
Aalto University
School of Science
Degree Programme of Computer, Communication and Information Sciences

Astaroth: A Library for Stencil Computations on
Graphics Processing Units

Johannes Pekkilä

Master’s Thesis
Espoo, May 20, 2019

Supervisors: Professor Petteri Kaski
Instructor: Matthias Rheinhardt, Ph.D.

Professor Jaakko Lehtinen

Aalto University
School of Science
Degree Programme of Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Johannes Pekkilä
Title:
Astaroth: A Library for Stencil Computations on Graphics Processing Units
Date: May 20, 2019 Pages: 111
Professorship: Computer Science Code: SCI3042
Supervisors: Professor Petteri Kaski
Instructor: Matthias Rheinhardt, Ph.D.

Professor Jaakko Lehtinen
Graphics processing units (GPUs) are coprocessors, which offer higher
throughput and better power efficiency than central processing units in data-
parallel tasks. For this reason, graphics processors provide a good platform
for high-performance computing. However, programming GPUs such that
all the available performance is utilized requires in-depth knowledge of the
architecture of the hardware. Additionally, the problem of high-order sten-
cil computations on GPUs in challenging multiphysics applications has not
been adequately explored in previous work. In this thesis, we address these
issues by presenting a library, an efficient algorithm and a domain-specific
language for solving stencil computations within a structured grid. We tested
our implementation by simulating magnetohydrodynamics, which involved
the computation of first, second, and cross partial derivatives using second-,
fourth-, sixth-, and eight-order finite differences with single and double preci-
sion. The running time of our integration kernel was 2.8–9.1 times slower than
the theoretical minimum time, which it would take to read the computational
domain and write it back to device memory exactly once, without taking into
account the effects of finite caches or arithmetic operations on performance.
Additionally, we made a performance comparison with a CPU solver widely
used for scientific computations, which we benchmarked on a total of 24 cores
of two Intel Xeon E5-2690 v3 processors. Our solver, benchmarked on a Tesla
P100 PCIe GPU, outperformed the CPU solver by factors of 6.7 and 10.4 when
using single and double precision, respectively.
Keywords: high-performance computing, stencil computations,

graphics processing units, magnetohydrodynamics
Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekĳä: Johannes Pekkilä
Työn nimi:
Astaroth: Ohjelmistokirjasto stensiililaskentaan grafiikkasuorittimilla
Päiväys: 20. toukokuuta 2019 Sivumäärä: 111
Professuuri: Tietotekniikka Koodi: SCI3042
Valvojat: Professori Petteri Kaski
Ohjaaja: Matthias Rheinhardt, FT

Professori Jaakko Lehtinen
Grafiikkasuorittimet ovat apusuorittimia, jotka tarjoavat rinnakkain lasketta-
vissa tehtävissä parempaa suoritus- ja energiatehokkuutta kuin keskussuorit-
timet. Tästä syystä grafiikkasuorittimet tarjoavat hyvän alustan suurteholas-
kennan tarpeisiin. Toisaalta grafiikkasuorittimen ohjelmointi siten, että kaikki
tarjolla oleva suorituskyky saadaan hyödynnettyä vaatii syvällistä asiantunte-
musta ohjelmoitavan laitteiston arkkitehtuurista. Korkean asteen stensiililas-
kentaa haastavissa fysiikkasovelluksissa ei ole myöskään tutkittu laajalti aiem-
missa julkaisuissa. Tässä työssä otamme kantaa näihin ongelmiin esittelemällä
ohjelmistokirjaston, tehokkaan algoritmin, sekä tehtävään räätälöidyn ohjel-
mointikielen stensiililaskujen ratkaisemiseen säännöllisessä hilassa. Testasim-
me toteutustamme simuloimallamagnetohydrodynamiikkaa, johon kuului en-
simmäisen ja toisen kertaluvun derivaattojen lisäksi ristiderivaattojen ratkaisu
toisen, neljännen, kuudennen ja kahdeksannen kertaluvun differenssimene-
telmällä käyttäen sekä 32- että 64-bittisiä liukulukuja. Integrointifunktiomme
suoritusaika oli 2.8–9.1 kertaa hitaampi kuin teoreettinen vähimmäisajoaika,
joka menisi laskennallisen alueen lukemiseen ja kirjoittamiseen apusuoritti-
men muistista täsmälleen kerran, ottamatta huomioon äärellisen välimuistin
tai laskennan vaikutusta suoritusaikaan. Vertasimme kirjastomme suoritusai-
kaa laajalti tieteellisessä laskennassa käytettyyn keskussuorittimille tarkoitet-
tuun ratkaisĳaan, jonka ajoimme kokonaisuudessaan 24:llä ytimellä kahdella
Intel Xeon E5-2690 v3 -suorittimella. Tähän ratkaisĳaan verrattuna Tesla P100
PCIe -grafiikkasuorittimella ajettu ratkaisĳammeoli 6.7 ja 10.4 kertaa nopeampi
32- ja 64-bittisillä liukulukuvuilla laskettaessa, tässä järjestyksessä.
Asiasanat: suurteholaskenta, stensiililaskenta, grafiikkasuorittimet,

magnetohydrodynamiikka
Kieli: Englanti

3

Acknowledgments

First of all, I would like to thankMaarit Käpylä formaking the initial leap of faith and
lettingme into theworld of academic research, for believing inme and for continuous
support for all these years. I would also like to thank Matthias Rheinhardt for not
sparing the red marker and for providing an endless stream of good questions, to
which I thought I already knew the answer to, but realized that in reality I did not. I
would like to thank my supervisor Prof. Petteri Kaski for patience, valuable advice
and for drivingme to exceedmy own expectations. I would also like to thankMiikka
Väisälä whom I have had the pleasure to work with on previous versions of Astaroth
and who has not been afraid to take high-risk, high-reward decisions when it comes
to academic research. I also thank Prof. Jaakko Lehtinen for valuable comments and
suggestions. Finally, I would like to thank my family and friends for providing food,
good company, and helping me unwind after long days working on this thesis.

I thank CSC IT Center for Science Ltd. for the compute resources used for this
work. I acknowledge thefinancial support by theAcademyof Finland to theReSoLVE
Centre of Excellence (project no. 307411).

Espoo, May 20, 2019

Johannes Pekkilä

4

Contents

1 Introduction 6
1.1 Background . 9
1.2 Previous work . 12
1.3 Problem statement . 17
1.4 Outline of this work . 18

2 Graphics processing units 20
2.1 GPU architecture . 23
2.2 Programming GPUs . 28

3 Magnetohydrodynamics 32
3.1 Finite-difference methods . 35
3.2 Runge-Kutta integration . 38

4 Library for stencil computations 41
4.1 Library architecture and API . 42
4.2 Domain-specific language . 44
4.3 DSL compiler and code generation . 49

5 Results 60
5.1 Verification . 61
5.2 Hardware utilization . 72
5.3 Comparison with a CPU solver . 77

6 Discussion 78

Conclusion 86

A Tokens of the Astaroth DSL 98

B Grammar of the Astaroth DSL 100

C Solver implementation 105

D List of Symbols 109

Glossary 110

5

Chapter 1

Introduction

Efficient computational methods are indispensable in computational sciences and
high-performance computing, where a single line of code can be a matter of qua-
drupling the electric bill and time spent on waiting for the computation to complete.
In physics, there is generally no limit to the performance improvement that would
not be beneficial in some way. With grid-based fluid simulations for example, the
resolution of simulation models could be increased virtually indefinitely in order to
achieve better accuracy, or longer time periods could be simulated in a reasonable
time.

Until 2003, computational scientists were content with uniprocessor performance
growing at a rate of 52%per year, as simulation timeswere expected to halve every 18
months just by acquiring new hardware and relying on compilers to finish the job [1–
4]. However, the free lunch is said to be over [5] as microprocessor manufacturers
have hit a power limit, which makes it infeasible to dissipate excess heat from mass-
marketable microprocessors running at higher clock rates [6]. The power wall has
been the driving force behind the shift from single-core to many-core architectures.
As a result, performance-critical programs must now be written to take advantage
of multiple processors.

While modern central processing units (CPUs) generally house from 4 to 64
cores, graphics processing units (GPUs) can house a few thousand functional units
capable of executing arithmetic instructions simultaneously. Originally designed
for high throughput in real-time rendering, GPUs have the potential to accelerate
data-parallel tasks by an order of magnitude over a CPU1. As modern GPUs can
also be programmed using a general-purpose language, such as CUDA [9] and

1Comparing the theoretical maximum memory bandwidth and floating-point operations per
second of a Xeon E5-2690v3 12C [7] and a Tesla P100 [8].

6

CHAPTER 1. INTRODUCTION 7

Figure 1.1: Compressible non-isotermal flow undergoing a forced radial explosion.

OpenCL [10], this makes GPUs an attractive platform for solving many tasks found
in computational sciences.

Our motivation behind this work is to simulate the flow of compressible, electri-
cally conducting fluids. The study of such fluids is called magnetohydrodynamics.
Figure 1.1 shows a simulation of a compressible fluid, where a turbulent flow is un-
dergoing a radial explosion. Throughout this work, we focus on the computational
aspects of such simulations and refer the reader to [11, 12] for a detailed discussion
on the physical properties of magnetohydrodynamics. Common to all multiphysics
simulations, magnetohydrodynamics involves multiple fields, which may interact
with each other [13]. We refer to such fields as being coupled. However, literature on
accelerating simulations involving a large number of coupled fields is limited, as the
majority of previous work focuses on idealized test cases, which do not capture the
difficulties arising when implementing complex multiphysics solvers on multi-core
processors. In thiswork, we explore those issues and implement a parallelized solver
for magnetohydrodynamics.

Central to this work is the finite-difference method, which is commonly used
for discretizing continuous fields to approximate solutions to partial differential
equations [14]. With finite differences, derivatives at each discrete point of a field
can be approximated based on the values of its neighboring points. Functions,
which update an array of elements by computing derivatives in this fashion belong
to a class of iterative algorithms called stencil codes [15]. In this case, a stencil

CHAPTER 1. INTRODUCTION 8

consists of theneighboringpoints required to compute thederivative. Because stencil
computations are used also in other problem domains [13, 16], the contributions of
this work are more useful to the scientific community if we do not limit ourselves
to fluid simulations. Therefore our focus in this work is to accelerate stencil codes
on GPUs, and use magnetohydrodynamics as a test case to evaluate whether our
implementation is also suitable for challenging multiphysics applications.

There is also a disconnect between the needs of computational scientists and
the tools available for implementing efficient parallel programs [4, 17, 18]. While
the focus of computational scientists is to develop new mathematical and physical
models, using the available tools requires expertise on the execution model and
features of the hardware the programs are run on. Therefore it would be highly
beneficial, if a subset of problems could be expressed with a high-level language,
which captures only the details required to implement the model, while tuning the
code could be done with automated tools [4].

The issues in optimizing complex multiphysics simulations and the lack of high-
level tools lead to our research questions. First, is there an efficient algorithm
for solving high-order stencil computations on a GPU in a three-dimensional grid,
where each grid point is connected to the same number of neighbors and the com-
putations involve multiple coupled fields? Second, can such stencil computations be
expressed with a programming language, that captures a high-level representation
of a numerical model, but which can also be translated into efficient, parallelized
code?

In this work, we present a suite for processing three-dimensional stencils effi-
ciently on graphics processing units. The suite consists of three subcontributions.
First, we present a new library and an application programming interface formanag-
ing the resources of GPUs in a compute node. Second, we present a novel domain-
specific language, which can be used to express computations in a grid using a
high-level representation. Finally, we present a compiler, which can translate pro-
grams written in our domain-specific language into efficient GPU kernels usable
with the library. We evaluate our suite by implementing a magnetohydrodynamics
solverwith the domain-specific language and compare the performance of our solver
with both the theoretical limits of the hardware and a mature CPU solver used in
numerous publications, the Pencil Code [19].

CHAPTER 1. INTRODUCTION 9

1.1 Background

Stencil codes are a class of iterative functions, where neighboring data elements
of are used to generate a new value [15]. Stencil computations are encountered
in a multitude of applications in science and engineering [4, 13, 14], from image
processing [20, 21] to solving partial differential equations, such as simulations of
hydrodynamics [22] and astrophysical gases [11]. In 2004, Colella [16] identified
stencil computations as a class of numerical methods, which he expected to be
relevant in computing for the next ten years. Colella’s list of the vital numerical
methods was later revisited and extended by Asanovic et al. [4, 16], who argued
that instead of relying on improvements in single-core performance, the focus in
computer sciences should steer towards finding ways to express parallel problems
with a high-level representation, and rely on automated tuning to produce efficient
code especially with these methods. At the time Colella and Asanovic et al. made
their observations, the yearly improvement rate in single-core performance had
started to diminish [2], which signaled the start of significant development efforts
to parallelize solvers in hopes to continue to have performance gains with future
hardware.

The fundamental shift from single-core to many-core architectures was initiated
after microprocessor manufacturers hit three walls in improving single-core perfor-
mance [2–4, 16, 23]. First, the memory wall is characterized by the disproportional
increase in arithmetic performance to the number of bytes that can be serviced by
the memory system [23]. This wall is encountered when a problem becomes inher-
ently bound by the main memory bandwidth when the operational intensity of a
kernel is not high enough to saturate the available arithmetic-logic units. Because
the operational performance of microprocessors increases at a faster rate relative
to memory bandwidth, this issue is accentuated with every hardware generation.
Second, the power wall limits the highest clock rate that can be achieved before
cooling the microprocessor becomes too expensive with mass-producible technol-
ogy [6]. Increasing the clock rate and lowering the voltage indefinitely is infeasible,
as powering a large number of densely packed transistors, or running the system
at lower voltages increases energy dissipation [3]. The third wall is caused by di-
minishing returns when attempting to improve performance by utilizing deeper
instruction pipelines [2]. With instruction pipelines, hardware designers seek to
exploit instruction-level parallelism, which is a form of parallelism where multiple
instructions are executed in parallel [3]. Instruction-level parallelism with instruc-

CHAPTER 1. INTRODUCTION 10

tion pipelines is usually achieved by executing an instruction fetch-decode-execute
cycle in multiple steps, such that the steps can be executed in parallel and the next
instruction can be issued before the previous instruction has finished [2, 3]. An alter-
native approach is to issue multiple instructions to multiple functional units during
a single clock cycle [2, 3]. Registers and caches are limited, and branches cannot be
predicted perfectly, which imposes a limit on the performance that can be achieved
with instruction-level parallelism [2].

Central processing units have traditionally been used for high-performance com-
puting. They are designed to perform well in general-purpose tasks, where con-
currently executed programs may access the resources of the hardware relatively
efficiently. To this end, CPU cores are deeply pipelined and instructions are issued
depending on whether the data required by the instruction is available. Modern
CPUs execute instructions out-of-order, as the order in which the instructions are
executed is not necessarily the original ordering defined in the program [2, 24]. For
example, an execution core of a Sandy Bridge CPU has six dispatch ports, which can
issue six microinstructions to the functional units of the core each clock cycle [24].
In such a superscalar pipeline, a core might be capable of encoding an instruction,
executing an arithmetic operation and servicing a memory transaction during a sin-
gle clock cycle. A functional unit may comprise for example and arithmetic-logic
unit used to compute arithmetic operations, or a load-store unit used for executing
instructions to read and write from memory locations. Because cores execute in-
structions in a deeply pipelined fashion, mispredicting a branch can be very costly
because the pipeline has to be filled with instructions and data might have not been
prefetched into caches [2]. For this reason, CPU core also house branch predic-
tors, which predict the branch based evaluations of previous branches [2]. In order
to mitigate the penalty of cache misses and to reduce pressure to main memory,
CPUs employ large multilevel caches, and can achieve very high cache hit rates with
well-written programs [3].

In the 1990s, GPUs emerged as highly parallel coprocessors designed for high
throughput in graphics-related tasks [25]. To this end, GPUs specialize in data-
parallel problems, where a single instruction can be executed onmultiple data items
in parallel. With modern devices, each instruction is executed on 32–64 stream
processors at a time [9, 10]. A stream processor is analogous to a functional unit
of a CPU executing arithmetic instructions. For example, a Tesla P100 PCIe GPU
contains a total of 3584 streamprocessors [8]. Additionally, GPUsutilize a specialized
memory setup, which enables an order ofmagnitude higher bandwidth thanwhat is

CHAPTER 1. INTRODUCTION 11

achievablewithmemory systemsusedwithCPUs 2. However, thehigher throughput
of the memory system comes with the cost of longer access latency [25]. With
GPUs, the long latency of memory accesses has been mitigated by adopting an
execution model, where a large number of threads are run on a processor in a fine-
grained fashion instead of relying on large multilevel caches to avoid accessing the
main memory [3]. With fine-grained multithreading, the thread being executed is
switched out after each instruction to another thread that is ready to run [3, 25]. As
long as there is at least one non-stalling thread capable of executing instructions, the
execution units of the device are busy and the latency of memory operations is said
to be hidden.

By the early 2000s, GPUs could be programmed by writing vertex and fragment
shaders using assembly and higher-level shading languages. In the following five
years, GPUs evolved from a rigid fixed-function pipeline into a more generic pro-
cessor, where all programmable stages were based on a common virtual machine,
which provided some of the arithmetic and logic capabilities previously found only
on a CPU [27, 28]. Since then, there has been emergence of multiple application
programming interfaces (APIs) for general-purpose computing on GPUs, namely
OpenCL [10], OpenACC [29] and NVIDIA’s CUDA [9]. The latest graphics APIs,
Metal [30], Direct3D [27], OpenGL [31], and Vulkan [32] also offer compute shaders
as a way to to express general computations without having to resort to using graph-
ics primitives. TheseAPIs offer a varying level of abstraction of the graphics pipeline.

However, creating software to make use of these coprocessors takes a significant
investment in research and development [18, 33, 34]. In many cases, achieving the
best possible performance with any of these languages requires expert knowledge
of the hardware [17, 35]. While many traditional optimization strategies apply with
GPUs, there are also key differences in the architecture, which must be taken into
account. This in turn, is a hindrance to mathematicians and physicists, whose
primary focus is to develop new mathematical and physical models. Higher-level
programming paradigms exists, such as OpenACC [29], which work efficiently in
the most common use cases, but for more complex problems are argued to lack the
expressivity required to translate the program into efficientmachine code [18, 36, 37].

In computational sciences, a programming language, which is easy to read and
write, but also uses the resources of any piece of hardware to its fullest would be
highly desirable. Oneway to solve the dilemma between generality and performance
is to use a domain-specific language. In contrast to general-purpose languages such

2Intel Xeon E5-2690 v3 CPU provides a total of 64 GiB/smemory bandwidth [7], while a GP100GL
Tesla P100 PCIe GPU can supply data at a rate of 682 GiB/s from device memory [26].

CHAPTER 1. INTRODUCTION 12

as C and Fortran, domain-specific languages are tailored towards solving a specific
class of problems. By limiting the problem domain, the syntax of a domain-specific
language can be much simpler than what is required from general-purpose lan-
guages, while the compiler for the domain-specific language can be tuned to generate
highly efficient lower-level code, that exhibits performance close to handcrafted im-
plementations in that domain [17, 18]. Listings C.2 and 1.2 showcase the differences
between general-purpose and domain-specific languages in stencil computations.

1 template <int step_number >
2 static __global__ void
3 __launch_bounds__(RK_THREADBLOCK_SIZE , RK_LAUNCH_BOUND_MIN_BLOCKS)
4 solve(const int3 start, const int3 end, const float dt,
5 VertexBufferArray buffer)
6 {
7 const int i = threadIdx.x + blockIdx.x * blockDim.x + start.x;
8 const int j = threadIdx.y + blockIdx.y * blockDim.y + start.y;
9 const int k = threadIdx.z + blockIdx.z * blockDim.z + start.z;

10 const int idx = i + j * MX + k * MX * MY;
11
12 if (i >= end.x || j >= end.y || k >= end.z)
13 return;
14
15 const PreprocessedVertex3 T = stencil_assembly(i, j, k,
16 buffer.in[0],
17 buffer.in[1],
18 buffer.in[2]);
19 const float3 result = heat_equation(T);
20
21 #pragma unroll
22 for (int w = 0; w < 3; ++w)
23 buffer.out[w][idx] = buffer.in[w][idx] + result[w] * dt;
24 }

Listing 1.1: An example of optimized CUDA code.

1 in Vector T = (int3){0, 1, 2};
2 out Vector T_out = (int3){0, 1, 2};
3
4 Kernel
5 solve(Scalar dt)
6 {
7 T_out = T + heat_equation(T) * dt;
8 }

Listing 1.2: An example of the domain-specific language developed for this work.

1.2 Previous work

There have been significant efforts to accelerate stencil processing on GPUs [17, 18,
20, 21, 38–43]. Amajority of previous work has focused on optimizing computations
with axis-aligned stencils ranging from 7 to 25 points. The optimizations generally

CHAPTER 1. INTRODUCTION 13

exploit the fact that the stencils used to update neighboring grid points overlap
partially, and a carefully selected block of data can be cached and used for updat-
ing multiple neighboring grid points. This optimization technique is called cache
blocking, where a function operates on blocks of data at a time and the blocks are
small enough to fit into caches. Cache blocking is also commonly used for opti-
mizing CPU programs, however, with GPUs the caches usually have to be managed
by the programmer instead of relying on implicit caching. We discuss the features
of GPU caches in detail in Chapter 2. A common approach to optimizing compu-
tations with axis-aligned stencils is to use 2.5-dimensional cache blocking [38, 39],
where a two-dimensional slice of the data is fetched to the user user-managed cache
and stencil points in the third dimension are implicitly stored into registers. With
axis-aligned stencils, this approach significantly reduces traffic to off-chip memory
when multiple points along the third axis are solved sequentially, as almost all the
data required to update the next vertex is already resident in caches and registers.
However, this approach is not suited for optimizing computations with complex
stencils in high-order accurate simulations because of the limited size of the caches
and register file on GPUs [44].

High-order accurate methods are often used in scientific computations, such as
simulations of astrophysical gases [11, 19]. For example, a function computing first-
and second-order derivatives in addition to cross partial derivatives may access data
from 55 neighboring vertices. Such stencil is visualized in Figure 5.13. In addition,
there may be a large number of coupled fields. In order to minimize redundant
accesses to off-chip memory, a block of data containing data from all of the coupled
fields should be resident in the cache when performing stencil computations with
neighboring points. However, allocating a large amount of the cache for processing
a group of stencils reduces the total number of threads that can be multithreaded
on a GPU, which makes the program susceptible to instruction stalls due to the long
latency of memory accesses. In high-order accurate simulations, finding the optimal
balance between the portion of the cache allocated for reusing data and the number
of threads being multithreaded on a GPU is a significant challenge that has not been
addressed adequately in previous work.

As multiple fields are coupled in multiphysics applications, such as velocity and
magnetic fields in magnetohydrodynamics, in terms of redundant memory transac-
tions, the most efficient solution would be to update the system in a single pass, as
in this case all the data required for updating a block of grid points could potentially
be cached. To our knowledge, no previous work exists on accelerating magneto-
hydrodynamics with high-order finite differences efficiently in a single pass. The

CHAPTER 1. INTRODUCTION 14

drawback of updating the system in a single pass is that each thread is likely to
require more resources, which in turn reduces the number of threads that can be
multithreaded on the GPU. An alternative approach is to decompose the kernel and
update the system in multiple passes, where each kernel requires less resources
compared with a single-pass approach. In previous work, we reordered the com-
putations in a way, which allowed us to update the system in two passes using
axis-aligned stencils [44]. However, as data in the caches of a GPU are not coherent
across kernel launches, updating the system in multiple passes required the reading
and writing of intermediate values redundantly from and to off-chip memory.

General-purpose computing on GPUs is still a relatively new field, which is ad-
vancing at a rapid rate. There are a wide variety of libraries for solving popular
tasks on GPUs, such as Polymage [20] and Halide [21] for image processing, and
Torch [45] and TensorFlow [46] for machine learning. Work on high-order accurate
multiphysics solvers is more limited. Magnetohydrodynamics solvers capable of
utilizing GPUs include GAMER-2 [47] and ENZO [48]. These solvers use the piece-
wise parabolic method, which is related to the finite volume method. GAMER-2
and ENZO use adaptive mesh refinement, where the mesh is partially subdivided
to provide finer resolution in areas where more accuracy is required, such as small-
scale perturbations [47–49]. Magnetohydrodynamics solver closest to this work is
Fargo3D [50], which uses finite differences for solving some differential equations,
and the finite volume method for some. Fargo3D uses a parser to generate CUDA
kernels from loops written in C, which conform to a specific format. The gen-
erated code is a straightforward conversion from C to CUDA and no significant
optimizations are applied during the translation process. GAMER-2 and ENZO uti-
lize shared memory at least in part of the computations [47, 48] and SBLOCK uses
an approach similar to 2.5-dimensional cache blocking [40] while Fargo3D relies on
implicit caching and finds the optimal problem decomposition with an auto-tuning
script [50]. Comparison of related work closest to ours is shown in Table 1.1

There has been extensive work on auto-tuning generators of stencil kernels on
GPUs, starting form Datta et al. [39] to others [42, 43]. However, the optimization
techniques used in these types of studies are often too limited for multiphysics ap-
plications, as they focus on idealized test cases and do not address the problemwith
efficient caching when performing computations with large stencils and multiple
coupled fields.

More general frameworks focused on solving partial differential equations in
structuredgrids onGPUs includeSBLOCK[40] andCactus [51, 54]. Usability of these
projects have been demonstrated in hydrodynamics applications. Cactus provides

CHAPTER 1. INTRODUCTION 15

Table 1.1: An overview of the previous work closest to ours. If the listed project
was evaluated in multiple test cases, we included the test case closest to our test
case. The methods used in these publications were the finite-difference method
(FDM), the finite-volume method (FVM), the piecewise parabolic method (PPM)
and adaptive mesh refinement (AMR). The details are as accurate as is stated in the
cited publications. Incomplete data has been left out. For example, the accuracy
of the method used was not explicitly stated in the publications of Cactus [51] or
Delite [18].

Project Method Test case
Astaroth 6th-order FDM MHD
Pencil Code [19] 6th-order FDM MHD
Fargo3D [50] Hybrid FDM and FVM MHD
ENZO [48] AMR MHD
Cactus [51] FDM Hydrodynamics
PEnGUIn [52] PPM Hydrodynamics
GAMER-2 [47] partial AMR Hydrodynamics
SBLOCK [40] 4th-order FVM Hydrodynamics
Astaroth Code [44] 6th-order FDM Hydrodynamics
Lift [17, 53] 2nd-order FDM Acoustics
Delite [18] Not specified Shallow water

abstractions for multiple tasks, such as data allocation, which allows the user to
write platform-independent components on top of the framework using Fortran, C,
or C++. SBLOCK parses python scripts into CUDA code in a similar fashion as
Fargo3D, but with more focus on the optimization of the generated code. However,
the optimization strategies used by SBLOCK are based on work considering 7-point
stencils with no couplings [39, 40], which is why we suspect the approach would not
work well with larger stencils in multiphysics applications.

So far we have discussed hand-coded physics solvers and libraries for stencil
processing, which may rely on parsing scripts to generate kernels from code fol-
lowing a strictly defined format. However, parsing scripts may only be used for a
straightforward translation of the code and more advanced tools are required to ap-
ply subtler optimizations. In recent years, there have been an emergence of projects
utilizing optimizing compilers, which generate efficient code by analyzing a high-
level domain-specific language [20, 21, 55]. In this work, we have drawn inspiration
from PolyMage [20] and Halide [21]. These projects supply a novel language and
a compiler for creating efficient image processing pipelines. The compilers in these
projects decouple the execution order of subroutines from the high level description
of the algorithm. PolyMage uses polyhedral analysis to reschedule subroutines,

CHAPTER 1. INTRODUCTION 16

while Halide chooses from a set of choices. The goal is, that the subroutines and
their dependencies are discovered and reordered in a way that attempts to find a
balance between redundant computation, redundant memory fetches and resource
usage. For example, reduction from a vector to a scalar may be precomputed, but
this requires that the result is held in caches until the result is no longer needed
instead of fetching it redundantly from memory each time [21].

However, PolyMage andHalide are designed for two-dimensional image process-
ing and are not stated to support double precision. To the best of our knowledge,
no analogous projects for computations with larger three-dimensional stencils ex-
ist. In this work, we use a similar, however much simpler, approach to translate a
domain-specific language to a stencil pipeline, which works efficiently with large
three-dimensional stencils and multiple coupled fields.

The drawback of creating a new domain-specific language and an accompany-
ing compiler suite is, that it requires expert knowledge in various fields, at least in
compilers, computer architecture, and the methods to be used with the domain-
specific language. In addition, maintaining a compiler requires a significant amount
of work if the goal is to generate efficient code for multiple architectures. To our
knowledge, this issue has been explored in two major projects so far, Delite [18]
and Lift [17]. These compiler suites provide an intermediate language upon which
higher-level domain-specific languages can be built, such as Liszt [56] designed for
solving partial-differential equations. The benefit of an intermediate language is,
that the designers of domain-specific languages do not have to create and main-
tain entire compilers, but can rather target an intermediate language which is then
compiled further into optimized cross-platform code. It has been suggested that
Delite and Lift are capable of producing code that exhibits performance close to
hand-tuned implementations. Steuwer has reported that in two-dimensional stencil
computations of unspecified order, Lift achieves 75% of the performance of a manu-
ally optimized implementation [57]. Sujeeth et al. have reported that several machine
learning algorithms fromK-means to linear regression generatedwith Delite achieve
85% or higher performance compared with hand-tuned implementations [18].

In this work, we adopt an approach closer to PolyMage and Halide, and create a
new compiler, as this gives us more freedom to experiment with different optimiza-
tion strategies. This is necessary, as computations with multiple coupled fields and
large stencils have not been rigorously explored in previouswork, which iswhy there
is no guarantee that premade solutions for related, but simpler stencil computations
would work well in our case. At a later date, our compiler suite can be modified to
translate code into intermediate language for one of these projects if deemed useful.

CHAPTER 1. INTRODUCTION 17

The library introduced in this thesis, Astaroth, is a new software library based
on the lessons learned during the development of its predecessor, the Astaroth
Code [58]. The Astaroth Code is a proof-of-concept solver for simulating hydrody-
namics, which we used in previous work to demonstrate that GPUs can be utilized
efficiently for solving sixth-order stencil computations with 19- and 55-point sten-
cils [44].

1.3 Problem statement

Our goal is to create a library tailored for the requirements of common multiphysics
applications. In this section, we define those requirements. We use thewordmust for
requirements, that need absolutely be fulfilled. Word should is used for requirements,
that should preferably be fulfilled, but may be ignored given valid reasons. Finally,
we use the word may to indicate requirements, that are optional.

First, magnetohydrodynamics equations solved using high-order finite differ-
ences described inChapter 3must be expressible using the domain-specific language
created for this work. The solver must support both single- and double-precision
arithmetic, and the number of fields that may be used in the calculations must not
be fixed.

Second, the generated integration kernel for the specified test case should achieve
performance within order of magnitude of the theoretical hardware maximum, cal-
culated using a well-justified metric. Depending on the operational intensity of the
problem, we consider a valid metric to be either the ratio of achieved arithmetic
performance to the theoretical maximum utilization of the compute units, or the
running time of the kernel to the minimum achievable time when only the memory
bandwidth of the device is taken into account, assuming only the absolute mini-
mum number of device memory transactions are serviced, and perfect caches and
free arithmetic.

Third, the domain-specific language should be generic enough, such that it can
be used to perform computations with arbitrary-sized stencils in a structured grid.
In this work, we demonstrate that the language is generic enough to compute partial-
differential equations with finite differences with multiple coupled fields in prob-
lems, which require a high order of accuracy. While this encompasses many prob-
lems found in multiphysics, we acknowledge that this is not an exhaustive test of all
problems that can be solved with structured grids.

CHAPTER 1. INTRODUCTION 18

1.4 Outline of this work

The rest of this work is structured as follows. In Chapter 2, we introduce graphics
processing units and cover the necessary details needed to understand the dis-
cussion on our implementations in later sections. In Section 2.1, we describe the
execution model and architecture of graphics processing units, focusing on features
used in general-purpose computing. We introduce concepts such as instruction-level
parallelism, multithreading and latency hiding, which are crucial for achieving satis-
factory performance with the execution model. We also give a short overview of the
CUDA programming model and the compilation stages from CUDA to assembly-
level code, and point out the challenges in utilizing the relatively small caches to
avoid traffic to slower off-chip memory in Section 2.2.

In Chapter 3, we introduce the theoretical background of simulating compress-
ible, electrically conducting fluids and describe the equations used to update the
state of the simulation. In Section 3.1, we review the basics of the finite-difference
methods, which we use to discretize the simulation domain spatially on a structured
grid. We show how finite differences can be used to approximate derivatives at
some point by using data from neighboring points. We also demonstrate, which
neighbors are needed to update a point using the equations introduced earlier in
this chapter. Finally in Section 3.2, we review the integration method which we use
to advance the simulation in the time domain. We detail a low-storage Runge-Kutta
scheme introduced by Williamson [59], and prove how the scheme can be rewritten
in a form which is more suited for computations bound by memory bandwidth.

In Chapter 4, we present the architecture of our library, the grammar of our
domain-specific language and how source files written in our language are compiled
into GPU kernels. In Section 4.1, we detail the components of our library and the
interface that can be used to control the execution on GPUs. In Section 4.2, we
review the basics of compilers and context-free grammars, discuss the syntax of our
domain-specific language and give an example of how the language can be used to
solve a simple physical problem. Finally in Section 4.3, we describe the architecture
of our compiler, detail the compilation phases from source code of our language
to CUDA kernels and discuss the motivations, technical details and challenges in
generating efficient kernels for solving computations with variable-sized stencils.
In this section, we argue that implicit caching can give good results with complex
stencil computations if the stencil operations are precomputed, the result is stored
into caches and registers, and then used during later stages.

CHAPTER 1. INTRODUCTION 19

In Chapter 5, we present our results and evaluate the library in three tests. First
in Section 5.1, we discuss the challenges in comparing floating-point numbers and
verify that the results of our GPU solver are sufficiently close to a model solution.
Second in Section 5.2, we describe the theoretical lower bound for the running time
of the integration kernel, compare the performance of the kernel generated with our
compiler with the lower bound, and show the detailed performance metrics of the
kernel. We show that our integration kernel achieved roughly 18% efficiency when
compared with a conservative performance bound when simulating compressible
fluids using sixth-order finite differences to approximate derivatives. In Section 5.3,
we compare the performance of our solver with the Pencil Code [19], which is a
mature CPU solver used in a multitude of publications.

In Chapter 6, we explain the results and discuss the limitations of our tests.
We also argue that aggressive use of caches is likely necessary to obtain better
performance in bandwidth-bound problems, even if higher resource usage reduces
the number of threads that can be multithreaded on the GPU. Finally, we contrast
our results with previous work, discuss future work and conclude the thesis.

Chapter 2

Graphics processing units

In this chapter, we review the executionmodel and architectural features of graphics
processing units. Graphics processing units (GPUs) are highly parallel coprocessors,
which specialize in data-parallel tasks. Data-parallel tasks can be subdivided into
smaller tasks, which can be processed in parallel. For example, a blur filter in image
processing can be applied on all pixels of the image simultaneously. Processors,
which can execute a single instruction on multiple data items in parallel are well-
suited for solving data-parallel tasks. In Flynn’s taxonomy of parallel processors,
this type of execution model is called single-instruction multiple data (SIMD) [3].
When attempting to write efficient programs, it is often beneficial to consider the
execution model of GPUs to be SIMD. However, the actual execution model of GPUs
is close to, but not purely SIMD [28], which we discuss in detail in Section 2.1.

Graphics processing units have traditionally been used for rendering real-time
graphics [25, 27], where a scene is projected on the framebuffer by passing the input
through various stages of a graphics pipeline as shown in Figure 2.1. The most
computation-heavy stages of the graphics pipeline can be solved in a data-parallel
fashion, which has been the driving force of the architecture of GPUs. During
the vertex shader stage for example, the positions of vertices depicting a three-
dimensional scene are projected into two-dimensional screen coordinates, or during
the fragment shader stage, the colors of pixels are determined by sampling textures
and using linear interpolation to compute the final color [27, 31, 32]. The tasks
performed during both of these stages are data parallel, as the vertices or pixels can
be processed independently.

Graphics processing units have been designed around amodel called stream pro-
gramming, where small GPU programs, kernels, operate on streams of data, where
each stream element can be processed independently [61]. In contrast to central

20

CHAPTER 2. GRAPHICS PROCESSING UNITS 21

Input
assembler

Vertex
shader

Geometry
shader Rasterizer

L1 and L2 cache

Device memory

Fragment
shader

Texture cache

Figure 2.1: A simplified graphics pipeline adapted from [9, 27, 32]. Programmable
stages are marked with a dashed line. During input assembly the data structures
required at later stages are gathered from device memory and passed to the vertex
shader [27]. If possible, intermediate data is cached to L1 and L2 between stages.
Vertex, geometry and fragment shader stages are executed on a grid of generic
stream processors [25, 60]. Compute shaders used for general-purpose computing
are analogous to the other programmable stages in the pipeline and executed on
the same processors, with the difference that compute pipelines consist of only one
stage [32]. We focus on compute shaders in this work and refer the reader to [27] for
a more detailed explanation of the stages in a graphics pipeline.

processing units which have to excel in general tasks, the architecture of GPUs has
been designed to maximize the throughput of the operational and memory systems
in tasks expressed with the stream programming model [25]. As this programming
model exposes the parallelism and data dependencies of a program, computational
throughput can be increased by employing a large number of parallel stream pro-
cessors [61] and wide memory buses. However, the cost of utilizing wider memory
buses increases memory access latency [25]. To mitigate the penalty of longer access
latency, hardware multithreading is used to improve instruction-level and thread-
level parallelism during execution, in addition to employing multilevel caches to
reduce traffic to off-chip memory [61, 62].

Operational and memory access latencies are hidden, when an instruction can
be issued at every clock cycle as shown in Figure 2.2, or the memory systems are
fully utilized. While in the introduction we discussed the disproportional increase
in compute performance with respect to the memory systems as noted by Wulf [23],
in 2004, Patterson [63] made the remark that latency improves with a slower rate
than memory bandwidth. Because throughput has been prioritized over latencies
in GPU design, hiding latencies becomes a major consideration for both architecture

CHAPTER 2. GRAPHICS PROCESSING UNITS 22

Warp

0

1

2

3

4

Clock cycle

0

176

34

91

12

77

1 2

92

13

35

78

3

Stall

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 2.2: An example of instruction pipelining with hardware multithreading. At
each clock cycle, an instruction is fetched and dispatched to the functional units
if possible. The number inside a square indicates the number of the instruction
dispatched. The time that it takes for an instruction to complete is marked with a
dashed line. The pipeline is stalled if none of the threads is ready to run. Instruc-
tion execution latency can be hidden either by multithreading a large number of
threads [9, 25], or ensuring, that there are sufficiently many subsequent instructions
that can be executed independently [64, 65].

designers and programmers developing software for GPUs.
In this work, we focus on how GPUs can be used to solve stencil operations on

workloads commonly found in scientific computations. Traditionally, GPUs have
been geared towards sampling two-dimensional textures with low-order stencils,
where data have been stored as single-precision floating-point numbers packed into
four elements [25]. For this purpose, linear interpolation used with sampling is
generally implemented in hardware [66]. More complicated stencils with different
coefficients must be implemented in software.

As high-performance computing on GPUs gained popularity, both AMD and
NVIDIA introduced a line of GPUs tuned for scientific computations1. Notably,
these GPUs feature larger caches and more double-precision arithmetic units than
consumer-gradeGPUs. There are typically twice asmany single-precision arithmetic
logic units than double-precision arithmetic logic units [67], which is in balance with
the increasedmemory traffic required for supplying 8-byte datawords for arithmetic
operations. For the rest of this work, we focus on discrete NVIDIA GPUs tuned for
scientific computations, which are based on the Pascal microarchitecture.

Modern GPUs are stated to conform fully to the IEEE 754-2008 standard [68] for
binaryfloating-point arithmetic [69]. However, differing fromx86CPUarchitectures,

1AMD FireStream and NVIDIA Tesla.

CHAPTER 2. GRAPHICS PROCESSING UNITS 23

Table 2.1: Common terms used in GPU computing.

CUDA [9] OpenCL [10] This work
Thread Work-item Thread
Warp Wavefront Warp
Thread block Work-group Cooperative thread array
Streaming multiprocessor Compute unit Multithreaded SIMT processor
CUDA Core Processing element Stream processor

floating-point exceptions are not handled with GPU hardware [69]. Additionally, at
compile time, the rounding mode and the accuracy of arithmetic operations used
in GPU kernels can be changed, which may be used to trade accuracy for per-
formance [66]. Floating-point arithmetic on GPUs is discussed more in detail in
Section 5.1.

2.1 GPU architecture

In this section, we give an overview of GPU architectures from the perspective of
general-purpose computing. Hardware details unique to graphics processing are
left out for simplicity. While our focus is on the architecture of NVIDIA GPUs,
AMD GPUs rely on the same general architecture and techniques to hide latencies
as discussed in the previous section [70]. We refer the reader to Table 2.1 for a
translation of the terms associated with CUDA, OpenCL and the terms used in this
work.

Let us review the necessary concepts before discussing GPU architectures in
detail. A thread is a lightweight process which has its own program counter and
memory space [2]. Generally only one thread executes at a time on a processor.
With multithreading, a thread is assigned a time slot to execute instructions on the
processor before being switched out to another. We refer to this type of execution as
concurrency. The action of switching the active thread to another is called a context
switch. In a context switch, the execution context of the active thread is stored in
a stack and the execution of another thread is resumed. A stack is an area in high-
speed memory which serves as a temporary storage for local variables and other
data [2, 3] and the execution context contains the resources specific to some thread,
which generally include the local variables and the program counter. Multithreading
can be coarse-grained, where several instructions of a thread are executed before a

CHAPTER 2. GRAPHICS PROCESSING UNITS 24

context switch, or fine-grained, where instructions from different threads are issued
at every clock cycle [3].

CUDAthreadshave somekeydifferenceswhencomparedwith traditional threads
executed on aCPU.While CUDA threads have their own program counter andmem-
ory space, and they execute scalar instructions, GPU hardware can issue only one
to two instructions per clock cycle, which are broadcast to a group of threads and
executed in parallel [25]. This group is called a warp, and it consists of usually 32
threads. Graphics processing units execute warps in a fine-grained fashion, where
instructions are fetched and issued for different warps at every clock cycle [25, 62].
A warp is analogous to a thread of SIMD instructions [3] with the exception that
the if-then-else construct is supported at thread-level granularity, which allows the
threads of a warp to follow different execution paths [25]. However, if the threads
of a warp follow different execution paths, then the instructions for the diverging
threads must be issued serially. This is done by masking threads not taking part
in the instruction as inactive, while active threads execute the broadcast instruc-
tion [62]. This type of execution model has been called single instruction, multiple
threads (SIMT) to draw adistinction of a purely SIMD-style execution, where a vector
instruction is executed on a vector of data [3, 25]. However, in order to fully utilize
the parallel processors of the hardware, instructions within a warp have to follow
the same execution path [9, 25, 62, 66].

Graphics processing units accommodate several multithreaded SIMT processors,
which execute warps concurrently (Figures 2.3 and 2.4). A block of warps, where
warps can communicate via on-chip caches is called a cooperative thread array
(CTA) [25]. At the launch of a kernel, a grid of CTAs is distributed to the multi-
threaded SIMT processors of the GPU, where the CTAs are executed independently
on each SIMT processor.

There are several types of memories dedicated to each SIMT processor. First,
there is a high-speed data cache, called the unified cache, which functions as a L1
and texture cache [8]. Loads from device memory are generally cached implicitly
in the unified cache [67]. The L1 portion of the cache is also used for storing the
local variables of threads [67]. In contrast to multilevel caches on a CPU, which are
large enough to hold entire working sets in memory, GPU caches are primarily used
for reusing data local to a CTA in order to reduce traffic to off-chip memory [3].
The texture cache is read only, and optimized for memory reads exhibiting two-
dimensional spatial locality [9]. Memory accesses are spatially local if neighboring
memory addresses are likely to be called with subsequent instructions.

Cache replacement policies are used to determine which cache line to discard at

CHAPTER 2. GRAPHICS PROCESSING UNITS 25

PC
Ie

in
te
rf
ac
e

H
os
tm

em
or
y

Device
memory

Device
memory

MSP MSP MSP MSP MSP MSP MSP

MSP MSP MSP MSP MSP MSP MSP

L2 cache

Graphics processing unit

Figure 2.3: An illustration of GPU hardware architecture. A Pascal P100 PCIe GPU
houses 56 multithreaded SIMT processors (MSP), which share a 4096 KiB L2 cache
and a total of 16 GiB of device memory [8]. The device memory consists of four
HBM2 memory packages and eight memory controllers, which supply a total of
4096-bit wide memory bus and the theoretical maximummemory bandwidth of 682
GiB/s [26].

a cache miss. Least-recently used (LRU) is a caching policy, where the least-recently
used cache line is discarded when a cache miss occurs. A cache miss can happen for
three reasons. If the cache is empty, a compulsory cache miss is encountered [3]. A
capacitymiss is amiss, where the cache is full and the queried data is not found in the
caches [3]. Finally, a conflict miss happens when there is a collision in mapping data
from two different addresses to the same cache line [3]. With n-way set-associative
caches, cache lines are grouped into sets, where each set contains n cache lines [2].
The hit rate of the cache can be improved by increasing the number of cache lines
per set, as data can be placed on any of the n cache lines in that set, which in turn
reduces conflict misses [2]. However, caches with higher associativity require more
complex and expensive hardware [2].

Previous work suggests, that the caching policy used with the Pascal microarchi-
tecture is LRU, the cache is set-associative with four sets, the size of the L1 cache line
is 32 bytes and cache lines are replaced in segments of 128 bytes [26, 67, 74]. Threads
of a CTA also have access to a user-programmable data cache called sharedmemory,
which is partitioned to a separate memory space [67]. Previous work suggests, that
access latency to shared memory is 24 clock cycles if there are no conflict misses,

CHAPTER 2. GRAPHICS PROCESSING UNITS 26

Instruction cache

Warp scheduler

SP SP

SPSP

L1 and texture cache

Multithreaded SIMT processor

Shared memory

Register file

SP SP

SPSP LD/ST

SFUDP

DP

Dispatch unit

DP

DP

LD/ST

SFU

Dispatch unitStream
processor

FP
unit

INT
unit

Operand
collector

Result
queue

Figure 2.4: An illustration of a multithreaded SIMT processor. A Pascal P100 PCIe
GPUhouses 64 single-precision (SP) and 32double-precision streamprocessors (DP),
eight special function (SFU) and load-store units (LD/ST), a single warp scheduler
and two dispatch units [8]. The register file can hold 128 KiB of data and shared
memory 64 KiB. In previous work, the sizes of the L1 instruction and data caches
have been suggested to be 8 KiB and 24 KiB, respectively [26]. Illustration of the
stream processor has been adapted from the documentation for older Fermi archi-
tectures [71], however, we could not find any indication that the composition of
the stream processor has been changed on Pascal architectures. NVIDIA explicitly
states, that a stream processor on Pascal contains both the 32-bit floating-point and
integer units, unlike on newer Volta and Turing architectures, where the units have
been separated to dedicated stream processors [72, 73].

CHAPTER 2. GRAPHICS PROCESSING UNITS 27

whereas hit latency to the L1 data cache is 82 cycles [26].
There is also a register file and an instruction cache on each multithreaded SIMT

processor. The execution states of the threads being multithreaded on a GPU are
held in on-chip caches and registers for the lifetime of the threads, therefore context
switching is stated not to incur a performance penalty [9]. Because the execution
states of threads are held in caches, the number of threads that can be run on a
multithreaded SIMT processor at a time is limited by the size of the caches. Once the
threads in a cooperative thread array terminate and the resources become available,
new CTAs are launched on the SIMT processor [9].

The multithreaded SIMT processors of a GPU share an L2 cache and main mem-
ory. We refer to the main memory of the GPU as device memory throughout this
work tomake a distinction between themainmemory of the host CPU. Device mem-
ory is aligned to segments of 128 bytes, and is accessed with 32-, 64-, and 128-byte
transactions [9]. Modern GPUs utilize high-bandwidth memory (HBM), where the
memory chips are stacked in a three-dimensional integrated circuit [67]. Accesses to
device memory are implicitly cached in the L1 and L2 [9]. L2 is used also for storing
instructions and constants in addition to data [26].

In addition to memories, a multithreaded SIMT processor houses a large num-
ber of stream processors, special function units, and load-store units as shown in
Figure 2.4. A stream processor houses a single-precision floating-point and integer
arithmetic-logic units [9, 72]. As single-precision and integer arithmetic units are
located on the same stream processor, single-precision and integer instructions can-
not be executed during the same cycle on Pascal architectures. There are also stream
processors which execute double-precision floating-point instructions. Stream pro-
cessors are not capable of any complex logic, such as branch prediction unlike cores
of a CPU [25]. Special function units execute hardware-accelerated approximations
of otherwise expensive instructions, such as the reciprocal square root and trigono-
metric functions [25]. Load-store units execute instructions used to read and write
data to and from memories.

Amultithreaded instruction fetch and issue unit consists of awarp scheduler and
two dispatch units. At each cycle, a ready-to-run warp is selected from the warps
of a CTA. For example, if there are 128 stream processors on a multithreaded SIMT
processor, then there must be 4 warp schedulers and at least 128 threads to saturate
the streamprocessorswithwork during a clock cycle. As there are twodispatch units
per a multithreaded fetch and issue unit, two instructions can be broadcast to the
execution units of the SIMT processor, as long as those instructions are executed on
separate execution units [9]. For example, an arithmetic and load-store instruction

CHAPTER 2. GRAPHICS PROCESSING UNITS 28

of a single thread can be dispatched during the same cycle.
Discrete GPUs are generally connected to the host system via a PCIe bus, which is

used to transfer data between host and device memories, and to queue kernels to be
executed on the GPU. PCIe bus may also be used for communication among GPUs
in the node. The PCIe 3.0 x16 bus of a Tesla P100 PCIe GPU provides a directional
bandwidth of 15 GiB/s [75]. There are also special interconnects, NVIDIA NVLink
and AMD Crossfire, which can be used to connect 2–4 GPUs in a node. NVIDIA
NVLink is stated to provide 19GiB/s bandwidth per direction between pairs of Tesla
P100 PCIe GPUs [8, 26, 75].

2.2 Programming GPUs

Graphics processing units have traditionally been programmed using application-
programming interfaces (APIs) specialized in computer graphics, suchasOpenGL [76]
and Direct3D [27]. While modern graphics APIs provide compute shaders for solv-
ing general tasks, APIs created for general-purpose computing, such as CUDA [9]
and OpenCL [10], offer more convenient abstractions of the GPU hardware for sci-
entific computations with high-performance computers. In this section, we review
the compilation stages from CUDA to assembly-level code, give an introduction to
programming GPUs with CUDA, and discuss common caching techniques used to
reduce traffic to off-chip memory.

Graphics processing units are independent coprocessors which require com-
mands from a host CPU to function. During the execution of a program, the host
queues commands via the PCIe bus or network to the GPU device, which are then
executed asynchronously on the GPU [32]. CUDA runtime is a high-level API and
a programming model, which extends the syntax of C++ with functions that can be
used to control NVIDIA GPUs [77]. It is built on top of the CUDA driver API, which
offers more explicit control over the device [9]. The abstraction levels of the CUDA
driver and OpenCL APIs are similar, because with both APIs, the device context
must be initialized, and GPU kernels loaded explicitly [10, 78]. With the CUDA
runtime API, these actions are performed implicitly, which results in less verbose
code [9]. In further discussion on CUDA, we refer to the CUDA runtime API unless
otherwise mentioned.

A CUDA program contains code for both the host and device, which is compiled
into an executable binary with the NVIDIA CUDA compiler. During intermediate
compilation stages, the device-only code is compiled to either Parallel thread execu-

CHAPTER 2. GRAPHICS PROCESSING UNITS 29

tion (PTX) code or a CUDA binary (cubin) [77]. Parallel thread execution is a virtual
instruction set architecture (ISA),whichprovides an intermediate assembly language
that can be further compiled to device-specific assembly just in time by the CUDA
driver [9, 79]. CUDA binaries can be disassembled to streaming assembly (SASS)
code, which contains instructions native to some specific GPU ISA (Listing 2.3). The
host code written in C++ is compiled into an object file, where the generated PTX
and cubin files are embedded [77].

1 #define VALUE_COUNT (256)
2
3 int
4 main(void)
5 {
6 float values[VALUE_COUNT];
7
8 for (int index = 0; index < VALUE_COUNT; ++index)
9 values[index] = index * index;

10
11 return 0;
12 }

Listing 2.1: An example of a loop, where an operation is applied to all elements in
an array on a CPU.

1 #define VALUE_COUNT (256)
2
3 __global__ void
4 kernel(float* values)
5 {
6 const int index = threadIdx.x + blockIdx.x * blockDim.x;
7
8 if (index < VALUE_COUNT)
9 values[index] = index * index;

10
11 }
12
13 int
14 main(void)
15 {
16 float* values;
17 cudaMallocManaged(&values, VALUE_COUNT * sizeof(values[0]));
18
19 const int threads_per_cta = 128;
20 const int ctas_per_grid = ceil((float) VALUE_COUNT / threads_per_cta);
21
22 kernel<<<ctas_per_grid , threads_per_cta >>>(values);
23 cudaDeviceSynchronize();
24
25 cudaFree(values);
26 return 0;
27 }

Listing 2.2: An example of a CUDA program, which is logically equivalent to the
program shown in Listing 2.1.

CHAPTER 2. GRAPHICS PROCESSING UNITS 30

1 code for sm_60
2 Function : _Z6kernelPf
3 .headerflags @"EF_CUDA_SM60 EF_CUDA_PTX_SM(EF_CUDA_SM60)"
4
5 /*0008*/ MOV R1, c[0x0][0x20] ;
6 /*0010*/ S2R R0, SR_TID.X ;
7 /*0018*/ S2R R2, SR_CTAID.X ;
8 /*0028*/ XMAD R0, R2.reuse, c[0x0] [0x8], R0 ;
9 /*0030*/ XMAD.MRG R3, R2.reuse, c[0x0] [0x8].H1, RZ ;

10 /*0038*/ XMAD.PSL.CBCC R2, R2.H1, R3.H1, R0 ;
11 /*0048*/ ISETP.GT.AND P0, PT, R2, 0xff, PT ;
12 /*0058*/ @P0 EXIT ;
13 /*0068*/ XMAD R0, R2, R2, RZ ;
14 /*0070*/ XMAD.MRG R3, R2, R2.H1, RZ ;
15 /*0078*/ XMAD.PSL.CBCC R0, R2.H1, R3.H1, R0 ;
16 /*0088*/ I2F.F32.S32 R0, R0 ;
17 /*0090*/ SHR R4, R2.reuse, 0x1e ;
18 /*0098*/ ISCADD R2.CC, R2, c[0x0][0x140], 0x2 ;
19 /*00a8*/ IADD.X R3, R4, c[0x0][0x144] ;
20 /*00b0*/ STG.E [R2], R0 ;
21 /*00d0*/ EXIT ;
22 /*00d8*/ BRA 0xd8 ;

Listing 2.3: The SASS disassembly of the CUDA kernel shown in Listing 2.2. We
refer the reader to [80] for a description of the Pascal instruction set. No-operation
(NOP) instructions have been removed for clarity.

Next, we introduce the basics of programming in CUDA. A cooperative thread
array (CTA) is a collection of warps, which are multithreaded on a single multi-
threaded SIMT processor, andwhich share the resources available on that processor,
such as the L1 cache and registers. On NVIDIA devices, there are 32 threads per
warp, where a thread corresponds to the portion of work executed on one of the
stream processors or other executional units. Each thread may be assigned a maxi-
mum of 255 registers, and a thread can access registers of other threads of the same
warp with a shuffle instruction [9].

At the launch of a kernel, the caller defines the number of threads per CTA, and
the total number of CTAs to be executed on the device. Each thread is assigned a
unique identifier, analogous to the value of a counter in a for loop. Examples of
logically equivalent programs in C and CUDA are shown in Listings 2.1 and 2.2.

Finally, we introduce some common caching techniques for GPUs and discuss
the related issues. The processing power of GPUs in terms of floating-point opera-
tions per second is significantly higher than what can be served with the memory
system. With a Tesla P100 PCIe GPU for example, which runs at 1328 MHz clock fre-
quency, contains 56 active SIMTprocessors, which each can issue 128 single-precision
floating-point instructions per cycle [8, 26, 75], the peak arithmetic performance is
W � 1328 · 106 · 56 · 128 � 9.5 · 1012 floating-point operations (flops) per second.
Given double-data rate HBM2 memory running at 715 MHz supplying data via a

CHAPTER 2. GRAPHICS PROCESSING UNITS 31

4096-bit wide memory bus [8, 26, 81], the theoretical maximummemory bandwidth
is Q � 715 ·106 ·4096 ·2/8 � 682GiB /s. Therefore the operational intensity of a kernel
has to be at least W/Q � 13 floating-point operations per each byte transferred to
reach the peak arithmetic performance. In many cases, the operational intensity of a
kernel is lower thanwhat is needed to saturate the floating-point units, in which case
the kernel becomes inherently bound by memory bandwidth. If there are enough
instructions in flight to hide latencies in such kernel, techniques that reduce the need
to fetch data from device memory are necessary to improve performance further.

Cache blocking is a technique, where a problem is solved in small subsets, such
that the working set at any given time is small enough to fit in caches [3]. An
example of a cache blocking techniques used with GPUs is tiled rendering [82],
where an image is constructed by rasterizing the scene as tiles where the working
set, such as triangle data and a portion of a texture, is small enough to fit into the
on-chip caches. However, generally it is not recommended to rely on implicit caching
as multiple CTAs compete for the same resources. If the memory fetches of CTAs
span too many addresses, this would lead to thrashing, where capacity and conflict
misses lead to cache lines being continuously replaced.

For this purpose, GPUs house an on-chip cache, called shared memory, which
can be explicitly managed by the programmer [9]. Shared memory can be used to
communicate data among threads of a CTA. However, the threads in a CTA have
to be synchronized before accessing the data in shared memory in order to avoid
a data race. Synchronization in turn incurs an overhead. Length of the overhead
varies case-by-case and depends on the execution state of the warps on the SIMT
processor before synchronization. The exact details on how thread scheduling is
implemented on the hardware is not publicly available, which makes it difficult to
make any further assumptions on the overhead. The amount of shared memory
assigned to a CTA limits the number of threads that can be executed on a SIMT
processor at a time. This can be problematic in cases, where a large amount of data
needs to be held in caches in order to benefit from reuse. Assigning a large amount
of shared memory for a CTA reduces the number of threads that can be executed
concurrently on amultithreaded SIMT processor, which in turnmakes the processor
more susceptible to stalls.

Chapter 3

Magnetohydrodynamics

In this chapter, we review the equations and methods used in this work to simulate
magnetohydrodynamics. Instead of testing our library and domain-specific lan-
guage in idealized test cases, we use magnetohydrodynamics to demonstrate that
the tools developed for this work are effective in solving complex problems encoun-
tered in computational physics and high-performance computing. Next, we give
an overview of magnetohydrodynamics and detail the equations solved during the
simulation. In Section 3.1, we describe how the simulation domain is discretized on
a structured grid, and how derivatives are solved with the finite-difference method.
We also discuss thememory access patterns arising from this differentiationmethod,
which are an integral part of the discussion related to performance optimizations
later in this work. Finally, in Section 3.2, we describe the integration scheme used to
advance the simulation in time.

Magnetohydrodynamics (MHD) is the study of electrically conducting fluids and
plasmas which interact with a magnetic field [83]. MHD simulations have a wide
range of applications, especially in astrophysics, where simulations of electrically
conducting liquids and plasmas are a major tool for understanding the evolution
of stars and galaxies [11]. In such simulations, several fields have to be updated in
order to advance the state of the fluid in time. In our case, there are a total of eight
fields; the components of three-dimensional velocity u andmagnetic vector potential
A, in addition to specific entropy s and density ρ, which are scalar fields. If a field
interacts with another, that is, updating one field requires knowledge of another, we
say that those fields are coupled. Characteristic of magnetohydrodynamics, there is
a strong two-way coupling between the magnetic field B and velocity of the fluid u,
where both fields drive one another [83].

Next, we show how the rate of change is solved for each field when simulating

32

CHAPTER 3. MAGNETOHYDRODYNAMICS 33

the flow of compressible fluids with an ideal equation of state. We closely follow
the equations used in the Pencil Code [19]. Let D/Dt be the convective derivative
D/Dt � ∂/∂t + (u · ∇) and ln ρ the logarithmic density. The Laplace operator is
denoted as ∇2 and the curl operator as ∇×. We can now write the rate of change for
ln ρ with the continuity equation

D ln ρ
Dt

� −∇ · u . (3.1)

Next, we construct the rate of change for the magnetic vector potential A. First, the
magnetic flux density B is given by

B � ∇ ×A . (3.2)

Furthermore, let η be the magnetic diffusivity and µ0 the magnetic vacuum perme-
ability. The electric current density j is then given by

j � ∇ × B/µ0

� ∇ × (∇ ×A)/µ0

� [∇(∇ ·A) − ∇2A]/µ0 . (3.3)

Finally, we can use Faraday’s law together with Equations 3.2 and 3.3 to compute the
rate of change of A

∂A
∂t

� u × B − ηµ0j . (3.4)

As the gradient of an arbitrary scalar field can be added to the magnetic vector
potential, various reformulations of this equation exist. In this work, we have used
the Weyl gauge, where the electric scalar potential is Φ � 0 [19].

Next, we define the equations for updating velocity u. Let S be the traceless
rate-of-shear tensor

Si j �
1
2

(
∂ui

∂x j
+
∂u j

∂xi
− 2

3
δi j∇ · u

)
. (3.5)

Furthermore, heat capacity at constant pressure cp , heat capacity at constant volume
cv , kinematic viscosity ν, and bulk viscosity ζ be some scalar constants. The speed
of sound cs for perfect, non-isothermal gases is defined as

c2
s � c2

s0 exp
[
γs
cp

+ (γ − 1) ln
ρ

ρ0

]
, (3.6)

CHAPTER 3. MAGNETOHYDRODYNAMICS 34

where γ is the adiabatic index γ � cp/cv and s the specific entropy defined later in
Equation 3.12 [19]. We can now write the Navier-Stokes equation for compressible,
non-isothermal flow as

Du
Dt

� − c2
s∇

(
s
cp

+ ln ρ
)
+

j × B
ρ

+ ν

[
∇2u +

1
3
∇(∇ · u) + 2S · ∇ ln ρ

]
+ ζ∇(∇ · u) .

(3.7)

For computing the rate of change for entropy s, we first have to define the contract
operator ⊗ as

S ⊗ S �

3∑
i�1

3∑
j�1

S2
i j . (3.8)

LetH and C be explicit heating and cooling terms, respectively, which may depend
on ρ or temperature T. In this work, we assume thatH and C are constant. Finally,
the radiative thermal conductivity is given by K and the thermal diffusivity by
χ � K/(ρcp) [19]. For the heat conduction term ∇ · (K∇T)/ρT holds that [19]

∇ · (K∇T)
ρT

� cpχ[γ∇2s/cp + (γ − 1)∇2 ln ρ]

+ cpχ[γ∇s/cp + (γ − 1)∇ ln ρ]
· [γ(∇s/cp + ∇ ln ρ) + ∇ ln χ] .

(3.9)

In this work, we assume a constant K and compute

∇ ln χ � −∇ ln ρ . (3.10)

Additionally, we calculate ln T as

ln T � ln T0 +
γs
cp

+ (γ − 1)(ln ρ − ln ρ0) , (3.11)

where ln T0 and ln ρ0 are some constants. Finally, we can write the rate of change for
specific entropy s as [19]

ρT
Ds
Dt

� H − C + ∇ · (K∇T) + ηµ0j2
+ 2ρνS ⊗ S + ζρ(∇ · u)2 . (3.12)

CHAPTER 3. MAGNETOHYDRODYNAMICS 35

Figure 3.1: An equidistantly spaced structured grid.

3.1 Finite-difference methods

In this section, we show how the equations presented in the previous section can be
solved with the finite-difference method. With this method, continuous fields are
mapped onto a discrete grid, where the derivatives at the position of each vertex can
be calculated by sampling neighboring vertices. In this work, we focus on uniformly
spaced, structured grids, where the distance between the vertices is constant and
each vertex, except the ones at the boundary, is connected to the same number of
neighbors. The type of grid used in this work is visualized in Figure 3.1.

The set of points that are used to approximate solutions to partial differential
equations depends on the form of the difference equation. A difference equation
can be written as forward, central and backward differences, where only the points
in front of the target point, on both sides, or behind the target point are sampled
and weighted with some finite-difference coefficients, respectively [14]. Recall the
definition of derivatives

f ′(x0) � lim
h→0

f (x0 + h) − f (x0)
h

, (3.13)

where f is some continuous real-valued function, and h is the spacing between
samples. In practical applications, f ′(x0) cannot be solved exactly, which introduces
an error to the calculation because h has to be some finite value. A finite-difference
equation is said to be of order n, when the discretization error has order O(hn).

CHAPTER 3. MAGNETOHYDRODYNAMICS 36

Here we use the big O notation to capture the error term with the greatest power of
h [14]. Next, let us derive the error for first-order forward differences from Taylor’s
theorem [14].

f (x0 + h) �
∞∑

n�0

f (n)(x0)hn

n!

� f (x0) + f ′(x0)h +

∞∑
n�2

f (n)(x0)hn

n!

� f (x0) + f ′(x0)h + O(h2) . (3.14)

By moving f ′(x0) to the left-hand side, we get

f ′(x0) �
f (x0 + h) − f (x0)

h
+ O(h) . (3.15)

HereO(h) is the truncation error, which is the error caused by representing an infinite
series as a finite sum.

We can now express Equation 3.15 in a notation more suitable for representing
computations in a discrete grid. Let fi be the ith vertex of the continuous field f
and δx the grid spacing with respect to axis x. The alternative representation of the
equation for forward differences can now be written as

∂ fi

∂x
�

fi+1 − fi

δx
+ O(δx) . (3.16)

In this work, we use explicit high-order central differences, as this gives almost
as high accuracy as more computationally intensive spectral methods [11]. Other
methods than finite differences could also be used, such as the finite element or finite
volume methods, but these are more difficult to implement and do not provide an
unequivocal advantage over finite differences in cases where the simulation domain
can be represented by a relatively simple, structured grid [11, 84]. Without loss of
generality, the sixth-order central difference equations for first, second and mixed
derivatives can be written for any axis as

∂ fi

∂x
�
(fi+3 − fi−3) − 9(fi+2 − fi−2) + 45(fi+1 − fi−1)

60δx
+ O(δ6

x) , (3.17)

CHAPTER 3. MAGNETOHYDRODYNAMICS 37

0

(a) 19-point stencil
0

(b) 55-point stencil

Figure 3.2: Visualization of a 19-point (a) and a 55-point (b) stencil.

∂2 fi

∂x2 �
2(fi+3 + fi−3) − 27(fi+2 + fi−2) + 270(fi+1 + fi−1) − 490 fi

180δx
+ O(δ6

x) , (3.18)

and mixed derivatives may be calculated using a compact form [19]

∂2 fi , j

∂x∂y
�

1
720δxδy

[
270(fi+1, j+1 − fi−1, j+1 + fi−1, j−1 − fi+1, j−1)

− 27(fi+2, j+2 − fi−2, j+2 + fi−2, j−2 − fi+2, j−2)

+ 2(fi+3, j+3 − fi−3, j+3 + fi−3, j−3 − fi+3, j−3)
]

+ O(δ6
x , δ

6
y) .

(3.19)

As we can see, information about neighboring vertices has to be known in order
to compute any of the derivatives for the vertex in the middle. This access pattern
is called an n-point stencil, where n is the number of vertices whose values need to
be known. A 19-point stencil required to solve Equations 3.17 and 3.18 is shown in
Figure 3.2(a). Amuch larger stencil consisting of 55points is required to also compute
cross partial derivatives. The stencil required for solvingEquations 3.17, 3.18 and3.19
is shown in Figure 3.2(b).

Next, we define some additional terminology. The set of vertices updated during
each pass over the grid is called the computational domain. Because the stencils of

CHAPTER 3. MAGNETOHYDRODYNAMICS 38

vertices at the boundaries extend beyond the grid, the computation at boundaries
requires special care. A common approach is to pad the boundaries with additional
vertices, which areupdatedwith somevaluesdependingon the boundary conditions
and used only for reading when solving the partial differential equations [13, 19].
This padding is called a ghost zone. There are several benefits of using ghost zones.
First, the boundary conditions can be computed separately from the integration
kernel. With parallelized solvers, the boundaries can therefore be communicated
simultaneously with updating the part of the computational domain, where the
vertices in the ghost zone are not read. Second, derivatives can be computed more
efficiently during the update pass, as branching and memory fetches from far-away
addresses are not needed when updating vertices near the boundaries. Third, up-
dating all vertices requires the same amount of work, which results in better load
balancing. Finally, computing boundary conditions outside of the integration kernel
is more convenient for the programmer, as complex logic, such as communication
between devices can be managed in a separate function. The drawbacks of using
ghost zones are increased memory consumption and redundant memory transac-
tions required to update the halo after each integration substep. We use periodic
boundary conditions throughout this work.

3.2 Runge-Kutta integration

In this work, we use an explicit low-storage Runge-Kutta method based on work by
Williamson [59] to advance the state of the system in time. With explicit integration
methods, the state of the system is advanced in time based solely on the previous
state. However, while explicit methods are generally easier to implement than im-
plicit methods, explicit integration may lead to an unstable system if the simulation
parameters are not selected carefully.

Let δt be the length of the time step δt � t1 − t0. The time step δt is usually
selected using an adaptive timestepping scheme based on the Courant-Friedrichs-
Lewy condition, which ensures that δt is small enough for the system not to become
unstable when using explicit integration methods [11, 19]. In this work, we leave
adaptive timestepping schemes out of scope and use a constant time step. In contrast
to naïve Euler integration, where the state is advanced δt units forward in time by
computing the rate of change only once, with Runge-Kutta methods the rate of
change is computed at several points in time in the interval (t0, t1) and weighted
to obtain more accurate approximation of the solution [14]. Throughout this work,

CHAPTER 3. MAGNETOHYDRODYNAMICS 39

we use the term substep to refer to a single pass over the grid, where the state of a
vertex is advanced one intermediate step forward. For example, with third-order
integration, we perform three substeps, which form a full integration step.

The formula for computing an integration step using the low-storage scheme
described by Williamson [59] is shown in Equations 3.20 and 3.21. Here s is the
substep number s � 1, 2, ..., n and w(s) denotes the value in temporary storage w at
substep s. Additionally, the initial state is given by f (0) and we set α(1) � w(0) � 0.
The scheme is written as

w(s) � α(s)w(s−1)
+ δt

(
∂ f
∂t

) (s−1)
(3.20)

and
f (s) � f (s−1)

+ β(s)w(s) . (3.21)

With our solver, we use a modified formulation of this scheme, shown in Equa-
tion 3.25. While our scheme requires the same amount of storage as Williamson’s
original 2N scheme, the modified scheme requires less memory transactions, as a
substep can be solved in a single pass over the vertices of the grid, eliminating the
need to write intermediate values in w back to device memory. With the modified
scheme, race conditions are avoided by reading from and writing to distinct arrays.
While we expect that this modified scheme has been discovered before, it is not
widely documented and we could not identify the scheme from previous work [85–
87]. Proof of our formulation follows. RecallWilliamson’s integration scheme shown
in Equations 3.20 and 3.21. We show that this scheme can be written in a formwhere
f (s) can be solved in a way, where additional storage is not needed to hold the
intermediate result w(s). Substituting Equation 3.20 for w(s) in Equation 3.21, we get

f (s) � f (s−1)
+ β(s)

(
α(s)w(s−1)

+
∂
∂t

f (s−1)δt
)
. (3.22)

Furthermore, Equation 3.21 can be written in the form

w(s−1)
�

f (s−1) − f (s−2)

β(s−1) . (3.23)

Substituting this, we can rewrite Equation 3.22 as

f (s) � f (s−1)
+ β(s)

(
α(s)

f (s−1) − f (s−2)

β(s−1) +
∂
∂t

f (s−1)δt
)
. (3.24)

CHAPTER 3. MAGNETOHYDRODYNAMICS 40

For the initial step it holds that α(1) � 0. This allows us to write the integration
scheme in the form

f (s) �


f (s−1) + β(s) ∂∂t f (s−1)δt , if s � 1

f (s−1) + β(s)
[
α(s)

f (s−1)− f (s−2)

β(s−1) +
∂
∂t f (s−1)δt

]
, otherwise, �.

(3.25)

This scheme requires only two arrays to be held in memory; one for storing the
current state, and one for storing the previous or the next state. As no stencil
operations are performed with the field f (s−2) in Equation 3.25, the array storing
f (s−2) can be overwritten with the state f (s) after f (s−2) has been read.

In this chapter, we gave an overview of the equations and methods used to drive
magnetohydrodynamics simulations. Magnetohydrodynamics serves as a good test
case particularly because of the number of coupled fields. When computing the
equations, finding an efficient way to cache portions of the fields is challenging and
not explored adequately in previous work. Cache size limits the number of data
items that can be reused during computation, and blocking techniques commonly
used with simpler, axis-aligned stencils cannot be used because of the limited cache
size and registers. In addition to updating coupled fields, we also have to compute
at least first, second and cross partial derivatives, which are especially challenging
to solve in a way, where as much of the data could be reused in caches when
using high-order differentiation schemes. These requirements encompass many
applications involving stencil computations, such as any other simulation where
first- and second-order partial differential equations have to be solved to advance
the state of the system.

Chapter 4

Library for stencil computations

The contributions of thiswork are a library for processing three-dimensional stencils,
a domain-specific language for expressing stencil computations on a high-level,
and a compiler for generating efficient CUDA kernels from source files written in
this domain-specific language. In this chapter, we present these contributions and
discuss our design decisions. In Section 4.1, we present the architecture of the library
and its interface, andgive examples how touse it for solving a timestep. In Section 4.2,
we present the grammar of the domain-specific language and show examples of the
syntax of programs written in the language. Finally, in Section 4.3, we discuss
the technical details of our compiler implementation, review the compilation stages
from translating source code written in the domain-specific language to kernels
usable with our library and give a thorough description of the algorithm skeleton
and optimizations performed during the generation of the stencil kernel.

Our primary motivation for creating the suite was to utilize the GPU hardware
efficiently in three-dimensional stencil computations. We have focused especially on
the demands in computational sciences, where large stencils are often-times used
to achieve sufficient accuracy. As computations with large stencils are challenging
to solve efficiently on hardware where the size of the cache is not large enough to
hold the working set in on-chip memory, our focus has especially affected the way
we generate kernels and which type of optimizations should be applied. As efficient
programming of GPUs is also relatively verbose and requires expertise in the execu-
tion model and hardware features, we decided to create a domain-specific language
which can be used to express a wide range of tasks in computational sciences. For
the needs in high-performance computing, the library has been designed in a way
which allows it to be extended to support multiple devices in future work.

The suite presented in this chapter is licenced under the GNU General Public

41

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 42

Core library

Single-device layer

User-defined
kernels

Built-in
kernels

Distribution
of work

Multi-device layer

Inter-device
communication

Concurrency and
synchronization

Configuration Memory
management

Application programming interface

Figure 4.1: Components of the library created for this work.

License v3.0 and freely available at an online repository [88].

4.1 Library architecture and API

Wepresent the architecture of the library and the application programming interface
in this section. The library is used to manage the resources of multiple devices in
one compute node. In this work, we focus on the aspects of using a single device for
the computations and leave discussion on multiple devices out of scope. The library
is divided into single- and multi-device layers, as shown in Figure 4.1.

Functions defined on the single- and multi-device layers have access to a config-
uration header, which declares common datatypes, such as the precision of floating-
point numbers, the number of fields and constants used in the computations, and
the data layout used with the fields. Functions local to some specific device, such
as memory management and kernel calls, are defined on the single-device layer,
while synchronization, communication, concurrency and distribution of the grid
among devices within the node are managed on the multi-device layer. The bene-
fit of dividing the library into single- and multi-device layers is, that single-device
implementations can be modified, for example by changing the memory layout to

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 43

improve performance, without having to modify code on the multi-device layer.
The library itself is single-threaded, but kernels can be executed asynchronously

with the host code and synchronized using CUDA streams and events. Streams and
events are created on the single-device layer while the concurrent execution of the
kernels is managed on the multi-device layer by supplying an appropriate stream
to single-device functions. The benefits of using concurrency are two-fold. First,
two or more independent kernels can be executed simultaneously on a single device
if there are enough available resources. This is a form of task-parallelism, where
tasks are distributed across the SIMT processors of the GPU and in this sense, the
tasks are executed in parallel [3, 25]. Second, when distributing the work among
multiple devices and synchronizing the execution with CUDA events, the overhead
caused by communicating the ghost zones among devices can potentially be hidden
if communication is performed simultaneously with computation. For example, the
values in the ghost zones are only used to compute stencils near the boundaries,
while any other stencil can be processed with data already local to the device, which
could be done simultaneously with the communication of the ghost zones.

The library is used via an application programming interface (API), which de-
fines all the necessary functions for transferring data fields across host and device
memories, and controlling execution on the device. For controlling execution, the
API provides functions for synchronization, which go through themulti-device layer
andwhere thework is distributed among devices in the node in addition to the built-
in and user-defined functions. Listings 4.2 and 4.1 show the functions providedwith
the interface and an example of a simulation loop. All calls to the user-defined or
built-in kernels are non-blocking.

The library is built around a kernel, which applies stencil operations on a set of
vertices. This kernel is generated using the domain-specific language discussed in
the next section. In this work, we use this kernel to perform integration substeps to
advance the state of an electrically conducting fluid. We also provide two types of
built-in functions with the library. First, we provide kernels for performing reduc-
tionswith scalar and vector fields, and for applying periodic boundary conditions on
the ghost zone of a field. Second, we provide device functions, which can be called
within user-defined kernels. At the time of writing, we provide built-in functions
for computing first-, second-order and cross partial derivatives with respect to all
axes, several functions for basic linear algebra, such as the dot product and some
more complex functions, such as the curl operation. In Section 4.2, we present the
built-in functions in a format in which they can be called within our domain-specific
language.

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 44

1 #include <astaroth.h>
2
3 #include "host_utilities.h" // load_config , acmesh_create , ac_mesh_destroy , ...
4
5 int
6 main(void)
7 {
8 /* Load the configuration from a file */
9 AcMeshInfo mesh_info;

10 load_config(&mesh_info);
11
12 /* Compute the initial condition */
13 AcMesh* mesh = acmesh_create(mesh_info);
14 acmesh_init_to(INIT_TYPE_RANDOM , mesh);
15
16 /* Initialize the GPUs and load the mesh */
17 acInit(mesh_info);
18 acLoad(*mesh);
19
20 /* Step the simulation */
21 while (true) {
22 const AcReal umax = acReduceVec(RTYPE_MAX , VTXBUF_UUX , VTXBUF_UUY , VTXBUF_UUZ);
23 const AcReal dt = adaptive_timestep(umax, mesh_info);
24 acIntegrate(dt);
25 }
26 acSynchronize();
27
28 /* Deallocate memory */
29 acQuit();
30 acmesh_destroy(mesh);
31 return 0;
32 }

Listing 4.1: An example of a simulation loop, where integration and reductions are
executed on a compute node.

4.2 Domain-specific language

In this section, we present a novel domain-specific language (DSL) designed to
provide users with a simplified way of writing efficient kernels for tasks involving
stencil operations. The benefits of creating a DSL are twofold. First, scientists using
the language can focus ondeveloping solvers andmathematicalmodels using a high-
level language while still achieving performance close to handwritten code. Second,
procedures written in the DSL are decoupled from implementation. This allows us
to extend the DSL compiler to generate optimized code for different architectures, or
to generate an intermediate representation that can be further compiled to optimized
cross-platform code by compiler suites such as Delite [18] or Lift [17]. The drawback
is an added layer of complexity, as the translation from the DSL to CUDA is not
obvious.

Next, we discuss the features of the DSL and justify our design decisions. Our
first consideration was the programming paradigm. We considered functional style,
because it is an intuitive way to represent functions and has been adopted by many

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 45

related DSLs [20, 21, 89] and intermediate representations [18, 57], but ultimately
chose procedural style because it is well-known and widely used in science and
industry [13, 19, 76, 90]. C-like programs are straightforward to compile to CUDA,
as little changes are required when translating to and from the intermediate repre-
sentation of the code. This simplifies compiler development and potentially makes
debugging easier.

We chose dataflow programming as the programming model. In this model, a
chain of functions is executed on a stream of data, where the output of a function
is passed to the next. In our case, the chain of functions defined within a kernel
are executed on all or a subset of vertices belonging to the computational domain.
Dataflow programming provides a natural way to express stages and interactions in
the logical graphics pipeline, which is why shading languages are also based on this
model [25]. Graphics processing units are designed to excel in tasks expressed in
this fashion.

Our language is limited towritingGPUprograms andwedonot providemeans to
managememory outside of the scope of kernels. The library discussed in Section 4.1
is designed to provide all the necessary functions for managing host and device
memory among other operations outside kernels. We separated our DSL into two
distinct, but closely related languages, analogous to how shader stages are expressed
in shading languages, such as GLSL [76]. These distinct languages are used to
specify computations for the stencil assembly and processing stages. These stages
are defined in separate compilation units. We opted to separate the stages in order to
simplify the language, because if all the stages were defined in the same compilation
unit, we would have had to introduce additional keywords to determine which
functions are available at which stage, and how the functions should be generated
during compilation.

The syntax of our language is close to C and C++. In addition to common
keywords found in C-like languages, such as int, we added the following keywords,
which enable us to translate a high-level representation of the stencil pipeline into
an efficient CUDA kernel.

Scalar Vector Matrix

Kernel Preprocessed uniform

in out int3

Kernel and Preprocessed are function qualifiers, while the rest of the keywords are
used to qualify and specify variables. Next, we discuss these keywords in detail.

First, a functionqualifiedasKernel is the startingpoint of the stencil pipeline. The

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 46

keyword Preprocessed expresseswhich functions should be evaluated immediately
after entering a Kernel function. Because the efficiency of the algorithm described in
the next section is based on preprocessing stencil operations with small data sets at
a time, it is critical to knowwhich functions should be evaluated, such that the result
can be stored in localmemory for later use. The Preprocessed function qualifiermay
only be used during the stencil assembly stage to enforce that all reads from input
arrays are completed and the preprocessed functions are evaluated before entering
the stencil processing stage. In future work, the need for the Preprocessed function
qualifier can be eliminated if the functionsmost suitable for preprocessing are chosen
using heuristics instead of relying on the user to supply the keyword. In this case,
we would have to keep track of global memory references during compilation, and
balance the usage of local memory with redundant transactions from the device
memory. For this work, we leave further discussion on such heuristics out of scope.

For the stencil assembly and processing stages, we introduced qualifiers for input
and output arrays, in and out, respectively. These are analogous to the in and out

qualifiers in shading languages. We use these qualifiers to avoid race conditions,
and to determine which arrays can be read through the read-only cache. A race
condition happens when the result of a multithreaded program depends on the
execution order of its threads, such as when two threads try to read from and write
to the same memory location concurrently. We enforce that input arrays are used
only for reading, such that they can be read through the read-only cache optimized
for spatially local memory fetches, and a threadmay read from anymemory location
without causing a race condition. With output arrays, we require that each thread
may only access a unique memory address. The syntax for accessing arrays in
our language is similar to C and related languages, with the exception that three-
dimensional arrays are accessed using the syntax array[i, j, k], where i, j and
k are the coordinates of the vertex being processed. We provide the coordinates of
the currently processed vertex with a built-in variable vertexIdx, which is of type
int3. int3 is a structure composed of three integers. Arrays can also be accessed
without specifying the index, in which case the index (vertexIdx.x, vertexIdx.y,
vertexIdx.z) is implicitly assumed.

For convenience, we provide three built-in data types for arithmetic, Scalar,
Vector and Matrix, and a subset of basic linear algebra subroutines as built-in func-
tions, such as dot product andmatrix multiplication. Precision of these data types is
not specified with the DSL and may be freely selected by the implementer. In our li-
brary, we declare these data types either as single- or double-precision floating-point
numbers. Finally, the keyword uniform is used to determine which global variables

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 47

Table 4.1: The basic built-in functions and variables provided by the library. We
refer the reader to [88] for a full list of the built-in functions.

Built-in function or variable Type Explanation

vertexIdx int3 Index of the currently
processed vertex

derx(int3 index, in Scalar field) Scalar First derivative with respect
to the x axis

derxx(int3 index, in Scalar field) Scalar Second derivative with
respect to the x axis

derxy(int3 index, in Scalar field) Scalar Cross partial derivative with
respect to the x and y axes

dot(Vector a, Vector b) Scalar Dot product a · b

length(Vector a) Scalar Vector length
√

a2
1 + a2

2 + a2
3

cross(Vector a, Vector b) Vector Cross product a × b

mul(Matrix A, Vector x) Vector Matrix-vector product Ax

should be in constant memory of the device. The full list of keywords accepted in the
language is shown in Appendix A. The build-in functions provided by our library
are shown in Table 4.1. In addition, we provide the function rk3(out T field_out,

in T field_in, T rate_of_change, Scalar dt) for computing integration steps,
where T is either a Scalar or Vector. rk3 computes the third-order Runge-Kutta
integration step using Williamson’s coefficients α2 � −5/9, α3 � −153/128, β1 � 1/3,
β2 � 15/16, and β3 � 8/15 [19, 59].

Before introducing the syntax of our DSL, let us review the terminology. First,
identifier is the name of some variable or function. A variable or function is associated
with information of its type and storage class. These associations are establishedwith
a declaration. A type specifier specifies the type of a variable, or the return type of a
function. A type qualifier specifies the storage class for some variable or function. An
expression consists of at least one identifier or a constant, and an optional operator.
The operator can either be an unary operator, in which case no additional operands
are needed, or a binary operator, where the operand on its left-hand side is another
expression. A statement expresses an action to be executed, such as a declaration,
an assignment or a return statement. Finally, a definition is a statement, where an
identifier is declared and assigned a value given by some expression. An example
of a definition in C syntax is given below.

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 48

declaration︷ ︸︸ ︷
<type qualifier> <type specifier> <identifier> =

expression︷ ︸︸ ︷
<expression> <operator> <operand>︸ ︷︷ ︸

definition statement

Next, we specify the syntax of our DSL using the Backus-Naur form (BNF), which
is a commonly-used notation for describing context-free grammars [91, 92]. Context-
free grammars are defined using productions, which map nonterminal symbols to
other nonterminal or terminal symbols [92]. Productions are expressed in the form
A → α |β, where A is a nonterminal that is rewritten either as α or β. If there is no
production, where α is on the left-hand side, then α is called a terminal symbol. A
grammar is context-free, if each rule maps only one symbol from the left-hand side
to some nonterminal or terminal [91, 92]. For example, the above statement can be
parsed with the following grammar in BNF.

definition → declaration = expression

declaration → type-definition identifier

type-definition → type-qualifier

| type-qualifier type-specifier

expression → unary-expression

| expression binary-operator unary-expression

unary-expression → postfix-expression

| unary-operator postfix-expression

postfix-expression → primary-expression

primary-expression → identifier

| number

| (expression)

Our grammar is an extended subset of C. We refer the reader to Kernighan and
Ritchie [93] for a detailed discussion onC grammar. We extended the index notation,
such thatmultidimensional arrays canbeaccessedwith thenotationarray[i, j, k]

instead of array[i][j][k], as this requires fewer symbols and does not suggest a
specific data layout. We specify this rule by adding the following productions to the
grammar shown above.

expression-list → expression

| expression-list , expression

;

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 49

postfix-expression → primary-expression

| postfix-expression [expression-list]

;

We deliberately left out some features of C. Notably, we require that the scope
of if, else if, else, while and for statements is explicitly indicated with braces.
We also allow increment and decrement by one shorthands ++ and -- to be used
only as a prefix, as this removes confusion about the differences between prefix and
postfix notations. We do not allow goto statements either. The full grammar of the
language developed for this work is shown in Appendix B. Implementation of the
magnetohydrodynamics solver developed for with work with our DSL is shown in
Appendix C.

Listings 4.3 and 4.4 showhow the heat equation ∂T
∂t −α∇2T � 0may be solvedwith

our DSL. With our compiler, these sources are compiled into CUDA code equivalent
to that shown in Listings 4.5 and 4.6.

4.3 DSL compiler and code generation

In addition to designing a domain-specific language (DSL), we created source-to-
source compiler for generating CUDA kernels from programs written in this lan-
guage. Our compiler incorporates several phases. First, a high-level representation
of a stencil-processing pipeline is given as input to the lexical analyzer, which extracts
tokens from the source and passes those to a syntax analyzer. With a syntax analyzer,
we construct an abstract syntax tree based on context-free grammar that specifies the
language. This abstract syntax tree serves as an intermediate representation of the
code. Finally, during the code optimization and generation phase, we traverse the
syntax tree while maintaining a symbol table and generate a CUDA kernel from the
intermediate representation. The generated kernel is then embedded in our library
and compiled further to machine-specific code with the NVIDIA CUDA compiler.
Figure 4.2 shows the compilation phases of our DSL.

Next, we discuss the technical details of the generated kernel. In this work,
we use the generated kernel to compute integration substeps. When designing
the algorithm generated with the DSL compiler, our primary consideration was
to ensure that the generated code could be used to perform computations with
stencils of various shapes relatively efficiently without having to tune the kernel
by hand for different microarchitectures. As discussed in Chapter 1, it is often the
case that low-level optimizations do not carry over hardware generations. With

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 50

DSL
source

Preprocessor
(gcc)

Scanner
(flex)

Parser
(bison)

Code
generator

Kernel
source

Library
source

CUDA compiler
(nvcc)

Executable
binary

DSL compiler

A B
Output from A
is passed to B

A B

A is included
in B

Compiler
stage
Input or
output file

Figure 4.2: The compilation phases used to translate kernels written in our DSL
to CUDA. The kernel is then included in our library, which is compiled into an
executable binary with the NVIDIA CUDA compiler.

each GPU microarchitecture, new optimization techniques and hardware features
are introduced, which may not be available on older machines. By the time a
rigorously optimized implementation on one architecture has been completed, it
may be that a significantly faster device requiring a different approach to obtain
optimumperformance has already been released. Therefore during code generation,
wedecided to apply only high-level optimizations that are less likely to change across
GPU architectures, and rely on the CUDA compiler and an auto-tuning script to
optimize the program further.

In stencil computations, if a CUDA thread is assigned for updating a single grid
point, then the threads updating neighboring points share a part of the data required
for computing the output. We say that the stencils of those neighbors overlap, as
shown in Figure 4.3. In the ideal case, all of the shared data used for computing
neighboring stencils would be fetched into caches and not evicted, until all threads
utilizing that datawouldhave completed their computations. In termsofminimizing
redundant accesses to device memory, the most efficient solution would be to cache

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 51

Figure 4.3: Overlapping 25-point stencils.

the entire computational domain for the duration of the kernel as all neighboring
stencils overlap to some extent. In practice, the size of the CTA and the amount of
data that can be stored in caches is limited. Instead, the computational domain must
be decomposed into smaller blocks, where the working set is small enough to fit into
caches. This approach is called cache blocking.

As stated in the problem statement in Section 1.3, our solvermust support adding
new equations and fields, which may change the stencil shape and consequently
change the optimal way to block the data. As finding a performance-portable way
to cache arbitrary-sized stencils programmatically with shared memory is a major
undertaking, we opted instead to rely on implicit caching. We use this term to
refer the type of caching, that is carried out by the hardware and drivers. For
example, we consider actions, such as selecting registers for reusing and utilizing
cache replacement policies, prefetching and other techniques to store data in L1, L2
and texture caches, to be types of implicit caching. In contrast, weuse the term explicit
caching to refer to explicitly managing the user-programmable portion of the on-chip
cache allocated as shared memory. While generally relying on implicit caching on
GPUs is not recommended because of a large number of threads competing for a
shared cache [94], which is likely to lead to thrashing, in Chapter 5, we show that
in our case implicit caching works surprisingly well. The potential reason for this is
that as we increase resources allocated per thread to mitigate register spilling, this
limits the number of threads that can be multithreaded on a SIMT processor, which
in turn reduces competition for the L1 cache. The potential downside is, that if each
warp of a CTA operates concurrently on a different field, then the working set of a
CTA is unlikely to fit into L1, which would lead to higher conflict and capacity miss
rates.

However, if the warps of a CTA execute instructions in a relatively synchronized

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 52

fashion, such that each warp would access nearby locations in a single array in quick
succession, then the data required by those threads would more likely be resident
in the cache. Devices based on the Pascal microarchitecture have been suggested to
use least-recently-used as their caching policy [26], which in this case would hold
many of the vertices accessed by multiple threads in the L1 cache. In addition, we
have decomposed the problem in a way, where each thread updates one vertex and
a warp operates on 32 contiguous vertices. As cache lines are replaced in segments
of 128 bytes [26, 67, 74], a load instruction from one thread triggers the transfer of a
cache line containing data required also by other threads in that warp. Recall also
that thewarp schedulers choose awarp for execution from all warps that are ready to
run [25]. We suspect that this contributes to keeping thewarps of a CTA running in a
relatively synchronized fashion, as threads accessing uncached data stall for 230–370
cycles [26, 62], while threads which have their working set in registers and L1 may
execute instructions in the meantime. To support this hypothesis, previous work
suggests that L1 hit latency with the Pascal microarchitectures is 82 cycles, while the
execution latency of floating point instructions ranges from 6 to 14 cycles [26]. In
addition, as each of the stream processors can be issued one instruction per clock
cycle [25, 75], several instructions could potentially be executed before a cache line
replacement triggered by a warp further ahead in execution is completed. However,
to our knowledge the exact details on how cache lines are replaced onGPUhardware
are not publicly documented.

We also did experiments with sharedmemory butwere not able to find a solution
that was noticeably faster. With large stencils, say, 55 points where each point
comprises 32 bytes of data, large amounts of shared memory are likely needed to
achieve a satisfactory reuse ratio. However, using large amounts of shared memory
decreases the occupancy of the kernel and requires a synchronization, which stalls
the threads until the data has been fetched to caches. As latencies are not hidden
in this case by multithreading, and memory and arithmetic operations cannot be
executed while waiting for the synchronization, such kernel is likely to be bound by
latency. We leave shared memory out of scope for the rest of the work. For a more
detailed discussion on issues with using sharedmemorywith large stencils, we refer
the reader to [44].

Our second major consideration was to focus on employing instruction-level
parallelism to hide latencies instead relying purely on fine-grained multithreading.
As arithmetic performance in terms of floating-point operations per byte is much
higher than the rate bytes can be transferred from the device memory [26], kernels

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 53

0 5 10 15 20 25 30
0

5

10

15

20
·1012

Operational intensity (flops / byte)

Pe
rf
or
m
an

ce
(fl
op

s/
s)

Figure 4.4: The roofline performance of a Tesla P100 PCIe GPU. The theoreti-
cal maximum performance was plotted with Williams’ roofline model given by
min(W, I ·Q) [95], where W � 9.5 ·1012 flops / s and 0.73 ·1012 bytes / s [26]. The per-
formance of tasks which have an operational intensity of I � W/Q ≈ 13 are bound
by both memory bandwidth and compute performance. In tasks where I < 13 the
performance is bound by memory bandwidth.

with low- to moderate operational intensity1 are likely to be bound by bandwidth.
Operational intensity is calculated as the ratio of operations per bytes transferred
I � W/Q [95]. Figure 4.4 shows the roofline model for a Tesla P100 PCIe GPU used
in this work.

It is difficult to give an exact value for the operational intensity of the generated
integration kernel because of the large amount of arithmetic involved. Instead, we
measured the number of floating-point operations performed and bytes transferred
experimentally, and estimated the operational intensity of computing integration
substeps to be 2.7–6.9. We discuss this experiment in detail in Section 5.2. In
problems where operational intensity is less than what is needed to utilize the
computeunits, hiding latencies by running agreater number of threadsperprocessor
is only effective for reaching the maximum bandwidth, after which caches must
be utilized to improve performance. The low operational intensity of the kernel
indicates a strong need for caching in order to reduce pressure to device memory.
Additional methods can also be used to reduce pressure on the memory bus, such
as compressing the data before transferring it over the network [96] or on-chip, but

1Less than 13 floating-point operations per byte transferred on a Tesla P100, given a peak perfor-
mance of W � 9.5 · 1012 floating-point operations per second, when counting the fused multiply-add
as one operation, and a memory bandwidth of Q � 682 GiB / s.

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 54

we leave these techniques out of scope.
In our kernel, we rely on fewer threads to supply the necessary instructions to

hide operational and memory access latencies instead of focusing on increasing the
number of threads being multithreaded on a SIMT processor. However, the number
of simultaneously executed instructions that can be supplied by a single warp is lim-
ited [62], which makes the kernel more sensitive to instruction stalls. The primary
way to mitigate stalling is to ensure that as much of the data as possible is available
in registers and caches when needed. To this end, we increased the register limit per
thread to the maximum allowed by the hardware. The primary benefits of this are,
that fetching data from registers takes roughly two times fewer clock cycles than from
shared memory [62] and six times less cycles than from the L1 cache [26]. A larger
register file also mitigates spilling data to caches. In addition to allocating more
resources per thread, we inline small functions that are called often, such that addi-
tional registers are not used to pass the arguments, and the contents of the function
call are visible, such that for example a load-store instruction inside a function could
be dispatched simultaneously with an independent arithmetic instruction outside
that function. Finally, we strive to ensure that all loops can be unrolled by fixing the
number of iterations at compile time, such that stream processors and clock cycles
are not wasted on evaluating the branch condition. The drawback of both inlining
and unrolling is the increased pressure to the instruction cache.

We leave lower-level optimizations than discussed here out of scope, as perfor-
mance improvements from these techniques would depend on the device architec-
ture. Examples of such low-level optimizations would be ordering instructions in a
way that all available instructions slots of the device would be utilized, or renaming
registers in a way that there are no false data dependencies or register bank conflicts.
Additionally, we expect the performance to be limited by peer-to-peer and network
bandwidth when the library is extended to support computations onmultiple nodes
in laterwork, which iswhywehave left out also some higher-level optimizations. For
example, changing indexing within the grid to improve spatial locality of the data or
padding the computational domain may reduce the number of memory transaction
required in the kernel at the cost of increasing transactions over a network.

Next, we give an overview of the generated kernel. The kernel comprises two
programmable stages, shown in Figure 4.5. Examples of the programmable stages
written in our DSL are shown in Listings 4.5 and 4.6. The stages are compiled into
CUDA headers, which are embedded in a single compilation unit. In addition to the
generated pipeline stages, this compilation unit consists of built-in functions, such
as the dot product, and the necessary code for calling the integration kernel. Before

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 55

Stencil
assembler

Stencil
processor

L1 and L2 cache

Device memory

Output
merger

Texture cache

Figure 4.5: A conceptual model of the stencil pipeline generated with our compiler.
The stencil assembly and processing stages are programmable with the DSL. During
stencil assembly, the data qualified as in is read from device memory through the
texture cache, preprocessed, and the results of the stencil operations are stored into
local memory. The data stored in local memory is then used to solve functions
defined in the stencil processing stage. During the output merger stage, the results
arewritten back to devicememory. See Figure 2.1 for a comparisonwith a traditional
graphics pipeline.

calling the integration kernel, we decompose the grid to blocks of vertices, which
are assigned to the threads of a CTA. Within a CTA, each CUDA thread updates a
single grid point. After entering the kernel, the input arrays are read and the stencils
are preprocessed using the functions qualified as Preprocessed in the DSL source
code. The results of Preprocessed functions are then stored to a structure held in
local memory. After all Preprocessed functions have been processed, the execution
continues from the code defined for the stencil processing stage. After the stencil
processing stage has been completed, the results are written back to device memory.

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 56

1 /** Initialize all GPUs in the given node. The mesh, device
2 constants are allocated and necessary data for further
3 computations is distributed among GPUs */
4 AcResult acInit(const AcMeshInfo& mesh_info);
5
6 /** Decompose the mesh stored in host memory and distribute
7 it among GPUs in the node */
8 AcResult acLoad(const AcMesh& host_mesh);
9 AcResult acLoadWithOffset(const AcMesh& host_mesh ,

10 const int3& start,
11 const int num_vertices);
12
13 /** Perform a full integration step, computing boundary
14 conditions where needed */
15 AcResult acIntegrate(const AcReal& dt);
16
17 /** Perform an integration substep by calling the kernel
18 generated from the domain-specific language */
19 AcResult acIntegrateStep(const int& isubstep,
20 const AcReal& dt);
21
22 /** Compute and communicate ghost zones among GPUs in the
23 node */
24 AcResult acBoundcondStep(void);
25
26 /** Perform a scalar reduction of a given type */
27 AcReal acReduceScal(const ReductionType& rtype,
28 const VertexBufferHandle& handle);
29
30 /** Perform a vector reduction of a given type */
31 AcReal acReduceVec(const ReductionType& rtype,
32 const VertexBufferHandle& arrx,
33 const VertexBufferHandle& arry,
34 const VertexBufferHandle& arrz);
35
36 /** Store the mesh from GPU memory to CPU memory */
37 AcResult acStore(AcMesh* host_mesh);
38 AcResult acStoreWithOffset(const int3& start,
39 const int num_vertices ,
40 AcMesh* host_mesh);
41
42 /** Free all allocations on the GPUs and reset */
43 AcResult acQuit(void);
44
45 /** Synchronize all devices in the node */
46 AcResult acSynchronize(void);

Listing 4.2: Description of the application programming interface for accessing the
library created for this work. Calls to user-defined and built-in kernels are executed
asynchronously with respect to the host code. The interface provides the function
acSynchronize() for synchronizing all devices used by the library.

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 57

1 uniform Scalar inv_dsx, inv_dsy, inv_dsz;
2
3 Scalar
4 second_derivative(Scalar* pencil, Scalar inv_ds)
5 {
6 Scalar coefficients[] = {...};
7
8 #define MID (STENCIL_ORDER / 2)
9 Scalar res = coefficients[0] * pencil[MID];

10
11 for (int i = 1; i <= MID; ++i)
12 res += coefficients[i] * (pencil[MID + i] + pencil[MID - i]);
13
14 return res * inv_ds * inv_ds;
15 }
16
17 Scalar
18 derxx(in Scalar field)
19 {
20 Scalar pencil[STENCIL_ORDER + 1];
21
22 for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
23 pencil[offset] = field[vertexIdx.x + offset - STENCIL_ORDER / 2,
24 vertexIdx.y,
25 vertexIdx.z];
26
27 return second_derivative(pencil, inv_dsx);
28 }
29
30 Preprocessed Scalar
31 laplacian(in Scalar field)
32 {
33 return derxx(field) + deryy(field) + derzz(field);
34 }

Listing 4.3: Sample code for generating the stencil assembly stage.

1 uniform Scalar alpha;
2
3 Vector
4 laplacian(in Vector T)
5 {
6 return (Vector){laplacian(T.x), laplacian(T.y), laplacian(T.z)};
7 }
8
9 Vector

10 heat_equation(in Vector T)
11 {
12 return alpha * laplacian(T);
13 }
14
15 in Vector T_in = (int3){0, 1, 2};
16 out Vector T_out = (int3){0, 1, 2};
17
18 Kernel
19 solve(Scalar dt)
20 {
21 T_out = T_in + heat_equation(T_in) * dt;
22 }

Listing 4.4: Sample code for generating the stencil processing stage.

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 58

1 __constant__ float inv_dsx, inv_dsy, inv_dsz;
2
3 typedef struct {
4 float value;
5 float laplacian
6 } PreprocessedVertex;
7
8 typedef struct {
9 PreprocessedVertex x;

10 PreprocessedVertex y;
11 PreprocessedVertex z;
12 } PreprocessedVertex3;
13
14 static __device__ __forceinline__ float
15 second_derivative(const float* __restrict__ pencil, const float inv_ds)
16 {
17 const float coefficients[] = {...};
18
19 #define MID (STENCIL_ORDER / 2)
20 float res = coefficients[0] * pencil[MID];
21
22 #pragma unroll
23 for (int i = 1; i <= MID; ++i)
24 res += coefficients[i] * (pencil[MID + i] + pencil[MID - i]);
25
26 return res * inv_ds * inv_ds;
27 }
28
29 static __device__ __forceinline__ float
30 derxx(const int3 vertexIdx , const float* __restrict__ arr)
31 {
32 float pencil[STENCIL_ORDER + 1];
33 #pragma unroll
34 for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
35 pencil[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2,
36 vertexIdx.y,
37 vertexIdx.z)];
38
39 return second_derivative(pencil, DCONST_REAL(AC_inv_dsx));
40 }
41
42 static __device__ __forceinline__ PreprocessedVertex
43 stencil_assembly(const int3 vertexIdx ,
44 const float* __restrict__ arr)
45 {
46 PreprocessedVertex vtx;
47
48 vtx.value = arr[IDX(vertexIdx)];
49 vtx.laplacian = (float3){derxx(vertexIdx , arr) +
50 deryy(vertexIdx , arr) +
51 derzz(vertexIdx , arr)};
52
53 return vtx;
54 }
55
56 static __device__ __forceinline__ PreprocessedVertex3
57 stencil_assembly(const int3 vertexIdx ,
58 const float* __restrict__ arrx,
59 const float* __restrict__ arry,
60 const float* __restrict__ arrz)
61 {
62 PreprocessedVertex3 vtx;
63
64 vtx.x = stencil_assembly(vertexIdx , arrx);
65 vtx.y = stencil_assembly(vertexIdx , arry);
66 vtx.z = stencil_assembly(vertexIdx , arrz);
67
68 return vtx;
69 }

Listing 4.5: The stencil assembly stage of the stencil pipeline.

CHAPTER 4. LIBRARY FOR STENCIL COMPUTATIONS 59

1 __constant__ float alpha;
2
3 static __device__ __forceinline__ float3
4 laplacian(const PreprocessedVertex3& vtx)
5 {
6 return (float3){vtx.x.laplacian , vtx.y.laplacian , vtx.z.laplacian};
7 }
8
9 static __device__ __forceinline__ float3

10 heat_equation(const PreprocessedVertex3& T)
11 {
12 return alpha * laplacian(T);
13 }
14
15 static __device__ __forceinline__ float3
16 stencil_process(const PreprocessedVertex3& T, const float dt)
17 {
18 return T.value + heat_equation(T) * dt;
19 }
20
21
22 template <int step_number >
23 static __global__ void
24 __launch_bounds__(RK_THREADBLOCK_SIZE , RK_LAUNCH_BOUND_MIN_BLOCKS)
25 solve(const int3 start, const int3 end, const float dt,
26 VertexBufferArray buffer)
27 {
28 const int3 vertexIdx = (int3) {
29 threadIdx.x + blockIdx.x * blockDim.x + start.x,
30 threadIdx.y + blockIdx.y * blockDim.y + start.y,
31 threadIdx.z + blockIdx.z * blockDim.z + start.z
32 };
33
34 if (vertexIdx.x >= end.x ||
35 vertexIdx.y >= end.y ||
36 vertexIdx.z >= end.z) {
37 return;
38 }
39
40 const PreprocessedVertex3 T = stencil_assembly(vertexIdx ,
41 buffer.in[0],
42 buffer.in[1],
43 buffer.in[2]);
44 const float3 result = stencil_process(T, dt);
45
46 buffer.out[0][IDX(vertexIdx)] = result[0];
47 buffer.out[1][IDX(vertexIdx)] = result[1];
48 buffer.out[2][IDX(vertexIdx)] = result[2];
49 }

Listing 4.6: The processing stage of the stencil pipeline.

Chapter 5

Results

In this chapter, we present the results on how well our library satisfies the require-
ments set in Section 1.3. We evaluated the library in three tests. First in Section 5.1,
we verify that all functions provided by the library and our solver give results that are
within expectable error bounds. We show that the difference in results when com-
paring ourGPU-solver using 32-bit and 64-bit precisionwith a sequential CPU-solver
using 80-bit precision is within the reasonable bounds of fixed-precision arithmetic.
Second in Section 5.2, we measure the hardware utilization of our integration kernel
and compare the performancewith a conservative lower bound for the running time,
that could theoretically be achievedwith an optimal algorithm. Finally in Section 5.3,
we compare the running time of our solver with a widely-used multiphysics code
optimized for high-performance computing on multiple CPUs.

We ran all tests discussed in this chapter with the following hardware. The CPU
tests were run on an Apollo 6000 XL230a Gen.9 server blade hosting two 22 nm
Intel Xeon E5-2690 v3 processors running at 2.6 GHz. Attached to the server blade
were eight 16 GiB fourth-generation double-data rate (DDR4) memory modules,
running at a clock rate of 2133 MHz. The memory modules operated with error-
correcting codes (ECC) on and provided a theoretical bandwidth of 64 GiB/s in
total via four memory channels [7]. One Intel Xeon E5-2690 v3 hosted 12 cores,
which shared a 30 MiB L3 cache. Each core had dedicated 32-KiB L1 and 256-KiB L2
caches. The GPU tests were run on a Dell PowerEdge C4130 server blade housing
two 14 nm 14-core Intel Xeon E5-2680 v4 processors running at 2.4 GHz, eight 64
GiBmodules of DDR4 synchronous dynamic random-accessmemory (SDRAM) and
four NVIDIA GP100GL Tesla P100 PCIe 16 GiB GPUs running at 1.3 GHz. These
GPUs were connected in pairs to each CPU via a PCIe 3.0 bus. Each GPU contained
16 GiB of second-generation high-bandwidthmemory (HBM2) running at 715MHz,

60

CHAPTER 5. RESULTS 61

providing a theoretical bandwidth of 682 GiB/s via a 4096-bit wide memory bus.
Error-correcting code was enabled in all tests. The P100 GPU consisted of 56 SIMT
processors, where each SIMT processor had 64 single-precision, and 32 double-
precision processing units. The SIMT processors had a shared L2 cache of 4096
KiB [8] and each processor had a dedicated 24 KiB L1 data cache and 64KiB of shared
memory [26]. A single cooperative thread array could be assigned a maximum of 48
KiB of shared memory.

5.1 Verification

For our first test, we created a sequential CPU solver capable of solving the equations
described in Chapter 3 and used it to generate a model solution. Then we compared
themodel solution to the output given by ourGPU solver. This comparisonwas done
to confirm that there are no issues with the parallelisation scheme and to analyze
the error of performing computations with finite precision. However, making a
comparison between floating-point numbers is not straightforward, so we give a
short introduction to the subject and discuss the issues before detailing the methods
used for the comparison. In the following discussion, we use the term model to refer
to the solution produced by our sequential solver, which performed the operations
with 80-bit extended precision. The term candidate is used to refer to the solution
produced by our GPU solver in either 32-bit or 64-bit floating-point precision.

While modern CPUs and GPUs conform to the IEEE 754-2008 [68] standard for
floating-point arithmetic [8, 24], this does not guarantee that the results of the same
program are identical on all IEEE 754-compliant systems [97]. Even though CUDA
and GPUs are stated to be IEEE 754-2008 compliant, only basic arithmetic functions,
such as multiplication, division, fused multiply-add and square root are defined in
the standard [68, 98]. Trigonometric functions for example are not specified [68, 98].
Themachine code forCPUsandGPUsare also basedondifferent instruction sets, and
optimizations performed during compilation may change the number of rounding
steps performed in the program. For example, the compiler might choose to use the
fused multiply-add instruction, which performs a multiplication and addition with
one rounding step instead of two. This issue is not unique to CPUs and GPUs, but
rather the consequence of the fact that floating-point arithmetic is not necessarily
associative, that is, a + (b + c) is not always equal to (a + b) + c [99].

When comparing floating-point numbers, the expected error depends on the
magnitude of the inputs and the computations performed with the input [99, 100].

CHAPTER 5. RESULTS 62

Sign Exponent Significant

1 bit w bits p-1 bits

Figure 5.1: IEEE 754-2008 format for 32- and 64-bit binary floating-point numbers.
For single-precision, ws � 8 and ps � 24, while wd � 11 and pd � 53 for double
precision [68].

To our knowledge, there is no single method for comparing floating-point numbers
that would be useful in all cases. Rather, the comparison subroutine has to be tuned
to accept differences depending on the computations performed and the expected
precision of the results. Floating-point errors are commonly expressed in terms of
the relative error with respect to some machine epsilon ε or absolute error in terms
of units in the last place (ulps) [98–100]. In this work, we analyze the error in terms
of ulps using the definition by Higham [101] but in some cases refer also to the
machine epsilon ε, which is the distance from 1.0 to the next larger floating-point
number [99, 101]. The machine epsilon ε is given by

ε � β−(p−1) (5.1)

for normal numbers, where β is the base and p the precision of the significant [100].
A floating-point number is normal if its exponent is large enough, such that the
leading digit of the significant expressed in binary can be set to one [98]. For 32-
bit binary floating-point numbers conforming to the IEEE 754-2008 standard the
smallest normal number is βemin � β1−emax � 2−126, where emin and emax are the
minimum and maximum exponents the number can represent, respectively [68].

Higham defines ulps as the interval between two finite floating-point num-
bers [101, 102]. Given some candidate value c and a model value m , 0, units
in the last place are defined as

ulp(m) � βe−(p−1) . (5.2)

Here e is the precision of the exponent of m [101, 102]. In our tests, we calculated e
as

e � blog2 |m |c . (5.3)

Figure 5.1 shows the format of 32- and 64-bit binary floating-point numbers specified
in the IEEE 754-2008 standard. For binary 32- and 64-bit floating-point numbers β �

2, and ps � 24 and pd � 53 for single and double precision, respectively [68]. As the

CHAPTER 5. RESULTS 63

IEEE 754-2008 standard states that all operationsmust be correctly rounded [68, 100],
the absolute error of a single arithmetic operation should be at most 1

2 ulps [99], that
is

|c − m | ≤ 1
2

ulp(m) . (5.4)

Next, we describe the test cases. In the first initial condition named random, we
initialized all fields used in the simulation to random numbers in range [10−2, 10−2].
If larger numbers were used, the test case would become unstable with both the
model and candidate solutions. In the test X-wave, we initialized the x-component
of velocity to a sinusoidal wave with respect to the y-coordinate in the grid. The
value was given by 2 sin(π j/my) − 1, where j is the index of the vertex in the y
direction and my is the total number of vertices also in the y direction. Fields other
than the velocity field were initialized to random values in range [10−2, 10−2]. In the
test radial explosion, we created a radial Gaussian velocity profile originating from
the center of the grid. Other fields that velocity were initialized to a constant value
of 1. We refer the reader to the subroutine gaussian_radial_explosion in the code
repository [88] for a detailed definition. In the final test, ABC-flow, we initialized the
grid to the Arnold-Beltrami-Childress flow given by [103]

Ûx � A sin z + C cos y (5.5)

Ûy � B sin x + A cos z (5.6)

Ûz � C sin y + B cos x , (5.7)

where we set A � B � C � 1. We initialized the velocity as follows, where ku �

32, (Ox ,Oy ,Oz) is the position of the center of the computational domain, and
ux(δi , δ j , δk) is the state of the x component of the velocity at position (δi , δ j , δk)

ux(δi , δ j , δk) � sin[ku(δz − Oz)] + cos[ku(δy − Oy)] (5.8)

uy(δi , δ j , δk) � sin[ku(δx − Ox)] + cos[ku(δz − Oz)] (5.9)

uz(δi , δ j , δk) � sin[ku(δy − Oy)] + cos[ku(δx − Ox)] . (5.10)

As in the X-wave test case, we initialized the values of all fields, except the velocity
field, to random values in range [10−2, 10−2].

Recall that a full integration steps involves computing integration substeps and
boundary conditions. During an integration substep, stencil operations are per-
formed to solve partial differential equations, and during the boundary condition
step, data from the computational domain is copied into the ghost zones according

CHAPTER 5. RESULTS 64

323 1283 2243 3203 4163 5123
0

0.2

0.4

0.6

0.8

Vertices

ul
ps

Single precision

323 1283 2243 3203 4163 5123
0

0.2

0.4

0.6

Vertices

Double precision

Random X-wave Radial explosion ABC-flow

Figure 5.2: Floating-point error for vector reductionsusingdifferent griddimensions.
The velocity field u � (ux , uy , uz) was searched for the maximum length of the
velocity vector. Results are expressed in terms of machine epsilons for binary 32-
and 64-bit floating point numbers specified by the IEEE 754-2008 standard [68]. A
single ulp was equal to βe−(p−1) as shown in Equation 5.2.

to some boundary conditions, in our case, the periodic boundary conditions. In our
tests, given the dimensions of the computational domain nx , ny and nz , the data at
index (i , j, k) in the ghost zones were copied from the data at index (i mod nx , j
mod ny , k mod nz) in the computational domain. The periodic boundary condi-
tions were applied to all eight fields used in the computations. As no arithmetic
was performed and the input data for the model functions had the same precision
as the candidate functions solved on the GPU, the error from computing boundary
conditions in all test cases was exactly zero.

As a part of computing diagnostics and for verifying other functions, we searched
a scalar field for themaximumvalue. As values in the field are searched and reduced
to a result based on some condition, this type of function is called a reduction. We
tested scalar reductions in all test cases described earlier by taking the maximum of
the field ux . Likewise for the boundary conditions, the error for scalar reductionswas
exactly zero. We also searched the velocity field u � (ux , uy , uz) for the maximum

length of the velocity vector, given by
√

u2
x + u2

y + u2
z . The error of vector reduction

is shown in Figure 5.2.
Finally, we compared the results of a full integration stepwith themodel solution.

CHAPTER 5. RESULTS 65

Figure 5.3: Visualization of the velocity field in the radial explosion test. The slice
was taken in the x y plane from the middle of the computational domain. Absolute
velocity in the direction of the x and y axes is colored red and green, respectively.
Colors are scaled to the range of the maximum and minimum values in the velocity
field.

Boundary conditions were computed at the beginning of each substep, after which
the integration kernel was called with the number of the substep as a template
parameter. As the α and β coefficients discussed in Section 3.2 depend on the
number of the substep, we measured the error after all three substeps had been
completed.

Figure 5.3 shows a visualization of the velocity field in the radial explosion test.
Figures 5.4 and 5.5 show the floating-point error after a full integration step for single
and double precision. For reference, we have included also the absolute error for all
fields in Figures 5.6 and 5.7.

CHAPTER 5. RESULTS 66

323 1283 2243 3203 4163 5123
0

2

4

6

8

Vertices

ul
ps

Random

323 1283 2243 3203 4163 5123
0

5

10

Vertices

X-wave

323 1283 2243 3203 4163 5123
0

0.2

0.4

0.6

0.8

Vertices

ul
ps

Radial explosion

323 1283 2243 3203 4163 5123
0

2

4

6

Vertices

ABC-flow

ln ρ ux uy uz Ax Ay Az s

Figure 5.4: The maximum arithmetic error in terms of units in the last place for each
field after a complete integration step using 32-bit precision. A single ulp was equal
to βe−(p−1) as shown in Equation 5.2. The error in ulps at the point of the maximum
absolute error of the field is shown.

CHAPTER 5. RESULTS 67

323 1283 2243 3203 4163 5123
0

2

4

6

8

Vertices

ul
ps

Random

323 1283 2243 3203 4163 5123
0

2

4

6

8

10

12

Vertices

X-wave

323 1283 2243 3203 4163 5123
0

0.2

0.4

0.6

0.8

Vertices

ul
ps

Radial explosion

323 1283 2243 3203 4163 5123
0

1

2

3

4

5

Vertices

ABC-flow

ln ρ ux uy uz Ax Ay Az s

Figure 5.5: The maximum arithmetic error in terms of units in the last place for each
field after a complete integration step using 64-bit precision. A single ulp was equal
to βe−(p−1) as shown in Equation 5.2. The error in ulps at the point of the maximum
absolute error of the field is shown.

CHAPTER 5. RESULTS 68

323 1283 2243 3203 4163 5123

10−9

10−8

Vertices

A
bs
ol
ut
e
er
ro
r

Random

323 1283 2243 3203 4163 5123

10−9

10−8

10−7

Vertices

X-wave

323 1283 2243 3203 4163 5123

10−19

10−16

10−13

10−10

10−7

Vertices

A
bs
ol
ut
e
er
ro
r

Radial explosion

323 1283 2243 3203 4163 5123

10−9

10−8

10−7

Vertices

ABC-flow

ln ρ ux uy uz Ax Ay Az s

Figure 5.6: The absolute error of an integration step when comparing the output
computed with 32-bit precision to a model solution computed with 80-bit precision.

CHAPTER 5. RESULTS 69

323 1283 2243 3203 4163 5123

0

2

4

6

8
·10−17

Vertices

A
bs
ol
ut
e
er
ro
r

Random

323 1283 2243 3203 4163 5123

0

0.5

1

1.5

2

·10−16

Vertices

X-wave

323 1283 2243 3203 4163 5123

0

0.5

1

1.5

2

·10−16

Vertices

A
bs
ol
ut
e
er
ro
r

Radial explosion

323 1283 2243 3203 4163 5123

0

0.5

1

1.5

2

·10−16

Vertices

ABC-flow

ln ρ ux uy uz Ax Ay Az s

Figure 5.7: The absolute error of an integration step when comparing the output
computed with 64-bit precision to a model solution computed with 80-bit precision.

CHAPTER 5. RESULTS 70

323 1283 2243 3203 4163 5123

10−2

10−1

Vertices

M
ax

im
um

va
lu
e

Random

323 1283 2243 3203 4163 5123

10−2

10−1

100

Vertices

X-wave

323 1283 2243 3203 4163 5123

10−0.3

10−0.2

10−0.1

100

Vertices

M
ax

im
um

va
lu
e

Radial explosion

323 1283 2243 3203 4163 5123

10−2

10−1

100

Vertices

ABC-flow

ln ρ ux uy uz Ax Ay Az s

Figure 5.8: Magnitude of themaximumvalue stored in each field after an integration
step using 32-bit precision.

CHAPTER 5. RESULTS 71

323 1283 2243 3203 4163 5123

10−2

10−1

Vertices

M
ax

im
um

va
lu
e

Random

323 1283 2243 3203 4163 5123

10−2

10−1

100

Vertices

X-wave

323 1283 2243 3203 4163 5123

10−0.3

10−0.2

10−0.1

100

Vertices

M
ax

im
um

va
lu
e

Radial explosion

323 1283 2243 3203 4163 5123

10−2

10−1

100

Vertices

ABC-flow

ln ρ ux uy uz Ax Ay Az s

Figure 5.9: Magnitude of themaximumvalue stored in each field after an integration
step using 64-bit precision.

CHAPTER 5. RESULTS 72

5.2 Hardware utilization

We measured hardware utilization in several benchmarks, where we ran the sim-
ulation for 1000 steps and used the running time of the step at the 95th percentile
unless otherwise mentioned. We ran the simulation for 10 warm-up steps before
measuring the running times to avoid skewing the results due to cold cache misses
and the overhead caused by the initialization of the CUDA context. All benchmarks
were run on the hardware specified in Chapter 5. While we benchmarked the perfor-
mance with both single and double precision, we refer to the benchmarks computed
with double precision throughout this section unless otherwise stated.

First, we determined the most expensive subroutine when computing an integra-
tion step. A breakdown of the relative running times of the subroutines is shown in
Figure 5.10. The computation of integration substeps dominated the computation,
taking roughly 90% of the running time. The rest of the timewas used for computing
the boundary conditions. The running times of integration substeps two and three
were nearly identical while the initial substep was roughly 10% faster. This was
expected, as the state s − 2 is not read when solving substep s � 1, as shown in
Equation 3.25.

Second, we analyzed the performance of computing the final substep as it the
most expensive subroutine and, apart from the coefficients α and β used, identical
with the computations performedduring the second integration substep. Figure 5.11
shows the deviations in the running time of the final substep. Detailed metrics of
hardware utilization are shown in Table 5.1.

Third, we measured the operational intensity of the final substep to evaluate
whether the performance of the kernel should be expected to be bound by memory
bandwidth or compute performance. The measurements are shown in Table 5.2.
The operational intensity with single and double precision was 6.9 and 2.7 flops
per byte, respectively. The effective operational intensity was likely lower because
the fused multiply-add (FMA) operation was counted as two flops in the measure-
ments [104], while the FMA instruction can be issued during a single clock cycle
and it has the same latency as, for example, floating-point multiplication [26, 79].
In Section 4.3 we demonstrated that, based on Williams’ roofline model [95], the
operational intensity required to saturate the arithmetic units of a Tesla P100 PCIe
is approximately 13. Because the operational intensity of our kernel was lower, we
expected its performance to be bound by memory bandwidth.

As the final test, we compared the running time of the final substep with the

CHAPTER 5. RESULTS 73

323 1283 2243 3203 4163 5123
0

10

20

30

40

50

Vertices

Ti
m
e
pe

rs
te
p
(%

)

Single precision

323 1283 2243 3203 4163
0

10

20

30

40

50

Vertices

Double precision

Boundary conditions Runge-Kutta (substep 1)
Runge-Kutta (substep 2) Runge-Kutta (substep 3)

Figure 5.10: Time taken by subroutines used to compute a full integration step.
The running times of Runge-Kutta substeps two and three were nearly identical.
Integration dominates the computation of a time step, taking roughly 90% of the
total running time.

0 20 40 60 80 100
1.01

1.012

1.014

1.016

1.018

Percentile

ns
/
ve

rt
ex

Single precision

0 20 40 60 80 100
1.471

1.472

1.473

1.474

1.475

1.476

Percentile

Double precision

Figure 5.11: Percentiles of the running time of the final integration substep in terms
of time used per vertex update when using sixth-order finite differences. The test
was conducted with a grid consisting of 2563 vertices.

CHAPTER 5. RESULTS 74

Table 5.1: The hardware utilization of a kernel computing the final substep in a grid
consisting of 2563 vertices. Utilization of the single- and double-precision function
units (SP/DP FUs) is expressed relative to the peak aritmetic performance. Texture
stalls are caused by the high utilization of the texture subsystem or a high number
of texture requests. An execution dependency stalls the pipeline when operands
required by an instruction are not yet available. With Pascal architectures, a single,
unified cache provides functionalities of both the L1 and texture caches [67]. The
metrics were measured with NVIDIA’s nvvp and nvprof tools provided with the
CUDA toolkit version 10.0.130.

Metric Single precision Double precision
Memory bandwidth 130 GiB/s 240 GiB/s
L2 cache bandwidth 700 GiB/s 990 GiB/s
Unified cache bandwidth 2 500 GiB/s 3 700 GiB/s
Registers per thread 255 255
Threads per CTA 128 128
Shared memory usage 0 bytes 0 bytes
L2 hit rate 85% 80%
L1 hit rate 73% 70%
Issue Slot Utilization 27% 22%
Load/Store FU Utilization 10% 10%
SP/DP FU utilization 11% 17%
Occupancy 12% 12%
Primary stall reason Texture (53%) Texture (43%)
Secondary stall reason Execution (25%) Execution (25%)
Bound by Latency Unified cache bandwidth

Table 5.2: Floating-point operations performed and bytes transferred during the
final integration substep. The test was conducted using the using NVIDIA’s
nvprof tool version 10.0.130 and querying metrics flop_count_sp, flop_count_dp,
dram_read_bytes and dram_write_bytes. The grid consisted of 2563 vertices. The
fused multiply-add operation was counted as two floating-point operations [104].
We do not knowwhy 32-bit floating-point instructions were reported as called when
computing the substep in double precision. We strived to ensure that all constants
are cast to correct precision before using them in arithmetic operations and that only
functions, that return the correct type are used. However, a rigorous examination of
the cause is required in future work.

Precision Flops (32-bit) Flops (64-bit) Bytes read Bytes written
Single 1.80 · 1010 0 1.95 · 109 6.60 · 108

Double 6.71 · 107 1.91 · 1010 4.41 · 109 2.68 · 109

CHAPTER 5. RESULTS 75

theoretical minimum time, which it would take to read the required data in the
simulation domain and write the results back to device memory exactly once. The
theoretical minimum running time gave us a conservative bound, which is unattain-
able in practice because the finite size and bandwidth of caches, and the latency
of arithmetic operations are taken into account. However, the bound is useful for
determining how efficiently the data is reused and what is the maximum speedup
that can be achieved if the algorithm is further optimized.

First, the theoretical maximum bandwidth for double data-rate high-bandwidth
memory v2 [81] is calculated by

BandwidthB/s � 2 · Bus widthb ·Memory clock frequencyHz /8 . (5.11)

For a Tesla P100 PCIe GPU, the memory bus width is 4096 bits and the memory
clock frequency 715 Mhz [26, 75]. The three-dimensional computational domain
consists of nxny nz vertices. When including the ghost zones required for computing
derivatives near the boundaries and using stencils of order l, a total of

(nx + l)(ny + l)(nz + l) (5.12)

vertices must be read to calculate the rate of change for a single field. Additionally,
when solving integration substeps s ≥ 2, the values at state s − 1 must be read and
the result must be written back to device memory as shown in Equation 3.25. Both
of these operations access nx nynz vertices. Therefore if the caches were sufficiently
large to hold all data in on-chip memory, the minimum number of reads and writes
required with a single field from device memory is

Read-writes � (nx + l)(ny + l)(nz + l) + 2nx nynz (5.13)

vertices. The theoretical minimum time required for reading and writing with w
fields can now be computed with

w · PrecisionB · Read-writes
BandwidthB/s

. (5.14)

We used Equation 5.14 to express the efficiency of our integration kernel as the
ratio of the theoretical minimum running time to the measured running time of our
kernel. The comparison of our solver against the theoretical minimum running time
is shown in Figure 5.12 when using stencils visualized in Figure 5.13.

CHAPTER 5. RESULTS 76

323 1283 2243 3203 4163 5123
10

15

20

25

30

Vertices

Effi
ci
en

cy
(%

)

Single precision

323 1283 2243 3203 4163 5123
10

15

20

25

30

35

Vertices

Double precision

2nd 4th 6th 8th order

Figure 5.12: Efficiency of computing the final integration substep as a ratio of the
theoretical minimum running time to the measured running time at the 95th per-
centile when using second-, fourth-, sixth-, and eight-order finite differences. We
decomposed the grid to blocks of (32, 1, 4) vertices, where each block was operated
by a cooperative thread array (CTA). The dimensions of the CTA were selected by
auto-tuning the code to achieve maximum performance with double precision in
a grid consisting of 2563 vertices. The maximum number of vertices that could be
stored in the device memory of a Tesla P100 PCIe was 4803. The stencils used in this
test are visualized in Figure 5.13.

Figure 5.13: Visualization of the stencils used in this work. The second-, fourth-,
sixth-, and eight-order stencils are listed from left to right.

CHAPTER 5. RESULTS 77

5.3 Comparison with a CPU solver

As the final test, we compared our solver with the Pencil Code [19]. We chose the
Pencil Code because it has a mature code base, it has been used for generating data
for numerous publications, and we are planning to interface our GPU solver with
it in the future. The performance comparison of our solver and the Pencil Code is
shown in in Figure 5.14. The test case used with the Pencil Code is available at [88].

323 1283 2243 3203 4163 5123

101

102

Vertices

ns
/
ve

rt
ex

CPU and GPU performance

CPU (32-bit) CPU (64-bit)
GPU (32-bit) GPU (64-bit)

Figure 5.14: The performance comparison of our solver and the Pencil Code [19]. A
logarithmic scale was used for the y axis. Our solver was run on a Tesla P100 PCIe
GPU, while the Pencil Code was run on a total of 24 cores on two Intel Xeon E5-2690
v3 processors within a single compute node using Intel MPI version 14.0.1. Both
solvers computed the equations defined in Chapter 3 and used a constant time step
δ � 1e−4. The optimal grid dimensions for the CPU solver were multiples of the
available core count, in our case 24, while for the GPU solver the optimal dimensions
were multiples of the warp size, 32. The largest problem size that could fit into the
memory of a Tesla P100 PCIe GPU when using double precision was 4803 vertices.
The CPU solver returned an unknown error when attempting to run the test with
double precision and a grid consisting of 5283 vertices. The best performance of the
GPU solver was 3.5 and 4.6 ns / vertex / full integration step for single and double
precision, respectively. The best performance with the CPU solver was 23 and 47 ns
/ vertex / integration step.

Chapter 6

Discussion

In this work, we created a library and a domain-specific language for stencil compu-
tations on GPUs. In our test case, we simulated the flow of compressible, electrically
conducting fluids with second-, fourth-, sixth-, and eight-order finite differences
and advanced the simulation using the third-order Runge-Kutta method. The per-
formance of the integration kernels generatedwith our compilerwaswithin an order
of magnitude of the theoretical maximum limit, achievable by executing a perfect
algorithm on a machine providing infinitely large and fast caches, and latency-free
arithmetic. To our knowledge, this is the firstworkwhere the performance bounds of
computationswith complex, high-order stencils have been analyzed in detail, and re-
ported that a performance of 18% of a conservative hardware limit has been achieved
in simulations of magnetohydrodynamics with sixth-order finite differences.

Our solution relied on three techniques to provide efficient kernels for computa-
tionswith arbitrary stencils on various architectures. First, the integration kernelwas
generated in a way, which decoupled reading, computation and writing to stages,
where the output of one stage was passed to the next. The benefit of this approach
was, that expensive reading operations could be preprocessed, and the result could
be stored into local memory and reused in further computations. Second, we relied
on implicit caching to reduce traffic to off-chip memory, which had the benefit of
not having to manually tune the implementation for stencils of different orders, and
not requiring synchronization between CTAs. Because we allocated a significant
amount of resources per CTA to improve data reuse with the cost of having fewer
warps multithreaded on the SIMT processors of a GPU, explicit synchronization
would have likely stalled the execution. Finally, we used auto-tuning to find the
optimal problem decomposition for any given architecture.

We verified our results bymaking a comparison between amodel solution solved

78

CHAPTER 6. DISCUSSION 79

with 80-bit precision and our GPU solver, which used 32- or 64-bit precision. When
computing the boundary conditions and scalar reductions, our GPU results agreed
exactlywith themodel solution because the computations involved only copying and
logical operations, and no arithmetic operationswere performedwith the data. With
vector reductions, the error ranged from 0 to 0.8 units in the last place (ulps). While
a single arithmetic operation with floating-point numbers conforming to the IEEE
754-2008 standard should yield an absolute error less or equal to 1

2 ulps, as stated
in Equation 5.4, computing the length of a vector requires 7 arithmetic operations if
fused multiply-add is not used. Therefore it is reasonable to expect that the error
propagates when arithmetic is performed with rounded numbers.

The error accumulated with our integration kernel was notably higher, at most
8.5, 12.7, 1.0, and 5.2 ulps, for random,X-wave, radial explosion and ABC-flow test cases,
respectively. We noted that the maximum arithmetic error depended significantly
on the chosen initial values and configuration parameters. However, as the CPU
model solution was computed with exactly the same functions as the GPU solution,
but in higher precision, and the error does not vary between runs, we do not suspect
there are issues with the parallelization of the algorithm.

We made an additional sequential test solely on a CPU, where we compared the
error of terms 1/ρ, 1/T, and 1/(ρT) computed with 32 and 80 bits of precision. We
selected these terms because (ρT)−1 was used to solve Equation 3.12 and solving it
required using the exponential function, which potentially yields errors larger than
1
2 ulps because it is not specified by the IEEE 754-2008 standard [68]. We performed
the test by computing

1
ρ
� e− ln ρ (6.1)

and
1
T

� e− ln T
� e−[γs/cp+(γ−1) ln ρ] , (6.2)

where we used γ � cp � 2 and computed the error with different magnitudes of s
and ln ρ. We made the observation that the results of 1/ρ and 1/(ln T) were highly
inaccurate, 100 ulps or larger, if either ln ρ or s was of magnitude 101 or higher.
When | ln ρ | ≤ 1 and |s | ≤ 1, the maximum errors were 1.17, 3.38 and 15.87 ulps for
1/ρ, 1/ln T and 1/(ρT), respectively. The source code of this test is available at [88].
This test supports the notion, that performing arithmetic operations with inaccurate
intermediate results contributed to the errors measured in our verification tests.

We noted that if magnitudes of the input values varied widely, significant digits
of the smallest values would be likely lost due to cancellation. These types of

CHAPTER 6. DISCUSSION 80

cancellation errors could potentially be mitigated by reformulating some of the
equations [99]. In Figures 5.6 and 5.7, we see that the magnitude of the absolute
error scales with the precision usedwhen contrastedwith themaximumvalues used
in the computations, shown in Figures 5.8 and 5.9. We observed that the velocity
field propagates symmetrically in the radial explosion test case shown in Figure 5.3,
which suggests that the boundary conditions and the computationswith the velocity
field are performed according to the specification.

We also noted that NVIDIA’s profiling tool, nvprof, reported single-precision
operations being performed when solving the integration substep with double pre-
cision, as shown inTable 5.2. While our reviewof the code suggests that all arithmetic
operations are performed with correct precision, further research is needed to deter-
mine the cause. If some of the operations were performed in single precision, then
this would likely have a degrading effect on accuracy. However, the effect on perfor-
mance would likely be minor, as the proportion of single-precision instructions to
the total number of floating-point instructions performed in the kernel is only 0.35%.

Because updating each vertex involves a large number of arithmetic operations
with rounded intermediate results, our experiments suggest that intermediate com-
putations may yield errors that are at least as high as 15.87 ulps, the measured
absolute error scales with the precision used, and the errors do not vary between
runs, we conclude that the errors are likely caused by performing the arithmetic
operations with finite precision. Because we do numerous calculations in the kernel,
it is not feasible within the bounds of this work to formally prove that the arithmetic
error is within acceptable bounds, for example by determining the condition number
for the equations. The condition number can be used to approximate howmuch the
relative rounding error is magnified when some function is evaluated [100].

We compared the performance of our solver with the Pencil Code [19], which
is a mature project focusing on simulating astrophysical magnetohydrodynamics
(MHD) and turbulence efficiently with high-performance computers. With both
solvers, we simulated MHD by solving the equations described in Chapter 3. The
exact test case usedwith the Pencil Code is available at [88]. Our solver outperformed
the Pencil Code, executed on a total of 24 CPU cores via MPI, by factors of 6.7 and
10.4 with single and double precision, respectively. Given the thermal design power
of 300 Watts of a Tesla P100 PCIe [8] and 135 Watts of a single Intel Xeon E5-2690
v3 processor [7], not including the power requirements of other components in the
server blade, the performance per Watt was 6.0 and 9.4 better with a Tesla P100
PCIe with single and double precision, respectively. This suggests that GPUs can be
utilized efficiently for solving problems, which involve computations with a large

CHAPTER 6. DISCUSSION 81

number of coupled fields using high-order finite differences.
Whilewe strived tomake the comparison of CPUandGPU solvers as fair as possi-

ble,making adirect comparison is difficult because of differences in architectures, the
execution model and connectivity between processors. A single high-performance
computing node houses typically more GPUs than CPUs, and in our test we utilized
only one of the available four Tesla P100 GPUs on the node. While the main mem-
ory is shared among CPUs on multi-socket motherboards, communication between
GPUs must be done via either the PCIe bus or a specialized interconnect. This
interconnect, NVLink, provides 19 GiB/s bandwidth per direction between pairs
of GPUs [8, 26, 75] while PCIe 3.0 x16 provides a directional bandwidth of 15 GiB
/ s [75]. While our results suggest that a single Tesla P100 GPU outperforms two
Intel Xeon E5-2690 v3 processors in raw performance, our tests did not account for
the overhead caused by inter-GPU communication if the library is extended to em-
ploy multiple GPUs. However, our preliminary tests within a single node suggest
that inter-GPU communication can be mostly hidden by updating a subset of the
computational domain simultaneously with communicating the ghost zones. In our
preliminary tests, we noted that the performance may scale to multiple GPUs within
a node with roughly 90–95% efficiency.

The size of the code required for expressing kernelswith our domain-specific lan-
guage (DSL) was notably smaller thanwas required for expressing highly-optimized
CUDAkernels. By focusing on a narrower problemdomain, wewere able to simplify
the syntax of our DSL to include only features, which were necessary to translate the
code to efficient CUDA kernels. In this paragraph, we use the term word to refer to
a non-zero-length string delimited by whitespace. The solver used to compute the
full set of MHD equations, shown in Appendix C, could be written in 558 words.
The solver was compiled into 1098 words of CUDA code, which was embedded in a
header consisting of the built-in functions described in Section 4.2, and the necessary
code for calling the kernel from host code. The complete header consisted of 3826
words in total.

The hardware was utilized most efficiently when computing derivatives with
second-order stencils with double precision. This was expected, as the working set
required for processing small stencils was likely to fit in on-chip caches. In contrast,
the working set for processing larger stencils was more likely to spill from registers
and L1 to slowermemory before the data had completely been exhausted. Aswe did
not account for the size or bandwidth of the cache when computing the theoretical
minimum running time, we saw a systematic reduction in efficiencywhen increasing
the stencil size. Surprisingly, computations with double precision were relatively

CHAPTER 6. DISCUSSION 82

more efficient than with single precision. After analyzing the disassembly of the
source code, we noted that memory transactions to and from global memory were
done with 64-bit-wide loads and stores. With single precision, data from device
memory were fetched with 32-bit instructions. Therefore with double precision,
the memory bus was utilized more efficiently as fewer transactions were needed to
transfer the same amount of data. In addition, 32-bit integer and 64-bit floating-point
instructions are executed on different functional units on the Pascal microarchitec-
ture [8] and the warp schedulers can dual-issue independent instructions from a
warp to different functional units during the same clock cycle [67]. Therefore, to our
knowledge, instructions used to calculate indices could be issued during the same
clock cycle as the 64-bit floating-point operations used in processing the stencils,
which potentially improved instruction-level parallelism in the kernel.

With double precision, instruction latencies could be hidden because of the more
efficient utilization of the memory bus and improved instruction-level parallelism,
and the performance was bound by the unified cache bandwidth. With single pre-
cision, not enough instructions could be generated to saturate the memory and
arithmetic systems with work, therefore latencies could not be hidden and the per-
formance was bound by instruction latency, as shown in Table 5.1. Modern GPUs
support vectorized memory access for up to 128-bit wide words [9, 34], which offer
better efficiency in terms of instructions to bytes transferred but, depending on the
problem, may also increase register pressure [65]. The performance for computa-
tions with single precision could potentially be improved by packing the data in
float2 and float4 structures, which are serviced with vectorized loads and stores.

Theprimary stall reason for both single anddoubleprecisionwas texture fetching.
This was expected, as we declared the input arrays with the const __restrict__

typequalifier,which indicates to the compiler that input arrays couldbe read through
the texture cache. By inspecting the assembly code, we confirmed that the CUDA
compiler did generate instructions to read the input arrays through the texture cache.
With double precision, the performance of integration kernels was limited by the
bandwidth of the unified cache.

The secondary stall reason was execution dependency, where the operands of an
instruction are not yet available. As discussed in Section 2.1, latencies caused by
stalls, such as execution dependencies, can be mitigated by increasing the number
of warps being multithreaded on the SIMT processors or ensuring that there are
enough independent instructions in-flight [65].

In Figure 5.12 we saw a slight downward trend in efficiency when the problem
size was increased. The downward trend was more pronounced when using higher-

CHAPTER 6. DISCUSSION 83

order finite differences. The difference between the highest and lowest efficiency
when processing eight-order stencils was 2.4 percentage units for grids containing
963 or more vertices. We suspect that the downward trend is partially caused by
an increase in translation-lookaside buffer (TLB) misses. Because we store arrays
linearly in memory, the physical addresses of data stored in neighboring vertices
may be far apart. With the library, wemap a vertex at (i , j, k) belonging to the field w
to a one-dimensional index at i + jnx + knx ny + wnx ny nz , where (nx , ny , nz) are the
dimensions of the grid. Jia et al. [26] state that the coverage of L1 andL2 TLB of a Tesla
P100 GPU is 32 MiB and 2048 MiB, respectively. With an order l difference scheme,
cache size c and precision p in bytes, if there are m fields where each field is allocated
one input and output array, both containing (n+ l)3 vertices, where n � nx � ny � nz ,
we would expect to see a decline in performance when n > 3

√
c/(2mp) − l. With a

Tesla P100 PCIe, the n required to match the coverage of L1 and L2 caches would
then be n � 56 and n � 248, respectively, when using eight-order differences, double
precision and updating eight fields. However, in Figure 5.12, we see a drop when
the computational domain of a grid contains more than 963 vertices. Therefore L1
and L2 TLB misses can not solely explain the downward trend. To our knowledge,
TLBmisses can not bemeasured directly with the available profiling tools. Wemade
a non-exhaustive experiment by using shared memory instead of implicit caching,
but this test also suggested a similar downward trend. We also tried invoking the
integration kernel several times, where each kernel operated on a subset of the
computational domain. With this approach, we were able to increase efficiency at
larger grid sizes, which suggests that performance loss of solving larger grids could
be mitigated by solving the problem with multiple kernels, which access data from
fewer addresses. If the downward trend were caused by TLB misses, performance
could potentially also be improved by changing from linear indexing to a mapping
which preserves spatial locality, such as Morton order, and storing the data as an
array of structures.

However, we expect that communicating the ghost zones will be a bottleneck
when the library is extended to work on multiple nodes. Because communication
across nodes is at least an order of magnitude slower than communication within
a node, we expect that the data must be packed in a way, such that it can be com-
municated with as few transactions as possible while simultaneously performing
computations with a subset of data local to the node. Therefore we suspect that
the optimal layout for the data when using multiple nodes is different from what
is optimal for performing the computations on a single GPU. Additionally, the per-
formance loss of the suspected TLB misses was not significant enough to warrant

CHAPTER 6. DISCUSSION 84

deeper investigation, which is why we have left exploring different data layouts to
future work.

As a final remark on hardware utilization, we note that the theoretical maximum
performance used in the efficiency comparison of our integration kernel is highly
conservative, and not attainable in practice. In real applications, the cache size, la-
tency and bandwidth are limited, and common floating-point arithmetic operations
take 6–14 cycles to complete [26], which was not taken into account when calculating
the theoretical maximum performance. On Pascal architectures, integer addition
and multiplication are emulated, and have been reported to require 86 cycles to
complete [26]. Additionally, the effective bandwidth from device memory with ECC
is roughly 70–85% of the theoretical maximum bandwidth [26, 34, 105]. Therefore,
while our implementation is at most 9.1 times slower than the conservative roofline
performance, any improvements over our algorithmwould likely showmoremodest
speedups in practice.

Ensuring that a sufficiently large number of warps are multithreaded on the
SIMT processors is often recommended as a straightforward optimization technique
for GPU programs [9]. However, we argue that striving to minimize the number
of device memory transactions by aggressively utilizing caches, which may come at
the cost of lower occupancy as suggested by Volkov [62], is necessary to attain better
performance in memory-bound problems. As the gap between operational perfor-
mance in relation to the number of bytes that can be transferred with the memory
system per second continues to increase [23, 74], more problems will become bound
by the memory bandwidth with future architectures. Improving reuse and increas-
ing occupancy are often mutually exclusive, because allocating more resources per
thread reduces the total number of warps that can be multithreaded on a SIMT pro-
cessor. This raises the issue of how the latency of memory and other operations can
be hidden if there are only a few threads, which are all stalled. Instruction-level par-
allelism (ILP) has been discussed widely in literature [2, 3, 64, 95] and was reported
by Volkov [62, 65] to be effective in hiding latencies even at low occupancies, which
we also observed in this work.

In future work, we will extend the library to scale to multiple GPUs within
and across nodes. With multiple nodes, we will evaluate whether it is beneficial
to utilize existing MPI solutions, such as the one provided with the Pencil Code,
or whether to develop a standalone module that is optimized for communicating
with GPUs across a network. As for the compiler, we will extend it to generate
vectorized load instructions and evaluate, whether it would be beneficial to utilize
optimizing compiler infrastructures, such as LLVM [106]. Current GPUs support

CHAPTER 6. DISCUSSION 85

vectorized loads and stores from device memory, while arithmetic is performed
generally on scalar stream processors [9, 25, 43, 55, 70]. Further research is needed
to determine whether we would see performance improvements in using other
compiler frameworks optimized for parallel computing, such as Delite [18] and
Lift [17].

As the majority of supercomputers utilize NVIDIA GPUs, we implemented the
library in CUDA in this work. Our final point of interest in futurework is to evaluate,
whether it would be useful to port the library to a platform-independent API, such
as OpenCL [10] without suffering a significant penalty in performance. However,
AMD is working on a project called heterogenous-computing interface for porta-
bility (HIP)1, which is stated to translate CUDA code into a platform-independent
language, in which case our library would not have to be modified to work on GPUs
of either vendor.

From the aspect of computational sciences, we will add more equations and
fields to the test case presented in this work. We have started to use the library
in the research of astrophysical turbulence, and will test the library extensively in
physical cases in future work. Our preliminary tests suggest that the computation
time increases close to linearly, roughly with 90–95% efficiency, with the number
of data transfers required when adding more computations with additional fields.
Our preliminary tests also indicate that computing derivatives with different stencils
than presented in this work is efficient as long as the data access pattern is relatively
local. For example, in our preliminary tests we saw no significant difference in
execution time when solving mixed derivatives using the direct formulation from
the definition of first-order derivatives, in which case the stencil consists of subsets
of x y-, xz-, and yz-planes totaling 127 stencil points when using sixth-order finite
differences. While first surprising, this could be explained by the fact that as cache
lines are replaced in segments of 128 bytes, the number of cache lines that have to
be replaced when using either the 55-point tridiagonal stencil or the naïve 127-point
stencil is not significantly different.

1https://github.com/ROCm-Developer-Tools/HIP.

https://github.com/ROCm-Developer-Tools/HIP

Conclusion

Our research problemwas to create a domain-specific language (DSL), which can be
used to simulate magnetohydrodynamics and express computations with stencils of
various orders, and which can be generated into kernels that achieve a performance
within an order of magnitude of the hardware limits.

We reported that high-order stencil computations in a test case encompassing a
wide range of physical simulations can be implemented efficiently on GPUs. We
created a library and a domain-specific language for expressing stencil computa-
tions with a high-level representation of the problem, and demonstrated that a
performance within an order of magnitude of a conservative hardware limit can be
achieved when the library is used to perform operations with stencils of orders two,
four, six, and eight.

We argued that in problems bound bymemory bandwidth, it is necessary to find
ways to improve reuse, potentially with the cost of occupancy, in order to improve
performance further, which has also been suggested in previouswork [38, 62]. While
we expect that our implementation could be outperformedwith an algorithm, which
would utilize the caches more efficiently, in any case the maximum speedup over
our algorithm would be of a factor of six or less with double precision when using
sixth-order finite differences.

We verified our results against a model solution and deemed that the errors were
within expectable bounds, and were likely caused by performing several arithmetic
operationswithfinite precision. Finally, we contrasted theperformance of our library
with anMHDsolverwidelyused forhigh-performance computing, and reported that
with a GPU, we can achieve roughly up to an order of magnitude better performance
and power efficiency than with CPUs in high-order stencil computations.

As indicated by previous work [18, 57], we also report that efficient code can
be generated from a high-level language constrained to a well-specified problem
domain, and that rigorous hand-tuning, requiring expertise in parallel hardware
architectures, is not always necessary to obtain competitive performance.

86

Bibliography

[1] D. Post, “The future of computing performance,” Computing in Science & Engi-
neering, vol. 13, pp. 4–5, July 2011.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach. Burlington, MA, USA: Morgan Kaufmann Publishers, 5th ed., 2011.

[3] D. A. Patterson and J. L.Hennessy,Computer Organization andDesign: TheHard-
ware/Software Interface. Burlington, MA, USA: Morgan Kaufmann Publishers,
5th ed., 2013.

[4] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A
view of the parallel computing landscape,” Communications of the ACM, vol. 52,
pp. 56–67, Oct. 2009.

[5] H. Sutter and J. Larus, “Software and the concurrency revolution,”ACMQueue,
vol. 3, pp. 54–62, Sept. 2005.

[6] N. R. Council, The Future of Computing Performance: Game Over or Next Level?
Washington, D.C., USA: The National Academies Press, 1st ed., 2011.

[7] Intel, Santa Clara, CA, USA, Intel Xeon Processor E5-2690 v3,
2018. [Online]. Available: https://ark.intel.com/products/81713/

Intel-Xeon-Processor-E5-2690-v3-30M-Cache-2-60-GHz-. [Accessed May 9,
2019].

[8] NVIDIA, Santa Clara, CA, USA, NVIDIA Tesla P100, 2018. [On-
line]. Available: https://images.nvidia.com/content/pdf/tesla/whitepaper/

pascal-architecture-whitepaper.pdf. [Accessed May 9, 2019].

[9] NVIDIA, Santa Clara, CA, USA, CUDA C Programming Guide, 2019.
[Online]. Available: https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_

Guide.pdf. [Accessed May 9, 2019].

87

https://ark.intel.com/products/81713/Intel-Xeon-Processor-E5-2690-v3-30M-Cache-2-60-GHz-
https://ark.intel.com/products/81713/Intel-Xeon-Processor-E5-2690-v3-30M-Cache-2-60-GHz-
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

BIBLIOGRAPHY 88

[10] Khronos OpenCL Working Group, Beaverton, OR, USA, The OpenCL Speci-
fication, Feb. 2019. [Online]. Available: https://www.khronos.org/registry/

OpenCL/specs/2.2/pdf/OpenCL_API.pdf. [Accessed May 9, 2019].

[11] A. Brandenburg, “Computational aspects of astrophysical MHD and turbu-
lence,” Advances in Nonlinear Dynamos, vol. 9, pp. 269–344, Apr. 2003.

[12] Käpylä, M. J., Käpylä, P. J., Olspert, N., Brandenburg, A., Warnecke, J., Karak,
B. B., and Pelt, J., “Multiple dynamo modes as a mechanism for long-term
solar activity variations,” A&A, vol. 589, p. A56, May 2016.

[13] D. E. Keyes, L. C. Mcinnes, C. Woodward, W. Gropp, E. Myra, M. Pernice,
J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans,
C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao, K. Jor-
dan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu, J. Magerlein,
R. Maxwell, M. Mccourt, M. Mehl, R. Pawlowski, A. P. Randles, D. Reynolds,
B. Rivière, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel,
B. Smith, X. Tang, C. Wilson, and B. Wohlmuth, “Multiphysics simulations:
Challenges and opportunities,” International Journal of High Performance Com-
puting Applications, vol. 27, pp. 4–83, Feb. 2013.

[14] R. Khoury and D. W. Harder, Numerical Methods and Modelling for Engineering.
New York, NY, USA: Springer International Publishing, 1st ed., 2016.

[15] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner, “Compiling
stencils in high performance Fortran,” in Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, SC ’97, (New York, NY, USA), pp. 1–20, ACM,
Nov. 1997.

[16] K. Asanovic, R. Bodik, B. Catanzaro, J. James Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The land-
scape of parallel computing research: A view from berkeley,” tech. rep., EECS
Department, University of California, Berkeley, Dec. 2006.

[17] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach, “High
performance stencil code generation with Lift,” in Proceedings of the 2018 Inter-
national Symposium on Code Generation and Optimization, CGO 2018, (New York,
NY, USA), pp. 100–112, ACM, Feb. 2018.

https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf

BIBLIOGRAPHY 89

[18] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun, “Delite: A compiler architecture for performance-oriented em-
bedded domain-specific languages,”ACMTransactions on Embedded Computing
Systems, vol. 13, pp. 134:1–134:25, Apr. 2014.

[19] Nordic Institute for Theoretical Physics, Stockholm, Sweden, The Pencil Code:
A High-Order MPI code for MHD Turbulence. User’s and Reference Manual, July
2018. [Online]. Available: http://pencil-code.nordita.org/doc/manual.pdf.
[Accessed May 9, 2019].

[20] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “PolyMage: Automatic opti-
mization for image processing pipelines,” ACM SIGARCH Computer Architec-
ture News, vol. 43, pp. 429–443, Mar. 2015.

[21] J. Ragan-Kelley, Decoupling Algorithms from the Organization of Computation for
High Performance Image Processing. PhD thesis, Massachusetts Institute of Tech-
nology, MA, USA, 2014.

[22] J. Stam, “Stable fluids,” in Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’99, (New York, NY, USA),
pp. 121–128, ACM Press/Addison-Wesley Publishing Co., July 1999.

[23] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the
obvious,” ACM SIGARCH Computer Architecture News, vol. 23, pp. 20–24, Mar.
1995.

[24] Intel, Santa Clara, CA, USA, Intel 64 and IA-32 Architectures
Optimization Reference Manual, Apr. 2019. [Online]. Available:
https://software.intel.com/sites/default/files/managed/9e/bc/

64-ia-32-architectures-optimization-manual.pdf. [Accessed May 9, 2019].

[25] J. Nickolls and D. Kirk, “Appendix C: Graphics and Computing GPUs,” in
Computer Organization and Design: The Hardware/Software Interface, Burlington,
MA, USA: Morgan Kaufmann Publishers, 5th ed., 2013.

[26] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the NVIDIA
Volta GPU architecture viamicrobenchmarking,” tech. rep., Citadel Enterprise
Americas LLC, Apr. 2018.

[27] D. Blythe, “The Direct3D 10 system,” ACM Transactions on Graphics, vol. 25,
pp. 724–734, July 2006.

http://pencil-code.nordita.org/doc/manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

BIBLIOGRAPHY 90

[28] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro, vol. 30,
pp. 56–69, Mar. 2010.

[29] OpenACC-Standard.org, San Francisco, CA, USA, The OpenACC Application
Programming Interface Version 2.7, Nov. 2018. [Online]. Available: https:

//www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf. [Ac-
cessed May 9, 2019].

[30] Apple Inc., Cupertino, CA, USA, Metal Shading Language Specification, Ver-
sion 2.1, Mar. 2019. [Online]. Available: https://developer.apple.com/metal/
Metal-Shading-Language-Specification.pdf. [Accessed May 9, 2019].

[31] The Khronos Group Inc., Beaverton, OR, USA, The OpenGLGraphics System: A
Specification, Version 4.6, Feb. 2019. [Online]. Available: https://www.khronos.
org/registry/OpenGL/specs/gl/glspec46.core.pdf. [Accessed May 9, 2019].

[32] The Khronos Vulkan Working Group, Beaverton, OR, USA, Vulkan 1.1.105
- A Specification (with all registered Vulkan extensions, Aug. 2019. [Online].
Available: https://www.khronos.org/registry/vulkan/specs/1.1-extensions/
pdf/vkspec.pdf. [Accessed May 9, 2019].

[33] NVIDIA, Santa Clara, CA, USA, NVIDIA Tesla V100 GPU Architec-
ture, 2017. [Online]. Available: https://images.nvidia.com/content/

volta-architecture/pdf/volta-architecture-whitepaper.pdf. [Accessed May
9, 2019].

[34] X. Zhang, G. Tan, S. Xue, J. Li, K. Zhou, andM. Chen, “Understanding the gpu
microarchitecture to achieve bare-metal performance tuning,” ACM SIGPLAN
Notices, vol. 52, pp. 31–43, Jan. 2017.

[35] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian, “Au-
tomatically scheduling Halide image processing pipelines,” ACM Transactions
on Graphics, vol. 35, pp. 83:1–83:11, July 2016.

[36] M. Bauer, S. Treichler, and A. Aiken, “Singe: Leveraging warp specialization
for high performance on GPUs,” ACM SIGPLAN Notices, vol. 49, pp. 119–130,
Feb. 2014.

[37] “Kokkos: Enabling manycore performance portability through polymorphic
memory access patterns,” Journal of Parallel and Distributed Computing, vol. 74,
pp. 3202–3216, Dec. 2014.

https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

BIBLIOGRAPHY 91

[38] P. Micikevicius, “3D finite difference computation on GPUs using CUDA,” in
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, pp. 79–84, New York, NY, USA: ACM, Mar. 2009.

[39] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, (Piscataway, NJ, USA), pp. 4:1–4:12, IEEE
Press, Aug. 2008.

[40] T. Brandvik and G. Pullan, “SBLOCK: A framework for efficient stencil-based
PDE solvers onmulti-core platforms,” in 2010 10th IEEE International Conference
on Computer and Information Technology, (Bradford, UnitedKingdom), pp. 1181–
1188, June 2010.

[41] B. Hamilton and S. Bilbao, “FDTDmethods for 3-D room acoustics simulation
with high-order accuracy in space and time,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 25, pp. 2112–2124, Nov. 2017.

[42] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3D stencil codes
on GPU clusters,” in Proceedings of the Tenth International Symposium on Code
Generation andOptimization, CGO ’12, (NewYork,NY,USA), pp. 155–164, ACM,
Mar. 2012.

[43] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance code
generation for stencil computations on GPU architectures,” in Proceedings of
the 26th ACM International Conference on Supercomputing, ICS ’12, (New York,
NY, USA), pp. 311–320, ACM, June 2012.

[44] J. Pekkilä, M. S. Väisälä, M. Käpylä, P. J. Käpylä, and O. Anjum, “Methods for
compressible fluid simulation on GPUs using high-order finite differences,”
Computer Physics Communications, vol. 217, pp. 11–22, Aug. 2017.

[45] R. Collobert, S. Bengio, and J. Marithoz, “Torch: A modular machine learning
software library,” tech. rep., Idiap Research Institute, Nov. 2002.

[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: A system for large-scale machine learning,” in

BIBLIOGRAPHY 92

Proceedings of the 12th USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’16, (Berkeley, CA, USA), pp. 265–283, USENIX Association,
Nov. 2016.

[47] N. J. Goldbaum, H.-Y. Schive, J. A. ZuHone, M. J. Turk, M. Gaspari, and C.-Y.
Cheng, “GAMER-2: a GPU-accelerated adaptive mesh refinement code - ac-
curacy, performance, and scalability,”Monthly Notices of the Royal Astronomical
Society, vol. 481, pp. 4815–4840, Sept. 2018.

[48] G. L. Bryan, M. L. Norman, B. W. O'Shea, T. Abel, J. H. Wise, M. J. Turk, D. R.
Reynolds, D. C. Collins, P. Wang, S. W. Skillman, B. Smith, R. P. Harkness,
J. Bordner, J. hoon Kim, M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, A. G.
Kritsuk, E. Tasker, S. Skory, C. M. Simpson, O. Hahn, J. S. Oishi, G. C. So,
F. Zhao, R. Cen, and Y. L. and, “ENZO: An adaptive mesh refinement code for
astrophysics,” The Astrophysical Journal Supplement Series, vol. 211, p. 19, Mar.
2014.

[49] E. E. Schneider and B. E. Robertson, “Cholla: A newmassively parallel hydro-
dynamics code for astrophysical simulation,” The Astrophysical Journal Supple-
ment Series, vol. 217, p. 24, Apr. 2015.

[50] P. Benítez-Llambay and F. S. Masset, “FARGO3D: A new GPU-oriented MHD
code,” The Astrophysical Journal Supplement Series, vol. 223, p. 11, Mar. 2016.

[51] M. Blazewicz, S. R. Brandt, P. Diener, D.M.Koppelman, K. Kurowski, F. Löffler,
E. Schnetter, and J. Tao, “A massive data parallel computational framework
for petascale/exascale hybrid computer systems,” in Applications, Tools and
Techniques on the Road to Exascale Computing, Proceedings of the conference ParCo
2011, 31 August - 3 September 2011, Ghent, Belgium, (Ghent, Belgium), pp. 351–
358, Aug. 2011.

[52] J. Fung,AStudy of ProtoplanetaryDiskDynamics usingAcceleratedHydrodynamics
Simulations on Graphics Processing Units. PhD thesis, University of Toronto,
Canada, 2015.

[53] C. J. Webb, Parallel computation techniques for virtual acoustics and physical mod-
elling synthesis. PhD thesis, University of Edinburgh, Scotland, United King-
dom, 2014.

[54] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf,
“The Cactus framework and toolkit: Design and applications,” in Vector and

BIBLIOGRAPHY 93

Parallel Processing – VECPAR’2002, 5th International Conference, Lecture Notes in
Computer Science, (Berlin, Germany), Springer, Apr. 2003.

[55] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and
F.Catthoor, “Polyhedral parallel code generation forCUDA,”ACMTransactions
on Architecture and Code Optimization, vol. 9, pp. 54:1–54:23, Jan. 2013.

[56] Z. DeVito, N. Joubert, F. Palacios, S. Oakley,M.Medina,M. Barrientos, E. Elsen,
F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan, “Liszt:
A domain specific language for building portable mesh-based PDE solvers,”
in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, (New York, NY, USA), pp. 9:1–9:12,
ACM, Nov. 2011.

[57] M. Steuwer, T. Remmelg, and C. Dubach, “LIFT: A functional data-parallel
IR for high-performance GPU code generation,” in 2017 IEEE/ACM Interna-
tional Symposium on Code Generation andOptimization (CGO), (Austin, TX, USA),
pp. 74–85, Feb. 2017.

[58] M. S. Väisälä, Magnetic Phenomena of the Interstellar Medium in Theory and Ob-
servation. PhD thesis, University of Helsinki, Finland, 2017.

[59] J. Williamson, “Low-storage Runge-Kutta schemes,” Journal of Computational
Physics, vol. 35, pp. 48–56, Mar. 1980.

[60] D. Luebke and G. Humphreys, “How GPUs work,” Computer, vol. 40, pp. 96–
100, Feb. 2007.

[61] J. Owens, “Streaming architectures and technology trends,” in ACM SIG-
GRAPH 2005 Courses, SIGGRAPH ’05, (New York, NY, USA), ACM, July 2005.

[62] V. Volkov, Understanding Latency Hiding on GPUs. PhD thesis, University of
California, CA, USA, 2016.

[63] D. A. Patterson, “Latency lags bandwith,” Communications of the ACM, vol. 47,
pp. 71–75, Oct. 2004.

[64] M. Harris, “Mapping computational concepts to GPUs,” in ACM SIGGRAPH
2005 Courses, SIGGRAPH ’05, (New York, NY, USA), ACM, July 2005.

BIBLIOGRAPHY 94

[65] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear alge-
bra,” in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, (Pis-
cataway, NJ, USA), pp. 1–11, IEEE Press, Nov. 2008.

[66] NVIDIA, Santa Clara, CA, USA, CUDA C Best Practices Guide, 2019. [Online].
Available: https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.

pdf. [Accessed May 9, 2019].

[67] NVIDIA, Santa Clara, CA, USA, Tuning CUDA Applications for Pascal,
2019. [Online]. Available: https://docs.nvidia.com/cuda/pdf/Pascal_Tuning_
Guide.pdf. [Accessed May 9, 2019].

[68] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70,
Aug. 2008.

[69] NVIDIA, Santa Clara, CA, USA, Precision and performance: floating point and
IEEE754 compliance forNVIDIAGPUs, 2019. [Online].Available: https://docs.
nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf. [Accessed May 9,
2019].

[70] AMD, Sunnyvale, CA, USA, "Vega" Instruction Set Architecture Reference
Guide, July 2017. [Online]. Available: https://developer.amd.com/wp-content/
resources/Vega_Shader_ISA_28July2017.pdf. [Accessed May 9, 2019].

[71] NVIDIA, Santa Clara, CA, USA, NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi, 2009. [Online]. Available: https:

//www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf. [Accessed May 9, 2019].

[72] NVIDIA, Santa Clara, CA, USA, Tuning CUDA Applications for Volta, 2019.
[Online]. Available: https://docs.nvidia.com/cuda/pdf/Volta_Tuning_Guide.

pdf. [Accessed May 9, 2019].

[73] NVIDIA, Santa Clara, CA, USA, Tuning CUDA Applications for Turing,
2019. [Online]. Available: https://docs.nvidia.com/cuda/pdf/Turing_Tuning_
Guide.pdf. [Accessed May 9, 2019].

[74] K. Choo,W. Panlener, and B. Jang, “Understanding and optimizing GPU cache
memory performance for compute workloads,” in 2014 IEEE 13th International
Symposium on Parallel and Distributed Computing, (Marseilles, France), pp. 189–
196, June 2014.

https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Pascal_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Pascal_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf
https://docs.nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf
https://developer.amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf
https://developer.amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/Volta_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Volta_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Turing_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Turing_Tuning_Guide.pdf

BIBLIOGRAPHY 95

[75] D. Foley and J. Danskin, “Ultra-performance Pascal GPU and NVLink inter-
connect,” IEEE Micro, vol. 37, pp. 7–17, Mar. 2017.

[76] The Khronos Group Inc., Beaverton, OR, USA, The OpenGL Shading Lan-
guage, Version 4.60.6, May 2018. [Online]. Available: https://www.khronos.org/
registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf. [Accessed May 9, 2019].

[77] NVIDIA, Santa Clara, CA, USA, CUDA compiler driver NVCC, 2019. [On-
line]. Available: https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_

NVCC.pdf. [Accessed May 9, 2019].

[78] NVIDIA, Santa Clara, CA, USA, CUDA driver API, 2019. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/CUDA_Driver_API.pdf. [Accessed May 9,
2019].

[79] NVIDIA, Santa Clara, CA, USA, Parallel Thread Execution ISA Version 6.4, 2019.
[Online]. Available: https://docs.nvidia.com/cuda/pdf/ptx_isa_6.4.pdf. [Ac-
cessed May 9, 2019].

[80] NVIDIA, Santa Clara, CA, USA, CUDA Binary Utilities, 2019. [On-
line]. Available: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.

pdf. [Accessed May 9, 2019].

[81] Intel, Santa Clara, CA, USA, UG-20031. High Bandwidth Memory
(HBM2) Interface Intel FPGA IP User Guide, May 2018. [On-
line]. Available: https://www.intel.com/content/dam/www/programmable/us/

en/pdfs/literature/ug/ug-20031.pdf. [Accessed May 9, 2019].

[82] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification of
parallel rendering,” IEEE Computer Graphics and Applications, vol. 14, pp. 23–
32, July 1994.

[83] P. A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge Texts
in Applied Mathematics, Cambridge, England: Cambridge University Press,
1st ed., 2001.

[84] A. Emery and H. Mortazavi, “A comparison of the finite difference and finite
element methods for heat transfer calculations,” in Proceedings of the NASA/Ge-
orge Washington Univ./Old Dominion Univ. Symposium on Computational Aspects
of Heat Transfer, (Hampton, VA, USA), pp. 51–82, United States, Jan. 1981.

https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Driver_API.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_6.4.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-20031.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-20031.pdf

BIBLIOGRAPHY 96

[85] D. I. Ketcheson, “Runge-Kutta methods with minimum storage implementa-
tions,” Journal of Computational Physics, vol. 229, pp. 1763–1773, Mar. 2010.

[86] M. Calvo, J. Franco, J. Montĳano, and L. Rández, “On some new low storage
implementations of time advancing Runge-Kutta methods,” Journal of Compu-
tational and Applied Mathematics, vol. 236, pp. 3665–3675, Sept. 2012.

[87] D. Zingg and T. Chisholm, “Runge-Kutta methods for linear ordinary dif-
ferential equations,” Applied Numerical Mathematics, vol. 31, pp. 227–238, Oct.
1999.

[88] ReSoLVE Centre of Excellence, Espoo, Finland, Astaroth Repository, Apr. 2019.
[Online]. Available: https://bitbucket.org/jpekkila/astaroth_2019-05. [Ac-
cessed May 9, 2019].

[89] T. Muranushi, H. Hotta, J. Makino, S. Nishizawa, H. Tomita, K. Nitadori,
M. Iwasawa,N.Hosono, Y.Maruyama,H. Inoue, H. Yashiro, andY.Nakamura,
“Simulations of below-ground dynamics of fungi: 1.184 PFLOPS attained by
automated generation and autotuning of temporal blocking codes,” in Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’16, (Piscataway, NJ, USA), pp. 3:1–3:11, IEEE Press,
Nov. 2016.

[90] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A system for
programming graphics hardware in a C-like language,” ACM Transactions on
Graphics, vol. 22, pp. 896–907, July 2003.

[91] J. Levine, Flex & Bison. Sebastopol, CA, USA: O’ReillyMedia, Inc., 1st ed., 2009.

[92] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2nd ed., 2006.

[93] B. W. Kernighan, The C Programming Language. Upper Saddle River, NJ, USA:
Prentice Hall Professional Technical Reference, 2nd ed., 1988.

[94] P. Micikevicius, “GPU performance analysis and optimization,” Presentation
at the GPU Technology Conference, (Santa Clara, CA, USA), NVIDIA, May
2012.

https://bitbucket.org/jpekkila/astaroth_2019-05

BIBLIOGRAPHY 97

[95] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual
performance model for multicore architectures,” Communications of the ACM,
vol. 52, pp. 65–76, Apr. 2009.

[96] M. A. O’Neil and M. Burtscher, “Floating-point data compression at 75 GB/s
on aGPU,” in Proceedings of the FourthWorkshop on General Purpose Processing on
Graphics Processing Units, GPGPU-4, (New York, NY, USA), pp. 7:1–7:7, ACM,
Mar. 2011.

[97] Oracle Corporation, Redwood Shores, CA, USA,Addendum toWhat Every Com-
puter Scientist Should Know About Floating-Point Arithmetic, 2015. [Online].
Available: https://docs.oracle.com/cd/E37069_01/pdf/E39019.pdf. [Accessed
May 9, 2019].

[98] D. Monniaux, “The pitfalls of verifying floating-point computations,” ACM
Trans. Program. Lang. Syst., vol. 30, pp. 12:1–12:41, May 2008.

[99] D. Goldberg, “What every computer scientist should know about floating-
point arithmetic,” ACM Computing Surveys, vol. 23, pp. 5–48, Mar. 1991.

[100] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2001.

[101] N.Higham,Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, 2nd ed., 2002.

[102] J.-M. Muller, “On the definition of ulp(x),” Tech. Rep. RR-5504, INRIA, Feb.
2005.

[103] T. Dombre, U. Frisch, J. M. Greene, M. Hénon, A. Mehr, and A. M. Soward,
“Chaotic streamlines in the ABC flows,” Journal of Fluid Mechanics, vol. 167,
pp. 353–391, June 1986.

[104] NVIDIA, Santa Clara, CA, USA, Profiler User’s Guide, 2019. [Online].
Available: https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.

pdf. [Accessed May 9, 2019].

[105] X. Mei and X. Chu, “Dissecting GPU memory hierarchy through microbench-
marking,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, pp. 72–
86, Jan. 2017.

[106] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,” Master’s
thesis, University of Illinois at Urbana-Champaign, IL, USA, 2002.

https://docs.oracle.com/cd/E37069_01/pdf/E39019.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf

Appendix A

Tokens of the Astaroth DSL

D [0-9]

L [a-zA-Z_\\"]

"Scalar" { return SCALAR; } /* Built-in types */

"Vector" { return VECTOR; }

"Matrix" { return MATRIX; }

"void" { return VOID; } /* Rest of the types inherited from C */

"int" { return INT; }

"int3" { return INT3; }

"Kernel" { return KERNEL; } /* Function specifiers */

"Preprocessed" { return PREPROCESSED; }

"const" { return CONSTANT; }

"in" { return IN; } /* Device function storage specifiers */

"out" { return OUT; }

"uniform" { return UNIFORM; }

"else if" { return ELIF; }

"if" { return IF; }

"else" { return ELSE; }

"for" { return FOR; }

"while" { return WHILE; }

"return" { return RETURN; }

{D}+"."?{D}*[flud]? { return NUMBER; } /* Literals */

"."{D}+[flud]? { return NUMBER; }

{L}({L}|{D})* { return IDENTIFIER; }

98

APPENDIX A. TOKENS OF THE ASTAROTH DSL 99

"==" { return LEQU; } /* Logic operators */

"&&" { return LAND; }

"||" { return LOR; }

"<=" { return LLEQU; }

"++" { return INPLACE_INC; }

"--" { return INPLACE_DEC; }

[-+*/;=\[\]{}(),\.<>] { return yytext[0]; } /* Characters */

"//".* { /* Skip regular comments */ }

[\t\n\v\r]+ { /* Ignore whitespace, tabs and newlines */ }

. { printf("unrecognized char %d: [%c]\n", *yytext, *yytext); }

Appendix B

Grammar of the Astaroth DSL

root: program

;

program: /* Empty*/

| program function_definition

| program assignment ’;’ /* Global definition */

| program declaration ’;’ /* Global declaration */

;

/*

* ==

* Functions

* ==

*/

function_definition: function_declaration compound_statement

;

function_declaration: declaration function_parameter_declaration

;

function_parameter_declaration: ’(’ ’)’

| ’(’ declaration_list ’)’

;

/*

100

APPENDIX B. GRAMMAR OF THE ASTAROTH DSL 101

* ==

* Statements

* ==

*/

statement_list: statement

| statement_list statement

;

compound_statement: ’{’ ’}’

| ’{’ statement_list ’}’

;

statement: selection_statement

| iteration_statement

| exec_statement ’;’

;

selection_statement: IF expression else_selection_statement

;

else_selection_statement: compound_statement

| compound_statement elif_selection_statement

| compound_statement ELSE compound_statement

;

elif_selection_statement: ELIF expression else_selection_statement

;

iteration_statement: WHILE expression compound_statement

| FOR for_expression compound_statement

;

for_expression: ’(’ for_init_param for_other_params ’)’

;

for_init_param: expression ’;’

| assignment ’;’

;

for_other_params: expression ’;’

| expression ’;’ expression

;

exec_statement: declaration

APPENDIX B. GRAMMAR OF THE ASTAROTH DSL 102

| assignment

| expression

| RETURN return_statement

;

assignment: declaration ’=’ expression

| expression ’=’ expression

;

return_statement: /* Empty */

| expression

;

/*

* ==

* Declarations

* ==

*/

declaration_list: declaration

| declaration_list ’,’ declaration

;

declaration: type_declaration IDENTIFIER

| type_declaration array_declaration

;

array_declaration: IDENTIFIER ’[’ ’]’

| IDENTIFIER ’[’ expression ’]’

;

type_declaration: type_specifier

| type_qualifier type_specifier

;

APPENDIX B. GRAMMAR OF THE ASTAROTH DSL 103

/*

* ==

* Expressions

* ==

*/

expression_list: expression

| expression_list ’,’ expression

;

expression: unary_expression

| expression binary_expression

;

binary_expression: binary_operator unary_expression

;

unary_expression: postfix_expression

| unary_operator postfix_expression

;

postfix_expression: primary_expression

| postfix_expression ’[’ expression_list ’]’

| cast_expression ’{’ expression_list ’}’

| postfix_expression ’(’ ’)’

| postfix_expression ’(’ expression_list ’)’

| type_specifier ’(’ expression_list ’)’

| postfix_expression ’.’ IDENTIFIER

;

cast_expression: /* Empty: implicit cast */

| ’(’ type_specifier ’)’

;

primary_expression: IDENTIFIER

| NUMBER

| ’(’ expression ’)’

;

APPENDIX B. GRAMMAR OF THE ASTAROTH DSL 104

/*

* ==

* Terminals

* ==

*/

binary_operator: ’+’

| ’-’

| ’/’

| ’*’

| ’<’

| ’>’

| LEQU

| LAND

| LOR

| LLEQU

;

unary_operator: ’-’

| ’!’

| INPLACE_INC

| INPLACE_DEC

;

type_qualifier: KERNEL

| PREPROCESSED

| CONSTANT

| IN

| OUT

| UNIFORM

;

type_specifier: VOID

| INT

| INT3

| SCALAR

| VECTOR

| MATRIX

;

Appendix C

Solver implementation

1 Preprocessed Scalar

2 value(in Scalar vertex)

3 {

4 return vertex[vertexIdx];

5 }

6

7 Preprocessed Vector

8 gradient(in Scalar vertex)

9 {

10 return (Vector){derx(vertexIdx , vertex),

11 dery(vertexIdx , vertex),

12 derz(vertexIdx , vertex)};

13 }

14

15 Preprocessed Matrix

16 hessian(in Scalar vertex)

17 {

18 Matrix hessian;

19

20 hessian.row[0] = (Vector){derxx(vertexIdx , vertex),

21 derxy(vertexIdx , vertex),

22 derxz(vertexIdx , vertex)};

23 hessian.row[1] = (Vector){hessian.row[0].y,

24 deryy(vertexIdx , vertex),

25 deryz(vertexIdx , vertex)};

26 hessian.row[2] = (Vector){hessian.row[0].z,

27 hessian.row[1].z,

28 derzz(vertexIdx , vertex)};

29

30 return hessian;

31 }

ListingC.1: Implementation of the stencil assembly stage using theAstaroth domain-
specific language.

105

APPENDIX C. SOLVER IMPLEMENTATION 106

1 uniform Scalar cs2_sound;

2 uniform Scalar nu_visc;

3 uniform Scalar cp_sound;

4 uniform Scalar cv_sound;

5 uniform Scalar mu0;

6 uniform Scalar eta;

7 uniform Scalar gamma;

8 uniform Scalar zeta;

9

10 uniform int nx_min;

11 uniform int ny_min;

12 uniform int nz_min;

13 uniform int nx;

14 uniform int ny;

15 uniform int nz;

16

17

18

19

20

21 Vector

22 value(in Vector uu)

23 {

24 return (Vector){value(uu.x), value(uu.y), value(uu.z)};

25 }

26

27

28 Matrix

29 gradients(in Vector uu)

30 {

31 return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};

32 }

33

34

35 Scalar

36 continuity(in Vector uu, in Scalar lnrho)

37 {

38 return -dot(value(uu), gradient(lnrho)) - divergence(uu);

39 }

40

41

42 Vector

43 induction(in Vector uu, in Vector aa)

44 {

45 const Vector B = curl(aa);

46 const Vector grad_div = gradient_of_divergence(aa);

47 const Vector lap = laplace_vec(aa);

48

49 return cross(value(uu), B) - eta * (grad_div - lap);

50 }

51

52

53

54

55

APPENDIX C. SOLVER IMPLEMENTATION 107

56

57

58 Vector

59 momentum(in Vector uu, in Scalar lnrho, in Scalar ss, in Vector aa)

60 {

61 const Matrix S = stress_tensor(uu);

62 const Scalar cs2 = cs2_sound * exp(gamma * value(ss) / cp_sound

63 + (gamma - 1) * (value(lnrho) - LNRHO0));

64 const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa)

65 - laplace_vec(aa));

66 const Vector B = curl(aa);

67 const Scalar inv_rho = Scalar(1.) / exp(value(lnrho));

68

69 const Vector mom = - mul(gradients(uu), value(uu))

70 - cs2 * ((Scalar(1.) / cp_sound) * gradient(ss)

71 + gradient(lnrho))

72 + inv_rho * cross(j, B)

73 + nu_visc * (

74 laplace_vec(uu)

75 + Scalar(1. / 3.) * gradient_of_divergence(uu)

76 + Scalar(2.) * mul(S, gradient(lnrho))

77)

78 + zeta * gradient_of_divergence(uu);

79 return mom;

80 }

81

82

83 Scalar

84 heat_conduction(in Scalar ss, in Scalar lnrho)

85 {

86 const Scalar inv_cp_sound = AcReal(1.) / cp_sound;

87

88 const Vector grad_ln_chi = - gradient(lnrho);

89

90 const Scalar first_term = gamma * inv_cp_sound * laplace(ss)

91 + (gamma - AcReal(1.)) * laplace(lnrho);

92 const Vector second_term = gamma * inv_cp_sound * gradient(ss)

93 + (gamma - AcReal(1.)) * gradient(lnrho);

94 const Vector third_term = gamma * (inv_cp_sound * gradient(ss)

95 + gradient(lnrho)) + grad_ln_chi;

96

97 const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * cp_sound);

98 return cp_sound * chi * (first_term + dot(second_term , third_term));

99 }

100

101

102 Scalar

103 lnT(in Scalar ss, in Scalar lnrho)

104 {

105 const Scalar lnT = LNT0 + gamma * value(ss) / cp_sound

106 + (gamma - Scalar(1.)) * (value(lnrho) - LNRHO0);

107 return lnT;

108 }

109

110

APPENDIX C. SOLVER IMPLEMENTATION 108

111 Scalar

112 entropy(in Scalar ss, in Vector uu, in Scalar lnrho, in Vector aa)

113 {

114 const Matrix S = stress_tensor(uu);

115 const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho))

116 * exp(lnT(ss, lnrho)));

117 const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa)

118 - laplace_vec(aa));

119 const Scalar RHS = H_CONST - C_CONST

120 + eta * (AC_mu0) * dot(j, j)

121 + Scalar(2.) * exp(value(lnrho)) * nu_visc * contract(S)

122 + zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);

123

124 return - dot(value(uu), gradient(ss)) + inv_pT * RHS

125 + heat_conduction(ss, lnrho);

126 }

127

128

129 in Scalar lnrho = VTXBUF_LNRHO;

130 out Scalar out_lnrho = VTXBUF_LNRHO;

131

132 in Vector uu = (int3) {VTXBUF_UUX , VTXBUF_UUY , VTXBUF_UUZ};

133 out Vector out_uu = (int3) {VTXBUF_UUX , VTXBUF_UUY , VTXBUF_UUZ};

134

135 in Vector aa = (int3) {VTXBUF_AX , VTXBUF_AY , VTXBUF_AZ};

136 out Vector out_aa = (int3) {VTXBUF_AX , VTXBUF_AY , VTXBUF_AZ};

137

138 in Scalar ss = VTXBUF_ENTROPY;

139 out Scalar out_ss = VTXBUF_ENTROPY;

140

141

142 Kernel void

143 solve(Scalar dt)

144 {

145 out_lnrho = rk3(out_lnrho , lnrho, continuity(uu, lnrho), dt);

146 out_aa = rk3(out_aa, aa, induction(uu, aa), dt);

147 out_uu = rk3(out_uu, uu, momentum(uu, lnrho, ss, aa), dt);

148 out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);

149 }

Listing C.2: Implementation of the stencil processing stage using the Astaroth
domain-specific language.

Appendix D

List of Symbols

Symbol Explanation
u Velocity
A Magnetic vector potential
B Magnetic flux density
S Traceless rate-of-shear tensor
f Forcing
ρ Density
γ � cp/cv Adiabatic index
ν Kinematic viscosity
ζ Bulk viscosity
χ Thermal diffusivity
µ0 Magnetic vacuum permeability
η Magnetic diffusivity
s Entropy
cs Speed of sound
cp Heat capacity at constant pressure
cv Heat capacity at constant volume
T Temperature
K Radiative thermal conductivity
H Explicit heating term
C Explicit cooling term
∇2 Laplace operator
∇× Curl operator

109

Glossary

cache blocking A technique, where a problem is solved in small subsets, such that
the working set at any given time is small enough to fit in caches [3]. 13, 14, 31,
51

data parallelism A form of parallelism, where work is decomposed into data items
that can be processed in parallel. 6, 10, 20

error-correcting codes A group of techniques where redundant bits are added to a
message to detect and correct errors. 60, 61, 84

graphics pipeline A chain of logical stages executed on graphics primitives to ren-
der a scene to a two-dimensional framebuffer. Pipeline in the sense, that output
of the previous stage is passed to the next. 11, 20, 21, 45

instruction pipeline A technique used in hardware design to improve instruction-
level parallelism. In an instruction pipeline, multiple instructions are executed
in parallel, either by dispatching a new instruction before the fetch-decode-
execute cycle of the previous instruction has finished, or by issuing multiple
instructions to multiple functional units during a single clock cycle [2, 3]. 9, 22

instruction-level parallelism A form of parallelism, where multiple instructions
are executed in parallel[2, 3]. 9, 10, 18, 21, 52, 82, 84

latency The time it takes to complete an operation. 11, 13, 18, 21, 22, 25, 27, 52, 72,
74, 75, 78, 82, 84

occupancy The ratio of active warps to the maximum number of warps that can be
multithreaded on a SIMT processor [9]. 52, 74, 84, 86

110

Glossary 111

pipeline stall The event, where a processor cannot execute instructions and the
instruction pipeline is stalled due to the latency caused by, for example, a data
dependency, arithmetic operation, or synchronization. 11, 13, 22, 31, 52, 54, 74,
82, 84

reuse The action of re-accessing data after it has been fetched to on-chip caches.
Higher reuse can be achieved by ensuring that data items residing in caches
are completely exhausted before evicting them to off-chip memory. 31, 40, 52,
75, 78, 84, 86

stream processor A functional unit specialized in executing common 32- and 64
floating-point operations. 10, 21, 26, 27, 30, 52, 54, 85

	Cover page
	Contents
	1 Introduction
	1.1 Background
	1.2 Previous work
	1.3 Problem statement
	1.4 Outline of this work

	2 Graphics processing units
	2.1 GPU architecture
	2.2 Programming GPUs

	3 Magnetohydrodynamics
	3.1 Finite-difference methods
	3.2 Runge-Kutta integration

	4 Library for stencil computations
	4.1 Library architecture and API
	4.2 Domain-specific language
	4.3 DSL compiler and code generation

	5 Results
	5.1 Verification
	5.2 Hardware utilization
	5.3 Comparison with a CPU solver

	6 Discussion
	Conclusion
	A Tokens of the Astaroth DSL
	B Grammar of the Astaroth DSL
	C Solver implementation
	D List of Symbols
	Glossary

