
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Xiaoxiao Ma

Extending a Game Engine with Ma-
chine Learning and Artificial Intelligence

Master’s Thesis
Espoo, May 14, 2019

Supervisor: Professor Perttu Hämäläinen
Advisor: Professor Perttu Hämäläinen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/219838712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Xiaoxiao Ma

Title:
Extending a Game Engine with Machine Learning and Artificial Intelligence

Date: May 14, 2019 Pages: 54

Major: Computer Science Code: SCI3046

Supervisor: Professor Perttu Hämäläinen

Advisor: Professor Perttu Hämäläinen

Since the early days of Artificial Intelligence (AI), video games have been a pop-
ular testbed for evaluating methods. However, not until a long time ago, this
only included building AI agents for playing board games like chess. In the last
decade, researchers have found out that games are also a rich source for other
types of AI problems. At the same time, Machine Learning (ML) has entered its
golden age with the advancements of deep learning. In games, this has led to a
wide range of novel AI methods for solving various problems like playing games
with super-human performance.

Despite the significant advances, state-of-the-art AI methods are still far from
being used in commercial games. One of the main reasons is that the tools used
by researchers and game developers are different, which makes it difficult to use
open-source codes in game projects. Furthermore, implementing these methods
requires a moderate understanding of ML, which is not among the skill set of a
regular game programmer. This calls for plug-and-play tools that enable game
developers to deploy AI methods with minimum cost.

In this thesis, we develop a library that enables game developers to use state-of-
the-art ML methods in their commercial projects. This library integrates Ten-
sorflow, a modern ML toolbox, into Unity, the most common game engine in the
industry. This library uses C# with intuitive Keras-like API for building and
training models. We have also implemented several state-of-the-art algorithms,
including Proximal Policy Optimization (PPO) and Matrix Adaptation Evolution
Strategies (MA-ES).

This library can also be used along with Unity ML-Agents, the Unity plugin for
building AI-training environments. Moreover, we provide various examples that
demonstrate the library and the algorithms. One important example is a game
called Calamachine Union, where the core game mechanic includes training the
AI.

Keywords: machine learning, games, AI, neural networks

Language: English

2

Acknowledgements

The contents of this thesis is largely based on my work as a research as-
sistant in professor Professor Perttu Hämäläinen’s group in the Department
of Computer Science of Aalto University. I would like to thank him for his
great support and giving me the opportunity to work on what I am interested
in. I also wish to thank Koray Tahiroglu for the financial support from the
Department of Media.

Thanks to Lassi Vapaakallio for making the Calamachine Union game
together with me in a game Jam.

Thanks to Amin Babadi and John Weston for their help in revising this
thesis. The writing of this thesis would not have been complete without their
help.

I would also like to thank Miikka Junnila and all my teammates and
classmates during the study of Game Design and Production. It has been a
pleasure to work with and learn from them.

Finally, I wish to thank my friends and family who have been great sup-
ports during my study in Finland. Special thanks to my parents Shunqin
Dong and Pengfei Ma. They are always considerate and patient with me,
giving me endless supports regardless of the choices I made.

Espoo, May 14, 2019

Xiaoxiao Ma

3

Contents

1 Introduction 6
1.1 Thesis Goals and Scope . 8
1.2 Structure of the Thesis . 9

2 Background 10
2.1 Machine Learning . 10

2.1.1 Artificial Neural Networks 11
2.1.2 Stochastic Gradient Descent 13
2.1.3 Proximal Policy Optimization 14
2.1.4 Covariance Matrix Adaptation Evolution Strategy . . . 16

2.2 Existing Libraries . 17
2.2.1 Tensorflow and TensorflowSharp 17
2.2.2 KerasSharp . 18
2.2.3 Unity ML-Agents . 18

3 Implementation and Performance 21
3.1 KerasSharp Customization and Integration 22
3.2 Software Structure and Unity ML-Agents SDK Integration . . 23

3.2.1 Trainer and LearningModel 24
3.2.2 Unity ML-Agents SDK Integration 25

3.3 Algorithms Details . 27
3.3.1 Implementation Details of PPO 27
3.3.2 Implementation Details of Other algorithms 32

3.4 Performance . 33
3.4.1 Comparison with ML-Agents 34
3.4.2 Time Efficiency on Different Devices 34

4 Examples 38
4.1 Intelligent Pool . 41
4.2 Calamachine Union . 45

4

5 Discussion 47

6 Conclusions 49

5

Chapter 1

Introduction

Artificial intelligence (AI) is the concept of machines being able to think like
humans. It has been an active field of research for decades. Examples of
traditional AI tools include searching, logic programming, finite state ma-
chine, and machine learning. Those tools combined with other algorithms
have been successfully applied in fields such as robotics, finance, medical and
games.

In recent years, machine learning has been one of the hottest topics in
both research and industry. With the help of devices with increasing com-
putational power and the vast amount of data available on the internet, it is
possible nowadays to run computational-heavy and data-intensive machine
learning algorithms such as ones that use deep neural networks. Those algo-
rithms have been showing astonishing results on many tasks. For example,
Google’s FaceNet could already achieve 99.6% accuracy on the Labeled Faces
in the Wild (LFW) dataset in 2015 [32]. Google Multilingual Neural Ma-
chine Translation system is used to increase fluency and accuracy in Google
Translate [18]. In finance, machine learning is wildly used for fraud detection
and insurance underwriting.

In the game industry, AI algorithms are mostly used to create the desired
behaviors for Non-Player Characters (NPC) and opponents, and to generate
procedural contents. Traditional AI algorithms are already wildly applied
in many games. The Civilization series (MicroProse, Activision, Infogrames
Entertainment, SA and 2K Games, 1991-2016) has sophisticated procedural
algorithms for world generation and searching algorithms for opponent AI;
Halo 2 (Microsoft, 2004) uses behavior tree for NPC’s combat behavior and
team tactics [17]; Half Life uses finite state machine for advanced opponent
tactics [40].

With the development of machine learning, the latest game-related re-
search is following the steps as well. In 2013, researchers showed that com-

6

CHAPTER 1. INTRODUCTION 7

puters were capable of learning to play multiple Atari games by just looking at
the pixels, with one fixed reinforcement learning (RL) algorithm, using deep
neural network [26] . In 2017 Google released AlphaGo, a computer program
that beat the No. 1 ranked Go player in the world at that time. AlphaGo
uses Monte Carlo tree search with knowledge learned by machine learning
from human and computer play. Soon later, another version of AlphaGo
called AlphaGo Zero, beat the best AlphaGo by learning from playing Go
with itself [35]. In 2018, OpenAI Five, a team of five AI players, has started
to defeat amateur human teams at Dota 2. They are trained by self-playing
using deep reinforcement learning.

However, few commercial games are using those state-of-the-art technolo-
gies like machine learning and deep neural networks. Creatures (Millennium
Interactive, 1996) was the first popular game that used neural networks to
model the creatures’ behavior; Black and White (EA, 2000) used reinforce-
ment learning coupled with other AI algorithms. Nevertheless, those games
did not use any of the advanced algorithms or computational power from
modern hardware. Therefore the AI capability was quite limited. Supercell
is using modern machine learning to analyze players’ behavior and improve
the monetization [6], but it is not directly related to the game itself.

Regardless of whether modern AI and machine learning methods are use-
ful for making a fun game, one reason why we hardly see any application
of them in games is the lack of a proper modern machine learning tool that
can be easily utilized during the game development, especially for games
from smaller studios. Typically, those more advanced methods require more
complicated neural network structures and more efficient implementation of
math operations.

The current situation of available libraries in machine learning is that
those libraries are either not powerful enough for modern algorithms (mainly
deep neural networks), not compatible with game development tools, or too
low-level for advanced usage. General math libraries such as Eigen and Ac-
cord.Net do not support deep neural networks very well. Popular machine
learning libraries such as Tensorflow [1] usually have their high-level features
written in script languages and do not support most of the mainstream game
engines such as Unity. Even though they usually have low-level c interfaces
as well, they lack many features for advanced usage and are not necessarily
compatible with game engines neither. CNTK C# [34] can be integrated
with Unity, but it only supports Windows operating system.

Some other libraries and tools are relatively more accessible in game de-
velopment. We are going to focus on those libraries in later sections of this
thesis. TensorflowSharp is a C# wrapper of Tensorflow’s C library. It is sim-
pler to use than the Tensorflow’s C++ library, and with some modifications,

CHAPTER 1. INTRODUCTION 8

it can be used directly in Unity. KerasSharp is a reimplementation of Keras
[5] in C# using TensorflowSharp as the low-level library. However, the devel-
opment of KerasSharp is not complete and has been stopped for a long time.
Unity’s ML-Agents [19] is a toolset which enables building learning environ-
ments in Unity, training the AI in Python using Tensorflow, and deploying
the trained AI back in Unity. In its latest version released in March 2019,
it provides the new Unity Inference Engine, which can load any standard
neural network and use it on any platform supported by Unity. However, it
does not allow training neural networks in a game.

1.1 Thesis Goals and Scope

The motivation of the thesis is to encourage more game developers to use
state-of-the-art AI and machine learning methods in their games. As dis-
cussed in the previous section, currently there does not exist any machine
learning library that is both powerful and easy to use in a game engine.
Moreover, latest machine learning methods, especially game related algo-
rithms such as reinforcement learning, are mostly not implemented in any
form that is ready to be used in game production.

Therefore, to make machine learning more accessible to game develop-
ers, the primary goal of this thesis is to extend the Unity engine with well-
functioning machine learning and AI tools, and provide some implementa-
tions of state-of-the-art algorithms with intuitive user interfaces. In this way,
game developers without in-depth knowledge of machine learning can utilize
this tool to add novel AI to their games.

To be more specific, the thesis goal includes three parts as following:

1. Integrate machine learning libraries into the Unity game engine using
TensorflowSharp and KerasSharp, so that developers can implement
machine learning methods, especially neural networks with training
capability, that run in both the Unity editor and standalone games.

2. Implement modern machine learning algorithms with interfaces that
are intuitive to use and compatible with the Unity ML-Agents library.

3. Provide examples of how to use the integrated library in Unity game
engine and showcase the potential of using machine learning in actual
gameplay.

The thesis is mainly focused on a few state-of-the-art algorithms includ-
ing reinforcement learning, MAES and supervised learning because of the

CHAPTER 1. INTRODUCTION 9

limitation of resources and time. However, the library is open-source and
other ML algorithms could be added to it in the future.

Note that Unity launched ML-Agents after the start of the thesis work.
It is trying to accomplish similar goals as this thesis, such as to encourage
the use of machine learning in games. Even thought ML-Agents has been
in active development and new features keep being added, it is still not
enough yet. The main reason is that ML-Agents uses Python-based libraries
for training, while the design philosophy of the thesis is to minimize the
dependency on Python libraries. The benefit is the capability of training
neural networks in games.

1.2 Structure of the Thesis

The rest of the thesis is organized as follows.
Chapter 2 gives the background. It includes two sections - the first section

tells the basic of the machine learning and AI algorithms implemented in the
thesis while the second section tells the detailed description of the tools used
in the thesis.

Chapter 3 firstly gives the design and implementation details of the tools
and algorithms. Then it analyses the performance of the implementation by
testing it on personal devices and comparing it with Unity ML-Agents.

Chapter 4 gives a summary of the examples implemented to demonstrate
the usage and capability of the library of this thesis.

Chapter 5 discusses the advantages, disadvantages and limitations of the
thesis over existing tools, and proposes potential future improvements.

Chapter 6 is the conclusion of the whole thesis.

Chapter 2

Background

This chapter contains two sections. The first section tells the essentials of
machine learning that are needed to understand the thesis, including some
basic machine learning algorithms that the implementations of this thesis
are based on. The second section summarizes the existing tools and libraries
related to machine learning in game engines.

2.1 Machine Learning

Machine learning (ML) is the general method that computer systems use
to perform tasks without using explicit instructions. Instead, it learns to
discover the patterns in data automatically and infer the desired results using
mathematical models [29]. A machine learning problem usually consists of a
data set, a loss function, a model and an algorithm [11]. A machine learning
algorithm builds a mathematical model of the training data from the dataset,
minimizing the loss function.

The dataset is where the patterns need to be detected. For example,
in medical research, one classic problem is to classify cancer patients into
different risk groups from medical test data, such as regular blood test results
of those patients. In this case, the dataset is the medical test data from many
patients and the final results of their cancers after a certain period of time.
People want the machine to learn from the dataset to classify patients’ risk
groups and to generalize the results so that for new patients, the machine
can still correctly infer their risk groups as well.

A loss function is a function that maps some events or data into a single
number which can intuitively represent the cost or wellness of the events or
the data. Usually, a smaller loss value means a better result. For instance,
a typical loss function can be the mean square error between the predicted

10

CHAPTER 2. BACKGROUND 11

result and the actual result.
There are many models in machine learning, for example, artificial neural

network (ANN), support vector machine and Bayesian networks. Only ANN
will be discussed in later sections since it is the only model used in the library
of this thesis.

Usually, a machine learning algorithm is intended to reduce the loss. If the
model is an artificial neural network, the algorithms are usually Stochastic
Gradient Descent (SGD) or its modifications. For learning tasks that lack
training dataset, such as reinforcement learning, the algorithms can also be
the methods of producing training data or defining loss functions.

Typically, machine learning is divided into three categories: supervised
learning, reinforcement learning, and unsupervised learning. The
thesis involves only supervised learning and reinforcement learning.

In supervised learning, the dataset is organized as input-output pairs.
The algorithms try to build a model that match the inputs to their corre-
sponding outputs in the dataset. The loss function is usually a mathemati-
cal formula that represents the difference between the given outputs and the
outputs coming from the model while fed with corresponding inputs. For
discrete outputs, such as true/false or different categories, the loss functions
can be cross entropy loss [24]. For continuous outputs, the loss function can
be Mean Square Error (MSE).

In reinforcement learning, there is no dataset with input-output pairs.
Instead, there is usually an environment where the machine needs to finish
specific tasks. The data related to the environments are states, actions,
and rewards. For instance, training an AI to control walking robot can be
a reinforcement learning problem. The states are the observations of the
environment perceived by the robot AI. The actions are the forces/torques
applied to each joint of the robot. Rewards are given to the robot if it is
walking instead of falling. The AI should learn how to choose the actions in
each state such that the sum of rewards obtained during the whole period is
maximized.

2.1.1 Artificial Neural Networks

Artificial neural networks (ANN), so-called neural networks (NN), is the most
wildly used model in machine learning nowadays. It is inspired by the neural
network structure in human brains. Depending on the architectures and hy-
perparameters of a neural network, it can be either large enough to represent
complicated functions or simple enough to run on low-end processors in real
time.

Figure 2.1 shows the basic concept of a neural network. Typically, a

CHAPTER 2. BACKGROUND 12

Figure 2.1: An illustration of the structure of an artificial neural network
with two hidden layers. Input data is fed into the neurons in the input layer.
It is then propagated through the neurons in hidden layers and finally reaches
the output layer. Each neuron will modify the data going through it in some
way.

neural network consists of structure of neurons. Each neuron in hidden and
output layers represents a set of mathematical operations on its input value.
The results of the operations in hidden layers go to the neurons in the next
layer. The math operations usually include multiplication, addition and then
a nonlinear activation function. Mathematically they can be represented as
follows:

y = f(x) = σ(wx+ b) (2.1)

In the equation above, x is the input, y is the output. w and b are parameters,
and σ is the activation function.

Since a layer usually contains more than one neuron, the operations of
all neurons in one layer can be represented in forms of vector and matrix
operations. Also, if the layers are connected one after each other, the input
of a layers is the output of the previous layer. Then, the overall equations
are:

f(x; θ) = fn(. . . f1(f0(x)))

where fi(x) = σi(Wix + bi)
(2.2)

In the equations above, x and b are vectors while W is a matrix. Usually, b

CHAPTER 2. BACKGROUND 13

is called the bias and W is called the weight. θ represents the set of all pa-
rameters including W and b. Each function fi represents the mathematical
operations of one layer. The type of layers that matches the equations above
is called dense layers. There are other types of layers such as convolutional
layers as well. The equations of them are different, but the concepts are
similar.

The Universal Approximation Theorem [7] states that a feedforward net-
work with a linear output layer and a least one hidden layer with some non-
linear activation function (such as the logistic sigmoid activation function)
can approximate any function with any degree of accuracy, with the right
parameters. Montufar et al.[27] shows that a deep neural network needs less
hidden neurons than a shallow (one hidden layer) network to represent the
same function. Therefore nowadays, deep learning, which is essentially ma-
chine learning with deep neural networks, is the most successful and popular
research field.

2.1.2 Stochastic Gradient Descent

To train a neural network to represent the desired function, we need to update
the parameters properly. The updating method is usually Gradient Descent
(GD) or its modifications. Suppose we have a loss function L(θ) where θ
represents the parameters of the neural network. The goal is to find the θ
that minimizes L(θ):

arg min
θ

L(θ) (2.3)

The gradient of L, ∇L(θ), is the direction of θ movement where L increases
most rapidly. Therefore, we can iteratively move θ to the opposite of this
direction until it reaches a point close enough to the point where the gradient
is zero, a local minimum. Equation 2.4 represents the operation on the nth
iteration update.

θn+1 = θn − α∇L(θ) (2.4)

In the equation above, α is called the learning rate. The learning rate is a
small constant, which represents the step size of each iteration. Usually the
smaller the learning rate is, the more stable the updates are. However, if α
is too small, it might take too long to reach the local minimum.
∇L(θ) is calculated using backpropogation [30], which requires the deriva-

tive of the math operations in each layer. Therefore, the activation functions
need to be continuous and differentiable nearly everywhere. A popular acti-
vation function is Rectified Linear Units (ReLU) [2]

ReLU(x) = max(0, x) (2.5)

CHAPTER 2. BACKGROUND 14

When training a neural network, it is desired to minimize the average
loss for all x-y pairs in the dataset. However, if the dataset is too large, it
requires too much computational power in each update, which slows down
the training process a lot. One fact we can use to solve the problem is that
the gradient is an expectation, and the expectation may be approximately
estimated using a small set of samples. Therefore, on each iteration of the
algorithm, we can sample a minibatch of examples drawn uniformly from
the training dataset [11]. This method is called Stochastic Gradient Descent
(SGD).

There are many modifications of SGD that improves the training. For
example, SGD with momentum [31], which adds a momentum term, derived
from physics law. It treats the gradient as force and the momentum as speed,
and it works better than vanilla SGD in some cases. Some other algorithms
adaptively change the learning rate during the training. Adaptive Moment
Estimation (ADAM) [20] is the most popular and prominent of all nowadays.

2.1.3 Proximal Policy Optimization

Reinforcement learning was invented long before current deep reinforcement
learning. It tries to solve how software agents take actions in an environment
to maximize the cumulated rewards. The environment is typically a Markov
Decision Process (MDP), which is shown by a tuple (S,A, Pa, Ra). S is a
finite set of states, A is a finite set of actions that can be taken, Pa(s, s

′)
is the probability that action a in state s will lead to state s′ and Ra(s, s

′)
is the reward to received after transitioning from state s to state s′ due to
action a.

In reinforcement learning, a policy represents how the agent takes actions
based on the current state, which can be represented in Equation 2.6 as π.
π returns the probability of taking action a in state s. Sometimes π can also
return a random distribution of possible actions.

π : S × A→ [0, 1]

π(a | s) = P (at = a | st = s)
(2.6)

A value function Vπ(s) is defined as the expected discounted cumulated
rewards starting with state s, using policy π:

Vπ(s) = E[
∞∑
t=0

γtrt | s0 = s] (2.7)

where rt is the reward obtained at time step t and γ is a constant called the
discount factor. The value γ is between 0 and 1 and defined by the user. It
represents how important the future rewards are to the current value.

CHAPTER 2. BACKGROUND 15

If the numbers of states and actions are finite, it is possible to use lookup
tables to represent Vπ(s) and π(a | s). Algorithms such as value iteration,
policy iteration, and some temporal difference methods [37] can iteratively
find the policy or value functions, therefore solving the reinforcement learning
problem. However, those methods do not work if the states and actions
have high dimensionality or are continuous, or the policy function is too
complicated to be represented using simple models like lookup tables.

Neural networks solve the problems above. Ever since deep Q-learning
[26] showed its success in playing Atari games from pixel observations, rein-
forcement learning with neural networks has been a hot research field, and
many algorithms have been proposed for better performance in different sce-
narios. For example, vanilla Policy Gradient [38], Deep Deterministic Policy
Gradient (DDPG) [22] and Proximal Policy Optimization (PPO) [33]. PPO
is both efficient and reliable. The baseline algorithm of the thesis is a modi-
fication of PPO.

A basic PPO algorithm is shown below:

Algorithm 1: PPO

Initialize parameters θ in the policy network π(s) and the value
network V (s).

for iteration=1,2, . . . do
for actor=1,2, . . . do

Run policy πθold in the environment for T timesteps;

Compute advantages estimates Â1, . . . , ÂT ;
end
Maximize surrogate L with respect to θ, with K epochs, and
minibatch size M ≤ NT , using SGD;
θold ← θ

end

In Algorithm 1, the advantages Ât is calculated using Equation 2.8:

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1

where δt = rt + γV (st+1)− V (st)
(2.8)

where rt is the reward obtained at time step t, γ is the discount factor,
and λ is the generalize advantage factor, which is usually from 0 to 1. The
advantage represents how much the value of sampled actions in the previous
simulation is better than the estimated value from the value network.

The surrogate loss L for proposed Algorithm 1 in the original PPO paper

CHAPTER 2. BACKGROUND 16

is as following:

Lt(θ) = Et[L
CLIP
t (θ)− c1LV Ft (θ) + c2S[πθ](st)]

where LCLIPt (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]

and LV aluet (θ) = (Vθ(st)− V target
t)2

(2.9)

In Equation 2.9 above, c1 and c2 are coefficients. S is an entropy bonus such
as suggested in [25]. The entropy bonus is useful to encourage exploration
during the training. V target

t is a value calculated by V target
t = Vθ(st) + Ât.

2.1.4 Covariance Matrix Adaptation Evolution Strat-
egy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochas-
tic algorithm to deal with non-linear, non-convex optimization problems in
continuous domains. It tries to search for the input parameters that produce
the optimal output, and it works even if the input-output mapping is a black
box.

Consider the following object function:

f : Rn → R,x→ f(x) (2.10)

Assume that f(x) is unknown, but we can still give it an input and get
the output value (f(x) is a black box). The goal is to find the solution vector
x which minimizes f(x).

The simplified steps of the CMA-ES algorithm to solve the problem is
shown below:

Algorithm 2: CMA-ES

Initialize parameters m and C for a multivariate normal distribution
N(m, c), where m is the mean and C is the covariance matrix.

for For generation g = 0,1,2, . . . do
Sample N input points (x1, x2, x3, . . . , xN) from distribution
N(m, c);

Evaluate samples(x1, x2, x3, . . . , xN) on f(x);
Update parameters m,C using an adaptive method based on the
evaluation results;

If the termination criterion is met, stop the algorithm, otherwise,
continue with the next generation;

end

The methods to update m and C are too complicated to show here. One
popular version can be accessed from [14]. The term CMA in CMA-ES comes
from the adaptive nature of the covariance matrix updating method.

CHAPTER 2. BACKGROUND 17

Recent research shows that the core component of CMA-ES, the covari-
ance matrix itself and some expensive operations in the updating method can
be removed from the algorithm without any loss of performance [3]. The fi-
nal algorithm is called Matrix Adaptation Evolution Strategy (MA-ES), and
it reduces the time and space complexity to O(n2) per sample. For large-
scale optimization problems, a variant of MA-ES called Limited Memory
Matrix Adaptation Evolution Strategy (LM-MA-ES) was proposed, which
has a moderate cost of O(n log(n)) time and space complexity per sample
[23].

2.2 Existing Libraries

2.2.1 Tensorflow and TensorflowSharp

Tensorflow [1], initially developed by Google, is one of the most wildly used
open-source machine learning libraries in both research and industry. It has
strong support for numerical computation, especially for machine learning
and deep learning. The core Tensorflow library is in C++, which ensures high
performance. Its high-level API and features are primarily in Python. Based
on its core, TensorFlow also has Tensorflow.js that runs on web browsers,
Tensorflow Lite that can be deployed on mobile devices, and C++/Java API
that can be used for general purposes.

TensorflowSharp is a C# wrapper of Tensorflows’s C++ core library de-
veloped by Miguel de Icaza, using .Net framework. With TensorflowSharp,
one can write managed C# codes to use Tensorflow’s core features, which
is much more intuitive than C++. Original TensorflowSharp only supports
Windows, Linux, and MacOS operation systems because those are the sup-
ported operation system of Tensorflow standard C++ library. However, with
modifications, it can also be built for mobile platforms such as Android and
IOS, but with less features, using Tensorflow Lite core library.

TensorflowSharp can be integrated easily into recent versions of Unity
with .Net 4.6 support, with only small modifications of TensorflowSharp’s
source codes for .Net version compatibility. Even though, it still has many
limitations regarding its functionality. Because TensorflowSharp uses Ten-
sorflow’s low-level C++ API, a lot of high-level features are missing. For
example, although it has the function to obtain gradients of mathematical
operations, it does not contain any implementation of training algorithms
such as SGD at the time of writing the thesis. Also, it does not have oper-
ator override, which means one cannot use +, −, ∗, / symbols in codes to
build computational graphs like in Tensoflow’s Python API. Moreover, since

CHAPTER 2. BACKGROUND 18

Tensorflow Lite C++ library for Android does not have any gradient related
feature, building a training scenario on Android devices is not possible (But
it is still possible to train model on computers and load it on Android). Fur-
thermore, some of the gradient related operations are missing in Tensorflow
C++ API.

2.2.2 KerasSharp

Keras is a high-level API for ML written in Python. It does not have its own
ML core library. Instead, it is running on top of other famous libraries such
as Tensorflow. One advantage of Keras over other libraries is its user-friendly
interface. As the developers of Keras state in its documentation [5] - ”Keras
is an API designed for human beings, not machines.”

KerasSharp is a library that tries to port the Keras line-by-line into C#.
It uses TensorflowSharp as one of its backends. However, there has been
no update of this project since December 8th, 2017 according to its Github
history at the time of writing this thesis. Many of the Keras’ features are
not ported, and the existing codes are not well tested. Keras had a couple
of significant updates in its software architecture after the last update of
KerasSharp. Therefore, the architecture and API in KerasSharp are mostly
out of date.

Although the KerasSharp project has been stopped already and is proba-
bly never going to be continued, it is still useful for this thesis. The backend
API for creating a basic computational graph is mostly done in KerasSharp,
which means building and evaluating machine learning models are much sim-
pler than in TensorflowSharp. A couple of commonly used optimizers such
as ADAM are implemented, which makes it possible to train neural networks
in C#. Some commonly used neural network layers such as convolutional
layers are also implemented.

However, a moderate amount of work still needs to be done to integrate
KerasSharp into Unity. For example, it uses new .Net syntax that is not
supported by the .Net version in Unity 2018. The details of the integration
and customization process of KerasSharp are discussed in Section 3.1

2.2.3 Unity ML-Agents

Unity is one of the most popular game engines in the world nowadays. The
Unity Machine Learning Agents Toolkit (ML-Agents) [19] is an open-source
plugin for Unity, maintained by a dedicated team in the Unity company. ML-
Agents enables games and simulations that are made with Unity to serve as
environments for training intelligent agents. The agents and environments

CHAPTER 2. BACKGROUND 19

can be accessed through a Python API, which enables researchers and devel-
opers to use other popular Python-based machine learning libraries to test
their algorithms. ML-Agents also provides implementations of state-of-the-
art algorithms for training intelligent agents, and the trained agents can be
used in games directly using their Unity inference engine.

Unity ML-Agents has been in active development, and its latest version
is V0.7 at the time of writing this thesis. All contents of this thesis are based
on that version.

The core ML-Agents is composed of two main parts: the ML-Agents
Software Development Kit (SDK), which contains functionality to define the
training environments and agents within the Unity engine; a Python package
which provides API to interact with the environments built using the ML-
Agents SDK.

ML-Agents SDK

The ML-Agents SDK contains three main components: Agent, Brain, and
Academy. The Agent component is used to define the intelligent agent in
the scene. Developers need to override the Agent component for collecting
observations from the environment and updating the agent based on the
decided actions sent from its associated Brain component. There can be
multiple Agent components in a scene.

Brain components contain the definition of the observation and action
spaces, and they make decisions for all associated Agents. Multiple agents
can be associated with the same Brain if they share the same observation
and action spaces. In ML-Agents, a Brain’s decision comes from either player
input (Player Brain), predefined scripts (Heuristic Brain), embedded neural
network model (Internal Brain) or interaction from ML-Agents’ Python API
(External Brain).

The Academy component handles the update of the whole scene, includ-
ing simulation stepping, communication, and other environment configura-
tions.

Figure 2.2 describes how those components work together. The interface
design of the thesis is based on ML-Agent SDK and is discussed in Section 3.2.

ML-Agents SDK also provides many example environments that can be
used as starting points for designing new environments or as benchmarks for
learning algorithms.

CHAPTER 2. BACKGROUND 20

Figure 2.2: Architecture of ML-Agents. Agents are responsible for collecting
information and taking actions. Brains are responsible for providing actions
using specific policies. The Academy handles the global simulation.

Python Package

The Python package provided by ML-Agents contains interfaces to launch
and interact with the learning environments created using ML-Agents SDK
as mentioned above. The package also contains a set of wrapper APIs with
standard OpenAI Gym interface [4], which is one of the main testing envi-
ronments used by reinforcement learning researchers. People can easily plug
ML-Agents environments into existing codes designed for OpenAI Gym.

ML-Agents provides a set of baseline algorithms in the Python package.
Currently, it provides a well-optimized implementation of PPO with the op-
tion to extend it using Intrinsic Curiosity Module(ICM) [28] and Long-Short-
Term-Memory (LSTM) [15]. It also provides an implementation of Behav-
ioral Cloning (BC) [16]. The implementation of the PPO algorithm in the
thesis in C# is based on ML-Agents’ Python codes.

Chapter 3

Implementation and Performance

The library presented in this thesis is an open-source project that enables
developers to create standalone applications with advanced machine learning
features using the Unity game engine. The library was designed with the
philosophy that developers can have the advantages of the Unity editor and
C# programming language, without worrying about problems like multi-
platform support, data communication, and algorithm details.

This library provides some core features and a set of example environ-
ments. The core features include three parts: a customized KerasSharp
library; some tools for integrating Unity ML-Agents SDK; and several im-
plementations of AI algorithms. The customized KerasSharp library enables
developers to write machine learning codes using a Keras-like interface in the
Unity editor, and to build it directly into standalone applications. The ML-
Agents SDK integration enables developers to use AI algorithms implemented
in C# on existing ML-Agents environments. The algorithm implementations
provided in this thesis can be directly plugged into an existing environment
to train AI without extra coding.

This chapter contains a detailed description of all core features and their
implementations. Section 3.1 discusses how KerasSharp was customized and
integrated into Unity. Section 3.2 discusses the design of this library’s soft-
ware architecture. Section 3.3 describes the implementation details of pro-
vided algorithms. The performance of this library is also analyzed in the
later parts of this chapter, namely Section 3.4.

21

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 22

3.1 KerasSharp Customization and Integra-

tion

As mentioned in previous sections, KerasSharp enables developers to use
all functionalities of TensorflowSharp and other advanced features such as
training and constructing neural networks, with intuitive Keras-like interfaces
in C#. However, KerasSharp has two main problems that prevent us from
using it within Unity.

One problem is that KerasSharp uses .Net 4.7 and C# 7.0 but the Unity
game engine only supports .Net 4.6 and C# 6.0 at the time of writing the
thesis. The C# 7.0 features which are most commonly used by the original
KerasSharp are the syntax for ValueTuple structure and local functions. I
had to go over the whole library and convert the codes manually into the C#
6.0 syntax.

Another problem is that the original KerasSharp contains many bugs.
One example is that it does not dispose of the memory of the tensor data
during model evaluation or training, which causes memory leaks. Another
example is that it does not infer the array dimension correctly when building
a Tensorflow variable from an array of arbitrary dimension. During the
development, I fixed all the bugs that I encountered. However, it is very
likely that more bugs remain undiscovered where I did not test or evaluate.

Besides fixing those problems that make KerasSharp unusable in the
Unity game engine, I also extended KerasSharp and its relevant libraries
with more features.

Support for mobile platforms is added to KerasSharp. TensorflowSharp,
the backend of KerasSharp, does not support mobile devices. However, the
open source community ported TensorflowSharp to Xamarin using Tensorflow
Lite, which supports Android and IOS on mobile devices. I updated the
Xamarin version of TensorflowSharp and modified KerasSharp for Unity to
add Android and IOS support.

I added the gradient function of the concatenation operation to the Ten-
sorflow C++ library. TensorflowSharp uses the Tensorflow C++ library,
which lacks the function to compute the gradient of the concatenation op-
eration. The concatenation operation is used to merge tensors of different
shapes into one tensor, and the operation’s gradient is needed in order to train
the neural networks. The concatenation operation is essential for machine
learning algorithms that handle input data with various shapes. Therefore, I
added a gradient-computing function for the concatenation operation to the
C++ source code of Tensorflow, and then I rebuilt the library.

KerasSharp for Unity also provides the GPU version of the Tensorflow

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 23

C++ library for Windows. The GPU library is much faster than the CPU
library for running large-scale neural networks such as convolutional neural
networks. However, the GPU library needs Nvidia’ cuDNN and CUDA to
be already installed on PC.

Regardless of these improvements, there are still many limitations with
KerasSharp for Unity. For example, training is not supported on mobile
devices because Tensorflow Lite for mobile does not include functions to
compute gradients. Moreover, some advanced neural network layers such as
Long Short-Term Memory (LSTM) [15] are not implemented. Regardless of
those limitations, KerasSharp for Unity is already powerful enough for basic
machine learning algorithms that can be used in games.

3.2 Software Structure and Unity ML-Agents

SDK Integration

The customized version of KerasSharp for Unity described in Section 3.1
works independently in Unity without dependencies such as Unity ML-Agents
SDK. While it is possible to implement AI algorithms without ML-Agents
SDK, I have decided to design the software structure based on ML-Agents. I
also provided Unity editor tools so that the algorithm implementations can
be used in any ML-Agents environment directly without extra coding. The
two main reasons for using Unity Ml-Agents SDK are as follows.

Firstly, Unity ML-Agents SDK is powerful due to the fact that it supports
many different types of learning environments. For example, it supports
both supervised learning and reinforcement learning, with either continuous
or discrete action/observation space. The library is officially maintained by
a team of Unity and is guaranteed to have long-term support in the future.
There is no good reason to provide my own software library for building
learning environments.

Secondly, Unity ML-Agents is a popular open-source library (over 5000
stars on Github). It is easy to get enough learning environments for testing
and benchmarking. Also, the documentation of ML-Agents provides good
tutorials for developers to make new learning environments.

Even though I designed the software structure and editor tools mainly for
usage in learning environments built with Unity ML-Agents SDK, it is still
desired for the trained AI to be portable to any game. For this reason, dur-
ing the design process, the AIs and the training process were kept relatively
independent. The communication with the ML-Agents environments is han-
dled by a separate software layer. This design guarantees that developers

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 24

can easily remove the dependency on ML-Agents SDK at any time.
This rest of this section consists of a detailed review of the software struc-

ture and the tools made for the Unity editor.

3.2.1 Trainer and LearningModel

The library introduces two types of components that make up the core logic of
AI: one is the Trainer class, and the other is the LearningModel class. Those
two components are represented by two base classes in C#, which contains
interfaces and virtual methods that need implementations for specific AI
algorithms. The library provides the implementations for some algorithms.

The Trainer and LearningModel classes need to be instantiated for being
used in the library. Therefore in the following context, a Trainer/LearningModel
means a instance of the Trainer/LearningModel class.

A Trainer is used to execute the training algorithm. It is also the inter-
face through which a LearningModel communicates with the learning envi-
ronment. In general, at each update step of the training process, the envi-
ronment will first give information of the agents, such as the observations,
to the Trainer, and then query for an action to take from it. Then the en-
vironment takes the action, executes its update logic, and finally gives the
observation and other information back to the Trainer after the update step.
The Trainer automatically processes the incoming information and executes
the learning algorithm whenever necessary. The Trainer acts as a bridge be-
tween the environment and the LearningModel, and it decides when to train
and how to process the training data. However, the Trainer does not deal
with the optimization of neural networks.

In this library, a LearningModel contains the information of a machine
learning model (usually a neural network), and handles the evaluation and
optimization process. For example, if there is a reinforcement learning algo-
rithm using neural networks, the LearningModel contains the hyperparame-
ters and weights of the neural network, the loss function, and the optimizer.
One can query actions to take from a LearningModel and call its update
function to train the AI, giving it the necessary training data. Once a Learn-
ingModel is trained, it can be used as an AI independently without a Trainer.

The relationship between Trainer, LearningModel and learning environ-
ments is shown in Figure 3.1.

This library contains implementations of the Trainer and LearningModel
classes for baseline algorithms including PPO, Supervised Learning and MAES.
For algorithms that use neural networks, there is also a helper class called
UnityNetwork, which helps define the neural network architecture in a Learn-
ingModel. Given the desired hyperparameters, UnityNetwork can automati-

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 25

Figure 3.1: Relationship of Model, Trainer and Learning Environment.

cally build a typical neural network with multiple layers. This neural network
can be plugged into other machine learning LearningModels with the same
input and output sizes. Since the UnityNetwork is a scriptable object in the
Unity game engine, users can quickly change the hyperparameters using the
graphic user interface and save them as a file. This feature helps in the tun-
ing of hyperparameters, and makes it much easier to switch between different
neural networks for a LearningModel by mouse dragging and click.

3.2.2 Unity ML-Agents SDK Integration

Unity ML-Agents SDK can be used to build learning environments using the
Unity engine. The communication of the environments and the AI algorithm
goes through the Brain component (See Section 2.2.3). Since ML-Agents
version 0.6, there are four types of Brains: the Player Brain, the Heuristic
Brain, the Internal Brain, and the External Brain. The Player Brain directly
sends player input to the environment. The Heuristic Brain sends observa-
tions to a customized C# script and receives actions from it. The Internal
Brain uses a trained neural network model to infer actions. The External
Brain sends out all necessary observations and information to an external
Python process and receives actions from it. Unity ML-Agents uses External
Brain and a Python library to train neural network models.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 26

Figure 3.2: The graphic user interface of a UnityNetwork scriptable object
to define a neural network for PPO.

All the Brains are Unity scriptable objects. This allows developers to
create Brain files with different types and parameters, and to set Brains of a
learning environment easily with mouse dragging. It also allows developers
to switch and copy Brains of any learning environment with only a couple of
clicks.

To integrate the library provided in this thesis, another Brain called In-
ternal Learning Brain was added. The Internal Learning Brain can be used
the same way as other Brains, and it communicates with the Trainer through
its interface. Once it is linked to a Trainer, the Internal Learning Brain will
collect and process observations, send them to the Trainer and execute the
training functions.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 27

With the Unity ML-Agents integration and the AI algorithm implemen-
tations, developers can train and use AI with different advanced machine
learning methods easily. If there is already a learning environment made
with Unity ML-Agents SDK, developers only need to add Internal Learning
Brains, Trainers and Models to the scenes by clicking the mouse before they
can run the AI algorithms.

3.3 Algorithms Details

Several baseline algorithms were implemented including PPO, supervised
learning and MAES for the library. This section contains the details of those
implementations.

3.3.1 Implementation Details of PPO

The implementation of PPO in the thesis is based on Unity ML-Agents’
Python codes. It is highly optimized and supports multiple types of learning
environments. Unity’s Python implementation of PPO is different from the
vanilla PPO mentioned in Section 2.1.3. This section discusses those differ-
ences and provides the implementation details. The next part is organized
as follows:

1. An overview of the implemented PPO algorithm.

2. Neural network architecture for inputs encoding (vector/visual obser-
vations).

3. Neural network architecture for outputs (discrete action space with
branching and masking/continuous action space).

4. Parameter decaying.

5. Input processing (running normalization).

6. Others

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 28

An Overview of the Modified PPO Algorithm

Algorithm 3: Unity ML-Agents’ PPO

Initialize parameters θ in the policy network π(s) and the value
network V (s);

Reset the data buffer;
for step=1,2, . . . do

for agent=1,2, . . ., running in parallel do
Run one step with policy πθold in the environment;
if the current simulation step of the agent, tagent, is a
multiple of H (the time horizon) then

Compute advantages estimates from tagent −H to tagent
and add the history of this time period to the data buffer;

end
if tagent reaches Tmax or agent is done then

reset the agent;
end

end
if the data buffer is full then

Maximize surrogate L with respect to θ, with K epochs, and
minibatch size M ≤data buffer size, using SGD;
θold ← θ ;
Reset the data buffer;

end

end

The main difference in the training process between the vanilla PPO and
Unity ML-Agents’ PPO is when to stop the simulation of an agent and how
to collect the training data.

In the vanilla PPO, each agent runs for at most T timesteps, or until the
game ends, before the agent is stopped and reset. When resetting the agent,
its initial state needs to be randomized. The calculation of advantages uses
the whole history of this agent.

However, in Unity’s PPO, the agents keep running until Tmax steps, which
is much bigger than T usually. However, the training data is still collected at
least every T timesteps from each agent, and the calculation of advantages
uses the latest T steps of the history instead of the whole. In this way, the
whole simulation history of an agent is separated into several segments, and
each segment has T timesteps. A segment is equivalent to a simulation of
T timesteps in the vanilla PPO algorithm. Therefore, there is no need to
randomize the initial states of each agent because each segment already has
different states at the start.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 29

Another difference is that Unity’s PPO keeps collecting training data until
a data buffer is full, after which the model is updated. This guarantees that
for each training epoch, the amount of data is always the same. In the basic
PPO, if all agents end earlier than T timesteps because of failure, the data
amount for that training epoch will be less than the case when all agents
reach T timesteps. However, whether this change in Unity ML-Agents’ PPO
influences the training efficiency is unknown.

Neural Network Architecture for Inputs Encoding

The implementation of PPO in the thesis uses an actor-critic style architec-
ture the same as Unity’s PPO. Both the actor network and the critic network
have the same layer hyperparameters for input encoding layers. They can
also be configured to share the layer weights if needed.

The neural network can take both visual and vector observations as the
inputs. Unity’s implementation also takes memory inputs for recurrent neu-
ral networks, but it is not supported in our library. The visual observations
go through the visual encoder which has some convolutional layers with pre-
defined hyperparameters, and then the output is flattened into 1D neurons.
The vector observation goes through dense layers with customizable hyper-
parameters. In the end, results from dense and convolutional layers are
concatenated together to form the encoded input vector. Figure 3.3 shows
the overall architecture of the inputs encoding layers.

Neural Network Architecture for Output Values and Output Ac-
tions

Unity’s implementation of PPO supports both continuous action space and
discrete action space. The value output layers in the critic networks are
the same for both action space while the action outputs layers in the actor
networks are different.

For continuous action space, unity uses the vanilla version of PPO, where
the actor network outputs the means and variances of all actions. The final
actions to take are sampled from Gaussian distribution with that mean and
variance.

In the actor network, the last layer is a dense layer after the encoded
inputs as described in the previous section. This layer has an output size
the same as the number of required actions. The output values represent the
means of all actions.

The variances of the actions do not come from the neural network. In-
stead, each action has an independent variable which represents the natural

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 30

Figure 3.3: The input encoder of the neural networks used in PPO.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 31

logarithm of that action’s variance. Those variables are optimized during the
training.

For discrete action space, the actor network outputs the probabilities of
each possible action. The implementation also supports action branching
and masking [39]. It uses masked softmax layer to calculate the probabilities
of each action in each branch. See the reference [39] for more details.

Parameter Decaying

Some training related hyperparameters can be modified based on the train-
ing steps during the training to make the result better. For example, one can
decay the learning rate as the training goes on to make the convergence of the
neural network more stable. In the PPO implementation of this thesis, there
are two optional methods of modifying training parameters during training
automatically: polynomial and Unity animation curve. The decaying equa-
tion is:

xt = d(r) = d(t/Tmax) (3.1)

where t is the current training steps, and Tmax is the maximal training steps.
For the polynomial method, d(r) = (1− r)p(xinit − xend) + xend, where xinit
and xend are the desired initial and end value of that parameter, and p is a
constant which can be 1 for linear decay. For Unity animation method, d(r)
is defined in a animation curve which can be modified via GUI. Normally,
the parameters that should be decayed during the training are c1, c2 and ε
in Equation 2.9 and the learning rate α for SGD.

Others

Unity ML-Agents’ PPO uses other tricks in their implementation to improve
the training. The benefits of those tricks are not strictly verified but might
be useful in some cases. Therefore three of them were implemented in the
library.

Firstly, the vector observation can be automatically normalized if the
raw observation data is not normalized and causes undesired results. The
equation for the running normalization is:

mt = mt−1 + (x−mt−1)/(t+ 1)

Vt = Vt−1 + (x−mt)(x−mt−1))

x̂ = (x−mt−1)/
√

Vt−1/(t+ 1)
(3.2)

where x̂ is the normalized inputs, t is the time step, m is the running mean
and V is the running variance.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 32

Secondly, Unity ML-Agents’ implementation normalizes the advantages
used for each neural network optimization step as in Equation 2.8 before
each training epoch. The normalization of advantages might avoid the failure
when advantages are too small or too large, or there are so many negative
advantages. People have shown that sometimes negative advantages might
make the training unstable [13], but there have not been bad results yet even
though the negative advantages are kept after the normalization.

Thirdly, the final actions to take on the agents can be clipped and scaled
down to a specific range if the action space is continuous. This feature is
useful when only actions within a specific range are acceptable by the agents.

3.3.2 Implementation Details of Other algorithms

Besides PPO, this library also has implementations of other algorithms in-
cluding supervised learning, Matrix Adaptation Evolution Strategy (MA-ES)
[23], neural evolution [36], Generative Adversarial Network (GAN) [12], and
PPO-CMA [13]. Those implementations are only the vanilla versions, but
they are enough for simple applications in games and are also useful as ed-
ucational materials. In this section, the work on supervised learning and
MA-ES are briefly introduced.

Supervised Learning

It is also possible to train an agent by demonstrating the correct behavior
to it instead of training the agent with the help of reward functions. Unity
ML-Agents’ Python library provides an algorithm called Behavioral Cloning
[16]. This algorithm is essentially supervised learning. It works by collect-
ing demonstrations of observations/actions pairs and using them directly to
train the policy network. The thesis also provides the implementation of the
supervised learning algorithm using the library, and has integrated it with
ML-Agents SDK as well.

There are two steps in a supervised learning process. Firstly, the player or
another AI plays the game and the demonstration data of observations/actions
pairs is recorded. The library provides tools for recording the demonstration
data in either the Unity editor or game executables. Secondly, one trains
the neural network model using SGD with the collected observations/actions
pairs. After the training, giving the neural network an observation similar
to one in a collected pair, it is supported to output an action close to the
action in that pair.

The loss function of the supervised learning implementation has a couple
of options. For discrete action space, which means the neural network outputs

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 33

the probability of each possible action using softmax function, categorical
crossentropy loss is used. For continuous actions space, users can choose to
use either mean square error or Bayesian loss as in Equation 3.3. If users
need the neural network to output both the mean and the variance of actions,
the loss function needs to be Bayesian loss. If only the mean is needed, the
loss function needs to be mean square error.

LBayesian =
||y − ŷ||2

2σ2
+

1

2
log σ2 (3.3)

The neural network architecture for the policy network of supervised
learning can be the same as the one used in PPO. In this case, users can
first train a neural network with supervised learning, then use the trained
neural network as the initial one for reinforcement learning algorithms such
as PPO. This method might shorten the training process of reinforcement
learning if it is difficult to make progress at the start [8]. Google’s AlphaStar
[9] uses a similar concept even though the algorithm is much more compli-
cated.

MA-ES

It is also possible to use MA-ES/LM-MA-ES to search for the best actions
without training. The implementation of MA-ES and LM-MA-ES in C#
comes from Perttu Hämäläinen, and it is ported from Ilya Loschilov’s C++
code provided with his paper [23].

A helper class called ESOptimizer is provided for using MA-ES in Unity.
Developers only need to implement a C# interface for their game system to
evaluate the value of actions at any state, which is needed by the algorithm.
Then they can start the optimizing process by attaching the ESOptimizer
class to any Unity Gameobject and call the start method in C# scripts. The
hyperparameters of the algorithm can be adjusted in the Unity editor.

3.4 Performance

This section of the thesis analyses the performance of the library. The library
might be used for AI research, but it is mainly designed for developers who
want to utilize machine learning algorithms in games. It is useful to know
how fast the training and evaluation execute on a regular computer under
different situations so that developers can design proper agents and learning
environments that run with an acceptable frame rate.

This section firstly compares the sample efficiency of the PPO implemen-
tation of the thesis with the Python version of Unity ML-Agents on PC. Then

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 34

the time efficiency for training and evaluating of neural networks with differ-
ent hyperparameters is analyzed on both PC and mobile devices. The test
PC has an Intel Core i5-6300HQ CPU and a NVIDIA GeForce GTX 960M
GPU, and the test mobile phone is an Honor 10V with a HiSilicon Kirin 970
CPU. Note that GPU is only utilized by the GPU version of Tensorflow C++
library when processing on visual observations during the test.

3.4.1 Comparison with ML-Agents

To verify that the implementation of PPO is almost identical to Unity ML-
Agents, it is necessary to compare the sample efficiency of those two imple-
mentations. Some of the example environments from Unity ML-Agents are
used to train the agents with the same hyperparameters for both implemen-
tations. Figure 3.4 shows the results. In Figure 3.4, the plots for both PPO
implementations are close to each other, which demonstrates that those two
implementations are comparable.

Note that even though the sample efficiency is similar, the time efficiency
of this PPO in C# is better when the data amount generated in each step is
large. The reason is that ML-Agents uses web socket to transfer data between
the game process and the Python process, which has limited bandwidth. The
codes of our library are running within one process, and no inter-process
data transfer is required. Therefore the data transfer bandwidth becomes
the bottleneck and slows down the training of ML-Agents when the data
amount is large.

3.4.2 Time Efficiency on Different Devices

Many factors decide how long it takes to call the evaluation or the training
on a neural network. It is essential for developers to have a rough idea about
the performance to make sure the designed game can reach a reasonable
FPS. Two of the main factors that affect the performance are the number
of parameters in the neural network and the batch size for evaluation and
training. I ran some experiments to analyze the effects of those factors.

A learning environment called Empty is made for benchmarking. In the
Empty environment, the agents do not execute any logic based on their
actions. The observations sent to the Brain are vectors of random numbers.
This makes sure that the execution time of the environment is minimal. The
action and observation sizes are both 64, and the action space is continuous.

In the first experiment, the input/output size and the batch size are
fixed, while the depth and the width of the neural network are the variables.
For evaluation, the batch size (number of agents) is 10. The time of each

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 35

Figure 3.4: Comparison between the implementation of PPO in the thesis
and Unity ML-Agents. The results are the mean of five separate runs.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 36

(a) PC

(b) Mobile

Figure 3.5: Time cost (second) in each evaluation step with different depth
(column labels) and width (row labels) of the neural network.

Figure 3.6: Time cost (second) in each updating step with different depth
(column labels) and width (row labels) of the neural network.

evaluation step is measured on both PC and mobile devices, summarized in
Figure 3.5. For training, the time of each update step is measured on PC
only, summarized in Figure 3.6. Note that during the training process of
Algorithm 3, an update is only performed on the steps when the data buffer
is full; otherwise, the evaluation is performed. In the test to measure the
update time of training, the data buffer size is 2048, the epoch number is 3,
and the minibatch size is 128.

In the second experiment, the neural network has fixed depth and width (2
and 128), while the number of agents changes. This experiment is designed to
figure out how many agents at most can use the neural network for evaluation
at the same time. Figure 3.7 shows the results for both PC and mobile device.

In a game made with Unity, the evaluation for querying actions of agents
is called at most 50 times per second, which gives a 0.02 seconds interval.
According to the results, the evaluation time is much less than 0.02 seconds
on a regular PC, even if the neural network or the number of agents is large.
Therefore the performance is not an issue on PC for a regular game. However,

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE 37

Figure 3.7: The evaluation time versus the number of agents.

on mobile devices, the limitation on the number of agents or the size of neural
networks is more strict if an acceptable FPS is required.

Chapter 4

Examples

The library in this thesis provides plenty of examples. They demonstrate
the capability of this library as well as how to use different machine learning
tools provided. Some of the examples also have intuitive visualization to help
developers understand the principles behind those algorithms. Next, there is
a summary of all the examples. Figure 4.1 shows the screenshots of all the
examples. After the summary, two of the primary examples will be discussed
with more details.

3D Ball

The 3D Ball environment is copied from Unity ML-Agents’ examples, but
the AI uses this library so that training and evaluation can run in the Unity
editor or a game executable. The agents have continuous action space (tilting
angles) and vector observations (position and velocity of the ball). The AI
needs to balance the ball and keep it on the platform as long as possible by
controlling the tilt of the platform. The algorithm used in this example is
PPO.

Banana Collectors

The Banana Collectors environment is copied from Unity ML-Agents’ exam-
ples and modified to use this library as well. The agents have discrete action
space with branching and vector observations. The AI can see what objects
are in front of the agents by casting several rays ahead. It tries to move the
agents to collect good bananas, avoiding bad bananas while shooting at each
other. The algorithm used in this example is PPO.

38

CHAPTER 4. EXAMPLES 39

Figure 4.1: Images of example environments and games. Some of the en-
vironments are cloned and modified from ML-Agents. From Left-to-right,
up-to-down: (a) 3DBall, (b) Banana Collectors, (c) Grid World, (d) GAN
2D Plane, (e) Maze, (f) Pole, (g) Pong, (h) Intelligent Pool, (i) Calamachine
Union.

Grid World

The Grid World environment is copied from Unity ML-Agents’ examples and
modified to use this library as well. The agents have visual observations and
discrete action space with masking. The AI needs to move (four directions
on a grid) the blue square towards the green target without touching the red
cross. The algorithm used in this example is PPO.

GAN 2D Plane

The GAN 2D Plane environment demonstrates how to train a GAN to gen-
erate data points from a 2D multimodal Gaussian distribution.

CHAPTER 4. EXAMPLES 40

Maze

In the Maze environment, the yellow agent needs to reach to the green des-
tination and avoid the red obstacles. It is a more complicated version of
the Grid World. The agents have visual or vector observations, and discrete
action space. The algorithm used in this example is PPO.

Pole

In the Pole environment, the agents need to keep inverted pendulums bal-
anced by applying torques on them. The agents have either visual (the image
of the pendulum) or vector (current angular velocity and angle of the pendu-
lum) observations and continuous action space. The algorithm used in this
example is PPO.

Pong

The Pong environment is similar to the classic Pong (Atari, 1972) game. Two
agents are playing against each other in the arena. The agents have vector
observations (positions of balls and both agents), and discrete actions space
(moving up, down or staying).

The Pong environment includes multiple scenes that use different learn-
ing algorithms: PPO, supervised learning and PPO with neural networks
initialized from supervised learning.

Intelligent Pool

In the Intelligent Pool environment, the AI tries to play a simple pool game
automatically. It combines MAES and supervised learning algorithms, and
provides nice visualizations for people to understand the principle and the
limitation of those algorithms. The details are discussed in Section 4.1.

Calamachine Union

Calamachine Union is a game using reinforcement learning as the main me-
chanic. The base of this game is made by Lassi Vappakallio and me in a game
jam. It can be used as an educational material which teaches people the con-
cepts and capability of reinforcement learning. The details are discussed in
Section 4.2.

CHAPTER 4. EXAMPLES 41

4.1 Intelligent Pool

The Intelligent Pool, a set of examples of the billiard game, is mainly devel-
oped as the materials for the Intelligent Computational Media course. The
examples use different algorithms to showcase their concepts and capability.
The start of the examples is a simple environment where the AI needs to hit
the white ball once and tries to make both red balls on the table into pockets,
using MAES algorithm. The final goal is to develop an AI that can play a
complete game with itself. However, the final goal is not achieved. Instead,
two simplified environments were used in the end.

Each example is running in one of those two environments: environment
1 has two red balls and six pockets; environment 2 has one red ball and four
pockets.

(a) Environment 1 (b) Environment 2

Figure 4.2: Two environments used in the Intelligent Billiard. Note that the
positions of balls are randomized on start.

There are five examples as listed below.

1. Use MAES to find the optimized solution for one shot in environment
1.

2. Use MAES to find the optimized solution for two consecutive shots in
environment 1.

3. Use supervised learning together with MAES for one shot in environ-
ment 1.

4. Use PPO in environment 1.

5. Use supervised learning together with MAES for one shot in environ-
ment 2.

CHAPTER 4. EXAMPLES 42

Example 1 and Example 2

The only difference between example 1 and example 2 is that in example 1
the AI needs to find the best single shot while in example 2 it needs to find
the best two consecutive shots, both with random initial ball positions.

Those examples show the importance of reward shaping when using MAES.
Reward shaping is the idea of modifying the reward of each action so that
MAES can find the optimized solution more easily. In the examples, not
shaping the reward means the value of a shot is evaluated by how many red
balls are in pockets after the shot. In this case, the MAES optimizer is not
able to find the best shot. However, if we shape the reward function so that
the value of a shot is also determined by how close the red balls are to the
pockets, the MAES optimizer is able to find the best shot.

Both example 1 and example 2 work well with reward shaping enabled.
Example 2 takes more time for optimization because the action dimension is
larger for two consecutive shots than one shot.

Example 3

The goal of this example is to use supervised learning on neural networks
for generating meaningful actions and use those as the initial guesses of the
MAES optimizer. With the initial guess, the optimizer should be able to
find the best result faster. The data for supervised learning is collected from
running the environment with MAES as in example 1 and 2.

This idea has been proven to be helpful [29]. However, it does not work
in this case. The trained neural network often outputs an action that is not
even close to the best action that a MAES optimizer might choose. It is
misleading the MAES optimizer rather than helping it.

One reason why the supervised learning does not work well is the discon-
tinuous distribution of the optimal solutions. Figure 4.3 shows the heatmap
of all possible shots in a scenario. The whitest pixels, which indicate this
shot can pocket two red balls, are very rare on the heatmap. However, there
are plenty of less white pixels scattered. Those pixels mean only one red ball
gets in the pocket.

The training data used for supervised learning is collected by running
MAES optimization. Since the perfect white pixels are rare, when optimiz-
ing with MAES, it is not very likely that the optimal solutions can be found
every time. Also, because white pixels are scattered around, the sub-optimal
solution found by MAES might far from each other every time as well. There-
fore, in the collected data of state-solution pairs, sometimes even if the states
are very similar, the solutions might still vary a lot.

CHAPTER 4. EXAMPLES 43

(a) Environment (b) Heatmap

Figure 4.3: A scenario in environment 1 and its heatmap. The pixel coordi-
nate relative to the center represents the shooting direction and force, and
the color represents the objective score of that shot. The whiter a pixel is,
the higher the score is.

(a) Environment (b) Heatmap

Figure 4.4: A scenario in environment 2 and its heatmap. The pixel coordi-
nate relative to the center represents the shooting direction and force, and
the color represents the objective score of that shot. The whiter a pixel is,
the higher the score is.

CHAPTER 4. EXAMPLES 44

The discrepancy in the training data causes problems for supervised learn-
ing. The supervised learning usually tries to reduce the error between the
neural network’s outputs and the outputs in the training data. If there are
multiple different outputs for the same input in the training data, the neural
network will try to generate the mean of all those outputs given this in-
put. This minimizes the error but the actual output from the neural network
might be meaningless. In this case, the supervised learning neural network
learns to output the mean of some white pixels’ positions on the heat map.
It is likely that this mean position is a dark pixel instead of a white pixel,
and a dark pixel means a bad action. Above is a reason why this neural
network cannot learn anything helpful.

There might be other reasons for the bad performance of the neural net-
work, such as the neural network architecture is not good enough, the neural
network size is not big enough, or the training data set is not large enough.
Those can be topics for future research.

Example 4

No good result was obtained using PPO during the experiments. The reason
remains undiscovered and can be analyzed in the future. The hypothesis is
that it might be the lack of training time or better/larger neural network
architecture.

Example 5

This example uses environment 2, which is much simpler than environment
1. The same algorithms as in example 3 are used as well.

According to the heatmap in Figure 4.4, the white pixels are more aggre-
gated than in example 3. This alleviates the problems mentioned in example
3. Also, a simpler scenario requires a smaller neural network and less training
time to reach a good result.

After collecting 20000 samples and training the neural network for 30
minutes, the AI using only the neural network can at least shoot the white
ball to touch the red ball every time, and sometimes pocket it.

If using the output from the neural network as the initial guess of the
MAES optimizer, the performance improvement is noticeable. The average
iteration count to find a satisfying solution is reduced from 9.72 to 4.72, and
the average objective score also increases by about 0.1, as shown in Table 4.1.

CHAPTER 4. EXAMPLES 45

Mean MAES Iterations Mean Score
MAES with NN 4.72± 1.47 0.89101± 0.0401
MAES only 9.72± 1.33 0.79048± 0.0690

Table 4.1: Comparison of performance between MAES with NN and MAES
only, in Intelligent Pool environment 2. The results are based on 50 runs for
each, with a 95% confidence interval.

4.2 Calamachine Union

Calamachine Union is a game that uses deep reinforcement learning as one
of the game mechanics. In the game, the player leads a group of robots
called Frank from point A to point B on 2D platforms. There is no way
to control the characters, and they are entirely controlled by the AI trained
by the player. What the player can do is to create learning environments
where AI learns how to earn rewards. These trained AIs are saved, and the
player can choose which one to use on their adventures. For example, one AI
might know how to move to the right and another might know how to jump.
Though these AIs can get a lot more complicated than that.

In the game, there are several pre-designed levels where the player needs
to use the trained AIs to play. There is also a playground, where the player
can put items to build learning environments to train the AIs.

Figure 4.5 is a screenshot of a level. In the levels, the AI needs to control
those robots to move and jump to reach the goal position and to avoid being
killed by red killing zones. The action space of the AI is discrete, and there
are five possible actions: move right, move left, jump, crunch or do nothing.
The observation of the agents is a vector of 88 numbers, which represent the
ray casting results of 44 directions from the agent, each of which contains a
distance value and a color value.

Figure 4.6 is a screenshot of the playground scene. The player can put
items like platforms, killing zones, spawn positions, and target positions by
drag and drop. During the training, agents will spawn at the spawn position
initially. They obtain positive rewards when moving closer to the target
positions or touching the reward block, and negative rewards when being
killed. Items have different colors, and some of the items are even invisible
by the agents. When the learning starts, players can see the visualization of
agents’ trajectories and observations.

The game is a good learning material for people to know what reinforce-
ment learning is. It also showcases the capability of this library for game
development. With this example, game developers can start to think about

CHAPTER 4. EXAMPLES 46

Figure 4.5: A level in Calamachine Union.

Figure 4.6: The playground in Calamachine Union.

utilizing reinforcement learning in real games.

Chapter 5

Discussion

This thesis provides an open-source library for using state-of-the-art machine
learning algorithms in the Unity game engine. This integrates Unity and ma-
chine learning without needing to run algorithms in Python. In this chapter,
we firstly discuss the advantages and disadvantages of the library. Then two
improvements are suggested to make in the future.

The main advantage for users or players is that the library minimizes
the software dependencies and allows training of neural networks during the
gameplay. Other libraries, such as Unity ML-Agents, require Python and
some machine learning tools to be installed. They also need multiple pro-
cesses to be opened during the training. Those are not practical for the
distribution of commercial games which needs to minimize the installation
complexity for players.

There are three advantages for developers to use the library for running
machine learning algorithms in the game engine. Firstly, it is easier to handle
the data transfer when developing learning environments and learning algo-
rithms if everything is running in one computer process. If using Python,
the data transfer between the game and the Python process requires inter-
process communication and encoding/decoding of data, which increases the
working load and slows down the iteration. Secondly, the powerful and flex-
ible editor tools provided by the Unity game engine make it easier to setup
the training process or tuning the hyperparameters. The library also pro-
vides a customizable tools for visualizing the training process. Thirdly, the
programming language used in Unity, C#, is better for developing software
applications than Python. Developers have more access to low-level data
structures to optimize the running time. C# is also a strong-typed language
which is easier to debug than Python.

Developing machine learning in the game engine also has some disadvan-
tages over using Python, and we discuss two of the main ones next. Firstly,

47

CHAPTER 5. DISCUSSION 48

there are numerous machine learning libraries, tools and the-state-of-art al-
gorithms in Python, while there are very few in C#. For example, the Ten-
sorflow Python library has tools and features such as Tensorboard [1], Open
Neural Network Exchange (ONNX), distributed training and a considerable
amount of pre-implemented advanced neural network architecture, which the
library in the thesis does not have. Secondly, C# lacks some of the simpli-
fied syntax for mathematical operations found in Python. This means that
C# needs more lines of codes than Python to implement the same machine
learning method.

Even though the library already has good support for utilizing machine
learning in games, a lot of commonly used features are still missing. Two
major improvements are suggested to make in the future.

The first improvement is to add more neural network architectures and
training algorithms. For example, the Unity ML-Agents library has two
features that are not supported in the library of the thesis: the recurrent
neural networks, and the curiosity module. The first of these, the recurrent
neural network, is critical for AI that needs memory. The second feature,
the curiosity module, improves the training if the rewards obtained from the
environments are sparse and extrinsic. Also, other popular algorithms such
as Model-Agnostic Meta-Learning [10], Q-Learning and style transfer [21]
can also be included in the library.

Secondly, we can improve the multiplatform support of the library. Cur-
rently, training and convolutional neural networks are not supported on mo-
bile platforms because the standard way of building the Tensorflow Lite li-
brary for mobile platforms does not include those advanced mathematical
operations. This can be fixed by re-configuring the building process of Ten-
sorflow Lite, which is difficult without enough time and resources. Another
platform-related issue is that some basic operations such as concatenation
are not supported on Mac or Linux operation systems. This can be fixed by
rebuilding the Tensorflow C++ libraries with modifications on corresponding
operating systems.

Chapter 6

Conclusions

The library in the thesis provides machine learning tools for the Unity game
engine. The existing KerasSharp was customized for Unity so that it can be
used directly in Unity editor and standalone games built with Unity. This
library does not require the installation of other libraries, or communicating
with other computer processes. It enables the developers to develop games
or other applications that contain advanced machine learning capabilities,
using the C# programming language in Unity. The elegance of C# and the
intuitive graphic user interface in the Unity editor make the development
process more straightforward than using other tools and languages such as
Python.

Several state-of-the-art machine learning algorithms are also implemented
and integrated with the popular Unity ML-Agents SDK. The algorithms
include PPO (based on Unity ML-Agents’ Python implementation), MAES,
supervised learning and others. For any learning environment built with
ML-Agents, developers can choose to use the implemented algorithms to
train the AI without any coding, or implement other algorithms easily using
KerasSharp and our software code base. The implementation of PPO of
the thesis has similar performance to Unity ML-Agents’ regarding sample
efficiency, while faster in time when running on a regular PC.

The thesis also contains some example environments and games for ed-
ucational purposes. The Intelligent Pool example provides the visualization
of the optimizing process using MAES, and the heatmap of the 2D search-
ing space of a game. It also analyses the method of combining MAES with
supervised learning to improve the optimization performance. The Calam-
chine Union game is an example of how machine learning can be used as the
core mechanic in a game. It also helps the player to learn the concepts of
reinforcement learning by allowing them to build the learning environments
easily and visualizing the training process in an intuitive and interesting way.

49

CHAPTER 6. CONCLUSIONS 50

Other environments together provide examples of using different algorithms
for different types of agents.

The main limitations of the work are as follows. Firstly, more other
state-of-the-art algorithms need to be implemented and integrated into the
library. Secondly, some of the features such as training a neural network are
not supported on some platforms such as Android and iOS. Thirdly, some
popular neural network architectures such as recurrent neural networks are
not supported by the library.

The mentioned limitations can be addressed in the future work. Exper-
iments show that this library can be used as a straightforward toolbox for
studying machine learning and deploying machine learning in games.

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-
berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Tal-
war, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Agarap, A. F. Deep learning using rectified linear units (relu). CoRR
abs/1803.08375 (2018).

[3] Beyer, H., and Sendhoff, B. Simplify your covariance matrix adap-
tation evolution strategy. IEEE Transactions on Evolutionary Compu-
tation 21, 5 (Oct 2017), 746–759.

[4] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym. CoRR
abs/1606.01540 (2016).

[5] Chollet, F., et al. Keras. https://keras.io, 2015.

[6] Clayton, N. How supercell uses machine learning to automate mon-
etisation in clash royale, 2018. [Online; accessed 18-February-2019].

[7] Cybenko, G. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2, 4 (Dec 1989), 303–314.

[8] de la Cruz, G. V., Du, Y., and Taylor, M. E. Pre-training neural
networks with human demonstrations for deep reinforcement learning.
CoRR abs/1709.04083 (2017).

51

https://keras.io

BIBLIOGRAPHY 52

[9] Deepmind. Alphastar: Mastering the real-time strategy game starcraft
ii, 2019. [Online; accessed 22-February-2019].

[10] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning
for fast adaptation of deep networks. CoRR abs/1703.03400 (2017).

[11] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[12] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems - Volume
2 (Cambridge, MA, USA, 2014), NIPS’14, MIT Press, pp. 2672–2680.

[13] Hämäläinen, P., Babadi, A., Ma, X., and Lehtinen, J. PPO-
CMA: proximal policy optimization with covariance matrix adaptation.
CoRR abs/1810.02541 (2018).

[14] Hansen, N. The CMA evolution strategy: A tutorial. CoRR
abs/1604.00772 (2016).

[15] Hochreiter, S., and Schmidhuber, J. Long short-term memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780.

[16] Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Imitation
learning: A survey of learning methods. ACM Comput. Surv. 50, 2 (Apr.
2017), 21:1–21:35.

[17] Isla, D. Gdc 2005 proceeding: Handling complexity in the halo 2 ai,
2005. [Online; accessed 18-February-2019].

[18] Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y.,
Chen, Z., Thorat, N., Viégas, F. B., Wattenberg, M., Cor-
rado, G., Hughes, M., and Dean, J. Google’s multilingual neu-
ral machine translation system: Enabling zero-shot translation. CoRR
abs/1611.04558 (2016).

[19] Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mat-
tar, M., and Lange, D. Unity: A general platform for intelligent
agents. CoRR abs/1809.02627 (2018).

[20] Kingma, D. P., and Ba, J. Adam: A method for stochastic opti-
mization. CoRR abs/1412.6980 (2014).

http://www.deeplearningbook.org

BIBLIOGRAPHY 53

[21] Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., and Yang, M.
Universal style transfer via feature transforms. CoRR abs/1705.08086
(2017).

[22] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control with
deep reinforcement learning. CoRR abs/1509.02971 (2015).

[23] Loshchilov, I., Glasmachers, T., and Beyer, H. Limited-
memory matrix adaptation for large scale black-box optimization. CoRR
abs/1705.06693 (2017).

[24] Mannor, S., Peleg, D., and Rubinstein, R. The cross entropy
method for classification. In Proceedings of the 22Nd International Con-
ference on Machine Learning (New York, NY, USA, 2005), ICML ’05,
ACM, pp. 561–568.

[25] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-
crap, T. P., Harley, T., Silver, D., and Kavukcuoglu,
K. Asynchronous methods for deep reinforcement learning. CoRR
abs/1602.01783 (2016).

[26] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A. Playing
atari with deep reinforcement learning. CoRR abs/1312.5602 (2013).

[27] Montúfar, G., Pascanu, R., Cho, K., and Bengio, Y. On the
Number of Linear Regions of Deep Neural Networks. arXiv e-prints
(Feb 2014), arXiv:1402.1869.

[28] Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised prediction. In ICML
(2017).

[29] Rajamaki, J., Hamalainen, P., Kyrki, V., and Korkeakoulu,
P. Random Search Algorithms for Optimal Control. PhD thesis, Aalto
University, 2012.

[30] Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y.
Backpropagation. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1995,
ch. Backpropagation: The Basic Theory, pp. 1–34.

[31] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Neu-
rocomputing: Foundations of research. MIT Press, Cambridge, MA,

BIBLIOGRAPHY 54

USA, 1988, ch. Learning Representations by Back-propagating Errors,
pp. 696–699.

[32] Schroff, F., Kalenichenko, D., and Philbin, J. Facenet:
A unified embedding for face recognition and clustering. CoRR
abs/1503.03832 (2015).

[33] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algorithms. CoRR
abs/1707.06347 (2017).

[34] Seide, F., and Agarwal, A. Cntk: Microsoft’s open-source deep-
learning toolkit. In KDD (2016).

[35] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., Lillicrap, T. P., Simonyan, K., and Hassabis,
D. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. CoRR abs/1712.01815 (2017).

[36] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for reinforce-
ment learning. CoRR abs/1712.06567 (2017).

[37] Sutton, R. S., and Barto, A. G. Introduction to Reinforcement
Learning, 1st ed. MIT Press, Cambridge, MA, USA, 1998.

[38] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with function ap-
proximation. In Proceedings of the 12th International Conference on
Neural Information Processing Systems (Cambridge, MA, USA, 1999),
NIPS’99, MIT Press, pp. 1057–1063.

[39] Tavakoli, A., Pardo, F., and Kormushev, P. Action branching
architectures for deep reinforcement learning. CoRR abs/1711.08946
(2017).

[40] Yannakakis, G. N., and Togelius, J. Artificial Intelligence and
Games. Springer, 2018. http://gameaibook.org.

http://gameaibook.org

	Cover page
	Contents
	1 Introduction
	1.1 Thesis Goals and Scope
	1.2 Structure of the Thesis

	2 Background
	2.1 Machine Learning
	2.1.1 Artificial Neural Networks
	2.1.2 Stochastic Gradient Descent
	2.1.3 Proximal Policy Optimization
	2.1.4 Covariance Matrix Adaptation Evolution Strategy

	2.2 Existing Libraries
	2.2.1 Tensorflow and TensorflowSharp
	2.2.2 KerasSharp
	2.2.3 Unity ML-Agents

	3 Implementation and Performance
	3.1 KerasSharp Customization and Integration
	3.2 Software Structure and Unity ML-Agents SDK Integration
	3.2.1 Trainer and LearningModel
	3.2.2 Unity ML-Agents SDK Integration

	3.3 Algorithms Details
	3.3.1 Implementation Details of PPO
	3.3.2 Implementation Details of Other algorithms

	3.4 Performance
	3.4.1 Comparison with ML-Agents
	3.4.2 Time Efficiency on Different Devices

	4 Examples
	4.1 Intelligent Pool
	4.2 Calamachine Union

	5 Discussion
	6 Conclusions

