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Abbreviations and Acronyms

GP Gaussian Process
EIV Errors-in-variables
RCT Randomized controlled trials
ATE Average treatment effect
ITE Individual treatment effect
NUC No unmeasured confounders
IP Inverse probability weighting
RNN Recurrent neural network
FE Fixed-effects models
IV Instrumental variables
MLE Maximum likelihood estimation
MCMC Markov Chain Monte Carlo
SE Squared Exponential
NUTS No-U-Turn
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Chapter 1

Introduction

Recently, with the increasing amount of electronic health records (EHRs),
it becomes possible to leverage statistical machine learning techniques to
establish more efficient healthcare systems. Examples of applications of ma-
chine learning for healthcare include medical imaging, subtypes clustering,
and treatment recommendation [Ghassemi et al., 2018], which immensely
alleviate pressure on limited medical resources.

In particular, one fundamental problem in healthcare is the estimation
of treatment effect, for example, how much dialysis lowers a patient’s creati-
nine. This information is essential for practitioners to prescribe patients an
effective treatment in a safe dose. In the past, this was mostly obtained by
randomized control trials (RCTs), which are costly and often infeasible due
to reasons such as medical ethics. While data-driven techniques on time-
fixed treatments have been extensively studied, time-varying treatments still
poses many unsolved challenges, for example, self-reported noisy treatment
timing in data. Treatment effect with a long duration, known as treatment-
response trajectories, takes a form of continuous functions instead of scalar
values, which requires more sophisticated parametric or nonparametric func-
tional modeling. Personalized estimation also encounters a long-standing
problem of data sparseness.

One ambitious goal of machine learning community is to economically
estimate treatment-response trajectories by a data-driven approach. Major
technical challenges presented in the way include trustworthy machine learn-
ing, error-tolerant or robust estimation, and personalization. This thesis
proposes a novel model for the estimation of treatment-response trajectories,
together with solutions to all above obstacles. The performance of the model
is verified on a real-life glucose dataset where patients’ diet is considered as
a treatment.

7



CHAPTER 1. INTRODUCTION 8

1.1 Problem statement

Causality is crucial to trustworthy treatment effect estimation. Estimating
treatment effect by a means of curving fitting, a dominant methodology in the
realm of machine learning, is straightforward, but may cause fatal mistakes in
vital disease diagnosis, because association between the treatment and some
unknown factors can result in a deceptive conclusion. Therefore, in order to
employ reliable machine learning techniques in healthcare, we have to enrich
our mathematical tools to define and explain causality [Pearl, 2009] [Miguel
A. Hernán, 2018], and replace traditional statistical associations with them.

Observed data in healthcare are typically with poor quality, such as cen-
soring, missingness, scarcity, heterogeneity, and noise. In such a dreadful cir-
cumstance, it is likely to give rise to a biased and meaningless result. While
most machine learning models are designed taking into account the error in
dependent variables (outcomes), error in independent variables (predictors)
has caught little attention. However, the former only induces additional
variability in estimation in either linear or nonlinear models [Carroll et al.,
2006, Chapter 15] whereas the latter often spawn disastrous consequences–a
biased estimation. Thus, errors-in-variables (EIV) modeling is an indispens-
able component in robust estimation.

Last but not least, there exists an enormous variation in treatment ef-
fect among different people. Estimating only an average effect across all
patients is inadequate, whereas a separate estimation for each individual
is unrealistic due to data sparseness. How to efficiently share information
across individuals becomes an important topic in personalized healthcare. In
the Bayesian paradigm, an elegant solution to this problem is Bayesian hi-
erarchical modeling, assuming individual parameters follow one higher level
common distribution.

1.2 Structure of the thesis

Prior work and related background are first reviewed in Chapter 2. Then our
method and accompanying experiments are presented in details in Chapter
3 and Chapter 4 respectively. A discussion follows in Chapter 5, after which
this thesis concludes with Chapter 6.



Chapter 2

Background

In this section, an introduction to technical background for key elements in
our model is presented, including Causality, errors-in-variables modeling, and
Gaussian Processes.

2.1 Causality

Causality provides guidance on estimating unbiased treatment effect from
observational data, where potential factors that may affect both the treat-
ment and outcome have not been controlled between experimental and con-
trol groups. An estimation is likely to be biased without using causal tech-
niques, when the treatment is confounded by a factor that correlates with
both treatment and outcome. For example, in estimating the effect of smok-
ing on catching lung cancer, it may be that people who carry a gene that
causes lung cancer like smoking more than people who do not.

This causal relation is best demonstrated by a causal graph, which is
similar to a graphical model [Bishop and Mitchell, 2014] but with notation
carrying different meanings. In a graphical model, one directed edge rep-
resents conditional dependence between random variables, while in a causal
graph, it means a causal relation. For the example above, its causal graph
can be depicted as Figure 2.1a, where A stands for treatment, Y an outcome,
Z a observed confounder, and U a unobserved confounder. In the case of an
intervention, the causal graph needs to be modified to accommodate such an
external force–all arrows pointed to the treatment need deleting, shown in
Figure 2.1b. That is to say, the E[Y |A = a] estimated based on the mod-
ified causal graph represents a causal outcome Y given treatment A = a,
equivalent to the one estimated using RCTs, which is termed a potential
outcome and is denoted as E[Y A=a]. With potential outcomes given differ-
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CHAPTER 2. BACKGROUND 10

ent treatment, average treatment effect (ATE) is typically used to determine
the effectiveness of a treatment, which is defined as follows with a binary
treatment.

ATE = E[Y A=1]− E[Y A=0] (2.1)

Fortunately, E[Y A=a] in the modified causal graph can be estimated using
components from the original causal graph with proper assumptions. An
unbiased estimation of ATE can be obtained as long as all confounders are
measured, known as No Unmeasured Confounders (NUC) assumption. For
the example shown in Figure 2.1a, this means U needs to be measured in
order to make the causal estimation possible, thus turned into Figure 2.1c.

P (Y A=a = y) =
∑
z

P (Y = y|A = a, Z = z)P (Z = z) (2.2)

where every term happens in the counterfactual world, but P (Y = y|A =
a, Z = z) and P (Z = z) are consistent across the real and the counterfactual
world, and thus can be estimated using observational data from the original
causal graph. This formula suffers from curse of dimension at Z but serves
well as a pedagogical example. Some other popular causal techniques include
matching, covariate adjustment, and inverse probability (IP) weighting (aka
propensity score). More rigorous assumptions for a feasible causal estimation,
such as positivity, can be found in [Miguel A. Hernán, 2018].

2.1.1 Individual treatment effect

Individual treatment effect (ITE) is gaining more and more popularity es-
pecially in patient-centric healthcare, the most fine grained one of which is
defined as follows with a binary treatment.

ITE(1) = E[Y A=1|Z = z]− E[Y A=0|Z = z] (2.3)

where Z also includes patient-specific confounders. However, for a particular
instance, only one of two terms in Equation 2.3 is available, thus ITE is
often cast as a missing problem. The estimation of ITE is evident under the
potential outcome framework [Miguel A. Hernán, 2018].

E[Y a|Z = z] = E[Y a|A,Z = z] = E[Y |A = a, Z = z] (2.4)

holds when Y a ⊥⊥ A|Z holds, which means if Z is conditioned, the value of Ya
is not affected by value of A. This may first seem contradictory, but can be
understood easier in a perspective of structural equation modeling. Suppose
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in the underlying generative process, the equation for the outcome is Y =
A+Z+ε, where ε is caused by unobserved factors that are uncorrelated with
A. Then under the intervention of A = a, the equation becomes Y = a+Z+ε.
At this stage, Y can still be affected by A in an observational study, since A
and Z are correlated However, once Z is conditioned, E[Y = a + z + ε|Z =
z] = E[Y = a+ z + ε|Z = z, A].

Hence the estimation of ITE turns out to be easier than that of ATE,
as it only requires a regression surface of E[Y |A = a, Z = z] but not other
components. Nevertheless, as we will see later, this may not be true in some
cases where the estimation of ITE is impossible while that of ATE works
smoothly.

2.1.2 Time-varying treatments

New issues arise after time-varying treatments are involved. Previously, we
only discuss causality that ignores time variation, assuming ATE remains
unchanged regardless of when an outcome is measured after treatment. In
this subsection, we extend our discussion to a more complicated scenario,
where a patient receives a sequence of treatments and reports a final outcome
at the end.

Many aforementioned concepts need generalizing to adapt to this new
scenario. The definition of ATE for time-varying treatments can be extended
to the difference between two treatment strategies, for example, between
“always treat” and “never treat” strategies. The number of possible paired
strategies increases exponentially with the number of treatments.

Accordingly, there needs a generalization of NUC for time-varying treat-
ments, a concept of sequential conditional exchangeability [Miguel A. Hernán,
2018], where no direct unmeasured factor is taken into account to assign
treatments, which is formally defined as follows.

Y āk ⊥⊥ Ak|Āk−1, Z̄k, for all strategies k=0,1...K (2.5)

However, as we will see later, even with NUC satisfied, traditional causal
techniques still give a biased estimation of ATE when comparing treatment
strategies.

Figure 2.1d demonstrates the epitome of cases for time-varying treat-
ments, where only two treatments A1, A2 are taken into account. The prob-
lem with traditional causal techniques is that, when conditioned on a collider
Z1, A1 and U are correlated. A backdoor path is then opened, A1 → Z1 ←
U → Y . This always happens when there exist arrows from A1 to Z1 and from
Z1 to A2, therefore named treatment-confounder feedback [Miguel A. Hernán,
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2018]. Fortunately, this issue can be tackled by generalized causal techniques,
including g-formula and g-estimation.

We illuminate the idea behind g-methods by a proof of g-formula. As
before, a modified causal graph is first obtained and shown in Figure 2.1e,
upon which the potential outcome can be derived.

P [Y a1,a2 = y] = P (Y = y|A1 = a1, A2 = a2) (2.6)

=
∑
u,z1

P (Y = y, U = u, Z1 = z1, A1 = a1, A2 = a2)

P (A1 = a1, A2 = a2)
(2.7)

=
∑
u,z1

P (Y = y, U = u,A1 = a1, Z1 = z1, A2 = a2) (2.8)

=
∑
u,z1

P (U = u)P (Z1 = z1|U = u,A1 = a1)

P (Y = y|U = u,A1 = a1, Z1 = z1, A2 = a2)

(2.9)

which Equation 2.8 and 2.9 hold since P (A1 = a1) = P (A1 = a1|U = u) =
1 and P (A2 = a2) = P (A2 = a2|U = u,A1 = a1, Z1 = z1) = 1 in the
counterfactual world. Now coming back to the observational world, terms
involving U is incalculable since U is unobserved, but U can be marginalized
out under the new NUC assumption.

P [Y a1,a2 = y]

=
∑
u,z1

P (u)P (z1|u, a1)P (y|u, a1, z1, a2) (2.10)

=
∑
u,z1

P (u)P (z1|u, a1)P (y|u, a1, z1, a2)
P (a1|u)P (a2|u, a1, z1)

P (a1)P (a2|a1, z1)
(2.11)

=
∑
u,z1

P (u, a1, z1, a2)

P (a1)P (a2|a1, z1)
P (y|u, a1, z1, a2) (2.12)

=
∑
u,z1

P (a1)P (z1|a1)P (a2|a1, z1)P (u|a1, z1, a2)

P (a1)P (a2|a1, z1)
P (y|u, a1, z1, a2) (2.13)

=
∑
u,z1

P (z1|a1)P (u|a1, z1, a2)P (y|u, a1, z1, a2) (2.14)

=
∑
z1

P (z1|a1)P (y|a1, z1, a2) (2.15)

where NUC applies in Equation 2.11 so that P (a1|u) = P (a1) and P (a2|u, a1, z1) =
P (a2|a1, z1). An intuitive way to understand is that g-formula replaces P (z1)
in traditional methods with P (z1|a1), which equivalently replaces Z1 with Za1

1

in the causal graph.
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ATE turns out to be identifiable with time-varying treatments, whereas
ITE(1) does not have fortune to fall into the same category. ITE(1) of a
strategy of treatments is, to the best of our knowledge, impossible without
a stronger assumption, which can be seen by examining Y a1,a2 6⊥⊥ A1, A2|Z1.
However, if we enlarge the granularity of ITE, by splitting covariates into
Z̄ and patient-specific time-invariant factor L, as shown in Figure 2.1f, the
following estimation is feasible.

ITE(2) = E[Y āk |L]− E[Y ā′k |L] (2.16)

since L can be considered to exist before all treatments and be fixed, thus
not causing any treatment-confounder feedback.

In this thesis we turn our attention to ITE of the most recent treatment,
given a history of previous treatments. That is to say, instead of E[Y āk ] −
E[Y ā′k ], we study

ITE(3) = E[Y ak |Āk−1, Z̄k]− E[Y a′k |Āk−1, Z̄k] (2.17)

= E[Y |āk−1, ak, z̄k]− E[Y |āk−1, a
′
k, z̄k] (2.18)

which obviously holds in light of the new NUC assumption in Equation 2.5.
To explain the discrepancy among different ITEs, the one we adopt gives a
difference in treatment effects between two current latest treatments ak and
a′k among patients who took āk−1 before. One interpretation for ITE(3) is
that the effect of the most recent treatment ak, also known as the short-term
effect of āk [Miguel A. Hernán, 2018]. It is also worth noting that when
estimating E[Y āk ], the model implicitly assumes new-user designs where pa-
tients had not used treatment in the past.

We will focus on the most recent treatment in following subsections, since
previous treatments now serve a same role as past covariates Z̄k, and do not
pose any new conceptual difficulty.

2.1.3 Time-varying outcomes

A treatment usually introduces a long duration of effect, which can not be
fully described by a time-fixed value. For example, Zeevi et al. [2015] de-
scribes as a scalar area a time-varying glycemic response caused by a food
intake, losing details in progression of response. Therefore there comes the
need to analyze time-varying outcomes.

Looking at Figure 2.1g which exemplifies the case of time-varying out-
comes within three time steps, estimating E[Y a

t ] is very straightforward. But
it may appear that when estimating Y a

t+1 at the next time step, condition-
ing on Yt opens a backdoor path A → Yt ← Ut → Ut+1 → Yt+1. However,
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Figure 2.1: Causal graphs for different settings

this is not true, since Yt is actually an unknown future variable, and what is
conditioned for Yt+1 is Y a

t , for which Y a
t ⊥⊥ A|Yt=1 holds.

E[Y a
t |Yt−1, Zt−1] = E[Yt|A = a, Yt−1, Zt−1] (2.19)

E[Y a
t+1|Y a

t , Yt−1, Zt−1] = E[Yt|A = a, Y a
t , Yt−1, Zt−1] (2.20)

We ignore Zt, Zt+1 because they are future variables which by no means will
affect the current treatment A. Generalizing above formulas to an infinite
time series together with past treatments, we have

E[Ȳ ā<t,at
≥t |ā<t, Ȳ<t, Z̄<t] = E[Ȳ≥t|ā≤t, Ȳ<t, Z̄<t] (2.21)
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2.1.4 Causal applications

Dahabreh et al. [2012] conducts a systematic comparison between the re-
sults of observational study and RCTs on therapeutic interventions for acute
coronary syndromes, and finds a high consistency between them. However,
Gordon et al. [2018] reports an inconsistency in the context of advertising
campaigns. Thus, results from observational studies should be applied with
caution

Compared to the single outcome scenario, related work on time-varying
outcomes is much fewer. Brand and Xie [2007] discusses cases of time-varying
treatments and time-varying outcomes, however, with a special dichotomous
irreversible treatment, e.g., disability, which avoids treatment-confounder
feedback and leads to a simpler solution. Schulam and Saria [2017] proposes
a stronger continuous NUC assumption to ensure the unbiased estimation
of ITE(1) over a treatment strategy. Soleimani et al. [2017] captures the
dynamics in treatment-response trajectories by convolving a dose function
with a parametric impulse response function. Lim [2018] leverages the mem-
ory mechanism in RNN to learn generalized propensity scores and a second
sequence-to-sequence network to make multiple-step prediction of ITE(2).

Apart from what have been discussed, another group of causal methods
that capture an additive unobserved effect caused by time-invariant con-
founders is fixed-effects models (FE) [Wooldridge, 2010], which has been
widely employed in fields of social science. Typical study objects of FE
are panel or cohort data.

2.2 Errors-in-variables

Massive data for model training are usually collected without a careful in-
spection or with an inevitable instrumental error, thus being contaminated
to some extent. While most regression methods permit an unbiased ho-
moscedastic error in the dependent variable, errors in independent variables
are typically omitted. However, the former only induces additional variabil-
ity in estimation in either linear or nonlinear models [Carroll et al., 2006,
Chapter 15] whereas the latter is more destructive than practitioners think–
leading to a biased estimation, which can not be remedied with even infinite
samples. Models that take into account measurement errors in independent
variables are called errors-in-variables models.

We will first introduce common formulations and consequences of mis-
measurement error, and then proceed to various corrective solutions, mostly
in linear models. Some general advice regarding important decisions in EIV
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modeling is given below, and readers may want to come back to this af-
ter reading this section. Other than linear regression, EIV modeling almost
always requires auxiliary information or data in order to correct bias in es-
timation. Plug-in correction is suitable for problems that have an analytical
solution. To absorb information from instrumental variables or repeated mea-
surements is not straightforward, especially in nonlinear models. When no
additional data is available, Bayesian EIV approach is by far the most power-
ful and flexible one in coping with non-identifiability, by applying additional
information as distributional assumptions.

In this discussion, some important topics are not covered, such as bounds
of coefficients (aka sensitivity analysis) and EIV on panel data. An extensive
treatment to EIV can be found in Carroll et al. [2006] Schennach [2012]
Gustafson [2004] Chen et al. [2007].

2.2.1 Consequences and formulations of mismeasure-
ment

An important category of mismeasurement is non-differential error, which
claims that measurement error is independent of the dependent variable. In
other words, mismeasurement does not contribute any new information to
the regression. Error-prone X is then termed a surrogate or proxy for its true
variable X∗. Only non-differential error will be consider within the scope of
this thesis, because when the error is not non-differential, i.e., differential, it
becomes more difficult or impossible to eliminate the bias.

2.2.1.1 Classical additive error

. The most important type of mismeasurement is classical measurement
error, where measurement error is independent of its latent variable. In this
thesis, when mentioning classical error, we refer to the most commonly seen
classical additive error, which takes a formulation as follows.

X = X∗ + ∆X (2.22)

where ∆X is an independent unbiased additive error such that ∆X ⊥ X∗,
E[∆X] = 0 and V ar(∆X) = σ∆X . Classical error induces a biased and
inconsistent estimator even in the simplest case of simple linear regression.

Y = β0 + βX∗ + ε (2.23)

where we assume E[ε|X] = E[ε] = 0 and V ar(ε) = σε, i.e., ε is an independent
random noise. Because of measurement error, X is observed instead of X∗.

Y = β0 + βX + η (2.24)
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where η = ε − β∆X, which is correlated to the actual regressor X. The
according estimation becomes,

Cov(Y,X) = E[(Y − Ȳ )(X − X̄)] (2.25)

= E[(βX + ε− β∆X − βX̄)(X − X̄)] (2.26)

= E[(βX − β∆X − βX̄)(X − X̄)] (2.27)

= βE[(X − X̄)(X − X̄)−∆X(X − X̄)] (2.28)

= βE[(X − X̄)2 −∆X2] (2.29)

= β(Cov(X,X) + σ∆X) (2.30)

Therefore, a naive estimator β̂∆X is biased.

β̂ = Cov(Y,X∗)/Cov(X∗, X∗) 7→ β (2.31)

β̂∆X = Cov(Y,X)/Cov(X,X) 67→ β (2.32)

Notice that Cov(Y,X) = Cov(Y,X∗) and Cov(X,X) = Cov(X∗, X∗)+σ∆X .
Thus,

β̂∆X =
Cov(Y,X∗)

Cov(X∗, X∗) + σ∆X

=
Cov(X∗, X∗) + σ∆X

Cov(X∗, X∗)
β̂ (2.33)

β̂ =
Cov(X∗, X∗)

Cov(X∗, X∗) + σ∆X

β̂∆X = Γβ̂∆X (2.34)

where Γ is called a reliability ratio, This kind of bias is called attenuation,
indicating the magnitude of coefficients shrink towards zero. As we can see,
a larger error (i.e., a larger σ∆X) results in a smaller reliability ratio.

Another similar error, mean-independence error relaxes the requirement
of independence between X∗ and ∆X, only requiring E[∆X|X∗] = 0, which
allows a heteroscedastic ∆X.

2.2.1.2 Berkson additive error

. While classical error causes detrimental effects on simple linear regres-
sion, another similar error, Berkson error, does not. Berkson error takes a
following form, with places of X∗ and X switched.

X∗ = X + ∆X (2.35)

Typically, if X∗ can be remeasured, then the error is classical instead of
Berkson. The key property in Berkson error is that observed error-prone X
is independent of ∆X. Therefore fitting a linear regression of Y directly on
X gives an unbiased coefficient estimation. However, error always has neg-
ative influence. X∗ with Berkson error has a larger variance, which reduces
statistical power, e.g., in hypothesis testing [Carroll et al., 2006, Chapter 1].
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2.2.1.3 Classical multiplicative error

Another common type of error is multiplicative error.

X = γX∗ (2.36)

A natural impulse is to apply logarithm transformation so that it turns into
classical additive error. However, this does not work since substituting logX
for X leads to another distinct coefficient βlog, instead of β.

Y = β0,log + βlog logX∗ + ε (2.37)

Hwang [1986] proposes a consistent estimator for multiplicative cases.
Nevertheless, if βlog is of main interest, then employing techniques for

classical additive error is plausible. One noteworthy point is the distribution
of γ, which is typically assumed to be LogNormal distribution.

2.2.2 Plug-in correction

After deriving the reliability ratio Γ in simple linear regression, it is straight-
forward to correct the bias by multiplying β̂∆X with Γ. This may seem
impractical at first sight, but the knowledge about σ∆X is often available, for
example, when the mismeasurement is caused by a specific machine whose er-
ror variance is known, similar studies provide external validation data where
X and X∗ are both known, or there are partial replicates of X. Once σ∆X

is known, Cov(X∗, X∗) = Cov(X,X)− σ∆X . Then Γ can be calculated.
For other models, as long as an analytical estimation can be derived, then

all unknown components can be sought or estimated from external sources
to serve as plug-in components to restore the true coefficient.

Some common sources of additional information that can help correct the
bias caused by EIV are listed below.

1. σ∆X ;

2. Distribution of ∆X, aka the error model;

3. Distribution of X∗, aka exposure model;

4. External validity data;

5. Partial internal validity data;

6. IV (Subsection 2.2.3);

7. Partial replicates.
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2.2.3 Instrumental variables

Instrumental Variables (IV) is considered the second most important tech-
nique to Least Squares in econometrics. IV provides a solution to regression
where independent variables are correlated with the residual error term of the
dependent variable, for which traditional least squares estimator produces a
biased result. This technique can be applied for many issues, including EIV
and causality.

IV also refers to variables V that satisfy following requirements.

V 6⊥ X∗, V ⊥ Y |X∗, V ⊥ ∆X (2.38)

To see why V can help with error-prone X, let us enunciate by an example
where X∗ = αV + W where W is the component in X∗ that is not related
to V .

Cov(X, V ) = Cov(αV +W + ∆X,V ) (2.39)

= Cov(αV +W,V ) (2.40)

= Cov(X∗, V ) (2.41)

Cov(Y, V ) = Cov(β(αV +W ) + ε, V ) (2.42)

= Cov(β(αV +W ), V ) (2.43)

= βCov(αV +W,V ) (2.44)

= βCov(X∗, V ) (2.45)

Thus we are able to obtain β̂ = Cov(Y, V )/Cov(X, V ). This estimation holds
given an arbitrary relation between X∗ and V , not limited to a linear one.

However, choosing a valid V remains a matter of art in practice. If any of
requirements over V is violated, this estimator will be biased. One possible
choice for V is an independent replicate measurement of X∗, which shows
an important connection that IV is a relaxed requirement of an independent
replicate measurement.

2.2.4 EIV without side information

As we see in previous subsections, a naive estimator presents a biased result
under classical error, and a modified estimator typically requires auxiliary
data or information. A natural question to ask is whether it is possible to
correct the bias without any side information. This question is related to a
notion of identifiability, the lack of which indicates an essential component is
missing in the modeling. This subsection investigates identifiability of EIV
modeling and methods of moments without side information.
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2.2.4.1 Identifiability

In statistics, identifiability requires an one-to-one mapping between the sta-
tistical model P (Y |Θ) and its parameter Θ. That is to say, no two distinct
parameters lead to the same probability distribution for observed data Y ,
in which Y here includes both the outcome and regressors. The opposite
direction also holds–with an infinite amount of observed data Y , we can re-
construct the true distribution by the strong law of large numbers, which
corresponds to a unique parameter. This provides a theoretical foundation
for identification of the true model parameter from observed data.

A simple example for non-identifiability is linear regression with a singular
design matrix, i.e., its underlying data-generating process produces linear
dependent regressors. Assume two different parameters Θ1,Θ2 share one
density function P (Y ), in a sense of non-zero measure. Then their likelihood
are equal.

L(Θ1) =
N∑
i

P (yi|Θ1) =
N∑
i

P (yi|Θ2) = L(Θ2) (2.46)

This is a special case of multimodal likelihood functions, in which MLE has
more than one solution.

One needs to stay cautious even when the model is identifiable, because
the identification in practice may not always be on a par with its theoretical
counterpart. Given an identifiable model, it can still be close to unidenti-
fiability, especially in nonlinear models, for example, when L(Θ1) is merely
slightly smaller than L(Θ2). Performance of current optimization methods
heavily rely on a good initial point, which means it is unstable and likely
to converge to a nearby local maximum. Carroll et al. [2006, Chapter 8]
also warns practitioners not to be optimistic about technical identifiability
of models.

There are several ways to cope with nonidentifiability. The first one
is to impose constraints on model structure. Adams et al. [2019] ensures
identifiability by assuming strict underreporting, i.e. P (X = 1|X∗ = 0) = 0,
and choosing a special family of restricted models in a problem of exposure
misclassification. The Bayesian EIV approach covered in Subsection 2.2.5
is another general cure for nonidentifiable models, by applying informative
priors on nonidentified nuisance parameters.

2.2.4.2 Methods of moments

In the seminal work [Geary, 1941], a consistent EIV estimation can be ob-
tained in linear models using moments (or cumulants) of third or higher
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order, under mild assumptions other than knowing additional error distri-
bution or having auxiliary data or IV. Pal [1980] generalizes this idea and
establishes more possible moment-based consistent estimators.

The main idea of methods of moments is that, estimation problem is
formulated as a system of equations, where each equation is comprised of
moments and parameters. Once the number of equations is equal or larger
than the number of parameters, then the whole system can be uniquely
solved. Take simple regression in Equation 2.23 as an example. If only
first and second moments are allowed, then the number of equations is not
enough to lead to a unique solution, i.e. 5 equations and 6 parameters,
E[X∗], E[X∗2], β, β0, σε and σ∆X .

E[X] = E[X∗] (2.47)

E[Y ] = β0 + βE[X∗] (2.48)

E[X2] = E[X∗2] + σ∆X (2.49)

E[Y 2] = β2
0 + β2E[X∗2] + 2β0βE[X∗] + σε (2.50)

E[XY ] = β0E[X∗] + βE[X∗2] (2.51)

If higher order moments are considered, then the system is solvable with 7
equations and 7 parameters.

E[(X − X̄)3] = E[(X∗ − X̄∗)3] (2.52)

E[(Y − Ȳ )3] = β3E[(X∗ − X̄∗)3] (2.53)

The coefficient of our interest can be rewritten as a formula of moments. One
possible one is shown below for simple regression.

β̂M = 3

√
E[(Y − Ȳ )3]

E[(X − X̄)3]
(2.54)

This estimator is consistent as long as E[(X∗ − X̄∗)3] 6= 0, which means the
distribution of X∗ is not symmetric. In cases where third order moment of
X∗ is zero, other estimators using fourth order moments are possible, as long
as κ4(X∗) 6= 0.

This may already remind some readers of a well-known and unique prop-
erty of Normal distribution–third and higher order cumulants are zeros.
Reiersøl [1950] formally proves that EIV is not identifiable in simple re-
gression if all variables, including independent and dependent variables and
their error terms, are normally distributed. Schennach et al. [2007] makes a
further step to conclude

g(X∗) = a+ b ln(ecX
∗

+ d) (2.55)
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is the only form in Y = g(X∗) + ∆Y that can not be identified under condi-
tions of monotonous and smooth g(·) and non-vanishing characteristic func-
tions of error terms, which includes Reiersøl [1950] as a special case, i.e. when
d = 0.

2.2.5 Bayesian methods

In cases where neither an analytical solution nor auxiliary data are available,
which is common in practice, additional assumptions are required in order to
complete EIV modeling. One important approach that assumes a distribu-
tional assumption is to delineate a joint distribution for observed variables as
if unknown variables such as X∗ were available. In previous subsections, we
assume X∗ is fixed, which is called functional modeling. For now, we devote
the discussion to a structural manner where X∗ is assumed to be a random
variable with a density function P (X∗).

P (Y,X) =

∫
P (Y,X,X∗) dx∗ (2.56)

=

∫
P (Y |X,X∗)P (X|X∗)P (X∗) dx∗ (2.57)

=

∫
P (Y |X∗)P (X|X∗)P (X∗) dx∗ (2.58)

where P (Y |X∗) is named outcome model, P (X|X∗) is error model, and P (X∗)
is exposure model which is a term borrowed from epidemiology. Different
structure of an outcome model can be freely adopted depending on the target
application. An error model often chooses Normal distribution. The most
problematic part is the decision for exposure model, which usually depends
on application context.

This approach also provides another perspective to understand the dis-
crepancy between classical error and Berkson error.

P (Y,X) =

∫
P (Y,X,X∗) dx∗ (2.59)

=

∫
P (Y |X,X∗)P (X∗|X)P (X) dx∗ (2.60)

=

∫
P (Y |X∗)P (X∗|X)P (X) dx∗ (2.61)

P (Y |X) =

∫
P (Y |X∗)P (X∗|X) dx∗ (2.62)

We obviate the exposure model by modeling a conditional distribution in-
stead of a joint one.
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There are two major approaches of inference.

L(Θ) =
N∑
i

P (yi, xi) (2.63)

where Θ is the set of parameters for the model. After specifying a likeli-
hood function L(Θ) of parameters including unknown X∗ using the joint
distribution and observed data, perform Maximum Likelihood Estimation
(MLE), which is a point estimation. Typical optimization techniques include
gradient-based methods and Newton methods. By further instilling human
knowledge into parameters via prior distributions, this method develops into
a Bayesian method.

P (Θ|D) =
P (Θ)L(Θ)

P (D)
(2.64)

∝ P (Θ)L(Θ) (2.65)

where D stands for the set of observed data, and P (Θ) a prior distribution
of parameters. Then the optimization of posterior distribution P (Θ|D) are
usually conducted by Markov Chain Monte Carlo (MCMC).

Although Bayesian EIV approach seemingly works well, same as other
structural models, it suffers from non-identifiability when key information
is missing, which is a notion discussed in Subsection 2.2.4.1. Neverthe-
less, Bayesian priors make flexible the assimilation of additional information.
Compared to plug-in correction, where an exact point estimation of unknown
corrective components is required, Bayesian EIV allows only a rough distribu-
tion of unknown parameters, which is more plausible in practice. Gustafson
[2004] points out, with proper priors, Bayesian EIV works reasonably well
even in non-identifiable models.

Despite being able to tackle a wider range of problems, Bayesian EIV
methodology has its own disadvantages. First of all, it is sensitive to mis-
specification. Determining a proper distribution structure for P (X∗) is an
art, and any misspecification is likely to lead to untrustworthy result. Sec-
ondly, simulation-based methods are computationally heavy, especially for
high-dimensional parameters.

2.3 Gaussian Processes

GPs [Rasmussen, 2004] are non-parametric regression models with closed-
form posterior estimation, which they inherit from the Normal distribution
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by assuming that all training and test data follow a joint multivariate Normal
distribution. GPs can also be extended for classification Rasmussen [2004].
In the context of our thesis, GPs are used to construct a time series, i.e., to
regress outcomes Y on time T .

Y (t) ∼ GP(0, k(t, t′|θ)),

where θ are parameters associated with the kernel function k(x, x′|θ), which
produces valid covariance matrix with desired properties, e.g., smoothness.
Kernels will be introduced in more details later.

A chosen kernel puts a constraint or prior on the function space, and
conditioning on training data selects most likely functions as its posterior.
Leveraging the good properties of Normal distribution, posterior distribution
of GPs on testing data can be derived as

Y (t)|Yn ∼ N(µ∗,Σ∗), where

µ∗ = k(tn, t)
TK(tn, tn)−1Sn, and

Σ∗ = k(t, t)− k(tn, t)
TK(tn, tn)−1k(tn, t).

where tn and Yn are training data. We refer the reader to Rasmussen [2004]
for more details about GPs.

As the kernel, the sum of the standard Squared Exponential (SE) and
constant kernels is used in this thesis. A constant kernel assumes every
pair of input share a constant covariance, which is useful for extrapolation
so that outcomes with an input outside the training input region take an
average value instead of dropping to zero immediately.

k(x, x′) = C (2.66)

GPs with a SE kernel are blessed with desired smoothness, as two close inputs
show a strong correlation, while distant ones are uncorrelated.

k(x, x′) = σ2exp(−(x− x′)2

2l2
) (2.67)

A sum of two kernels presents an OR operation.
To speed up computation where a normal GP has a O(n3) cost, we use a

sparse GP [Rasmussen, 2004] instead of a full GP, which samples a small set
of inducing points uniformly from tn to achieve a low-rank approximation of
K(tn, tn) and its inverse.
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Methods

In this section, we describe three major components of our model for per-
sonalized treatment-response trajectories: hierarchical parametric treatment
responses, a counterfactual trend modeled by a Gaussian Process, and mea-
surement error models. Throughout the section, we present the model in
generic terms, but also outline the specific model that we use in Section 4 to
estimate the impact of diet, recorded as nutrient contents of different meals,
on continuous blood glucose measurements. Besides, we also derive closed
form marginal increment of treatment response area for interpretability of
our model.

Our model is fully Bayesian, yielding uncertainty estimates for all pa-
rameters, which is essential in scientific applications. Inference is done us-
ing Markov chain Monte Carlo (MCMC) with the state-of-the-art No-U-
Turn (NUTS) sampler [Hoffman and Gelman, 2014] implemented in software
PyMC3 [Salvatier et al., 2016].

3.1 An overview

A graph of our model for treatment-response trajectories is presented in
Figure 3.1. We assume there are N patients, and a trajectory consisting of a
time series of length Gn of the outcome (e.g. blood glucose) is observed for
each individual:

yn = (yn1, . . . , ynGn)T , n = 1, . . . , N.

These measurements have been taken at times

τn = (τn1, . . . , τnGn)T , n = 1, . . . , N.

25
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Figure 3.1: Model specification

Furthermore, each patient has Mn observed treatments (e.g. meals eaten),
indexed by m ∈ 1, . . . ,Mn, where each treatment is characterized by P co-
variates:

xnm = (xnm1, . . . , xnmP )T , for all m,n,

and the corresponding recorded treatment times are

tn = (tn1, . . . , tnMn)T , for all n.

Here, xnm and tnm are assumed to be noisy observations of the treatment
covariates and timings, and their true unobserved values are denoted by x∗nm
and t∗nm, respectively.

Outcome model: We model the observed outcome trajectory of indi-
vidual n, yn, as

yn = Tn +
∑
m

Rnm + e,

where Tn ∈ RGn is a counterfactual trend (i.e. it describes the evolution of
the outcome had the treatment not been taken), Rnm ∈ RGn is the response
to the mth treatment, and e = (e1, . . . , eGn)T is the vector of errors with
ei ∼ N(0, σ2

y). We note that the sum of the trend and the responses can be
viewed as a trajectory for a ’clean’ outcome (omitted from Figure 3.1), of
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which a version corrupted by Gaussian noise is observed. Additive response
functions can be seen as a continuous extension to scalar average treatment
effect (ATE) which is the expected difference of outcomes before and after
treatment.

3.2 Response function

Response functions specify how the treatment affects the outcome over time,
and they should be specified to suit the application at hand, by balancing
between flexibility, interpretability, etc. For example, if interpretability is
not needed and the amount of data is large, then non-parametric functions
that automatically learn the shape of the response are attractive. On the
other hand, parametric functions are a viable option when data are scarce.
Furthermore, they are often interpretable, which is both valuable in itself
but also allows using prior knowledge to further improve accuracy.
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Figure 3.2: Two Response functions. The blue one is used in this paper,
while the orange one is used in Schulam and Saria [2017].

For the application of modeling the impact of meals on blood glucose,
considered in Section 4, we select the treatment response as a bell-shaped
parametric function

Rnm := f(∆nm, hnm, lnm)

:= hnm exp

{
−0.5(∆nm − 3lnm)2

l2nm

}
,

(3.1)

where a lag vector ∆nm = τn − t∗nm is introduced to represent the time since
a specific treatment. The shape of the response in Equation (3.1) is shown
in Figure 3.2 and is determined by two parameters hnm and lnm, which have
straightforward interpretations: hnm is the height of the response, and lnm
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is the length-scale which is directly proportional to the ’width’ or ’duration’
of the response. The main challenge in this application is treatment data
scarceness, with only about 10 meals on average for each patient. We made
an attempt to use a more flexible three-parameter function in Schulam and
Saria [2017] that allows skewed response progression which leads to an inferior
result.

In applications it is often of interest to measure how the response depends
on treatment covariates, and therefore we allow the parameters to depend on
the covariates:

hnm = (βhn)Tx∗nm, and

lnm = (βln)Tx∗nm, for all n,m.
(3.2)

In Equation (3.2), the coefficient vectors βhn, β
l
n ∈ RP represent the personal-

ized impact of each of the P covariates on the height or width of the response
for the nth individual.

To share information across individuals, we introduce a Bayesian hierar-
chical prior [Gelman et al., 2013]. Accordingly, we assume the personalized
height and length-scale coefficients, βhn and βln, come from common distribu-
tions:

βhn ∼ NP (β̃h,Σh) and βln ∼ NP (β̃l,Σl).

A hyper prior is further placed on the mean parameters of these distributions:

β̃h ∼ NP (0, Σ̃h) and β̃l ∼ NP (0, Σ̃l)

The hierarchical prior introduces shrinkage and facilitates estimation of the
personalized coefficients even with limited data.

3.3 Counterfactual trend

A counterfactual trend represents the outcome assuming no treatment has
been taken. It has to be sufficiently flexible to handle any variation in the
outcome that is not accounted for by the treatments. In this paper, we model
the trend Tn(t) for individual n using a Gaussian Process (GP):

Tn(t) ∼ GP(0, k(t, t′|θTn)),
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where θTn are parameters associated with the kernel function k(x, x′|θTn).

Sn = yn −
∑
m

Rnm(τn)

Tn(t)|Sn ∼ N(µ∗,Σ∗), where

µ∗ = k(τn, t)
TK(τn, τn)−1Sn, and

Σ∗ = k(t, t)− k(τn, t)
TK(τn, τn)−1k(τn, t).

where Sn is the residual of the outcome after subtracting the impact of the
treatment responses.

As the kernel, we use the sum of the standard Squared Exponential (SE)
and constant kernels. To speed up computation, we use a sparse GP, which
samples a small set (around 10%) of inducing points uniformly from τn. We
refer the reader to Section 2.3 for more details about GPs.

3.4 Measurement models

Measurement models describe error in observations. With self-reported data
both covariates and the timing of a treatment may be uncertain. To account
for the uncertainty in treatment timing, we assume:

tnm ∼ N(t∗nm + dn, (σ
t
n)2), for all n,m.

In words, the observed time tnm is obtained from the true time t∗nm by shifting
it with a bias term dn, and adding Gaussian noise. The bias term represents
the habits of different individuals in reporting treatments. For example, in
the blood glucose application in Section 4, some individuals may systemati-
cally report their meal after eating, while others may do this before eating.

Different models are possible for the treatment covariates, depending on
the assumptions and data available [Gustafson, 2004]. Here we assume a
simple perturbation on the amount of treatment:

xnm = x∗nmδnm, where

δnm ∼ Lognormal(0, σ2
x), for all n,m.

(3.3)

The coefficient δnm represents the error for the mth treatment of nth individ-
ual. Intuition in the blood glucose application is that users are able to report
correctly what they have eaten, but not how much. While more complicated
models can be justified, the model in Equation (3.3) has the benefit that we
can train it with little data.
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Estimating t∗nm is straightforward as it only shifts the response, but does
not change its shape. However, estimating x∗nm is more complicated, and
requires assuming that the counterfactual trend is sufficiently regularized.
Otherwise the trend could easily compensate for the perturbation. We solve
this by encouraging a large length-scale for the squared exponential kernel
in the prior.

3.5 Marginal increment of treatment response

area

For simplicity, we focus on a single individual and drop the unnecessary
indexing in the notation. The area A is proportional to length-scale l and
height h of the response. Hence

A = λhl (3.4)

for some constant λ (knowing the shape of the response, solving for λ analyt-
ically is straightforward). Denote the amount of one covariate, e.g. sugar, in
the mth meal by xmi where i ∈ {1, 2, ..., P}. Now the length-scale l depends
on x through

lm(xmi) = g(ylm) = g(βlixmi + clm) (3.5)

where g is the softplus function and clm comprises the other parts of the
linear predictor that do not depend on the sugar xmi. Similarly, the height
h depends on x through

hm(xmi) = g(ylm) = g(βhi xmi + chm) (3.6)

We want to know how area Am changes if we change the amount of sugar
xmi by one unit.

dAm
dxmi

= λ
dlm
dxmi

hm + λlm
dhm
dxmi

(3.7)

= λ
dlm
dylm

dylm
dxmi

hm + λ
dhm
dyhm

dyhm
dxmi

lm (3.8)

= λ(1 + e−y
l
m)−1βlihm + λ(1 + e−y

h
m)−1βhi lm (3.9)

By replacing xm with an average meal, we have

dA

dxi
= λ(1 + e−ȳ

l
)−1βlih̄+ λ(1 + e−ȳ

h
)−1βhi l̄ (3.10)

= λ(1 + e−(βl)T x̄)−1βlih̄+ λ(1 + e−(βh)T x̄)−1βhi l̄ (3.11)



Chapter 4

Experiments

In this chapter, we use our model to analyze a real-world dataset, provided by
obesity research unit at Obesity Research Unit at the University of Helsinki,
Finland. Throughout, we compare four models, in an increasing order of
complexity (later models include the previous as special cases):

• Mind : Separate models for individuals, no EIV.

• Mhier : Model with the hierarchical prior for the responses to share
information across individuals.

• Mhier+time : Time uncertainty included.

• Mhier+time+cov : Uncertainty in covariates included.

4.1 Dataset

The data contains blood glucose values collected by a portable continuous
glucose monitoring system every few minutes and user-reported daily diet
records for 13 non-diabetic individuals across three days. The visualization of
the data (and results) for one individual is shown in Figure 4.1. Some markers
may be missing due to device errors or when a user takes off the device.
The diet records contain the type (e.g., lunch) and the amount of nutrients
(e.g., sugar) contained for each meal. Some records may be inaccurate or
missing. Diabetic individuals were excluded because their metabolism differs
extensively from healthy individuals, and the comprehensive modeling of that
falls beyond the scope of this work.

31
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Figure 4.1: Visualization of 3-day data for one patient. Red dots represent
glucose markers in the training set, while brown ones in the testing set. Diet
records are displayed by vertical bars, whose nutrients and their amounts
are indicated by different colors. The green line demonstrates the final fitted
trajectories, which is a combination of the dashed blue line, a counterfactual
trend, and the mean of red lines, samples of estimated treatment response.

4.2 Metrics

The models are trained using data from the first two days, and the third
day is used for testing. The performance of treatment-response estimation
is quantified using five metrics Mi, i ∈ {1, . . . , 5}. M1 is the proportion of
variance explained by the trend:

M1 =
1

N

∑
n

Var(Tn)

Var(yn)
.

M2 indicates how much more is explained when also the treatment responses
are included:

M2 =
1

N

∑
n

Var(Tn +
∑

mRnm)

Var(yn)
−M1.

In detail, a large M1 means that the outcome is mostly explained by the
trend, and a small M2 represents an inactive treatment response. These
metrics are computed in regions of non-zero treatment response. Metrics
M3 and M4 are simply the mean squared errors in the training and test
data. They are calculated for all individuals for whom M2 indicates that
the response has been properly learned. Thus one patient, shown in Figure
4.2, with M2 ≈ 0.05 for the baseline model Mhier is excluded from MSE
calculations (other patients have M2 > 0.3).

Because M4 measures point-by-point error, it may give misleadingly low
values even if the shape of a response is correct if its location is inaccurate.
Therefore, M5 is included and it is insensitive to the inaccuracy in location,
and it measures the absolute error in variance between predicted response
and outcome:

M5 =
1

N

∑
n

|Var
(∑

m

Rnm

)
− Var(yn)|
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Because our interest is in estimation of the treatment response, and not in
the trend, we calculate M4 and M5 in windows including one hour before and
three hours after each meal.

We use the Mann-Whitney U-test [Mann and Whitney, 1947] to test if
other models are better than Mhier in terms of test error M4. The reason
for usingMhier as the baseline is the main argument of this article that EIV
modeling is beneficial when estimating treatment-response trajectories, and
Mhier is otherwise the same as Mhier+time and Mhier+time+cov except that
it the does not include the EIV components. We also compare the models
using an information criterion for predictive accuracy. The state-of-the-art
criterion is leave-one-out cross-validation (LOO) [Vehtari et al., 2017], which
is used here.

4.3 Results

M1

PVE
Trend

M2

PVE
Resp

M3

MSE
Train

M4

MSE
Test

M5

∆V ar
Test

p-value
U-test

LOO pLOO SE
LOO

Mind 0.361 0.342 0.149 1.695 0.927 1.00 3550 247 319
Mhier 0.359 0.339 0.159 0.752 0.391 - 3588 215 317
Mhier+time 0.350 0.424 0.098 0.738 0.377 3.24e-4 2870 342 265
Mhier+time+cov 0.345 0.424 0.100 0.742 0.373 3.00e-6 2948 420 350

Table 4.1: Comparison of models using the real-world glucose data. The
metrics M1 through M5 are defined in text, where PVE means Proportion
of Variance Explained. p-value tests if other models are better than Mhier

in terms of M4. LOO stands for leave-one-out cross-validation, pLOO is the
estimated effective number of parameters, and SE-LOO records the standard
error in the LOO computations.

Result are shown in Table 4.1. We see that all models outperform the non-
hierarchical baselineMind by a large margin. Furthermore, taking treatment
time inaccuracy into account in Mhier+time improves significantly over the
non-EIV model Mhier. In fact, estimation of the response fails completely
for some individuals without time EIV; the results with and without time
uncertainty modeling for one such case are shown in Figure 4.2. On the
other hand, taking uncertainty in covariates into account does not notably
improve accuracy, owing to the increased flexibility and limited amount of
data. Overall, models with EIV component outperform the model without
EIV in all metrics.

Interpretability of personalized treatment response is also of great inter-
est; for instance, understanding how an individual’s glucose level changes if



CHAPTER 4. EXPERIMENTS 34

Figure 4.2: Demonstration of time uncertainty modeling for one individual.
Upper: Results using Mhier+time, where arrows indicate the estimated meal
times; Bottom: Results using Mhier.

she eats one more unit of sugar. The overall goal of glucose monitoring is to
keep the glucose level in a given range, and both the amount of excess as well
as time of staying in hyperglycemic state are clinically important. Hence, a
sensible parameter to consider is the impact of different nutrients on the area
of the response curve. Though this is not a parameter of our model, it is
straightforward to derive the personalized increase in response area due to
one unit increase of a specific nutrient ∆Anp (n ∈ 1, . . . , N , p ∈ {1...P}),
using coefficients for height and width, which are modeled explicitly (see
Subsection 3.5).

Overall, starch and sugar have the strongest positive impact on glucose
(Figure 4.3a), consistent with the understanding that carbohydrates increase
blood glucose [Wolever and Miller, 1995]. Protein, on the other hand, has
a negative impact, which has been observed before and might represent a
complex short-term interaction between nutrients [Karamanlis et al., 2007].
An advantage of our model is that we get personalized coefficients for each
individual, as shown for starch in Figure 4.3b. Finally, posterior uncertainty
of personalized starch coefficients is shown in Figure 4.3c. Importantly, mod-
els with EIV have much narrower confidence intervals, meaning that they are
estimated more accurately, thanks to increased flexibility that allows fitting
the complex data.
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Mean Std
STARCH 9.57 4.29
SUGAR 6.36 4.97
FIBC 2.83 4.95
FAT 5.29 5.49
PROT −10.13 3.90

(a) (b)

(c)

Figure 4.3: a). Average impact on response area ∆Anp by different nutrients;
b) Histogram of personalized starch coefficients and their mean (+/- one SD)
(red); c) Posterior uncertainty in the personalized starch coefficients.



Chapter 5

Discussion

While our model demonstrates superior performance in the task of estimat-
ing personalized treatment-response trajectories, there are many future di-
rections to improve it further. First, a more fine-grained measurement error
model for treatment covariates can be exploited to integrate EIV with domain
knowledge, thus improving identifiability. Second, G-formula can be utilized
to estimate causal treatment response over an entire sequence of treatments,
instead of the most recent one. Third, currently MCMC sampling is applied
for the model inference, which is notoriously slow, whereas variational infer-
ence is able to scale efficiently and benefits from the increasing amount of
data. Fourth, a multiple linear regression on treatment covariates is used to
reconstruct the form of treatment-response trajectories, while further taking
into account interaction between covariates would contribute a more accurate
model and reveal interesting combined treatment effects.
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Chapter 6

Conclusions

In this thesis, we propose a novel model to tackle the difficult problem of
estimating treatment-response trajectories. Our model takes into account of
error in both timing and covariates of treatments, and shares information
across patients under a hierarchical architecture in response to data sparse-
ness, and bestows a causal interpretation on the result. Our model is applied
to a real-life dataset where patients’ blood glucose trajectories are modeled as
a combination of a nonparametric trend and a parametric treatment-response
function, which shows that hierarchical structure and errors-in-variables im-
prove the predictive accuracy significantly. Moreover, the model result en-
joys easy and meaningful interpretability, which would be greatly beneficial
to practitioners in reality.
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