
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Tomi Ratilainen

Guidelines for creating a testing pro-
cess for a software -
case study of comparing testing of two differ-
ent size of slot game projects

Master’s Thesis
Espoo, May 13, 2019

Supervisor: Professor Antti Ylä-Jääski, Aalto University

Instructor: Tuomo Hakulinen, Quality team lead, Veikkaus

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Tomi Ratilainen

Title:
Guidelines for creating a testing process for a software - case study of comparing
testing of two different size of slot game projects

Date: May 13, 2019 Pages: 93

Professorship: Mobile Computing, Services and Secu-
rity

Code: T-110

Supervisor: Professor Antti Ylä-Jääski

Instructor: Tuomo Hakulinen, Quality team lead, Veikkaus

Nowadays an important part of software development life cycle is software test-
ing. As software and systems become more complex and integrated with other
software and systems the importance of software testing becomes critical part of
a successful software development process.

Testing itself has a little value but for the software the testing is necessary. Well
planned software testing can make mediocre software a great one whereas poorly
executed testing can even harm the final product. Thus, it is important that there
is well designed testing process for a software project. As every software project
differ from each other the testing process can also vary from project to project.
There are multiple levels, types and techniques of testing that can implemented
to a testing process made for a certain software project. Creating an efficient and
functional testing process can be a difficult task.

In the case study of the paper it is concluded that two similar software projects of
different size have multiple differences but do not force of creating two different
testing process as both use the same kind development life cycle and both software
projects are the same type, slot games. The major difference for testing is that
as a major software project, compared to a minor one, has more requirements
it is important to consider them in testing strategy and planning but not in the
testing process.

Keywords: Software testing, Testing types, Testing levels, Testing tech-
niques, Testing process, Slot games, Software quality, Soft-
ware development processes

Language: English

2

Acknowledgements

I wish to thank my instructor, Tuomo Hakulinen, for giving me time to
complete my master thesis during work and to Professor Antti Ylä-Jääski
for fast feedback when it was needed.

Espoo, May 13, 2019

Tomi Ratilainen

3

Abbreviations and Acronyms

UAT User acceptance testing
OAT Operational acceptance testing
QA Quality assurance
ROI Return of invest
DoD Definition of Done
API Application programming interface
TPI Next Test Improvement Next model for improving test pro-

cess
CTP Critical Testing Process model for improving test pro-

cess
STEP Systematic Test and Evaluation Process model for im-

proving test process
TMMi Test Maturity Model Integration model for improving

test process
Tmap Test management process
COTS Commercial off-the-shelf
BVA Boundary Value Analysis

4

Contents

Abbreviations and Acronyms 4

1 Introduction 10
1.1 Problem statement . 11
1.2 Structure of the Thesis . 12

2 Fundamentals of testing 14
2.1 Objectives of testing . 15
2.2 Is testing necessary? . 15
2.3 Seven principles of testing . 16

3 Different styles of testing 18
3.1 Dynamic and static testing 18
3.2 Test types . 19

3.2.1 Functional testing . 20
3.2.2 Non-functional testing 20
3.2.3 White-box testing . 21
3.2.4 Change-related testing 21

3.3 Test levels . 22
3.3.1 Unit testing . 22
3.3.2 Integration testing . 23
3.3.3 System testing . 24
3.3.4 Acceptance testing . 25

3.3.4.1 User acceptance testing 27
3.3.4.2 Operational acceptance testing 27
3.3.4.3 Contractual and regulatory acceptance testing 27
3.3.4.4 Alpha and beta testing 28
3.3.4.5 Testing levels in different testing types 28

3.3.5 Maintenance testings 29
3.4 Testing (design) techniques . 29

3.4.1 Specification-based test techniques 30

5

3.4.1.1 Equivalence partitioning 31
3.4.1.2 Boundary value analysis 32
3.4.1.3 Decision table testing 32
3.4.1.4 State transition testing 33
3.4.1.5 Use case testing 33

3.4.2 Structure-based test techniques 34
3.4.2.1 Statement testing and coverage 34
3.4.2.2 Decision testing and coverage 35

3.4.3 Experience-based test techniques 35
3.4.3.1 Error guessing 35
3.4.3.2 Exploratory testing 36
3.4.3.3 Checklist-based testing 36

4 Testing process 37
4.1 Organizational test process . 40
4.2 TMap (test management process) 41

4.2.1 Test planning process 42
4.2.2 Test monitoring and control process 43
4.2.3 Test completion process 44

4.3 Dynamic test process . 45
4.3.1 Test Design and Implementation Process 46
4.3.2 Test Environment Set-Up and Maintenance Process . . 46
4.3.3 Test Execution Process 47
4.3.4 Test Incident Reporting Process 48

4.4 Improving testing process . 49
4.4.1 Test Maturity Model integration (TMMi) 50
4.4.2 Critical Testing Processes (CTP) 51
4.4.3 Systematic Test and Evaluation Process (STEP) 52
4.4.4 Test Process Improvement Next (TPI Next) 52

4.5 Communication in testing . 54
4.5.1 Understand how programmers think 54
4.5.2 Develop trust of the programmer to testing 55
4.5.3 Provide service to the programmers 55
4.5.4 Integrity and competence will demand respect 55
4.5.5 Focusing on target, not the person 57
4.5.6 Asking question about the work of programmer 57
4.5.7 Programmers want to help with testability 57

6

5 How to create the right testing process for a software 59
5.1 Testing in the software development lifecycle 59

5.1.1 Sequential model . 60
5.1.2 Iterative models . 61
5.1.3 Agile model . 62
5.1.4 Spiral model . 64
5.1.5 Model of coding and fixing 65

5.2 Risk definition . 65
5.2.1 Cost of bug . 66

6 Case study: Testing of two different slot games at Veikkaus 68
6.1 Testing tools used . 68

6.1.1 Test case management 69
6.1.1.1 Testrail . 69

6.1.2 Communication management 69
6.1.2.1 JIRA . 70
6.1.2.2 Slack . 70

6.1.3 Documentation management 70
6.1.3.1 Confluence 71

6.1.4 Test automation management 71
6.1.4.1 Robot framework 71

6.2 Testing process used for slot games in Veikkaus 72
6.2.1 Development life cycle of slot machine 72
6.2.2 Testing process of a slot game 73

6.3 Testing of a minor slot game 75
6.3.1 Test plan and strategy 75
6.3.2 Test results . 78

6.3.2.1 Defects found 78
6.3.2.2 Tests run . 79

6.4 Testing of a major slot game 80
6.4.1 Test plan and strategy 81
6.4.2 Test results . 83

6.4.2.1 Defects found 83
6.4.2.2 Tests run . 84

6.5 Conclusion of two different size of projects 85
6.5.1 Comparing of test results 86

6.5.1.1 Defects found 86
6.5.1.2 Tests run . 87

7 Conclusion 89

7

List of Figures

3.1 Testing (design) techniques [9]. 31

4.1 Multi-layered test context diagram [7]. 37
4.2 The relationship between the generic test sub-process, test

levels and test types [7]. 39
4.3 The multi-layer relationship between test processes [8]. 39
4.4 The multi-layer model showing all test processes [8]. 40
4.5 Example of Organizational Test Process implementation [8]. . 40
4.6 Organizational Test Process [8]. 41
4.7 Example of test management process relationships [8]. 42
4.8 Test Planning Process [8]. 42
4.9 Test monitoring and control process [8]. 44
4.10 Test completion process [8]. 44
4.11 Dynamic Test Process [8]. 45
4.12 Test Design and Implementation Process [8]. 46
4.13 Test Environment Set-Up and Maintenance process [8]. 47
4.14 Test Execution process [8]. 48
4.15 Test Incident Reporting process [8]. 48
4.16 The Deming cycle or the Shewhart improvement cycle [11]. . . 49
4.17 Heuristic test process improvement model [29]. 50

5.1 V-model [11]. 60
5.2 Iterative model [11]. 62
5.3 Agile model [11]. 63
5.4 Spiral model [11]. 64
5.5 Cost of bug in different stage [14]. 67

6.1 Release cycle of slot machines. 73
6.2 Example of a slot game project testing 75
6.3 Found defects of a poker slot game 79
6.4 Tests run to a poker slot game 80

8

6.5 Defects of the major slot game 84
6.6 Tests run to the major slot game 85
6.7 The defects of both projects in comparison 87
6.8 Tests run of both projects in comparison 88

9

Chapter 1

Introduction

Software are a major part nowadays world. Nearly everything created by hu-
man has some software build in it. Every mechanic construct has a software
even though few decades back we did not even have computers. Even simple
little things like a clock can have software that is comparable to software of
a computer. The increasing number of software products means that there
must be more people programming software, meaning that most of software
is not done by the senior programmers. Thus, probability of errors in coding,
called bugs, must be increasing to a higher number. We live in a world of
capitalism which leads to situations where software is just required, done
quickly or ordered hastily from a third-party software company without a
proper check leading to more and more poor-quality software with bugs in
it.

When adding a software to a product it usually defines the product.
How it operates or even changes appearance of the product. Thus, it is
most important that the software itself operates as planned in every normal
situation possible for the product. Software testing is one of the best tools
against human errors made during creating the product. Software testing
is an important part of nowadays cycle of creating a high-quality product.
With testing it is assured that the product has no critical malfunctions and
confirm quality of the product. When the competition in the market is done
mostly by comparing the software, it is not surprising that software testing
has a huge part in creating popular and successful outcome of the product.

Though the testing can be included from the start of creating a product
it does not always conclude that there could not be malfunctions or that
the outcome of the product would be a high-quality product. If the testing
is done without explicit process understandable for every tester with easily
followed guidelines and instructions, the result can be quite unsatisfactory.
In worst case scenario it could lead to same result as no testing at all. One

10

CHAPTER 1. INTRODUCTION 11

possible way of this happening is that QA (quality assurance) team might
be stuck in certain way of testing even though the team should adjust their
testing processes, techniques, models and types in different software projects.
On the other hand, a successful and well-planned testing process from the
start of the design of the product might even add extra value to the product.
The product becomes more than it was designed to be, in a good way.

This paper tries to answer why software testing is essential in nowadays
world and what are different types, methods, levels and models of testing and
how together they can create different testing processes creating functional
QA environments for testers. The paper introduces few useful tools used
in testing, talks about importance of communication in testing and tries to
show that with successful testing process QA has return of invest (ROI) value
[33]. The paper will also introduce precise testing process and results done
to a two different slot games designed and created by Veikkaus.

1.1 Problem statement

In most of software projects it is quite uncertain at the start what would the
best means to test the software and in which points. Thus, it is important
from the start of the project to design practical testing process that does not
leave any place to speculate. Desirable testing process is understandable and
possible to execute efficiently. Whereas inadequate testing process might be
complex and seeming to miss major testing points during the life cycle of
the software project leaving an uncertain understanding of the quality of the
software.

As every software differs from one another it becomes obvious that ready-
made solutions for testing processes can only offer direction for suitable and
functional testing process. There are common set of test activities that can be
applied to achieve desirable objectives concerning the testing of the software.
As all common tools for testing are properly known it is easier to create
functional integrity for the testing process of the software. [25]

In many companies exists no QA team explicitly. Different teams have
projects of their own and they might be hiring a consultant as responsible
for testing of the product or have one person in the team to be responsible
for testing. The responsible might have a way of working, a ready solution
to be used as a testing process or few known practices used, which does not
include total set of available toolkits for successful testing considering the
product. As mentioned above all software differ and thus it is critical that
for every different software there is enough knowledge behind decision made
concerning testing process.

CHAPTER 1. INTRODUCTION 12

How can a single person with limited knowledge or QA team stuck in
certain testing habits assemble best solution for a new software concerning
the testing process or improve their current way of testing? What are some
existing functional testing processes? How can be those process modified to
support software under test? What are the testing types, levels, techniques
and models used in those existing processes? Is fully agile model or strict wa-
terfall model better for testing process concerning the product? Ultimately,
how can one choose a corresponding testing process for a software?

The paper introduces basic theory of software testing through chapters 2
to 5. Different test levels, test types, test techniques are presented as well
as main levels of testing process and what they contain. Different ways of
improving the testing process are introduced as well as basic development
process models to support understanding of creating the corresponding test-
ing process for a software.

In the case study of this master’s thesis project, we analyse, evaluate and
compare two different slot game projects. Other slot game project is a single
game project not concerned and not needing a cross platform modifications
to slot machine itself and to internal system supporting the slot machine.
Whereas the another slot game requires cross platform modification to the
slot machine as developing of internal systems supporting the slot machine.
Both slot game projects use the same testing process.

As a result of analysing, evaluating and comparing the two different slot
game projects we show differences between the found defects in each of the
project and the number of critical issues found during testing. As a result
we also try to conclude should the test processes differ between a smaller slot
game and cross platform changes demanding slot game.

1.2 Structure of the Thesis

In chapter 2, Fundamentals of testing, the focus is in the objectives of testing
and why software testing can been seen as necessity in development process
of a software. First some of the objectives of testing are being listed and
then some other reasons other than failures in the code of the software why
there can be defects and malfunctions in the software and thus, why software
testing is essential. The end of the chapter introduces few principals of
testing.

Different styles of testing, chapter 3, focuses on different types of testing,
different testing levels and techniques. Every subchapter introduces basic
types, levels and techniques of testing. First two basic ways of testing are
presented, dynamic and static testing. Then four basic test types are ex-

CHAPTER 1. INTRODUCTION 13

plained. Thirdly, five major testing levels are introduced from unit testing to
acceptance testing. Lastly, three different major testing techniques types are
introduced, and examples of each type of testing techniques are presented.

Chapter 4, Testing process, focuses on introducing three different levels of
testing process and what does every level contain. Also, the chapter focuses
on how to improve the testing process and how to keep communication be-
tween developers and testers reasonable. Three main levels of testing process
are introduced in order of organizational test process, test management pro-
cess and dynamic test process. Every level of testing process presents what
different tasks they contain. For improving testing process few improvement
models of testing process are introduced. The last part consist of multiple
tips how to make communication better between developers and testers and
how a tester can increase the trust during a software project.

Chapter 5, How to create the right testing process for a software, considers
how does the testing process take into account the development process of a
software project and how to tackle major risks in a software project. Basic
models of different software development process models are introduced and
how to identify different kind of risks and how much can a defect cost in
different time of the development lifecycle.

The case study, chapter 6, focuses on analysing, evaluating and comparing
two size of different slot game projects. The development process of slot
machines of Veikkaus is introduced as well as testing process used in testing
slot games made for the slot machines. The testing of two different slot game
projects are presented, and the results of testing are shown and analysed.
Lastly, from the data of results, different conclusions are made between the
two slot game projects.

Chapter 2

Fundamentals of testing

Most people have experienced different kind of software. Software that feels
to operating always and software that from the start feels little clunky and
hard to use even with a manual. Sometimes software does not even function
properly or as expected even though it is brand new. As software appear
nearly everywhere, a new refrigerator, a clock or a popular consumer product
like a car, it has become more and more critical that the software functions
as planned. Dysfunction of a software can lead from minor problems to
major problems. Examples consequences of dysfunction software can be loss
of money, time or business reputation. In extreme cases consequences are as
severe as injuries and in worst case scenario death. The purpose of software
testing is to access the quality of the software and give information about of
the quality and thus reduce risk of malfunction after the software has been
released.[27] [25]

Software testing has become a standard part of developing a software.
Even though software testing as a concept is well known there are still quite
a few common misperceptions about software testing. For many, software
testing only consists of running tests, meaning executing software and exam-
ining appointed areas of the software and in the end checking the results of
the tests. Running the tests and reporting the results is major part of testing
process and in most projects also the most important part. Software test-
ing is a process that includes many other activities than running the tests.
The test process includes activities such as planning and creating of tests
by means of requirements. Also reporting test progress, results, defects in
software and evaluating the quality is part of software testing.

Although testing can mainly focus on verification of requirements and
specifications it does not entirely focus on these specifications and require-
ments. It is common misunderstanding that only wanted specifications are
tested. Testing also includes confirming that product meets the expectations

14

CHAPTER 2. FUNDAMENTALS OF TESTING 15

of users and stakeholders.
Testing usually focuses on probing the software. Dynamic testing is a

testing where testing does involve execution of the software. It is also com-
mon misperception that all testing is dynamic. Non-dynamic testing is called
Static testing. Static testing can include reviewing user stories or source code
of the product.

Also, terms debugging and testing can be tangled together even though
they are different. Debugging is development activity with a main goal of
finding a fix for a defect. Whereas testing finds malfunctions and defects in
software. Usually developers do debugging and fixing of a defect and tester
makes final confirmation test for the defect. In highly agile development
environment it is possible that also tester involved in debugging. [25]

2.1 Objectives of testing

Common objectives for any software might include:

• Evaluate requirements, user stories, design and code

• Verify specified requirements

• Confirm that software meets expectations of users and stakeholders

• Inform the level of quality of the software

• Prevent defects, find defects and malfunctions

• Providing enough information to owner of the project of quality and
risks so that decisions are easier to make

Objectives of testing vary upon a context of the software and needs of
testing concerning about the software. Objectives also vary in different states
development life cycle of the software. For example, at mid stages of develop-
ment it can be important to find as many defects as possible whereas before
release date it is most important to relate information about the quality of
the software and risks concerning the release. [25] [16]

2.2 Is testing necessary?

In simplest precise testing of the product usually helps to reduce the risk
of malfunction of the product in production. As defects are found during
testing and hopefully fixed, leads this towards higher quality of the product.

CHAPTER 2. FUNDAMENTALS OF TESTING 16

Furthermore, software testing is required due to legal requirements or by
specific standards.

It has been proven by history that it is common for software to be in
production and cause failures due to defects. Using suitable testing process,
techniques and having appropriate level of testing experience usually results
in fewer failures due to defects in production. To strengthen the effect of
testing it is typically essential to keep tester close from the start of design
part of the project to the delivery to production to ensure best possible
outcome of testing.

Mistakes do happen and it is know that human errors happen time to time
due to different reasons. Errors lead to defects in the software and defects
can lead faults in production. Example path of to a defect is making an error
in early stages of creating requirements or specifications. Error made in early
stages in requirements leads quite easily to an error in programming which
ultimately leads to defect in code. [25] [32]

Few reasons why errors may occur:

• Too strict schedule

• Human error

• Inexperienced team

• Miscommunication

• Complexity of used technologies or using of unfamiliar technologies

• Misunderstandings

As important it is to find defects and report them forward it is also
important to understand what could be the root cause of the defect and
what effect would a certain defect cause in production. For example, single
line of incorrect code when using mathematical equation in finance. Root
cause might be error made in specification of providing incorrect information
for developer resulting in defect in code. Effect of the defect depends how
critical part of the product the equation is. Example effect could be increased
number of customer complaints. [25]

2.3 Seven principles of testing

1. Testing shows the presence of defects, not their absence

CHAPTER 2. FUNDAMENTALS OF TESTING 17

(a) In testing it is quite likely to find defects, but it does not prove
that there could not be more defects or no defects at all.

2. Exhaustive testing is impossible

(a) Testing all combination of software is usually impossible. In cor-
ner cases it can plausible to test everything. Testing process and
techniques are key to a sufficient coverage.

3. Early testing saves time and money

(a) Defects found early are easier to fix and more cost efficient.

4. Defects cluster together

(a) Usually it is small number of parts in software that are broken.

5. 5. Beware of the pesticide paradox

(a) As same test is run again and again it no longer cannot find any
defects. Changing test data or creating new test may need to
created.

6. Testing is context dependent

(a) Every project and software are different. Some can include life-
saving safety features whereas other software can be done just for
leisure.

7. Absence of errors is a mistaken belief

(a) Finding and fixing a large number of defects does not conclude a
software that would fill the needs of users and stakeholders

[25]

Chapter 3

Different styles of testing

There are multiple ways doing testing. There are different kind of testing
types, techniques, levels, models and even static testing. In this chapter
most known of those different styles of testing used in development lifecycle
of software are introduced.

• In dynamic testing software is being executed while static testing is
merely manual exploring of work products

• Types of testing aim to test specific matter of the software

• Test levels are part of testing process each appearing in different stages
of development lifecycle of the software

• Test techniques help to discover test cases, test data and test conditions

3.1 Dynamic and static testing

Most of testing is linked in testing with operating software. Executing tests
with the software is called dynamic testing. Usually most of the testing is
done dynamically. Even though it is easy to misunderstand that dynamic
testing would be the only way to test there is another way of testing called
static testing.

Static testing entrusts on manual exploration of work products (i.e., re-
views) or evaluation of code. Both types of static testing do not include
executing the code or testing a work product in any way. It might feel that
static testing is quite a minor part and thus not playing important role. In
safety-critical systems static analysis plays especially important role and has
become more important role of testing in other common systems for example,
security testing.

18

CHAPTER 3. DIFFERENT STYLES OF TESTING 19

There are quite a few work products that can reviewed or statically anal-
ysed, for example [25]:

• Specifications and requirements

• User story and Definition of done (DoD)

• Code review

• Test plans and test cases

• User guides

• Web pages

• Project related plans, contracts, timetables etc.

Benefits of static testing may include:

• Finding defects in early stages (before dynamic testing) which is also
cheaper than finding defects during dynamic testing

• Finding defects that dynamic testing has difficulties of finding

• Reducing development and testing time and costs

• Reviews can improve communicating between team members

Main purpose of static testing is to improve the overall quality of the
product and find defects. In addition to finding defects with static test-
ing can have secondary purpose when executing technical reviews or doing
walkthroughs. Technical reviews can improve consensus of the product and
walkthroughs can be used for exchanging information between team mem-
bers. [7]

3.2 Test types

Group of test activities intended to test certain qualities of software based on
objectives of testing are called test types. Objectives of different testing types
can include evaluating completeness of the system, performance efficiency of
the system, architecture correctness of the system and confirming that future
changes in software does not cause it malfunction. All these four examples
are from four different kind of types test types:

• Functional testing

CHAPTER 3. DIFFERENT STYLES OF TESTING 20

• Non-functional testing

• White-box testing

• Change-related testing

3.2.1 Functional testing

Functional testing at it’s simplest tests that functions of system operate as
requirements of work product describes. Such requirements can user stories,
use cases, functional definition and in some cases undocumented specifica-
tions of the system.

Functional testing can be performed at all test levels even though the fo-
cus will be different at each level. Testing technique mainly used in functional
testing is black-box testing.

Functional testing in prospective of design and execution can involve par-
ticular knowledge or skills. Such a skill could be understanding and creating
mathematical equations concerning the product.

Functional testing can be measured through coverage of functional prop-
erties of the system. Functional coverage concludes functional elements cov-
ered by tests and is presented percentage of different types of elements cov-
ered. [25] [32]

3.2.2 Non-functional testing

Non-functional testing evaluates how well does the system behave in differ-
ent states. Testing targets of non-functional testing are such as usability,
scalability, performance efficiency and security.

As in functional testing non-functional testing may also require sufficient
knowledge or skill. These are needed in certain area of technology or knowing
common weakness of design. For example, understanding common scalability
problems.

Even though it might seem that non-functional testing requires a software
at end of development life cycle, it is a common misperception to think that
non-functional testing could not be done in early levels of testing. Non-
functional testing as functional testing should be performed at all levels of
testing.

For understanding of satisfactory coverage non-functional testing same
applies as for functional testing. Coverage can be based on non-functional el-
ements being tested and percentage of these types of elements being covered.
For example, in case of usability in different mobile devices the traceability
between tests and supported mobile devices. [25] [26] [31]

CHAPTER 3. DIFFERENT STYLES OF TESTING 21

Example list of non-functional testing targets [23]:

• Security

• Performance

• Reliability

• Data integrity

• Acceptance

• Stability

3.2.3 White-box testing

White-box testing focuses on internal structure or implementation of the
system. Such examples of internal structures can be architecture, code, data
flows and work flows within the system. Most of white-box testing is usually
executed in at component level testing but can be used at all levels. As
white-box testing is at the same time testing technique as a type of testing
most of the information relates closely to technique. More about white-box
in chapter about testing techniques. [25]

3.2.4 Change-related testing

To correct a defect or updating software with new functionalities changes
to the system are needed to be done. Change-related testing confirms that
changes made to the system have corrected the defect or that new function-
alities of upgraded software operate as premeditated.

There are basically two types of change-related testing types; confirma-
tion testing and regression testing. Both types of change-related testing can
be performed at all test levels.

In confirmation test it is verified that the defect that caused the problem
is fixed by at least verifying reproducing steps of the defect. If the defect is
not reproducible by the steps it is fixed. If time allows it also a good idea
to check all test cases failed due to the defect meaning retest of all failed
test cases related to the defect. In some cases, fixing a defect may lead to
new functionalities. As new functionalities are added new test cases can be
needed. Thus, it is possible that in confirmation testing new test cases are
run.

Fixing a defect can change only one part of the code but might knowingly
or unknowingly have affect to behaviour of other parts of the code. Also

CHAPTER 3. DIFFERENT STYLES OF TESTING 22

changes made to fix the issue might also need changes to the environment
such as upgrading operating system. In regression testing all unintended
side-effects of fixing the defects are tried to be found by running set of tests.
As regression tests can be run many times during project and usually has
same test set as before it is strongly suggested that automation is used to
help in regression testing.

Change-related testing is especially important agile development lifecycles
and in systems where devices or system upgrades are constant. [25]

3.3 Test levels

Test levels are instances of a test process performed to relation of development
level of a system. Every test level is suitable for different state of development
from individual components to a system ready for production. Mostly used
test levels are:

• Unit testing

• Integration testing

• System testing

• Acceptance testing

Each test levels have designated objectives, testing targets, common de-
fects and certain responsibilities. Also, every test level requires environment
fitting for the test level. For example, for unit testing developers own de-
veloping environment might be enough whereas in acceptance testing an
environment should be comparable to production. [25] [19] [31]

3.3.1 Unit testing

Unit testing focuses on separately testable components of a software. As unit
testing focuses on separate parts of the software testing is often performed in
isolation from other components of the software. Although testing is mostly
performed in isolation of the rest of system different other tools might be
needed such service virtualization or mock object instead of real parts of the
system.

Normal environment for unit testing is development environment and
thus, as defects are found they are usually fixed as soon as possible and are
not reported to formal channels. Even though it is not usual to report defects

CHAPTER 3. DIFFERENT STYLES OF TESTING 23

formally at this stage it is possible to keep at least record of the defects or
sometimes report them even formally for all developers to see.

Unit testing is usually performed by writer of the code i.e. developer.
Unit tester can be another developer or even someone with access to the
code. Writing tests for unit testing is often done after writing the code by
developer. As development is rapid or agile it might be reasonable to write
automated test cases.

Objectives of unit testing:

• Risk reducing and preventing defects affecting higher test levels

• Unit operates as designed and specified (functional and in non-functional)

• Increased reliability of unit s quality

• Finding defects

Incorrect functionality

Incorrect logic in the code

Data flow

Typical test objects of unit testing include components, units or modules,
code and data structures, classes and database modules. [25]

3.3.2 Integration testing

As unit testing focuses on separate parts of a software integration testing
focuses on combining of components or systems and testing interactions be-
tween them. There are two typical levels of integration testing; Unit integra-
tion testing and system integration testing.

Unit integration testing focuses on the interactions between integrated
units, modules or components. Unit integration testing can be performed
after enough components are coded meaning that unit testing should be
done before unit integration testing. It is common that automation is used
in unit integration testing.

The focus of system integration testing is interactions between systems,
packages and microservices. System integration testing might also cover in-
teraction with for example web services of external organization. System
integration testing can be challenging if one of the tested systems is from
external organization. System integration testing can be executed properly
after system testing. It is possible to have system testing and integrations
testing of the system in parallel in the testing process is in ongoing state
(development is sequential or iterative).

CHAPTER 3. DIFFERENT STYLES OF TESTING 24

Integration testing should concentrate on testing the actual integration.
As mentioned above both system testing and unit testing should be done
before starting integration testing. For example, when testing integration
between modules or systems A and B the focus should be on for example,
communication between A and B not in individual properties of A or B.

Unit testing is usually performed by developers so is unit integration
testing. As for system integration testing, it typically done by testers. System
integration testing requires certain understanding of systems acchitecture.

Objectives of integration testing are mostly the same as in unit testing
difference being that focus point is combination of components or systems.
Thus, test objects are quite different [25]:

• Subsystems

• Databases

• Infrastructure

• Interfaces

• APIs

• Microservices

Typical defects of integration testing [25]:

• Incorrect data

• Interface mismatch

• Failures in communication between components or systems

• Communication failures between systems or components are poorly
handled

3.3.3 System testing

As the name suggest system testing focuses on functioning of entire product
or system. System testing often includes end-to-end tasks of the system and
containing non-functional features while performing these tasks.

For lower test levels like unit testing or integration testing it is confirmed
that a part of system is working as expected whereas in system testing fo-
cuses gathering information of the whole quality of the system. Thus, system
testing produces information that can be used to inform stakeholders when

CHAPTER 3. DIFFERENT STYLES OF TESTING 25

making decisions about releasing. System testing can also be a part of satis-
fying legal or regulatory standards or requirements. As system testing infor-
mation is used to many extremely important decisions it is quite important
that the test environment would try to be as close as possible to production
environment.

System testing is usually performed by testers. It is quite normal that
projects have defects in specifications, like missing user story, which leads
disagreements or abnormal behaviour of the system. To minimize these kinds
of misunderstandings it is recommendable to have tester be included to a
project from the beginning and take part to such reviews affecting in planning
of, for example, user stories.

Most unique objective of system testing is to give information of the
quality of whole system and build trust to the quality and thus, the system.
Other objectives quite same as in all other test levels.

Sample test objects of system testing [25]:

• Applications

• Hardware/software systems

• Operating systems

• System under test

• System configuration and configuration data

Typical defects of system testing [25]:

• Incorrect or abnormal system functional or non-functional behaviour

• Failing to carry out end-to-end tasks as defined

• System not operating as specification or user manuals describe

• System not operating as expected in production environment

3.3.4 Acceptance testing

As system testing, acceptance testing focuses on behaviour of an entirety of
system of product. Acceptance testing, as system testing, gathers informa-
tion quality of the system but instead of using the information for release
decisions it is used for evaluating readiness of the system for deployment and
for end-users. Acceptance testing can be also used to fulfil regulatory and
legal requirements like system testing.

CHAPTER 3. DIFFERENT STYLES OF TESTING 26

One major difference to other testing levels that finding defects is not
one of the objectives of acceptance testing. It possible and even normal to
find minor defects in acceptance testing but finding considerably number of
defects in acceptance testing can be in some cases considered as a major risk
to deployment. Of course, critical defects must be fixed before deployment
but there should not be any at stage of acceptance testing.

Typical testing objects of acceptance testing:

• System under test

• System configuration and configuration data

• Business process for the whole system

• Recovery systems

• Operational and maintenance process

• Forms

• Reports

• Existing and converted production data

Typical failures of acceptance testing:

• System does not satisfy contractual or regulatory requirements

• Non-functional failures like performance efficiency

• Workflow of the system does not meet business or user requirements

Acceptance testing can have different forms depending on the system.
Typical forms included in acceptance testing can be:

• User acceptance testing

• Operational acceptance testing

• Contractual and regulatory acceptance testing

• Alpha and beta testing

Acceptance testing is typically the highest level of the testing levels and
the responsibilities of acceptance testing are often customers, product owner
or operators of the system. [25]

CHAPTER 3. DIFFERENT STYLES OF TESTING 27

3.3.4.1 User acceptance testing

User acceptance testing, also known as UAT, is form of acceptance testing
where system tested is focusing mostly on user experience or that testing
is done by users. Users can validate that the system meets requirements
in real or in simulated operational environment. Objective of UAT is to
build confidence that the actual user can use the system as intended and can
operate so that there is a minimum difficulty, cost and risk when performing
business process for the system is designed for. [25]

3.3.4.2 Operational acceptance testing

Operational acceptance testing (OAT) differ from UAT that instead the users
are operational system administrators of the system. Testing is performed
as close as possible to a production environment. Objective of OAT is to
ensure administrators or operators can keep the system operating for the
actual users even under exceptional circumstances.

It might be hard to follow the difference between OAT and UAT, but the
typical test focus on operational aspect in OAT makes the difference [25]:

• Testing of backup and restore

• Installing, uninstalling and upgrading

• Disaster recovery

• User management

• Maintenance tasks

• Data load and migration task

• Check for security vulnerabilities

• Performance testing

3.3.4.3 Contractual and regulatory acceptance testing

Contractual acceptance testing is done comparing acceptance criteria of con-
tract given by customer. Acceptance criteria should be obvious for both
parties before agreeing to contract. Contractual testing can be performed
individual testers or by the user.

Regulatory acceptance testing is performed against any regulations re-
garding to the system such as safety regulations or government regulations.

CHAPTER 3. DIFFERENT STYLES OF TESTING 28

Regulatory acceptance testing can be also performed by individual testers
or the users but can sometimes require testing results being witnessed by
regulation agency.

The objective of both regulatory and contractual acceptance testing is
to give information of regulatory and contractual compliance of the product
and thus, build confidence that those goals have been achieved. [25]

3.3.4.4 Alpha and beta testing

Both alpha and beta testing are used by developers in a state where the
product is not yet ready to be officially published. This can be called as
commercial off-the-shelf (COTS) software from which developers want to get
feedback before the product is actual released. The feedback is collected from
potential or existing users, customers and operators.

Alpha testing is typically organized in order that testing is performed at
the developing company s site by someone else than the development team
itself. Whereas beta testing is performed by testers own location, home for
example, where testers are potential or existing users of the product. Alpha
testing is done before beta testing, but it is possible to skip alpha testing
and go straight to beta testing.

The objective of alpha and beta testing is that the product works as
intended under normal circumstances as expected among potential or existing
users. Also, it is possible that there are not enough resources for testing, for
example with all different environments, and thus, alpha and beta testing
may find defects that would have been only found by chance of luck. [25]
[32]

3.3.4.5 Testing levels in different testing types

Testing levels typically go from low test levels to high test levels meaning
that first tests are done in a level of unit testing whereas last tests are done
in acceptance testing. In a rapid development environment, it is possible
that some levels overlap with each other.

Even though test levels are separated from each other by the timeline of
development, it is not the same for testing types. It possible to execute all the
four testing types, functional, non-functional, white-box and change-related,
in each test level.

For example, in acceptance testing for a banking application all the four
test types can be used [25]:

• Tests based on how the banker declines or approves a credit application
(functional)

CHAPTER 3. DIFFERENT STYLES OF TESTING 29

• Usability tests for credit processing interface concerning people with
disabilities (non-functional)

• Tests designed to cover all supported data file structures and value
ranges from bank to another bank transfers (white-box)

• After a defect is found and fixed all failed test cases are re-run (change-
related)

3.3.5 Maintenance testings

After a successful development process software and systems are deployed
to production. Both, software and systems, need maintenance in production
in form of modifications, migrations or lastly retirement. Perhaps simplest
needs for maintenance findings in operational environment such as critical
defect, need of a new functionality or removing of an old functionality. Also,
maintenance is needed for non-functional properties such as performance and
security.

As maintenance is needed to be done as well as maintenance testing is.
Purpose of maintenance testing is to evaluate that the changes are done suc-
cessfully and run regression tests for the software or systems checking for
possible side-effect of the maintenance fixes or modifications. Thus, main-
tenance testing focuses on testing changes made to the system and running
regression test to rest of the system unaffected by the changes. Maintenance
can involve unplanned release, for example due to critical defect. Unplanned
releases are typically called hot fixes.

Maintenance releases can require considerable amount of testing and thus,
multiple test levels and test types. The use of test levels and test types
depends on the scope of maintenance testing. Scopes depends on [25]:

• How large of entirety the system is?

• Does the change made regard a large part of the system?

• Degree of a risk the change makes

3.4 Testing (design) techniques

The idea behind test techniques is to assist in identifying test cases, test data
and test conditions. Each technique might have some benefits compared to
other in different situations and test levels even though some test techniques

CHAPTER 3. DIFFERENT STYLES OF TESTING 30

are applicable to all test levels. Combinations of test techniques is typically
used when creating test cases, to achieve best possible outcome of the testing.

As test techniques can be used to in different activities, like test design,
implementation and analysis, those activities can vary from informal to for-
mal depending context of the project. Major parts influencing on formality
can be development process, schedule, regulatory and safety requirements.
[25]

Testing techniques can be divided in three different segments. These
are specification-based testing, structure-based testing and experience-based
testing. Test requirements, models, user needs and specifications are used
in specification-based testing as primary source of information to create and
design test cases, data and conditions. The source code or the structure
of a model is used in structure-based testing as main source of information
to create and design test cases, data and conditions. In experience-based
testing, the experience and knowledge of the tester is used as main source of
information for the same gain as specification-based testing and structure-
based testing. These three testing techniques are complimentary and using
them combined in testing will typically result in most effective results in
testing.

Specification-based testing and structure-based testing can be also known
as black-box testing and white-box testing. White-box testing can be also
known as clear-box testing. Both white-box and black-box refer visibility if
the internal structure of the testing target. Internal structure is not visible
in Black-box testing whereas in white-box testing the internal structure is
visible to the tester. There basically one more major testing technique called
grey-box testing. In grey-box testing both specifications and structure of the
testing item are used to create and design test cases, data and conditions.
[9] [22] [17]

As seen in Figure 3.1 there are multiple different testing design techniques
beneath each three major testing techniques. the figure shows only certain
testing design techniques and there more of them in each part especially
when all techniques are taken into count (not only the design part). In next
subsections few of the techniques are explained to get better understanding
of each testing technique.

3.4.1 Specification-based test techniques

As mentioned before specification-based test techniques are based on test
basis meaning user stories, requirement documents and regulatory require-
ments for example. Typical distinctive features of specification-based test
techniques can include [9]:

CHAPTER 3. DIFFERENT STYLES OF TESTING 31

Figure 3.1: Testing (design) techniques [9].

• Test cases, data and conditions are mostly from test basis including
software requirements, use

• cases and stories and specifications

• Coverage is measured based testing targets in the test basis

• Created test cases can be used to detect missing information between
requirements and implementation of the requirements

3.4.1.1 Equivalence partitioning

In equivalence partitioning data is divided into partitions in a such way that
all data members in one partition are processed in the same way. There are
checks to valid and invalid values in equivalence partitioning.

To achieve best possible coverage with equivalence partitioning, test cases
must try to cover all possible partitions including invalid partitions. At least

CHAPTER 3. DIFFERENT STYLES OF TESTING 32

one value must be used in each partition. Coverage is measured by the
number of tested partitions divided by the number of identified partitions.
[9]

3.4.1.2 Boundary value analysis

Boundary value analysis, also known as BVA, is basically an extension of
equivalence partitioning where comparable data used are minimum and max-
imum values of a partition. BVA can be only used if the partition consisting
of numeric or sequential data.

A simple example of BVA technique is an input field that accepts a single
integer as a value. Suppose the valid range is from 1 to 3. Thus, there are
invalid value of too low value under 1, valid values between 1 and 3, and
invalid value of too high above 3. Boundary values for too high are 4 and
maximum value of the input field and for the low part 0 as the only value.
Values 1 and 3 are valid boundary values.

It is more likely to find the incorrect behaviours from boundaries of par-
tition than inside of the partition. Boundary value analysis can be used in
all test levels. This technique is typically used to test requirements such as
dates and times. [9]

3.4.1.3 Decision table testing

Decision table testing is a method where implementations of system can be
tested by using combinatorial test techniques specifying how different combi-
nations of conditions can result in different outcomes. Decision tables are a
good tool for recording different complex rules that system must implement.
Creating of decision table is quite simple. Tester uses certain inputs of the
system resulting to corresponding outputs. These inputs and outputs form
rows in the table starting with inputs leading to an output. The values of
inputs can be shown for example, with Boolean values (true or false) leading
to a certain state in the system.

The idea and strength of decision table to find all important combina-
tions of conditions that might be otherwise go ignored. It is also a fine tool
identifying shortcomings of requirements. A full decision table cover all com-
bination of conditions excluding impossible combinations. As behaviour of
the system depends on combination of conditions, decision table can be used
in every test level. [25]

A simple example of decision table is one made of simple login screen.
A simple login screen has two inputs, username and password. With two

CHAPTER 3. DIFFERENT STYLES OF TESTING 33

conditions the number of combinations is four. Thus, decision table has four
rows with different combinations (FF, FT, TF, TT).

Conditions Combinations1 Combinations2 Combinations3 Combinations4
Username False False True True
Password False True False True
Output False False False Login Successful

From the decision table it is easy to see all four combinations. Also, it
quite simple to create a test case for login due to decision table. Ignoring
some of the combination can happen and on complex systems they probably
will without a decision table.

3.4.1.4 State transition testing

Whenever an event occurs in a system it may respond correspondingly de-
pending on current state of the system. The current state might be result of
events happened after the system was initialized. A state transition diagram
tries to present all possible states of the software. A state transition diagram
also tries to cover transitions between states as well as exit and enter to or
from the software. An event can lead to transition and the event is usually
provided by user. Such an event can be a button pressed by the user or value
input into a field. As the state changes in the program it is possible that
that the event can lead more than one transitions and thus there might be
guard condition qualifying the event. As the event can change state of the
software the change of the state may result in action like an error message.

Simple example of transition testing could be opening of a door. There
are to possible states for the door, open and closed. Starting state of the door
is closed and to change the state of the door it needs open event. The open
event may need a guard condition like checking if the key is corresponding
to the lock of the door.

State transition diagram usually contains only valid transitions, but a
state transition table shows all valid and invalid transitions between states
as well as events and guard conditions. Tests can design to cover normal
sequences of states, all states, every transition, every corner case transition
and even test invalid transitions. [25]

3.4.1.5 Use case testing

It is possible to derive tests from use cases. Use cases are associated with
human users, external hardware, systems or other components and subjects.

CHAPTER 3. DIFFERENT STYLES OF TESTING 34

Every use case defines some behaviour that subject performs with one or
more actors. Tests are designed to test known operations. These kinds of
behaviours can be distributed to normal, exceptional, alternative and error
handling. [25]

An example of use case testing could be a simple login. Actor is human
user and subject is the system. Simple test includes input from actor (name
and password) and answer from the subject valid or invalid name or pass-
word combination. Also, this simple test could be extended by testing error
handling of the system by intentionally giving incorrect password as an input
and repeating for as many times as systems closes the application or locks
the user.

3.4.2 Structure-based test techniques

Structure-based test techniques (also known as white-box test techniques) is
based on internal structure of the test target. Structure-based test technique
focuses on detailed design, analysis of the architecture, internal structure or
the code of the test target. Structure-based test technique can be used in all
test levels.

Typical distinctive features of structure-based test techniques can include
[25]:

• Test cases, conditions and data are derived from any source of infor-
mation regarding the

• structure of the software

• Coverage is measured based on item tested within the target structure
of the software like code

• Specifications are often used as a source to determine results of test
cases

3.4.2.1 Statement testing and coverage

Exercising the executable statements in the code is the main purpose of the
statement testing. Coverage of statement testing can be calculated by num-
ber of statement executed divided by total number of executable statements
in the test object.[25]

CHAPTER 3. DIFFERENT STYLES OF TESTING 35

3.4.2.2 Decision testing and coverage

Decision testing ensures that the decisions in the code are executed based on
the decision outcomes. Control flows that occur from decision point (e.g. IF
statement or CASE statement) are one way to create test cases for decision
testing.

Achieving 100 percent decision coverage (decision outcomes executed di-
vided by total number of decision outcomes in the test object) will guarantee
100 percent statement coverage whereas 100 percent coverage in statement
testing does not guarantee 100 percent decision coverage. [25]

3.4.3 Experience-based test techniques

Experience-based test techniques relies mostly on the experience of the devel-
opers, testers and users to design and execute tests. Experience-based testing
techniques are usually combined with both structure-based and specification-
based test techniques.

Experience-based test techniques are most useful when other systematic
techniques as structure-based and specification-based do not easily identify
tests for the target. Test cases are generated from the skill, intuition and ex-
perience of the tester with similar projects, software, applications and tech-
nologies. As test cases are not systematic and rely heavily on the tester,
experience-based test techniques may achieve varying degrees of effective-
ness and coverage. It is even possible that it is impossible to measure any
kind of coverage with experience-based test techniques. [25]

3.4.3.1 Error guessing

In Error guessing technique occurrence of defects, failures and mistakes is
anticipated by tester relying on knowledge of the tester. The knowledge of
the tester might consist of:

• How similar applications have operated or how the application has
operated in the past

• What are most common mistakes made by developers concerning the
application or similar application

• Failures occurred in other similar applications or in the application

Even though error guessing is not systematic testing technique it can be made
more systematic by creating a list of possible defects, mistakes, failures and
thus design tests for those defects, failures and mistakes in the list. [25]

CHAPTER 3. DIFFERENT STYLES OF TESTING 36

3.4.3.2 Exploratory testing

When tests are design, executed, logged and evaluated dynamically during
testing informally, the technique is called exploratory testing. Result of test-
ing are used to learn about the system and possibly to create more tests for
areas that require more testing.

Exploratory testing is mostly used when there are no specifications or
insufficient specifications or remarkably little time for testing. Exploratory
testing is also useful to reinforce other formal testing techniques.

As exploratory testing is quite vague in the part of scale and time it is
sometimes useful to use session-based testing as a guideline for exploratory
testing border lining testing target and a time window for testing and having
some simple objectives for the testing session. [25]

3.4.3.3 Checklist-based testing

A checklist is created by the tester based on experience and knowledge of im-
portance to the user or understanding of common software failures. Testers
design, implement and execute test covering conditions found in the cre-
ated checklist. That is called checklist-based test testing. As testing moves
forward the checklist can be modified and expanded.

Checklist can support most test types including functional and non-
functional testing. Checklist-based testing provides a guideline in absence
of detailed test cases. [25]

Chapter 4

Testing process

A common set of test activities together basically form a test process. Every
software may need test process of its own and thus there is no universal test
process that could fit perfectly for all software. Even a well though multi-
function test process in any given situation depends on multiple factors.
Thus, it could be even said that there as many test processes as there are
different software. How, when and which test activities are involved to the
test process may be settled in an organization s test strategy. [25] [28] [30]

Figure 4.1: Multi-layered test context diagram [7].

Contextual factors that influence composition of test process may include:

• Development lifecycle model and project methodologies used

37

CHAPTER 4. TESTING PROCESS 38

• Test levels and test types considered

• Risks of product or project

• Business domain

• Operational constraints including:

• Time

• Resources

• Complexity

• Contractual and regulatory requirements

• Organizational policies and practices

• Required standards

Common set of test activities (often implemented iteratively) in test pro-
cess:

• Test planning

• Test monitoring and control

• Test analysis

• Test design

• Test implementation

• Test execution

• Test completion

It can be most useful if measurable coverage criteria are defined in test
basis for any level or type of testing. From the coverage it can be effortless to
follow progress of testing. For a mobile application such coverage criteria may
include list of supported mobile devices that the application must function
on. The coverage criteria may require something from test cases, for example,
a simple test case for every different supported mobile device. The number
of supported devices tested gives the coverage to product owner. [25]

The life cycle of a software can be divided into three different test process
groups in which common set of test activities are performed. These three test
processes are Organizational Test Process, Test Management process (known

CHAPTER 4. TESTING PROCESS 39

Figure 4.2: The relationship between the generic test sub-process, test levels
and test types [7].

Figure 4.3: The multi-layer relationship between test processes [8].

also as TMap) and Dynamic Test Process and together forming Multi-Layer
Test Process model. [8]

Organizational Test Process defines creation and maintenance of organi-
zational test specification like organizational test policies strategies, policies,
processes and procedures. Test Management Process defines processes con-
cerning management of testing for a project, test level or test type within
a project. Examples of these could be project test management, acceptance
test management and security test management. Dynamic Test process fo-
cuses on processes for executing dynamic testing. [8]

CHAPTER 4. TESTING PROCESS 40

Figure 4.4: The multi-layer model showing all test processes [8].

4.1 Organizational test process

Developing and managing organizational test specifications is the main pur-
pose of organizational test process. Organizational test specifications are
not project-based and apply across testing in the whole organization. The
organizational test process is generic and thus can be used to manage and
develop non-project specific test documents.

Examples of organizational test specifications are organizational test pol-
icy and test strategy. The organizational test policy describes the goals,
purpose and scope of testing inside the organization. The organizational test
strategy is technical document that defines how testing is done inside the
organization. [8] [6]

Figure 4.5: Example of Organizational Test Process implementation [8].

Successful implementation of the organizational test process includes [8]:

• The requirements for organizational test specifications are identified

CHAPTER 4. TESTING PROCESS 41

• The test specifications are developed

• The test specifications are agreed to by all stakeholders

• The test specifications are made visible and accessible

• The test specifications are conformed and the conformance is kept eye
on

• Updates to the test specifications are made and agreed by stakeholders

Figure 4.6: Organizational Test Process [8].

4.2 TMap (test management process)

Test management process consist of different parts [8]:

• Test planning

• Test monitoring and control

• Test completion

Generic test management process can be applied at project level (project
test management) as well as in different test levels (acceptance test manage-
ment) and test types (security test management). The project management
processes are used to manage testing of the projects as whole based on project
test plan. Test levels and test types require test management processes to
be applied to their management separately, typically based on separate test
plans such as acceptance test plan or security test plan. [6] [8]

CHAPTER 4. TESTING PROCESS 42

Figure 4.7: Example of test management process relationships [8].

4.2.1 Test planning process

Test plan is developed by using the test planning process. Test planning
processes can be used in multiple stages in a project if needed. It can try
to cover whole project as project test plan but can occur more specified test
level or test type such as acceptance test plan or security test plan. Creating
a test plan according to test planning process is shown in Figure 4.8. [8]

Figure 4.8: Test Planning Process [8].

As more information becomes available during the project such as new
threatening risk, test plan is required to adapt. As result during testing it is
possible that test plan may need to be modified. Thus, test planning process
can be iterative. [8]

CHAPTER 4. TESTING PROCESS 43

The main goal of the test planning process is to develop, record and com-
municate to stakeholders the scope of testing and approach in testing towards
the testing target. Other requirements are mentioned such as resources and
environment needed for sufficient testing.

Successful implementation of test planning process includes [8]:

• The scope of project is understood and analysed

• Stakeholders taking part in test planning are identified and informed

• Risk that can be avoided by testing are identified, analysed and priori-
tised by the level of risk exposure

• Requirements of sufficient testing are identified such as environment,
tools and data

• Possible training or staffing needs are identified

• Scheduled activity

• Estimates such as cost, staff and timeline are calculated, and recorded
evidence of the estimates is collected to justify the estimates

• Test plan is agreed to and distributed to all stakeholders

4.2.2 Test monitoring and control process

The test monitoring and control process observes if testing progress according
to the test plan and other test specifications such as organizational test policy
and strategy. If the testing does not progress as planned by, for example,
test plan, activities will be started to correct the current situation. The test
monitoring and control process can be applied to management of whole test
project but also management of single test level or test type.

The purpose of the test monitoring and control process is to determine
if testing progresses according to project test plan, test plan, organizational
test specifications and manage testing performed at certain test level. Result
of successful implementation of the testing monitoring and control process
includes [8]:

• The means of collecting suitable measures to monitor test progress and
changing risk are in order

• Progress according to test plan is monitored

CHAPTER 4. TESTING PROCESS 44

Figure 4.9: Test monitoring and control process [8].

• New and changed test-related risk are identified, analysed and needed
activities are invoked

• Necessary control measures are identified and are communicated to
relevant stakeholders

• The decision to end testing is approved

• Test progress and changes to the risks are reported to stakeholders

4.2.3 Test completion process

The test completion process is performed when it is agreed on that testing
activities are complete. The test completion process can be performed to
complete the testing of certain test level, test type or the project.

Figure 4.10: Test completion process [8].

CHAPTER 4. TESTING PROCESS 45

The purpose of the test completion process is to leave the test environ-
ment in usable condition, make useful test assets available for later use, and
record and communicate results of testing to relevant stakeholders. Result
of successful test completion process includes [8]:

• Test assets are either achieved or passed to the relevant stakeholders

• The test environment is left in agreed condition

• All test requirements are satisfied and verified

• Recording of the test completion report and approval of the report

• The report is communicated to the relevant stakeholders

4.3 Dynamic test process

The Dynamic test process compared to the management test process and
organizational test process focuses only on dynamic testing done in different
test levels such as unit, integration, system and acceptance testing and test
types like performance, security and usability testing. The main dynamic
test processes are [8]:

• Test design and implementation

• Test environment set-up and maintenance

• Test execution

• Test incident reporting

Figure 4.11: Dynamic Test Process [8].

CHAPTER 4. TESTING PROCESS 46

4.3.1 Test Design and Implementation Process

The purpose of the test design and implementation process is to derive test
policies and test cases that will be used later during the test execution pro-
cess. In some cases, such as regression tests, it is possible to use previously
designed test assets as a help for the process. Even though test design and
implementation process is done before others it is possible to re-enter to back
to test design and implementation process for example in case of realising
the requirement of new test cases. This process also requires tester to use
multiple test design techniques.

A successful implementation of the test design and implementation pro-
cess includes [8]:

• The test basis for each test target is analysed

• The features to be tested are combined into featured sets

• The test conditions are derived

• The test coverage targets are derived

• Test sets are assembled

• Test procedures are derived

Figure 4.12: Test Design and Implementation Process [8].

4.3.2 Test Environment Set-Up and Maintenance Pro-
cess

The purpose of the test environment set-up and maintenance process is to
establish and maintain the required test environment in which the tests are

CHAPTER 4. TESTING PROCESS 47

performed and communicate status of the environment to the relevant stake-
holders. Requirements for the test environment are usually described in the
test plan and detailed composition of the test environment usually comes
more explicit after the test design and implementation process has begun.

A successful implementation of the test environment set-up and mainte-
nance process includes [8]:

• The test environment is set-up and ready for use of testing

• The status of the test environment is communicated to the relevant
stakeholders

• The test environment is maintained

Figure 4.13: Test Environment Set-Up and Maintenance process [8].

4.3.3 Test Execution Process

The purpose of the test execution process is to perform test procedures cre-
ated in the test design and implementation process in the prepared test envi-
ronment established by the test environment set-up and maintenance process.
The test execution process may be required to be performed number of times
because it is normal that test procedures may not be performed in a single
iteration (e.g. fixed issue requires a re-entering to the test execution process).

A successful implementation of the test execution process includes [8]:

• All planned test procedures are performed

• Recording of results

• Comparison of actual and expected results

• The test results are determined

CHAPTER 4. TESTING PROCESS 48

Figure 4.14: Test Execution process [8].

4.3.4 Test Incident Reporting Process

The test incident reporting process is used for reporting of test incidents such
as failures and defects. The process in entered whenever a there are failures
in tests that require reporting, something unexpected happens during testing
or in the case of retest passing.

The purpose of the test incident reporting process is to get information of
relevant incidents to the relevant stakeholders. In case of new-found incident,
an incident report is required and created. In the case of retest, the incident
report is updated. [16]

Figure 4.15: Test Incident Reporting process [8].

A successful implementation of the test incident process includes [8]:

• Test results are analysed

• New incidents are confirmed, and report details are created

• The status and details of previously-raised incidents are determined

• Report details of re-tested incidents are updated

• New and updated incident reports are communicated to all the relevant
stakeholders

CHAPTER 4. TESTING PROCESS 49

4.4 Improving testing process

After a testing process is established it does not mean it would stay as it is.
It is highly recommended that the test process should be under continuous
improvement. Just as in improving software process models same applies to
testing. Thus, process improvement can be also applied to testing. There
are different ways and methods to improve testing of software. These ways
and methods aim to explicitly at improving testing process.

The attention of process improvement models in projects are easily fo-
cused on the software. Luckily there are test improvement models such as
Test Improvement Next (TPI Next), Critical Testing Process (CTP), Sys-
tematic Test and Evaluation Process (STEP) and Test Maturity Model Inte-
gration (TMMi) which try to solve the problem of lack of attention in process
model improvement in projects. [18]

Process improvements are important to the software development and to
the testing process. A simple ongoing improvement cycle called the Deming
improvement cycle has been used for decades and is relevant for testers to
improve testing process (or ant process) even today. The cycle of the Deming
improvement cycle goes: Plan, Do, Check Act. [24]

Figure 4.16: The Deming cycle or the Shewhart improvement cycle [11].

The test process improvement models are used to reach higher level of
professionalism and maturity in the IT industry. For the need of process

CHAPTER 4. TESTING PROCESS 50

improvement in the testing industry these four (TPI Next, TMMi, CTP and
STEP) are some of the recommended processes for improvement. All of these
four models give tools to organizations determine where it stands in the terms
of the test process of the organization.

After it has been decided that improvement to the test process should be
done, the process implementation steps can be defined in the IDEAL model
[24]:

• Initiating the improvement process

• Diagnosing the current situation

• Establishing a test process improvement plan

• Acting to implement improvement

• Learning from the improvement program

Figure 4.17: Heuristic test process improvement model [29].

4.4.1 Test Maturity Model integration (TMMi)

The test maturity model integration consists of five maturity levels. Each
maturity level contains a certain process area and to move to the next level
in TMMi 85 percent of the level’s goals must be achieved.

The TMMi maturity levels include five levels:

• Level 1: initial

CHAPTER 4. TESTING PROCESS 51

• Level 2: Managed

• Level 3: Defined

• Level 4: Measured

• Level 5: Optimized

In initial level there is no formally structured or documented testing pro-
cess. Test are usually developed in an ad hoc way during coding and testing
is often seen same as debugging. The goal of testing is understood to be
demonstrate that software functions as intended.

In second level testing process is clearly separated from debugging. Sep-
aration can be done by creating test policies and implementing testing tech-
niques and methods.

In third maturity level testing process is integrated into development
lifecycle of the software and documentation is done by formal standards.

In fourth level testing process can be effectively measured and managed
at an organizational level to benefit of certain projects.

In final level of maturity levels focus in on optimizing established process.
Data from the testing process can be used to prevent defects. [24]

4.4.2 Critical Testing Processes (CTP)

The fundament of the Critical Testing Process (CTP) assessment model is
that particular testing processes are critical. The critical testing processes
support test teams when critical testing processes are well executed. The
CTP model consists of twelve critical testing process. [21]

These twelve critical testing processes of CTP are [11]:

1. Testing

2. Establishing content

3. Quality risk analysis

4. Test estimation

5. Test planning

6. Test team development

7. Test system development

8. Test release management

CHAPTER 4. TESTING PROCESS 52

9. Test execution

10. Bug reporting

11. Result reporting

12. Change management

The idea of CTP is to identify which of these twelve critical testing pro-
cesses are strong or weak. If it is noticed that some processes are weaker
than other some recommendations of improvement for those processes are
provided. [21]

4.4.3 Systematic Test and Evaluation Process (STEP)

Systematic Test and Evaluation Process (STEP) is a content reference model.
The STEP methodology is based on the idea that testing is ever going life-
cycle that begins at planning of the system and continues until the sys-
tem is retired from use. STEP emphasises testing before coding by using
requirement-based testing strategy ensuring that created test cases validate
the requirement specification before coding or design of the system is done.

Basics of the STEP methodology include [24]:

• A requirement-based testing strategy

• Testing starts at the beginning of the lifecycle

• Tests are used as requirements and usage models

• Testware design leads software design

• Defects are detected earlier or prevented

• Defects are systematically analysed

• Testers and developers work together

4.4.4 Test Process Improvement Next (TPI Next)

As in TMMi, Test Process Improvement Next (TPI Next) has maturity levels.
But instead of focusing on maturity levels of TPI Next, the process is based
on 16 key process areas that are evaluated by the maturity levels.

The 16 key process include [11]:

1. Stakeholder commitment

CHAPTER 4. TESTING PROCESS 53

2. Degree of involvement

3. Test strategy

4. Test organization

5. Communication

6. Reporting

7. Test process management

8. Estimating and planning

9. Metrics

10. Defect management

11. Testware management

12. Methodology practise

13. Tester professionalism

14. Test case design

15. Test tools

16. Test environment

TPI Next maturity levels for these key process areas are [11]:

1. Initial

2. Controlled

3. Efficient

4. Optimising

CHAPTER 4. TESTING PROCESS 54

4.5 Communication in testing

Communication in testing can be mostly shown through by bug reports cre-
ated by the tester. Interacting with programmers as a tester is an important
aspect of the role of tester. Without proper interaction with programmers
testing is not as efficient as it could be. Defect reports can be dismissed,
testers are not informed timely enough, testers work is not appreciated by
programmers, testers are not trusted, and many more problems can occur if
the communication between testers and programmers is not reasonable.

Programmers are experts of the machine. As an expert of something
does not make some same as the target of expertise, in this case programmer
seen as a rational machine-like person. Programmer is a normal person with
feelings who can deeply care for his work. Tester is the critic of the software
or system and thus critic of the work of the programmer. Being honest,
sensitive and diplomatic in communicating as a tester is an important skill
to master. [15]

4.5.1 Understand how programmers think

Programmer and tester operate in two totally different condition. Both have
a different role in software development. Thus, both have different perspec-
tive towards the software. To understand more about world of a programmer
it is important to understand these perspective differences between tester and
programmer. Perhaps the best way to really understand the perspective of
a programmer is to be become one for a while in a career of software tester.

Five points are made to understand programmer better [15]:

1. Usually programmers are specialized in some certain subsystem or mod-
ule

(a) This often means that the tester might have better understanding
of the integrity of the operating system

2. Programmers have their theory of the operating system

(a) Tester reports a bug that can not happen in the theory of the
programmer even though it is an obvious that is reproducible bug

3. Programming is complicated activity

(a) Programming is on going solving of different problems and requires
deep concentration. Thus, programmers might be impatient with
interruptions.

CHAPTER 4. TESTING PROCESS 55

4. Programmers often struggle with difficult situations

(a) It is common that a tool used for software development is buggy
or an update of a component brakes something that must be fixed.
Work environment of programmer can be full of interactions

5. Programmers dislike routine work and create automation and script for
help of their work

(a) As a tester automation is great thing, but manual testing is always
needed and is usually more effecting in finding defects

4.5.2 Develop trust of the programmer to testing

Creating a hostile relationship as a tester with programmers developing the
system from the start is not a good idea. Being an effective tester requires
information and one of most important source of information can be the pro-
grammer. Having a healthy and trustworthy relationship with programmers
leads to a possible information of early plans, drafts of the design document
and early prototypes.

Earlier the tester has the information the better. Engaging early to de-
velopment project as a tester requires the tester to be sensitive and helpful.
Tester will be dealing with draft products and must know that these products
are not complete and thus require different kind of feedback than normally
required from a tester. Programmer still want information if their draft has
critical error that have gone unnoticed. As the development process develops
giving worthwhile feedback all the way till the end will give the tester a trust
they deserve. [15]

4.5.3 Provide service to the programmers

Offer programmers service as a tester. This builds trust and gives impres-
sion that programmer can cooperate with the tester. Basically, everything a
tester does should be a service made for the programmer. For example, some
services that tester could offer can be testing private build and protypes cre-
ated by the programmers, setting up testing environment that the developer
can also use or testing third-party components.[15]

4.5.4 Integrity and competence will demand respect

In the simplest the job of a tester Is to report problems of the developed
system. Programmer might have difficult times understanding some of the

CHAPTER 4. TESTING PROCESS 56

problems especially when the report is about user experience. When the
programmer does not quite get the problem, the tester will be delivering
an unpleasant message. As a tester finds these unpleasant messages it is
important that they are delivered. Finding credible problems and reporting
them accurately will lead to respect from the programmers.

When reporting problems there few tips for the testers [15]:

1. Report problems crisply

(a) Report a defect step by step leaving all unnecessary steps and
comments from the report

2. Base the findings on the behaviour of the product

(a) Tester is not the expert of the internals of the system but can be
the expert of behaviour of the system

3. All defects are not reproducible, show the steps tried to reproducible it

(a) It is important when something irreproducible happens to inves-
tigate. On critical happening sometimes reporting the irrepro-
ducible defect can be helpful

4. Deliver critical findings directly

(a) It is good give notice to a programmer before uploading a critical
report for all to see

5. As a tester do not pretend to know about things a tester does not know

(a) Tester can guess what causes the problem but, in most cases, does
not know the exact cause of the problem

6. Exaggerating bug reports is not necessary

(a) If a tester sees a problem the tester should report it and escalate
only if necessary

7. Integrity and competence of tester are important

(a) Tester without integrity is not taken seriously and without in-
tegrity there can be no competence

CHAPTER 4. TESTING PROCESS 57

4.5.5 Focusing on target, not the person

When reporting problems tester should focus on the problem, not the pro-
grammer. As in every job someone is better than other in what they do,
and everybody has different strengths. Same applies to programmers. Tester
might know that a certain programmer does more mistakes than another
but there is no reason to pinpoint the problem to the programmer. Mak-
ing reports more about the programmers will leave the tester in positions of
distrust and thus, less information and making the work of the tester less
effective.

Also, it is possible that there is so called problem programmer. The
programmer has always a lot of defects in the code and does not care so
much of the work as others. Still pinpointing the programmer as a problem
is not a solution. Sometimes the tester must trust that the management sees
these kinds of problems and acts on them. [15]

4.5.6 Asking question about the work of programmer

Most programmers are invested in their work and many testers seems to have
problems of getting information out of the programmers. As many might not
expect programmers are quite willing show and talk about their work. Tester
must show a genuine interest to the work of the programmers to perhaps get
to the information the tester is after. Asking questions about technical parts
the tester does not understand will increase the competence of the tester and
increase the trust of the programmer to the tester that tester understand the
developed product also technically. As tester ask question and get answer
from the programmers a trust bond between the tester and programmers is
formed. After the trust has been achieved tester might have easier way of
collecting any information. Tester might be able to have conversation from
the starts which starts with question about error handling. Without a proper
question and conversation before it, it might feel tester just wants something
and is not really interested about the work of the programmer. [15]

4.5.7 Programmers want to help with testability

Programmers want their product to be good. One part of the product being
good is how good is the testability of the product. Programmers want as-
surance of the quality of their product which mostly comes through testing.
Programmers do not always know how to make the testability of the prod-
uct better. Tester should be able to tell how to improve testability for the
product.

CHAPTER 4. TESTING PROCESS 58

Tips for the tester to get better testability [15]:

• Speak the same language as the programmer

Understanding the code and the design documents helps a lot

• Ask early enough

• Be realistic, do not hope moon from the sky

Chapter 5

How to create the right testing
process for a software

Tools for creating a testing process are introduced through out chapters 2, 3
and 4. Testing process alone is not enough and can fell sort on it purpose if it
is not well thought and targeted. Thus, it is quite important to understand
that the testing process must complement the lifecycle of the development
process.

Software testing alone has no actual value. Software testing has only value
if it delivers value to different parts of software development lifecycle. Thus,
it is utmost important that testing fits the software development lifecycle
and supports it. It does not matter what kind of lifecycle the development
process uses, testing must try to support it. As a fact each different software
development lifecycle model effects significantly how the testing is done. [12]

5.1 Testing in the software development life-

cycle

There are multiple different known software development lifecycles. Most
known models are V-model and Agile model. Newer models are spiral model,
rational unified process and rapid application development model. Thus, a
testing must at least be aware of the different types software development
lifecycles and be ready to adapt into those different styles of development.

In order the testing to be successful in any project, the tester must un-
derstand what will be needed, when it is needed and for whom it is done
for. Also, projects participants and stakeholders might have their own ex-
pectations for the testers. Some might want to know only the critical issues
discovered, others might want to know every minor issue found and others

59

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 60

might want weekly reporting of the quality of the product. As every part
of these can shape the form of testing process it is also important to under-
stand that an agile project in different organizations can be totally different
agile project. For a simple example an agile project in an organization of
under 50 personnel is probably enormously different from an agile project in
multinational organization with over 1000 personnel. [12] [27]

5.1.1 Sequential model

Sequential models are called sequential for the reason of the entire system
is being build only once, meaning that the building happens in sequences
of design, implement and testing. Building the product in sequences means
also that there is basically no overlapping between sequences. Each phase of
the project is completed before the next phase begins. The most common
Sequential models are waterfall and V-model. [11]

Figure 5.1: V-model [11].

The sequential models are not the easiest for testing and thus the lifecycle

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 61

of sequential model causes certain problems for testing. Basically, all the
problems involve the problem schedule of the project in the form of strict
deadlines of the phases and release date.

First problem for testing is that the deadline after testing is release date.
Release date is usually something that cannot be changed and thus there
is always a trade-off between the quality of the product and release date.
The time during the end can be quite hectic depending on time reserved
for testing and starting quality of the product. Also, test manager usually
must name one tester that approves that product is ready for production.
This situation for the one tester can create a lot of pressure from multiple
co-workers.

The second problem is that as the project is sequential there are deadlines
for everything, and they are not the most flexible. This can lead to situa-
tion where development groups are pressured by the sequential schedule and
deliver unstable systems for testing due to lack of time to test their own pro-
duction. Giving unstable systems for leads to situation where testing is not
effective and can be retroactive unit testing that should have been done in
the development phase. As the testing is not effective and the time is limited
there is again problem in the trade-off of the quality and release date. Third
common problem is that as everything is sequential testing is not informed
of the need of testing after development of the product is done or the testing
team is invited to late to the party. This leaves very little time to plan the
testing and being organized. In these scenarios testing easily becomes ad hoc
like testing where there is no clear image of the overall coverage thus no clear
understanding of the quality of the product which can mean that there was
no value in the testing. [11]

5.1.2 Iterative models

In iterative models (known also as incremental models) the model consists of
iterative chunks of building the system and testing it. Examples of iterative
models are Rapid Application Development and Rational Unified Process.
[12] In one iterative chunk there can be steps of analyse, design, develop and
test. After the chunk is done it is check if the system is ready. As the system
is not ready a new iterative chunk is started. The chunks consist of different
functions and capabilities of the system and can be in order based on a
risk, for example. The size of the chunks of iteration can vary tremendously
between each other. [11]

In iterative model it is normal that there so called fully integrated and
functionally operative system much earlier than in sequential model. As
the product is not polished and might work only in functional level, this

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 62

Figure 5.2: Iterative model [11].

can help the testing a lot as testing can be started earlier and some critical
functionalities can be tested. As this seems to be great for testing there are
also problems in iterative model. [11]

There are two common problems with iterative models for testing. As
everything is iterative it means that the packets that testing gets can be quite
a lot compared to other models. As in every iteration it must be confirmed
that integration of the system is intact which means regression testing all
the previous increments. Luckily it is possible in most cases to automate
these regression needs. Second problem for testing and for the developer
team in iterative model is time to fix defect found during testing. As the
project is iterative after development team gives the system for testing, a
new iteration is started. This can lead to situation where testing in done
in previous iteration in standpoint of the developers and all defects reported
are from the past iteration. In the worst-case developer have no time and
no interest fixing the defects. This effects highly in the value of testing if no
one has time reacts to defects and act on them. [11]

5.1.3 Agile model

Agile models have a lot in common with iterative model. Agile model consists
of iterative chunks, but the difference is that the chunks are very short time
depended sprints. Sprints are two to four weeks long and include entire
team, including testers, in development process. Changes to the system are
allowed at any time of the project and adjustments are made to scope based
on changes. Example of the agile model is scrum process where the team
has daily meetings where information about the progress is shared and each
iteration is called sprint with a goal at end of the sprint.

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 63

Figure 5.3: Agile model [11].

Testing has similar issues with agile model as in iterative model. But as
the agile model is is more fast paced in the iterations are the found issues
more relevant. It is common that in agile environment tester can be closer to
the development team than other models, but it can vary considerably inside
different organizations.

Agile methods create quite a few challenges for at tester [11]:

• Volume and speed of change

• Trying to remain effective in short iterations

• Increased regression risk

• Inconsistent unit testing

• Unsatisfactory test oracles and shifting test basis

• Possible problem of meeting overload

• Siloing inside sprint teams

Agile methods also create opportunities for the tester [11]:

• Automated unit testing

• Static code analysis

• Code coverage

• Continuous integration

• Automated functional testing

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 64

• Requirement and test reviews

• Reasonable workload

• Control of technical debt

5.1.4 Spiral model

In a spiral model prototypes of the system are used as iterations to design
the system. Spiral model lifecycle goes from another prototype to the next.
The lifecycle of the spiral model goes through a spiral consisting of design,
prototype, testing and redesigning of the prototype. This spiral is repeated
until all risky design decisions have been proven or disproven by testing.
Spiral model is not commonly used and the reason for it is that the spiral
model is suited best on the largest and most complex projects. One example
of these kind of projects is United States missile defence system.

Figure 5.4: Spiral model [11].

As in all models spiral model has challenges for testing. Firstly, there
will be many prototypes of system which each has to be tested but the
differences are that prototypes are not some iterations. A prototype can be
a totally different creation. This mean that there can be enormous differences

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 65

between each prototype which will make the comparing and creating the test
data difficult and planning of the testing as a whole. Secondly, testing in
early stages is mostly experimental. Testing in this stage is more about
finding what is not known at the stage, not about testing itself. This leads
to situation where testing must be very flexible. Thirdly, schedules in spiral
model are usually quite unpredictable. This makes again planning of the
testing difficult especially in estimating work hours of testing used for the
projects. [11]

5.1.5 Model of coding and fixing

This is more as a sarcastic model that appears in some cases and is regret-
table. In this sarcastic model of code and fix project has no real development
lifecycle model. At start of the development it is possible that know one re-
ally knows what the system should look like. Instead of creating protypes
or doing excessive design the development team begins to assembly the final
product from the start. An example steps of these model can be that pro-
grammer writes code and debugs it a little bit but does not bother with unit
testing. As something is ready it shipped for tester with no real meaning.
As such tester usually finds multiple defects from the commitment and the
programmer fixes them on the fly to the testing environment. This will lead
easily to a situation where all the fixes are not committed to the code repos-
itory. All these mistakes in coding and communication are repeated multiple
times. Finally, the model of coding and fixing, which mostly used by little
start-ups (only a few people), leads to exhaustion of money, time or patience
by the project team size of dozens or even hundreds. [10]

5.2 Risk definition

Risks are undesirable effects with negative effect to an outcome. Risk can be
defined as a problem that might happen and thus decrease perception of the
products or projects quality by, for example, user or a stakeholder.

There are two types of risk in testing. First type of risk is a quality risk
or also known as product risk. Quality risk, for example, can be possible
reliability defect causing failure inside the system and crashing it. Second
type of a risk is a planning risk. Planning risk includes everything project
related but not the product itself. Planning risk is sometimes called project
risk which in some cases is more fitting. An example of planning risk shortage
in the staff carrying out the project. Shortage can lead project delays and
other problems.

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 66

As testing can be risk based it is important to identify both planning
risks and quality risks. To identify both kinds of risks there are different
techniques to be used during the project [13]:

• Expert interviews

• Independent assessments

• Use of risk templates

• Project retrospectives

• Risk workshops

• Checklists

• Past experience

5.2.1 Cost of bug

It has been mentioned that the testing itself does not have economic value.
But a major bug can have huge impact of in the economic value. As quality
assurance minimises the risk of these major bugs in the software quality
assurance has an impact to the economy of a company even though it is hard
to evaluate. If the company is purely a software company, it possible that
even one major bug in the right time and right place can be the beginning of
the end for the company. It is possible that there is price tag for a bug, for
example, if a price of products are wrong and the products are sold without
possibility of refund from the buyers. One common costly defect nowadays
is a defect that requires service to be out of use for a period of time. As
service is unavailable, for some service, it can be evaluated how much does
it cost for every second that the service is down. Thus, it is quite easy to
understand that a bug can cost a fortune for the company.

Finding and fixing a bug in different stages costs different amounts money.
Easily put the earlier the bug is found cheaper and faster it is to fix. The
later the bug is found and fixed the more it can cost. This is one of the
reasons that testing should be included as early as possible to projects. [20]

CHAPTER 5. TESTING PROCESS FOR A SOFTWARE 67

Figure 5.5: Cost of bug in different stage [14].

Chapter 6

Case study: Testing of two dif-
ferent slot games at Veikkaus

Case study focuses on testing two different projects. Both projects have sim-
ilarities as they both are slot games created at Veikkaus. The two projects
used for the case study have been selected so that there are differences be-
tween them. Another slot game project being quite simple game with focus
only on the game whereas the other slot game has features needing a lot of
development of supporting systems of the slot machine itself. Thus, another
being a game project and the another more like organization cross-sectioned
project where multiple cells of the organization are needed. As for testing
these both projects appear as the same, a slot game project. This leads to
situation where both projects start with same testing process designed for a
slot game project as it can be already figured out that organization cross-
sectioned project might need a different testing project than a simple slot
game project.

In this case study we will introduce different common tools used to help
testing, introduce testing process used in slot game projects as well as de-
velopment life cycle of slot machines. After that we will look to the testing
of both slot game projects and in the end do a comparison between the two
projects and conclusion of the two slot game projects.

6.1 Testing tools used

Testing requires tools to be efficient. Testing tools are something which helps
in certain areas of testing. These areas of testing can be communication in
testing, test case management, documentation of testing or test automation.
Tools can be quite simple, for example, for communication it can nearly

68

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 69

anything making communication between the developers and testers easier
and more efficient.

In this chapter of case study we will introduce few main tools used in
testing slot game projects in Veikkaus. These tools are Testrail, Jira, Slack,
Confluence and Robot Framework. Testrail focuses on test case management
and creation of test runs. Jira, known as a project management tool, provides
perfect way to report defects. Slack is simple communication software mak-
ing communication between the developers and testers easy. Confluence is a
collaborative software making documentation easy to access. Robot Frame-
work is a test automation tool that enables corner case testing and enables
making of tools to make testing more efficient.

6.1.1 Test case management

One of the most important part of testing is to have of test cases to help
testing and keep track of what have been tested and create coverage through
the test cases. There are many ways to create test cases, but the test cases
must be stored somewhere and creating test runs might need an extra effort.
As it is not ideal to have a text document stored somewhere containing a
stack of test cases it is important to have a tool for creating and storing test
cases as well as have an easy way of creating test runs from existing test
cases. The tool used for test case management in testing of slot games in
Veikkaus is Testrail.

6.1.1.1 Testrail

Testrail is modern test case management software made for testing teams and
development teams as well. Testrail is web-based licenced software making it
easy to start and access for anybody. With Testrail it is efficient to manage
test cases and test runs. With a single look the progress of test run or runs
can been seen which gives indication of progress of testing. New test runs
can be created from made templates with few clicks. All test cases can be
divided into folders making it efficient to find the needed test cases. [5]

6.1.2 Communication management

Communication can be done in multiple ways and most used way in projects
is talking things through. In testing it is important to communicate all de-
fects, malfunctions and errors as clearly as possible. Also, testers might need
the insight of the developers from time to time to continue testing efficiently.
As reporting defects is important and must be as clear as possible the best

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 70

way is to have some tool where tester and developers can see all the defects
as precise as possible. Jira is the tool used in testing slot games in Veikkaus
for reporting defects. As communication with team cannot always happen
face-to-face and people are occupied at different times, it is important to have
communication channel which always open and multiple people are able to
answer questions. Slack is the chosen tool for open channel communication.

6.1.2.1 JIRA

Jira is software development tool used for agile environments. Jira is built to
plan, track, report and release software by using tracking items with different
purposes. In planning phase stories and tasks are created as a backlog for
a project and from the backlog teams can create sprints. Every Jira ticket
containing different information can be tracked by using different state de-
cided by the team. Example states can be open, in progress, under review,
final approval and done. From the states of Jira tickets it can be quite easy
to evaluate the progress of a sprint or the project. As for testing creating
defects under the project, same values apply than to normal tickets. Defects
have states and it can be monitored are the defects being reacted to. Jira is
also licenced software product. [2]

6.1.2.2 Slack

Slack is a real-time collaboration application for work. Slack can be used
as any other real-time chat application. In Slack different channels can be
created for example for different projects, teams and departments. Thus,
only the ones needing the information get it. All conversation in Slack are
searchable by everyone in the company which make it easier to find, for
example, answer to an old problem already discussed in Slack. Integrations
are big part of Slack. Slack has multiple ready to go integrations, but it also
possible to build your own bots or integrations to Slack quite easily. Slack
enables to communicate beyond company. It is possible to invite people
outside the company to desired channels in Slack. Thus, it is possible to
communicate with clients, vendors or partners on real-time. File sharing,
voice and video calls are also supported. [4]

6.1.3 Documentation management

As in every testing related doing, documentation of testing is done. Depend-
ing on the project the documentation needs can be quite different. Some
projects might need precise and comprehensive documentation whereas other

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 71

might need minimal documentation. In testing of slot games Confluence is
used for documentation of testing in Veikkaus.

6.1.3.1 Confluence

Confluence is collaborative software published by Atlassian in 2004. Con-
fluence is marketed as a company software as licenced software as a service.
Confluence can be seen as an open and shared workplace for a company.
Instead of using, for example, shared data storage via network drive anyone
can easily access Confluence and find rather easily documentation they are
looking for. Confluence is used by a browser and creating documentation to
Confluence does not require any skills that updating a normal website might
need. In Confluence anyone can create pages containing information and
pages can sorted under different locations in Confluence making it easier to
browse through different documentation. Documentation can be shared via
single link to Confluence and also documentation can be given feedback di-
rectly to pages the document is created in. Confluence has many inside build
tools for making certain documentation from simple templates to different
macros. Also, other Atlassian products like Jira are integrated to Confluence
making the documentation more efficient. [1]

6.1.4 Test automation management

As for nowadays software test automation is part of nearly every software
development in some way. For slot games test are mostly done manually,
but most of the test require help from test automation tools built to make
testing more efficient and reasonable timewise. Testing of slot game has large
number of corner cases based on random number generations. Thus, most of
scenarios are too unlikely to happen in normal circumstances and that is why
test automation tools are important. Test automation tools enables testers
to go through all possible but unlike corner cases of a slot game. Also, a
certain normal situation can be generated through test automation tools.

6.1.4.1 Robot framework

Robot Framework is open source automation framework. Robot Framework
is mostly created for acceptance test driven development and robotic process
automation. Robot Framework uses keyword-driven test automation which
makes it easy to use even for novices of test automation. Robot Framework
is coded using Python and has multiple build in test libraries implemented

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 72

with Python or Java. Robot Framework was developed by Nokia Networks
but is nowadays sponsored by Robot Framework Foundation. [3]

6.2 Testing process used for slot games in

Veikkaus

Development of the slot machines, the slot machine software and all that
runs on the slot machine is done by the development teams in Veikkaus. This
means that basically all information about the software of slot machines of
Veikkaus can be found inside the company. Basically, everything is done
inside the company which makes it quite unique position for testing. When
everything is inhouse design it is can be very efficient for testing as solutions
and problems to defects can be reacted as fast as needed and there will not
be lack of information to find solution for defects. This means that the basic
testing process can focus more on the other parts than raw testing such as
helping in design and asking more quality questions than reporting distinct
defects.

6.2.1 Development life cycle of slot machine

To understand fully timeline of testing process of slot game it is essential to
understand development life cycle of the slot machine. In the world internet
creating a version update to webpage can be quite simple. The release of
a version can be done in few seconds and then it is ready to use for all
users. But for a operating system, like Windows, it is not as simple as that.
Probably the version must go through some piloting and installing the update
is solely dependent end user. Then there are devices whose updating can be
much more complex, like vending machine. Slot machines belong to this last
group where every device needs to update itself separately. Thus, it is not the
fastest process to update all 20 000 slot machines of Finland to new version.
On these new versions the new games are included which makes the release
process of slot machines important when creating the testing process of a
slot game.

The releasing process is quite simple. Start of the month a new version
is released even though there would no slot games and minor modifications.
Rarely if critical defects are found from production hotfix is required which
breaks the process a little bit. For testing this means that there is always
monthly release which requires acceptance testing and piloting before the
actual distribution of the software to all 20 000 slot machines.

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 73

Acceptance testing starts one month before the target release date. The
acceptance testing itself takes 2 weeks or less depending on amount of changes
made to system of a slot machine and how much of the changes have been
tested in advance. As defects are found during acceptance testing it is decided
does the defect need to be fixed to the ongoing release. If so, a new iteration of
release is made with wanted defects fixed in it. After the acceptance testing
is done, the piloting of the latest accepted iteration can begin. Piloting
starts with few slot machines rapidly increasing the number of piloting slot
machines to hundreds to thousands. Finally, all slot machines are updated
to the latest version before new month.

Figure 6.1: Release cycle of slot machines.

6.2.2 Testing process of a slot game

Every slot game project is different from each other. Team members can be
different, the game itself can be totally different, a new producer and other
possible variables. This does not mean that there should be a different testing
process for every project. The testing process of a slot game is created to
help testing any slot game project. The testing process is tightly bound to
the development life cycle of the slot machine and game itself.

The game has a certain development life cycle depending is it going to
be a big release or a smaller one. The big game release has more time in
the development life cycle than a smaller one but for the most parts all the
game projects have the same ingredients in the development life cycle. The
game projects have four clear stages in the development life cycle. First is
the designing of the product. Second is developing the product. Third is
polishing the product. The fourth is to fix all possible defects that were
not fixed during development or polish phase or found in integration testing
performed after the deadline for development. Every four stages include

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 74

different sprints and entireties, but it does change how the projects proceeds.
For a testing process these four stages are the most important key points.

The testing process starts at same time as the project starts. It is usually
helpful to have testing participate from start of the project. The testing
process of a slot game can be distributed in to three different stages. These
three stages being design, agile testing and integration testing.

First stage is starting the project with the development team participat-
ing in design and other planning through out the project. In the design part
static testing can be done as well as risk analysis. Different risks and find-
ings can be presented to the development team during different meetings,
like daily meetings or sprint plannings. Starting the working with the devel-
opment team from start will create healthy relationship between tester and
developers and will create trust between each other.

As the team starts to develop the game, testing is not yet required. Thus,
it is important to wait that there is something to test that will benefit the
development process. As there are functionalities to test and the develop-
ment team feels that some amount of testing is required the agile testing can
start. In agile testing environment where the product can change in a day
to different direction it is important to understand what relevant informa-
tion to the team is and what is not. This second stages continues through
development phase and polishing phase meaning that the mind set of tester
must change to stricter as time passes. In start of the development process
it is important to only ask question about the product, give opinions when
required and familiarise with the game. As the development proceeds and
the game is playable and the mechanics are locked the questions can become
more precise closing to defect like questions. As the game is ready for the
polish period or little bit before that tester can run test runs and start the
actual testing of the game with criticism. At this point it is still important
to ask questions because the product is not ready, but it is fine to do offi-
cial defects of the product that will be hopefully fixed during polish period.
During this last phase of agile testing of the product information about the
quality of the game should be gathered and documented. This information
is relevant when starting the integration testing for the game.

Integration testing is done after the development the game is finished.
The idea is that the game has no featured yet to be completed or any other
task that are undone. In the period of integration testing the purpose of the
development team is not develop the game anymore, but to react reported
defects and fix remaining defects. In integration testing the purpose of test-
ing is to run full scale test regression for the game and integrations coming
from the slot machine and verify all fixed issues. In this stage there can be
lot of question to team, but usually if something is worth of question from

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 75

Figure 6.2: Example of a slot game project testing

completed product it might be as well a defect of some kind. In integra-
tion testing it is important to report all defects, malfunctions, errors and
anomalies with minor threshold.

After the integration testing is over and the product is ready it is ap-
pended to development life cycle of the slot machine. In the next acceptance
testing of the slot machine the game is included to the release. In the accep-
tance testing the game is not the priority, but it will get some regression.

6.3 Testing of a minor slot game

The first project we are looking into is a slot game consisting only of the
game, meaning that there are no need of upgrading the core systems of the
slot machine and background systems supporting the slot machine. The
project consists only of developing the game and thus making it simpler
to test and develop than a cross-section project requiring a multiple teams
working together. The game itself is a normal poker game with a twist of
possibility to win free games during normal rounds.

6.3.1 Test plan and strategy

Object of testing is a poker game created to slot machines owned and created
by Veikkaus. It is normal poker game with a little exception of winning
free games with kings. The estimate amount of work required total from
testing for such a product is roughly five working months. The five working

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 76

months includes all sectors of testing from the start of the project to the
end. The development time reserved for the project is six months. Testing
will start with agile testing after 3 months of development and continue with
integration testing and acceptance testing after the development deadline.

Stages of testing will be agile testing, integration testing and acceptance
testing and piloting. QA lead will participate from the start of the project to
all scrum-based events in the project consist of planning, designing and daily
and weekly meetings. Agile testing will start as soon as there something
to test. A feature has been made playable or there are documents that
need verifying. For making the communication as smooth as possible it is
recommended that the QA lead will try to operate in the same team space
with the development team as the deadline is one month away. The agile
phase of testing consists mostly of experienced-based testing with support
of test cases and static testing. All the completed features of the game are
tested at least once during this phase. Integration testing will start right
after the development deadline has been reached.

In the integration phase the entirety of the game is being tested before
the acceptance testing. For the integration testing a new tester takes the
lead instead of the QA lead. This is done to get a fresh look into the game.
Integration testing takes usually to from two to four weeks.

After the game is tested it goes to release cycle of the slot machines.
In the release packet there are multiple other features developed to the slot
machine itself. In the acceptance testing the focus of testing is not in the
game but rather the slot machine itself but many of the test cases are run on
the game and thus making a little more regression to the game. Acceptance
testing takes 2 weeks and after that a piloting period of two weeks begins.

The types of testing used for the project are mainly exploratory testing
of the features of the game and test case-based testing. Usability testing,
corner case-based testing and performance testing are also required during
the testing.

The targets of testing of the game are:

• Basic game

• Doubling

• Free games

• Graphics

• Sounds

• Rules

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 77

• Winning combinations

• Win table

• Money purchases (physical and card)

Testing is performed on three different slot machine type. The targets of
testing do not include working with other games and operating functionalities
of the slot machine.

Reporting of testing during the agile phase is done in Confluence using
test run links and progress of the testing by tables. Also, during scrum
meetings with the team, the QA lead will state the progress of testing.

The testing has starting and ending criteria for every stage of testing.
Agile testing can be started as a feature of the game has been developed to
playable and a testing packet has been made. It is required to have a have a
slot machine available of the same type used in development. Agile testing
phase can be stopped when the final development sprint of the game has
been finished.

Integration testing can be started if the game is feature complete, there
are no open critical defects, there is a working automation tool and an official
integration packet of the game has been made. In the integration testing it
is required to have at least one of each type of slot machine (currently 3
different types required). Integration testing can end when a comprehensive
test regression set has been run to the game and all the found defects have
been addressed properly.

Acceptance testing starts at the beginning of every month. If the game
has gone through integration testing before it, the game will be included to
the acceptance testing packet. Testing can be started when the official release
packets are done and there are enough slot machine types ready for testing.
Acceptance testing can be ended when regression test runs are done, and all
critical defects have been fixed. Piloting of the release packet will start after
acceptance testing and end when the packet is officially released to all slot
machines in Finland.

Controlling defects happens in Jira under the project of the game. All
defects are reported to Jira but face to face reporting is also used especially
in agile testing. Producer of the game is responsible for reacting to reported
defects. The producer has authority to decide how to act to different defects,
is the defect fixed or does not require fixing. Developer fix the defects and
the testing team is responsible for verification of the defects.

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 78

6.3.2 Test results

As results for testing there are multiple ways of communicating different
style of results. Coverages in different areas like coverage of mobile devices,
coverage of features, coverages of tests run. There can be estimates of the
quality of the tested software or quality estimates of the features of the
software. In this results section we are focusing on found defects and the
severity of the founds defects and what that could report of the quality of
the slot game. Tests run are used as an indicator of coverage and size of the
content of the game.

6.3.2.1 Defects found

There are total of 104 defects found during integration testing and agile
testing phase. Most of the defects have no priority (59 out of 104) which
mostly means a few things. Priority of the defect does not matter, the defect
has been found during agile testing period and has been seen irrelevant to
have priority at that time or tester and developer have simply forgot to
include the priority to the defect. As to get information about the overall
quality of the game the most important part about found defects are the
number of found critical and high issues. When the software reaches point
where everything is complete there should not be any critical issues. A few
high issues are fine.

It can be seen from the figure 6.3 that there are critical issues found,
seven to be exact. The number of critical defects found is quite high for
simple slot game. A critical defect is a defect that blocks the release of
the game. The game has chance of crashing during normal game play or has
some problems concerning money transactions. These are the most commons
cause for critical defects. What is little bit odd is that there are same number
of high and medium issues reported as critical defects. Usually there should
be more high defects than critical defects. This can be explained by the
high number of defects without a priority. Defect without priority is usually
priority from high to low, mostly being medium to low. The figure 6.3 tells
that game has not entered testing in a totally complete state which is true.
Due to schedule pressure of releasing the game it entered testing before it
polished. The final development period happened a little bit one upon the
other which is not optimal.

One interesting fact that tells about the quality of the software is how
many integrations testing packets are needed to be done for integration test-
ing after the development of the game is complete. In a perfect world only
few testing packets are needed due to few defect fixes. But as it was noticed

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 79

Figure 6.3: Found defects of a poker slot game

there where 104 defects found which resulted in creating of seven testing
packets for integration testing.

6.3.2.2 Tests run

There were total number of 442 tests run to the game. This does not mean
that there were the only test runs but just the ones that are documented in
the test run itself. The number of tests run does not tell about the quality
of the product but can tell about size of the content the game has. Whereas
the number of the failed test cases of the run test cases tells about quality of
the software.

From the figure 6.4 it can been seen that there are 24 fails out of 442
tested. This is quite a small number of failed tested as some test runs are
done in agile phase of testing and more than one fails are duplicates from
another test run due to having three different slot machines which each have
their own test run. There are also few blocked or not relevant test cases. This
can happen when chosen test does not actual test anything about the game or
is blocked due to something not working at the time like card payment system
or feature is incomplete. What is interesting is the relation between reported

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 80

Figure 6.4: Tests run to a poker slot game

defects and fails. There are 104 reported different defects and only 24 fails
which some are duplicates. This can imply a few different things. Test runs
are just a little part of testing and most of testing relies on totally different
techniques of testing which is mostly true. Most of testing is experienced
based testing and testing done around the test case but not the test case
itself. It could also mean that the test runs are not the best for catching all
the defects of the slot game. This is also somewhat true as the test cases are
created to be generic and test basic operations of the game and slot machine.

6.4 Testing of a major slot game

The Second project we are looking into is a major slot game release. The
game itself has multiple features including free games and a bonus game
in a form a jackpot feature. As the game has a new jackpot feature it
requires work not only from the development team of the game but also it
requires work from multiple different background systems supporting the slot
machine. Thus, the jackpot is such a large feature the game actual has two
game development teams working at same time. The other develops the basic
game and the free game feature and the other focuses only to the jackpot
feature. The jackpot feature requires changes to the core systems of the

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 81

slot machine to operate properly as well as support of different background
systems. The testing plan and strategy focuses on the game parts of the
project including all the parts of the game but not the background system
testing.

6.4.1 Test plan and strategy

Object of testing a is jackpot-based slot game created to slot machines owned
and created by Veikkaus. It is slot game with free games and jackpot features
as a bonus game. The estimate amount of work required total from testing
for such a product is roughly seven working months. The seven working
months includes all sectors of testing from the start of the project to the
end. The development time reserved for the project is nine months. Testing
will start with agile testing after 5 months of development and continue with
integration testing and acceptance testing after the development deadline.

Stages of testing will be agile testing, integration testing and acceptance
testing and piloting. QA lead will participate from the start of the project to
all scrum-based events in the project consist of planning, designing and daily
and weekly meetings. Agile testing will start as soon as there something
to test. A feature has been made playable or there are documents that
need verifying. For making the communication as smooth as possible it is
recommended that the QA lead will try to operate in the same team space
with the development team as the deadline is one month away. The agile
phase of testing consists mostly of experienced-based testing with support
of test cases and static testing. All the completed features of the game are
tested at least once during this phase. Integration testing will start right
after the development deadline has been reached.

In the integration phase the entirety of the game is being tested before
the acceptance testing. For the integration testing a new tester takes the
lead instead of the QA lead. This is done to get a fresh look into the game.
Integration testing takes usually to from two to four weeks.

After the game is tested it goes to release cycle of the slot machines.
In the release packet there are multiple other features developed to the slot
machine itself. In the acceptance testing the focus of testing is not in the
game but rather the slot machine itself but many of the test cases are run on
the game and thus making a little more regression to the game. Acceptance
testing takes 2 weeks and after that a piloting period of two weeks begins.

The types of testing used for the project are mainly exploratory testing
of the features of the game and test case-based testing. Usability testing,
corner case-based testing, anomaly testing and performance testing are also
required during the testing.

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 82

The targets of testing of the game are:

• Basic game

• Doubling

• Free games

• Bonus game (Jackpot)

• Menu (Jackpot)

• Graphics

• Sounds

• Rules

• Winning combinations

• Win table

• Money purchases (physical and card)

Testing is performed on three different slot machine type. The targets of
testing do not include working with other games. Some of operating func-
tionalities of the slot machine are required to be tested due to changes made
to the core systems of the slot machine software.

Reporting of testing during the agile phase is done in Confluence using
test run links and progress of the testing by tables. Also, during scrum
meetings with the team, the QA lead will state the progress of testing.

The testing has starting and ending criteria for every stage of testing.
Agile testing can be started as a feature of the game has been developed to
playable and a testing packet has been made. It is required to have a have a
slot machine available of the same type used in development. Agile testing
phase can be stopped when the final development sprint of the game has
been finished.

Integration testing can be started if the game is feature complete, there
are no open critical defects, there is a working automation tool and an official
integration packet of the game has been made. In the integration testing it
is required to have at least one of each type of slot machine (currently 3
different types required). Integration testing can end when a comprehensive
test regression set has been run to the game and all the found defects have
been addressed properly.

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 83

Acceptance testing starts at the beginning of every month. If the game
has gone through integration testing before it, the game will be included to
the acceptance testing packet. Testing can be started when the official release
packets are done and there are enough slot machine types ready for testing.
Acceptance testing can be ended when regression test runs are done, and all
critical defects have been fixed. Piloting of the release packet will start after
acceptance testing and end when the packet is officially released to all slot
machines in Finland.

Controlling defects happens in Jira under the project of the game. All
defects are reported to Jira but face to face reporting is also used especially
in agile testing. Producer of the game is responsible for reacting to reported
defects. The producer has authority to decide how to act to different defects,
is the defect fixed or does not require fixing. Developer fix the defects and
the testing team is responsible for verification of the defects.

6.4.2 Test results

In this results section we are focusing on found defects and the severity of
the founds defects and what that could report of the quality of the slot game.
Tests run are used as an indicator of coverage and size of the content of the
game.

6.4.2.1 Defects found

For Major slot game project, it can be assumed that there are more found
defects than in a minor slot game project. This applies basically to every
software. As there are more features in the software the more complex it
gets, and thus more malfunctions can be found between the features and in
the features themselves as it is more likely the more there are features.

There are total of 184 defects found which is quite a large number for
a slot game. Defects are found during agile phase of testing and in the
integration testing. Again, like in the minor slot game, most of the defects
are marked with no priority. This makes it harder to estimate the quality of
the game. The reasons for having no priority are same as in minor game.

From the figure 6.5 the relation of critical, high and medium defects is
rising. This is quite normal trend. The number of critical defects relate well
the quality of the product. As there are 13 critical defects it can predicted
that there will be more lower priority defects. The relation between all defects
and critical defects feels high but is under 10 percent. As there are multiple
reasons critical malfunctions, it is expected that the game has critical issues.
This due to number of features and changes needed to core system as well

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 84

Figure 6.5: Defects of the major slot game

in background systems. The more things are modified, the probability of
finding defects increase. The number low number of low priority issues can
imply few things. First it possible that in a major slot game when something
is quite right the impact can not easily be low. The another explanation is
that most of the no priority defects can been seen as medium to low defects.

The number of testing packets made in the integrations phase of testing
for the major slot game is 14. This is a large number of iterations made from
a completed software. The number of packets needed can be explained by
the number of defects founds, the poor overall quality of the product when
entering to integrations testing and complexity of the product.

6.4.2.2 Tests run

There are total of 1235 tests run to the game. Total of tests run to the whole
project including the core systems of slot machine and background systems
is much higher. The number of tests run tell only about the size of content of
the slot game. But the number of fails and retest tell more about the quality
of the game.

For the quality purpose the most important factor of figure 6.6 is number
of failed test cases. 149 fails out of 1235 can be seen as a lot. The explanation
for having this amount of fails can be tried to be explained by multiple test

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 85

Figure 6.6: Tests run to the major slot game

runs in three different slot machine types. Fails are easily duplicated to each
test run making the actual number of fails twice or even thrice lower. Still
the number of fails tell that the quality of the game has not been perfect.
Retest mean that the test is suggested to be run again in the next test run
for different reasons. There are multiple tests put into a retest which means
that the testing with test cases have been started so that not all features are
fully operational and rerun of the test runs are made during testing.

The relation between fails and defects is 149 fails and 184 defects. As
it has been explained that some of the fails are duplicates it can be noticed
that many defects are found outside the test cases.

6.5 Conclusion of two different size of projects

The expectation for differences of the two similar projects of different size
were that more testing time and resources is needed for the major slot game
and that more defects are found from the major slot game due to complexity
of the project.

As the expectations were quite vague and easily predicted, there were
a lot requirements that made a large difference between the two slot game
projects. The major slot game had needs that were uncovered through out

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 86

the development and testing:

• Need of more testing techniques

• Need of better architectural planning and documentation

• Need of understanding a big picture of the product including back-
ground systems and core systems of the slot machine

• Better tools for testing required

• Experience of the testers was more important than before

• The management of testing required much more than from a normal
slot game

As requirements and different needs appear middle of the project, it takes
time and resources to get the requirements. This usually effects the testing
itself negatively. Even though there a lot of differences in the two projects
the test process itself does not need to vary between a major and minor slot
game project as the differences are more in the level of planning and strategy.
Thus, for future projects the test plan and strategy must be more precise for
major slot game projects as it is obvious that there are more requirements to
be met in the major slot game project than the initial test plan and strategy
suggests.

6.5.1 Comparing of test results

Comparing the result of two different size of slot games by found defects
and tests runs makes the expectation simple. The major slot game has more
defects and more tests run than the minor slot game. As for the relation
between critical and total defects and relation between tests run and fails,
it was expected that the relation could be the same or that the major game
could have a worse relation due to complexity of the product.

6.5.1.1 Defects found

It can be seen from the start that expectation of major slot game having
more found defects was correct. The major slot game had nearly twice the
number of defects found which can be explained by the having more features,
more development teams and requirements requiring changes to core systems
and background systems of the slot machine.

The relation between the critical and total number of defects for both
games is roughly the same, about 7 percent of the total issues were critical.

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 87

Figure 6.7: The defects of both projects in comparison

6.5.1.2 Tests run

The expectation for test run was that major game would have more tests run
than the minor game. Thus, it is expected that there would be more fails
are there are more different tests run. The major slot game has nearly thrice
number of test cases run which is above the expectation. This can explained
by creation of new test cases made for the new features of the major slot
game and need of more regression tests during testing. As expected the
major game having more tests run effects on having more fails.

From the figure it can be seen that the minor game did not need any retest
as state for a test case. This can be explained by the number of iteration
of packets required in the integrations testing for the major slot game. The
major slot game needed 14 iteration in the integration testing as the minor
slot game required only seven. The real difference between two projects and
a failed expectation is in the relations of fails and done test cases. The major
slot game has 12 percent of fails from the total of 1235 tests run whereas
minor slot game has roughly 5 percent of fails of total number of 442 test
cases. The difference can be explained from the structure of test cases. The
cases are made generic and test basic functionalities of the game and slot
machine. As the major slot game required changes to core and background
system it can be expected that there are more fails in basic test cases.

CHAPTER 6. TESTING OF TWO DIFFERENT SLOT GAMES 88

Figure 6.8: Tests run of both projects in comparison

Chapter 7

Conclusion

From chapters two to three the paper introduces different testing styles, levels
and techniques for reader to understand what the different parts of testing
and thus different part of functional and efficient testing process can be.
Chapters four to five of the work tell about different basic testing processes
and how the development process can have an influence how testing process
is assembled together.

In conclusion of the theoretical part of the paper it can be noticed that
there are multiple different testing processes ready to use which each needs
to be properly modified for the testing process to be efficient for a random
software project. Every software project has different needs and thus, it
is important the testing process is always tailored to the software project
in hand. A well designed and implemented testing process can increase the
quality of the software a lot whereas poor testing process can make everything
for the worse.

The case study is about two similar slot game projects which differ in
the size of project as one is a minor slot game project and the other is a
major one. Projects are compared by results of testing which include data
from tests run and defects found. The idea behind the comparison of two
projects is to find that is the current testing process flexible enough to use in
both minor and major slot game project and what are the main differences
between the two projects. In conclusion of the case study is it possible to use
same testing process for two similar but different size of software projects
but there must be adjustments in the test plan and strategy between the
projects.

As for the conclusion of the paper there are four main conclusions:

1. Development process has a major impact in creating of a corresponding
testing process

89

CHAPTER 7. CONCLUSION 90

2. Two similar of different size of software projects might not need a
separate testing process

(a) Adjustments can be done in different level, for example in test
strategy and planning

3. As many as there are software projects there are different possible test-
ing processes

4. A great testing process itself is not a guarantee for a successful testing

(a) Communication and experience of the tester is equally important

Bibliography

[1] Confluence. [https://www.atlassian.com/software/confluence/].

[2] Jira. [https://www.atlassian.com/software/jira].

[3] Robot framework. [https://robotframework.org/].

[4] Slack. [https://slack.com/].

[5] Testrail. [https://www.gurock.com/testrail].

[6] Iso/iec/ieee international standard - software and systems engineering –
software testing –part 3: Test documentation. ISO/IEC/IEEE 29119-
3:2013(E) (Sep. 2013), 1–138.

[7] Iso/iec/ieee international standard - software and systems engineer-
ing –software testing –part 1:concepts and definitions. ISO/IEC/IEEE
29119-1:2013(E) (Sep. 2013), 1–64.

[8] Iso/iec/ieee international standard - software and systems engineering –
software testing –part 2:test processes. ISO/IEC/IEEE 29119-2:2013(E)
(Sep. 2013), 1–68.

[9] Iso/iec/ieee international standard - software and systems engineering–
software testing–part 4: Test techniques. ISO/IEC/IEEE 29119-4:2015
(Dec 2015), 1–149.

[10] Black, R. Pragmatic Software Testing. Wiley Computer Publishing,
2007.

[11] Black, R. Advanced Software Testing vol.2. rockynook, 2014.

[12] Black, R. Advanced Software Testing vol.1, 2nd edition. rockynook,
2016.

91

[https://www.atlassian.com/software/confluence/]
[https://www.atlassian.com/software/jira]
[https://robotframework.org/]
[https://slack.com/]
[https://www.gurock.com/testrail]

BIBLIOGRAPHY 92

[13] Black, R., and Mitchell, J. L. Advanced Software Testing vol.3.
rockynook, 2015.

[14] Boehm, B. Barry boehm’s equity keynote address, 2007.

[15] Cem Kaner, J. B., and Pettichord, B. Lessons Learned in Soft-
ware Testing. Wiley Computer Publishing, 2002.

[16] Cem Kaner, J. F., and Nguyen, H. Q. Testing Computer Software,
second edition. Wiley Computer Publishing, 1999.

[17] Cotroneo, D., Pietrantuono, R., and Russo, S. Relai testing: A
technique to assess and improve software reliability. IEEE Transactions
on Software Engineering 42, 5 (May 2016), 452–475.

[18] Garousi, V., Felderer, M., and Hacalo?lu, T. What we know
about software test maturity and test process improvement. IEEE Soft-
ware 35, 1 (January 2018), 84–92.

[19] Glass, R. L. A classification system for testing, part 2. IEEE Software
26, 1 (Jan 2009), 104–104.

[20] HOSSAIN, S. Challenges of software quality assurance and testing,
2018.

[21] International Software Testing Qualifications Board . Cer-
tified tester expert level syllabus improving the testing process (imple-
menting improvement and change), 2011.

[22] International Software Testing Qualifications Board . Ad-
vanced level syllabus test analyst, 2012.

[23] International Software Testing Qualifications Board . Cer-
tified tester advanced level syllabus technical test analyst, 2012.

[24] International Software Testing Qualifications Board . Cer-
tified tester advanced level syllabus test manager, 2012.

[25] International Software Testing Qualifications Board . Cer-
tified tester foundation level syllabus, 2018.

[26] Jiang, Z. M., and Hassan, A. E. A survey on load testing of large-
scale software systems. IEEE Transactions on Software Engineering 41,
11 (Nov 2015), 1091–1118.

BIBLIOGRAPHY 93

[27] Juristo, N., Moreno, A. M., and Strigel, W. Guest editors’
introduction: Software testing practices in industry. IEEE Software 23,
4 (July 2006), 19–21.

[28] Kasurinen, J. Elaborating software test processes and strategies. In
2010 Third International Conference on Software Testing, Verification
and Validation (April 2010), pp. 355–358.

[29] Kinell, B. Context driven test process improvement. EuroSTAR2018.

[30] Lamas, E., Dias, L. A. V., and Da Cunha, A. M. Applying
testing to enhance software product quality. In 2013 10th International
Conference on Information Technology: New Generations (April 2013),
pp. 349–356.

[31] Pradeep, S., and Sharma, Y. K. A pragmatic evaluation of stress
and performance testing technologies for web based applications. In
2019 Amity International Conference on Artificial Intelligence (AICAI)
(Feb 2019), pp. 399–403.

[32] P.Shultz, C., and D.Bryant, R. Game Testing all in one, second
edition. Mercury learning and information, 2012.

[33] Sneed, H. Value driven testing. In 2009 Testing: Academic and In-
dustrial Conference - Practice and Research Techniques (Sep. 2009),
pp. 157–166.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the Thesis

	2 Fundamentals of testing
	2.1 Objectives of testing
	2.2 Is testing necessary?
	2.3 Seven principles of testing

	3 Different styles of testing
	3.1 Dynamic and static testing
	3.2 Test types
	3.2.1 Functional testing
	3.2.2 Non-functional testing
	3.2.3 White-box testing
	3.2.4 Change-related testing

	3.3 Test levels
	3.3.1 Unit testing
	3.3.2 Integration testing
	3.3.3 System testing
	3.3.4 Acceptance testing
	3.3.4.1 User acceptance testing
	3.3.4.2 Operational acceptance testing
	3.3.4.3 Contractual and regulatory acceptance testing
	3.3.4.4 Alpha and beta testing
	3.3.4.5 Testing levels in different testing types

	3.3.5 Maintenance testings

	3.4 Testing (design) techniques
	3.4.1 Specification-based test techniques
	3.4.1.1 Equivalence partitioning
	3.4.1.2 Boundary value analysis
	3.4.1.3 Decision table testing
	3.4.1.4 State transition testing
	3.4.1.5 Use case testing

	3.4.2 Structure-based test techniques
	3.4.2.1 Statement testing and coverage
	3.4.2.2 Decision testing and coverage

	3.4.3 Experience-based test techniques
	3.4.3.1 Error guessing
	3.4.3.2 Exploratory testing
	3.4.3.3 Checklist-based testing

	4 Testing process
	4.1 Organizational test process
	4.2 TMap (test management process)
	4.2.1 Test planning process
	4.2.2 Test monitoring and control process
	4.2.3 Test completion process

	4.3 Dynamic test process
	4.3.1 Test Design and Implementation Process
	4.3.2 Test Environment Set-Up and Maintenance Process
	4.3.3 Test Execution Process
	4.3.4 Test Incident Reporting Process

	4.4 Improving testing process
	4.4.1 Test Maturity Model integration (TMMi)
	4.4.2 Critical Testing Processes (CTP)
	4.4.3 Systematic Test and Evaluation Process (STEP)
	4.4.4 Test Process Improvement Next (TPI Next)

	4.5 Communication in testing
	4.5.1 Understand how programmers think
	4.5.2 Develop trust of the programmer to testing
	4.5.3 Provide service to the programmers
	4.5.4 Integrity and competence will demand respect
	4.5.5 Focusing on target, not the person
	4.5.6 Asking question about the work of programmer
	4.5.7 Programmers want to help with testability

	5 How to create the right testing process for a software
	5.1 Testing in the software development lifecycle
	5.1.1 Sequential model
	5.1.2 Iterative models
	5.1.3 Agile model
	5.1.4 Spiral model
	5.1.5 Model of coding and fixing

	5.2 Risk definition
	5.2.1 Cost of bug

	6 Case study: Testing of two different slot games at Veikkaus
	6.1 Testing tools used
	6.1.1 Test case management
	6.1.1.1 Testrail

	6.1.2 Communication management
	6.1.2.1 JIRA
	6.1.2.2 Slack

	6.1.3 Documentation management
	6.1.3.1 Confluence

	6.1.4 Test automation management
	6.1.4.1 Robot framework

	6.2 Testing process used for slot games in Veikkaus
	6.2.1 Development life cycle of slot machine
	6.2.2 Testing process of a slot game

	6.3 Testing of a minor slot game
	6.3.1 Test plan and strategy
	6.3.2 Test results
	6.3.2.1 Defects found
	6.3.2.2 Tests run

	6.4 Testing of a major slot game
	6.4.1 Test plan and strategy
	6.4.2 Test results
	6.4.2.1 Defects found
	6.4.2.2 Tests run

	6.5 Conclusion of two different size of projects
	6.5.1 Comparing of test results
	6.5.1.1 Defects found
	6.5.1.2 Tests run

	7 Conclusion

