
Master’s Programme in Computer, Communication and Information Sciences –

Machine Learning, Data Science and Artificial Intelligence

Variational Auto-Encoders for
Satellite Images of Fields
Summarising Sentinel-2 Images of Fields with Variational Auto-Encoders
for the Prediction of Crop Loss and Plant Species

Maximilian Proll

MASTER’S
THESIS

Aalto University
MASTER’S THESIS 2019

Variational Auto-Encoders for
Satellite Images of Fields

Summarising Sentinel-2 Images of Fields with
Variational Auto-Encoders for the Prediction of
Crop Loss and Plant Species

Maximilian Proll

Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Technology.
Otaniemi, 20 May 2019

Supervisor: Pekka Marttinen, Assistant Professor
Advisor: Santosh Hiremath, Postdoctoral Researcher

Aalto University
School of Science
Master’s Programme in Computer, Communication and In-
formation Sciences – Machine Learning, Data Science and
Artificial Intelligence

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Maximilian Proll

Title
Variational Auto-Encoders for Satellite Images of Fields

School School of Science

Master’s programme Computer, Communication and Information Sciences

Major Machine Learning, Data Science and Artificial Intelligence Code SCI3044

Supervisor Pekka Marttinen, Assistant Professor

Advisor Santosh Hiremath, Postdoctoral Researcher

Level Master’s thesis Date 20 May 2019 Pages 56 Language English

Abstract

This thesis is situated at the overlap of probabilistic machine learning and
remote sensing as it analyses the application of variational auto-encoders to
satellite images of fields with the final objective of image classification. The rising
availability of high-resolution satellite images of fields increases the need for
compressing the images in order to keep maintenance and inference of machine
learning models on a feasible and cost-efficient scale. Machine learning, in general,
has proven to offer auspicious methods for summarising high-dimensional data
into a lower-dimensional representation. Variational auto-encoders are a modern
and advanced representation learning algorithm and are the topic of research in
this thesis. An extensive hyperparameter search for the implemented networks is
performed. The best architecture is selected and compared against conventional
computer vision methods. The research shows that summarising high-resolution
satellite images with variational auto-encoders is possible. It will, however, still
take a performance hit on the classification tasks in comparison to the conventional
computer vision techniques. The findings show the potential that variational auto-
encoders offer for image compression but also that the used method needs further
refinement in order to beat conventional approaches.

Keywords Probabilistic Machine Learning, Bayesian Deep Generative Models,
Variational Inference, Variational Auto-Encoder, Remote Sensing,
Agriculture, Satellite Images

ii

Preface

I want to thank Pekka Marttinen, Assistant Professor and Santosh Hiremath,
Postdoctoral Researcher for their good guidance. Their door was always open
whenever I ran into a trouble spot or had a question about my research or writing.
They consistently allowed this paper to be my own work but steered me in the
right direction whenever they thought I needed it.

Additionally, I would also like to acknowledge the computational resources
provided by the Aalto Science-IT project. (Aalto University Science-IT, 2019)

Finally, I want to express my very profound gratitude to my girlfriend, to my
parents and to my sister for providing me with unfailing support and continuous
encouragement throughout my years of study and through the process of research-
ing and writing this thesis. This accomplishment would not have been possible
without them. Thank you.

Otaniemi, 20 May 2019

Maximilian Proll

iii

Table of Contents

Abstract ii

Preface iii

Table of Contents iv

List of Figures vii

List of Tables ix

1. Introduction 1

2. Background 3

2.1 Background Related to Applications in the Domain of

Agriculture . 3

2.2 Background Related to Methods 4

2.2.1 Variational Inference 4

2.2.2 Variational Auto-Encoder 7

2.2.3 Variational Auto-Encoder for Images 9

3. Data 12

3.1 Source . 12

3.2 Preparation . 13

3.3 Satellite Image Download 13

3.4 Masking the Satellite Images 14

iv

Table of Contents

4. Methods 15

4.1 Classification Task . 15

4.2 Feature Extraction with Conventional Computer Vision

Methods . 15

4.2.1 Histogram of Oriented Gradients 16

4.2.2 Local Binary Pattern 17

4.2.3 Grey-Level Co-Occurrence Matrix 17

4.3 Classification Algorithms 18

4.3.1 Random Forest . 18

4.3.2 Support-Vector Machine 19

4.3.3 AdaBoost . 19

4.4 Variational Auto-Encoder for Satellite Images 20

4.5 Implementation . 21

4.6 Hyperparameter Search . 24

4.6.1 Batch Normalisation 24

4.6.2 Number of Convolutional Layers 25

4.6.3 Latent Dimensionality 25

4.6.4 Loss Function . 25

4.6.5 In-Field-Loss . 27

5. Results 28

5.1 Hyperparameter Search . 28

5.1.1 Findings for the Low-dimensional Variational

Auto-Encoders . 28

5.1.2 Findings for the High-dimensional Variational

Auto-Encoders . 35

5.2 Comparison with Conventional Computer Vision Methods 35

5.3 Comparison of Low- and High-dimensional Variational

Auto-Encoders . 37

6. Discussion 39

7. Conclusion 42

References 43

v

Table of Contents

Appendices

A. Findings for High-dimensional Variational Auto-Encoders 46

A.1 Batch Normalisation . 46

A.2 Number of Convolutional Layers 46

A.3 Latent Dimensionality . 49

A.4 Loss Function . 50

A.5 In-Field-Loss . 51

A.6 Summary . 51

B. Confusion Matrices for the Comparison with Conventional

Computer Vision Methods 53

C. Confusion Matrices for the Comparison of Low- and High-

Dimensional Variational Auto-Encoders 55

vi

List of Figures

2.1 The reparameterisation trick by Kingma and Welling (2013). 8

3.1 Examples of masked satellite images. 14

4.1 General architecture of the VAE implemented. 21

4.2 Improvement in training time when leveraging Tensor-

Flows pipelining API tf.data. 23

5.1 Results for alternating the inclusion of batch normalisa-

tion layers for the low-dimensional VAEs. 29

5.2 Results for increasing the number of convolutional layers

for the low-dimensional VAEs. 31

5.3 Results for increasing the dimensionality of the latent

representation dim(z) for the low-dimensional VAEs. . . . 32

5.4 Results for alternating the loss function used in the recon-

struction loss for the low-dimensional VAEs. 33

5.5 Results for alternating if the reconstruction is computed

only inside the field for the low-dimensional VAEs. 34

5.6 Confusion matrices for the Loss-2D classification for the

best conventional algorithm as well as the best low-dimensional

VAEs without and with IFL. 37

5.7 Confusion matrices for the Loss-2D classification for the

best low- and high-dimensional VAEs without and with IFL. 38

vii

List of Figures

A.1 Results for alternating the inclusion of batch normalisa-

tion layers for the high-dimensional VAEs. 47

A.2 Results for increasing the number of convolutional layers

for the high-dimensional VAEs. 48

A.3 Results for increasing the dimensionality of the latent

representation dim(z) for the high-dimensional VAEs. . . 49

A.4 Results for alternating the loss function used in the recon-

struction loss for the high-dimensional VAEs. 50

A.5 Results for alternating if the reconstruction is computed

only inside the field for the high-dimensional VAEs. . . . 51

B.1 Confusion matrices for the Loss-4D classification for the

best conventional algorithm as well as the best low-dimensional

VAEs without and with IFL. 53

B.2 Confusion matrices for the Plant-5D classification for

the best conventional algorithm as well as the best low-

dimensional VAEs without and with IFL. 54

C.1 Confusion matrices for the Loss-4D classification for the

best low- and high-dimensional VAEs without and with IFL. 55

C.2 Confusion matrices for the Plant-5D classification for the

best low- and high-dimensional VAEs without and with IFL. 56

viii

List of Tables

3.1 Definition of the four loss categories. 13

3.2 Definition of the binary loss category. 13

3.3 Names of the five most frequent plant species. 14

4.1 Classification tasks and their characteristics. 15

4.2 Parameter alternations for the VAEs. 21

4.3 Default values for the hyperparameter search. 24

5.1 Optimal hyperparameters for the low-dimensional VAEs. 35

5.2 Performance comparison for the best conventional algo-

rithm and the best low-dimensional VAEs without and

with In-Field-Loss. 36

5.3 Performance comparison for the best low- and high-dimensional

VAEs without and with IFL. 38

A.1 Optimal hyperparameters for the high-dimensional VAEs. 52

ix

1. Introduction

While the global population is rapidly growing the agricultural area is

constant, at best. Thus the productivity and efficiency of those fields need

to increase in order to provide enough resources for the growing population.

Machine learning techniques have been applied to a wide variety of

unrelated disciplines ranging from forecasting the location and intensity

of a flood (Nevo et al., 2019) to improving the state-of-the-art language

models (Devlin et al., 2018) or the ability to restore corrupted images

without access to clean data (Lehtinen et al., 2018).

In order to develop methods for intelligent plant breeding a large scale

machine learning algorithm which predicts the crop for a given field by

learning a robust model from the climate, the weather, the soil information,

the pheno- and genotypes of the plant species and finally satellite and

drone images of the field is proposed.

This intelligent crop model incorporates time-series data both on the

weather / climate side as well as the satellite / drone images of the fields. As

a first step satellite images for the most prominent five plant species1 are

downloaded for one moment in time2. Downloading approximately 180,000

satellite images took over 12 days and occupies over 660GB. The images

were taken by the Sentinel-2 satellite which revisits the same point every

5 days. In the best case, this gives approximately 73 data points in time for

one year. It becomes clear that this method gets quickly out of hand if all

58 plant species were included and every available point in time would be

downloaded and also field images taken from drones will be included. Not

only will maintaining the model and continuously running inference on

this amount of data will be costly and quickly run into technical limits of

existing hardware but it will make it also nearly impossible to execute this

algorithm on anything else than a high-performance computing cluster

1Out of 58 different plant species in total.
2August 2015

1

Introduction

with multiple CPUs and GPUs.

Recent developments in the area of satellites are drastically lowering the

prices for heretofore expensive imagery from satellites. For example the

Finnish companies RSL, Reaktor and VTT launched together a proof-of-

concept satellite in November 2018 that orbits the Earth every 95 minutes

(Reaktor Space Lab, 2019). This satellite is capable of frequently taking

images in the full spectrum of light, which means, that it can analyse soil

nutrients, moisture content and chlorophyll levels in plants. The estimated

costs for this satellite are between $ 1 million and $ 2 million, significantly

cheaper than similar previous builds. Examples like this prove that in the

future satellite images will become even more accessible, which will trigger

an increased demand to quickly process them and extract business-critical

information – not only in the industry of agriculture.

In order to be able to scale the planned intelligent crop model from

analysing one point in time for a selection of plant species to analyse time-

series data for all available plant species, a reduction in data file size is

needed. This master’s thesis proposes and analyses the use of variational

auto-encoders (VAEs) to project the high-dimensional satellite images

into a lower-dimensional latent space which then is used for any kind of

prediction task in the intelligent crop model. Performing predictions tasks

on the lower-dimensional representation of the satellite images comes

short in comparison to performing the same task on features gained by

conventional computer vision methods.

2

2. Background

This chapter gives a brief introduction into related work of applying ma-

chine learning methods in the domain of agriculture and additionally

sets the theoretical foundation for the mathematical concepts used in this

thesis.

2.1 Background Related to Applications in the Domain of
Agriculture

Pioneering work regarding the classification of satellite images into dif-

ferent plant species was done by Kussul et al. (2016) and Rebetez et al.

(2016).

Kussul et al. improve image classification algorithms by including the

information about parcel boundaries that take into account the spatial

context. Additionally, they allow one field parcel to contain several different

crop types. In their paper, they compare pixel-based and parcel-based

approaches to crop classification from multitemporal optical (Landsat-8)

and synthetic-aperture radar (SAR) Sentinel-1 imagery and they show

that the overall classification accuracy can be increased by including parcel

boundaries. Kussul et al. analyse the influence that cloud cover and

restored pixels values have on the parcel-based classification and propose

to assign each pixel a weight that depends on the number of clouded pixels

in a time series of optical images.

Rebetez et al. proposed a hybrid neural network architecture which

combines histograms and convolutional layers. The presented network

classifies the pixels of aerial high-resolution imagery taken from drones

into 23 different classes. The hybrid model performs better than separate

histogram-based and a simple convolutional model.

Strictly speaking Rebetez et al. did not use satellite images but rather

3

Background

aerial imagery taken from drones capable of taking high-resolution images.

But the argument remains the same: the authors of both papers use the

full resolution of images at a high resolution. In general, the availability of

high-resolution images will grow because more modern satellites or drones

will take more images with even higher resolution. Also, those models

can be extended to cover not only parts of Ukraine (like done by Kussul

et al.) but cover the whole Ukraine, the entire continent of Europe or

even the entire globe. Scaling up the models as presented in both papers

to thousands or even millions of images will significantly slow down the

training time and will bring the feasibility to a limit where they are not

useable any more.

Machine learning algorithms are not only applied to aerial images of

the fields but can also be applied to various other aspects. Yalcin (2017)

proposes a model to classify phenological stages of several types of plants

based on the visual data captured by cameras mounted on the ground

agro-stations. Mohanty et al. (2016) developed a deep convolutional neural

network to identify 14 crop species and 26 diseases (or absence thereof)

based on a public dataset of about 54,000 close up images of diseased

and healthy plant leaves. Dyrmann et al. (2017) and McCool et al. (2017)

trained a fully convolutional neural network for automating weed detection

in colour images despite heavy leaf occlusion. Bargoti and Underwood

(2016) apply the object detection framework, Faster R-CNN, in the context

of fruit detection in orchards, including mangoes, almonds and apples.

2.2 Background Related to Methods

This section introduces first the concept of variational inference and then

establishes the mathematical concepts behind the implemented VAEs and

its specifications when they are applied to images.

2.2.1 Variational Inference

For the following analysis let us consider the set of all observed variables

by X. In a fully Bayesian model one normally considers that the model

may also have latent variables as well as latent parameters. The set of all

latent variables and parameters is denoted by Z. Generally, those models

contain some prior belief about the distribution of the latent variables

and latent parameters p(Z). Let us also consider that there is a set of

4

Background

N independent, identically distributed data, for which X = {x1, . . . ,xN}

and Z = {z1, . . . , zN}. Bayesian inference on such models defines the joint

probability distribution p(X,Z) and it consists of updating the prior dis-

tribution of the latent variables and latent parameters p(Z) after having

observed data X into an updated information over the latent parameters

in the form of the posterior distribution p(Z|X). The central task of proba-

bilistic modelling is to evaluate the posterior distribution p(Z|X) and find

those latent variables Z that maximise the posterior distribution. (Bishop,

2006)

p(Z|X) =
p(X,Z)

p(X)
=

p(X|Z)p(Z)∫︁
Z p(X,Z)dZ

(2.1)

Equation 2.1 shows how the posterior distribution p(Z|X) can, in princi-

ple, be calculated analytically. But for many applications it is not feasible

to evaluate the posterior distribution or to compute expectations with

respect to it, due to the required integration in the denominator. This

can be caused by a number of different factors: either the dimensional-

ity of the latent space is too high to work with directly or the posterior

distribution has a highly complex form for which expectations are not ana-

lytically tractable. For the case of continuous variables the integrations

may not have closed-form analytical solutions, while at the same time

the dimensionality of the space and the complexity of the integrand may

prohibit numerical integration. When the latent variables are discrete the

integration turns into summing over all possible combinations of hidden

variables, and though this summation is theoretically always possible,

there are often exponentially many hidden states so that exact calculation

becomes extremely expensive. (Bishop, 2006)

One possible solution to overcome the issue of intractable integration is to

approximate the posterior distribution p(Z|X). Approximation schemes can

be separated into two classes: stochastic and deterministic approximations.

Stochastic approximations such as Markov chain Monte Carlo can gen-

erate exact results given infinite computational resource. This means

that in practice stochastic sampling methods are often computationally

demanding which limits their application to small-scale problems.

Deterministic approximations on the other hand scale well to large appli-

cations. They are based on an analytical approximation to the posterior

distribution, hence they can never generate exact results. The strengths

and weaknesses of stochastic and deterministic approximations are there-

5

Background

fore complementary.

In variational inference the posterior distribution p(Z|X) is approximated

by a variational distribution qϕ(Z) described by the parameters ϕ:

qϕ(Z) ≈ p(Z|X)

The motivation is that the variational distribution qϕ(Z) belongs to a fam-

ily of distributions of simpler form than the posterior distribution p(Z|X)

but it shall be selected with the intention that variational distribution

is as similar as possible to the true posterior distribution. This simi-

larity is measured by the Kullback-Leibler divergence (KL divergence)

DKL (qϕ(Z)∥p(Z|X)) which quantifies the difference of the variational dis-

tribution qϕ(Z) to the posterior distribution p(Z|X).

The decomposition of the log marginal probability ln p(X) into the KL

divergence DKL (qϕ(Z)∥p(Z|X)) and the evidence lower bound (ELBO)1

L(q) as displayed in Equation 2.2 holds for any choice of qϕ(Z).

ln p(X) = L(q) +DKL(q∥p), (2.2)

where:

L(q) =
∫︂

q(Z) ln

{︃
p(X,Z)

q(Z)

}︃
dZ and (2.3)

DKL(q∥p) = −
∫︂

q(Z) ln

{︃
p(Z|X)

q(Z)

}︃
dZ. (2.4)

Since the log marginal probability ln p(X) is constant with respect to

q minimising the KL divergence DKL (qϕ(Z)∥p(Z|X)) with respect to q is

equivalent to maximising the variational lower bound L(q). This character-

istic is crucial to variational inference because we cannot simply minimise

the KL divergence DKL (qϕ(Z)∥p(Z|X)) since it requires evaluating the

intractable posterior p(Z|X). Choosing the variational distribution qϕ(Z)

appropriately makes both the computation and the maximisation of the

ELBO L(q) tractable.

If the variational distribution qϕ(Z) is allowed to have any form then the

ELBO L(q) is at its maximum when the KL divergence vanishes, in other

words when DKL (qϕ(Z)∥p(Z|X)) = 0, which happens only when q(Z) =

p(Z|X). But since working with the true posterior distribution p(Z|X) is

intractable, it is assumed that the variational distribution qϕ(Z) belongs

1also called variational lower bound

6

Background

to a restricted family of distributions. Minimising the KL divergence seeks

this particular member which best matches true posterior distribution.

2.2.2 Variational Auto-Encoder

In a plain vanilla auto-encoder (AE) the encoder converts an input into

a lower dimensional representation (aka. the code), which the decoder

converts back to the original input.

AEs face one drawback in terms of it not being a generative model. The

latent space, where the encoded representations of the input lie, is typically

not continuous and thus does not allow an easy interpolation.

In terms of generation, an AE is limited to replicate the original input,

but cannot generate variations of an input image from a continuous latent

space. A sample from a region of discontinuities in the latent space (e.g.

gaps between clusters) will be decoded to an unrealistic output because

the decoder has never learned how to treat samples from this region of the

latent space.

VAEs were proposed by Kingma and Welling (2013) and Jimenez Rezende

et al. (2014) and overcome this drawback. VAEs in contrast to normal AEs

have a latent space, that is by design continuous and thus allows easy

random sampling and interpolation. This property is especially useful for

generative modelling, as the decoder of a VAE will know how to interpret

regions of discontinuities in the latent space.

The key difference behind any VAE in comparison to normal AEs is that

they are trained by maximizing the variational lower bound L(q) given the

data X. The variational lower bound L(q) defined in Equation 2.3 can be

expanded as follows:

L(q) = EZ∼q(Z) [ln p(Z,X)] +H(q(Z|X)) (2.5)

= EZ∼q(Z) [ln p(X|Z)]−DKL(q(Z)∥p(Z)) (2.6)

In equation 2.5 the first term is the joint log-likelihood of the visible

and hidden variables under the approximate posterior over the latent

variables. The second term describes the entropy of the approximate

posterior. Generally, this entropy term encourages the variational posterior

to place high probability mass on many Z values that could have generated

X, rather than collapsing to a single point estimate of the most likely

value.

In equation 2.6 the first term formulates the reconstruction log-likelihood.

7

Background

The second term tries to make the approximate posterior distribution q(Z)

and the model prior p(Z) approach each other. (Goodfellow et al., 2016)

A continuous latent space is achieved by altering the nature of an AE in

a subtle but not insignificant way. Instead of outputting one deterministic

latent vector Z the encoder of a VAE will output two deterministic latent

vectors: a vector of means µ and another vector of standard deviations

σ. Both deterministic vectors form the parameters of a distribution ϕ(·)

from which a random vector Z is being sampled: Z ∼ ϕ(µ, σ). This sampled

random vector Z is then passed on to the decoder like in a normal AE.

This stochastic generation means that the same input will result in the

same mean and standard deviations but due to the random sampling,

the actual encoding will vary on every single draw. As the encodings are

generated at random from anywhere inside the probability distribution

parametrised by the means µ and the standard deviations σ, the decoder

learns that not only is a single point in latent space referring to a sample

of that class, but all nearby points refer to the same as well. This allows

the decoder to not just decode single, specific encoding in the latent space

– hence leaving the decodable latent space discontinuous – but one that

slightly varies too, as the decoder is exposed to a range of variations of the

encoding of the same input during training.

A reparameterisation trick is performed in order to allow the backprop-

agation to work all the way from the final output through the code to

the initial input. It was proposed by Kingma and Welling (2013) and is

visualised in Figure 2.1. According to the reparameterisation trick one

randomly samples ϵ from a unit Gaussian and scales it by the latent dis-

tribution’s standard deviation σ and then shifts the product by the latent

distribution’s mean µ. With this reparameterisation, we can now optimize

the parameters of the distribution while still maintaining the ability to

randomly sample from that distribution.

Figure 2.1. The reparameterisation trick by Kingma and Welling (2013).
Image: Jordan (2018)

8

Background

One convenient property of the VAE is that simultaneously training a

parametric encoder in combination with the generator network forces the

model to learn a predictable coordinate system that the encoder can cap-

ture. This makes it an excellent manifold learning algorithm (Goodfellow

et al., 2016).

2.2.3 Variational Auto-Encoder for Images

hen implementing a VAE for images it comes naturally to apply convolu-

tional and pooling layers in the encoder, because both the convolution as an

operation and the pooling respect and maintain the spatial information of

the input (2D images or higher dimensional tensors), while simultaneously

achieving an effective and desired reduction in the dimensionality.

But which type of operation / function / kernel to use for the decoder is

not as straightforward. The decoder receives typically a low-dimensional

input and transforms it with the goal of restoring the original input of

the (V)AE, in this case, an image. Therefore the operation is supposed to

work similar to a convolution but performing a transformation going in the

opposite direction: from something that has the shape of the output of a

convolution to something that has the shape of its input while maintaining

a connectivity pattern that is compatible with said convolution. This

way of thinking probably motivated Zeiler et al. (2010) to use the name

deconvolution.

Dumoulin and Visin (2016) motivate that the naming of such function

should rather be transposed convolution and their reasoning is based on

the mathematics behind a convolution and the function, which works in

the opposite direction.

They propose to unroll the input and the output of the convolution into

vectors (from left to right, top to bottom) because now the case looks like a

simple fully-connected layer. The convolution is parametrised by a kernel

w, which in analogy to the a fully-connected layer can now be used to fill

the sparse matrix C where the non-zero elements are the elements wi,j

of the kernel w. The matrix C is filled in such a way, that the spatial

characteristics of the convolutional operation are reflected. The example

below demonstrates the case, where the convolution of the kernel w2×2

shall be applied to the input matrix X3×3 to form the output matrix Y2×2.

In order to keep the example simple, the dimensions are chosen as stated

9

Background

in the indices of the matrices.

X =

⎡⎢⎢⎣
x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤⎥⎥⎦w =

⎡⎣w11 w12

w21 w22

⎤⎦Y =

⎡⎣y11 y12

y21 y22

⎤⎦

Unrolling both the input matrix X3×3 as well as the output matrix Y2×2

gives:

Xflat =
[︂
x11 x12 x13 x21 x22 x23 x31 x32 x33

]︂⊺
Yflat =

[︂
y11 y12 y21 y22

]︂⊺
Now depending on how the convolution is specified in terms of padding,

stride and number of filers the specifics may vary, but the general idea

remains the same. Assuming no padding, only valid application and a

stride of 1 the first entry of the output matrix is defined by:

y11 = w11 · x11 + w12 · x12 + w21 · x21 + w22 · x22

Thus those values of wi,j will be used at the corresponding place of

C in order to reflect the same multiplication. The first row of C which

corresponds to the first entry of Y will look like this:

C1: =
[︂
w11 w12 0 w21 w22 0 0 0 0

]︂
This procedure demonstrates how the kernel w and the specifications of

the convolution (padding, stride and application type) define the entries of

the matrix C. This matrix C defines then the following matrix multiplica-

tion, which essentially formalises the convolution in a manner that looks

like a fully connected layer:

Yflat = C ·Xflat

where the output Yflat just needs to be reshaped accordingly.

Now the convolution takes the input matrix flattened as a high-dimensional

vector and produces a low-dimensional vector that is later reshaped into

the desired output matrix shape.

In this flattened representation, the backward pass of a neural network

is formalised by using the transposed matrix C⊺. Any error in the output

is backpropagated by multiplying its loss with C⊺. The backpropaga-

10

Background

tion transforms a low-dimensional vector as input and returns a high-

dimensional vector as output, and its connectivity pattern is aligned with

C by construction.

Since the kernel w and the specifications of the convolution define the

entries of the matrix C used for the forward pass, they also defined the

matrix C⊺ used for the backpropagation.

Dumoulin and Visin also make a strong case against using the term

deconvolution, because a deconvolution is mathematically defined as the

inverse of a convolution, which is different from a transposed convolution.

Pu et al. have implemented a VAE for not only analysing images but also

to generate either a caption with a recurrent neural network or a label

with a Bayesian support vector machine.

11

3. Data

This chapter gives an overview of the dataset used and details the whole

data processing pipeline from the source and any required pre-processing

to the download of the satellite images. Lastly, this chapter explains how

the images were masked to focus fully on the actual area of the field and

not its surroundings.

3.1 Source

Maaseutuviraston (MAVI), the Agency for Rural Affairs, is the data owner

of the location and the crop loss (CL) information of the fields in Finland.

MAVI is responsible for the use of agricultural aid and rural development

funds of the European Union in Finland. MAVI provided a data set which

was split into three zip files each containing a shapefile for the years 1997-

2004, 2005-2014 and 2015-20171. The following information is contained

in the attribute table:

• year

• field parcel

• identifier

• plant & plant code

• variety & variety code

• property area

• full crop loss

• partial crop loss

The given data set has the above-mentioned information on 465,595

individual fields belonging in total to 58 different plant species.

1file names: raportti_1997_2006.zip, raportti_2007_2014.zip, ra-
portti_2015_2017.zip

12

Data

3.2 Preparation

The bounding box for each field is required in order to download the

satellite images for the required location. Due to the missing information

of the longitude and latitude of the bottom left and the top right corner

surrounding the field it was added manually in QGIS and then finally

exported as a CSV.

3.3 Satellite Image Download

The bounding box created in section 3.2 is used as an input source for the

SentinelHub API.

The download of the satellite images was initially performed for all

158,304 fields of the most frequent plant species Rehuohra (feed barley).

During this download, all available colour channels (13 in total) were

downloaded for a specified resolution of 512 by 512 pixels. This download

took approximately 8 days. From those 158,304 fields a balanced subset

of in total 7500 fields was created. This subset was balanced in terms of

the presence of the four loss categories defined in Table 3.1. Additional to

those four loss categories a binary loss category is defined by merging all

types of CL greater than zero, which is similarly defined in Table 3.2.

Partial Crop Loss
= 0 > 0

Full Crop Loss = 0 no loss only partial
> 0 only full full and partial

Table 3.1. Definition of the four loss categories.

Partial Crop Loss
= 0 > 0

Full Crop Loss = 0 no loss some loss
> 0 some loss some loss

Table 3.2. Definition of the binary loss category.

In a secondary step 29,768 more images for the four next most frequent

plant species Kaura (Oats), Mallasohra (Malting Barley) Kevätvehnä

(Spring Wheat) and Kevätrypsi (Spring Rapeseed) were downloaded in

the same resolution and with all 13 colour channels. For those four plants

a data set was created in which the number of fields with some loss was

equal to the number of fields with no loss, which totals to 11,538 images of

13

Data

individual fields. The five most frequent plant species are summarised in

Table 3.3.

Plant Species (in Finnish) Plant Species (in English)

1st Rehuohra Feed Barley
2nd Kaura Oats
3rd Mallasohra Malting Barley
4th Kevätvehnä Spring Wheat
5th Kevätrypsi Spring Rapeseed

Table 3.3. Names of the five most frequent plant species in Finnish and English.

3.4 Masking the Satellite Images

Since the bounding box is a rectangle but the shape of the field can be,

and most often is, different from a rectangle, the downloaded image of

the field captures some area which does not belong to the field. Since it is

not intended that a machine learning algorithm picks up on any kind of

information outside of the field, the surroundings of the field will be simply

set to zero. This process is also known as image masking.

Two masked example images of fields are displayed in Figure 3.1.

Figure 3.1. Examples of masked satellite images.

14

4. Methods

First, this chapter defines the classification task that both the VAE and

conventional computer visions methods are performing. It is followed by a

summary of the conventional computer visions methods used for extracting

the features of the satellite images and the algorithms used for classifying

them according to the given classification task. Then it provides specific

details on the architecture of the VAEs. The chapter continues with a

description of the workflow how the implementation was adapted from

running the machine learning algorithms locally to running them on a

high-performance computing cluster and finishes with an explanation of

the hyperparameter search performed.

4.1 Classification Task

The three classification tasks to be performed by the VAE and the conven-

tional computer visions methods are summarised in Table 4.1.

Classification of the Abbreviation Number of
Classes

Definition
in

(i) four loss categories Loss-4D 4 Table 3.1
(ii) binary loss categories Loss-2D 2 Table 3.2
(iii) plant species Plant-5D 5 Table 3.3

Table 4.1. Classification tasks and their characteristics.

4.2 Feature Extraction with Conventional Computer Vision
Methods

This section is dedicated to giving a brief summary of the more conventional

computer vision (CV) techniques used as comparison methods in this thesis.

Conventional computer vision approaches are those that do not rely on

15

Methods

more modern ideas like deep learning. The referenced techniques are:

Histogram of Oriented Gradients, Local Binary Pattern and Grey-Level

Co-Occurrence Matrix. All of them follow the main goal of traditional

computer vision methods, that is to reduce the complexity of an image by

extracting important features. How the importance of certain features

is evaluated and computed is the key distinction property of traditional

computer vision techniques.

The above-mentioned feature extractors were designed to be applied

to rather low-dimensional single-channel images. They do not perform

as good and lose some of its advantages – namely speed and simplicity –

when they are applied to high-dimensional multi-channel images. This is

why the conventional computer vision methods are applied exclusively to

single-channel images with a lower resolution of 64× 64. The channel used

in those images is the normalized difference vegetation index1 (NDVI),

which was computed based on the 13 original channels of the image.

4.2.1 Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) is a feature descriptor proposed

by Dalal and Triggs (2005). This method suggests the idea to summarise

an image by the distribution (histogram) of the directions of its gradients

(oriented gradients). Derivatives in x and y direction are an informative

measurement because regions with abrupt changes in the intensity of

gradients are generally occurring at corners and edges which help to find,

describe, and differentiate objects.

The horizontal (gx) and vertical (gy) gradients are computed by applying

the following kernels:

[︂
−1 0 1

]︂
,

⎡⎢⎢⎣
−1

0

1

⎤⎥⎥⎦ .

With the horizontal and vertical component the intensity g and (unsigned)

orientation θ of the gradient can be computed with the following equations:

g =
√︂

g2x + g2y , θ = arctan
gy
gx

.

For a smaller sub-cell of the image the magnitudes g and orientations

1The definition of NDVI channel is: NDVI = NIR−Red
NIR+Red , where Red and NIR stand

for the red respectively near-infrared reflectance measurements.

16

Methods

θ are summarised in a histogram with some discrete number of bins n2

corresponding to angles from 0◦ to 180◦. The intensity g of the gradient is

associated with one or two bins according to its orientation θ.

Such histograms are sensitive to changes in light intensity which is why

the histograms are normalised by dividing each element by the magnitude

of this vector. This normalisation creates an invariance to changes in light

intensities and is computed over larger blocks of 2x2 cells.

Finally, those blocks are moved over the entire image with an overlap of

50%, which results in the final feature representation of the image that is

fed into a classification algorithm.

4.2.2 Local Binary Pattern

Local binary pattern (LBP) is a visual descriptor proposed by Ojala et al.

(1996). It compares each pixel to its neighbouring pixels and saves the

result as a binary number, which is then summarised in a histogram and

represents the features of the input image. LBP has become a popular

method for various applications where images are analysed and classified

in real-time due to its computational simplicity. One of the most important

characteristics of LBP is its insensitivity to changes in light intensities.

LBPs are able to recognise certain primitive forms of an object such as

spots, flats, end of lines, edges and corners. All of those forms are crucial

pieces for localising objects.

To transform the input image to a LBP feature vector, the input image

is divided into cells. Each pixel in a cell is subsequently compared to

its 8 neighbouring pixels always following the same circular orientation

– clockwise or counter-clockwise. For each comparison where the centre

pixel’s value is greater than the neighbour’s value, a 0 is saved. Otherwise,

a 1 is saved. In total, this results in an 8-digit binary number which is then

converted to a decimal number. One histogram is computed for all decimal

LBP numbers in a cell, which additionally can be normalised. Finally, the

LBP feature vector is a result of concatenating the histograms for all cells.

4.2.3 Grey-Level Co-Occurrence Matrix

A grey-level co-occurrence matrix (GLCM) is a matrix that describes the

texture of an input image by calculating how often pairs of pixels with a

certain value in a defined spatial order occur.

2Most implementations of HOG compute a histogram for a 8× 8 cell with n = 9
bins.

17

Methods

The transformation from an input image to a GLCM can be done as

follows: the spatial offset ∆x,∆y has to be defined first, as it defines the

desired relationship between the pixel pairs. The number of unique grey

levels p defines a p×p dimensional GLCM. This could be anything between

a binary value and a 32-bit colour, which would create a GLCM as big as

232 × 232. In order to avoid such big matrices, the grey level is normally

scaled or binned into 8 intensity levels. Each element (i, j) in the GLCM

simply counts how often the pixel with value i occurred in the specified

spatial relationship to a pixel with value j in the input image.

Normally co-occurrence matrices are typically large and sparse, which is

why in the context of texture analysis statistical measure such as contrast,

correlation, energy and homogeneity are extracted from the GLCM. Either

the GLCM is used without further processing as a feature representation

of the input image or the aforementioned statistics are used.

4.3 Classification Algorithms

This section is providing a short introduction to the supervised machine

learning algorithms used: Random Forest, Support-Vector Machine and

AdaBoost. They use the extracted features from the conventional com-

puter vision methods explained in section 4.2 and ultimately perform the

threefold classification task as specified in section 4.1.

4.3.1 Random Forest

Random forests are an ensemble method proposed by Ho (1995), which is

used for both classification and regression problems in machine learning.

It defines and trains multiple de-correlated decisions trees simultaneously

and combines them by reporting that label, which is reported most often by

the individual decision trees (when used for classification) or it averages

the reported value (when used for regression).

Generally, random forests are easy and fast to train and its hyperparame-

ter are optimised with little effort in comparison to other simple algorithms

which makes them a popular go-to method for a straightforward model

baseline.

18

Methods

The combination of multiple decisions trees corrects the inherent flaw

of individual decision trees of overfitting to the training data. A random

forest has the same bias as the individual trees but the variance is reduced

(Hastie et al., 2009).

Breiman (2001) extended the initial algorithm by modifying the idea of

bagging and how the input features are selected.

4.3.2 Support-Vector Machine

Support-vector machines (SVM) were proposed by Cortes and Vapnik

(1995) and are the generalisation of support-vector classifiers (SVC) which

intend to find a linear hyperplane that maximises the margin between

the hyperplane and the nearest point of each group. SVCs can be made

more powerful, e.g. perform non-linear classification, by applying the

so-called kernel trick. The kernel trick projects the input data into a high-

dimensional space, where then the SVCs try to find the above-mentioned

maximum-margin hyperplane. SVM pick up on the same idea, where the

dimension of the enlarged space is allowed to get very large, infinite in

some cases. (Hastie et al., 2009)

SMVs are either used in a supervised setting where they solve classifi-

cation or regression tasks, but they can also be used in an unsupervised

manner where they categorise unlabelled data into clusters. (Ben-Hur

et al., 2001)

4.3.3 AdaBoost

Boosting methods follow the general idea to combine the result of many so-

called weak learners to a powerful group by merging the individual results

of the weak learners to a weighted sum which defines the final output

of the boosted classifier. Boosting methods were originally developed for

classifications tasks but can be extended to regression problems as well.

Adaptive Boosting (AdaBoost) was proposed by Freund and Schapire

(1999) and is one of the most prominent members of the class of boosting

methods. AdaBoost is adaptive in the sense that at each boosting step the

weight associated with a subsequent weak classifier is optimised to con-

centrate more on previously misclassified samples. Thus observations that

are difficult to classify correctly receive step by step increasing importance.

The weak learners in AdaBoost are often decisions trees where subse-

quent classifiers focus on increasingly difficult to classify samples.

19

Methods

4.4 Variational Auto-Encoder for Satellite Images

For the sake of comparability to the conventional computer vision methods

a VAE is implemented using the very same input: the single-channel

NDVI images with a lower resolution of 64× 64. During this document this

implementation will be referenced as low-dimensional VAE and the VAE,

which uses to full 13-channel image with its entire resolution of 512× 512

will be referenced as high-dimensional VAE.

The implemented VAEs that analyse the satellite images with the goal

of finding a low-dimensional representation have the following general set

up, which is additionally visualised in Figure 4.1:

• The satellite images with dimension either 512 x 512 and 13 colour

channels or 64 x 64 and the computed NDVI colour channel are

passed to the encoder.

• The encoder consists of a varying number of alternating layers of

convolution and batch normalisation with different specifics.

• The encoder leads to the two deterministic variables: the latent

distribution’s mean µ and its standard deviation σ3 of the assumed

distribution.

• Figure 2.1 displays the reparameterisation trick, which is achieved by

randomly sampling a noise term ϵ from a unit Gaussian distribution

and scaling it by the standard deviation σ and then shifting the

product by the mean µ : z = µ+ σ · ϵ4.

• The sampled z is then passed through the decoder.

• The decoder is formed by reversing the order of the encoder, hence

there are again a varying number of alternating layers of transposed

convolutions and batch normalisations with different specifics.

• The decoder outputs the reconstructed image with the same dimen-

sion as the input (either 512 x 512 and 13 colour channels or 64 x 64

and the NDVI colour channel).

The specific alternations of certain parameters of the encoder and thus

also the decoder are summarised in Table 4.2. Those parameters are

treated as hyperparameters which are analysed and optimised in sec-

tion 4.5.
3Most implementations learn the logarithm of the variance lnσ2 instead, because
it facilitates the calculation of the KL divergence term.
4When the logarithm of the variance lnσ2 is learned the reparameterisation trick
becomes: z = µ+ e

1
2 ·lnσ2 · ϵ.

20

Methods

Figure 4.1. General architecture of the VAE implemented.

Network Parameter Alternation Range

Usage of Batch Normalisation Layers boolean: True or False

Number of Convolutional Layers int: from 3 . . . 20

Dimensionality of Latent Representation int: 21, 22, 23, . . . 210

Loss Function for the Reconstruction Loss MSE or Cross-entropy

Usage of In-Field-Loss
(explained later in section 4.6.5) boolean: True or False

Table 4.2. Parameter alternations for the implemented VAEs.

The VAEs are implemented by using the Google’s machine learning

framework TensorFlow (by Abadi et al.).

The objective of the VAEs is to train them by finding a low-dimensional

representation z that is well suited for reconstructing the original image.

Once this low-dimensional representation z is found, a fully-connected

network is used as a classifier for the classification tasks specified in

Table 4.1.

4.5 Implementation

When implementing any kind of machine learning algorithm in general

and the VAEs detailed in section 4.4 in particular an intuitive approach is

to start it locally on a workstation or a personal laptop. This brings several

advantages from the independence of network availability, easier control

over software packages and its versions, full availability of computing re-

sources without the need of previously requesting them to using integrated

development environments with its own advantages on debugging.

Thus the first implementation of the network was done on the personal

laptop where both data and resources were available locally. But since the

21

Methods

full data set occupies over 660GB of disk space, the network was only run

on a small subset of the data prioritising running speed and saving disk

space over the completeness of the analysis. While using a small subset of

the data it was no problem to load all the images including their labels into

RAM. But it was clear that once more images shall be fed into the network,

additional work has to be done since the RAM is not large enough to hold

all images simultaneously. Also, neither the workstation nor the personal

laptop have a high-performance CPU and GPU.

Aalto University has its own high-performance computing cluster, called

Triton, which has a wide variety of different computing nodes offering

multiple combinations of high-speed CPUs, large RAM and powerful GPUs.

The first naive approach is to simply run the very same model – written

for both local data and resources availability – on Triton. The only differ-

ence is that the data is now located on servers that need to be accessed

from the computing node. Running those algorithms with many powerful

CPUs and GPUs did not result in the expected speed increase and mon-

itoring the GPU utilisation showed the reason behind it: the GPU was

idling nearly all the time with infrequent short peaks of high utilisation.

This is a clear sign that the input/output of the programme is causing an

issue. The speed of an algorithm is often directly linked to CPU and GPU

speed, but this is missing a crucial factor: the network speed, because it

essentially limits how fast the data can get to the CPU. Thus input/output

(IO) is the true bottleneck and must be improved.

The team behind TensorFlow has summarised how a typical training

input pipeline can be seen as an Extract-Transform-Load (ETL) process:

• Extract:

Read data from storage – either local (e.g. HDD or SSD) or remote

(e.g. GCS or HDFS).

• Transform:

Use CPU cores to parse and perform preprocessing operations on the

data such as data augmentation, shuffling, and batching.

• Load:

Load the transformed data onto the accelerator device (e.g. GPUs or

TPUs) that executes the machine learning model.

As of right now the model was implemented for local data storage and

the ETL pipeline was designed in a rather naive synchronous way: The

GPU has to wait until the CPUs have read and preprocessed one batch of

images and passed it onto the GPU. When the GPU is doing all the heavy

22

Methods

lifting the CPU is sitting idle. Thus the time needed for a forward and

backward pass for one batch is the sum of both CPU pre-processing time

and the GPU training time.

TensorFlow offers a pipelining API that is called tf.data. It is designed

to effectively utilize the CPU and thus optimise all steps of the ETL

process. As a first step, the data has to be saved as TensorFlows native

format – as TFRecord files. The principal change in the tf.data API is to

overlap the preprocessing and model execution of a training step. When

the GPU is performing training step N , the CPU can already start the

data preparation for step N + 1. Now the time needed for a forward and

backward pass for one batch is the maximum of the training and data

preparation time. An intuitive visualisation of the suboptimal performance

related to the IO issue and the improved setup is displayed in Figure 4.2.

(a) Without pipelining.

(b) With pipelining.

Figure 4.2. Improvement in training time when leveraging TensorFlows pipelin-
ing API tf.data. Fig. 4.2a shows how much time is needed when no pipelining
is used. Consequently both CPU and the GPU sit idle much of the time.
Fig. 4.2b shows the significant effect the usage of overlapped preprocessing
and model execution have on the training time. The total time one of the
devices is idle is drastically diminished.
Image: www.tensorflow.org/guide/performance/datasets

tf.data offers substantially more features than pipelining. The input

data transformation is almost always independent between the samples.

tf.data uses this characteristic and enables the parallelisation of the data

preprocessing to multiple threads on a single CPU.

The tf.data API provides additionally dedicated functions for loading

data from remote storage. Those functions tackle those issues that are

related to locally and remotely stored data:

• Time-to-first-byte:

The reading time of the first byte is significantly larger for a file from

remote storage than one from local storage.

23

https://www.tensorflow.org/guide/performance/datasets

Methods

• Read throughput:

Remote storage typically offers large aggregate bandwidth which is

often not fully utilised when reading a single file.

Leveraging the vast possibilities that the tf.data API offers significantly

improved training time and made it possible to achieve a high utilisation

rate on both CPU and GPU.

4.6 Hyperparameter Search

The implemented VAEs are outlined in Section 4.4 where also the different

hyperparameter options are summarised in Table 4.2. In order to find the

best combination of hyperparameters, one hyperparameter was altered

while the remaining ones were left equal (ceteris paribus). The default

settings for the hyperparameters is shown in Table 4.3.

Network Parameter Default Value

Usage of Batch Normalisation Layers False

Number of Convolutional Layers 3

Dimensionality of Latent Representation 1024

Usage of Loss Function for the Reconstruction Loss MSE

Table 4.3. Default values for the hyperparameter search.

4.6.1 Batch Normalisation

Normalising the distribution in each batch was proposed by Ioffe and

Szegedy (2015) and showed promising results because the convergence

speed could be increased.

Mathematically speaking the normalisation shifts each scalar feature

independently to have the mean of zero and the variance of 1. For a layer

with k-dimensional input x =
(︁
x(1) . . . x(k)

)︁
each dimension is normalised

according to the following equation:

ˆ︁x(k) = x(k) − E
[︁
x(k)

]︁√︂
Var

[︁
x(k)

]︁
where the expectation and variance are computed over the training data set.

A batch normalisation layer is almost always displayed as BN(x), which

encodes the normalisation across each dimension as described above.

The batch normalisation layer is applied immediately before any non-

24

Methods

linear activation function since the motivation behind batch normalisation

is the prevention of saturation of the non-linear activation functions. A

fully connected or convolutional layer in a network can be described by

this equation:

z = g(Wx + b)

where W and b are the network parameters of that particular layer and g(·)

is any activation function. With batch normalisation this transformation

changes as follows:

z = g(BN(Wx))

The bias term +b can be omitted since the subtraction of the mean during

the batch normalisation cancels any effect of it.

During the hyperparameter search, a batch normalisation layer is added

before each non-linear activation function.

4.6.2 Number of Convolutional Layers

The encoder part of the VAEs is responsible for gradually reducing the

dimensionality of the analysed input images. Therefore the encoder is

defined with a stride of two5 and a minimum 3 subsequent convolutional

layers. The number of convolutional layers is increased from 3 up to

15 respectively 19 layers for the low-dimensional respectively the high-

dimensional VAEs.

4.6.3 Latent Dimensionality

At the bottleneck of the VAE, the dimensionality of the latent representa-

tion can be chosen arbitrarily without any constraint. In order to cover a

wide range of different low-dimensional representations, the dimensional-

ity was increased from 21, 22, . . . 210.

4.6.4 Loss Function

In equation 2.3 of section 2.2.2 the ELBO L(q) was defined and then

rewritten in equation 2.6 to the following form:

L(q) = EZ∼q(Z) [log p(X|Z)]−DKL(q(Z)∥p(Z))

5The 6th convolutional layers and all subsequent ones are implemented with a
stride of one since the output after the 5th layer is already reduced by a factor of
25 = 32.

25

Methods

The first term EZ∼q(Z) [log p(X|Z)] is often called the reconstruction loss

and boils down to the comparison of the original image X to its recon-

structed counterpart X̂. The most prominently used loss functions for

computing the difference between both images X and X̂ are the mean

squared error (MSE) and the cross-entropy loss (X-Ent).

The MSE is computed by summing up the pixel-wise squared difference

for all training samples Xi, ∀i = 1 . . . N :

MSE =
1

N

N∑︂
i=1

(︂
Xi − X̂i

)︂2

The cross-entropy loss is also called logistic loss and it is often used for

classification problems. Instead of using both the true and predicted value

it reports the probability of belonging to a certain class. It is calculated as

follows:

H(p, q) = −
∑︂
∀x

p(x) log(q(x))

where p(x) is the true distribution q(x) the estimated distribution. In

machine learning it is often interpreted that the true distribution p(x) is

the ground truth – here the original input image X – and the estimated

distribution q(x) is the predicted output of the neural network – here the

reconstructed image X̂. Thus the loss function changes to:

H = − 1

N

N∑︂
i=1

Xi · log
(︂
X̂i

)︂
.

For the binary case it becomes:

H = − 1

N

N∑︂
i=1

Xi · log
(︂
X̂i

)︂
+ (1−Xi) · log

(︂
1− X̂i

)︂
.

When applied to binary classification cross-entropy loss can become zero

when the correct class is predicted with absolute certainty for all samples –

p (Xi) = 1.00, ∀i = 1 . . . N .

However, when the cross-entropy loss is applied to real-valued predic-

tions it must be noted, that even for a perfect classification with absolute

certainty, this is not the case. This is demonstrated by a simple example,

where the cross-entropy loss is a computed for a toy dataset of one sample

26

Methods

(N = 1) with X1 = 0.9 which is correctly predicted, hence X̂1 = 0.9:

H = −X1 · log
(︂
X̂1

)︂
= −0.9 · log(0.9)

≃ 0.0948 ̸= 0

But regardless of if the cross-entropy loss can actually become zero or not,

it can be successfully used for training machine learning models with real-

valued output. This fact has to be kept in mind during the implementation

and for interpreting the final results.

4.6.5 In-Field-Loss

Figure 3.1 shows two example images. When visually comparing more field

images it becomes quickly clear, that most of the variation of the images

is caused by the difference in shape. Therefore any machine learning

algorithm will try to pick up on this largest variance and encode the

differences. Since the shape of the field is not a desired characteristic

in this setup – where the focus lies rather on the classification of the

plant type as well as the binary and the four loss category described in

Table 3.2 and 3.1 – the loss was modified in such a way that the loss was

only computed inside of the field, hence the name: In-Field-Loss (IFL).

During the masking of the satellite images as described in section 3.4 the

area outside of the field was set to zero across all channels. Therefore the

reconstruction loss was only computed where the true image had values

greater than zero.

27

5. Results

At first, this chapter presents the results of the hyperparameter search

for the low- and high-dimensional implementations of the VAEs. It then

exhibits the outcomes of the comparison of the low-dimensional VAE with

the conventional computer vision methods. After which the results of the

comparison of the same low-dimensional VAEs to its high-dimensional

counterpart are shown.

5.1 Hyperparameter Search

This section shows the results from the hyperparameter search outlined in

section 4.6 and draws conclusions for each hyperparameter both for the

implementation of VAEs for the low-dimensional and the high-dimensional

input.

5.1.1 Findings for the Low-dimensional Variational
Auto-Encoders

Batch Normalisation

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when alternating the

inclusion of batch normalisation layers for the low-dimensional VAEs, are

displayed in Figure 5.1. As stated in section 4.6.1, the normalisation of a

single batch increases convergence speed and it often results in reduced

loss value (Ioffe and Szegedy, 2015). None of those statements are covered

by the results in fig. 5.1a as the convergence is certainly slower and the

final loss is larger by a factor of ×1.5. The larger loss can be verified

when looking more closely to the comparison of the input images and its

reconstructed counterpart in fig. 5.1b and 5.1c since the reconstruction

28

Results

shows a pattern of black rectangles where the original field has non-zero

entries.

The conclusion for this parameter is that batch normalisation does not

seem to have the desired effect and hence is not used for the final model.

(a) Training and validation loss

(b) Without batch normalisation

(c) With batch normalisation

Figure 5.1. Results for alternating the inclusion of batch normalisation layers
for the low-dimensional VAEs. Fig. 5.1a shows the training and validation
loss for the VAE with and without batch normalisation layers (best viewed in
colour). A comparison of the input image to its reconstructed counterpart for
the VAE trained for 100 epochs with and without batch normalisation layers
is displayed in fig. 5.1b respectively 5.1c.

Number of Convolutional Layers

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when increasing the

number of convolutional layers for the low-dimensional VAEs, are dis-

played in Figure 5.2. The training and validation loss in fig. 5.2a show a

clear tendency: the number of convolutional layers is directly proportional

to the final loss, which means that the least amount of convolutional layers

returns the lowest loss. This tendency can also be seen when comparing the

29

Results

reconstructed images with either 3 or 15 convolutional layers in fig. 5.2b

and 5.2c. The reconstruction of the images with 15 convolutional layers

outputs basically the same fairly rectangular shaped area regardless of

any differences in the intensities of the original field.

This allows drawing the conclusion that the best performance is achieved

by three convolutional layers. This finding is somewhat unexpected since

more convolutional layers are generally capable of finding more patterns

in the images since any additional layer increases the number of trainable

parameters. One would certainly assume that a network with more con-

volutional layers performs at least as good as one with less convolutional

layers. This intuition creates the hypothesis that a deeper network with

more convolutional layers needs more cautious investigation since the ini-

tialisation of layers or the learning rate might be improvable. The research

done by He et al. (2015) and the well-known network ResNet is a promising

candidate to look into for training increasingly deep architectures.

Latent Dimensionality

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when increasing the

dimensionality of the latent representation dim(z) for the low-dimensional

VAEs, are displayed in Figure 5.3. As for the number of convolutional

layers the training and validation loss in fig. 5.3a show a clear tendency:

the dimensionality of the latent space is indirectly proportional to the final

loss, which means that the higher-dimensional the latent space, the lower

the final loss. The final loss is decreased by a factor of ×2.0 when comparing

the largest and smallest dimensions for the latent space. This tendency

can also be verified when comparing the reconstructed images for either a

2 or 1024-dimensional latent space in fig. 5.3b and 5.3c. The reconstruction

from a 2-dimensional latent representation lacks the differences in the

intensities of the original field since it cannot encode enough information

in 2 variables. The reconstruction from the high-dimensional latent space

is significantly better at resembling variations in the intensities of the

original field.

This analysis allows to draw the conclusion that the best performance

is achieved for dim(z) = 1024. It should be noted that the final loss is

just marginally higher when increasing the dimensionality from 128 to

larger values. This means that if a further compression of the latent

representation is needed, smaller values can be chosen up to a lower bound

30

Results

(a) Training and validation loss

(b) 3 convolutional layers

(c) 15 convolutional layers

Figure 5.2. Results for increasing the number of convolutional layers for the
low-dimensional VAEs. Fig. 5.2a shows the training and validation loss for
the VAE with different numbers of convolutional layer (best viewed in colour).
A comparison of the input image to its reconstructed counterpart for the VAE
trained for 100 epochs with 3 and 15 and convolutional layers is displayed in
fig. 5.2b respectively 5.2c.

of dim(z) = 128.

This finding is aligned with the expectation since a smaller latent space

means effectively a higher compression, which itself comes along with an

information loss. Hence it is intuitive that the largest latent space allows

the best reconstruction and thus smallest error.

Loss Function

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when alternating the

loss function used in the reconstruction loss for the low-dimensional VAEs,

are displayed in Figure 5.4. As explained previously in section 4.6.4 the

scale of the loss for the very same prediction is different for the used

loss functions MSE and X-Ent, which is immediately visible in fig. 5.4a.

31

Results

(a) Training and validation loss

(b) dim(z) = 2

(c) dim(z) = 1024

Figure 5.3. Results for increasing the dimensionality of the latent representa-
tion dim(z) for the low-dimensional VAEs. Fig. 5.3a shows the training
and validation loss for the VAE with different dimensions of the latent rep-
resentation dim(z) (best viewed in colour). A comparison of the input image
to its reconstructed counterpart for the VAE trained for 100 epochs with
dim(z) = 2 and dim(z) = 1024 is displayed in fig. 5.3b respectively 5.3c.

Keeping in mind that in this analysis a lower absolute loss value does

not ultimately mean a better reconstruction draws more attention to the

visual comparison of the reconstructed images using either MSE or X-Ent

in fig. 5.4b and 5.4c. Those figures show that regardless of which loss

function is used the reconstruction is capable of providing a very similar

level of detail.

The apparent indifference in the choice of loss functions means that it

could be chosen arbitrarily without any influence on the performance of

the model. Finally, the MSE was chosen for the model though similar

results would have been achieved if the X-Ent loss function would have

been chosen.

32

Results

(a) Training and validation loss

(b) Mean Squared Error

(c) Binary Cross-entropy

Figure 5.4. Results for alternating the loss function used in the reconstruction
loss for the low-dimensional VAEs. Fig. 5.4a shows the training and vali-
dation loss for the VAE using different a loss functions in the reconstruction
loss (best viewed in colour). A comparison of the input image to its recon-
structed counterpart for the VAE trained for 100 epochs with MSE and X-Ent
as a loss function in the reconstruction loss is displayed in fig. 5.4b respectively
5.4c.

In-Field-Loss

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when alternating if the

reconstruction is computed only inside the field for the low-dimensional

VAEs, are displayed in Figure 5.5. For the case that the loss is only

computed inside the field it is intuitive that the scale of the loss will be

significantly smaller since less pixels contribute to the calculated loss

value. This intuition can be verified when looking at fig. 5.5a. Restricting

the loss function to pixels inside the actual field have the consequence

that the shape the field is not learned and encoded by the VAE. This

consequence was the principal motivation for introducing the In-Field-Loss

in section 4.6.5. Comparing fig. 5.5b and 5.5c shows clearly that in the case

33

Results

of only computing the loss in the area of the field the VAE does not encode

the shape of the field and hence is not successful in its reconstruction.

But since later on the primal objective of the VAE is not to reconstruct

the original field but to learn a meaningful latent representation which

itself is used for the three classification tasks, no obvious recommendation

for restricting the computation of the loss to the inside of the field can be

made. Hence both methods are selected, explored and evaluated for the

final classification tasks.

(a) Training and validation loss

(b) Without In-Field-Loss

(c) With In-Field-Loss

Figure 5.5. Results for alternating if the reconstruction is computed only inside
the field for the low-dimensional VAEs. Fig. 5.5a shows the training and
validation loss for the VAE with and without In-Field-Loss (best viewed in
colour). A comparison of the input image to its reconstructed counterpart
for the VAE trained for 100 epochs without and and with In-Field-Loss is
displayed in fig. 5.5b respectively 5.5c.

Summary

The findings for the hyperparameter search for the low-dimensional VAEs

are summarised Table 5.1.

34

Results

Network Parameter Best Value

Usage of Batch Normalisation layers False

Number of Convolutional Layers 3

Dimensionality of Latent Representation 1024

Usage of Loss Function for the Reconstruction Loss MSE

Usage of In-Field-Loss True and False

Table 5.1. Optimal hyperparameters for the low-dimensional VAEs.

5.1.2 Findings for the High-dimensional Variational
Auto-Encoders

This section does not describe and discuss the findings for the high-

dimensional case for better readability and because the arguments and

the conclusions from the low-dimensional case can be transferred without

any exception.

The best combination of hyperparameters for the high-dimensional case

is thus the same as for the low-dimensional one, summarised in Table 5.1.

A more detailed view on the individual hyperparameters and its training

and validation loss as well as the comparison of the input image to the

reconstructed counterpart can be found in the appendix section A.

5.2 Comparison with Conventional Computer Vision Methods

Similar to the search for optimal hyperparameters for the VAEs for the

low- and high-dimensional implementation a feature selection was carried

out to select the optimal features. This means comparing the feature ex-

traction methods proposed in section 4.2 computed at different parameter

settings. A wrapper-based feature selection approach was adopted where

the quality of features is evaluated, indirectly, based on the F1-score and ac-

curacy of the classification algorithm. The performance of the classification

algorithm is evaluated using five-fold cross-validation.

Since each feature type has different parameters, the feature selection

process was carried out in a sequential manner, by first finding good

features for each feature type followed by comparing them to get the

optimal features. The good features for each feature type are computed

by parameter optimization. That is, good GLCM features are computed

by optimizing the GLCM parameters via-grid search. Similarly, good LBP

and HOG are obtained which are then compared each other to find the

35

Results

optimal features.

The optimal features obtained from this procedure are LBP features1 fed

into the AdaBoost2 classifier with decision trees as weak learners. This

algorithm is referenced in Table 5.2 under the name Best Conventional,

since it resembles the best algorithm based on conventional CV methods.

It is compared against the best VAEs with those hyperparameters specified

in section 5.1.1. All algorithms have in common that they were trained on

the same low-dimensional images.

Table 5.2 summarises the performance of the best conventional algorithm

and the best low-dimensional implementations of the VAEs on the three

classification tasks defined in Table 4.1 by measuring the F1-score and

accuracy. This table is a condensed view of the underlying confusion

matrices, for which for better readability only the confusion matrix for

the classification of the Loss-2D is displayed in Figure 5.6. All remaining

confusion matrices can be found in the appendix section B.

Algorithm
Classification Tasks

Input
F1 AccuracyDimension

Best Conventional 64× 64× 1
(i) Loss-4D 0.42 0.58
(ii) Loss-2D 0.75 0.79
(iii) Plant-5D 0.44 0.48

Best VAE – without In-Field-Loss 64× 64× 1
(i) Loss-4D 0.22 0.43
(ii) Loss-2D 0.67 0.55
(iii) Plant-5D 0.24 0.41

Best VAE – with In-Field-Loss 64× 64× 1
(i) Loss-4D 0.22 0.43
(ii) Loss-2D 0.67 0.55
(iii) Plant-5D 0.23 0.40

Table 5.2. Performance comparison for the best conventional algorithm and the best
low-dimensional VAEs without and with In-Field-Loss. Higher values for the
F1-score and accuracy are better.

1The optimal LBP features are computed with the following parameter values
r = 1, P = 8, d = 25 where r defines the radius of circle (spatial resolution
of the operator), P defines the number of circularly symmetric neighbour set
points (quantisation of the angular space) and d defines the number of bins in the
histogram.
2The best hyperparameters for AdaBoost are a learning rate of 1 together with
600 weak learners.

36

Results

(a) Best Conventional

(b) Best VAE without IFL (c) Best VAE with IFL

Figure 5.6. Confusion matrices for the Loss-2D classification for the best conven-
tional algorithm (fig. 5.6a) as well as the best low-dimensional VAEs
without and with In-Field-Loss (fig. 5.6b resp. 5.6c).

5.3 Comparison of Low- and High-dimensional Variational
Auto-Encoders

This section shows the comparison of the best low- and high-dimensional

implementations of the VAEs with those hyperparameters specified in

section 5.1.1 respectively 5.1.2.

Table 5.3 summarises the performance of the algorithms on the three

classification tasks defined in Table 4.1 by measuring the F1-score and

accuracy. Again this table is a condensed view of the underlying confusion

matrices, for which for better readability only the confusion matrix for

the classification of the Loss-2D is displayed in Figure 5.7. All remaining

confusion matrices can be found in the appendix section C.

37

Results

Algorithm
Classification Tasks

Input
F1 AccuracyDimension

without In-Field-Loss

Best VAE 64× 64× 1
(i) Loss-4D 0.22 0.43
(ii) Loss-2D 0.67 0.55
(iii) Plant-5D 0.24 0.41

Best VAE 512× 512× 13
(i) Loss-4D 0.22 0.41
(ii) Loss-2D 0.65 0.54
(iii) Plant-5D 0.17 0.35

with In-Field-Loss

Best VAE 64× 64× 1
(i) Loss-4D 0.22 0.43
(ii) Loss-2D 0.67 0.55
(iii) Plant-5D 0.23 0.40

Best VAE 512× 512× 13
(i) Loss-4D 0.22 0.41
(ii) Loss-2D 0.66 0.54
(iii) Plant-5D 0.17 0.32

Table 5.3. Performance comparison for the best low- and high-dimensional VAEs without
and with In-Field-Loss. Higher values for the F1-score and accuracy are better.

(a) Best low-dimensional VAE
without IFL

(b) Best high-dimensional VAE
without IFL

(c) Best low-dimensional VAE
with IFL

(d) Best high-dimensional VAE
with IFL

Figure 5.7. Confusion matrices for the Loss-2D classification for the best low-
and high-dimensional VAEs without (fig. 5.7a respectively 5.7b) and
with (fig. 5.7c respectively 5.7d) In-Field-Loss.

38

6. Discussion

This chapter discusses first the results of the comparison of the low-

dimensional VAEs with the conventional computer vision methods and

then continues with a discussion of the comparison of the same low-

dimensional VAEs with its high-dimensional counterpart.

Table 5.2 summarises the performance of the low-dimensional VAEs

and the conventional method on the three classification tasks by stating

their scores on the F1 metric and accuracy. The table shows that the

conventional computer vision methods outperform the low-dimensional

VAEs in any classification problem regardless of if the loss is computed

only within the actual field or not.

It is rather unexpected that the low-dimensional implementation of

the VAEs with its ∼1.3× 106 trainable parameters perform worse than a

simple feature extractor such as LBP. But paying attention to the two main

differences between both approaches helps to explain this shortcoming.

First, the conventional algorithm uses AdaBoost as a classifier whereas

the low-dimensional implementation of the VAEs uses one fully connected

layer to perform each of the classification tasks. Using a boosted classifier

such as AdaBoost means essentially that there is a plurality in classifiers

as there are many weak estimators applied to the extracted features to

perform the classification task. In fact, AdaBoost is implemented with 600

classifiers here. As described in section 4.3.3 the advantage of boosted clas-

sifiers is the combination of many weak learners to pay more attention to

increasingly difficult to classify samples. In the low-dimensional implemen-

tation of the VAEs on the other hand, only a single classifier is responsible

for the decision between classes. Therefore this disadvantage is respon-

sible at least for some part of the performance hit the low-dimensional

implementation of the VAEs take.

The second main difference is the way how both methods find the latent

39

Discussion

representation. The VAEs have a powerful mechanism that learns a low-

dimensional representation of the input whereas the feature computation

for the LBP is defined. This generally means that LBP is rather rigid and

not flexible enough to select relevant features for more challenging tasks

while a VAE is capable of adapting depending on the input and the task.

Having said that, the low-dimensional VAEs with its ∼1.3× 106 trainable

parameters should at least be able to replicate a similar representation to

the one defined by LBP. But the performance values in Table 5.2 strongly

indicate that the features found by the low-dimensional VAEs are less

relevant to the classification tasks than the features the LBP defines.

Even though it is difficult to examine the sole effect of the learned latent

representation due to the different classifiers used.

Table 5.3 summarises the performance of the low- and high dimensional

VAEs on the three classification tasks by stating their scores on the F1 met-

ric and accuracy. The table shows that both approaches deliver matching

classification results.

Since the amount of information that is available to distinguish between

different classes increases drastically from the low-dimensional to the

high-dimensional implementation one would assume that the classification

task becomes easier and more accurate, but the metric values in the table

clearly indicate that the additional information does not yield a higher

prediction accuracy.

This conclusion undermines the belief that the provided data is suffi-

ciently informative to train deep classifiers for a determined prediction

on the classification tasks. But when judging the informative value of the

provided data one should keep in mind two aspects of this analysis.

The first detail is that the analysis presented was not conducted on the

entire data set but rather a small subset of it. The subset contains only

the five most frequent plant species and drops 53 less frequent plants.

Additionally, within those five most frequent plant species a subset of

roughly 19,000 fields was selected while there were over 380,000 fields

belonging to either of the five plants.

The second aspect is that during this research one point in time was

chosen for the given time window of August 2015. This choice was mainly

motivated by the fact that the typical harvesting month for most species in

Finland is the month of August. This particular choice might be beneficial

for classifying the type of crop loss but it might not contain enough informa-

tion to build a robust prediction for the plant species. But the intelligent

40

Discussion

crop model which is the large scale scope this analysis it contributing to

will leverage time-series data. That means that more points in time will be

taken into consideration and thus additional information will be included

that is more explanatory for the given classification tasks.

Furthermore, Table 5.3 shows that restricting the area where the loss

is computed does not have the expected effect on the stated metrics in a

significant and consistent way.

The In-Field-Loss was introduced to force the VAEs to pay more attention

to the underlying structure of the satellite images instead of its shape. But

the values in the table do not support this motivation. Instead of setting

the outside of the field to zero during the masking one improvement could

be to set it to the average value of that particular channel. Thereby the

variance per channel would be reduced significantly and the network would

automatically not pick up on the shape of the field any more. There would

not be the need to force the network to not take the shape of the field into

consideration.

41

7. Conclusion

Summarising high-resolution satellite images by using Variational Auto-

Encoders is possible. It will, however, still take a performance hit on

the outlined classification tasks in comparison to conventional computer

vision techniques. This statement is true for using both low- and high-

dimensional input images as well as both alternations of how the recon-

struction loss is restricted to the actual field area.

Recent improvements in image classification tasks on the famous Image-

Net database (Deng et al., 2009) by the prominent networks AlexNet

(Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2014),

GoogLeNet / Inception (Szegedy et al., 2014) and ResNet (He et al., 2015)

have successfully demonstrated that deep learning is a powerful tool capa-

ble of beating human-level performance. Therefore with more enhanced

testing on network structure as well as hyperparameter search the pro-

posed VAEs are a promising implementation with the potential to deliver

superior results to the conventional methods while significantly reducing

the image file size. Especially the novelty of skip-connections introduced

by He et al. as part of ResNet enables training of exceptionally deep archi-

tectures which together with increasing the amount of training data to the

full scope can deliver encouraging improvements to the current status quo.

Another idea that could improve the results is a combination of the train-

ing of the VAEs with the classification task. Until now the quality of the

VAEs is evaluated by selecting the least loss together with a visual inspec-

tion of the reconstructed image in case two candidates return similar loss.

A direct combination of both tasks – training and classification – enables a

more direct evaluation of the desired task. Even though balancing both

loss contributions is nothing short of cumbersome.

42

References

Aalto University Science-IT (2019). Triton. https://scicomp.aalto.fi/triton/

overview.html/.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from https://www.tensorflow.org.

Bargoti, S. and Underwood, J. P. (2016). Deep Fruit Detection in Orchards. CoRR,
abs/1610.03677:3626–3633.

Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V. (2001). Support vector
clustering. Journal of Machine Learning Research, 2:125–137.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

Dalal, N. and Triggs, B. (2005). Histograms of Oriented Gradients for Human
Detection. In Schmid, C., Soatto, S., and Tomasi, C., editors, International
Conference on Computer Vision & Pattern Recognition (CVPR ’05), volume 1,
pages 886–893. IEEE Computer Society.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. CoRR,
abs/1810.04805.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep
learning. arXiv preprint arXiv:1603.07285.

Dyrmann, M., Jørgensen, R., and Midtiby, H. (2017). RoboWeedSupport - Detec-
tion of weed locations in leaf occluded cereal crops using a fully convolutional
neural network. Advances in Animal Biosciences, 8:842–847.

43

https://scicomp.aalto.fi/triton/overview.html/
https://scicomp.aalto.fi/triton/overview.html/
https://www.tensorflow.org

References

Freund, Y. and Schapire, R. E. (1999). A Short Introduction to Boosting. In
In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1401–1406. Morgan Kaufmann.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer Series
in Statistics. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image
Recognition. CoRR, abs/1512.03385.

Ho, T. K. (1995). Random decision forests. In Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition, volume 1 of ICDAR,
pages 278–282. IEEE Computer Society.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. CoRR, abs/1502.03167.

Jimenez Rezende, D., Mohamed, S., and Wierstra, D. (2014). Stochastic Backprop-
agation and Approximate Inference in Deep Generative Models. arXiv preprint
arXiv:1401.4082.

Jordan, J. (2018). Variational Autoencoders. https://www.jeremyjordan.me/

variational-autoencoders/. [Online; accessed 05-Sep-2018].

Kingma, D. P. and Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv
preprint arXiv:1312.6114.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. In Pereira, F., Burges, C. J. C.,
Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., and Shelestov,
A. Y. (2016). Parcel-Based Crop Classification in Ukraine Using Landsat-8
Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 9(6):2500–2508.

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and
Aila, T. (2018). Noise2Noise: Learning Image Restoration without Clean Data.
CoRR, abs/1803.04189.

McCool, C., Perez, T., and Upcroft, B. (2017). Mixtures of Lightweight Deep Con-
volutional Neural Networks: Applied to Agricultural Robotics. IEEE Robotics
and Automation Letters, PP:1–1.

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using Deep Learning for
Image-Based Plant Disease Detection. CoRR, abs/1604.03169.

Nevo, S., Anisimov, V., Elidan, G., El-Yaniv, R., Giencke, P., Gigi, Y., Hassidim, A.,
Moshe, Z., Schlesinger, M., Shalev, G., Tirumali, A., Wiesel, A., Zlydenko, O.,
and Matias, Y. (2019). ML for Flood Forecasting at Scale. CoRR, abs/1901.09583.

44

http://www.deeplearningbook.org
https://www.jeremyjordan.me/variational-autoencoders/
https://www.jeremyjordan.me/variational-autoencoders/

References

Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of
texture measures with classification based on featured distributions. Pattern
Recognition, 29(1):51–59.

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., and Carin, L. (2016).
Variational Autoencoder for Deep Learning of Images, Labels and Captions.
arXiv preprint arXiv:1609.08976.

Reaktor Space Lab (2019). Reaktor Hello World. https://reaktorspace.com/

reaktor-hello-world/. [Online; accessed 17-May-2019].

Rebetez, J., Satizábal, H. F., Mota, M., Noll, D., Büchi, L., Wendling, M., Cannelle,
B., Pérez-Uribe, A., and Burgos, S. (2016). Augmenting a convolutional neural
network with local histograms - A case study in crop classification from high-
resolution UAV imagery. In 24th European Symposium on Artificial Neural
Networks, ESANN.

Simonyan, K. and Zisserman, A. (2014). Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2014). Going deeper with convolutions.
CoRR, abs/1409.4842.

Yalcin, H. (2017). Plant phenology recognition using deep learning: Deep-Pheno.
In 2017 6th International Conference on Agro-Geoinformatics, pages 1–5.

Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010). Deconvolutional
Networks. In CVPR, volume 10, page 7.

45

https://reaktorspace.com/reaktor-hello-world/
https://reaktorspace.com/reaktor-hello-world/

A. Findings for High-dimensional
Variational Auto-Encoders

This chapter summarises the findings for the high-dimensional case in

fewer details as for the low-dimensional one, where the findings for each hy-

perparameter were analysed and a justified conclusion was made because

the arguments and the conclusions are still valid without any exception.

A.1 Batch Normalisation

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when alternating the

inclusion of batch normalisation layers for the high-dimensional VAEs, are

displayed in Figure A.1.

The conclusion for this hyperparameter is that no batch normalisation

is used in the final model. The argument is the same as in the low-

dimensional case.

A.2 Number of Convolutional Layers

The progress of the training and validation loss, as well as the compari-

son of the input image to the reconstructed counterpart when increasing

the number of convolutional layers for the high-dimensional VAEs, are

displayed in Figure A.2.

The best performance is achieved by three convolutional layers, which is

aligned with the result for the low-dimensional case.

46

Findings for High-dimensional Variational Auto-Encoders

(a) Training and validation loss

(b) Without batch normalisation

(c) With batch normalisation

Figure A.1. Results for alternating the inclusion of batch normalisation layers
for the high-dimensional VAEs. Fig. A.1a shows the training and val-
idation loss for the VAE with and without batch normalisation layers. A
comparison of the input image to its reconstructed counterpart for the VAE
trained for 40 epochs with and without batch normalisation layers is displayed
in fig. A.1b respectively A.1c. (best viewed in colour)

47

Findings for High-dimensional Variational Auto-Encoders

(a) Training and validation loss

(b) 3 convolutional layers

(c) 19 convolutional layers

Figure A.2. Results for increasing the number of convolutional layers for the
high-dimensional VAEs. Fig. A.2a shows the training and validation loss
for the VAE with different numbers of convolutional layer. A comparison
of the input image to its reconstructed counterpart for the VAE trained for
50 epochs with 3 and 19 and convolutional layers is displayed in fig. A.2b
respectively A.2c. (best viewed in colour)

48

Findings for High-dimensional Variational Auto-Encoders

(a) Training and validation loss

(b) dim(z) = 2

(c) dim(z) = 1024

Figure A.3. Results for increasing the dimensionality of the latent representa-
tion dim(z) for the high-dimensional VAEs. Fig. A.3a shows the training
and validation loss for the VAE with different dimensions of the latent repre-
sentation dim(z). A comparison of the input image to its reconstructed coun-
terpart for the VAE trained for 40 epochs with dim(z) = 2 and dim(z) = 1024
is displayed in fig. A.3b respectively A.3c. (best viewed in colour)

A.3 Latent Dimensionality

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when increasing the

dimensionality of the latent representation dim(z) for the high-dimensional

VAEs, are displayed in Figure A.3.

Similar to the low-dimensional case dim(z) = 1024 achieves the best

performance but dimensionality from 128 to larger values result in just

marginally higher final loss values. In case a further compression of the

latent representation is needed, smaller values can be chosen up to a lower

bound of dim(z) = 128.

49

Findings for High-dimensional Variational Auto-Encoders

(a) Training and validation loss

(b) Mean Squared Error

(c) Binary Cross-entropy

Figure A.4. Results for alternating the loss function used in the reconstruction
loss for the high-dimensional VAEs. Fig. A.4a shows the training and val-
idation loss for the VAE using different a loss functions in the reconstruction
loss. A comparison of the input image to its reconstructed counterpart for
the VAE trained for 35 respectively 40 epochs with MSE and X-Ent as a loss
function in the reconstruction loss is displayed in fig. A.4b respectively A.4c.
(best viewed in colour)

A.4 Loss Function

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when alternating the

loss function used in the reconstruction loss for the high-dimensional VAEs,

are displayed in Figure A.4.

Aligned with the low-dimensional case the choice of loss function does

not have a significant effect on the reconstruction capabilities of the model.

The MSE was chosen for the model, but similar results would have been

achieved if the X-Ent loss function would have been chosen.

50

Findings for High-dimensional Variational Auto-Encoders

(a) Training and validation loss

(b) Without In-Field-Loss

(c) With In-Field-Loss

Figure A.5. Results for alternating if the reconstruction is computed only inside
the field for the high-dimensional VAEs. Fig. A.5a shows the training
and validation loss for the VAE with and without In-Field-Loss. A comparison
of the input image to its reconstructed counterpart for the VAE trained
for 40 epochs without and and with In-Field-Loss is displayed in fig. A.5b
respectively A.5c. (best viewed in colour)

A.5 In-Field-Loss

The progress of the training and validation loss, as well as the comparison

of the input image to the reconstructed counterpart when alternating if the

reconstruction is computed only inside the field for the high-dimensional

VAEs, are displayed in Figure A.5.

Again the results do not show one conclusive tendency, hence both meth-

ods are selected, explored and evaluated for the final classification tasks.

A.6 Summary

The findings for the hyperparameter search for the high-dimensional VAEs

are summarised Table A.1.

51

Findings for High-dimensional Variational Auto-Encoders

Network Parameter Best Value

Usage of Batch Normalisation layers False

Number of Convolutional Layers 3

Dimensionality of Latent Representation 1024

Usage of Loss Function for the Reconstruction Loss MSE

Usage of In-Field-Loss True and False

Table A.1. Optimal hyperparameters for the high-dimensional VAEs.

52

B. Confusion Matrices for the
Comparison with Conventional
Computer Vision Methods

This chapter displays the remaining confusion matrices for the Loss-4D and

Plant-5D classification for the best conventional algorithm as well as the

best low-dimensional VAEs without and with In-Field-Loss in Figure B.1

and B.2.

(a) Best Conventional

(b) Best VAE without IFL (c) Best VAE with IFL

Figure B.1. Confusion matrices for the Loss-4D classification for the best con-
ventional algorithm (fig. B.1a) as well as the best low-dimensional
VAEs without and with In-Field-Loss (fig. B.1b respectively B.1c).

53

Confusion Matrices for the Comparison with Conventional Computer Vision Methods

(a) Best Conventional

(b) Best VAE without IFL (c) Best VAE with IFL

Figure B.2. Confusion matrices for the Plant-5D classification for the best con-
ventional algorithm (fig. B.2a) as well as the best low-dimensional
VAEs without and with In-Field-Loss (fig. B.2b respectively B.2c).

54

C. Confusion Matrices for the
Comparison of Low- and
High-Dimensional Variational
Auto-Encoders

This chapter displays the remaining confusion matrices for the Loss-4D

and Plant-5D classification for the best low- and high-dimensional VAEs

without and with In-Field-Loss in Figure C.1 and C.2.

(a) Best low-dimensional VAE
without IFL

(b) Best high-dimensional VAE
without IFL

(c) Best low-dimensional VAE
with IFL

(d) Best high-dimensional VAE
with IFL

Figure C.1. Confusion matrices for the Loss-4D classification for the best low-
and high-dimensional VAEs without (fig. C.1a respectively C.1b) and
with (fig. C.1c respectively C.1d) In-Field-Loss.

55

Confusion Matrices for the Comparison of Low- and High-Dimensional Variational Auto-Encoders

(a) Best low-dimensional VAE
without IFL

(b) Best high-dimensional VAE
without IFL

(c) Best low-dimensional VAE
with IFL

(d) Best high-dimensional VAE
with IFL

Figure C.2. Confusion matrices for the Plant-5D classification for the best low-
and high-dimensional VAEs without (fig. C.2a respectively C.2b) and
with (fig. C.2c respectively C.2d) In-Field-Loss.

56

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Background Related to Applications in the Domain of Agriculture
	Background Related to Methods
	Variational Inference
	Variational Auto-Encoder
	Variational Auto-Encoder for Images

	Data
	Source
	Preparation
	Satellite Image Download
	Masking the Satellite Images

	Methods
	Classification Task
	Feature Extraction with Conventional Computer Vision Methods
	Histogram of Oriented Gradients
	Local Binary Pattern
	Grey-Level Co-Occurrence Matrix

	Classification Algorithms
	Random Forest
	Support-Vector Machine
	AdaBoost

	Variational Auto-Encoder for Satellite Images
	Implementation
	Hyperparameter Search
	Batch Normalisation
	Number of Convolutional Layers
	Latent Dimensionality
	Loss Function
	In-Field-Loss

	Results
	Hyperparameter Search
	Findings for the Low-dimensional Variational Auto-Encoders
	Findings for the High-dimensional Variational Auto-Encoders

	Comparison with Conventional Computer Vision Methods
	Comparison of Low- and High-dimensional Variational Auto-Encoders

	Discussion
	Conclusion
	References
	Findings for High-dimensional Variational Auto-Encoders
	Batch Normalisation
	Number of Convolutional Layers
	Latent Dimensionality
	Loss Function
	In-Field-Loss
	Summary

	Confusion Matrices for the Comparison with Conventional Computer Vision Methods
	Confusion Matrices for the Comparison of Low- and High-Dimensional Variational Auto-Encoders

