
Aalto University

School of Chemical Engineering

Master’s Programme in Chemical Engineering

Ville Tähkävuori

Machine learning framework for OPC
UA data (Industry 4.0)

Master’s Thesis
Espoo, April 1, 2019

Supervisor: Professor Sirkka-Liisa Jämsä-Jounela
Instructors: Alexandre Boriouchkine D.Sc. (Tech.)

Lauri Saurus M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/219838709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Chemical Engineering
Master’s Programme in Chemical Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Ville Tähkävuori

Title:
Machine learning framework for OPC UA data (Industry 4.0)

Date: April 1, 2019 Pages: iix + 71

Professorship: Process control Code: Kem-90

Supervisor: Professor Sirkka-Liisa Jämsä-Jounela

Instructors: Alexandre Boriouchkine D.Sc. (Tech.)
Lauri Saurus M.Sc. (Tech.)

Machine learning has rapidly gained popularity in all industries with the increase
of computational power and data gathering capabilities. Process industry is a
good candidate for machine learning based modeling due to the large amounts of
data gathered and need for accurate process state predictions.

In this work the viability of combining the OPC UA protocol with existing open
source machine learning libraries to create data driven models and generate real
time predictions was studied.

Scikit-learn was used to generate soft sensor style models for the butane content of
a debutanizer column output. The data for offline model training was dynamically
fetched from an OCP UA server and with a trained model predictions could be
generated in real time.

The accuracy of the generated models needs to be further researched with better
methodology and larger datasets.

Keywords: machine learning, OPC UA, framework, process industry

Language: English

Aalto-yliopisto
Kemian tekniikan korkeakoulu
Kemiantekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Ville Tähkävuori

Työn nimi:
Koneoppimiskehys OPC UA datalle (Industry 4.0)

Päiväys: 1. toukokuuta 2019 Sivumäärä: iix + 71

Professuuri: Prosessien ohjaus Koodi: Kem-90

Valvoja: Professori Sirkka-Liisa Jämsä-Jounela

Ohjaajat: Tekniikan Tohtori Alexandre Boriouchkine
Diplomi-insinööri Lauri Saurus

Koneoppiminen on kasvattanut suosiotaan nopeasti kaikilla toimialoilla laskenta-
tehon ja datankeruun kasvaessa. Prosessiteollisuus on hyvä kandidaatti koneop-
pimispohjaiselle mallinnukselle suurien datamäärien sekä vaadittujen tarkkojen
prosessimallien takia.

Tässä työssä tutkittiin mahdollisuutta OPC UA protokollan yhdistämistä ole-
massaolevien avoimen lähdekoodin koneoppimiskirjastojen kanssa mittausdataan
perustuvien mallien opettamiseksi ja reaaliaikaisten ennusteiden luomiseksi.

Scikit-learn kirjastoa käytettiin luomaan malleja butaaninpoistokolonnin ulostu-
lon butaanipitoisuuden ennustamiseen. Data mallien offline opetukseen ladattiin
dynaamisesti OPC UA palvelimelta ja valmiiksi opetetulla mallilla ennusteita
voitiin generoida reaaliaikaisesti.

Luotujen mallien tarkkuutta täytyy tutkia tarkemmin paremmalla metodologialla
ja suuremmilla datamäärillä.

Asiasanat: koneoppiminen, OPC UA, kehys, prosessiteollisuus

Kieli: Englanti

Acknowledgments

This master’s thesis was done for NAPCON of Neste Engineering Solutions
Oy between June 2017 and April 2019.

I wish to thank Professor Sirkka-Liisa Jämsä-Jounela for supervising this
thesis and my instructors D.Sc. Alexandre Boriouchkine and M.Sc. Lauri
Saurus for their detailed comments and help throughout this thesis. Addi-
tional thanks to Antti Räisänen and Markus Sintonen for helping in defining
the topic of the thesis in its early stages

Special thanks to my manager Lauri Haapanen for helping with literally
everything, Toni for always sitting next to me and Johanna for making sure
this thesis got finished. I would also like to thank the whole NAPCON team
for always being helpful and supportive during my thesis.

Espoo, April 1, 2019

Ville Tähkävuori

Abbreviations and Acronyms

AI Artificial Intelligence
OPC UA OPC Unified Architecture
ANN Artificial Neural Network
DNN Deep Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
MLaaS Machine Learning as a Service
PCA Principal Component Analysis
API Application Programming Interface
HDS Hydrodesulphurization
DMS Dimethyl sulfide
TPU Tensor Processing Unit
ASIC Application Specific Integrated Circuit
GPU Graphics processing unit
CPU Central processing unit
SVM Support Vector Machine
SOM Self-Organizing Map
KDE Kernel Density Estimation
PLS Partial Least Squares

Contents

Abbreviations and Acronyms

1 Introduction 1

2 Description of mathematical methods in machine learning 3
2.1 Machine learning model development process 3

2.1.1 Data preparation . 4
2.1.2 Data Pre-processing 4
2.1.3 Model selection and training 4
2.1.4 Deployment . 5

2.2 Machine learning methods . 5
2.2.1 Supervised learning . 5

2.2.1.1 Multiple regression linear models 6
2.2.1.2 Partial least squares regression 7
2.2.1.3 k-nearest neighbors 7
2.2.1.4 Artificial neural networks 7
2.2.1.5 Deep neural networks 9
2.2.1.6 Tree based methods 10
2.2.1.7 Kernel based methods 11

2.2.2 Unsupervised learning 13
2.2.2.1 Principal Component Analysis 14
2.2.2.2 K-Means clustering 15
2.2.2.3 Self-organizing map 16
2.2.2.4 Gaussian mixture model 16

2.2.3 Reinforcement learning 17
2.2.4 Ensemble learning . 18

3 Description of machine learning software libraries and solu-
tions 19
3.1 Open source software . 19

3.1.1 scikit-learn . 19

3.1.2 TensorFlow . 20
3.1.3 R Programming Language 21
3.1.4 Apache Spark / MLLib 21
3.1.5 H2O . 22

3.2 Proprietary software . 23
3.2.1 MATLAB . 23
3.2.2 Wolfram Mathematica 24

3.3 Machine Learning as a Service 24
3.3.1 Azure Machine Learning 25
3.3.2 Amazon Machine Learning 26
3.3.3 Google Cloud Machine Learning 26
3.3.4 BigML . 26
3.3.5 IBM Watson Machine Learning 27

4 State of the art in machine learning in process industries 28
4.1 Soft sensors . 28
4.2 Process monitoring and fault detection 30

4.2.1 Predictive maintenance 31
4.3 Reinforcement learning for process control 32

5 Machine learning framework requirements for process indus-
tries 33
5.1 Process data acquisition and storage 33

5.1.1 OPC Unified Architecture 33
5.1.1.1 Historical data access 34
5.1.1.2 Real-time access 34

5.2 Data preprocessing . 34
5.3 Machine learning methods for process industry applications . . 35
5.4 Model training . 35
5.5 Model deployment . 36
5.6 User interaface . 37

5.6.1 Model Training UI . 37

6 Implementation of an OPC UA enabled machine learning
framework 41
6.1 Choosing a machine learning library 41
6.2 Architecture of machine learning framework 42

6.2.1 OPC UA connection 43
6.2.2 Model training . 45
6.2.3 Model deployment . 46
6.2.4 User Interface . 47

6.3 Process description . 49
6.4 Gathering training and test data 50

6.4.1 ProsDS process model 50
6.4.2 Test run . 51

7 Results and Discussion 54
7.1 Framework requirements results 54

7.1.1 Process data acquisition and storage 54
7.1.2 Data preprocessing . 54
7.1.3 Algorithms . 55
7.1.4 Model Deployment . 55
7.1.5 User Interface . 55

7.2 Model performance evaluation 56
7.3 Model performance . 56

8 Conclusions and future work 60

A Debutanizer column model in ProsDS 70

B Data visualization tools in Azure Machine Learning Studio 71

Chapter 1

Introduction

As the global community has become more environmentally conscious due
to the increased knowledge on how human influence is contributing to global
warming and other environmental problems, a major global trend in process
industry during the past decade has been increasing effectiveness and reduc-
ing the pollution. Other driving factor in increasing process efficiency has
been an increase in global competition. These global trends have culminated
in European Unions (EU) case in the 2020 package, which is a set of bind-
ing legislations requiring requiring 20% cuts in greenhouse gases and 20%
increase in energy efficiency by the year 2020. Other large economies have
published similiar plans. (Ge et al., 2017)

To achieve these goals of increased efficiency and reduced pollution, pro-
cesses have become much more complex, and the amount of monitoring and
instrumentation in all process industries has increased a lot. This, in combi-
nation with the continuously decreasing price of sensors, storage space, etc.
has lead to more data being collected. (Ge et al., 2017; Harding et al., 2006)

Most of this process data goes to a history database without any detailed
analysis ever being done with it. The data is mostly used to make real time
decisions about process operation. With current methods, the value gained
from these huge amounts of raw data has diminishing returns and lots of
potential is being lost. To gain more value from high volume datasets, new
data mining methods must be adopted. (Ge et al., 2017; Harding et al., 2006)

In the past few years, machine learning has seen increase as a popular
data processing technique. It is seen as a potentially very powerful tool to
unlock hidden potential from the large amounts of being gathered. Pro-
cess industry has noticed potential for applying machine learning in process
monitoring, soft sensors, fault diagnosis and other important applications.
Machine learning is a wide set of methods that can automatically detect pat-
terns in datasets, and produce models which can generate predictions about

1

future data, without being explicitly programmed to understand the data.
(Murphy, 2012; Ge et al., 2017)

The objective of this thesis is to define a systematic framework for utiliz-
ing machine learning in process industries. The structure of the thesis is as
follows: The literature part gives an overview of machine learning, including
history and description of mathematical methods. This survey of state of
the art of machine learning in process industry applications is used to define
requirements for a machine learning framework for process industries. The
experimental part of the thesis will focuses on implementing the requirements
defined in the literature part in a demo framework of machine learning for
OPC UA process data using an existing machine learning software imple-
mentation. The framework was tested using a industrial dynamic process
simulator.

2

Chapter 2

Description of mathematical meth-
ods in machine learning

Machine learning enables computers to model systems independently by uti-
lizing large volumes of data. Machine learning algorithms can spot patterns
from complex datasets and in some cases create models that are more effec-
tive than ones programmed by humans.

Machine learning is a subset of Artificial Intelligence (AI) research. At
first expert systems with knowledge-based approaches came to dominate AI
research. The current form of data-driven machine learning began to gain
shape in the 1980s and flourished in 1990s after it started to get applied to
smaller, more manageable problems instead of general artificial intelligence.
Machine learning is a vast area of study that covers linear regression mod-
els with least squares to complicated multilayer artificial neural networks.
Machine learning contains many branches of science, including mathematics,
statistical analysis and computer science. (Hastie et al., 2009)

First, this chapter will describe the standard procedure for creating a
machine learning model, then different types of machine learning methods
are presented.

2.1 Machine learning model development pro-

cess

Machine learning model development consists of three steps: Data prepara-
tion, pre-processing and model training.

3

2.1.1 Data preparation

Data preparation is the initial step in machine learning model development.
The aim of the data preparation step is to get an overview of the data. It
contains the extraction of the dataset from historical database, decisions of
sample and variable selection. (Ge et al., 2017)

2.1.2 Data Pre-processing

After preparation, the data often requires some pre-processing before it is
ready for model training.

Removing outliers and obvious errors from the training dataset improves
the model performance. Missing values should then be handled by missing
value estimation or by completely removing the sample. (Ge et al., 2017)

Differences in variable scales need to be addressed. The absolute scale
of variables can vary a lot, even depending on the unit of measurement
(for example, kPa vs Pa). For Principal Component Analysis (PCA), the
variables must all transformed to zero mean and unit variance which makes
the different variables equal in scale. Data transformations step must be
carefully decided, as it depends significantly on the model being trained.
(Ge et al., 2017)

2.1.3 Model selection and training

The next step is to select the appropriate model for training. This is not an
easy task, and there are no standard methods for selecting the model. (Ge
et al., 2017)

The first factor to be considered is the model complexity. A linear model
should be used if possible, but if the data is highly nonlinear, more complex
models such as Artificial Neural Networks or Support Vector Machines must
be used. (Ge et al., 2017)

After the model has been selected, it must be trained with a learning
algorithm that is depended on the mode being used. Often models also
contain so called hyperparameters that can not be learned from training
data, but must be manually tuned.

Before the model is ready for deployment, it’s performance must be vali-
dated. Many methods for model validation are available. The simplest way is
to remove a part of the training dataset, and use it to check how the trained
models performs on data it has not been learning from. In K-Fold Cross
Validation, the whole dataset is separated into k subsets, and each is used
as validation set while the rest is used as training data. This gives a better

4

indicator on how well the model will perform, because it removes the effect
of what separation was chosen. (Ge et al., 2017)

2.1.4 Deployment

After training and validation, the model is ready for offline or online deploy-
ment. In case of any chances to the environment being modeled, the model
might require maintenance. This can be performed offline by repeating the
steps defined earlier, or online by some algorithms. (Ge et al., 2017)

2.2 Machine learning methods

This section looks at common machine learning methods and explains how
they work and what they can be used for. The methods have been roughly di-
vided under supervised learning, unsupervised learning, reinforcement learn-
ing and ensemble learning.

2.2.1 Supervised learning

In supervised machine learning, during the training process, the model is
supplied with labeled training examples, pairs of input objects (most often
vectors) and expected output values. The machine learning algorithm then
infers a function from the training data that can map new inputs to output
values. Mathematically this can be expressed as giving a set of training
examples of the form {(xi, yi), . . . , (xn, yn)} where xi is a vector of inputs
and yi is the expected value, then training a model so that it can create
function that can map any x→ y. (Murphy, 2012; Hastie et al., 2009)

Figure 2.1 shows the basic workflow for supervised machine learning work-
flow. Training set is split into training- and test data. Training data is used
to tune the model parameters, and test data is used after training to validate
the performance of the trained model.

5

Figure 2.1: Supervised machine learning workflow (Landset et al., 2015)

In supervised learning it is especially important that the training and test
dataset is large and representative of the phenomenon we wish to model. If
the training set is too narrow, the resulting model will only be accurate for
the training set, and will probably produce bad predictions for inputs outside
the area where the model was trained.(Murphy, 2012)

Broadly speaking, supervised machine learning problems can be divided
into regression and classification. Regression means the predicted value will
be a continuous numeric value. For time series data, this usually means
forecasting into the future or predicting a value that is difficult to measure in
real time. In classification, the output is in two or more discrete categories.

2.2.1.1 Multiple regression linear models

Linear regression models are one of the most widely used models for re-
gression. In linear regression, output response is assumed to be a linear
combination of the inputs. (Murphy, 2012)

Linear regression models are simple, but often provide good fits for the
given data. They were mostly developed in the precomputer era. (Hastie
et al., 2009)

The general form of an linear regression model is show in 2.1, input vector
X1...p and coefficients β0...p (Hastie et al., 2009):

f(X) = β0 +

p∑
j=1

Xjβj (2.1)

The coefficients β0...p are estimated from training data. The most common
way to estimate them is the least squares method, where the coefficients are
selected to minimize the residual sum of the squares (2.2). (Hastie et al.,
2009):

6

RSS(β) =
N∑
i=1

(yi − f(xi))
2 (2.2)

Other methods for estimating the coefficients for the linear model are for
example Ridge regression and Lasso. They are called regularization methods,
and their aim is to prevent overfitting to the data. Generally they yield much
better models than regular least squares, especially for high dimensional data
or low amount of samples. (Hastie et al., 2009)

2.2.1.2 Partial least squares regression

Partial Least Squares (PLS) is a method for creating linear regression mod-
els. PLS is very common in many machine learning tasks, especially in soft
sensors and process monitoring. (Ge et al., 2017; Bishop, 2006)

In regular multiple linear regression, the variables are assumed not to be
collinear. In many cases, this assumption doesn’t hold very well, especially
when the number of input variables grows. PLS is best used when there are
many highly collinear input variables. Even though the number of process
variables can be very large, the amount of underlying factors that determine
the output might be small. PLS aims to extract these factors, and use them
in creating the model. (Ge et al., 2017; Bishop, 2006)

2.2.1.3 k-nearest neighbors

k-nearest neighbors is one of the simplest machine learning algorithms. It
can be used in both classification and regression. In the former, objects are
classified by the majority of its k-nearest neighbors, where k is a positive
integer. In the latter, the objects value is an average of its nearest neighbors.
Adding weighing to the neighbors based on how far they are is a simple way
to improve the algorithm. (Bishop, 2006; Murphy, 2012; Hastie et al., 2009)

Computing the k-nearest neighbors algorithm requires the whole training
data set to be stored in memory, which can be challenging with sufficiently
large data sets (Bishop, 2006).

Using Dynamic Time Warping (DTW) as distance measure with k-nearest
neighbors classification with time series data can produce very good results
(Wang et al., 2013).

2.2.1.4 Artificial neural networks

Artificial neural network (ANN) is a computational system inspired by the
human brain. ANNs comprise of artificial neurons and weighted links be-

7

tween them. ANNs have been used for many tasks that are difficult to ex-
press via traditional rule-based programming, such as computer vision and
speech recognition. (Murphy, 2012; Hastie et al., 2009)

ANNs have their beginnings in 1943 when McCulloch and Pitts (1943)
released their paper ”A logical calculus of the ideas immanent in nervous
activity”. It presented a model of an artificial neuron whose output depends
on the weighted sum of its inputs, plus a threshold value which had to be
exceeded in order to activate the output. Research for modern ANNs with
hidden layers started to gain traction in the late 1980’s when backpropagation
algorithm (Rumelhart et al., 1986) for fitting neuron parameters for ANNs
with hidden layers became popular. (Murphy, 2012; Hastie et al., 2009)

ANNs can perform very complicated tasks, but can be challenging to set
up. The network architecture must first be determined (number of layers
and neurons, and the connections between them). After this the network is
specialized (trained) to a given problem by varying the connection weights.
Sometimes the network architecture simply does not work for the specific
problem and no amount of learning will fix it. In addition, ANN training
suffers from the existence of local minima. (Nielsen, 2015)

One of the simplest forms of ANNs is the feedforward network, where
data flows from the input layer through hidden layer(s) towards the output
layer. Figure 2.2 shows a simple feed forward ANN.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2: A simple feed forward neural network with a single hidden layer
and a single output. (Fauske, 2006)

ANNs are universal, that is they can approximate any function to arbi-
trary precision. That is, for any function f(x) there exists a neural network

8

whose output given the input x is a close approximation of f(x). This state-
ment is true for functions with many inputs, and works even with single
hidden layer networks. The approximation can be made arbitrarily close
to the original function just by adding neurons to the hidden layer. This
property of universality combined with training algorithms make ANNs very
attractive. (Nielsen, 2015)

Perhaps more interesting for time series machine learning purposes is a
type of network where connections between neurons form loops. This gives
the network a form of state, which enables them to process dynamic temporal
behavior. The network presented in Figure 2.3 is almost the same as the feed
forward network in Figure 2.2 except for the loop-backs in the hidden layer,
shown here in bold.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.3: A recurrent neural network.

Long Short-Term Memory (LSTM) is a special Recurrent Neural Network
(RNN) architecture presented by Hochreiter and Schmidhuber (1997). It has
been shown to produce state-of-the-art results in applications with sequential
data. LSTM networks are good at handling long term temporal relations in
data. (Che et al., 2016)

2.2.1.5 Deep neural networks

A Deep Neural Network (DNN) contains multiple hidden layers between the
input and output layers. In theory, DNNs have existed for as long as ANNs,
but they suffered from lack of good training algorithms and slow computer
hardware. In 2006, computers had become faster and Hinton et al. (2006)

9

published a breakthrough paper describing how DNNs could be trained effec-
tively. Since 2006, Deep Learning and DNNs have become extremely popular
in machine learning. (Schmidhuber, 2015)

Figure 2.4 shows a fully connected feedforward DNN with four hidden
layers and five neurons each, but the number of layers and neurons can be
substantially higher (Schmidhuber, 2015).

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layers

Input
layer

Output
layer

Figure 2.4: A feedforward Deep Neural Network.

DNNs are good at learning representation of high dimensional data. DNNs
have showed extremely good performance in many important applications,
easily outperforming other machine learning methods. DNNs have even out-
performed humans in pattern recognition tasks on a limited set. (Schmidhu-
ber, 2015)

2.2.1.6 Tree based methods

Decision trees are a class of machine learning methods that recursively par-
tition the input data space to purer output. Decision trees can be thought
of as a sequence of if-then-else statements. Decision trees power is that they
can fit almost any data distribution, but this can result in overfitting of the
data, but this means that they can be prone to overfitting. (Aldrich and
Auret, 2013)

Figure 2.5 shows a simple decision tree which can classify two dimensional
data into five categories.

10

(a) Decision tree (b) Partitioned space

Figure 2.5: A simple classification decision tree (Bishop, 2006).

Random forest or random decision forest is an ensemble learning method
using multiple decision trees. Random forests are created by training different
decision trees from randomly chosen subset of input variables and data cases.
(Murphy, 2012)

In a technique called bootstrap aggregating (bagging), when random for-
est method is used to predict something from input, the individual decision
trees in the random forest vote on the output value, as shown in equation
2.3, where fm(x) is m’th decision trees output (Murphy, 2012):

f(x) =
M∑

m=1

1

M
fm(x) (2.3)

Random forests are good at preventing overfitting to the training data,
which can be a problem using individual decision trees.

2.2.1.7 Kernel based methods

Kernel methods are a class of machine learning methods. Kernel methods get
their name from the kernel functions they use. A kernel function is a similar-
ity function, it takes two inputs and returns how similar they are. There are
many kinds of kernels that can be used (linear, polynomial, many specialized
kernels), the choice of the kernel can be very specific to the problem being
studied. (Murphy, 2012)

Support Vector Machine (SVM) is one of the most important kernel based
methods in use today. Original SVM algorithm dates back to a paper by
Vladimir Vapnik in 1963, but the current standard method is based on a

11

paper by Cortes and Vapnik (1995). SVMs can be used for supervised clas-
sification, regression and unsupervised clustering.

In clustering, SVMs generate maximum margin hyperplanes for the data.
Figure 2.6 shows a maximum margin hyperplane generated from a trained
two class SVM with linearly separable data. Samples that lie exactly on the
margin, are called support vectors.

Figure 2.6: Maximum margin hyperplane between two classes generated by
an SVM used for classification (Anonymous, 2008)

If the data is not linearly separable, which is often the case, SVMs aim
to map the data to higher dimension to gain linear separability. Figure 2.7
shows an example with non linearly separable data.

Figure 2.7: Mapping (Φ) of non linearly separable data to a higher dimension
to make the it linearly separable (Anonymous, 2016).

12

The ’kernel trick’ allows for usage of very high dimensional kernels without
requiring to do the computationally expensive transformation. These kernels
must allow for expressing the similarity score directly using the features in
the original mapping. (Bishop, 2006)

The advantages of SVMs are the high versatility achievable by choosing
specific kernels, it is a convex optimization problem (the training can’t get
stuck on a local minimum). The disadvantages are also related to the ver-
satility of the kernel functions. Achieving good generalization performance
requires lots of knowledge of the data being modeled and specifics on how the
different kernels perform and their hyperparameters. (Bishop, 2006; Murphy,
2012)

SVMs can also be extended for use in regression tasks by choosing the
optimization restrictions differently. This is often called Support Vector Re-
gression (SVR). SVR retains most of the advantages and disadvantages of
SVMs. (Bishop, 2006)

SVMs can be applied for machine learning with time series data by choos-
ing correct kernel methods. Gudmundsson et al. (2008) used dynamic time
warping based kernel for speech recognition with promising results.

2.2.2 Unsupervised learning

Unsupervised learning is a machine learning task used for drawing inferences
from the unlabeled data containing only inputs without any desired output
values. The need for unsupervised learning methods is caused by the massive
amounts of unlabeled data compared to labeled data. (Murphy, 2012; Hastie
et al., 2009)

The most common unsupervised learning method is clustering, where
the unlabeled data is assigned into separate ”natural” clusters, hoping that
these clusters will tell us something about the data contained in them. Prin-
cipal Component Analysis (PCA) is another common unsupervised learning
method, often used in conjunction with supervised learning methods for fea-
ture extraction. (Murphy, 2012; Hastie et al., 2009)

Unsupervised learning applications in process industries are dimension-
ality reduction, outlier detection, process monitoring and data visualization
(dimensionality reduction).

Unlike in supervised learning, in unsupervised learning the accuracy of
the models cannot be automatically evaluated against labeled data.

13

2.2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure used for di-
mensionality reduction.

The goal of PCA is to reduce the amount of dimensions in the data. It
does this by finding the directions in the data which cause the largest and
smallest variations. Figure 2.8 shows a graphical example in two dimen-
sions, but PCA can be applied to data with any amount of dimensions. In
higher dimensions, multiple principal components can be found, under the
constraint that the nth principal component is orthogonal to all principal
components before it. (Aldrich and Auret, 2013; Ge et al., 2017)

Figure 2.8: Largest and smallest principal components of some data points.
(Hastie et al., 2009)

Due to the nature of how PCA works, the principal components generated
will be completely uncorrelated, which greatly aids in data analysis. (Ge
et al., 2017)

PCA is useful with data that contains high-dimensional correlated data.
High-dimensional data is difficult to work with, but PCA can compress higher
dimensional data to fever dimensions by finding linear combinations between

14

variables while preserving large fraction of the original data content. (Aldrich
and Auret, 2013; Ge et al., 2017)

Many variations have been made to PCA to improve performance in com-
plex applications, including nonlinear PCA, dynamic PCA, adaptive PCA
and mixture PCA. (Ge et al., 2017)

2.2.2.2 K-Means clustering

k-means clustering is a simple clustering algorithm where the goal is to par-
tition observations into k different clusters. Algorithm 1 shows the standard
k-means algorithm. (Bishop, 2006)

Algorithm 1 K-means algorithm (Hastie et al., 2009)

1: give initial (random) values for cluster centers
2: repeat
3: Assign each observations to cluster whose center is closest (euclidean

distance)
4: Update each cluster center location
5: until converged (assignments no longer change)

Figure 2.9 shows a visualization of how k-means clustering works itera-
tively.

Figure 2.9: k-means iterations with 50 data points and 3 random initial
cluster centers. (Johnson, 2017)

15

This direct implementation can be rather slow, as the number of euclidean
distance calculations done in each iteration of the loop is rather large. Many
proposals to speed up the algorithm have been made, such as precomputed
data structures which map nearby point to same subtree, and mathematical
tricks like triangle inequality which eliminate unnecessary distance calcula-
tions. (Bishop, 2006)

Unlike k-nearest neighbors algorithm, we do not have to keep the whole
training dataset in memory after the model has been trained.

While k-means is easy to use and relatively simple to understand and
implement, it has some caveats and limitations that need to be taken into
account:

The amount of clusters hyperparameter, k, needs to be set manually, and
as the initial cluster centers are set randomly, sometimes the clustering is not
optimal. Due to these two factors k-means often requires more than one try
to get a useful clustering result.

Euclidean distance is not a very useful measure of similarity with really
high dimensional data, referred often to as the ”curse of dimensionality”.
The standard k-means clustering algorithm only uses straight lines to divide
the data, which can be insufficient for some datasets.

2.2.2.3 Self-organizing map

A self-organizing map (SOM) is a type of ANN that can be used for un-
supervised learning. SOMs (sometimes called Kohonen Maps) learn data
mapping from high-dimensional data to low-dimensional (typically two) rep-
resentation. (Kohonen, 1997; Kadlec et al., 2009).

SOMs are trained with competetive training algorithms, which differ from
the error correcting algorithms used in supervised learning process (backprop-
agation).

2.2.2.4 Gaussian mixture model

Gaussian mixture model is a probabilistic model which gives a probability of
a sample belonging in subpopulation. It does not require labeling of subpop-
ulations, and can learn them automatically. Mixture models are especially
useful for characterization of processes with multiple operating points and
product grades. (Bishop, 2006; Ge et al., 2017)

16

2.2.3 Reinforcement learning

In reinforcement learning, the machine learning algorithms output influences
the environment it is acting in, and the algorithm receives feedback on how
it is performing. The goal in reinforcement learning is to find a policy that
maximizes the cumulative rewards (positive feedback). (Spielberg et al.,
2017)

Figure 2.10 shows the essence of reinforcement learning, how the agents
actions interact with the state of the environment, which produces new state
and reward feedback. (Sutton and Barto, 1998)

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 2.10: Basic reinforcement learning scheme. (Bacon, 2013)

Storing the raw policy might be impractical, especially with high dimen-
sional state-action data. Instead, ANNs and other function approximators
are used with reinforcement learning. (Spielberg et al., 2017)

One important challenge that affects reinforcement learning but does not
arise at all in supervised learning problems is exploitation versus exploration.
To gain positive feedback (succeed in the task it has been given), the rein-
forcement learning algorithm must exploit what it knows already, but to make
better decisions in the future, it must also explore its environment to learn
how to make better decisions in the future to gain higher rewards. Neither
aspect can be ignored, or the algorithm will fail at the task. (Sutton and
Barto, 1998)

Reinforcement learning combined with Deep Learning has proven to be
extremely promising approach for complicated tasks such as playing strategy
games such as go, chess and shogi. DeepMind, a company owned by Google,
developed a general reinforcement learning algorithm that could teach itself
to play these strategy games at a superhuman level, beating other state of
the art game engines after just a couple of hours of playing against itself,
with no external input other than the rules of these games. (Silver et al.,

17

2017)

2.2.4 Ensemble learning

In ensemble learning, multiple base models are used to improve the perfor-
mance (prediction, classification, etc.). The main goal of ensemble learning is
to reduce the possibility of an inaccurate model being used, that happens to
accurately model the test data, because of model misconfiguration. (Murphy,
2012; Polikar, 2006)

There are multiple reasons to use ensemble learning systems. Sometimes
good performance in training data does not imply good generalization per-
formance, and different machine learning algorithms generalize differently
from the same training data. Large amounts of data might be infeasible to
process for a single algorithm, and combining multiple algorithms is usually
more efficient. Ensemble systems have also been used for the exact opposite
problem, too little data.(Polikar, 2006)

The chapter on tree based methods (2.2.1.6) will take a look at Ran-
dom Forest method which is an ensemble learning system based on multiple
decision trees.

18

Chapter 3

Description of machine learning
software libraries and solutions

Having seen the demand for machine learning, many solutions have appeared
on the market. This chapter presents available open-source, proprietary and
service based machine learning software. Machine learning method offering
and maturity, and ease of integration with OPC UA data are evaluated.

3.1 Open source software

In open source software the source code is fully available. It is generally free
and can be used within commercial products without any fees or obligations,
though this may depend on the license. Some licenses may oblige you to
share any modifications you made, example of such a license is the GNU
General Public License (GPL) (Anonymous, 2007a).

There are three different kinds of open source machine learning software
solutions, general machine learning, neural network focused, and distributed
focused. This means there is no single best library to choose from.

3.1.1 scikit-learn

Scikit-learn is a machine learning library for the Python programming lan-
guage. It is designed to be as simple as possible to install and use, and fea-
tures a large library of regression, classification and clustering algorithms. It
is not designed with massive datasets and cluster computing in mind. scikit-
learn depends on NumPy (numerical operations library) and SciPy (scientific
library). scikit-learn has a very healthy community with lots of users, and
new versions are being released periodically with new features and bug fixes.

19

(Pedregosa et al., 2011)
scikit-learn has one of the largest set of machine learning tools for a

single library. Most important supervised learning algorithms include Neural
Networks, Support Vector Machines, Nearest Neighbors and Decision Trees.

scikit-learn also has tools for data preprocessing, feature selection and
model evaluation built in. Data preprocessing tools include transformations
like standardization and normalization, binarization and imputating missing
values.(Buitinck et al., 2013)

scikit-learn is licensed under the BSD license, which gives the user al-
most unlimited freedom as long as the BSD copyright and license notice are
included. (Pedregosa et al., 2011)

3.1.2 TensorFlow

TensorFlow is a machine learning library primarily designed for deep learning,
developed by Google Brain. It is based on Google Brains research project in
very-large-scale deep learning which started in 2011. TensorFlow itself was
released in 2015. Currently, TensorFlow has a large community of developers
and users behind it and it is being used in production environments at Google
and other companies. (Abadi et al., 2015; Anonymous, 2017k)

TensorFlow is written in Python, C++ and CUDA. Official Application
programming interfaces (API) are provided for Python, C++ and Java. The
community has developed bindings for many other programming languages,
including C#, Rust and Scala. TensorFlow can run on multiple CPUs and
GPUs to vastly increase the speed at which model training happens. (Abadi
et al., 2015; Anonymous, 2017k)

TensorFlow gets its name from tensors, which in this case mean n-dimensional
matrices. Models in TensorFlow are based on computational graphs, which
consists of nodes of operations, which can be simple as adding or multiplying
two constants or tensors, or more complicated functions. These computa-
tional graphs are then run in parallel. TensorFlow’s main purpose is to
provide an interface for expressing complicated machine learning algorithms
and then running them on any level of system, ranging from mobile devices to
very-large-scale distributed server farms with hundreds of Central Processing
Units (CPU) and Graphics processing units (GPU). (Abadi et al., 2015)

While TensorFlow is primarily used for deep learning with neural net-
works, TensorFlows API allows for implementation of general machine learn-
ing algorithms. TensorFlow ships with a module that implements some pop-
ular algorithms:

• K-means clustering

20

• Random Forests

• Support Vector Machines

• Gaussian Mixture Models

• Linear/Logistic regression

TensorFlow is licensed under Apache 2.0 which permits commercial use.
(Abadi et al., 2015)

3.1.3 R Programming Language

R is a language and environment for statistical computation and graphics. On
top of containing the most common elements of any programming language
(conditionals, loops, functions, I/O facilities) it contains data preprocessing
tools, and large library of statistical data analysis tools.(Anonymous, 2017j)

ANNs can be implemented using R. Single-hidden-layer neural networks
are implemented in a package called nnet, which is shipped with base R.
Recurrent neural network and some deep learning flavors of neural network
packages also exist for R.(Hothorn, 2017)

The base R language is licensed under GNU General Public License
(GPL). GPL permits commercial use of the software. Most packages are
licensed under GPL or similiar license, but some have a noncommercial
clause.(Anonymous, 2017j, 2007a)

3.1.4 Apache Spark / MLLib

Apache MLLib is a machine learning library for Apache Spark. Spark is
a popular open source general-purpose cluster computing system for large
amounts of data, which provides an interface for programming clusters of
computers with parallelism and fault-tolerance. MLLib provides a complete
machine learning pipeline with data pre-processing tools, multiple machine
learning models and deployment tools. Spark has APIs for Java, Python,
Scala and R languages. (Meng et al., 2016)

MLLib has a large library of algorithms for basic statistics, classification,
regression and feature extraction and selection. Supervised and unsupervised
algorithms are presented in Table 3.1.

21

Table 3.1: List of machine learning algorithms supported by Apache MLLib.
Supervised Deep Neural Networks, Random Forests,

Generalized Ldinear Model, Gradient Boost-
ing Machine, Näıve Bayes Classifier, Stacked
Ensembles

Unsupervised Generalized Low Rank Models, K-Means
clustering, Principal Component Analysis

Landset et al. (2015) performed a survey of open source hadoop based
machine learning tools, according to which MLLib provided the most well
rounded algorithm library. Distributed machine learning generally have a
smaller algorithm library compared to non-distributed system due to how
many machine learning algorithms cannot be distributed. (Landset et al.,
2015)

3.1.5 H2O

H2O is an open source machine learning platform/library written in Java. It
aims to provide a complete system for distributed machine learning, including
data handling, distributing model training tasks and deploying the models.
(Anonymous, 2017e)

H2O has a decently large list of supported algorithms. A list of algorithms
is presented in Table 3.2.

Table 3.2: List of machine learning algorithms supported by H2O.
Supervised Deep Neural Networks, Random Forests,

Generalized Linear Model, Gradient Boost-
ing Machine, Näıve Bayes Classifier, Stacked
Ensembles

Unsupervised Generalized Low Rank Models, K-Means
clustering, Principal Component Analysis

The native deep learning in H2O is based on multi-layer feedforward
ANN. Other types of deep neural networks such as Convolutional Neural
Networks and Recurrent Neural Networks are supported by H2O Deep Water
project, which integrates other deep learning libraries (TensorFlow, Caffe).
(Anonymous, 2017e)

22

H2O provides multiple ways to control it. It has a built-in web-based in-
terface called Flow which allows H2O to be controlled without any program-
ming experience. Python, R and Java have native APIs to programmatically
control H2O. A REST API is also provided, which can be used from almost
any programming language. (Anonymous, 2017e)

Getting data into H2O can be done in many ways. Table 3.3 shows
supported data types and data sources. (Anonymous, 2017e)

Table 3.3: Data types and sources accepted by H2O system.
Data types CSV, ORC, SVMLight, ARFF, XLS, XLSX,

Avro, Parquet
Data sources Local, Remote File, Amazon S3, HDFS,

JDBC

H2O is licensed under Apache-2.0, which is very permissive. It allows for
H2O to be used commercially. (Anonymous, 2017e, 2004)

According to Landset et al. (2015), H2O and Apaches’ MLLib are quite
similar. Where H2O trumps the other frameworks are deep learning capa-
bilities.

3.2 Proprietary software

Proprietary software costs money and the source code is usually not avail-
able to the customer. Vendors who sell proprietary software often provide
incentives such as customer support on top of the software to help sell them.

3.2.1 MATLAB

MATLAB (from the words matrix laboratory) is a proprietary numerical
computing programming language and environment continuously developed
by MathWorks since 1984.

MATLAB offers large amount of ready made tools for supervised and un-
supervised machine learning purposes. For regression, regular linear models
including PLS, decision trees, k-nearest neighbors and neural networks are
supported. For classification, SVM, logistic regression, discriminant analysis
and neural networks are supported. For clustering, k-means, GMMs, SOMs
and hidden Markov models are supported. This list is not exhaustive. As
MATLAB is also an complete programming environment with a large toolset,

23

implementing ones own models is possible and made easier by the available
tools. (Anonymous, 2017g)

Applications / Algorithms written in MATLAB can be compiled as stand-
alone executables, C/C++ libraries, .NET components, Java classes and
Excel Add-ins. This helps with model deployment, as buying MATLAB to
run the developed model is not necessary.

OPC UA support can be added to MATLAB using OPC Toolbox. It sup-
ports namespace browsing, reading and writing, and historical data reading.

A single user commercial base MATLAB license costs 2000e with tool-
boxes ranging from 1000e to 2000e (Statistics and Machine Learning Tool-
box is 1000e, OPC Toolbox is 1150e). MathWorks does not make clear how
much multiple licenses would cost and how freely applications developed in
MATLAB can be distributed.

3.2.2 Wolfram Mathematica

Wolfram Mathematica is a technical computing environment developed by
Wolfram Research. Originally it was developed for symbolic mathematical
calculation, but now it is used in many areas of science and engineering
computation.

Often the most difficult part in solving a machine learning problem is
choosing a right algorithm. Mathematica tries to mitigate this by automating
the process.

Mathematica has experimental but advanced support for ANNs. Arbi-
trary networks can be created and trained through supervised and unsuper-
vised learning. Recurrent neural networks, including LSTM, are supported
with built-in functions. The neural network package has some built-in func-
tionality for time series analysis. Both CPU and GPU can be used for training
and using the models. (Anonymous, 2017l)

Programs written in Wolfram Language can be deployed in many ways,
including but not limited to: cloud hosted web API, embedded programs,
linkable library.

Pricing for Mathematica depends on what license level you buy. For a
standard desktop individual professional license, Mathematica costs 3345e
(excluding VAT).

3.3 Machine Learning as a Service

Machine Learning as a Service (MLaaS) is a new system where everything
from training the models and deploying them in end application is managed

24

by the provider. Usually they run proprietary algorithms, but they can also
be just hosting providers for running open source implementations.

3.3.1 Azure Machine Learning

Azure Machine Learning is a Machine Learning as a Service (MLaaS) pro-
vided by Microsoft. It provides a framework for creating and running pre-
dictive machine learning models in the cloud.

Azure ML is a fully managed service, where Microsoft provides all the
servers infrastructure required for training and running the models. Models
are created in Azure Machine Learning Studio, which can be accessed using
a web browser. Some of the distinguishing features of Azure Machine Learn-
ing are collaboration capabilities, automatic versioning and visual workflow.
(Anonymous, 2017c)

Figure 3.1 shows the basic workflow in Azure ML.

Figure 3.1: Azure machine learning workflow. (Anonymous, 2017c)

Azure ML studio supports data input from the following sources (Anony-
mous, 2017c):

• A Web URL using HTTP

• Hadoop using HiveQL

• Azure blob storage

• Azure table

• Azure SQL database or SQL Server on Azure VM

25

• On-premises SQL Server database

• A data feed provider, OData currently

Azure ML has a large set of algorithms to choose from. In addition to the
built in data manipulation and machine learning blocks, Azure ML Studio
also supports using Python and R programming languages for processing the
data.

After the mode has been created and trained using Azure ML Studio,
it can be deployed as a web service. These web services can be queued in
real-time or batches of 1000 predictions.

Azure ML doesn’t currently have straightforward integration with OPC
UA, but Microsoft’s other product, Azure IoT Suite, recently received OPC
UA support (George, 2016).

3.3.2 Amazon Machine Learning

Amazon Machine Learning is a fully managed MLaaS provided by Amazon.
It provides a framework for creating and running predictive machine learning
models online.(Anonymous, 2017b)

As of writing this, the Amazon ML only supports input as comma sepa-
rated values (csv) files from Amazon S3 service or from Amazon Redshift, a
managed data storage service.

Amazon Machine Learning uses the pay for use model, with no minimum
fees or upfront costs. Cost is determined by how much computing time is used
to train the models and how many predictions are generated.(Anonymous,
2017b)

3.3.3 Google Cloud Machine Learning

3.3.4 BigML

BigML is a fully managed MLaaS. It provides end-to-end solutions for most
machine learning tasks.

BigML offers some generic machine learning algorithms, such as those dis-
cussed in Chapter 2, but they are mostly focused on their proprietary models
and algorithms. For regression and classification tasks, BigML offers their
proprietary tree based algorithms. For clustering they offer their proprietary
implementation of K-Means. No research was found on the performance and
maturity of their proprietary machine learning models. (Anonymous, 2017d)

BigML supports many types of remote data sources, but data formats
supported are limited to CSV, JSON, and ARFF.

26

What sets BigML apart from other MLaaS providers like Microsoft’s
AzureML, is that they provide totally private deployments for customers.
This enables the companies to have more confidence in their data security,
as the data will never have to leave their own server rooms, unlike when using
cloud based machine learning services where your data is sent to the cloud.
BigML can also be hosted on the customers choice of cloud hosting, such as
Azure or Amazong AWS. (Anonymous, 2017d)

Hosted BigML pricing is tiered, starting from free and going up to $10,000
per month. The highest tier provides unlimited storage, 64 GB max dataset
size and 64 parallel tasks. Private cloud or on-premises deployment starts
from $45,000 per year for 1 server / 8 cores and goes up to $2,250,000 per
year for unlimited servers. (Anonymous, 2017d)

3.3.5 IBM Watson Machine Learning

IBM offers MLaaS solutions under the Watson Machine Learning brand. It
is focused on providing a set of REST APIs for managing machine learning
model deployments. It does not offer advanced tools for data analysis or
model training, and training models requires writing your own programs in
Python or Scala. (Anonymous, 2017f)

Watson Machine Learning supports deploying of models created in Apache
Spark MLLib, scikit-learn and IBMs proprietary SPSS Modeler. (Anony-
mous, 2017f)

The service is priced in three tiers: Free, Standard and Professional. Free
plan includes 5000 predictions and 5 compute hours, Standard plan costs
$0.50 / 1000 predictions and $0.45 / hour of computer hours. (Anonymous,
2017f)

27

Chapter 4

State of the art in machine learn-
ing in process industries

This chapter describes the state of the art in machine learning in process
industries, including soft sensors, process monitoring, fault detection and
predictive maintenance.

4.1 Soft sensors

In industrial processes, some variables will always be difficult to measure
directly. Some of these difficult to measure variables are also closely related
to the final product quality. Examples of difficult to measure variables in oil
refining are distillation end points and fuel cold properties (freeze and cloud
points).

Soft sensors (sometimes smart or virtual sensors) are software sensors that
instead of measuring a variable directly, use predictive models, either white-
box models based on the underlying physical and chemical principles, or
data-driven black-box models, to calculate desired variables from a process.
Models based on first principles are difficult to develop for massive scale oil
refining operations, which gives motivation for data-driven approaches. In
this section we will take a look at machine learning methods for soft sensors.
(Kadlec et al., 2009)

Soft sensor development process closely follows the procedure described
in section 2.1. Figure 4.1 shows a general picture of how data-driven soft
sensors are developed. Data collection is important, and the data used to
train the machine learning model should cover a large amount of probable
operating conditions. In variable selection, we wish to reduce the amount of
variables used in the soft sensor to avoid the ”curse of dimensionality”. The

28

variable selection usually involves both preliminary expert knowledge of the
process with some trial and error.

Figure 4.1: Soft sensor development and maintenance workflow (Haimi et al.,
2011)

The original and still most important use of soft sensors in process in-
dustries is to predict process variables that can only be determined at low
sampling rates or through off-line analysis only. As these variables are often
related to the product quality, having them available is very beneficial for
process control. (Kadlec et al., 2009)

First generation data-driven soft sensors were built with the traditional
offline machine learning approach, where historical data is used to train a
model for the soft sensor and then they were only used online. Complex
processes where operating conditions are changing constantly require online
adaptive soft sensor modeling for optimal performance. (Kadlec et al., 2011;
Ge and Song, 2010)

Changes in processes can include process input (raw material) change,
equipment wear and catalyst deactivation. The earliest adaptive mechanisms
were based on moving window with a maintenance mechanism that depended
on laboratory results. (Kadlec et al., 2011)

Many machine learning methods have been applied to smart sensors. Ac-
cording to Kadlec et al. (2009), PCA, partial least squares, various forms of
ANNs, and SVMs are popular.

Gonzaga et al. (2009) used a simple feed forward ANN to provide on-line
estimates of polyethylene terephthalate viscosity.

Shang et al. (2014) introduce a novel semi-supervised deep learning tech-
nique for data-driven soft sensors. Their method is applied to estimate the
heavy diesel 95% cut point of a crude distillation unit. Their method was
much more accurate when compared to traditional one hidden layer ANN,

29

SVM or PLS. Training the deep learning model takes longer than other mod-
els, but was still completely reasonable at less than 5 minutes on a modern
consumer computer. Prediction computation time with the neural network
stays constant after the architecture has been decide, whereas the complex-
ity of SVM model increases as more training data is used and eventually
becomes too slow for real time prediction.

Yan et al. (2017) present a deep learning denoising autoencoder neural
network (DAE-NN) approach for soft sensors. Denoising autoencoders goal
is to be able to reconstruct the original input data from corrupted (noisy)
input data. The neural network was applied in a case study to predict oxy-
gen content in flue gases of a coal-fired power plant. Twenty two variables
were used as inputs to the neural network, 7420 process datasets were used
in training and 3710 in testing. Their approach proved to be more accurate
than currently much used SVM regression and simpler neural network archi-
tectures, even with PCA pre-treatment for the data. The downside for their
DAE-NN was the highest computational time used for training.

Pani et al. (2016) used a PCA and an ANN to develop a soft sensor for
measuring butane concentration from a debutanizer column bottom product,
which is the same process and estimated variable that will be explored in the
experimental part of this thesis.

4.2 Process monitoring and fault detection

Process monitoring is important for successful operation of a process. Process
upsets, equipment failures and events that might affect product quality must
be detected early. (Aldrich and Auret, 2013)

Both supervised and unsupervised machine learning methods are used in
process monitoring and fault detection problems. (Ge et al., 2017)

The most used machine learning methods in data driven process monitor-
ing applications have historically been PCA and other nonlinear dimension-
ality reduction algorithms, such as nonlinear PCA and kernel PCA (Aldrich
and Auret, 2013). The linear features extracted by PCA are then used with
statistical methods, usually Hotelling’s T 2 and Q-statistic to detect abnormal
behavior. (Qin, 2012)

Soft sensors are also employed in process monitoring, as they can be used
to predict the product quality. If the predicted product quality falls below
certain limits, the process is considered to be abnormal. (Qin, 2012)

Figure 4.2 shows a diagram of how PCA and soft sensors (PLS in this
case) are utilized in process monitoring.

30

Figure 4.2: Process and product quality are monitored using PCA and PLS
soft sensor (Qin, 2012).

If abnormal conditions in a process are detected, it is desirable to know
what caused the fault. Fault identification is the process in which after ab-
normal process conditions are detected, the cause of the fault (faulty sensor,
actuator, or other) is identified. (Qin, 2012)

4.2.1 Predictive maintenance

Unscheduled shutdowns of manufacturing processes are very expensive and
potentially dangerous. The most common method of maintenance for im-
portant systems is conventional preventive maintenance based on a schedule
determined on technicians experience or statistics on how often the system
failed in the past. Most systems that must be depended on are serviced on
a schedule that is usually more frequent than would strictly be necessary, to
make sure that the system does not fail. This over eager maintenance results
in wasted resources. (Aldrich and Auret, 2013)

Predictive maintenance refers to a maintenance scheme where mainte-
nance is performed based on the actual level of wear in the equipment, instead
of statistically determined schedule. Machine learning enables the identifica-
tion of failure signatures from historical data, providing a way to determine
level of wear. Predictive maintenance aims to give insight on what is the
probability of equipment failure in the near future, and what is the remain-
ing lifetime of the equipment before failure. For predictive maintenance to

31

work, sufficient amount of historical data which shows previous failure modes
is required to support prediction. (Aldrich and Auret, 2013)

4.3 Reinforcement learning for process con-

trol

Designing good process control systems is a time consuming and difficult
task. It requires careful analysis of the process and detailed mathematical
modeling. (Spielberg et al., 2017)

Reinforcement learning in general was discussed in section 2.2.3. Spiel-
berg et al. (2017) presents how reinforcement learning could be applied in
process control applications. Their method doesn’t require time consuming
modeling and automation design process, instead the model would learn the
behavior of the process directly by interacting with it. This means the model
can be applied to many different kinds of processes with minimal work, and
the model could automatically learn new control policies after changes to the
process.

Chen and Wang (2014) showed how reinforcement learning can be used
to optimize operation conditions for cost on a CO2 capture process using
combined information from simulation and real process data. Simulations
are easier and cheaper to perform than experiments with real equipment,
and give access to process variables that would be inaccessible in the real
process.

32

Chapter 5

Machine learning framework re-
quirements for process industries

To fully utilize machine learning in production, many subsystems (data gath-
ering, preprocessing, model training, and deployment) are required to work
together. A framework combines all of these subsystems in a larger single
system that makes developing machine learning solutions easier. Defining
requirements for such a system gives software developers a clear goal to work
towards. (Hastie et al., 2009)

This chapter will discuss the requirements for an (OPC UA) based ma-
chine learning framework for process industries. OPC UA and its useful
features for the framework are presented. Algorithms and software discussed
in the earlier chapters are evaluated with process industry use in mind.

5.1 Process data acquisition and storage

The first requirement for any machine learning is acquiring training data.
This section will take a look at how OPC UA can be used for gathering
measurement data, accessing historical data and reading and writing mea-
surements in real time.

5.1.1 OPC Unified Architecture

OPC UA is a platform-independent communication standard for all industrial
domains. It was created to replace the original OPC specification, which
was locked to Microsoft Windows platform. The main goal of OPC UA
was to provide interoperability between systems of different manufacturers,

33

rich information modeling capabilities, reliable communication and Internet
access, which necessitates strong security.

5.1.1.1 Historical data access

To accurately train machine learning models to predict most possible cases,
lots of data from the process is needed. In some cases over very long time
period, even years. The OPC UA standard defines historical data access for
gathering and accessing OPC UA data. (Anonymous, 2015)

The OPC UA standard defines methods for easy access to historical data
over any time range that data has been historized in the OPC UA server.
For a standard following client and server, the user need not know any im-
plementation details but only call history read functions, which should be
implemented by the client. (Anonymous, 2015)

5.1.1.2 Real-time access

In some applications such as soft-sensors, near real-time access to process
measurements and operator display systems are needed. With OPC UA,
implementing a soft sensor which reads process measurements from the OPC
UA server as soon as they are updated, calculates the predicted value, then
sends the value to OPC UA server is fairly simple using subscriptions and
publishing. (Anonymous, 2017h)

5.2 Data preprocessing

Raw process data contains noise, outliers, missing values and wildly varying
scales between different measurements. Data quality is important factor to
success of machine learning projects. It can have a significant result on the
performance of the machine learning algorithm, and poor performance of a
machine learning model can often be improved with better data preprocess-
ing. (Kotsiantis et al., 2006).

Data transformations tools such as standardization and normalization
are a major part of preprocessing, as a common requirement for many algo-
rithms is for the data to look like standard normally distributed data with
zero mean and unit variance. Other sometimes useful data transformations
are discretization and binarization of data, which help reduce the possible
values of continuous features which speeds up machine learning with massive
datasets. (Pedregosa et al., 2011; Kotsiantis et al., 2006).

34

5.3 Machine learning methods for process in-

dustry applications

Process industry is a very diverse field with many possible applications for
machine learning. The methods range from the simple least squares data
fitting for linear models (Opfell and Sage, 1958) to deep learning for soft
sensors measuring product quality (Yan et al., 2017).

Linear models with LS or PLS are still useful, and should be considered
before nonlinear models (Souza et al., 2016; Opfell and Sage, 1958).

PCA is a popular method for dimensionality reduction to avoid the curse
of dimensionality. Many processes easily contain tens of measurements, and
using PCA for preprocessing the data has been shown to increase the ac-
curacy of the resulting machine learning model. (Aldrich and Auret, 2013;
Bishop, 2006; Kadlec et al., 2009)

ANNs have become very popular for all machine learning applications,
and the same holds for process industry applications. Simple ANNs with
PCA have been used for soft sensors (Kadlec et al., 2009), though in the
past few years, deep learning methods have been at the forefront of data-
driven soft-sensor research. (Shang et al., 2014; Yan et al., 2017). Studies
have also shown potential for usage with fault detection & diagnosis (Aldrich
and Auret, 2013) and process control with reinforcement learning (Hoskins
and Himmelblau, 1992).

Scikit-learn implements most of the methods discussed in this section,
but lacks in deep learning capabilities (Pedregosa et al., 2011). TensorFlow
and Pytorch are more specialized towards deep neural networks, but don’t
implement any other machine learning methods. (Abadi et al., 2015)

In conclusion, almost all the popular machine learning methods have uses
in process industries, and a framework should implement as many of them
as possible to make testing different methods for a particular problem easier.

5.4 Model training

Depending on the machine learning model and amount of data used for train-
ing, model training might be fast and straightforward and require very little
computing resources, or it might take days on a very powerful supercomputer.

Some companies have developed dedicated machine learning hardware.
Google developed an ASIC (Application-specific integrated-circuit) called
Tensor Processing Unit (TPU) (Sato et al., 2017). ASICs are integrated
circuits designed for very specific use, which usually makes them much more

35

efficient than a generic CPU at that specific task. The second generation of
TPUs, called Cloud TPUs, are also capable of ANN training and prediction.
(Smith, 1997; Sato et al., 2017)

Machine learning with massive datasets which cant fit into the main mem-
ory of a single computer (Typically 8 GB for lower end machines, up to 64 GB
for powerful desktop PCs and the largest amount of memory offered by AWS
for a single computer instance is 2 TB (Anonymous, 2017a)) require spe-
cialized distributed algorithms (Leskovec et al., 2014). In Chapter 3 Apache
Spark and H2O were the only software packages that provided distributed
machine learning algorithms. Dataset sizes in process industries can vary
from fairly small to extremely large.

MLaaS providers remove the need for worrying about the hardware re-
quirements of machine learning. (Anonymous, 2017c,b).

5.5 Model deployment

Generally machine learning model deployment is much easier than model
training. Generating predictions with a trained machine learning model usu-
ally only requires a couple of simple calculations which almost any modern
device can perform in real time with no problems.

Most programming languages offer serialization interfaces that allows the
developer to export objects in some easily storable / transportable format
(byte stream, text) and later recreate the original object from the serialized
data. Scikit-learn and H2O advocate usage of object serialization for model
persistence and deployment. (Pedregosa et al., 2011; Anonymous, 2017e)

In the case of ANNs, model deployment is much easier than training. A
trained ANN model is just a map of neurons, their connections and weights,
which can be easily implemented in any programming language. Graphical
processing units (GPU) are much better at parallel operations than Central
processing units (CPU), which allows them to quickly execute operations
required in ANNs, but programming for GPUs is more difficult, and not all
neural network implementations support GPU acceleration. For most simple
ANN models, CPU based implementations are fast enough for real time
deployments, but for sufficiently complicated Deep Neural Networks, even
deployment might require specialized hardware for real-time applications.
(Jang et al., 2008)

In MLaaS solution, deployment is often done via a web service that is
hosted by the service provider. This allows for very easy deployment to many
products that have Internet connectivity, but rules out offline applications.
OPC UA can be made to work with web based machine learning deployments

36

with software that communicates with both the service and OPC UA server,
if some latency is acceptable. (Anonymous, 2017c,b).

Especially for soft sensors in process industries, automatic comparison
between laboratory data and soft sensor output could help detect problems
in the models.

5.6 User interaface

A simple to use User Interface (UI) greatly benefits the usability of a frame-
work. There are many kinds of possible UI designs, ease of use, configuration
options and development time have to be considered.

Model training and model deployment are two separate tasks and should
be done in two different applications. Training requires a lot of functional-
ity that is unnecessary during deployment. Trained models are most easily
transferred as serialized objects, (eg. Pythons pickle module), but human
readable model representations would be advantageous in some situations.

Data visualization is critical for any machine learning task. It is the
easiest and fastest way to spot problems in data, decide what variables to
use for prediction, and other data shape related tasks. During this thesis,
I used NAPCON Information Manager for visualizing historized time-series
data directly from the OPC UA server.

5.6.1 Model Training UI

A very powerful but difficult to use UI is to programmatically use the APIs
of the machine learning and OPC UA libraries. This allows for the greatest
control of what is happening with the data, but is very time consuming
and error prone. It also has the greatest barrier for use, as programming
knowledge is required. No UI development is necessary.

A minimal UI would be a configuration file that lets the user customize
some parts of the process, such as input and output variables, the model
used and its parameters. A configuration file might be sufficient for some
specialized tasks, but not for a more complete software solution, as having
a configuration file that allows for all the possible settings that should be
controllable would be large and complicated to navigate. Configuration files
are easy to implement and most programming languages have built in support
for some format. Figure 5.1 shows what a configuration file supported by
the Python programming language for a machine learning soft-sensor model
training task might look like.

37

[Server]
address = opc . tcp :// l o c a l h o s t :51312/
[Inputs]
node ids = i =1234 , i =1235 , i =1236
[Pred ic ted value]
nodeid = i =1237
[Train ing data]
begin = 2000−01−05 0 0 : 0 0 : 0 0 . 0 0 0 0
end = 2000−01−05 1 0 : 3 6 : 0 0 . 0 0 0
[Test data]
begin = 2000−01−05 1 0 : 3 6 : 0 0 . 0 0 0
end = 2000−01−06 1 5 : 0 0 : 0 0 . 0 0 0
[Model]
#Supported models l i n e a r . r idge , l i n e a r . l s , MLPRegressor
model = l i n e a r . r i dg e
[Model params]
alpha = 0 .5

Figure 5.1: A configuration file in the Python format

Having a graphical user interface (GUI) for the framework would greatly
benefit usability and decrease machine learning task design time. Most peo-
ple are used to GUIs, and in general, they provide the user with the most
information and allow for fast development. GUI development is very costly,
but will probably pay itself back with usability improvements over the alter-
natives.

Out of the MLaaS providers discussed previously in this thesis, Microsoft
Azure Machine Learning Studio offers the most graphically advanced UI.
Other MLaaS providers like Amazon, BigML and IBM focus more on pro-
viding APIs for programmatically controlling the machine learning services,
and maybe simple form based tools for creating models and data visualiza-
tion. Azure ML Studio offers a powerful visualization that shows all the steps
in the model training process in a small footprint and easy to understand
way. Figure 5.2 shows a sample case where data is preprocessed and split
into training and test set, and two different clustering algorithms are trained.

38

Figure 5.2: Azure Machine Learning Studio UI shows how the data flows
through preprocessing, model training and model validation

Machine learning model blocks, like the K-Means Clustering block, have
easy to use settings, shown in Figure 5.3. Appendix B shows data visualiza-
tion tools.

39

Figure 5.3: Changing model parameters in Azure Machine Learning studio

40

Chapter 6

Implementation of an OPC UA
enabled machine learning frame-
work

The main focus of the experimental part is building a general machine learn-
ing framework for OPC UA data based on the requirements discussed in the
earlier chapter. The most important topics related to the experimental part
of the thesis from the literature review are Soft Sensors in Chapter 4.1 and
process data acquisition and storage in Chapter 5.1.

The framework will be tested with Neste Engineering Solutions’ NAP-
CON Informer OPC UA server and the data for machine learning is gathered
using NAPCON Simulator. The evaluation will be based on how well the
framework meets the requirements discussed in Chapter 5 and how well the
models perform.

6.1 Choosing a machine learning library

The choice of what machine learning library to use depends a lot on the
intended application. As this was to be a small demo rather than a large
scale deployment, libraries intended for large scale distributed computing
systems such as Apache Spark and H2O were left out.

Deep Learning focused libraries are usually quite complicated to use,
especially without prior knowledge of neural networks. Providing an easy
to use UI that also allows for the finesse of control allowed and even required
by these deep learning libraries would be complicated.

Proprietary software (MATLAB, Wolfram Mathematica) will not be used,
due to cost and academic reasons.

41

Scikit-learn was chosen for this demo because of many reasons. It is
a mature project that has been in development for over 10 years, and still
receives regular updates. It has a large library of machine learning algorithms
with a well designed and simple API, which allows for simple UI that can be
used without a lot of prior machine learning and programming. Almost all
models in scikit-learn implement fit, predict and score methods which makes
it easy to quickly prototype with different models.

Scikit-learn has been used by many large IT companies and institutions in
production environments, including but not limited to Spotify, Booking.com
and Inria. User testimonials of software libraries for industry use are much
harder to find in general, for any. The author has prior knowledge in the
Python programming language, which is used with scikit-learn.

6.2 Architecture of machine learning frame-

work

After scikit-learn was chosen as the machine learning library, the architec-
ture around it had to be designed to allow for interfacing with OPC UA
server to read process data and write predictions and giving the user some
kind of interface to choose process variables and machine learning model and
parameters.

Early on the decision was made to develop two separate programs, the
model training program and and model deployment program. The model
training program is used to rapidly prototype different machine learning
models with data input from OPC UA server, while the model deployment
program is used to generate predictions in real time with live OPC UA data.
This separation allows for easier development of the system, and errors in
the model training program are less likely to influence the more critical de-
ployment program. Figure 6.1 shows an overview of the whole architecture.

42

Figure 6.1: General architecture of the machine learning framework showing
the separation of training and deployment.

Transferring the trained models between the two programs is handled via
object serialization. Object serialization (named pickling in Python) is the
process of transforming objects in program memory to a format that can be
stored, for example in a file. Deserialization (unpickling in Python) is the
opposite process, where objects can be created from a file, as they were at
the time of serialization. (Anonymous, 2017i)

When the model training program is successfully executed, it serializes
the trained model and saves it to a file which can then be deserialized in
the deployment program and generate predictions. Information about the
trained model, such as creation date, type of machine learning model and
model parameters, is saved in a separate text file.

6.2.1 OPC UA connection

The OPC UA connection must be handled in both model training and de-
ployment programs. Implementing the OPC UA protocol from scratch is a
large task, and not necessarily required, as many open source implementa-
tions exist. In contrast to the quantity and quality of open source machine
learning libraries, not quite as many open source OPC UA libraries exist,

43

and their quality in general is not as high. This can possibly be explained
by the generally more in-house approach of process industry companies, and
how new the OPC UA standard is.

For the purposes of this thesis, a Python based open source OPC UA
implementation FreeOpcUa was chosen. The simplest reason was because
scikit-learn, the machine learning library used for this thesis, only supports
Python API officially. Working with only one language simplifies the system
considerably. FreeOpcUa is also licensed under LGPL (GNU Lesser General
Public License), which permits commercial usage of the library and doesn’t
require publishing your own source code (Anonymous, 2007b).

The important OPC UA features used in the framework are reading the
historical process data in model training, and subscribing to nodes and pub-
lishing generated predictions in the model deployment.

44

6.2.2 Model training

The model training program contains a few key parts that will be separately
discussed in this section. Figure 6.2 shows a general overview of the program.

Figure 6.2: General architecture of the model training program.

ConfigReader handles reading the configuration file, which contains all
the user configurable parameters. It is simple and internally uses Pythons’
built-in configparser which can easily read human editable configuration files.
Section 6.2.4 explains what the configuration contains.

DataWrapper class is the most important part of the system, as it handles
moving the data between OPC UA client and machine learning library. Raw
OPC UA data contains a lot of variables (timestamp, measurement unit,
etc.) which are not compatible with scikit-learn, but must still be tracked. It
provides methods (using DataManipulation class) for getting the training and
testing datasets as scikit-learn-compatible NumPy arrays. The timestamps
units are later used for plotting.

DataManipulation class is a helper for DataWrapper, which provides

45

DataWrapper the data preprocessing tools for manipulating the data to fit
scikit-learn and also performs data normalization and inverse normalization
if so specified by the user.

The task of the OPC UA Client class in model training is to retrieve
historical node value data. For machine learning purposes, we want the
same number of samples from all measurements. Some tricks have to be
performed to get same number of measurements at specific timestamps.

The OPC UA standard specifies ReadAtTimeDetails functionality for
reading a node values at specific time stamps, interpolating between two
measurements if necassary (Anonymous, 2015). ReadAtTime is provided
because OPC UA performs compression of data by not storing new values
constantly if the difference between samples wasn’t large enough. However,
FreeOPCUA and Informer do not seem to support this feature together. In-
stead, ReadRaw functionality will be used. It returns all historical values of
a node between specified startTime and endTime. ReadAtTime equivalent
functionality was implemented manually by first using ReadRaw and then
writing the code for linear interpolation.

After the specified model training and verification data has been retrieved
from the OPC UA Server, it transferred to scikit-learn for model training.
Parameters for model training are read from configuration file. The trained
model is saved to a file, and Matplotlib is used for plotting the results.

6.2.3 Model deployment

As discussed in the general architecture, the model deployment program was
implemented as a separate entity from the model training program. After
a suitable model has been developed with the model training program, the
serialized model is transferred to a server that should continuously run the
soft sensor. Figure 6.3 shows the general architecture of the deployment
program.

The model training program reads the serialized soft sensor model con-
taining the actual fitted machine learning model, plus possible scalers which
are used to transform the data prior to using the models (Data transforma-
tions were discussed in Chapter 2.1). Config file contains information about
which OPC UA nodes to use for inputs and output. The order of process
variables must match with model training step, but node id’s do not have
to match, the reason is that the trained model can be used in a different
environment from where it was trained.

46

Figure 6.3: General architecture of the model deployment program.

To acquire real time data from the OPC UA server, the implementation
uses the subscription service which is defined in the OPC UA Services spec-
ification. This way the programmer doesn’t have to poll the values continu-
ously. When a new value is received, a new thread is launched for calculating
the soft sensor output and writing it to the OPC UA server.

6.2.4 User Interface

The user interface is text based with no graphical user interface, other than
plotting provided by Matplotlib. All user input is read from a configuration
file, and the program is executed without any user interaction.

47

[Server]
address = opc . tcp :// l o c a l h o s t :51312/UA/OPCUA Server

[Inputs]
node ids = ns =3; i =568780 , ns =3; i =270288 ,
ns =3; i =483112 , ns =3; i =331607 ,
ns =3; i =571684 , ns =3; i =542644 ,
ns =3; i =490372 , ns =3; i =331019

[Pred ic ted value]
nodeid = ns =3; i =705642

[Train ing data]
begin = 2000−01−05 0 0 : 3 0 : 0 0 . 0 0 0
end = 2000−01−06 0 0 : 3 0 : 0 0 . 0 0 0

[Test data]
begin = 2000−01−06 1 3 : 3 0 : 0 0 . 0 0 0
end = 2000−01−07 0 3 : 0 0 : 0 0 . 0 0 0

[Model]
#example i s from
#http :// s c i k i t − l e a rn . org / s t a b l e /modules/ generated /
#sk l e a rn . neura l network . MLPRegressor . html
model module = neura l network
model name = MLPRegressor
model params = h i d d e n l a y e r s i z e s = 16 ,
a c t i v a t i o n = ’ tanh ’

Figure 6.4: A configuration file in the Python format

The configuration file is very self explanatory. In the Server block, address
points to the OPC UA server which is to be used. In the Inputs block,
nodeids is a list of nodes (measurements) that are to be used as the inputs
for training the machine learning model.

The implementation supports all regression supervised learning algorithms
in scikit-learn. For example, the linear model module has many regression
algorithms available, and they can be found in the API Reference (Anony-
mous, 2017m).

48

6.3 Process description

The debutanizer is part of a hydrodesulfurization (HDS) process for straight-
run gasoline, known as BERP3 at the Porvoo refinery. In the process, the
straight-run gasoline goes through the debutanizer, through preheating to
the actual HDS reactor. After the HDS reactor the almost sulphur free
gasoline flows to the fractionation unit, where the gasoline is separated into
heavy naphta, hexane, n-pentane, isopentane and unstabilized C3 / C4 frac-
tion. Figure 6.5 shows a flowsheet of the HDS process.

Figure 6.5: Hydrodesulfurization process including the debutanizer column

The task of the debutanizer is to remove butane and lighter hydrocarbon
compounds from the feed. The debutanizer column contains 40 trays. The
feed enters at tray 17.

A multivariate controller is used to control the top and bottom product
quality of the debutanizer column. Currently, pressure compensated temper-
ature of tray 36 is used to control the concentration of butane in the bottom
product. A small amount of butane should be allowed to enter the bottom
product so that harmful substances such as dimethyl sulfide (DMS) would
not enter the distillate. Pressure compensated temperature of tray 10 is used
to control the concentration of pentane in the distillate.

The concentration of butane in the bottom product of the column is
proportional to the pressure compensated temperature of tray 36. The tem-
perature should be low enough to minimize the concentration of DMS in

49

the distillate, but high enough to contain a buffer for changing feed quality.
The concentration of pentane and DMS in the distillate is proportional to the
pressure compensated temperature of tray 10. In order to minimize the DMS
concentration, the temperature should be as low as possible. The optimal
temperatures for the trays were determined in test done on the real unit.

6.4 Gathering training and test data

Instead of using real process data to train the machine learning model, data
from a simulator is used. Using a simulator gives the possibility of easily
running the process in different conditions, and the simulator always knows
the butane concentration in all streams in real time, unlike in the real process
where butane concentration is measured with a considerable delay.

Simulations were carried out in NAPCON ProsDS dynamic process sim-
ulator, proprietary of Neste Engineering Solutions. ProsDS is a dynamic
simulation software intended for rigorous simulation of process and automa-
tion models.

In real world, the butane content would have to come from laboratory
results. This obviously gives a much lower sampling rate and less data to
use for training, but over time, depending on how often samples are taken,
the number of measured samples would grow to be sufficient. The laboratory
sample information model in OPC UA should contain a timestamp to when
the sample was taken.

6.4.1 ProsDS process model

The process model used is large and contains the whole hydrodesulfurization
plant. Its intended use is as a large scale operator training simulator.

The debutanizer column is modeled as a normal distillation column. Dis-
tillation columns in ProsDS are modeled with stirred tanks for each tray.
Appendix A shows a screenshot of the model inside ProsDS.

The original model was modified by adding an chemical composition an-
alyzer to the bottom product line, which would measure the weight-% of
butane and send it to the OPC UA server. This does not exist in the actual
process unit.

A list of process variables that were gathered from the simulator are
shown in Table 6.1. They were chosen with the help from an operator of the
actual unit.

50

Table 6.1: List of process variables in the debutanizer column (anonymized)

Tag Description
FC10 Feed flow rate t/h
FC11 Top return flow rate t/h
TC10 Tray 10 pressure compensated temperature ◦C
TC11 Tray 36 pressure compensated temperature ◦C
TC12 Feed temperature ◦C
TI10 Bottom product temperature ◦C
PC10 Top pressure kPa

6.4.2 Test run

Test runs were performed by programming the simulator to make very small
changes to the setpoints of feed temperature, column top pressure, and tray
36 temperature in order to gather data at different operating conditions.
As the process took very long time to settle between even small setpoint
changes, and the simulator could only be run at approximately 1.5 times
faster than real-time, test runs has to be performed over weekends. The
simulator machine was also used for other development purposes during the
week. Some overnight / weekend test run results were ruined by misconfig-
uration of the simulator system (not historizing important variables, histor-
izing only 2 hours of data before overwriting), others by too drastic process
changes which completely destabilized the simulator. Eventually, a test run
containing mostly acceptable data was managed. Figure 6.6 shows the bu-
tane concentration of the debutanizer on a logarithmic scale from start to
finish of the simulation.

51

Figure 6.6: Debutanizer column output butane concentration on a logarith-
mic scale.

Some data between days 01/04 and 01/05 (SourceTimestamp) was unus-
able due to how much the butane concentration fluctuated. This can be seen
more easily in Figure 6.7 if the butane concentration is plotted on a linear
scale.

52

Figure 6.7: Debutanizer column output butane concentration on a linear
scale.

In the end, the simulation produced approximately 55-60 hours of usable
data for machine learning purposes.

The OPC UA server state including all history was saved and imported
for use in the experimental parts of this thesis.

53

Chapter 7

Results and Discussion

A proof-of-concept framework was implemented in Chapter 6. The results
will be evaluated in two ways, mainly on how well the requirements specified
in Chapter 5 were met, and how well the machine learning models produced
perform.

7.1 Framework requirements results

This section compares the implementation from Chapter 6 to the require-
ments and goals laid out in Chapter 5.

7.1.1 Process data acquisition and storage

Process data acquisition and storage were handled by NAPCON Informer
OPC UA server. The model training and deployment programs communicate
with the OPC UA server using OPC UA protocol, which means they should
technically work with all standard conforming OPC UA servers.

Some problems with standard OPC UA features ReadAtTime and Read-
Raw were discovered and had to be manually patched. Data acquisition from
the OPC UA server for model training was slow, taking over a minute to fetch
three days worth of process data (around 17000 samples). The slowness was
most probably caused by bad programming on the client side and not the
server side, as NAPCON Informer has been used and proved to function in
applications requiring much higher data throughput.

7.1.2 Data preprocessing

Scikit-learn implements a lot of data preprocessing tools, but only standard-
ization and normalization were implemented for usage through the configura-

54

tion file. Other scikit-learn features, such as feature binarization, categorial
encoding and custom transformations can be easily configured with some
programming knowledge.

7.1.3 Algorithms

All supervised learning regression algorithms available in scikit-learn can be
used with the model training program. Large portion of the algorithms dis-
cussed in the requirements chapter are built-in to scikit-learn. All supported
methods can be found in scikit-learn supervised learning API reference. Sup-
port for ones own machine learning algorithms could be added, they just need
to follow the same API as scikit-learn. (Anonymous, 2017m).

7.1.4 Model Deployment

The model deployment program provides bare minimum command line im-
plementation. None of the ”extra” features discussed for model deployment,
such as version control or automatic checks against older models or labora-
tory data.

The implementation had problems with relatively slow generation of pre-
dictions. We could not determine the reason for this, but it probably has
something to do with writing to OPC UA server and threading, because pre-
dictions were generated much faster in the model training program for model
validation. The slow prediction, combined with generating predictions every
time a measurement changes, would definitely lead to problems with more
measurements and fast updating of process variables.

7.1.5 User Interface

The developed used interface is crude but contains a decent amount of func-
tionality for training machine learning soft sensor models. It succeeds in
having a simple but powerful UI. The used model can be changed very fast,
but choosing process variables and what data points are used for training
(start and end times) is cumbersome.

What caused the most problems with the user interface was that the
model training program had to be restarted every time the user wants to make
changes to the machine learning model configuration. With large amounts of
data and slow history read times, this often meant waiting around for the data
to load. This could be fixed by allowing the user to change the configuration
while the program is running and the data is already in memory.

55

7.2 Model performance evaluation

Machine learning model performance relies on many factors, but most im-
portantly on algorithm choice, and the quality and quantity of training data.
Performance evaluation is very important for delivering the best possible
machine learning model. Model evaluation is used for determination of gen-
eralization performance, tweaking of model hyperparameters and comparing
different machine learning algorithms.

Machine learning models are scored on a test dataset, which is totally
separate from the training dataset and ideally represents the real world use
case of the model well. Several mathematical methods are available in scikit-
learn for model evaluation.

All estimators (trained machine learning models) in scikit-learn define a
score method which calculates a default evaluation criteria for that specific
model. For most supervised learning regressions models this is coefficient of
determination R2. There are multiple definitions for R2. The version used in
scikit-learn is shown in 7.1 and it is generally accepted as valid for evaluating
model performance on a test dataset (Alexander et al., 2015).

R2 = 1− SSres

SStot

(7.1)

where SSres is the residual sum of squares:

SSres =
∑
i

(yi − fi)2 =
∑
i

ei2 (7.2)

and SStot is the total sum of squares:

SStot =
∑
i

(yi − y)2 (7.3)

where y is the mean of data. R2 is a statistical tool which gives indication
on how well the model fits the data. Care should be taken when using R2

with nonlinear models, as most nonlinear models can be made to follow
training data arbitrarily close, producing R2 values as close to 1 as wanted
(overfitting).

7.3 Model performance

This section presents how the models trained with the framework performed
depending on which algorithm was chosen and how much training data was
used.

56

Generally model performance ranged from mediocre to bad. With non-
linear models (Neural Networks, SVMs) training scores were often quite close
to one but validation scores were never very good. Linear models often pro-
duced worse training scores, but better validation scores, which could be
explained by overfitting of the nonlinear models.

A common problem encountered with nonlinear models in scikit-learn was
offset from the validation data. Figure 7.1 shows how a neural network with
a single hidden layer with 100 neurons follows the shape of the test data
accurately, but has an almost constant offset, which causes the validation
score to be poor. Similar effects can be seen with non-linear Support Vector
Regression in Figure 7.2

Figure 7.1: An MLPRegressor (Neural Network) trained with approximately
24 hours worth of simulation data.

57

Figure 7.2: An SVR (Regression Support Vector Machine) trained with ap-
proximately 24 hours worth of simulation data.

On the other hand, linear models generally showed better performance
with both following the data and smaller offsets with validation data, example
shown in Figure 7.3 using scikit-learns HuberRegressor which is a form of
robust linear regression, designed to control the effects of outliers.

58

Figure 7.3:

59

Chapter 8

Conclusions and future work

The aim of the study was to research how machine learning methods could
be used to gain added value from the growing amount of measurement data
gathered in the process industries. The open source scikit-learn machine
learning library for Python was used to create an user-configurable applica-
tion which can generate data driven soft sensors from data stored in an OPC
UA server. The application provides an interface for specifying the soft sen-
sor input and output variables, model type and configuration parameters for
the model. For testing the application, a dynamic process simulator was used
to gather data from a debutanizer column with multiple operating conditions
over a 60 hour period.

The results suggest that the OPC UA specification provides a good in-
terface for both gathering data for offline training of models and publishing
model predictions in real time. The soft sensor performance varies a lot de-
pending on the type of model, model parameters and the quality of training
data used.

The amount of machine learning methods is vast and their optimal use
cases can vary a lot depending on the dynamics of the process being studied
and the type of data available from the process. Scikit-learn provides a large
set of easy to use tools that can be integrated with relatively little work,
but more specialized tools and methods can provide better results in their
optimal use cases.

Many free for commercial use open source libraries with large community
and company support behind them exist that make implementing machine
learning models much easier. The choice between them is not straightforward
and depends a lot on the intended use case and skills of the user. Many of the
projects are young but have proved themselves in many applications. The
landscape of machine learning changes very quickly compared to that of the
process industries.

60

Future work related to the proof-of-concept framework presented in this
thesis can be divided to few different categories which better fit under many
branches of science. Most important category regarding process control is
studying model performance with quantitative methods and real world pro-
cess data. Understanding the Big Data capabilities of the OPC UA protocol
is important for many machine learning tasks, especially deep learning, which
has shown promising results in many applications.

61

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-
rado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow,
I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray,
D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,
K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/. Software available from tensorflow.org.

Aldrich, C. and Auret, L. Unsupervised Process Monitoring and Fault Di-
agnosis with Machine Learning Methods. Springer Publishing Company,
Incorporated, 2013. ISBN 1447151844, 9781447151845.

Alexander, D. L. J., Tropsha, A., and Winkler, D. A. Beware of r(2):
simple, unambiguous assessment of the prediction accuracy of qsar and
qspr models. J Chem Inf Model, 55(7):1316–1322, Jul 2015. ISSN 1549-
9596. doi: 10.1021/acs.jcim.5b00206. URL http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC4530125/. 26099013[pmid].

Anonymous. Apache license 2.0, 2004. URL https://www.apache.org/

licenses/LICENSE-2.0.

Anonymous. Gnu general public license, 2007a. URL http://www.gnu.org/

licenses/gpl.html.

Anonymous. Gnu lesser general public license, 2007b. URL https://

www.gnu.org/licenses/lgpl-3.0.en.html.

Anonymous. File:svm max sep hyperplane with margin.png — wiki-
media commons, 2008. URL https://commons.wikimedia.org/w/

index.php?title=File:Svm max sep hyperplane with margin.png&oldid=

225162099. [Accessed 2017-10-02].

62

Anonymous. Opc ua standard part 11: Historical access. Industry standard
specification, 2015.

Anonymous. File:kernel machine.png — wikimedia commons, 2016.
URL https://commons.wikimedia.org/w/index.php?title=File:

Kernel Machine.png&oldid=215993536. [Accessed 2017-10-02].

Anonymous. Aws documentation, 2017a. URL https://aws.amazon.com/

documentation/. [Accessed 2017-09-04].

Anonymous. Amazon machine learning developers guide. 2017b.
URL http://docs.aws.amazon.com/machine-learning/latest/dg/what-is-

amazon-machine-learning.html. [Accessed 2017-06-20].

Anonymous. Azure machine learning documentation. 2017c. URL https:

//docs.microsoft.com/en-us/azure/machine-learning/. [Accessed 2017-
06-21].

Anonymous. Bigml machine learning documentation, 2017d. URL https:

//bigml.com/. [Accessed 2017-09-26].

Anonymous. H2o, sparkling water, steam, & deep water documentation,
2017e. URL http://docs.h2o.ai/h2o/latest-stable/index.html. [Ac-
cessed 2017-07-12].

Anonymous. Ibm watson machine learning documentation, 2017f.
URL https://console.bluemix.net/docs/services/PredictiveModeling/

index.html#WMLgettingstarted. [Accessed 2017-09-26].

Anonymous. Mathworks, 2017g. URL https://se.mathworks.com/. [Accessed
2017-07-07].

Anonymous. Opc ua standard part 1: Overview and concepts. Industry
standard specification, 2017h.

Anonymous. Python language reference, version 3.6, 2017i. URL https:

//docs.python.org/3.6/. [Accessed 2017-12-13].

Anonymous. What is r?, 2017j. URL https://www.r-project.org/about.html.
[Accessed 2017-07-06].

Anonymous. Tensorflow, 2017k. URL https://www.tensorflow.org/. [Ac-
cessed 2017-10-12].

63

Anonymous. Wolfram language & system documentation center, 2017l. URL
http://reference.wolfram.com/language/. [Accessed 2017-07-11].

Anonymous. scikit-learn api reference, 2017m. URL http://scikit-

learn.org/0.18/modules/classes.html.

Bacon, P. Agent-environment interaction in tikz, 2013. URL https:

//gist.github.com/pierrelux/6501790. [Accessed 2017-08-02].

Bishop, C. M. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006. ISBN 0387310738.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel,
O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R.,
VanderPlas, J., Joly, A., Holt, B., and Varoquaux, G. API design for ma-
chine learning software: experiences from the scikit-learn project. CoRR,
abs/1309.0238, 2013. URL http://arxiv.org/abs/1309.0238.

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. Recurrent
neural networks for multivariate time series with missing values. CoRR,
abs/1606.01865, 2016. URL http://arxiv.org/abs/1606.01865.

Chen, J. and Wang, F. Cost reduction of co2 capture processes using
reinforcement learning based iterative design: A pilot-scale absorption-
stripping system. Separation and Purification Technology, 122:149
– 158, 2014. ISSN 1383-5866. doi: http://dx.doi.org/10.1016/
j.seppur.2013.10.023. URL http://www.sciencedirect.com/science/

article/pii/S1383586613006163.

Cortes, C. and Vapnik, V. Support-vector networks. Mach. Learn.,
20(3):273–297, September 1995. ISSN 0885-6125. doi: 10.1023/A:
1022627411411. URL http://dx.doi.org/10.1023/A:1022627411411.

Fauske, K. Tikz example: Neural network, 2006. URL http://

www.texample.net/tikz/examples/neural-network/. [Accessed 2017-06-
19].

Ge, Z., Song, Z., Ding, S. X., and Huang, B. Data mining and analytics in
the process industry: the role of machine learning. IEEE Access, PP(99):
1–1, 2017. doi: 10.1109/ACCESS.2017.2756872.

64

Ge, Z. and Song, Z. A comparative study of just-in-time-learning based
methods for online soft sensor modeling. Chemometrics and Intelli-
gent Laboratory Systems, 104(2):306 – 317, 2010. ISSN 0169-7439.
doi: http://dx.doi.org/10.1016/j.chemolab.2010.09.008. URL http://

www.sciencedirect.com/science/article/pii/S0169743910001759.

George, S. Microsoft introduces new open-source cross-platform
opc ua support for the industrial internet of things, 2016.
URL https://blogs.microsoft.com/iot/2016/06/23/microsoft-

introduces-new-open-source-cross-platform-opc-ua-support-for-

the-industrial-internet-of-things/. [Accessed 2017-06-21].

Gonzaga, J., Meleiro, L., Kiang, C., and Filho, R. M. Ann-
based soft-sensor for real-time process monitoring and control of
an industrial polymerization process. Computers & Chemical
Engineering, 33(1):43 – 49, 2009. ISSN 0098-1354. doi:
http://dx.doi.org/10.1016/j.compchemeng.2008.05.019. URL http://

www.sciencedirect.com/science/article/pii/S0098135408001142.

Gudmundsson, S., Runarsson, T. P., and Sigurdsson, S. Support vector
machines and dynamic time warping for time series. In 2008 IEEE Inter-
national Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 2772–2776, June 2008. doi: 10.1109/
IJCNN.2008.4634188.

Haimi, H., Mulas, M., Vahala, R., and Corona, F. Soft-sensors in
wastewater treatment: the benefits of the data-driven approach. 2011.
URL https://www.researchgate.net/publication/287211149 Soft-

sensors in wastewater treatment the benefits of the data-

driven approach.

Harding, J., Shahbaz, M., and Kusiak, A. Data mining in manufacturing:
A review. Journal of Manufacturing Science and Engineering-transactions
of The Asme - J MANUF SCI ENG, 128, 11 2006.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, Second Edi-
tion. Springer Series in Statistics. Springer New York, 2009. ISBN
9780387848587.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm for
deep belief nets. Neural Comput., 18(7):1527–1554, July 2006. ISSN 0899-
7667. doi: 10.1162/neco.2006.18.7.1527. URL http://dx.doi.org/10.1162/

neco.2006.18.7.1527.

65

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Com-
put., 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/
neco.1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Hoskins, J. and Himmelblau, D. Process control via artificial neural net-
works and reinforcement learning. Computers & Chemical Engineering, 16
(4):241 – 251, 1992. ISSN 0098-1354. doi: http://dx.doi.org/10.1016/0098-
1354(92)80045-B. URL http://www.sciencedirect.com/science/article/

pii/009813549280045B. Neutral network applications in chemical engineer-
ing.

Hothorn, T. Cran task view: Machine learning & statistical learning, 2017.
URL https://cran.r-project.org/web/views/MachineLearning.html. [Ac-
cessed 2017-07-06].

Jang, H., Park, A., and Jung, K. Neural network implementation using
cuda and openmp. In 2008 Digital Image Computing: Techniques and
Applications, pages 155–161, Dec 2008. doi: 10.1109/DICTA.2008.82.

Johnson, W. K-means clustering - what is it, and how it works, 2017. URL
http://www.learnbymarketing.com/methods/k-means-clustering/. [Ac-
cessed 2017-08-10].

Kadlec, P., Gabrys, B., and Strandt, S. Data-driven soft sen-
sors in the process industry. Computers & Chemical En-
gineering, 33(4):795 – 814, 2009. ISSN 0098-1354. doi:
http://dx.doi.org/10.1016/j.compchemeng.2008.12.012. URL
http://www.sciencedirect.com/science/article/pii/S0098135409000076.

Kadlec, P., Grbić, R., and Gabrys, B. Review of adaptation
mechanisms for data-driven soft sensors. Computers & Chemi-
cal Engineering, 35(1):1 – 24, 2011. ISSN 0098-1354. doi:
http://dx.doi.org/10.1016/j.compchemeng.2010.07.034. URL http://

www.sciencedirect.com/science/article/pii/S0098135410002838.

Kohonen, T. Self-organizing Maps. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1997. ISBN 3-540-62017-6.

Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. Data preprocessing for
supervised learning. International Journal of Computer Science, 1:111–
117, 01 2006.

Landset, S., Khoshgoftaar, T. M., Richter, A. N., and Hasanin, T. A survey
of open source tools for machine learning with big data in the Hadoop

66

ecosystem. Journal of Big Data, 2:24, 2015. ISSN 2196-1115. doi: 10.1186/
s40537-015-0032-1. URL http://www.journalofbigdata.com/content/2/1/

24.

Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining of Massive Datasets.
Cambridge University Press, New York, NY, USA, 2nd edition, 2014. ISBN
1107077230, 9781107077232.

McCulloch, W. S. and Pitts, W. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–
133, 1943. ISSN 1522-9602. doi: 10.1007/BF02478259. URL http://

dx.doi.org/10.1007/BF02478259.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Free-
man, J., Tsai, D., Amde, M., Owen, S., Xin, D., Xin, R., Franklin, M. J.,
Zadeh, R., Zaharia, M., and Talwalkar, A. Mllib: Machine learning in
apache spark. J. Mach. Learn. Res., 17(1):1235–1241, January 2016. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=2946645.2946679.

Murphy, K. P. Machine learning : A Probabilistic Perspective. The MIT
Press, Cambridge, Mass. [u.a.], 2012. ISBN 9780262018029 0262018020.

Nielsen, M. A. Neural Networks and Deep Learning. Determination Press,
2015.

Opfell, J. B. and Sage, B. H. Applications of least squares methods. Industrial
& Engineering Chemistry, 50(5):803–806, 1958. doi: 10.1021/ie50581a038.
URL http://dx.doi.org/10.1021/ie50581a038.

Pani, A. K., Amin, K. G., and Mohanta, H. K. Soft sensing of product
quality in the debutanizer column with principal component analysis and
feed-forward artificial neural network. Alexandria Engineering Journal, 55
(2):1667 – 1674, 2016. ISSN 1110-0168. doi: http://dx.doi.org/10.1016/
j.aej.2016.02.016. URL http://www.sciencedirect.com/science/article/

pii/S1110016816000697.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

67

Polikar, R. Ensemble based systems in decision making. IEEE Circuits
and Systems Magazine, 6(3):21–45, Third 2006. ISSN 1531-636X. doi:
10.1109/MCAS.2006.1688199.

Qin, S. J. Survey on data-driven industrial process monitoring and diag-
nosis. Annual Reviews in Control, 36(2):220 – 234, 2012. ISSN 1367-
5788. doi: https://doi.org/10.1016/j.arcontrol.2012.09.004. URL http:

//www.sciencedirect.com/science/article/pii/S1367578812000399.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1. MIT
Press, Cambridge, MA, USA, 1986. ISBN 0-262-68053-X. URL http:

//dl.acm.org/citation.cfm?id=104279.104293.

Sato, K., Young, C., and Patterson, D. An in-depth look at
google’s first tensor processing unit (tpu), 2017. URL https:

//cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu.

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Net-
works, 61:85 – 117, 2015. ISSN 0893-6080. doi: https://doi.org/10.1016/
j.neunet.2014.09.003. URL http://www.sciencedirect.com/science/

article/pii/S0893608014002135.

Shang, C., Yang, F., Huang, D., and Lyu, W. Data-driven soft sensor devel-
opment based on deep learning technique. Journal of Process Control, 24
(3):223 – 233, 2014. ISSN 0959-1524. doi: http://dx.doi.org/10.1016/
j.jprocont.2014.01.012. URL http://www.sciencedirect.com/science/

article/pii/S0959152414000365.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan,
K., and Hassabis, D. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, 2017. URL https://arxiv.org/

abs/1712.01815.

Smith, M. J. S. Application-specific Integrated Circuits. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997. ISBN 0-201-
50022-1.

Souza, F. A., Araújo, R., and Mendes, J. Review of soft sensor methods
for regression applications. Chemometrics and Intelligent Laboratory Sys-
tems, 152:69 – 79, 2016. ISSN 0169-7439. doi: http://dx.doi.org/10.1016/

68

j.chemolab.2015.12.011. URL http://www.sciencedirect.com/science/

article/pii/S0169743915003263.

Spielberg, S. P. K., Gopaluni, R. B., and Loewen, P. D. Deep reinforcement
learning approaches for process control. In 2017 6th International Sym-
posium on Advanced Control of Industrial Processes (AdCONIP), pages
201–206, May 2017. doi: 10.1109/ADCONIP.2017.7983780.

Sutton, R. S. and Barto, A. G. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., and Keogh,
E. Experimental comparison of representation methods and distance mea-
sures for time series data. Data Mining and Knowledge Discovery, 26(2):
275–309, Mar 2013. ISSN 1573-756X. doi: 10.1007/s10618-012-0250-5.
URL http://dx.doi.org/10.1007/s10618-012-0250-5.

Yan, W., Tang, D., and Lin, Y. A data-driven soft sensor modeling method
based on deep learning and its application. IEEE Transactions on In-
dustrial Electronics, 64(5):4237–4245, May 2017. ISSN 0278-0046. doi:
10.1109/TIE.2016.2622668.

69

Appendix A

Debutanizer column model in ProsDS

70

Appendix B

Data visualization tools in Azure
Machine Learning Studio

71

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Description of mathematical methods in machine learning
	2.1 Machine learning model development process
	2.1.1 Data preparation
	2.1.2 Data Pre-processing
	2.1.3 Model selection and training
	2.1.4 Deployment

	2.2 Machine learning methods
	2.2.1 Supervised learning
	2.2.1.1 Multiple regression linear models
	2.2.1.2 Partial least squares regression
	2.2.1.3 k-nearest neighbors
	2.2.1.4 Artificial neural networks
	2.2.1.5 Deep neural networks
	2.2.1.6 Tree based methods
	2.2.1.7 Kernel based methods

	2.2.2 Unsupervised learning
	2.2.2.1 Principal Component Analysis
	2.2.2.2 K-Means clustering
	2.2.2.3 Self-organizing map
	2.2.2.4 Gaussian mixture model

	2.2.3 Reinforcement learning
	2.2.4 Ensemble learning

	3 Description of machine learning software libraries and solutions
	3.1 Open source software
	3.1.1 scikit-learn
	3.1.2 TensorFlow
	3.1.3 R Programming Language
	3.1.4 Apache Spark / MLLib
	3.1.5 H2O

	3.2 Proprietary software
	3.2.1 MATLAB
	3.2.2 Wolfram Mathematica

	3.3 Machine Learning as a Service
	3.3.1 Azure Machine Learning
	3.3.2 Amazon Machine Learning
	3.3.3 Google Cloud Machine Learning
	3.3.4 BigML
	3.3.5 IBM Watson Machine Learning

	4 State of the art in machine learning in process industries
	4.1 Soft sensors
	4.2 Process monitoring and fault detection
	4.2.1 Predictive maintenance

	4.3 Reinforcement learning for process control

	5 Machine learning framework requirements for process industries
	5.1 Process data acquisition and storage
	5.1.1 OPC Unified Architecture
	5.1.1.1 Historical data access
	5.1.1.2 Real-time access

	5.2 Data preprocessing
	5.3 Machine learning methods for process industry applications
	5.4 Model training
	5.5 Model deployment
	5.6 User interaface
	5.6.1 Model Training UI

	6 Implementation of an OPC UA enabled machine learning framework
	6.1 Choosing a machine learning library
	6.2 Architecture of machine learning framework
	6.2.1 OPC UA connection
	6.2.2 Model training
	6.2.3 Model deployment
	6.2.4 User Interface

	6.3 Process description
	6.4 Gathering training and test data
	6.4.1 ProsDS process model
	6.4.2 Test run

	7 Results and Discussion
	7.1 Framework requirements results
	7.1.1 Process data acquisition and storage
	7.1.2 Data preprocessing
	7.1.3 Algorithms
	7.1.4 Model Deployment
	7.1.5 User Interface

	7.2 Model performance evaluation
	7.3 Model performance

	8 Conclusions and future work
	A Debutanizer column model in ProsDS
	B Data visualization tools in Azure Machine Learning Studio

