

Wencan Mao

Vision-Based Vehicle Detection and Tracking in

Intelligent Transportation System

Master’s Thesis

Aalto University

School of Engineering

Department of Mechanical Engineering

Thesis submitted as partial fulfillment of the requirements for

the degree of Master of Science in Technology

Espoo, 20.03.2019

Supervisor: Professor Kari Tammi

Advisor: Professor Kari Tammi

Aalto University, P.O. BOX 11000, 00076

AALTO

www.aalto.fi

Abstract of master's thesis

Author Wencan Mao

Title of thesis Vision-Based Vehicle Detection and Tracking in Intelligent

Transportation System

Master programme Master’s Programme in Mechanical

Engineering

Code ENG25

Thesis supervisor Professor Kari Tammi

Thesis advisor(s) Professor Kari Tammi

Date 20.03.2019 Number of pages 64+13 Language English

Abstract

This thesis aims to realize vision-based vehicle detection and tracking in the Intelligent

Transportation System. First, it introduces the methods for vehicle detection and tracking.

Next, it establishes the sensor fusion framework of the system, including dynamic model

and sensor model. Then, it simulates the traffic scene at a crossroad by a driving simulator,

where the research target is one single car, and the traffic scene is ideal. YOLO Neural

Network is applied to the image sequence for vehicle detection. Kalman filter method,

extended Kalman filter method, and particle filter method are utilized and compared for

vehicle tracking. The Following part is the practical experiment where there are multiple

vehicles at the same time, and the traffic scene is in real life with various interference factors.

YOLO Neural Network combined with OpenCV is adopted to realize real-time vehicle

detection. Kalman filter and extended Kalman filter are applied for vehicle tracking; an

identification algorithm is proposed to solve the occlusion of the vehicles. The effects of

process noise as well as measurement noise are analysed using variable-controlling

approach. Additionally, perspective transformation is illustrated and implemented to

transfer the coordinates from the image plane to the ground plane. If the vision-based

vehicle detection and tracking can be realized and popularized in daily lives, vehicle

information can be shared among infrastructures, vehicles, and users, so as to build

interactions inside the Intelligent Transportation System.

Keywords Intelligent Transportation System, Computer Vision, Vehicle Detection,

Vehicle Tracking, YOLO Neural Network, Sensor Fusion, Kalman Filter, Extended Kalman

Filter, Particle Filter, Perspective Transformation.

Table of Contents

Abstract

1 Introduction ... 1

1.1 Background ... 1

1.2 Research Problem .. 2

1.3 Scope and Objectives .. 3

1.4 Structure of the Thesis .. 4

2 Method ... 5

2.1 Vehicle Detection Method .. 5

2.2 Vehicle Tracking Method ... 9

2.3 Method Selection .. 10

2.4 Existing Literature ... 11

2.4.1 Literature about Vehicle Detection ... 11

2.4.2 Literature about Vehicle Tracking .. 14

3 Mathematical Framework of the Thesis ... 16

3.1 Wiener Velocity Model ... 16

3.2 Quasi-Constant Turn Model .. 17

3.3 Sensor Model .. 18

3.4 Discretization of the State-Space Model ... 18

3.4.1 Discretization of Wiener Velocity Model ... 18

3.4.2 Discretization of Quasi-Constant Turn Model .. 20

4 Simulation of Vehicle Detection and Tracking .. 23

4.1 Simulation of Vehicle Detection ... 23

4.1.1 Generation of Image Sequence .. 23

4.1.2 Adoption of YOLO Algorithm .. 23

4.1.3 Statistic Analysis ... 26

4.2 Simulation of Vehicle Tracking .. 27

4.2.1 Kalman Filter Method ... 28

4.2.2 Extended Kalman Filter Method ... 29

4.2.3 Particle Filter Method .. 30

4.3 Simulation Result .. 30

5 Practical Experiment ... 34

5.1 Experiment of Vehicle Detection .. 34

5.1.1 Real-Time Vehicle Detection .. 34

5.1.2 Statistic Analysis ... 35

5.2 Experiment of Vehicle Tracking ... 36

5.2.1 Identification Algorithm .. 36

5.2.2 Appling Filtering Algorithm ... 38

5.3 Experiment Result ... 39

 5.3.1 Detection and Tracking Result ... 39

 5.3.2 The Effect of Noise .. 48

5.4 Perspective Transformation .. 50

 5.4.1 Principle of Perspective Transformation ... 50

 5.4.2 Implementation of Perspective Transformation .. 53

6 Discussion ... 59

7 Conclusion .. 61

Reference List .. 62

Appendix 1: Identification Algorithm

Appendix 2: Use Kalman Filter for Tracking Experiment

Appendix 3: Use Extended Kalman Filter for Tracking Experiment

Appendix 4: Use Particle Filter for Tracking Simulation

Appendix 5: Perspective Transformation

1

1. Introduction

1.1 Background

During the past few decades, the automobile industry has experienced dramatic

development. New technologies are emerging from time to time, which make our lives

more convenient. Meanwhile, due to the growing number of vehicles, the transport

problem arises. The major challenges for the transportation system are traffic congestion,

environment effects, energy consumption, safety hazards, high maintenance cost, and

land occupation (Lin et al. 2017).

The first problem is traffic congestion. The number of vehicles in China has reached 319

million. Among them, there are more than one million cars in 58 cities, and more than

three million cars in 7 cities (Chinese Ministry of Public Security 2018). The gigantic

number of vehicles led to ubiquitous congestions and transport delays, especially in the

high-dense urban area. Secondly, air pollution and energy consumption brought by the

enormous number of vehicles could not be neglected, and the traffic congestions had

made the case even worse. Thirdly, under the pressure of fast-paced life, people were

tired of being stuck in the traffic jams; and this may lead to chaotic driving behavior and

potential accidents. From the perspective of transport construction, everyone anticipates

a self-contained and efficient transportation system. However, adding more transport

infrastructure means adding considerable expense (Andersen et al. 2000), let al.one the

high maintenance costs and land consumption.

Under these circumstances, the Intelligent Transportation System (ITS) is conceived to

solve the problems and gradually becomes a global phenomenon (Figueiredo et al. 2001).

Intelligent Transportation System is an integrated transportation system, which aims at

providing innovative services for all kinds of transportation and traffic management so

that users can learn more about the transportation network and use it more safely,

coordinately, and intelligently (Boonphoka et al. 2014). From the system perspective,

the main components of the Intelligent Transportation System are transportation

infrastructures, vehicles, and users. Many problems result from the lack of timely and

accurate information as well as the lack of coordination of the users in the system

(Andersen et al. 2000). Intelligent Transportation System combines the traditional

transportation infrastructure with new technologies in the information system,

communication system, sensor system, and control system, and adopts advanced

mathematical methods for optimized planning. (Lin et al. 2017). These technologies

provide the users in the system a better understanding of the traffic condition so that they

can make synergetic decisions. In this way, transportation sustainability and mobility are

improved, energy efficiency is increased, environmental impacts are reduced, and

traveling safety is secured.

2

1.2 Research Problem

Vision-based Intelligent Transportation System is extensively utilized in daily life

because of four reasons. Firstly, people are used to visual information. The information

does not need to be transformed or derived, which would save a lot of time for the users

to make judgments. Secondly, video sequences are able to detect the time-varying

tendency since they contain an extensive range of information which can reflect the

traffic condition directly. Thirdly, the installation, operation, as well as maintenance of

video sensors are simple. Lastly, the vision-based device is cost-effective. (Zhang et al.

2011)

The detection, recognition, and tracking of objects in traffic system are widely used in

vision-based Intelligent Transportation System. Vehicle detection and tracking, in

particular, has broad applications such as over-speeding and red-light running

identification, parking lot access control, automatic charging, and lost vehicle tracking

(Zhang et al. 2011). Moreover, it can be used to construct a “vehicle-road-user” system.

Real-time traffic image sequences are collected by cameras on road; traffic flow

parameters are extracted by vehicle detection, recognition and tracking module; then the

traffic information is processed in the control center and sent to the users (Liu et al. 2013),

so as to build interactions among road, vehicle, and users.

Figure 1.1: Components of Vision-based Intelligent Transportation System

There are some issues about vehicle detection and tracking in the Intelligent

Transportation System. Firstly, the vehicles have different shapes, sizes, and colors,

which increase the difficulty of detection. Secondly, the figure of vehicles will change

with its pose and orientation. Thirdly, environmental factors could affect the result of

detection and tracking. Fourth, the fast movement and the tracking algorithm require

3

high computing power. Lastly, the motion and drifts of vehicles require higher

robustness. (Zhang et al. 2011) The issues will later be discussed and solved in the thesis.

1.3 Scope and Objectives

The objectives of the thesis are to achieve vision-based vehicle detection and tracking in

the Intelligent Transportation System. Vehicle detection is to perceive the vehicles

passing the region of detection (Liu et al. 2013). The vehicles need to be extracted from

the video and located within the image. For computers, it manages to recognize a specific

image such as QR codes, but it struggles to recognize things without “expectation”.

These require computer vision, which automates acquiring, processing, analyzing and

understanding digital images or videos, and extracting information from them (Klette

2014). After recognition of the vehicle, it needs to be located within the region of

detection; therefore, a bounding box is drawn around the vehicle to get its pixel location.

Beyond vehicle detection, vehicle tracking aims to estimate the motion parameters,

calculate the corresponding trajectories, and predict the upcoming position of vehicles

on the road (Sivaraman et al. 2013). Vehicle tracking could be unsmooth since the

Visual-based vehicle detectors fluctuate between frames at pixel positions. For example,

a pedestrian passing by may affect the detection result and lead to a drift in the trajectory.

Besides, the loss of measurement data may occur when the vehicle is driving to the blind

spot. The thesis aims to smooth out the tracking process.

Figure 1.2: Flowchart of Vision-based Intelligent Transportation System

4

1.4 Structure of the Thesis

The thesis is organized as follows. In the second chapter, vehicle detection and tracking

methods are discussed respectively, existing literature is introduced, and the methods of

the thesis are selected. In the third chapter, a mathematical framework is established

using the concept of sensor fusion. Dynamic model and sensor models are built, and the

dynamic model is discretized correspond to the measurement sampling. In the fourth

chapter, vehicle detection and tracking are simulated. The video simulates the traffic

scene at a crossroad by a driving simulator. One vehicle is set as the target, and the traffic

scene is an ideal one without inference factors such as pedestrians, bikes and other

vehicles. The methods selected are tested by the simulation video to verify the feasibility

and precision of each method. On this basis, in the fifth chapter, a practical experiment

is carried out. The video is recorded by a camera installed at a crossroad at Aalto

University. Various vehicles, pedestrians, bikes pass by from time to time, and there is

also a construction site which blocks part of the view of the objects behind. The algorithm

is optimized to meet more complicated requirements. And the effects of noise are

analyzed using variable-controlling method. Then introduces the principle of perspective

transformation to convert the coordinates from the image plane to the ground plane. And

vehicle tracking with perspective transformation are conducted using Kalman filter

method and extended Kalman filter method. The following chapter is the discussion of

the findings, and the last chapter is the conclusion of the thesis.

5

2. Method

The methodology of the thesis is introduced, compared, and determined in this chapter.

Various methods of vision-based vehicle detection and tracking are discussed; the current

literature examples of realizing vision-based vehicle detection and tracking are taken for

references; and finally, the methods to be adopted in the thesis are decided.

2.1 Vehicle Detection Method

Vehicle detection aims to estimate if there is any vehicle passing through the region of

detection, and locate the vehicle within the region of detection. In order to distinguish

the vehicle from the background, three steps are adopted in the detection algorithm:

image acquisition, generation of candidates and verification of candidates (Bush et al.

2011, Cheng et al. 2011). There are two kinds of methods for vision-based vehicle

detection: methods based on intrinsic properties and methods based on motion detection

(Liu et al. 2013).

Methods based on intrinsic properties include representative methods, machine learning

methods, and 3D modeling methods. Representative methods use intrinsic visual

properties to detect the vehicles, such as symmetry, contour, edge, color, texture, shadow

and parts of the vehicle. The methods are based upon the subjective hypothesis of the

vehicle – they depend on the knowledge that human learns and describes before teaching

the computers (Liu et al. 2013). Machine learning methods use a recognition classifier

generated from training dataset to distribute category tags to the things it detects and

shows the probability of each labeled category (Buch et al. 2011). They do not depend

on the knowledge of human, thus have been widely used in computer vision. 3D

modeling methods detect and track the vehicle by constructing 3D models of them.

However, it is a challenge to build the 3D models which can sufficiently represent the

features of vehicles, and suitable for all kinds of vehicles (Liebelt et al. 2008).

Methods based on motion detection aim to capture the most common characteristics of

the vehicles – their “movement”. The methods include background subtraction method,

optical flow method, frame differencing method, and virtual coil method. Background

subtraction method compares the divergence between the present image and the

background image by pixel and sets a threshold to determine whether it is background

or not (Gupte et al. 2002). Optical flow method calculates the motion of every pixel by

combing the temporal variation of the pixel with the relevance of the pixels in the image

sequence (Beauchemin et al. 1995). Frame differencing method calculates the difference

between two contiguous frames by pixel and set the threshold to obtain the moving

foreground pixels and their region (Seki 2000). Virtual coil method detects vehicles by

6

the change of the image in the virtual coil area, assuming that there is a vehicle when the

width of the covered image is larger than the threshold value.

For detection methods based on intrinsic properties, machine learning methods have a

broad prospect. And for the motion detection methods, although the algorithm is much

easier than machine learning methods, they could not always reflect the truth – the

moving objects are not limited to vehicles, for example the pedestrians and bikes are also

moving; and the vehicles can also be static, such as the cars in the parking lot (Liu et al.

2013). Therefore, detection methods based on machine learning will be further discussed

in the thesis.

In recent years, Convolutional neural network (CNN) was developed, which does well

in completing difficult tasks of object recognition. Convolutional Neural Network is

capable of recognizing the visual patterns straightly from pixel images with a minimum

amount of preprocessing. They can identify visual patterns with great variability and

have the ability to resist distortion and simple geometric transformation.

On the basis of object recognition, object detection needs to draw a bounding box around

the object of interest to locate it within the region of detection. It is not feasible to merely

build a standard convolutional network with a fully connected layer, because the amount

of the output is not a constant. The objects of interest can be located in different places

of the image with its own aspect ratios. To avoid selecting a huge number of regions,

four latest methods are introduced and compared here: R-CNN, fast R-CNN, faster R-

CNN and You Only Look Once (YOLO) algorithm.

The first method is R-CNN proposed by Ross Girshick et al. In the method, selective

search is used to extract 2000 regions from the image to be the region proposals. The

candidate region proposals are warp into a square and then fed into a convolutional neural

network that generates an output of a 4096-dimensional feature vector. The features

extracted from the image are then fed into a Support Vector Machine to classify the

objects within the region proposal, and predict four offset values to adjust the location

of the bounding box. However, it takes around 47 seconds to classify 2000 region

proposals per image.

7

Figure 2.1: R-CNN system overview (Girshick et al. 2014)

The second method is fast R-CNN proposed by Ross Girshick. It is similar to R-CNN;

except that the region proposals are not fed into the convolutional neural network, but

the input image is directly fed into it to generate a convolutional feature map. From the

map, the regions of proposals are identified and warp into squares. Region of interest

(RoI) pooling layer is used to reshape the squares and feed them into the fully connected

layer. Softmax layer is used to classify the region proposal from the RoI feature vector,

and predict the offset values of the bounding box. It is much faster than R-CNN because

the convolutional feature map is generated once per image instead of feeding 2000 region

proposals in into the convolutional neural network every time.

Figure 2.2: Fast R-CNN method overview (Girshick et al. 2015)

The third method is faster R-CNN. It is proposed by Shaoqing Ren et al. on the basis of

fast R-CNN. Instead of using selective searching algorithm to predict the region

proposals, it uses a region proposal network to do so. The method can significantly save

time for detection because selective searching algorithm is a time-consuming process.

8

Figure 2.3: Faster R-CNN method overview (Ren et al. 2016)

The last method is You Only Look Once (YOLO) algorithm proposed by Joseph Redmon

et al. All of the above methods use regions to localize the objects; the convolutional

neural network does not look at the whole image, but the parts that have a high

probability of containing the objects. YOLO algorithm, however, uses a single

convolutional neural network to predict the bounding box together with the class

probabilities. In the algorithm, the input image is split into an S×S grid, and within every

grid, m bounding boxes are generated. The network outputs the class probability and

offset values for each of the bounding boxes, and the bounding boxes with the probability

larger than the threshold will represent the objects detected. Yolo neural network is very

simple and fast. It processes images in real time at 45 frames per second.

Figure 2.4: YOLO method overview (Redmon et al. 2016)

9

2.2 Vehicle Tracking Method

Vehicle tracking aims to estimate the motion parameters, calculate the corresponding

trajectories, and predict the upcoming position of vehicles. In vehicle detection, the

bounding box of the vehicles and the locations of the bounding box are already obtained.

The bounding box can be the representation of the vehicles in the tracking process. There

are two types of methods for vision-based vehicle tracking: methods with prior

knowledge and methods without prior knowledge (Liu et al. 2013).

Methods with prior knowledge include template match method and mean shift method.

Template match method looks for a specific template from vehicle image and uses

certain correlation to match and recognize vehicle in both steady state and dynamic state

images (Fieguth et al. 1997). It is simple and precise but takes a long implementing time.

Mean shift method uses a non-parameter density gradient estimator based on a general

kernel function to analyze the image. If the kernel function meets the requirement, the

estimation would be asymptotic unbiased, continuous, and consistent with the true value

(Comaniciu et al. 2003).

Methods without prior knowledge include Kalman filter method, extended Kalman filter

method, unscented Kalman filter method, and particle filter method.

Kalman filter method is suitable for linear state-space models. It uses a series of

measurements over time, including noise and uncertainty to estimate the upcoming state.

The dynamic model is used to predict the upcoming state, and the upcoming state is

estimated using the prediction as well as the new measurement. The information imposed

by the dynamic model significantly improves the tracking performance. (Gustaffson

2018)

Extended Kalman method and unscented Kalman filter method are suitable for nonlinear

state-space models. Extended Kalman filter method linearize the nonlinear models at a

certain point, so the Jacobian matrix around the point needs to be calculated. Unscented

Kalman filter collects a set of deterministic samples and propagates them on the

nonlinear function to calculate the means and covariance. (Gustaffson 2018)

Particle filter is suitable for both linear and nonlinear state-space models. It uses a set of

random samples with important weights to estimate the upcoming state. The important

weights indicate the relevance of each sample. The dynamic model is used to propagate

the samples; the measurement update evaluates the likelihood to assign an importance

10

weight to each sample; re-sampling is used to mitigate particle degeneracy. When the

number of sampled particles is large enough, the samples can sufficiently describe the

probability density distribution. (Gustaffson 2018)

2.3 Method Selection

For vehicle detection method, methods based on machine learning are being considered.

Compared to the classifier-based method, YOLO method has the following advantages.

First, it looks at the entire image at once so that the prediction can be notified through

the global context of the image. Secondly, it predicts through a single network evaluation,

so it is very fast and suitable for real-time detection. Thirdly, YOLO has universality and

extensive suitability. When it is extended from natural images to other fields such as

works of art, it is superior to other methods. Fourthly, YOLO detects an object in each

grid cell. It enhances spatial diversity in forecasting. A good example is Ojala et al. apply

YOLO algorithm to localize pedestrians in real-time with high accuracy. Therefore,

YOLO algorithm is selected as the vehicle detection method.

For vehicle tracking methods, methods without prior knowledge are being considered.

Generally, Kalman filter method is suitable for linear model; extended Kalman filter

method is suitable for weakly nonlinear model; unscented Kalman filter is suitable for

highly nonlinear model; particle filter method is for both linear and nonlinear model

(Zhao et al. 2015). Unscented Kalman filter is not selected due to its computational

complexity. Therefore, Kalman filter method, extended Kalman filter method and

particle filter method will be adopted and compared in the following context. The

flowchart of vision-based vehicle detection and tracking is shown in Figure 2.5.

11

Figure 2.5 Flowchart of vision-based vehicle detection and tracking

2.4 Existing Literature

Having decided the thesis approaches, some literature relating to the topics are

introduced here. The first topic is about using YOLO-based algorithm to detect the traffic

participants; another topic is about utilizing the filtering algorithm to track the vehicles.

2.4.1 Literature about Vehicle Detection

Aleksa Corovic et al. (2018) use YOLO algorithm to detect real-time traffic participants.

They train the algorithm for five categories: car, truck, pedestrians, traffic signs, and

traffic lights. The result shows that YOLO algorithm is suitable for real-time detection,

and all of the objects close to the camera are successfully detected. They point out that

the failure of detection occurs in two situations: the first is in high dense traffic area when

one cell of the detection grid contains more than three objects; the other is when some

objects are blocked by others. They also compare the detection results in different

weathers and declare that the accuracy of the algorithm could be improved by training

from a larger and more diverse dataset covering various weather and lighting conditions.

12

Figure 2.6: Detection visualization examples in sunny (left) and snowy (right) weathers

(Aleksa Corovic et al. 2018)

Zhi Xu et al. (2018) propose a vehicle detection system under UAV based on optimal

dense YOLO method. For vehicle detection under aerial view angle of UAV platform,

the background information is complex and the vehicle target is small. To solve the

problem, they combine YOLO algorithm with dense topology and optimal pooling. The

result shows the model is significantly improved in extracting features of the small target.

It also presents better accuracy and robustness, while maintaining the fast speed of

YOLO algorithm.

Figure 2.7: YOLO v2 detection result (left) and optimal dense YOLO method detection

result (right) (Zhi Xu et al. 2018)

Jiaping Lin et al. (2018) develop a YOLO-based traffic counting system. The system

consists of three modules, the Detector that generates the bounding boxes of the vehicles,

the Buffer that stores the vehicle coordinates, and the Counter responsible for counting

the vehicles. Video is input to the Detector where passing through YOLO and filter. Data

access is built among frame number input and output, previous and current array in

Buffer, and vehicle counting algorithm in Counter. They also add checkpoints to verify

the validity of the detection. The correctness and overall efficiency of the system are

evaluated by using video from different positions and angles. The results show that the

system achieves high accuracy in the light-rich environment.

13

Figure 2.8: Architecture of traffic counting system (Jiaping Lin et al. 2018)

Jing Tao et al. (2017) build an object detection system for images in the traffic scene.

They developed an optimized YOLO method called OYOLO by removing the last two

fully connected layers and adding an average pool layer. The new network is faster than

YOLO while exceeding other region-based methods in accuracy such as R-CNN.

Combing OYOLO and R–FCN algorithm, the detection becomes more accurate. They

also add a pre-processing procedure for night images by removing highlights, enhancing

contrast and increasing brightness. The results show the new object detection system in

the traffic scene is fast, accurate, and robust.

14

Figure 2.9: Speed (left) and accuracy (right) of OYOLO method compared with other

object detection methods (Jing Tao et al. 2017)

2.4.2 Literature about Vehicle Tracking

Amir Salarpour et al. (2011) develop an algorithm to realize multiple vehicle tracking

using Kalman filter and feature. First, they use background subtraction approach to

detect the vehicles. Then they utilize both region-based and feature-based algorithms to

track the vehicle. For region-based tracking, they use Kalman filter to predict the region

of the vehicle in the next frame. And for feature-based tracking, they use color and size

features to correct the results of the prediction. The result reflects that the method can

solve the problem such as appearance, disappearance, and occlusion, thus it can

distinguish and track all the vehicles individually in clutter scene with high accuracy.

Figure 2.10: Multi-vehicle tracking in clutter scene (Amir Salarpour et al. 2011)

Daniel Ponsa et al. (2005) present a multiple vehicle 3D tracking method using unscented

Kalman filter. They use a monochrome camera platform installed on vehicles facing the

road ahead with an inclination angle and determine the host coordinate system based on

the camera position. Then a three-dimensional dynamic model of the system is

established, in which the platform and the tracked vehicle are represented by state vectors.

Combining the different observed values, a set of two-dimensional areas for vehicle

15

searching is obtained. The state vector is reevaluated by unscented Kalman filter from

measurements obtained in every frame. After testing in long sequences, the results

proved to be reliable even under poor acquisition conditions.

Figure 2.11: Model-based estimation cycle (Daniel Ponsa et al. 2005)

16

3. Mathematical Framework of the Vehicle

In order to detect and track the vehicle, the mathematical framework of the vehicle needs

to be established. The concept of sensor fusion is employed here, which composed of

sensor, variable of interest, models and estimation algorithm (Gustafsson 2018). Sensor,

variable of interest, and models are established in this chapter, and estimation algorithm

is discussed later in chapter 4.2.

Figure 3.1: Basic concept of sensor fusion

The variable of interest is the time-varying state of a dynamic system that can be

measured directly or indirectly. The state can be measured directly is the pixel location

of the vehicle at each time step tn , consisting of x-coordinate and y-coordinate.

According to different indirect states, two models are established, Wiener velocity model

and quasi-constant turn model. The former one is a linear model, while the latter one is

a nonlinear model.

The derivation of equations takes reference of the work by Fredrik Gustafsson (2018).

3.1 Wiener Velocity Model

The movement of the vehicle can be determined by its acceleration, as shown in Figure

3.2.

Figure 3.2: The movement of the vehicle determined by its acceleration

𝐚𝐲(t)

𝐚𝐱(t)

17

Assume the acceleration along x-axis and y-axis is random, it can be denoted as:

𝒗̇(t) = 𝐚(t) = [
𝜔1(𝑡)

𝜔2(𝑡)
] (1)

where 𝜔1(𝑡) and 𝜔2(𝑡) are stochastic quantity with variance 𝛿𝜔
2 .

Set the variable of interest 𝒙(𝑡) as:

𝒙(𝑡) = [𝑝𝑥(𝑡) 𝑝𝑦(𝑡) 𝑣𝑥(𝑡) 𝑣𝑦(𝑡)]𝑇 (2)

The state-space model is:

[

𝑝̇𝑥(𝑡)

𝑝̇𝑦(𝑡)

𝑣̇𝑥(𝑡)

𝑣̇𝑦(𝑡)]

= [

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

]

[

𝑝𝑥(𝑡)

𝑝𝑦(𝑡)

𝑣𝑥(𝑡)

𝑣𝑦(𝑡)]

+ [

0 0
0 0
1 0
0 1

] [
𝜔1(𝑡)

𝜔2(𝑡)
] (3)

3.2 Quasi-Constant Turn Model

The movement of the vehicle can be determined by its speed φ(t) and heading

direction φ(t), as shown in Figure 3.3.

Figure 3.3: The movement of the vehicle determined by speed and heading direction

The speed along x-axis and y-axis is denoted as:

𝒑̇(𝑡) = 𝒗(𝑡) = [𝑣(𝑡) 𝑐𝑜𝑠(𝜑(𝑡)) 𝑣(𝑡) 𝑠𝑖𝑛(𝜑(𝑡))]
𝑇

(4)

Assume the speed acceleration, as well as the angular acceleration, is random, they can

be denoted as:

[
𝑣̇(𝑡)

𝜑̇(𝑡)
] = [

𝜔1(𝑡)

𝜔2(𝑡)
] (5)

where 𝜔1(𝑡) and 𝜔2(𝑡) are stochastic quantity with variance 𝛿𝜔
2 .

Set the variable of interest 𝒙(𝑡) as:

𝒙(𝑡) = [𝑝𝑥(𝑡) 𝑝𝑦(𝑡) 𝑣(𝑡) 𝜑(𝑡)]𝑇 (6)

v(t)

v(t)sin(φ(t))

v(t)cos(φ(t))

φ

18

The state-space model is:

[

𝑝̇𝑥(𝑡)

𝑝̇𝑦(𝑡)

𝑣̇(𝑡)

𝜑̇(𝑡)]

=

[

𝑣(𝑡) 𝑐𝑜𝑠(𝜑(𝑡))

𝑣(𝑡) 𝑠𝑖𝑛(𝜑(𝑡))

0
0]

+ [

0 0
0 0
1 0
0 1

] [
𝜔1(𝑡)

𝜔2(𝑡)
] (7)

3.3 Sensor Model

A sensor is a device that provides a measurement of a variable of interest. The sensor, in

this case, is the road camera that is used to record the traffic scene.

The sensor measurement is affected by measurement noise, and it represents the

coordinates along x-axis and y-axis. So, for both of Wiener velocity model and quasi-

constant turn model, the sensor model is:

𝒚𝑛 = 𝑮𝑛𝒙𝑛 + 𝒓𝑛 (8)

where

𝑮𝑛 = [
1 0 0 0
0 1 0 0

] (9)

𝒓𝑛 is the measurement noise, which is a multivariate random variable with probability

density function, which can be denoted as:

𝒓𝑛~𝑝(𝒓𝑛) (10)

Assume it is a zero-mean, independent random variable with covariance 𝑹𝑛, it can be

represented as:

𝐸{𝒓𝑛} = 0, 𝐶𝑜𝑣{𝒓𝑛} = 𝑹𝑛 (11)

3.4 Discretization of the State-Space Model

The measurement of the vehicle location is sampled at each time step 𝑡𝑛 , so the

continuous state-space models need to be discretized. Discretization of the models is

equivalent to solving the stochastic differential equation between 𝑡𝑛−1 and 𝑡𝑛.

3.4.1 Discretization of Wiener Velocity Model

Wiener Velocity Model is a stochastic linear dynamic model:

19

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝜔𝛚(t) (12)

Multiply the integrating factor e−𝐀t we get:

𝑒−𝑨𝑡𝒙̇(𝑡) = 𝑒−𝑨𝑡𝑨𝒙(𝑡) + e−𝐀t𝑩𝜔𝝎(𝑡) (13)

Rearranging it we get:

𝑒−𝑨𝑡𝒙̇(𝑡) − 𝑒−𝑨𝑡𝑨𝒙(𝑡) = e−𝐀t𝑩𝜔𝝎(𝑡) (14)

Substituting
d

dt
𝑒−𝑨𝑡𝒙(𝑡) = 𝑒−𝑨𝑡𝒙̇(𝑡) − 𝑒−𝑨𝑡𝑨𝒙(𝑡) we get:

d

dt
𝑒−𝑨𝑡𝒙(𝑡) = e−𝐀t𝑩𝜔𝝎(𝑡) (15)

Integrate it with respect to t we get:

∫
𝑑

𝑑𝑡
𝑒−𝑨𝑡𝒙(𝑡)𝑑𝑡

𝑡𝑛

𝑡𝑛−1

= ∫ 𝑒−𝑨𝑡𝑩𝜔𝝎(𝑡)
𝑡𝑛

𝑡𝑛−1

𝑑𝑡 (16)

𝑒−𝑨𝑡𝒙(𝑡𝑛) − 𝑒
−𝑨𝑡𝑛−1𝒙(𝑡𝑛−1) = ∫ 𝑒−𝑨𝑡𝑩𝜔𝝎(𝑡)

𝑡𝑛

𝑡𝑛−1

𝑑𝑡 (17)

The solution is:

𝒙(𝑡𝑛) = 𝑒
𝑨(𝑡𝑛−𝑡𝑛−1)𝒙(𝑡𝑛−1) + ∫ 𝑒𝑨(𝑡𝑛−𝑡)𝑩𝜔𝝎(𝑡)

𝑡𝑛

𝑡𝑛−1

𝑑𝑡 (18)

It can be written as:

𝒙𝑛 = 𝑭𝑛𝒙𝑛−1 + 𝒒𝑛 (19)

where

𝑭𝑛 ≡ 𝑒
𝑨(𝑡𝑛−𝑡𝑛−1) = 𝑰 + 𝛥𝑡𝑨 (20)

𝒒𝑛 ≡ ∫ 𝑒𝑨(𝑡𝑛−𝑡)𝑩𝜔

𝑡𝑛

𝑡𝑛−1

𝝎(𝑡)𝑑𝑡 (21)

𝝎(𝑡) is a white noise process and 𝑅𝜔𝜔(𝜏) = 𝜎𝑤
2𝛿(𝜏)

The process noise 𝒒𝑛 satisfies:

𝒒𝑛~𝑁(0,𝑸𝑛) (22)

20

𝑸𝑛 = 𝐶𝑜𝑣{𝒒𝑛} = ∫ 𝑒𝑨(𝑡𝑛−𝜏)𝑩𝜔

𝑡𝑛

𝑡𝑛−1

𝜎𝑤
2𝑩𝜔

𝑇 𝑒𝑨
𝑇(𝑡𝑛−𝜏)𝑑𝜏 (23)

Substitute in the matrices we get:

𝑭𝑛 = [

1 0 𝛥𝑡 0
0 1 0 𝛥𝑡
0 0 1 0
0 0 0 1

] (24)

𝑸𝑛 = 𝜎𝜔
2

[

(𝛥𝑡)3

3
0

(𝛥𝑡)2

2
0

0
(𝛥𝑡)3

3
0

(𝛥𝑡)2

2
(𝛥𝑡)2

2
0 𝛥𝑡 0

0
(𝛥𝑡)2

2
0 𝛥𝑡]

(25)

Therefore, the discrete time state-space model is:

{

[

𝑝𝑛
𝑥

𝑝𝑛
𝑦

𝑣𝑛
𝑥

𝑣𝑛
𝑦
]

= [

1 0 𝛥𝑡 0
0 1 0 𝛥𝑡
0 0 1 0
0 0 0 1

]

[

𝑝𝑛−1
𝑥

𝑝𝑛−1
𝑦

𝑣𝑛−1
𝑥

𝑣𝑛−1
𝑦
]

+ 𝒒𝑛

𝒚𝑛 = 𝑮𝑛𝒙𝑛 + 𝒓𝑛

(26)

with

𝐸{𝒒𝑛} = 0, 𝐶𝑜𝑣{𝒒𝑛} = 𝑸𝑛 (27)

𝐸{𝒓𝑛} = 0, 𝐶𝑜𝑣{𝒓𝑛} = 𝑹𝑛 (28)

3.4.2 Discretization of Quasi-Constant Turn Model

Quasi-Constant Turn Model is a stochastic nonlinear dynamic model:

𝒙̇(𝑡) = 𝑓(𝒙(𝑡)) + 𝑩𝜔(𝒙(𝑡))𝛚(t) (29)

First, the model is linearized around 𝒙𝑛−1 using first order Taylor series approximation:

𝑓(𝒙(𝑡)) ≈ 𝑓(𝒙𝑛−1) + 𝑨𝑥(𝒙(𝑡) − 𝒙𝑛−1) (30)

21

𝒙̇(𝑡) ≈ 𝑓(𝒙𝑛−1) + 𝑨𝑥(𝒙(𝑡) − 𝒙𝑛−1) + 𝑩𝜔(𝒙(𝑡))𝛚(t) (31)

where 𝑨𝑥 is the Jacobian matrix of 𝑓(𝒙(𝑡)) at 𝒙𝑛−1.

Substitute in the matrices we get:

𝑨𝑥 = [

0 0 cos(𝜑𝑛−1) −𝑣𝑛−1 sin(𝜑𝑛−1)

0 0 sin(𝜑𝑛−1) 𝑣𝑛−1 cos(𝜑𝑛−1)
0 0 0 0
0 0 0 0

] (32)

Then the model is discretized in the same way:

𝒙𝑛 = 𝒙𝑛−1 +∫ 𝑒𝑨(𝑡𝑛−𝑡)𝑑𝑡
𝑡𝑛

𝑡𝑛−1

𝑓(𝒙𝑛−1) + ∫ 𝑒𝑨(𝑡𝑛−𝑡)𝑩𝜔

𝑡𝑛

𝑡𝑛−1

(𝒙(𝑡))𝝎(𝑡)𝑑𝑡 (33)

𝑭𝑥 ≡ 𝑒
𝑨𝑥(𝑡𝑛−𝑡𝑛−1) = 𝑰 + 𝛥𝑡𝑨𝑥

= [

1 0 𝛥 tcos(𝜑𝑛−1) −𝛥𝑡𝑣𝑛−1 sin(𝜑𝑛−1)

0 1 𝛥 tsin(𝜑𝑛−1) 𝛥𝑡𝑣𝑛−1 cos(𝜑𝑛−1)
0 0 1 0
0 0 0 1

] (34)

𝒒𝑛 ≡ ∫ 𝑒𝑨(𝑡𝑛−𝑡)𝑩𝜔

𝑡𝑛

𝑡𝑛−1

(𝒙(𝑡))𝝎(𝑡)𝑑𝑡 (35)

with

𝒒𝑛~𝑁(0,𝑸𝑛) (36)

𝑸𝑛 = 𝐶𝑜𝑣{𝒒𝑛} = ∫ 𝑒𝑨(𝑡𝑛−𝜏)𝑩𝜔

𝑡𝑛

𝑡𝑛−1

𝜎𝑤
2𝑩𝜔

𝑇 𝑒𝑨
𝑇(𝑡𝑛−𝜏)𝑑𝜏 (37)

However, it is still hard to determine 𝑸𝑛. So, Euler-Maruyama method is used here.

The stochastic nonlinear dynamic model is:

𝒙̇(𝑡) = 𝑓(𝒙(𝑡)) + 𝑩𝜔(𝒙(𝑡))𝛚(t) (38)

The integral representation is:

𝒙𝑛 = 𝒙𝑛−1 +∫ 𝑓(𝒙(𝑡))
𝑡𝑛

𝑡𝑛−1

𝑑𝑡 + ∫ 𝑩𝜔(𝒙(𝑡))𝛚(t)
𝑡𝑛

𝑡𝑛−1

𝑑𝑡 (39)

22

By Euler-Maruyama discretization:

𝒙𝑛 = 𝒙𝑛−1 + 𝛥𝑡𝑓(𝒙𝑛−1) + 𝒒𝑛 (40)

The process noise is:

𝒒𝑛 ≡ ∫ 𝑩𝜔(𝒙(𝑡))𝛚(t)
𝑡𝑛

𝑡𝑛−1

𝑑𝑡 (41)

with

𝒒𝑛~𝑁(0,𝑸𝑛) (42)

𝑸𝑛 = 𝐶𝑜𝑣{𝒒𝑛} = ∫ 𝑩𝜔

𝑡𝑛

𝑡𝑛−1

(𝒙(𝑡))𝜎𝑤
2𝑩𝜔

𝑇 (𝒙(𝑡))𝑑𝜏 (43)

Using rectangle approximation, we get:

𝑸𝑛 = 𝐶𝑜𝑣{𝒒𝑛} ≈ 𝛥𝑡𝑩𝜔(𝒙𝑛−1)𝜎𝑤
2𝑩𝜔(𝒙𝑛−1)

𝑇 (44)

The discrete time state-space model is:

{

[

𝑝𝑛
𝑥

𝑝𝑛
𝑦

𝑣𝑛
𝜑𝑛

] =

[

𝑝𝑛−1
𝑥

𝑝𝑛−1
𝑦

𝑣𝑛−1
𝜑𝑛−1]

+ [

𝛥𝑡𝑣𝑛−1 cos(𝜑𝑛−1)

𝛥𝑡𝑣𝑛−1 sin(𝜑𝑛−1)
0
0

] + 𝒒𝑛

𝒚𝑛 = 𝑮𝑛𝒙𝑛 + 𝒓𝑛

(45)

with

𝐸{𝒒𝑛} = 0, 𝐶𝑜𝑣{𝒒𝑛} = 𝑸𝑛 (46)

𝐸{𝒓𝑛} = 0, 𝐶𝑜𝑣{𝒓𝑛} = 𝑹𝑛 (47)

23

4. Simulation of Vehicle Detection and Tracking

4.1 Simulation of Vehicle Detection

The aim of vehicle detection is to extract the vehicle from the video and locate it within

the image. The traffic video is a simulation of the traffic scene at a crossroad recorded

by a driving simulator called BeamNG.drive. In the 5-second video, the detection target

is a single car, and it is making a turn from the top right side to the bottom left side. There

are no pedestrians, bikes, or other vehicles passing through the region of detection.

4.1.1 Generation of Image Sequence

In order to conduct vehicle detection, the video is converted into an image sequence. Set

the frame rate to be 10fps, 52 frames are generated. Figure 4.1 shows a subset of the

frames.

Figure 4.1: Frame 1, frame 10, frame 20, frame 30, frame 40 and frame 50 in the image

sequence of the traffic scene

4.1.2 Adoption of YOLO Algorithm

YOLO is a network inspired by GoogleNet. It has twenty-four convolutional layers

working as feature extractors and two dense layers to make predictions. The framework

is called Darknet, which is also created by Redmon et al. Darknet uses mostly 3 × 3

filters to extract features, 1 × 1 filters to reduce output channels, and a global average

pooling to make predictions (Hui 2018). The flowchart of YOLO network with Darknet

is shown in Figure 4.2.

24

Figure 4.2: Flowchart of YOLO network with Darknet (Hui 2018)

The algorithm used in the simulation is YOLO v3 from open source. In YOLO v3, a new

53-layer Darknet-53 is used as the feature extractor, instead of the 19-layer Darknet-19

used in YOLO v2. Darknet-53 mainly consists of 3 × 3 and 1× 1 filters with skip

connections similar to the residual network in ResNet. Darknet-53 has less billion

floating point operations than ResNet-152, but it is two times faster with the same

classification accuracy. (Redmon et al. 2018)

Figure 4.3: Darknet-19 in YOLO v2 (left, Redmon et al. 2017)

 and Darknet-53 in YOLO v3 (right, Redmon et al. 2018)

The simulation uses the pre-trained weights for object detection. The model is trained on

COCO dataset, which includes 123287 images and 886284 instances. The results are

divided into 80 categories shown in Figure 4.4.

25

Figure 4.4: 80 catagories in COCO dataset (http://cocodataset.org)

Detect objects with YOLO v3 algorithm using the pre-trained weights in each frame by

running the following command:

darknet.exe detect cfg/yolov3.cfg yolov3.weights

The default input image size of YOLO v3 is 416 × 416 pixels, which affects accuracy

and computational load. Real-time detection can be achieved with higher input sizes, for

example 608×608 pixels. The default detection threshold is 0.25, which affects the output

number of class categories. The threshold can be adjusted according to the needs. Default

values are used here for vehicle detection.

Enter the file path of every frame, and Darknet prints out the object categories, the

confidence, and the time it takes to find them. Figure 4.5 shows the detection results

corresponding to the frames in Figure 4.1.

Figure 4.5: Object detection in frame 1, frame 10, frame 20, frame 30, frame 40 and

frame 50 using YOLO algorithm

26

The vehicle can be detected in all the images, except that in the 18th image, it is blocked

by the traffic lights.

4.1.3 Statistic Analysis

Select the bounding box of the vehicle in each frame and extract the left, top, right,

bottom coordinates of the bounding box. The pixel location of the vehicle center can be

obtained in each frame, as shown in Table 4.1. In the table, left, top, right, bottom are

the offset values of the bounding box, 𝑐𝑥 is the x-coordinate of the bounding box center,

and 𝑐𝑦 is the y-coordinate of the bounding box center.

Table 4.1: Characteristic coordinates of the vehicle in each frame

 Left Top Right Bottom 𝒄𝒙 𝒄𝒚

1 1398 259 1503 296 1450 277

2 1375 259 1482 295 1428 277

3 1357 260 1460 295 1408 277

4 1335 261 1435 295 1385 278

5 1313 262 1410 296 1361 279

6 1286 261 1392 296 1339 278

7 1267 260 1367 295 1317 277

8 1243 260 1344 296 1293 278

9 1218 259 1318 296 1268 277

10 1197 259 1298 296 1247 277

11 1175 259 1271 296 1223 277

12 1150 256 1247 297 1198 276

13 1126 258 1225 295 1175 276

14 1110 257 1204 295 1157 276

15 1105 254 1182 294 1143 274

16 1063 256 1161 296 1112 276

17 1041 259 1144 294 1092 276

18 \ \ \ \ \ \

19 1011 261 1083 289 1047 275

20 981 258 1078 298 1029 278

21 963 259 1053 300 1008 279

22 945 256 1043 302 994 279

23 923 265 1026 305 974 285

24 903 265 1000 307 951 286

25 885 266 983 310 934 288

26 869 269 968 313 918 291

27

27 853 270 948 318 900 294

28 834 275 929 321 881 298

29 820 279 915 329 867 304

30 804 282 905 331 854 306

31 795 286 891 338 843 312

32 780 292 874 342 827 317

33 766 299 860 351 813 325

34 749 304 845 358 797 331

35 745 310 824 364 784 337

36 724 316 818 375 771 345

37 709 322 807 382 758 352

38 705 327 792 392 748 359

39 692 340 779 405 735 372

40 682 348 765 414 723 381

41 677 358 754 427 715 392

42 664 371 743 445 703 408

43 653 380 732 460 692 420

44 647 395 723 472 685 433

45 631 406 716 497 673 451

46 629 411 713 513 671 462

47 625 438 703 537 664 487

48 603 450 704 565 653 507

49 598 479 699 586 648 532

50 589 500 690 623 639 561

51 585 530 688 660 636 595

52 575 555 682 703 628 629

4.2 Simulation of Vehicle Tracking

Vehicle tracking aims to estimate the motion parameters, calculate the corresponding

trajectories, and predict the upcoming position of vehicles in the image. Since the

measurement points of the sensor are obtained in the “𝑐𝑥” and “𝑐𝑦” columns in Table 4.1,

they can be put into the mathematical model of the vehicle to realize vehicle tracking.

Three methods are compared here, Kalman filter method, extended Kalman filter method,

and particle filter method.

The derivation of equations takes reference of the work by Fredrik Gustafsson (2018).

28

4.2.1 Kalman Filter Method

Kalman filter method iterates two steps for all measurement points in sequence. The first

step is the prediction, which aims to predict the current state using the dynamic model.

The second step is measurement update, which aims to estimate the current state using

the prediction and the new measurement.

The objective is to estimate the current state 𝒙𝑛 given the new measurement 𝒚𝑛, taking

the prediction into account.

𝒙̂n|n denotes the estimated value at 𝑡𝑛, given the measurements 𝒚1:𝑛 = {𝑦1, 𝑦2, … , 𝑦𝑛},

𝐏n|n denotes the covariance at 𝑡𝑛.

The initial condition is 𝒙̂0|0 = 𝒎0, 𝑷0|0 = 𝑷0.

For n=1,2, …

The prediction is:

𝒙̂n|n−1 = 𝑭𝑛𝒙̂n−1|n−1 (48)

𝐏n|n−1 = 𝑭𝑛𝐏n−1|n−1𝑭𝑛
𝑇 + 𝑸𝑛 (49)

Using regularized squares as the estimation algorithm to estimate𝒙𝑛:

JRELS(𝒙𝑛) = (𝒚𝑛 − 𝑮𝑛𝒙𝑛)
𝑇𝑹𝑛

−1(𝒚𝑛 − 𝑮𝑛𝒙𝑛) +

(𝒙𝑛 − 𝒙̂n|n−1)
T
𝐏n|n−1(𝒙𝑛 − x̂n|n−1) (50)

and solve

𝒙̂𝑛|𝑛 =
𝑎𝑟𝑔𝑚𝑖𝑛
𝒙𝑛

𝐽𝑅𝐸𝐿𝑆(𝒙𝑛) (51)

The measurement update is:

𝐊n = 𝐏n|n−1𝑮𝑛
𝑇(𝑮𝑛𝐏n|n−1𝑮𝑛

𝑇 + 𝑹𝑛)
−1

(51)

𝒙̂𝑛|𝑛 = 𝒙̂n|n−1 + 𝐊n(𝒚𝑛 − 𝑮𝑛𝒙̂n|n−1) (52)

𝐏n|n = 𝐏n|n−1 − 𝐊n(𝑮𝑛𝐏n|n−1𝑮𝑛
𝑇 + 𝑹𝑛)𝐊n

T (53)

where 𝐊nis the Kalman gain.

29

4.2.2 Extended Kalman Filter Method

Extended Kalman Filter first linearizes the dynamic model, then it also iterates the same

two steps for all measurement points in sequence. The objective is also to estimate the

current state 𝒙𝑛 given the new measurement 𝒚𝑛, taking the prediction into account.

The initial condition is 𝒙̂0|0 = 𝒎0, 𝑷0|0 = 𝑷0.

First, the dynamic model is linearized around 𝒙̂n−1|n−1:

𝒙𝑛 = 𝑓(𝒙𝑛−1) + 𝒒𝑛 ≈ 𝑓(𝒙̂𝑛−1|𝑛−1) + 𝑭𝑥(𝒙𝑛−1 − 𝒙̂𝑛−1|𝑛−1) + 𝒒𝑛 (54)

For n=1,2, …

The prediction is:

𝒙̂𝑛|𝑛−1 = 𝐸{𝒙𝑛|𝒚1:𝑛−1}

≈ 𝐸{𝑓(𝒙̂𝑛−1|𝑛−1) + 𝑭𝑥(𝒙𝑛−1 − 𝒙̂𝑛−1|𝑛−1) + 𝒒𝑛|𝒚1:𝑛−1} = 𝑓(𝒙̂𝑛−1|𝑛−1) (55)

𝑷𝑛|𝑛−1 = 𝐸 {(𝒙𝑛 − 𝒙̂𝑛|𝑛−1)(𝒙𝑛 − 𝒙̂𝑛|𝑛−1)
𝑇
|𝒚1:𝑛−1}

= 𝑭𝑥𝑷𝑛−1|𝑛−1𝑭𝑥
𝑇 +𝑸𝑛 (56)

Using regularized squares as the estimation algorithm to estimate𝒙𝑛:

JRELS(𝒙𝑛) = (𝒚𝑛 − 𝑮𝑛𝒙𝑛)
𝑇𝑹𝑛

−1(𝒚𝑛 − 𝑮𝑛𝒙𝑛) +

(𝒙𝑛 − 𝒙̂n|n−1)
T
𝐏n|n−1(𝒙𝑛 − x̂n|n−1) (57)

and solve

𝒙̂𝑛|𝑛 =
𝑎𝑟𝑔𝑚𝑖𝑛
𝒙𝑛

𝐽𝑅𝐸𝐿𝑆(𝒙𝑛) (58)

The measurement update is:

𝐊n = 𝐏n|n−1𝑮𝑛
𝑇(𝑮𝑛𝐏n|n−1𝑮𝑛

𝑇 + 𝑹𝑛)
−1

(59)

𝒙̂𝑛|𝑛 = 𝒙̂n|n−1 + 𝐊n(𝒚𝑛 − 𝑮𝑛𝒙̂n|n−1) (60)

𝐏n|n = 𝐏n|n−1 − 𝐊n(𝑮𝑛𝐏n|n−1𝑮𝑛
𝑇 + 𝑹𝑛)𝐊n

T (61)

where 𝐊nis the Kalman gain.

30

4.2.3 Particle Filter Method

The particle filter method also iterates the same two steps, prediction and measurement

update. However, there are J sets of states sampled instead of one. And the particles in

each set are evaluated respectively.

The initial condition is 𝒙0
𝑗
~𝑁(𝒎0, 𝑷0).

For n=1,2, …

In prediction, the simulated states 𝒙𝑛−1
𝑗

 (𝑗 = 1,2, … 𝐽) are given. And 𝒙𝑛
𝑗
 (𝑗 =

 1,2, … 𝐽) is obtained by simulating from t𝑛−1 to t𝑛.

For 𝑗 = 1,2, … 𝐽, Sample 𝒒𝑛
𝑗
 ~𝑁(0, 𝑸𝑛) and propagate particles:

𝒙𝑛
𝑗
= 𝑭𝑛𝒙𝑛−1

𝑗
+ 𝒒𝑛

𝑗
 (𝑗 = 1,2, … 𝐽) (62)

In measurement update, 𝒙𝑛
𝑗
 is evaluated by how well it explains 𝒚𝑛 and assigned to a

weight.

𝜔̃𝑛
𝑗
= 𝑝(𝒚𝑛|𝒙𝑛

𝑗
) = 𝑁(𝒚𝑛; 𝑮𝑛𝒙𝑛

𝑗
, 𝑹𝑛)(𝑗 = 1,2, … 𝐽) (63)

Normalize the particle weights:

𝜔𝑛
𝑗
=

𝜔̃𝑛
𝑗

∑ 𝜔̃𝑛
𝑗𝐽

𝑖=1

(𝑗 = 1,2, … 𝐽) (64)

 And calculate 𝒙̂𝑛|𝑛, 𝐏n|n.

To prevent particle degeneracy after a few samples, the particles are resampled by

removing samples with low weights and replicate samples with high weights so that:

Pr{𝒙̃𝑛
𝑖 = 𝒙𝑛

𝑗
} =𝜔𝑛

𝑗 (65)

4.3 Simulation Result

Using Kalman filter method, extended Kalman filter method and particle filter method

respectively. For Kalman filter method and particle filter method, Wiener velocity model

is adopted; and for extended Kalman filter method, quasi-constant turn model is adopted.

The measurement noise covariance is set as 1 × 𝑒𝑦𝑒(2). The variance of stochastic

vector is set as 500. For particle filter method, the number of particles J is set to be 1000.

31

The code of applying particle filter for tracking simulation is shown in appendix 4, and

the code of applying Kalman filter and extended Kalman filter are later shown in chapter

5.2. The simulation results of vehicle detection and tracking of the three methods are

shown in Figure 4.6-4.8.

Figure 4.6: Detection and tracking result of Kalman filter method

Figure 4.7: Detection and tracking result of extended Kalman filter method

32

Figure 4.8: Detection and tracking result of Particle filter method

The performance of the two methods can be assessed in the following two ways. The first

way is to measure the precision of the data. This can be realized by calculating the root mean

square error (RMSE):

eRMSE = √
1

N
∑(x̂n|n − xn)

T
(x̂n|n − xn)

N

n=1

(66)

where x̂n|n is the estimated value and xnis the measurement value.

Since the detection result of YOLO algorithm can be bouncing around the target due to the

noise factors, the second way is to measure the fluctuation degree of the data. In order to do

this, the points on the fitting trajectory are collected with the same x-coordinates of the

estimated value, and the fluctuation error is calculated by:

efluc = √
1

N
∑(x̂n|n − xn′)

T
(x̂n|n − xn′)

N

n=1

(67)

where xn′is the point collected from the fitting trajectory.

33

The RMSE and fluctuation error of Kalman filter method (KF), extended Kalman filter

method (EKF) and particle filter method (PF) are shown in Table 4.2, and translated into

Figure 4.9 for analysis.

Table 4.2 RMSE and fluctuation error of different methods

 KF EKF PF

𝐞𝐑𝐌𝐒𝐄 (pixels) 2.53 2.59 3.29

𝐞𝐟𝐥𝐮𝐜 (pixels) 1.61 3.01 2.58

Figure 4.9: Chart of RMSE error and fluctuation error of different methods

It can be seen that the errors of the three methods are of the same order of magnitude. For

RMSE error, Kalman filter method and extended Kalman filter method are more accurate

than particle filter method. For fluctuation error, Kalman filter method surpasses the other

two methods, which means it is less likely to be affected by the noise factors. Particle filter

method, however, conducts numerical calculation on each step instead of the estimation

algorithm, so it has lower computational complexity. Particle filter method also overcomes

the constraint of a single Gaussian distribution of Kalman filter and extended Kalman filter

methods (Liu et al. 2013). However, in the simulation, only one set of data is collected by

the road camera, which could not sufficiently describe the probability density distribution.

Therefore, Kalman filter method and extended Kalman filter method are more feasible than

particle filter method, and they are selected as the vehicle tracking method in the practical

experiment.

0

2

4

RMSE Fluctuation Error

P
ix

el
s

RMSE and Fluctuation Error of Different
Methods

Kalman filter method Extended Kalman filter method

Particle filter method

34

5. Practical Experiment

The simulation result is quite promising. However, in real life, the case is much more

complicated. It is a challenge to deal with the occlusion problem of multiple targets in a

scene and the data correlation among them (Liu et al. 2013). Besides, the traffic scenes

in real life can be very complicated, many factors such as shadow, reflection and weather

conditions could affect the result of vehicle detection and tracking. These require higher

robustness and adaptive ability.

5.1 Experiment of Vehicle Detection

The video is recorded by the test camera installed towards a crossroad at Aalto University.

Cars, trucks, pedestrians, bikes pass through the region of detection from time to time,

and there is a construction site which blocks part of the view of the objects behind. A

video clip of 40 seconds is intercepted and set as the experiment target.

5.1.1 Real-Time Vehicle Detection

Real-time detection is achieved by combing Darknet and OpenCV. Run the following

command:

darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights <traffic video>

YOLO displays the detection categories, class probability, current FPS on the command

window, together with the image with bounding boxes.

The detection frame rate depends on the computational capability of the computer.

The computer specifications are listed in Table 5.1.

Table 5.1: Computer specifications of real-time detection

System Specification

CPU Intel Core i7-7700 3.6Ghz

RAM 32Gb DDR4 2666Mhz

GPU Nvidia Geforce GTX 1080

Software Nvidia CUDA Toolkit 10.0

35

As a result, 1227 frames are captured during the process, showing object categories

such as cars, persons, trucks, and traffic lights. The average frame rate of the 1227

frames is 42.5 fps, which means real-time detection is achieved.

Though the detection frame rate is time-varying, it is fluctuating around the average

within a narrow range. To simplify the calculation, the sampling rate is set as 42.5 fps.

During the video clip, two trucks and seven cars are detected at the traffic scene.

5.1.2 Statistic Analysis

By adding the following line to the function “draw_detections” in the file “image.c”:

Printf (“%f %f %f %f \n”, b.x, b.y, b.w, b.h);

The characteristic coordinates of different objects are displayed in the command window

in each frame. For example, in the first frame (shown in Figure 5.5), the coordinates are

shown in Table 5.2. In the table, cx is the x-coordinate of the bounding box center,

cy is the y-coordinate of the bounding box center, w is width of the bounding box, and

h is the height of the bounding box.

Figure 5.5: The first frame of the video clip

36

Table 5.2: Characteristic coordinates of frame 1

Category Confidence 𝒄𝒙 𝒄𝒚 w h

truck: 77% 0.512026 0.395793 0.086306 0.156872

car, truck: 65%, 57% 0.328256 0.625595 0.060951 0.143655

car: 85% 0.204036 0.261504 0.041046 0.032712

car: 93% 0.257539 0.279898 0.044714 0.027226

car: 44% 0.991706 0.316585 0.011802 0.040050

person: 75% 0.207041 0.419650 0.013232 0.053896

car: 88% 0.821291 0.292883 0.061517 0.051907

person: 94% 0.120525 0.702477 0.026776 0.093496

car: 99% 0.853219 0.325227 0.075767 0.050247

To get the coordinates of the vehicles, the first step is to keep the data of the vehicles

including cars and trucks; and delete the data of other categories such as persons, bikes,

and traffic lights. Then the static objects are removed, for example, the parking cars on

the right side. Then the “cx” and “cy” columns collected in each frame composed of the

measurement data.

5.2 Experiment of Vehicle Tracking

Knowing the coordinates of all the vehicles in 1227 frames, the next step is to find out

the trajectory of the vehicles by figuring out their correlations. The biggest challenge, as

mentioned above, is to distinguish which coordinates belong to which vehicle, since the

occlusion of multiple targets occurs at all times. This requires an identification algorithm,

which assumes that the vehicle is the same one when the range between two

measurement points is within the threshold.

5.2.1 Identification Algorithm

The idea of the algorithm is to put the initial points of different vehicles into a temporary

matrix. Comparing the points with the new point in each frame, if the range of the two

points is smaller than the threshold, the new point will be added below the old point in

37

the temporary matrix and removed from the frame matrix. Every matching string is

stored as the trajectory of a car. The string is considered ended when no match could be

founded in the new frame. Otherwise, the remaining points that could not find a match

from previous strings in the frame will be added to the temporary matrix, made starts of

new strings, and continue comparing. To get rid of accidental errors. The strings that are

too short are eliminated. The flowchart of the identification algorithm is shown in Figure

5.6, and the code is shown in Appendix 1.

Figure 5.6: Flowchart of the identification algorithm

By running the code, point sequences are obtained in each cell of the result. In order to

get the measurement points of each vehicle, Minimum length of the point sequences, as

38

well as the threshold of point matching, needs to be tuned. However, in some cases the

point sequences are discontinuous since the detection is not always ideal; to solve the

problem, the point sequences need to be stitched. The final result of the measurement

points of each vehicle in saved in an Excel document.

5.2.2 Applying Filtering Algorithm

The next step is applying filters to the point sequence of each vehicle to realize tracking.

Kalman Filter and extended Kalman filter are applied to calculate the trajectory and

predict the upcoming position. The flowchart of applying Kalman filter and extended

Kalman filter for tracking experiment is shown in Figure 5.7, and the codes are shown

in Appendix 2-3. The measurement noise covariance is set as 0.1 × 𝑒𝑦𝑒(2) . The

variance of stochastic vector is set as 104.

Figure 5.7: Flowchart of applying Kalman filter and extended Kalman filter for

tracking experiment

39

5.3 Experiment Result

5.3.1 Detection and Tracking Result

The detection and tracking results of part of the vehicles are shown in Figure 5.8-5.12.

Kalman filter method

Extended Kalman filter method

Figure 5.8: detection and tracking result of Car 2

P
ix

el
s

P
ix

el
s

Pixels

Pixels

40

Kalman filter method

Extended Kalman filter method

Figure 5.9: Detection and tracking result of Car 3

P
ix

el
s

P
ix

el
s

Pixels

Pixels

41

Kalman filter method

Extended Kalman filter method

Figure 5.10: Detection and tracking result of Car 4

P
ix

el
s

P
ix

el
s

Pixels

Pixels

42

Kalman filter method

Extended Kalman filter method

Figure 5.11: Detection and tracking result of Car 5

P
ix

el
s

P
ix

el
s

Pixels

Pixels

43

Kalman filter method

Extended Kalman filter method

Figure 5.12: Detection and tracking result of Truck 2

The RMSE and fluctuation error of each vehicle are listed in Table 5.3, and translated into

Figure 5.13 and Figure 5.14 for analysis.

P
ix

el
s

P
ix

el
s

Pixels

Pixels

44

Table 5.3: RMSE and fluctuation error of each vehicle (|𝑹𝒏| = 𝟎. 𝟏, 𝝈𝒘
𝟐 = 𝟏𝟎𝟒)

Vehicle KF Method EKF Method

 RMSE

(pixels)

Fluct. Error

(pixels)

RMSE

(pixels)

Fluct. Error

(pixels)

Car 1 2.79 3.03 3.82 3.72

Car 2 2.67 3.41 3.08 3.14

Car 3 0.92 3.06 1.84 2.78

Car 4 1.03 / 1.98 /

Car 5 1.22 / 1.89 /

Car 6 3.53 1.89 3.74 1.71

Car 7 1.55 3.26 2.33 2.97

Truck 1 1.83 2.58 3.50 3.20

Truck 2 3.12 / 4.16 /

Average 2.07 2.87 2.92 2.92

Figure 5.13: Chart of RMSE of different vehicles

0

1

2

3

4

Car 1 Car 2 Car 3 Car 4 Car 5 Car 6 Car 7 Truck 1 Truck 2

P
ix

el
s

RMSE of Different Vehicles

Kalman filter method Extended Kalman filter method

45

Figure 5.14: Chart of fluctuation error of different vehicles

For both of the methods, the RMSE are within 4.5 pixels, and the fluctuation errors are

within 4 pixels. So, the overall results achieve high accuracy and stableness. Kalman

methods surpasses extended Kalman method in precision, and the two methods have

similar performance in stableness.

There are a few points to note here. First, the interference factors could result in the loss

of the measurement points where the machine vision is not detecting the vehicle for a

while. For example, the measurement points of Truck 2 are not regular due to the

occlusion by construction fence and shadows in the experiment.

This is the scenario where YOLO are not able to provide any measurements of the

vehicle for a short period of time. Therefore, we would have to estimate the trajectory of

the vehicle during that time. Assuming the 50th to 70th measurement points are lost, the

tracking result for Car 2 during that period of time are shown in Figure 5.15.

0

1

2

3

4

Car 1 Car 2 Car 3 Car 6 Car 7 Truck 1

P
ix

el
s

Fluctuation Error of Different Vehicles

Kalman filter method Extended Kalman filter method

46

Kalman filter method

Extended Kalman filter method

Figure 5.15: Tracking result for Car 2 when 50th to 70th measurement points are lost

For both Kalman filter method and extended Kalman filter method, during the period of

lost measurement, the estimation points will follow the same gradient of the last

measurement until it receives the new measurement. As a consequence, the fluctuation

error of this period jumps to zero, but the RSME significantly increases because the

trajectory becomes a line and deviates from the measurement points.

To estimate how long a vehicle can be undetected before the error becomes substantial,

we set different time steps of the lost measuremt and compare the maximum error (shown

in Figure 5.15) during the period of lost measurement.

P
ix

el
s

P
ix

el
s

Pixels

Pixels

47

Table 5.4: Maximum error during the period of lost measurement for Car 2 with

different lost time steps (|𝑹𝒏| = 𝟎. 𝟏, 𝝈𝒘
𝟐 = 𝟏𝟎𝟒)

Lost time steps KF Method EKF Method

 Max error (pixels) Max error (pixels)

50th - 55th 3.63 5.09

50th - 60th 13.96 14.79

50th - 70th 24.32 27.57

50th - 80th 30.49 41.08

50th - 90th 51.48 73.41

From the table, it can be seen when the lost measurement is around 30 time steps, the

RMSE of that period exceeds 30 pixels, which is assumed to be a substantial error. The

footage was recorded at 30 FPS, so it can be estimated that when the loss of measurement

data achieves 1 second, the positioning error caused by the lack of measurement data

could not be neglected. This prediction method is naturally very prone to errors when

the vehicle is taking a turn at the intersection, so the fragment that we assume to be lost

here is not at the intersection. More sophisticated prediction is required for those

scenarios.

Second, polynomial fitting is used for the trajectory fitting in the experiment. In statistics,

polynomial fitting is a form of regression analysis in which the relationship between the

independent variable x and the dependent variable y is modelled as an nth degree

polynomial in x. In the experiment, x and y denote the x-coordinate and y-coordinate of

the vehicle estimated position, so that we can plot the fitting trajectory of the vehicles.

We use 10 degrees of polynomial fitting here.

However, polynomial fitting does not work effectively in some complex curve. For

example, polynomial fitting is not feasible for Car 4, Car 5, and Truck 2, so the

trajectories for these vehicles are plotted by simply connecting the discontinuous

estimation points. Since the points collected from fitting trajectory are used as the

standards to calculate the fluctuation errors, the fluctuation errors of these vehicles

cannot be calculated.

Third, the precision of the estimation depends on the precision of the measurement data,

because they are regarded as the standard values to evaluate RMSE. However, if

48

fluctuation error was not considered, the filter could be tuned to perfectly copy the

measurements, which would not add any value to the system. To avoid the filter

mimicking the data, fluctuation error values are observed as well.

Fourth, although vehicle detection can be real-time, vehicle tracking takes time. The

algorithm needs to be optimized to achieve real-time tracking with multiple targets.

5.3.2 The Effects of Noise

The noise in the experiment include the process noise 𝒒𝑛 in the dynamic model and the

measurement noise 𝒓𝑛 in the sensor model. In order to analyze their effects, variable-

controlling method is adopted here by change their covariance 𝑸𝑛 and 𝑹𝑛 respectively.

First, fix the measurement noise covariance 𝑹𝑛, change the process noise

covariance 𝑸𝑛 and compare the tracking performance. For both of the dynamic models,

the process noise covariance is proportional to 𝜎𝑤
2 , namely the variance of the stochastic

vector. So, we change the value of 𝜎𝑤
2 instead. Take Car 2 as an example, the RMSE

and fluctuation errors with different 𝜎𝑤
2 are shown in Table 5.5.

Table 5.5: RMSE and fluctuation error of Car 2 with different 𝝈𝒘
𝟐 (|𝑹𝒏| = 𝟎. 𝟏)

 𝝈𝒘
𝟐 KF Method EKF Method

 RMSE

(pixels)

Fluct. Error

(pixels)

RMSE

(pixels)

Fluct. Error

(pixels)

100 10.03 1.92 11.88 1.18

1000 6.98 2.69 7.48 1.95

𝟏𝟎𝟒 4.81 3.18 5.09 2.62

𝟏𝟎𝟓 2.67 3.41 3.08 3.14

𝟏𝟎𝟔 0.97 3.47 1.56 3.38

𝟏𝟎𝟏𝟐 0 3.48 0 3.48

It can be concluded that when 𝜎𝑤
2 is larger, the RMSE value becomes smaller, and the

fluctuation error becomes bigger. When 𝜎𝑤
2 is a large number, the RMSE value becomes

zero, which means the estimation points and the measurement points coincide with each

other. On the one hand, when 𝑸𝑛 is larger, the acceleration and heading direction can

vary in a wider range, and the prediction points are closer to the measurement points, so

49

the estimation would be more precise assuming the measurement is precise. On the other

hand, when 𝑸𝑛 is smaller, it would be more effective for smoothing the tracking process,

so the estimation would be more stable.

Next, fix the process noise covariance 𝑸𝑛, change the measurement noise

covariance 𝑹𝑛 and compare the tracking performance. For the sensor model, 𝑹𝑛 =

|𝑹𝒏|eye(2). So, we change the value of |𝑹𝒏| instead. Take Car 2 as an example, the

RMSE and fluctuation errors with different |𝑹𝒏| are shown in Table 5.6.

Table 5.6: RMSE and fluctuation error of Car 2 with different |𝑹𝒏|

(𝝈𝒘
𝟐 = 𝟏𝟎𝟒)

|𝑹𝒏| KF Method EKF Method

 RMSE

(pixels)

Fluct. Error

(pixels)

RMSE

(pixels)

Fluct. Error

(pixels)

𝟏𝟎−𝟑 0.18 3.48 0.89 3.41

𝟏𝟎−𝟐 0.97 3.47 1.56 3.39

0.1 2.67 3.41 3.08 3.14

1 4.81 3.18 5.09 2.62

10 7.03 2.69 7.56 1.95

𝟏𝟎𝟔 416 0 420 0

It can be concluded that when |𝑹𝑛| is larger, the RMSE value becomes bigger, and the

fluctuation error becomes smaller. When |𝑹𝑛| is a large number, the fluctuation error

value becomes zero, which means the estimation points can be joint into a perfectly

smooth curve. On the one hand, when 𝑹𝒏 is smaller, it means the measurement points

are of high confidence, and the prediction points are closer to the measurement points,

so the estimation would be more precise assuming the measurement is precise. On the

other hand, when 𝑹𝒏 is larger, it would be more effective for smoothing the tracking

process, so the estimation would be more stable.

In conclusion, when the process noise covariance is larger, the estimation would be more

precise but less stable; when the measurement noise covariance is larger, the estimation

would be less precise but more stable. How to estimate the optimal process noise

covariance and measurement noise covariance depend on the weights of precision and

stableness.

50

5.4 Perspective Transformation

From the practical experiment, we have already got the pixel location of the vehicles in the

image. In order to locate the vehicles on the road, the coordinates need to be transferred from

the image plane to the ground plane.

5.4.1 Principle of Perspective Transformation

The principle of perspective transformation takes reference of the paper by Ojala et al. (2018).

The first step is to calculate x-coordinate from the image plane to the ground plane. The

schematic diagram of calculating x-coordinate is shown in Figure 5.16. In the figure, x is the

x-coordinate of the vehicle on the ground plane, h is the height of the camera, 𝑙 is the

distance between the lens and the sensor in the camera, 𝑠𝑥 is the vehicle covering region of

the sensor in x-direction, 𝛼 is the angle between the camera and the horizontal direction,

𝛽 and 𝛾 are the intersection angles shown in the figure.

Figure 5.16: The schematic diagram of calculating x-coordinate

The derivation of x-coordinate is:

𝑥 =
ℎ

𝑡𝑎𝑛(𝛽)
=

ℎ

𝑡𝑎𝑛(𝛼 + 𝛾)
= ℎ

1 − tan(𝛼) tan(𝛾)

tan(𝛼) + tan(𝛾)
(68)

tan(𝛾) =
𝑠𝑥
𝑙

(69)

The formation of image with YOLO detection is shown in Figure 5.17. In the figure, 𝑝𝑥 is

the ratio of the vehicle covering region on the sensor in x-direction and the maximum

covering region of the sensor in x-direction, 𝑐𝑦 is the y-coordinate of the center bounding

box center displayed on YOLO interface, ℎ𝑝 is the height of the bounding box displayed

on YOLO interface.

51

Figure 5.17: Formation of image with YOLO detection I

From the correlation in the figure we get:

𝑝𝑥 =
𝑠𝑥

𝑠𝑥,𝑚𝑎𝑥
= 𝑐𝑦 +

1

2
ℎ𝑝 − 0.5 (70)

Measure the maximum covering region of the sensor in x-direction 𝑠𝑥,𝑚𝑎𝑥 (which is equal

to half the sensor height) and the distance between the lens and the sensor in the camera 𝑙

respectively, denote their ratio as 𝜆.

𝜆 =
𝑠𝑥,𝑚𝑎𝑥
𝑙

(71)

tan(𝛾) =
𝑠𝑥
𝑙
=
𝑠𝑥,𝑚𝑎𝑥𝑝𝑥

𝑙
= 𝜆𝑝𝑥 (72)

So, the x-coordinate of the vehicle on the ground plane is:

𝑥 = ℎ
1 − 𝜆𝑝𝑥 tan(𝛼)

tan(𝛼) + 𝜆𝑝𝑥
(73)

The next step is to calculate y-coordinate from the image plane to the ground plane. The

schematic diagram of calculating y-coordinate is shown in Figure 5.18. In the figure, x is the

x-coordinate of the vehicle on the ground plane, y is the y-coordinate of the vehicle on the

ground plane, 𝑙 is the distance between the lens and the sensor in the camera, 𝑠𝑦 is the

maximum covering region of the sensor in y-direction, 𝜃 is the intersection angle shown in

the figure.

52

Figure 5.18: The schematic diagram of calculating y-coordinate

The derivation of y-coordinate is:

𝑦 = 𝑥𝑡𝑎𝑛(𝜃) =
𝑥𝑠𝑦
𝑙

(74)

The formation of image with YOLO detection is shown in Figure 5.19. In the figure, 𝑝𝑦 is

the ratio of the vehicle covering region on the sensor in y-direction and the maximum

covering region of the sensor in y-direction, 𝑐𝑥 is the x-coordinate of the center bounding

box center displayed on YOLO interface.

Figure 5.19: The formation of image with YOLO detection II

53

From the correlation in the figure we get:

𝑝𝑦 =
𝑠𝑦

𝑠𝑦,𝑚𝑎𝑥
= −(0.5 − 𝑐𝑥) = 𝑐𝑥 − 0.5 (75)

The ratio of the maximum covering region in x-direction and y-direction is 9:16.

𝑠𝑦,𝑚𝑎𝑥 =
16

9
𝑠𝑥,𝑚𝑎𝑥 (76)

𝑠𝑦 = 𝑝𝑦𝑠𝑦,𝑚𝑎𝑥 =
16

9
𝑝𝑦𝑠𝑥,𝑚𝑎𝑥 =

16

9
𝑝𝑦𝜆𝑙 (77)

So, the y-coordinate of the vehicle on the ground plane is:

𝑦 =
16

9
𝑝𝑦𝜆𝑥 (78)

5.4.2 Implementation of Perspective Transformation

Measure the angle between the camera and the horizontal direction 𝛼, we get:

𝛼 = 15°

Measure the maximum covering region of the sensor in x-direction 𝑠𝑥,𝑚𝑎𝑥 and the distance

between the lens and the sensor in the camera 𝑙 respectively, denote their ratio as 𝜆, we get:

𝜆 = 0.39

Set Car 3, Car 4, Car 5 as the targets. Substitute in 𝛼, 𝜆 values and the measurement points

into equation (70), (73), (75), (78), and apply the Kalman filter and extended Kalman filter

respectively. The code of perspective transformation is shown in Appendix 5. The tracking

results with perspective transformation are shown in Figure 5.20-5.22.

54

Kalman filter method

Extended Kalman filter method

Figure 5.20: Tracking Result of Car 3 with perspective transformation

M
et

er
s

M
et

er
s

Meters

Meters

55

’

Kalman filter method

Extended Kalman filter method

Figure 5.21: Tracking Result of Car 4 with perspective transformation

M
et

er
s

M
et

er
s

Meters

Meters

56

Kalman filter method

Extended Kalman filter method

Figure 5.22: Tracking Result of Car 5 with perspective transformation

M
et

er
s

M
et

er
s

Meters

Meters

57

Before perspective transformation, it has been mentioned that polynomial fitting is not

feasible for Car 4 and Car 5, so the trajectories for these vehicles are plotted by simply

connecting the estimation points. After perspective transformation, the case is the same

because perspective transformation would not change the basic shape of the trajectories.

When calculating the fluctuation errors, we use the points collected from the fitting

trajectories as standard. So, the fluctuation errors for Car 4 and Car 5 cannot be calculated,

and only RMSE are compared in Figure 5.22.

The RMSE of the tracking result with perspective transformation are listed in Table 5.7.

Table 5.7: RMSE of the tracking result with perspective transformation (|𝑹𝒏| =

𝟎. 𝟏, 𝝈𝒘
𝟐 = 𝟏𝟎𝟒)

Vehicle KF Method EKF Method

 RMSE (m) Fluct. Error (m) RMSE (m) Fluct. Error (m)

Car 3 0.0345 0.2856 0.0400 0.2929

Car 4 0.0327 / 0.0351 /

Car 5 0.0403 / 0.0417 /

Average 0.0358 0.2856 0.0389 0.2946

Figure 5.22: Chart of RMSE of the tracking result with perspective transformation (m)

(|𝑅𝑛| = 0.1, 𝜎𝑤
2 = 104)

0

0.02

0.04

0.06

Car 3 Car 4 Car 5

M
et

er
s

RMSE of the Tracking Result with Perspective
Transformation

Kalman filter method Extended Kalman filter method

58

From the result, it can be seen that Kalam filter method and extended Kalman filter method

are at an equivalent level in both precision and stableness after perspective transformation.

Assuming the measurement points are precise, the RMSE of the two methods are within

0.05m. The fluctuation errors of the two methods are within 0.3 m. Considering the average

driving range of the three vehicles are around 50m, the errors are within a reasonable range.

However, the validation of perspective transformation is under following conditions:

First, the measurement points collected by vehicle detection are reliable;

Second, there is no distortion in the camera image;

Third, the calibration of 𝛼 and 𝜆 are precise;

Fourth, there is no elevation on the ground plane.

59

6. Discussion

In order to build the Intelligent Transportation System, computer vision is extensively

utilized in life today. Compared to increasing mature on-board techniques such as pedestrian

detection, lane departure warning, and traffic sign recognition, the techniques from the

perspective of road and infrastructures are much less. The thesis has developed a vision-

based vehicle detection and tracking system, where the vehicle images are collected by the

video sensors on the road; traffic flow parameters are extracted by the detection and tracking

module; then the traffic information is processed in the control center and shared inside the

system.

In the simulation part, results show that YOLO algorithm is able to detect the vehicle

continuously and precisely; all of Kalman filter method, extended Kalman filter method, and

particle filter method can correctly reveal the vehicle trajectory and estimate the upcoming

state. The Root Mean Square Errors, as well as the fluctuation errors of the three methods,

are within 3.5 pixels. The practical experiment reflects that vehicle detection can be realized

using YOLO algorithm in real-time; the trajectory, as well as the upcoming state, can be

obtained individually for multi-vehicles. For both of the methods, The Root Mean Square

Errors for all the vehicles are within 4.5 pixels, and the fluctuation errors are within 4 pixels.

Therefore, the detection and tracking results of both the simulation and the practical

experiment are of high accuracy and stableness. The effects of noise show that when the

process noise covariance is larger, the estimation would be more precise but less stable;

when the measurement noise covariance is larger, the estimation would be less precise but

more stable.

It is noteworthy that besides the location of the vehicle, the state-space models also contain

other states such as vehicle speed and heading direction. It can be inferred that the road

sensors are not only able to get the pixel location the vehicles and estimate their next state,

but also able to deduce their dynamic information such as vehicle speed, acceleration and

heading direction. Using perspective transformation, the position as well as the dynamic

information can be converted to the ground plane, which enables us to precisely locate and

track the vehicle on road.

Admittedly, the vision-based vehicle detection and tracking system has its limitations. Firstly,

YOLO algorithm is not effective for small objects within the image, due to the spatial

constraints of the algorithm. Secondly, all of Kalman filter method, extended Kalman filter

method and particle filter method rely on the measurement data of the sensor; if the

measurements data are not precise, the results would be greatly influenced. Thirdly, the

tracking algorithm requires great computational complexity, so vehicle tracking would take

a relatively long time even when vehicle detection is a real-time process. Fourth, if the

60

interference factors such as shadows and objects blocking the view cover a big area or stay

for a long time, its influences could not be neglected. Last but not least, a fatal flaw of the

vision-based vehicle detection and tracking is that the video sensors only work during

daytime. To construct an effective vision-based system for night vision, one way is to use an

infrared camera, which is less demanding for lightening condition. Another way is

combining YOLO algorithm with motion detection methods, since motion detection

methods are less sensitive to the lighting conditions of the surrounding environment. The

third way is to add the pre-processing procedures for night images such as removing

highlights, enhancing contrast and increasing brightness.

Despite the shortcomings, vision-based vehicle detection and tracking are successfully

accomplished in the thesis. Due to the limitation of the experimental samples, it could not

deal with all kinds of complex circumstances in the traffic scene. Nevertheless, it does

provide an initial instance for the systematic study of vision-based vehicle detection and

tracking in the Intelligent Transportation System.

61

7. Conclusion

The thesis aims to realize vision-based vehicle detection and tracking in the Intelligent

Transportation System. First, it introduced the methods for vehicle detection and tracking.

Next, it established the mathematical framework of the system, including dynamic model

and sensor model. Then, it simulated the traffic scene collected by road sensor where there

is only one car, and the traffic scene is ideal. YOLO algorithm is applied to the image

sequence for vehicle detection. Kalman filter method, extended Kalman filter method, and

particle filter method are employed and compared for vehicle tracking. Following is the

practical experiment where there are different vehicles at the same time, and the traffic scene

is in real life with various interference factors. YOLO algorithm is utilized with OpenCV to

realize real-time vehicle detection, and Kalman filter is applied to obtain the trajectories and

upcoming positions of the vehicles. Finally, perspective transformation is utilized to

transform the coordinates from the image plane to the ground plane, which makes it possible

to track the vehicles on the ground plane. The results demonstrate that vision-based vehicle

detection and tracking collected by road sensor are achieved.

Furthermore, if the amount of road sensors is big enough to cover a specific area, all the

vehicles in the area can be unified and coordinated managed by the administrators of the

system. Then the processed data can be shared inside of the whole system, either to vehicles,

to infrastructures, or to users, and the interactions among them are built.

Back to the transportation system, the main challenges it needs to solve are traffic

congestions, environmental impacts, energy consumption, safety hazards, and high

maintenance costs. If vehicle detection and tracking can be realized and popularized in daily

lives, the vehicles can be unified planned. For the drivers, congestion notification can be sent

to prevent traffic rush; the optimal route can be suggested to save energy; risk warning can

be sent to avoid accidents. Information about real-time public transportation can be shared

with each individual to promote public transportation, so as to reduce environmental

pollution. And infrastructures can be optimally distributed according to the feedbacks to save

the construction expenses as well as the maintenance costs. Therefore, the system is

sustainable and efficient, and transport problems are solved. And this will be a significant

step towards the Intelligent Transportation System.

62

Reference List

Y. Lin, P. Wang and M. Ma (2017) Intelligent Transportation System (ITS): Concept,

Challenge and Opportunity, 2017 IEEE 3rd international conference on big data security on

cloud (big data security), IEEE international conference on high performance and smart

computing (HPSC), and IEEE international conference on intelligent data and security (ids),

Beijing, pp. 167-172.

Y. Liu, B. Tian, S. Chen, F. Zhu and K. Wang (2013) A survey of vision-based vehicle

detection and tracking techniques in ITS, in Proceedings of 2013 IEEE International

Conference on Vehicular Electronics and Safety, Dongguan, pp. 72-77.

S. Sivaraman and M. M. Trivedi (2013) Looking at Vehicles on the Road: A Survey of Vision-

Based Vehicle Detection, Tracking, and Behavior Analysis, in IEEE Transactions on

Intelligent Transportation Systems, vol. 14, no. 4, pp. 1773-1795.

J. Zhang, F. Wang, K. Wang, W. Lin, X. Xu and C. Chen (2011) Data-Driven Intelligent

Transportation Systems: A Survey, in IEEE Transactions on Intelligent Transportation

Systems, vol. 12, no. 4, pp. 1624-1639.

L. Figueiredo, I. Jesus, J. A. T. Machado, J. R. Ferreira and J. L. Martins de Carvalho (2001)

Towards the development of intelligent transportation systems, in Proceedings of 2001 IEEE

Intelligent Transportation Systems, Oakland, CA, pp. 1206-1211.

T. Boonphoka, and P. Uthansakul (2014) Remaining time improvement of V2V

communication based GPS direction detection, the 20th Asia-Pacific Conference on

Communication (APCC2014), pp. 458-462.

R.Klette, (2014) Concise Computer Vision, Springer London,.

N. Buch, S. A. Velastin and J. Orwell (2011) A review of computer vision techniques for the

analysis of urban traffic, IEEE Transactions on Intelligent Transportation Systems, vol. 12,

no. 3, pp. 920-939.

J. Liebelt, C. Schmid and K. Schertler (2008) Viewpoint-independent object class detection

using 3d feature maps, in Proceedings of 2008 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1-8.

S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos (2002) Detection and

classification of vehicles, IEEE Transactions on Intelligent Transportation Systems, vol. 3,

no. 1, pp. 37-47.

63

S. S. Beauchemin and J. L. Barron (1995) The computation of optical flow, ACM Computing

Surveys (CSUR), vol. 27, no. 3, pp. 433-466.

M. Seki, H. Fujiwara and K. Sumi (2000) A robust background subtraction method for

changing background, in Proceedings of the 5th IEEE Workshop on Applications of

Computer Vision, pp. 207-213.

R. Girshick, J.Donahue, T. Darrell, J. Malik (2014) Rich feature hierarchies for accurate

object detection and semantic segmentation Tech report (v5), in Proceedings of 2014 IEEE

Conference on Computer Vision and Pattern Recognition.

R. Girshick (2015) Fast R-CNN, Proceedings of 2015 IEEE International Conference on

Computer Vision (ICCV), pp. 1440-1448.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks”, IEEE Transactions on Pattern Analysis and Machine

Intelligence. Jan. 2016.

J. Redmon, S. Divvala, R. Girshick and A. Farhadi (2016) You Only Look Once: Unified,

Real-Time Object Detection, in Proceedings of 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 779-788.

J. Redmon, A. Farhadi (2017) YOLO9000: Better, Faster, Stronger, in Proceedings of 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.6517-6525.

J. Redmon, A. Farhadi (2018) YOLOv3: An Incremental Improvement, arXiv preprint

arXiv:1804.02767.

P. Fieguth, D. Terzopoulos (1997) Color-based tracking of heads and other mobile objects

at video frame rates, in Proceedings of 1997 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pp. 21-27.

D. Comaniciu, V. Ramesh, and P. Meer (2003) Kernel-based object tracking, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564-577.

W. Zhao and Y. Dong (2015) Application research of Kalman filter in optical atomic

magnetometer, 2015 12th International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), Zhangjiajie, pp. 1888-1892.

64

A. Corovic, V. Ilic, S. Duric, M. Marijan, and B. Pavkovic (2018) The Real-Time Detection

of Traffic Participants Using YOLO Algorithm, the 26th Telecommunications Forum

(TELFOR), pp.1-4.

J. Tao, H. Wang, X. Zhang, X. Li, H. Yang (2017) An object detection system based on

YOLO in traffic scene, the 6th International Conference on Computer Science and Network

Technology (ICCSNT), pp. 315-319.

J. Lin and M. Sun, (2018) “A YOLO-based Traffic Counting System”, 2018 Conference on

Technologies and Applications of Artificial Intelligence (TAAI).

Z. Xu, H. Shi, N. Li, C. Xiang, (2018) Vehicle Detection Under UAV Based on Optimal

Dense YOLO Method, The 2018 5th International Conference on Systems and Informatics

(ICSAI 2018).

A. Salarpour, A. Salarpour, M. Fathi, M.H. Dezfoulian, (2011) Vehicle Tracking Using

Kalman Filter and Features, Signal & Image Processing: An International Journal (SIPIJ)

Vol.2, No.2.

D. Ponsa, A. Lopez, J. Serrat, F. Lumbreras and T. Graf (2005) Multiple vehicle 3D tracking

using an unscented Kalman, in Proceedings of 2005 IEEE Intelligent Transportation

Systems, Vienna, pp. 1108-1113.

J. Hui (2018) Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3, accessed

10 March 2019, <https://medium.com/@jonathan_hui/real-time-object-detection-with-

yolo-yolov2-28b1b93e2088>.

F. Gustafsson (2018) Statistical Sensor Fusion, Studentlitteratur AB, ISBN: 978-

9144127248.

R. Ojala, J. Vepsäläinen, J. Hanhirova, V. Hirvisalo, and K. Tammi (2018) Novel

Convolutional Neural Network-based Roadside Unit for Accurate Pedestrian Localisation,

Trans. Intell. Transp. Syst. [Submitted].

Appendix 1 (1/3)

Appendix 1: Identification Algorithm

clear;

clc;

Input data

cd 'D:\Wencan';

num = xlsread('Book2.xlsx','Sheet2');

idx = all(isnan(num),2);

idy = 1+cumsum(idx);

idz = 1:size(num,1);

C = accumarray(idy(~idx),idz(~idx),[],@(r){num(r,:)});

temp = initialize_temp(C);

result = {};

Search for the matching string

for N = 2:size(C)

 Ct = C{N}; %Ct is frame matrix

 move = [];

 for i = 1:size(temp,2) %Loop through lines in temp

 [close_match, match_idx] = find_match(temp{i}, Ct);

 %Find a match between one line in temp and frame matrix

 if close_match == 0

 result{end+1} = temp{i};

 move = [move, i];

 elseif close_match == 1

 temp{i} = [temp{i};Ct(match_idx,1:2)];

 Ct(match_idx,:) = []; %Delete row

 end

 end

 temp(move) = [];

 for j = 1:size(Ct)

Appendix 1 (2/3)

 temp{end+1} = Ct(j,1:2); %Put remaining rows in Ct into temp

 end

end

result = finalize_result(result,temp);

Delete short strings

result_new = {};

for p = 1:size(result,2)

 if size(result{p},1)>=100 %Minimum length

 result_new{end+1} = result{p};

 end

end

Plot the result

for p = 1:size(result_new,2)

 figure

 plot(result_new{p}(:,1),result_new{p}(:,2),'bo')

 set(gca,'ydir','reverse')

 xlim ([0 1])

 ylim ([0 1])

 axis tight;

 hold on

 I = imread('11088.jpg');

 h = image([0 1],[0 1],I);

 uistack(h,'bottom')

end

Define functions

function t = initialize_temp(M)

 t = {};

 for r = 1:size(M{1},1)

 t{end+1} = M{1}(r,1:2);

 end

end

Appendix 1 (3/3)

function [a, b] = find_match(A,B)

 old_point = A(end,:);

 a = 0;

 b = 0;

 for k = 1:size(B,1)

 new_point = B(k,1:2);

 d = norm(new_point - old_point);

 if d<0.02 %Define threshold here

 a = 1;

 b = k;

 break

 end

 end

end

function A = finalize_result(A,B)

 for i = 1:size(B,2)

 A{end+1} = B{i};

 end

end

Appendix 2 (1/3)

Appendix 2: Use Kalman Filter for Tracking Experiment

clear variables;

clc;

rng(48);

cd 'D:\Wencan';

num = xlsread('iden_result','sheet1'); %Choose vehicle

Parameters

T = size(num,1)/42.5; % Simulation time

dt = 1/42.5; % Sampling time (for measurements)

R = 0.1*eye(2); % Measurement noise covariance

sigma2w = 10000; % Measurement process covariance

m0 = [num(1,1); num(1,2);0;0]; % Initial guess of the state

P0 = 2*eye(4); % Covariance of the initial guess

t = dt:dt:T;

N = length(t);

y(1,:) = num(:,1);

y(2,:) = num(:,2);

Model

% Dynamic model: Wiener velocity model in two dimensions

F = [1 dt;

 0 1;];

F = kron(F, eye(2));

Q = sigma2w*[

 dt^3/3, dt^2/2;

 dt^2/2, dt;

];

Q = kron(Q, eye(2));

% Measurement model

G = [eye(2), zeros(2)];

Appendix 2 (2/3)

Kalman filter

% Preallocate

xps_kf = [num(1,1); num(1,2);0;0];

Pps_kf = zeros(4, 4, N);

xs_kf = [num(1,1); num(1,2);0;0];

Ps_kf = zeros(4, 4, N);

% Initialize the filter

x = m0;

P = P0;

% Process measurements

for n = 1:N

 % Prediction

 xp = F*x;

 Pp = F*P*F' + Q;

 % Measurement update

 K = Pp*G'/(G*Pp*G' + R);

 x = xp + K*(y(:, n) - G*xp);

 P = Pp - K*(G*Pp*G' + R)*K';

 % Store

 xps_kf(:, n) = xp;

 Pps_kf(:, :, n) = Pp;

 xs_kf(:, n) = x;

 Ps_kf(:, :, n) = P;

% prediction and trajectory

 xp = F*x;

 p = polyfit(xs_kf(1, :), xs_kf(2, :),10);

 x1 = xs_kf(1, :);

 y1 = polyval(p,x1);

 z1=cat(1,x1,y1);

end

% convert to pixels

y(1,:) = y(1,:)*1920;

y(2,:) = y(2,:)*1080;

xs_kf(1,:) = xs_kf(1,:)*1920;

xs_kf(2,:) = xs_kf(2,:)*1080;

x1 = x1*1920;

Appendix 2 (3/3)

y1 = y1*1080;

z1(1,:) = z1(1,:)*1920;

z1(2,:) = z1(2,:)*1080;

xp(1,:) = xp(1,:)*1920;

xp(2,:) = xp(2,:)*1080;

RMSE and fluctuation error

fprintf('KF position RMSE: %.4f\n', sqrt(mean(sum((y(1:2, :)-

xs_kf(1:2, :)).^2))));

fprintf('KF fluctuation error: %.4f\n', sqrt(mean(sum((z1(1:2, :)-

xs_kf(1:2, :)).^2))));

Plot the result

figure(1); clf();

hold on;

plot(y(1, :), y(2, :), 'bo');

plot(xs_kf(1, :), xs_kf(2, :), 'go');

plot(xp(1),xp(2),'mo');

plot(x1,y1,'g-')

legend('Measurements', 'Kalman filter','Prediction','Trajectory');

axis equal;

set(gca,'ydir','reverse')

xlim ([0 1])

ylim ([0 1])

axis tight;

hold on

I = imread('10926.jpg');

h = image([0 1920],[0 1080],I);

uistack(h,'bottom')

Revised from Roland Hostettler, GPS navigation example using a Kalman filter, 2018.

Appendix 3 (1/3)

Appendix 3: Use Extended Kalman Filter for Tracking

Experiment

clear variables;

clc;

rng(48);

cd 'D:\Wencan';

num = xlsread('iden_result','sheet1'); %Choose vehicle

Parameters

T = size(num,1)/42.5; % Simulation time

dt = 1/42.5; % Sampling time (for measurements)

R = 0.1*eye(2); % Measurement noise covariance

Sigma_w = 10000; % Measurement process covariance

m0 = [num(1,1); num(1,2);0;0]; % Initial guess of the state

P0 = 2*eye(4); % Covariance of the initial guess

t = dt:dt:T;

N = length(t);

y(1,:) = num(:,1);

y(2,:) = num(:,2);

Model

% Dynamic model: Quasi-constant turn model in two dimensions

f = @(x) [

 x(3)*cos(x(4));

 x(3)*sin(x(4));

 0;

 0;

];

B = [

 zeros(2);

 eye(2);

];

% Measurement model

G = [eye(2), zeros(2)];

% Euler-Maruyama discretization (+ Jacobian)

Appendix 3 (2/3)

fd = @(x, ~) x + dt*f(x);

Q = dt*B*Sigma_w*B';

Fx = @(x) [

 1, 0, dt*cos(x(4)), -dt*x(3)*sin(x(4));

 0, 1, dt*sin(x(4)), dt*x(3)*cos(x(4));

 0, 0, 1, 0;

 0, 0, 0, 1;

];

Extended Kalman filter

% Preallocate

xhats_ekf = zeros(4, N);

Ps_ekf = zeros(4, 4, N);

% Initialize the filter

x = m0;

P = P0;

% Process measurements

for n = 1:N

 % Prediction

 xp = fd(x);

 Pp = Fx(x)*P*Fx(x)' + Q;

 % Measurement update

 K = Pp*G'/(G*Pp*G' + R);

 x = xp + K*(y(:, n) - G*xp);

 P = Pp - K*(G*Pp*G' + R)*K';

 % Store

 xhats_ekf(:, n) = x;

 Ps_ekf(:, :, n) = P;

 % prediction and trajectory

 xp = fd(x);

 p = polyfit(xhats_ekf(1, :), xhats_ekf(2, :),10);

 x1 = xhats_ekf(1, :);

 y1 = polyval(p,x1);

 z1=cat(1,x1,y1);

end

Appendix 3 (3/3)

% convert to pixels

y(1,:) = y(1,:)*1920;

y(2,:) = y(2,:)*1080;

xhats_ekf(1,:) = xhats_ekf(1,:)*1920;

xhats_ekf(2,:) = xhats_ekf(2,:)*1080;

x1 = x1*1920;

y1 = y1*1080;

z1(1,:) = z1(1,:)*1920;

z1(2,:) = z1(2,:)*1080;

xp(1,:) = xp(1,:)*1920;

xp(2,:) = xp(2,:)*1080;

RMSE and fluctuation error

fprintf('EKF position RMSE: %.4f\n', sqrt(mean(sum((y(1:2, :)-

xhats_ekf(1:2, :)).^2))));

fprintf('EKF fluctuation error: %.4f\n', sqrt(mean(sum((z1(1:2, :)-

xhats_ekf(1:2, :)).^2))));

Plot the result

figure(1); clf();

hold on;

plot(y(1, :), y(2, :), 'bo');

plot(xhats_ekf(1, :), xhats_ekf(2, :), 'yo');

plot(xp(1),xp(2),'mo');

plot(x1,y1,'y-')

legend('Measurements', 'Kalman filter','Prediction','Trajectory');

axis equal;

set(gca,'ydir','reverse')

xlim ([0 1])

ylim ([0 1])

axis tight;

hold on

I = imread('10926.jpg');

h = image([0 1920],[0 1080],I);

uistack(h,'bottom')

Revised from Roland Hostettler, EKF/UKF/PF Example: Tracking a Manoeuvring Target,

2018.

Appendix 4 (1/3)

Appendix 4: Use Particle Filter for Tracking Simulation

clear variables;

rng(48);

Parameters

T = 5.1; % Simulation time

dt = 0.1; % Sampling time (for measurements)

R = 1*eye(2); % Measurement noise covariance

sigma2w = 500;

m0 = [1450;277;0;0]; % Initial guess of the state

P0 = 2*eye(4); % Covariance of the initial guess

t = dt:dt:T;

N = length(t);

J = 1000; % J sets of particles

y(1,:) = [1450 1428 1408 1385 1361 1339 1317 1293 1268 1247 1223 1198 1175 ...

 1157 1143 1112 1092 1047 1029 1008 994 974 951 934 918 900 ...

 881 867 854 843 827 813 797 784 771 758 748 735 723 ...

 715 703 692 685 673 671 664 653 648 639 636 628];

y(2,:) = [277 277 277 278 279 278 277 278 277 277 277 276 276 276 ...

 274 276 276 275 278 279 279 285 286 288 291 294 298 304 ...

 306 312 317 325 331 337 345 352 359 372 381 392 408 420 ...

 433 451 462 487 507 532 561 595 629];

Model

% Dynamic model: Wiener velocity model in two dimensions

F = [1 dt;

 0 1;];

F = kron(F, eye(2));

Q = sigma2w*[

 dt^3/3, dt^2/2;

 dt^2/2, dt;

];

Q = kron(Q, eye(2));

% Measurement model

G = [eye(2), zeros(2)];

Appendix 4 (2/3)

Particle filter

xs_bpf = zeros(4, J, N); % Particles

ws_bpf = zeros(1, J, N); % Weights

xhats_bpf = [1450;277;0;0];

Ps_bpf = zeros(4, 4, N);

wtilde = zeros(1, J);

% Initialize

x = m0*ones(1, J) + chol(P0).'*randn(4, J);

for n = 1:N

 for j = 1:J

 % Sample

 q = Q*randn(4, 1);

 x(:, j) = F*x(:, j) + q;

 % Calculate weights

 wtilde(:, j) = mvnpdf(y(:, n).', (G*x(:, j)).', R);

 end

 % Normalize the weights

 w = wtilde/sum(wtilde);

 % Calculate the mean and covariance

 xhats_bpf(:, n) = x*w.';

 P = zeros(4, 4);

 for j = 1:J

 P = P + w(j)*((x(:, j) - xhats_bpf(:, n))*(x(:, j) - xhats_bpf(:, n))');

 end

 Ps_bpf(:, :, n) = P;

 % Resample

 x = resample(x, w);

 % prediction and trajectory

 xp = F*x;

 p = polyfit(xhats_bpf(1, :), xhats_bpf(2, :),10);

 x1 = xhats_bpf(1, :);

 y1 = polyval(p,x1);

 z1=cat(1,x1,y1);

end

Appendix 4 (3/3)

RMSE and fluctuation error

fprintf('PF position RMSE: %.2f\n', sqrt(mean(sum((y(1:2, :)-

xhats_bpf(1:2, :)).^2))));

fprintf('PF fluctuation error: %.2f\n', sqrt(mean(sum((z1(1:2, :)-

xhats_bpf(1:2, :)).^2))));

Plot the result

figure(1); clf();

hold on;

plot(y(1, :), y(2, :), 'bo');

plot(xhats_bpf(1, :), xhats_bpf(2, :), 'co');

plot(xp(1),xp(2),'mo');

plot(x1,y1,'c-')

legend('Measurements','Particle filter','Prediction','Trajectory');

axis equal;

set(gca,'ydir','reverse')

xlim ([0 1680])

ylim ([0 1050])

axis tight;

hold on

I = imread('52.jpg');

h = image([0 1680],[0 1050],I);

uistack(h,'bottom')

Define resample function

function x = resample(x, w)

 J = size(w, 2);

 u = ((0:J-1) + rand(1, J))/J;

 wc = cumsum(w);

 wc = wc/wc(J);

 [~, i1] = sort([u, wc]);

 i2 = find(i1 <= J);

 i = i2-(0:J-1);

 x = x(:, i);

end

Revised from Roland Hostettler, EKF/UKF/PF Example: Tracking a Manoeuvring Target,

2018.

Appendix 5 (1/1)

Appendix 5: Perspective Transformation

clc;

clear;

load('match_string')

a = result_new{2}

lamda = 0.39;

h = 10.8;

cx = a(:,1); %horizontal

cy = a(:,2); %vertical(-)

wp = a(:,3); %h

hp = a(:,4); %v

px = cy + 0.5*hp - 0.5;

py = cx - 0.5;

for i = 1:size(a,1)

 xt(i) = h *(1 - lamda * px(i) * tand(15))/(tand(15) + lamda *px(i));

 yt(i) = 16/9 * py(i) * lamda *xt(i);

end

 figure;

 plot (yt,xt, 'o');

 axis equal;

 save('D:\Wencan\x_axis','xt');

 save('D:\Wencan\y_axis','yt');

