skills then the word under consideration is a skill. However, this is not
the case every time as there exist sentences for example “We need a person
having skills in Python, Java, MongoDB, etc.”. If the model is learning
that “Python”, “Java”, “MongoDB” etc. are always followed by each other
then the word present in that sequence will be predicted as skill given the
neighboring words are skills. Also, the word embedding vector of non-skill
word appearing closer to skills could also be similar to skills’ word vector
since it often appears in that context. Hence, having additional features
other than just word embedding will help distinguish skills better for the
model. The reason behind correctly tagging such cases from our best model
could be that these additional features might have helped to understand the
skill features appropriately. There are cases where the model has properly
tagged the non-skill words as 0 when occurred close to skill sequence. For
instance “daily work with ubuntu debian or other linux distributions” in this
other is not tagged as a skill by model and [“ubuntu”, “debian”, “linux”] are
correctly tagged as skills. This is a very frequent sequence that is present in
job descriptions where requirements are listed in sequence.

There is a possibility of misleading predictions when only context and
word embeddings are considered as there are conflicting situations when non-
skill has the same context as skill. For example, “fluency in french english and
other languages is a plus” and “fluency in developing both object-oriented
and functional code on server and client”. In the prior example “French” is a
skill and in later example word “developing” is not a skill. BILSTM/LSTM
model given only the word embeddings for words in the input sequence will
not be able to make the distinction. We can observe that for the best model
parameters without the POS tagging used as input it fails to detect French
as a skill but with POS added as feature it detects it as a skill since the POS
tags for prior example french is “JJ” tag and in later case developing has
“VBG” tag. This feature difference would help the model learn when this
“JJ” is followed after “Fluency in” word sequence then it is a skill otherwise
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it is not. This shows the importance of adding extra features for resolving
such conflicts.

Automatic labeling of the skills had missed a few actual skills present
in the descriptions. Since some of the skills were excluded from the skills
list those were not tagged as skills while feeding it to network for training.
The model has missed learning those contexts which could have been good
predictors for skill detection. Many of those words and some unknown skills
were predicted by the model on test dataset which has shown the capability of
the model to predict unknown skills based on the context. One of the reasons
could also be that context for those unknown words had been learned due
to the presence of the samples having actual skills with the same context.
For example, the context of “familiar with” was often present in the job
descriptions and thus when the skipped skill of “node” from the labeling skill
list was present in the test dataset with this context then it was predicted as
a skill by the model. Word “node” when used with “node js” is a skill but
individually it could not be a skill thus was removed from the list. The model
detects it as skill when it appeared in the sentence “familiar with node js,
hapijs, mongo db”. This is one of the reasons why unknown words predicted
as skills when inspected manually were found to be actual skills.

6.2 Comparison with Related Work

Related research in the area of sequence labeling for entity recognition in
resumes had used manual labeling which had given the F1 score of 76 [28].
In our experiments, the labeling was automated due to a large number of
documents and thus was not 100% accurate. Even with those limitations,
the results gave an F1 score of 82. Skills not present in the training dataset
were also tested and accuracy obtained for that was 56%.

Research done on building the skills tagging for the CareerBuilder [74]
where they had used 100M documents for training had obtained an accuracy
of 82% and recall of 72%. In this thesis, we obtained a total 79% accuracy
with 65K input train data. 85% precision and 79% recall for skills is ob-
tained with this small dataset. Given the constraints of limited skill tagging
for training and the amount of data, the accuracy and recall is comparably
better. Limited skill tagging due to automation and unavailability of all the
skills was the main hurdle in obtaining completely reliable labeled data for
our experiments. Even if all the skills were present, fully automated labeling
is not possible due to the conflicts between the skill words and their meaning
in other contexts. For instance, there are skill names like “MEAN”, “GO”,
“ARM” etc. which have other meanings too and could occur in sentences
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where they are not skills. There are instances like company names which
could be skill too. This is more common in software-related jobs since com-
panies make software technologies. Tagging all the occurrences of these words
would have resulted in the wrong training of the model since it would learn
the contexts where it is not a skill. To avoid this scenario we had excluded
the skills from the labeling. On the other hand, it is also misleading training
data for the NN because there are cases where the word is a skill, but the
training label is 0.

6.3 Limitations of Experiments

Good labeling is crucial to model training to be able to learn the skill contexts
correctly. Automatic labeling was done in the experiments which do not
cover all the skills. In the cases where the labeling was done properly by the
automated labeling, those cases were predicted mostly. There are also cases
where the words are actual skills but were excluded due to their ambiguity.
Some of the ambiguous words which are in some cases skills and not in others
were excluded from the skills lists. These ambiguous words are like company
names, words which have multiple meanings, etc. Some of those were missed
by the system. This is because manual labeling was not done. Some of the
examples with corresponding reasons are as shown in Table 6.1.

Table 6.1: Missed Skills in Training Data
Sentence Examples of Missed Skill Words Reason

developing visualization dashboards interfacing with tools like tableau tableau company name

experience working with one or more of the following apis facebook salesforce saml facebook, salesforce company name

our stack covers go scala java kafka grpc protobuffs and aws go multiple meanings

you are a wizard on the mean stack mean multiple meanings

As all skills were also not available, there were also cases where the skills
were not tagged in the training dataset. This limitation can be handled by
adding more features other than word embedding which is specific to skills in
order to capture more of these mislabeled skills in the training data. Adding
just the POS tags is not enough since, with a limited number of POS tags,
the skill words cannot be distinguished from other words. Observation of the
job descriptions showed that most of the skills have the first letter capitalized
thus combining both these features have given marginally better performance
over just the word embeddings. Lack of proper labeling is certainly one of
the limitations of this system.

Neural net models take a lot of time for training, thus due to the limited
time, the number of epochs ran was around 15. These are practical limita-
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tions even in real time applications where it is not possible to get the labeled
data. Apart from that, there exist many combinations of hyperparameters.
This makes it difficult to state that the hyperparameters obtained from se-
lected choices of combinations for experiments would yield the most optimal
combination.

Pretrained word embeddings were trained on a complete corpus which
had test data as well which might have helped in predicting the unseen
words. It was necessary to do the training of Word2Vec on all the documents
including the test documents because otherwise the word embeddings would
not have been learned for the words that exist only in test data. In real-world
applications, sufficient amount of new skill instances must be present or the
assumption is that those would have a similar context as given in some of
the training datasets. If these conditions fail then the system might not be
able to predict the skills. False positives which are not actual skills are also
one of the concerns for this automatic detection as they cannot be avoided
completely and the current system predicts some words which are not skills
as skill.

6.4 Future Work

Similar research in the area of finding attributes from the description data [51]
had obtained better results with the CRF approach on top of using BILSTM.
Their experiments resulted in 91% accuracy for previously unseen attributes.
This is more compared to the results that are obtained in this thesis. Possible
reasons could be the use of CRFs based approach as well as the proper
labeling done before training and using a large number of documents for
training which was not feasible for the study done in this thesis. Character
embeddings along with the word embeddings were used in their research.
There are a few studies done where character level features extracted using
CNN based approach were used as input to sequence labeling model [36].
Apart from LSTM recurrent unit, GRU units have shown to work comparable
to LSTM for sequence modeling task [10]. This approach can be compared
with LSTM and BILSTM based sequence labeling. All the above-mentioned
approaches could be tested in the future to improve the results obtained in
this thesis.

In one of the studies related to sequence tagging, connecting the extra
spelling and context features to the output layer directly has shown to accel-
erate the training with similar accuracy results [23]. It is mentioned in their
research that attaching the input features directly to output has the same
flavor of Maximum Entropy features as in [40]. Feature collisions occurred
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in [40] were due to the feature hashing technique adopted. Output labels in
our case are less compared to the labels in language models, it is possible
to have full connections between features and output in order to avoid the
feature collision [23]. This can be used in future experiments to see if there
is performance improvement or not as well. With accelerated training, the
convergence might happen earlier and more runs can be tested with less time
which would allow for more hyperparameter combination testing.

One of the main hurdles in this thesis was the unavailability of the prop-
erly labeled data. For speeding up the tagging in case of obtaining the
manually tagged data one can use active learning. One of the research done
in active learning for tagging the training data has been found useful where
training instances may have multiple tags. This can be used in future exper-
iments to obtain reliable labeling instances [13].

Factors like momentum setting and weight initialization strategies have
the potential to improve training time and performance. These were not
explored thoroughly in our experiments. Momentum is the size of the steps
taken for getting towards minimum to try to avoid the local minima. This
is for accelerating the training of models as well as improving the accuracy.
One of the studies conducted on showing the importance of initialization
and momentum [61] have shown that the initialization and momentum are
crucial parameters for deep neural networks and RNNs. Previously it was
considered that RNNs are difficult to train when using SGD with momen-
tum. As our experiments have shown better performance with SGD, further
research in improving the training with SGD can be done with momentum.
Poorly initialized networks are difficult to train with momentum and well-
initialized networks perform significantly worse when momentum is poorly
tuned [61]. Even the research in hyperparameter optimization for LSTM has
shown the performance changes based on random initialization. By keeping
all the parameters constant if only the seed value is changed for random ini-
tialization then it has shown to give significant performance impacts on the
test dataset [50]. This can be experimented for the currently achieved best
parameters to find any performance impacts.

LSTM may suffer from the exploding gradient problem. Exploding gra-
dient problem occurs when training deep neural networks using gradient de-
scent by backpropagation which is the case with LSTM [47]. When large error
gradients accumulate then the weights either underflow or overflow causing
the model to become more unstable and impair effective learning. Strategies
like gradient clipping and gradient normalization are used to avoid the ex-
ploding gradient problem. Gradient clipping clips the gradient’s components
element-wise if it goes beyond a defined threshold. Gradient normalization,
on the other hand, has a better theoretical justification and it rescales the
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gradient when the norm goes over a threshold. For sequence labeling tasks,
gradient normalization as described by [48] improves significantly the perfor-
mance. Performance improvement study in paper [50] showed that gradient
clipping has not shown statistically significant performance improvements for
sequence labeling tasks. Both these techniques can be tested in the future for
observing if any performance improvements can be obtained by implementing
these strategies for skill detection tasks.

The padding of the sentences to make all the input sizes to the network
equal was not done in this thesis. Incorporating this would also enable to try
out different mini batch sizes for future experiments. The optimal size of the
mini batch has been shown to depend on the task [50], this optimal size can
be found out for skill detection task. Along with this, different optimizers
other than Adam, Nadam, SGD, and RMSProps can also be tested to find
out the optimal optimizer for this task. In this thesis, we have experimented
with the top better-performing optimizers found out for POS, Chunking,
NER, Entity Recognition, and Event Detection as per [50]. Another strat-
egy of making the performance better and making the model generalized is
by adding the dropout layers. In our experiments only dropout in recur-
rent units was introduced with naive dropout strategy of static dropout rate.
Variational dropout has shown to improve the performance for sequence la-
beling tasks [50] which can be experimented to find out its’ effect on model
learning for the skill detection task.



Chapter 7

Conclusions

Job recommendation is challenging and growing area of research in recent
years. In this thesis, we have implemented a technique to help the job rec-
ommendation problem by identifying skills from job descriptions. Currently,
there is no easy way to tag the job descriptions automatically with the skills
present in it unless done with an exhaustive list of skills or manually labeling
it. Methods used in this thesis help to automatically tag the descriptions
with skills and have shown to perform better on unknown skill words. This
sophisticated approach is an improvement over manual or direct keyword
match since it takes into account the context and thus will avoid mislabeling
of the skills when used in another context where it is not a skill. Tagging
based on context will help in avoiding this ambiguity as well. The system
built in this thesis addresses this exact problem and have shown satisfactory
results to be used for real business needs.

We have shown the application of LSTM and BILSTM in automatically
detecting skills from the job descriptions. The experiments achieved F1 score
of 82 on job descriptions extracted from Stackshare platform. Total accu-
racy achieved on train skills was 94% and on test skills 56%. The results
were in line with the similar research done in attribute finding from textual
data [51] [74] [28]. Our results also indicated a significant difference in per-
formance for with and without pre-trained word embeddings as input to the
model. The results indicate clearly the use of pre-trained word embeddings
trained using the Word2Vec model improved the detection of test skills and
overall performance of the model. Similar results indicating performance
improvements with the use of pre-trained word embeddings over randomly
initialized word embeddings were shown in sequence labeling tasks [67]. Our
results were also aligned with similar findings. These findings will be applica-
ble in other sequence labeling tasks involving textual data. Using the context
before and after the skill word has shown improved performance over using

61
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only past dependencies. The experiments done in identifying more features
have shown a promising approach for identifying the skills from job descrip-
tions using BILSTM method which uses pre-trained word embeddings, POS
tags and capitalization of the first letter of the word.
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