
    

 
  

 

Title: Population Analysis of the Finger Millet Blast 
Pathogen Magnaporthe oryzae in Eastern Africa 

 

Name: Taiwo Adewale Shittu 
 

 

 

 

This is a digitised version of a dissertation submitted to the University of 
Bedfordshire.  

It is available to view only.  

This item is subject to copyright. 

 

 

 

 

 



Population Analysis of the Finger Millet Blast 

Pathogen Magnaporthe oryzae in Eastern 

Africa 

 

 

 

 

 

 

Taiwo A. Shittu 

Ph.D. 

 

 

 

 

 

 

 

 

 

 

2018 

UNIVERSITY OF BEDFORDSHIRE  



ii 

 

 

Population Analysis of the Finger Millet Blast 

Pathogen Magnaporthe oryzae in Eastern 

Africa 

 

 

Taiwo A. Shittu 

Ph.D. 

 

 

A thesis submitted to the University of Bedfordshire 

In partial fulfilment of the requirement for the degree of Doctor of 

Philosophy  

 

 

 

 

 

 

November 2018 



iii 

 

Declaration 

I, Taiwo Adewale Shittu declare that the material presented in this thesis is my own work 

and has not been presented for another degree. Materials provided through collaborations 

or the methodologies adopted from previous studies are fully acknowledged and referenced 

appropriately.  

 

 

Signed:          Date: 26/11/2018 

 

 



iv 

 

Abstract 

The main aims of the investigation were to develop an in-depth understanding of the 
genetic diversity, population structure and evolutionary relationships as well as to assess 
the sexual reproductive capability of the finger millet blast (FMB) pathogen Magnaporthe 
oryzae in Eastern Africa. A set of 300 M. oryzae isolates collected during 2000 – 2017 from 
key finger millet growing districts in Kenya, Uganda, Tanzania and Ethiopia were utilised in 
this study.  

Two novel molecular markers designated HyP1 and HyP2 were developed in this study and 
two known phylogenetic markers ITS (internal transcribed spacer) and HIS4 (histone 4 gene) 
were identified by bioinformatic analysis. Single- and multi-locus analysis provided a clear 
assessment of the FMB pathogen genotype diversity and distribution pattern. At the 
regional level in Eastern Africa, ITS and HIS4 revealed 7 - 9 genotypes, whereas HyP1 and 
HyP2 identified 80 - 85 genotypes reflecting their high resolution. Multi-locus sequence 
(MLS) analysis revealed 207 genotypes displaying a continuous genetic variation pattern of 
the FMB pathogen populations in Eastern Africa. Bayesian and reticulate network analyses 
distinguished the vast majority of genotypes into two sub-populations (designated as Group 
A and B), which were geographically clustered. Diagnostic PCR revealed the presence of a 
high proportion of M. oryzae isolates containing the Grasshopper (grh) repeat element in 
Ethiopia and Tanzania (e.g. 85 %). 

Reference genome assemblies have been established for two M. oryzae isolates 
representing the sub-populations identified. Genome resequence data has been developed 
for sixteen isolates representing the genotype diversity. Comparative analysis provided 
novel insights into the genomic architecture and evolutionary relationships in the FMB 
pathogen. Genomic regions and/or genes, putatively isolate specific have been identified.  
Phylogenomic analysis revealed monophyletic nature of the FMB pathogen in Eastern Africa 
and Asia suggesting a common origin. Genome-wide single nucleotide polymorphism (SNPs) 
ranges broadly corresponded to the sub-populations identified. Complete grh sequence has 
been defined and the presence of at least two versions of the element in the FMB pathogen 
in Eastern Africa has been shown.  

Mating type specific PCR assay revealed high proportions of the two mating types MAT 1-1 
(56 %) and MAT 1-2 (44 %) in the contemporary population of the FMB pathogen in Eastern 
Africa and also in the four countries surveyed, albeit at variable levels. Mating culture assays 
established a high proportion of fertile isolates (60 %) and revealed the dominance of male 
sexual behaviour followed by hermaphrodite and female isolates. The emerging pattern is 
indicative of a decrease in the fertility status as well as the level of hermaphrodites and 
females. Integrated assessment of the mating type and fertility data along with the high 
genotype diversity and their continuous variation pattern observed is strongly suggestive of 
a mixed reproductive behaviour including episodic sexual reproduction.  

The new knowledge and resources generated contribute to the advancement of current 
understanding of the finger millet blast pathogen biology providing a framework for the 
effective utilization of host resistance in Eastern Africa as well as a strong platform for 
further research advances in the field.  
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Chapter 1 
 

1.0 Introduction 

 

1.1 Research context 
 

There is a growing concern globally about the impact of plant diseases on food and nutrition 

security particularly in the context of human and animal health, economic growth and 

environmental sustainability (Ronald, 2011; Fisher et al., 2012; Fisher et al., 2016). At 

present there are over 815 million people living with hunger and by 2050 the world 

population is expected to be around 9 billion. Increasing demand for more food production 

combined with the threat of climate change pose a growing stress on the agro-ecosystems.  

Crop diseases contribute to losses in yields enough to feed an additional 1 billion people 

annually (Strange and Scott, 2005; Chakraborty and Newton, 2011; Savary et al., 2012), and 

the use of chemical control is being discouraged by various governments (e.g. European 

Union) due to its adverse effects on people and the environment including beneficial 

species. Pathologists, breeders and other stakeholders concerned with food security often 

recommend the use of designated resistant varieties as a durable, cost-effective and 

environmentally friendly control measure (Anderson et al., 2004; Godfray et al., 2010; 

Ronald, 2011; Wakelin et al., 2018). However, many pathogens possess the adaptive 

capacity to survive, reproduce and overcome control measures including resistant crop 

varieties. In-depth understanding of the pathogen population diversity and evolution in 

different production systems will help to evaluate the risk and develop effective control 
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measures including development and deployment of suitable resistant varieties (Croll and 

Laine, 2016; Depotter et al., 2017). This is critically important to achieve food and nutritional 

security whilst keeping our environment safe (Beddington, 2010).  

 

1.2 Research problem and outline of the thesis 
 

Finger millet is a major staple for millions of people in Eastern, Central and Southern Africa. 

In Asia, the crop is also widely grown in parts of India. In a global context, it is highly 

nutritious and gluten-free compared to other more widely consumed cereals such as rice 

and wheat (Shobana et al., 2013). However, blast disease caused by the fungus 

Magnaporthe oryzae (M. oryzae) is a major constraint affecting the crop at all stages leading 

to serious grain losses, which if saved are adequate to feed millions of people annually 

(Zhang et al., 2016). Genetic and pathogenic diversity of M. oryzae has been well 

documented from various parts of the world where the disease is highly prevalent (e.g. in 

rice crops). In a widely cited review, blast disease especially on rice has been ranked as the 

number one disease caused by fungal plant pathogens in the world impeding global food 

security (Dean et al., 2012). Previous work by Sreenivasaprasad and co-workers (UK-DFID 

funded projects) developed the initial knowledge of the blast pathogen populations on 

finger millet utilising samples collected between 2000-2004 in Uganda and Kenya. Blast 

disease control has been identified as a key entry point for sustainable production and 

utilisation of finger millet in Eastern Africa (e.g. Takan et al., 2004; Lenne et al. 2007; Takan 

et al., 2012).  
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The present study focuses on the i) identification and/or development of sequence-based 

molecular markers to investigate the blast pathogen genetic diversity to identify the 

genotypes and assess their phylogenetic relationships, ii) development of genome sequence 

resources from representative isolates and comparative analysis to decipher genome-level 

differences reflective of pathogen evolution, and iii) evaluation of the sexual reproductive 

capability of pathogen populations prevalent in key finger millet production locations to 

enable an assessment of the potential of sexual reproduction and recombination to 

contribute to pathogen evolution. In this investigation, a total of 300 M. oryzae isolates 

from finger millet production systems in Eastern Africa were characterised including 76 

isolates representing a collection from 2000-2004 (historic isolates/population), and 224 

isolates from 2015- 2017 (contemporary isolates/ population).  

Rationale for the research, background and the literature pertinent to key areas, and the 

aims and objectives of the study are presented as part of the Introduction in Chapter 1, and 

the Materials and Methods used in the research are presented in Chapter 2. The results 

chapters have been organized as follows: Population analysis and phylogenetic relationships 

based on single- and multi-locus sequence data including the Grasshopper element 

screening in Chapter 3, Comparative genomic analysis of representative genotypes in 

Chapter 4, and the sexual reproductive capability of contemporary populations based on 

molecular and mating assays in Chapter 5. The final Chapter 6 provides an overarching 

discussion of the key findings of the research followed by a Conclusion and Future 

Perspectives section. 
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1.3 Finger millet: background, production, economic importance and 

cultivation constraints 

 

1.3.1 Historical background and distribution of finger millet 
 

Finger millet, Eleusine coracana L. Gaertn (Figure 1.1) is a seeded annual cereal crop that 

belongs to the grass family, Poaceae and sub-family Chloridoideae (Soreng et al., 2015). 

Finger millet originated from the highlands of Ethiopia to Uganda where it was first 

domesticated and has been cultivated in the region for more than five thousand years and 

thereafter introduced to other parts of the world notably to the Asian continent specifically 

India is well documented (Hilu et al., 1979; de Wet et al., 1984).  

Historically, two distinct races of finger millet are recognised, the African highlands race and 

the Afro-Asiatic lowland race (Mathur et al., 2012). Finger millet is one of the most 

important staple food crops in many developing countries but often neglected due to its 

labour-intensive cultivation from planting to production. In Africa, it is mostly cultivated in 

countries such as Uganda, Ethiopia, Tanzania, Kenya, Zaire, Sudan, Eritrea, Malawi, Zambia, 

Madagascar, Zimbabwe, Nigeria, Rwanda and Burundi and it is widely grown in parts of 

India and other parts of the Asian continent including China, Japan, Sri Lanka and Malaysia 

as shown in Figure 1.2 (Mathur et al., 2012). Finger millet is also known as African millet 

whereas in some countries, it is known by local names. For example, in India, it is called 

Mandua or Ragi, Tellebun in Sudan and Bulo in Uganda (National Research Council-USA, 

1996). Finger millet is a tetraploid with a total genome composition of AABB. It has a basic 

chromosome number of 9 (2n = 4x = 36) and a total genome size of 1, 196 Mb (Hittalmani et 

al., 2017; Hatakeyama et al., 2017). 
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      Figure 1.1. Mature healthy finger millet crop in Ethiopia with panicles (seed head) 

     Image provided by Dr Kassahum Tesfaye at the Institute of Biotechnology, University of Ethiopia,        

     Addis Ababa as part of ongoing research collaboration. 
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        Figure 1.2. Distribution of finger millet based on the information in a global database 

The map shows important finger millet growing countries in Africa and some parts of South Asia.  

The countries include B-Bhutan, C -Cameroon, E-Ethiopia, I-India, Ma-Malawi, Mo-Mozambique, Ne-

Nepal, Ni-Nigeria, S-Sri Lanka, T-Tanzania, Za-Zambia, and Zi-Zimbabwe. ICRISAT- International   

crops research institute for semi-arid tropics; ILRI-International livestock research institute. The map 

only includes locations based on the sampling by the three organisations. However, it is also widely 

grown in some other countries such as Kenya (K). The map was adopted from Mathur et al., 2012. 
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1.3.2 Production, processing and utilisation of finger millet 
 

Among the widely produced cereals in the semi-arid regions of the world, finger millet ranks 

third after sorghum (Sorghum bicolor), and pearl millet (Pennisetum glaucum) as reported 

by various authors (Barbeau and Hilu, 1993; Upadhyaya et al., 2007; De Villiers et al., 2015).  

Crucially, the crop ranks as the second most important cereal crop after maize (Zea mays) in 

Uganda and Tanzania (Oryokot, 2001; Wanyera, 2005a; Kisandu et al., 2005), third in 

Ethiopia after maize and wheat (Mulualem and Melak, 2013; Cochrane, 2014; Kinfe et al., 

2017) and fourth in Kenya after maize (Zea mays), wheat (Triticum aestivum) and sorghum 

(Sorghum bicolor) as has previously been reported (Oduori, 1993; Oduori and Kanyenji, 

2005). This crop is majorly grown by local farmers in the arid and semi-arid regions of Africa 

and Asia often as a mono crop, or intercropped with other cereals, legumes and vegetables 

(Purseglove, 1972; National Research Council-USA, 1996). It is a fast-growing cereal crop 

that reaches maturity within three to six months and in some cases as short as around 45 

days (Dida and Devos, 2006).  Grains from finger millet are processed by milling and sieving, 

soaking and cooking, fermentation, popping, malting, puffing, flaking, and decortication 

(Shobana et al., 2013; Saleh et al., 2013; Wafula et al., 2018; Ramashia et al., 2018). Like 

some other cereals, finger millet grains are crushed in a roller mill into crude flour, which is 

then utilised as porridge and for other food products. In Africa, it is prepared as food in the 

form of bread and porridge, and is an important diet for pregnant women, nursing mothers, 

infants and children (Oryokot, 2001). In India, it is used to prepare a wide range of food 

products including vermicelli noodles, sweet mixes, soups and papads (Shobana et al., 

2013). 
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1.3.3 Nutritional and Health values of finger millet 
 

Finger millet is rich in protein and carbohydrates in the form of non-starchy polysaccharides 

as well as minerals such as iron and calcium (Swami et al., 2013; Shobana et al., 2013; De 

Villiers et al., 2015). Of all cereals, finger millet has the highest amount of calcium and 

potassium (Shobana et al., 2013). It has high dietary fibre content, minerals, sulphur and a 

well-balanced amino acid profile compared to white rice. In addition, it is a good source of 

methionine, cysteine, lysine and tryptophan (Oduori and Kanyenji, 2005). Evidence from 

experimental trials using animals as a model revealed that foods from finger millet have a 

low glycaemic index, which is good for diabetic patients as it lowers the blood glucose and 

cholesterol levels (Rajasekaran et al., 2004, Shobana et al., 2013). 

As a result of its nutritional values, consumption of finger millet products is encouraged and 

promoted by the Government of Uganda (AIDS projects) to support people suffering from 

Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AID) and the 

nation's healthier food school feeding programmes (Wanyera, 2005b). Its products have 

been recognised and recommended to the public as a dietary supplement for HIV positive 

patients in some parts of East Africa (Sreenivasaprasad et al., 2005). It has also been 

highlighted as a key crop to manage micronutrient deficiency, a major challenge in infant 

and young children and pregnant women in Sub-Saharan African countries such as Kenya 

and Uganda (Lenne et al., 2007). 

Additionally, in the East African region, apart from being consumed as food, it is also a 

source of income generation for many households, most importantly empowering women 

finger millet cultivation (Oduori and Kanyenji, 2005). It can be sold directly as grain or 

brewed to produce local beer, generating significant income. Its straws serve as good fodder 
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for cattle and the fields are used for post-harvest grazing. Finger millet can be stored for a 

long period under good conditions compared to other agricultural crops, for example maize 

(Oduori and Kenyenji, 2005). These attributes along with high nutritional values and 

excellent storage qualities make it a potential food security crop (Oduori and Kanyenji, 

2005, Wanyera, 2005b, Kisandu et al., 2005; Shobana et al., 2013). 

 

 

1.3.4 Constraints to finger millet production 
 

Finger millet cultivation is faced with some constraints that continue to lower its production. 

One of the major constraints is the overall cultivation process involved, which is highly 

labour intensive from land clearing, planting, weeding, harvesting through to processing 

(National Research Council-USA, 1996; Owere et al., 2014). Although there is no important 

insect pest that has so far been reported on finger millet, it is affected by some 

economically important diseases that drastically reduce its production. Fungal pathogens 

that cause diseases on finger millet include blast (Magnaporthe oryzae), rust (Puccinia 

substriatia), downy mildew (Sclerospora graminicola), seedling and leaf blight 

(Helminthospororium nodulosum), Cercospora leaf spot (Cercospora pennisetic) 

Cylindrosporium leaf spot (Cylindrosporium species) and tar spot (Phyllachora eleusines). 

Finger millet is also susceptible to bacterial blight (Xanthomonas campestris pv eleusines). 

Of all these biotic constraints, blast is considered the most damaging and economically 

significant disease of finger millet (Panwar et al., 2011; Owere et al., 2014).  

Blast disease is highly destructive and causes more than 50 % reduction in yield when the 

panicle is infected.  In 2005, losses of 10 - 90 % were recorded in a field in Uganda. In a 

similar report, 64 % loss was recorded in Kenya and nearly 100 % losses were reported in 
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parts of India (Kihoro et al., 2013, Saleh et al., 2014). In Kenya, a survey targeting farmers 

revealed that 72 % of the farmers did not engage themselves in any other socioeconomic 

work apart from farming and 24 % had opted out of finger millet production due to losses 

from blast disease (Kihoro et al., 2013). Blast disease has been identified as a key factor 

affecting further expansion of finger millet production in the East African region. An 

effective management of this disease will provide an entry point for fighting malnutrition 

and poverty in the region (Sreenivasaprasad et al., 2005; Owere et al., 2014). In addition, 

blast disease affects other major staple food crops such as rice and wheat that are 

paramount to food security and has been considered the most economically important 

pathogenic fungal disease in the world (Dean et al., 2012).  

 

1.4 Blast disease 
 

Blast disease is caused by the fungus Magnaporthe oryzae (M. oryzae) B. Couch (anamorph: 

Pyricularia oryzae Cavara); synonym Magnaporthe grisea (M. grisea) (Hebert Barr) (Ou, 

1985; Couch and Kohn, 2002; Zhang et al., 2016). The fungal species has been classified into 

two distinct groups (Figure 1.3), M. oryzae and M. grisea based on molecular analysis 

involving some ortholog genes that were able to distinguish the evolutionary relationship of 

pathogens affecting major cereal crops including some grasses and other hosts typified by 

Digitaria species, respectively (Couch and Kohn, 2002; Klaubauf et al., 2014; Luo et al., 

2015). These two species are indistinguishable in conidium, perithecium and ascospore 

morphology (Klaaubauf et al., 2014). Strains affecting cereal crops are now classified as M. 

oryzae, while strains affecting some wild hosts and certain grasses are classified as M. 

grisea. Consequently, the name M. oryzae is used throughout this thesis for the blast 
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pathogen isolates associated with finger millet and other cereal crops. M. oryzae belongs to 

the genus Magnaporthe, family Magnaporthaceae, order Magnaporthales, class 

Sordariomycetes within the phylum Ascomycota (Luo et al., 2015; Zhang et al., 2016). Other 

species in this genus include M. poae, M. salvinii and M. rhizophilia (Klaubauf et al., 2014; 

Luo et al., 2015). M. oryzae is a hemibiotrophic filamentous ascomycete fungus (Koeck et 

al., 2011). Hemibiotrophic fungal plant pathogens require living tissue for a phase during the 

infection process to survive and complete their life cycle. Hemibiotrophic fungi include 

major pathogens that cause huge crop losses, threatening global economy and food security 

(Park et al., 2009; Koeck et al., 2011). 
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Figure 1.3. Phylogenetic tree illustrating the distinction of Magnaporthe oryzae from M. grisea 

Phylogenetic tree based on the maximum likelihood analysis of the concatenation of 2682 
orthologous coding sequences extracted from the genome of 76 isolates from diverse hosts. Nodes 
with bootstrap support of >90% are indicated by dots (100 bootstrap replicates). This tree was 
adopted from Gladieux et al., 2018.  
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1.4.1 Host range and specificity of the blast pathogen Magnaporthe oryzae 
 

Blast disease occurs wherever the host plants are grown in the world under favourable 

conditions (Talbot, 2003). It has been reported in more than 85 countries of the world 

particularly on rice (Figure 1.4), including developed and developing nations (Roumen et al., 

1997; Zhang et al., 2016). M. oryzae can infect and cause disease on a wide range of host 

plants of the Poaceae family (Talbot, 1995 and 2003) including finger millet and rice (Oryza 

sativa), which standout as the most important hosts  (Ou, 1985; Talbot, 2003; Onaga et al., 

2015), wheat (Triticum aestivum) (Kohli et al., 2011; Maciel et al., 2014), oat (Avena 

strigosa) (Urashima and Silva, 2011; Marangoni et al., 2013), maize (Zea mays), barley 

(Hordeum vulgare) (Hyon et al., 2012), foxtail millet (Setaria italica), wild millet (Eleusine 

indica) (Takan et al., 2012), pearl millet (Pennisetum glaucum), and ginger (Devulapalle and 

Suryanarayanan, 1995). The fungus also infects many weed grasses that can be used in the 

production of herbal formulations as well as animal feed. Some of the grasses include Secale 

cerereale (rye grass), Lolium perenne (perennial rye-grass), Cynodon dactylon, 

Dactylotenium aegyptium, Digitaria horizontalis, Pennisetum purpureum, Echinochola 

colonum, Leersia hexandra, and Brachiaria indica (Disthaporn, 1994; Skamnioti and Gurr, 

2009; Kohli et al., 2011; Takan et al., 2012). 
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Figure 1.4. World distribution of blast disease  

The red dots show the countries and regions where blast diseases have been reported. The map was 
adopted from the CABI website on the M. oryzae datasheet. 
https://www.cabi.org/isc/datasheet/46103 

 

 

1.4.2 Blast disease symptoms 
 

M. oryzae attacks finger millet and other crop hosts at different stages of development from 

seedling stage to the panicle formation by forming lesions on the infected plant parts. These 

include leaves, leaf collars, neck, panicles (Figure 1.5), seeds, pedicels and even the roots of 

the susceptible hosts (Ghazanfar et al., 2009; Takan et al., 2012; Babu et al., 2013). The most 

obvious symptoms of this disease appear on the leaves and the neck (De Datta, 1981) as 

seen in Figure 1.5. The centre of the lesion has dull grey green or pale green with a dark 

brown outer rim that appears soaked and the centre gradually becomes grey or almost 

straw colour. The lesions on the neck or on the nodes of the panicles near the base of the 

panicle are the most striking symptoms and the destructive form of the disease leading to 

yield loss (De Datta, 1981). The appearance of blast lesions on the leaves of the susceptible 

https://www.cabi.org/isc/datasheet/46103
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host plants depends largely on the age of the host plant, the environmental condition and 

the level at which the host varieties can resist the disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Blast disease symptoms caused by M. oryzae on finger millet 

Lesions on the leaf is known as leaf blast [1], on the head as head blast (A) and on the neck as neck 
blast (B) [2]. 

 

 

1.4.3 Mode of transmission and infection cycle of M. oryzae 
 

The conidia of the fungus M. oryzae are primarily transmitted through seeds (Tanaka et al., 

2009) and through rain splash or plant-to-plant contact (Talbot, 2003; Chen et al., 2013a). In 

Africa and India, seed is considered as the primary source and mode of transmission (Afouda 

et al., 2009; Sere et al., 2011; Khanum et al., 2009). There are five recognised steps in the 

1 2 
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fungal infection process. The process includes attachment to the plant (leaf) surface, 

germination on the plant surface, formation of infection structures, penetration of the host 

and colonisation of the host tissue (Schafer, 1994). The mechanism of M. oryzae infection 

process for finger millet is not yet available, but it is thought to be similar to the process 

reported on rice that has been well studied (e.g. Wilson and Talbot, 2009; Oses-Ruiz et al., 

2017; Fernandez and Orth, 2018; Sakulkoo et al., 2018) as presented in Figure 1.6. After 

successful attachment of the spore to the surface of the leaf, the germ tube emerges across 

leaf surface and the germ tube then forms an appressorium (a specialised infection 

structure). The appressorium then penetrates the leaf cuticle by rupture using enormous 

turgor pressure followed by invasive growth. Successful colonisation of the leaf produces 

disease lesions from where the fungus sporulates and spreads to new parts of plant (Liu and 

Dean, 1997; Ribot et al., 2008; Chen et al., 2013a). However, the overall infection process 

largely depends on the environmental and developmental cues (Ribot et al., 2008). The 

infection stages involve certain genes, proteins, and structures and the function of these 

components in relation to the blast pathogen and rice host interactions have been well 

studied (Hamer et al., 1988; Bourett and Howard, 1990; Talbot, 1995; Talbot et al., 1996; 

DeZwaan et al., 1999).  
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Figure 1.6. The infection cycle of the fungus M. oryzae as described with the rice blast system   

The M. oryzae infection cycle starts when a three-celled conidium lands on the rice leaf surface and 
attaches itself to the hydrophobic cuticle before initiating germination. The conidium germinates 
and produces a narrow germ tube, which subsequently hooks at its tip, and then differentiates into 
an appressorium. The appressorium becomes melanised, generates internal turgor pressure and a 
penetration peg is formed at the base, which subsequently punctures the cuticle allowing entry into 
the rice epidermis. The appressorium matures and the conidium collapses and dies in a programmed 
process, involving autophagy. Invasion of rice tissue occurs by means of bulbous invasive hyphae 
that invaginate the rice plasma membrane and colonise epidermal cells. Disease lesions occur 
between 72 - 96 hours after infection with sporulation occurring under humid conditions. Spores are 
produced in the aerial conidiophores and spread to new rice plants by wind or dewdrop splashes. 
The image was adopted from Talbot and Wilson, 2009.  
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1.4.4 Environmental factors favouring the disease  
 

The pathology of the blast fungus on finger millet is yet to be studied in detail and most of 

the information available is from blast disease on rice with some details for other cereal 

crops and grasses. The availability of free water as dew favours all the vital processes of the 

blast fungus disease cycle, such as spore production, release, adhesion, germination and 

host infection (Ou, 1980). Free moisture on the surface of the host plant for up to 24 hours 

was essential for M. oryzae infection on rye-grass and rapid expansion of the lesion on the 

surface of the host plant (Trevathan et al., 1994). Another report on the rye-grass blast 

showed that increase in the duration of leaf wetness at temperatures from 20OC to 29OC 

increased blast incidence and severity (Uddin et al., 2003). Besides dew, some common 

meteorological conditions that favour severe epidemics of rice blast include long periods of 

drizzling rain, lack of sunshine, moderate temperature, slow wind and high humidity, but 

heavy rain could be a limiting factor (Calvero, 1994; Suzuki, 1975). Temperature has 

however been identified as the most important determinant of the disease and affects the 

interaction between the host and the pathogen. In fact, it is a critical factor in the blast 

disease triangle of the environment, host and pathogen (Scholthof, 2007). Another 

important factor favouring the disease is the nitrogen level applied to the host plant. Higher 

levels of nitrogenous material either present in soil or applied as fertilizer lead to increased 

incidence of blast and predispose the plant to the disease (Osuna-Canizalez et al., 1991; 

Long et al., 2000). It has been reported that favourable weather conditions increased the 

epidemic of the blast fungus M. oryzae on finger millet (Patel and Tripathi, 1998). 

Continuous wetness and high humidity over 16 to 24 hours favour maximum infection of 

rice and finger millet at 22OC - 30OC (Andersen et al., 1947; Patel and Tripathi, 1998). 
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1.5    Control of the blast disease  
 

In view of the high economic importance of this pathogen, various methods are being 

adopted to effectively manage the disease. The limited information available on finger 

millet blast management is discussed below, in the context of a wealth of research carried 

out on other cereal crops such as rice. The disease is mainly managed through cultural 

methods, planting of resistant varieties and use of fungicides although a limited level of 

biological control has been tested.   

 

1.5.1 Cultural practices  
 

In East Africa, the traditional practice of managing the finger blast differs from farm to farm, 

location to location and country to country. Planting of blast free certified seeds, 

manipulation of planting time and moderate amount of fertilizer application have been 

found useful by some farmers (Finckh, 2008; Obilo et al., 2012; Sood and Babu, 2016). A 

combination of organic and inorganic fertilizer at one quarter of the recommended rate is 

found to be less expensive and has been reported to minimise blast infection (Dass et al., 

2013; Mgonja et al., 2013; Das, 2017). Managing seed rates, increasing the spacing and 

weeding of the finger millet fields two or three times a season to eliminate alternate weedy 

hosts are known to reduce finger millet blast disease levels (Lenne and Thomas, 2006; 

Oduori, 2008). Crop rotation also aids blast disease management.  Intercropping system is 

another form of cultural practice that has been effectively used to manage blast disease 

(Mudita et al., 2008). For example, finger millet planted with pigeon peas, produced good 

yields. This result was attributed to differences in growth cycles and increased competition 

for nitrogen (Adipala et al., 1994). 
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1.5.2 Chemical control  
 

Fungicides are frequently and widely used to manage fungal diseases of crops worldwide 

(Pooja and Katoch, 2014). Blast disease is commonly managed by fungicides especially on 

rice worldwide, particularly in Japan and China (Chen et al., 2013b; Mew et al., 2004). 

However, fungicides are less used to manage blast disease in Latin America, South and East 

Asia and Africa (Mew et al., 2004). Commonly used fungicides for the management of blast 

disease particularly on rice include benomyl, tricyclazole, mancozeb, carbendazim, 

pyroquilon, azoxystrobin, zineb, propiconazole, edifenphos, isoprothiolane, tolprocarb, 

fenoxanil, blasticidin, hinosan and ferimzone (Yashoda et al., 2000; Chen et al., 2013b, 

Hamada et al., 2014; Chen et al., 2015; Lewis et al., 2016; Mew et al., 2004; Srivastava et al., 

2017; FRAC 2018). A combination of fungicides such as carbendazim with mancozeb 

(systemic and contact) has proved to be very effective in providing resistance against blast 

disease on rice (Yashoda et al., 2000; Ghazanfar et al., 2009; Miah et al., 2018).  Fungicides 

are applied directly to the host plant by spraying or through seed treatment which later 

protect other parts of the plant. These chemicals act by inhibiting and block processes such 

as appressorial melanization, mitochondrial respiration and mitosis in M. oryzae (Kurahashi, 

2001; Kunova et al., 2013; Chen et al., 2013b; Kunova et al., 2014; Chen et al., 2015). Some 

fungicides also interfere with the enzymatic processes essential to melanin biosynthesis 

(e.g. Kunova et al., 2014). However, the effectiveness of these chemicals are determined by 

factors such as the composition of the fungicides, time and method of application, stability 

of the fungicides, the level of disease and the rate of emergence of fungicide resistant 

strains (Skamonioti and Gurr, 2009). The Fungicide Resistance Action Group (FRAC, 2018), 
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categorised M. oryzae as one of the pathogens capable of evolving resistance to fungicides 

within a short period.  A series of breakdown of some of the fungicides by the blast 

pathogen has been reported in China and Brazil (Sawada et al., 2004; Zhang et al., 2009; 

Chen et al., 2013b; Castroagudin et al., 2015). Although the use of fungicides has proven to 

be very effective in managing this disease, the use of synthetic fungicides continues to be 

discouraged and some chemicals have been banned due to their negative effects on the 

ecosystem (Zarandi et al., 2009). 

 

1.5.3 Biological control  
 

In view of the environmental concerns associated with chemical fungicides, efforts continue 

to be made to develop alternative control measures also in the context of peoples’ health 

(Law et al., 2017). Biological control offers scope as a practical and economic alternative for 

the management of plant diseases including blast (Lis-Balchin and Deans, 1997; Manidipa et 

al., 2013). Most of the microbes that have been successfully used in controlling plant 

diseases employ mechanisms such as competition, suppression, antibiosis, mycoparasitism, 

hypervirulence and induced resistance (Karthikeyan and Gnanamanickan, 2008a; Singh et 

al., 2016; Negi et al., 2017; Law et al., 2017). Some commonly used biological agents (bio-

inoculant) to control fungal crop diseases include Pseudomonas species (Karthikeyan and 

Gnanamanickan, 2008a; Dorjey et al., 2017), Bacillus species (Karthikeyan and 

Gnanamanickan, 2008a; Prasanna Kumar et al., 2017), Trichoderma species (Kumar et al., 

2016; Waghunde et al., 2016) and Streptomyces species (Zarandi et al., 2009; Li et al., 2011; 

Boukaew and Prasertsan, 2014). For example, finger millet, foxtail millet and rice seeds 

treated with Pseudomonas fluorescens Pf7-14 showed good response and suppressed blast 
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infection at high percentage of 80-88% and reduced rice blast severity by 21 to 68.5 % 

(Karthikeyan and Gnanamanickan, 2008a). Similar reports from two different research 

groups in Iran and Egypt, showed effectiveness of Streptomyces species to antagonise blast 

disease on rice plant (Zarandi et al., 2009; Khalil et al., 2014). Additionally, studies have 

shown the capability of bio-inoculants to increase the root and shoot growth as well as 

flowering and maturity of the crop plants through symbiotic association (Karthikeyan and 

Gnanamanickan, 2008a; Singh et al., 2016; Tamreihao et al., 2016; Negi et al., 2017; Amruta 

et al., 2018). Nonetheless, weather condition is a major determinant for the effectiveness of 

a biological control agent as unfavourable conditions can render it ineffective. Furthermore, 

the possibility of the pathogen developing resistance rendering the treatment non-effective 

and non-economic needs to be carefully considered (Vasudevan et al., 2002; Suprapta, 

2012; Gopalakrishnan et al., 2014).  

 

1.5.4 Host resistance  
 

Host resistance is the ability of a host plant to hinder or resist colonization by a pathogen 

(Robinson, 1969). Generally, the host plant relies on the innate immunity of each cell and 

systematic signals emanating from the infection site introduced by the pathogens (Jones 

and Dangl, 2006). Host plants do this using two modes of resistance (Jones and Dangl, 2006; 

Cook et al., 2015). The first mode recognises and responds to molecules common to many 

classes of microbes including non-pathogens and utilises transmembrane pattern 

recognition receptors (PRRs) that respond to slowly evolving microbial or pathogen-

associated molecular patterns (MAMPs or PAMPs) (Jones and Dangl, 2006; Cook et al., 

2015).  
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On the other hand, the second mode recognises and responds to pathogen virulence factors 

either directly or indirectly through their effects on host targets. This mode acts 

predominantly inside the cell, using the polymorphic nucleotide binding (NB)-leucine rich 

repeat (LRR) protein products encoded by most R genes, and are broadly characterised 

based on the NB and LRR domains (Jones and Dangl, 2006; Cook et al., 2015). Examples of 

this second mode are the gene for gene (direct) and guard (indirect) hypotheses (Jones and 

Dangl, 2006; Cook et al., 2015).   

A number of conceptual models of the plant immune system has been developed and 

described over the last 2 decades (e.g. Nurnberger and Brunner, 2002; Chisholm et al., 2006; 

Postel and Kemmerling, 2009). Although these models vary, they are all grounded in the 

observation that the plant innate immune system is largely controlled by receptors that 

identify invasion by the pathogens (Cook et al., 2015). Among these models, the zig-zag 

model has been identified as the versatile tool that explained most host pathogen 

interactions and also reconciles the previously described gene for gene concept with the 

recognition of general elicitors (Jones and Dangl, 2006; Cook et al., 2015; Keller et al., 2016). 

The zig-zag model is based on principles underlying 4 phases (Figure 1.7). In phase 1, PAMPs 

or MAMPs are recognised by the PRRs and this results in PAMP-triggered immunity (PTI). In 

phase 2, successful pathogens deploy effectors that contribute to pathogen virulence. 

Effectors can interfere with PTI, which results in effector-triggered susceptibility (ETS). In 

phase 3, a given effector is specifically recognised by one of the NB-LRR proteins, resulting in 

effector-triggered immunity (ETI). The recognition is either indirect (guard hypothesis), or 

through direct NB-LRR recognition of an effector. The ETI accelerates and amplifies PTI, 

resulting in disease resistance and this is usually via hypersensitive cell death response (HR) 
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at the infection site. In phase 4, natural selection drives pathogens to avoid ETI either by 

shedding or diversifying the recognised effector gene, or by acquiring additional effectors 

that suppress ETI. The natural selection in the host results into a new R specificity so that ETI 

can be triggered again.  

 

Figure 1.7. Schematic diagram of the zig-zag model  

The model illustrates the quantitative output of the plant immune system based on the four phases. 
In phase 1, host plant detects microbial/pathogen-associated molecular patterns (MAMPs/PAMP, in 
red diamonds) through pattern recognition receptors (PRRs) to trigger PAMP-triggered immunity 
(PTI). In phase 2, successful pathogens deliver effectors that interfere with PTI, which results in 
effector-triggered susceptibility (ETS). In phase 3, an effector (in red) is recognised by an NB-LRR 
protein activating effector-triggered immunity (ETI), leading to an amplification of PTI and 
hypersensitive response (HR). In phase 4, pathogen isolates evolve to gain new effectors to suppress 
ETI. Natural selection favours new plant NB-LRR alleles that can recognise one of the newly acquired 
effectors, resulting again in ETI. The image was adopted from Jones and Dangl, 2006. 

 

Several reports have recommended the use of resistant seed varieties as the most 

advantageous and environmentally friendly method for blast management on rice (e.g. 

Bonman, 1992; Sere et al., 2011; Miah et al., 2017). Two major types have been recognised 
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and used in rice resistance development programs, these are: qualitative resistance (also 

referred to as vertical or complete resistance) and quantitative resistance (also referred to 

as horizontal or partial resistance) (Marone et al., 2013; Pilet-Nayel et al., 2017). While 

qualitative resistance is conferred by the host resistance genes (R genes), which recognise 

and interact with the pathogen avirulence genes (AVR genes), quantitative resistance is 

mediated by quantitative traits loci (QTL) that confer durable non-race specific resistance. 

Generally, qualitative resistance is pathogen race-specific and its durability is limited by 

strong selection pressure imposed on the pathogen (Marone et al., 2013; Pilet-Nayel et al., 

2017).  More than 70 genes and 347 QTLs involved in M. oryzae - rice interactions have been 

identified using a range of molecular techniques (Koide et al., 2009; Debnath et al., 2018).  

Planting disease-resistant varieties is recognised as the most economic and effective means 

of combating M. oryzae causing blast on finger millet (Babu et al., 2013). Less information is 

available on the varieties of finger millet that are resistant to blast compared to other crops 

such as rice. In Uganda, pure line selection was used to identify and release finger millet 

varieties such as Serere-1, Gulu-E, PESE I, Engeny, SEREME I, SEREMI II, SEREMI III as 

resistant to head blast (Esele and Odelle, 1992; Esele and Odelle, 1995, Aru et al., 2015). In 

finger millet, although some reports of genetically engineered resistance to leaf blast exist 

(Latha et al., 2005; Ignacimuthu and Ceasar, 2012), there is only limited information on the 

R gene – AVR gene mediated resistance (Babu et al., 2015). In this context, it is vital to gain 

an in-depth understanding of the finger millet blast pathogen population biology and 

genetics in key cropping locations including Eastern Africa – the primary centre of finger 

millet diversity as well as India – the secondary centre of the crop diversity. 
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1.6 Population biology of the blast pathogen M. oryzae  
 

The blast pathogen M. oryzae is known to breakdown host resistance after a relatively short 

period, which has become a major challenge in combating the disease on rice (Talbot, 1995; 

Talbot, 2003). Therefore, a wealth of research has focused on the population biology of the 

rice blast pathogen using molecular and biological assays in order to gain insight into the 

mechanisms involved in host resistance breakdown. This has been attributed to the genetic 

diversity of the M. oryzae populations prevailing in a geographic location also linked to wide 

spread occurrence of transposable elements and repetitive sequences in the genome, and 

the reproductive behaviour (Correa-Victoria and Zeigler, 1993; Urashima et al., 1999; Park et 

al., 2010; Islam et al., 2016). Intensive efforts into the genome sequencing of an array of M. 

oryzae isolates has provided a platform to gain further insights into the critical aspects of 

the pathogen genetics and evolution (Dean et al., 2005; Xue et al., 2012; Chen et al., 2013a; 

Dong et al., 2015; Gladieux et al., 2018). 

 

1.6.1 Reproductive biology: distribution of mating types and fertility of M. oryzae 
 

The fungus M. oryzae possesses the ability to reproduce asexually and sexually under 

specific conditions (e.g. Viji et al., 2001; Saleh et al., 2012a).  In nature, asexual reproduction 

is common and plays a significant role in the multiplication and dispersal of the blast 

pathogen (Duncan et al., 1998). There is no general consensus as yet on whether M. oryzae 

reproduces sexually in nature. Sexual heterothallism of this fungus was first demonstrated 

early on (Hebert, 1971). Being heterothallic, sexual reproduction requires crossing between 

individuals of opposite mating types, which are determined by the idiomorphic forms of the 

mating type (MAT) locus. The mating type gene of M. oryzae has been cloned and 
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sequenced using a genomic subtraction technique. The MAT1-1 and MAT1-2 genes are 

approximately 2.5 and 3.5 kb in length, respectively (Kang et al., 1994). These genes have 

been used as markers in subsequent population analysis studies (e.g. Viji and 

Gnanamanickan, 1998; Consolo et al., 2005; Takan et al., 2012).  

The mating type of each strain of M. oryzae can be determined by conventional approach of 

crossing with a standard tester of known mating type (Notteghem and Silue, 1992) or by 

molecular analysis such as mating type-specific PCR (e.g. Takan et al., 2012). The presence of 

both mating types in a geographic location alone is not a clear evidence for active sexual 

reproduction (Couch et al., 2005). Sexual reproduction assays carried out in vitro showed 

that at least one of the strains must be female fertile (Saleh et al., 2012a, Saleh et al., 

2012b). In this fungus, successful cross between strains of opposite mating types MAT 1-1 

and MAT 1-2 should lead to the production of the fruiting body structures perithecia with 

viable ascospores (Coppin et al., 1997; Viji and Gnanamanickan, 1998). Fertility in M. oryzae 

field isolates can range from total sterility (inability to mate with any other strain), through 

female sterility (ability to mate only as a male), to full fertility (hermaphrodite with the 

ability to mate as both male and female) as shown previously (Itoi et al., 1983; Valent et al., 

1991; Notteghem and Silue, 1992; Viji and Gnanamanickan, 1998).  

Kumar et al. (1999) investigated the rice blast pathogen populations in the Indian Himalayan 

foothills – a centre of origin of the crop in South Asia, and reported the occurrence of both 

mating types MAT 1-1 and MAT 1-2 and female fertile strains capable of sexual 

reproduction. It is important to highlight that the occurrence of female fertile strains in rice 

production systems is not common.  Recent work has provided further evidence for the 

occurrence of sexual reproduction in rice pathogenic strains of M. oryzae in South East Asia 
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(Saleh et al., 2012a). However, M. oryzae isolates that infect rice are most commonly female 

sterile (Saleh et al., 2012b), whereas finger millet blast isolates and the grass isolates were 

female fertile and hermaphrodites (e.g. Takan et al., 2012).  

The distribution of the mating types and the fertile strains of M. oryzae appears to depend 

on the host and geographic location also linked to the centre of origin and domestication of 

the crop (Saleh et al., 2012b; Takan et al., 2012; Onaga et al., 2015; Mwongera, 2018). 

Presence of both MAT 1-1 and MAT 1-2 isolates, although skewed to some extent, 

associated with rice cultivars has been reported in India, China, Vietnam, and Thailand, 

where the crop has been grown for thousands of years (Viji and Gnanamanickan, 1998; 

Mekwatanakarn et al., 1999; Le et al., 2010; Samanta et al., 2014; Imam et al., 2014). 

Separate studies in Africa showed the dominance of MAT 1-2 (71 %) isolates on rice in West 

Africa (Takan et al., 2012), whereas MAT 1-1 isolates were more prevalent in East Africa (76 

%) on rice (Onaga et al., 2015; Mwongera, 2018). Whereas in Korea, Brazil and Argentina, 

where rice cultivation is relatively recent, isolates of only one mating type were found 

among collections ranging from 100 to 500 (Consolo et al., 2005; Park et al., 2008; Peixoto 

et al., 2014; D’Avila et al., 2016). Further, within Brazil, both mating types MAT 1-1 and MAT 

1-2 among M. oryzae associated with wheat and the potential for sexual reproduction and 

recombination has been strongly suggested (Maciel et al., 2014). Likewise, wide distribution 

of mating types MAT1-1 and MAT1-2 isolates and dominance of fertile isolates of M. oryzae 

were observed with finger millet in Kenya and Uganda (Takan et al., 2012). This indicates a 

strong potential for sexual reproduction and recombination, necessitating further detailed 

investigations in key finger miller production locations in Eastern Africa. 
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1.6.2 Repetitive DNA elements in the blast pathogen M. oryzae 
 

Repetitive DNA including transposable elements, interspersed repeats and telomeres are 

abundant in many eukaryotic organisms (Wostemeyer and Kreibich, 2002; Chadha and 

Sharma, 2014). These regions of the genome are more variable compared to other parts, 

which might be linked to positive selection pressure (Thon et al., 2006). Blast pathogen M. 

oryzae is rich in repetitive DNA elements reflecting approximately 9.7 % of the genome and 

the majority of the repetitive elements are retrotransposons comprising of 8 families (Dean 

et al., 2005; Thon et al., 2006). Magnaporthe grisea repeat (MGR) was the first repetitive-

DNA family identified in the genome of M. oryzae distributed among all the chromosomes 

(Hamer et al., 1989; Dean et al., 2005). MGR sequence is a retrotransposon element that 

resembles those in other Ascomycetes. Two members of the MGR were initially identified, 

namely MGR583 and MGR586, which were highly conserved among the rice blast isolates 

compared to isolates from non-rice hosts (Hamer et al., 1989). MGR586 in DNA 

fingerprinting revealed polymorphic patterns capable of distinguishing M. oryzae isolates 

from rice blast into various lineages (Levy et al., 1991; Farman et al., 1996b). Further studies 

showed that the MGR586 contained the Pot3 retrotransposon and possessed an open 

reading frame, which showed 23 % and 36 % amino acid identity with transposons Pot2 

within M. oryzae and Fot1 from Fusarium oxysporium. However, these 3 elements have little 

or no similarity at the DNA sequence level (Farman et al., 1996b). Furthermore, absence of 

the MGR586 sequence in grass-infecting isolates, but presence in low copy in M. oryzae 

isolates from other cereal crops were shown (Hamer et al., 1989; Farman et al., 1996b). 

Most of the retrotransposons are transposable elements (TEs), which have the ability to 

move from one chromosome to another in the genome (Chardha and Sharma, 2014; Jardim 
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et al., 2015), playing a major role in the genome variation of the M. oryzae (Zhang et al., 

2013). These transposable elements are classified into two major groups. Class I TEs 

transpose via RNA intermediates by a ‘copy and paste’ mechanism and Class II TEs transpose 

directly from DNA to DNA by a ‘cut and paste’ mechanism (Kang et al., 2001; Chadha and 

Sharma, 2014). The class I transposons in M. oryzae are variable, ranging from retro 

elements, long terminal repeat (LTR) retrotransposons also known as the gypsy class, and 

non-LTR retrotransposons. The non-LTR retrotransposons include two types namely long 

interspersed nuclear element (LINE), and short interspersed nuclear elements (SINE).  

It is well recognised that transposable elements (TEs) are associated with insertion, deletion 

and genomic rearrangements as well as other functions including organisation of chromatin 

structure, replication and transcription and RNA processing and stability, and importantly 

the ability to mobilise other sequences in the genome (Weiner et al., 1986; Deininger et al., 

1992).  After the initial discovery of MGR elements (e.g. Hamer et al., 1989), several 

transposable elements have been identified in the genome of M. oryzae and these have 

been cloned and characterised as detailed below (Table 1.1). The accumulation of different 

repeat elements in M. oryzae populations has been suggested to result in changes in the 

genome architecture that are fundamental for the emergence of new genotypes with 

potentially altered pathogenicity traits (Dobinson et al., 1993). Wide distribution of the 

transposable elements such as MGR586, Pot2, Mg-SINE and MGR583 among M. oryzae 

isolates from different hosts, suggests that these are old elements, which arose in or 

invaded the fungus at very early stages of its evolution (Dobinson et al., 1993; Eto et al., 

2001). Conversely, limited distribution of the LTR retrotransposons, Grasshopper (grh) and 

MAGGY among M. oryzae isolates from some hosts only, suggests that these elements are 
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relatively new, which may have been acquired through horizontal transfer events (Eto et al., 

2001).  

In the context of finger millet blast, grh element is of considerable interest as it was almost 

entirely found in M. oryzae isolates infecting Eleusine species initially and also as these 

isolates were reported to occur only in certain regions of the world (Dobinson et al., 1993). 

Further work reported the presence of the grh element among the M. oryzae isolates from 

rye grass (Kusaba et al., 2006) and rice (Mahesh et al., 2016). The regions where M. oryzae 

isolates containing the grh element were found include parts of Asia (India, Nepal and 

Japan), West Africa (Mali and Burkina Faso) and East Africa (Uganda and Kenya). However, 

their frequency of occurrence in these locations varied considerably (Dobinson et al., 1993; 

Kusaba et al., 2006; Takan et al., 2012). Presence of the grh element in rice blast isolates 

correlated to gene flow between the rice and non-rice M. oryzae isolates (Mahesh et al., 

2016). Transposable DNA elements such as MGR586, MGR583, Pot2, MAGGY and 

Grasshopper have contributed greatly to the understanding of the population diversity 

pattern of M. oryzae from different hosts (Farman et al., 1996a; Nitta et al., 1997, Don et al., 

1999; Dioh et al., 2000; Tosa et al., 2004; Sawada et al., 2004, Park et al., 2010) as detailed 

in section 1.6.4.  
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Table 1. 1 Repetitive DNA elements identified in the genome of the blast pathogen M. oryzae 

Name of the 

Transposable 

element 

Class Class Name Plant/Crop          

Host 

Total length 

(bp) 

Reference 

Retro5 I Retroelement Rice/Setaria/         

rye grass 

7623 Farman, 2002 

Retro6 I Retroelement Rice 5705 Farman, 2002 

Retro7 I Retroelement Rice 6210 Farman, 2002 

Dean et al., 2005 

Grasshopper 

(grh) 

I LTRa(gypsy) Eleusine sp., 

Annual rye 

grass 

5233 Dobinson et al., 1993 

Kusaba et al., 2006 

MAGGY I LTR (gypsy) Rice and Setaria 

spp 

5638 Farman et al., 1996a 

MGLR-3 I Gypsy Rice 6304 Kang et al., 2001 

Pyret I Gypsy Rice 7250 Nakayanshiki et al., 2001 

Inago 1 I Gypsy Rice NS** Sanchez et al., 2011 

Inago 2 I Gypsy Rice  Sanchez et al., 2011 

MGL or MGR 

583 

I Non LTR (LINEb) Rice/Non-rice 5977 Hamer et al., 1989 

MGSR I I Non LTR(SINEc) Rice/Non-rice 1111 Sone et al., 1993 

MG-SINE I Non LTR (SINE) Rice/Non-rice 472 Kachroo et al., 1995 

MGR586 II Terminal 

inverted repeat 

Rice NS** Hamer et al., 1989 

Pot2 II Terminal 

inverted repeat 

Rice 1857 Kachroo et al., 1994 

Pot3 II Terminal 

inverted repeat 

Rice 1860 Farman et al., 1996b 

Kang et al., 2001 

Pot4 II Terminal 

inverted repeat 

Rice 1858 Dean et al., 2005 

Rehmeyer et al., 2006 

Occan II Terminal 

inverted repeat 

Rice 2686 Kito et al., 2003 

Sone et al., 2013 

MoTeRs I Non LTR Rice/Non-rice 1886 Starnes, 2013 

Farman, 2007 

             a long terminal repeat, blong interspersed nuclear element, cshort interspersed nuclear element.   

        **NS Not specified 
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1.6.3 Avirulence (AVR) genes in the blast pathogen M. oryzae 
 

In the gene-for-gene crop-pathogen systems, knowledge of the pathogen AVR genes is 

crucial to the development of host resistance. It is well documented that AVR genes encode 

secreted proteins, which are specifically recognised by the host resistance (R) genes. 

Recognition of the AVR gene products by the plant surveillance system mediated by R genes 

triggers the host defence mechanism leading to hypersensitive response (HR) and pathogen 

localisation (Dodds and Rathjen, 2010; Kutcher et al., 2010; Bialas et al., 2017; Upson et al., 

2018). To date, more than 40 AVR genes have been genetically mapped in the genome of 

the rice blast pathogen M. oryzae (Korinsak et al., 2018). Of these, 12 AVR genes (Table 1.2) 

have been cloned and characterised with reference to their corresponding R genes in the 

host plant (Ray et al., 2016; Terauchi et al., 2016; Wang et al., 2017a). The majority of the 

cloned AVR genes encode small proteins (<200 aa) except AVR-Pita and ACE1 (Wang et al., 

2017a). M. oryzae AVR genes are defined based on the protein structure such as glycine-rich 

e.g. AVR-Piz-T and AVR-Pi54 (Li et al., 2009; Zhang et al., 2013; Ray et al., 2016), Zinc 

metalloprotease e.g. AVR-Pita (Orbach et al., 2000), polyketide synthase (PKS) and non-

ribosomal peptide synthetase (NRPS) hybrid e.g. ACE1 (Bohnert et al., 2004).  

Availability and comparative analysis of the genome sequence data of an array of M. oryzae 

isolates is beginning to provide new insights into the genomic occurrence and structural 

characteristics of the loci containing the AVR genes. For example, AVR genes are commonly 

flanked on one or both sides by repeat elements e.g. Pot3 transposable element flanking 

the AVRPiz-t at the 5’ end.  Likewise, AVR genes commonly occur close to the chromosome 

ends at the telomere regions, which are rich in repetitive sequences (Rouxel and Balesdent, 

2017; Wang et al., 2017a). The regions at which AVR genes are located seem to undergo 
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rapid change and/or rearrangements leading to the diversity or changes in the pathogen 

effector repertoire enabling them to escape recognition by the plant R genes (Pais et al., 

2013; Sanchez-Vallet et al., 2018). Similarly, transposable elements have been implicated in 

the loss or gain or disruption of AVR genes in M. oryzae through positive selective pressure 

(Yoshida et al., 2009; Dai et al., 2010; Wang et al., 2017a). In rice-blast pathogen 

interactions, it has been established that in the genomes of various M. oryzae isolates the 

AVR genes can be either present or absent or exist in different allelic forms (Yoshida et al., 

2009; Wu et al., 2014; Sirisathaworn et al., 2017). The presence or absence or existence of 

allelic forms of AVR genes has been analysed using PCR based methods and BLAST analysis 

(Couch et al., 2005, Yoshida et al., 2009; Sirisathaworn et al., 2017). In the finger millet blast 

system, AVR – R gene interactions remain an unexplored area. Only recently, an initial 

report of the existence of 9 AVR genes in M. oryzae isolates from Eleusine has become 

available (Wang et al., 2017a). The genomic resources being established for specifically 

selected M. oryzae isolates representing the finger millet blast pathogen population 

diversity in Eastern Africa would serve as a sound platform to gain further insights into this 

key area. 
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Table 1.2 Details of AVR genes cloned from M. oryzae isolates associated with rice blast 

AVR gene Isolate 

source 

Protein size 

(No. AAs) 

Chromosome Reference 

PWL1 Rice blast 147 2 Kang et al., 1995 

PWL2 Rice blast 145 2 Sweigard et al., 1995 

AVR1-Co39 Rice blast 89 1 Farman and Leong, 1998; 

Ribot et al., 2013 

AVR-Pita Rice blast 224 3 Khang et al., 2008 

ACE1 Rice blast 4035 1 Bohnert et al., 2004 

AVR-Pia Rice blast 85 5 or 7 Miki et al., 2009; 

Yoshida et al., 2009 

AVR-Pii Rice blast 70 7 Yoshida et al., 2009 

AVR-

Pik/km/kp 

Rice blast 113  

(5 alleles) 

A-E 

1 Yoshida et al., 2009; 

Wu et al., 2014 

AVR-Piz-T Rice blast 108 7 Li et al., 2009 

AVR-Pi9 Rice blast 91 7 Wu et al., 2015 

AVR-Pib Rice blast 75 3 Zhang et al., 2015 

AVR-Pi54 Rice blast 153 4 Devanna et al., 2014 

Ray et al., 2016 

AAs, Amino acids 
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1.6.4 Blast pathogen diversity and population structure  
 

The continuing threat posed by M. oryzae to global food and nutrition security is well 

recognised. Research over the last two and half decades globally has focused on unravelling 

the blast pathogen diversity and population structure to gain new insights into its biology 

and evolution. The aim clearly is to identify effective strategies for the development and 

deployment of resistant varieties. Most of these efforts have focused on the rice blast 

system due to its economic importance globally.  

Pathogen population structure can be defined as the level of variation observed among 

individuals reflecting their evolutionary history and the potential to evaluate the 

evolutionary relationships within and between sub-populations (McDonald and McDermott, 

1993; Leung et al., 1993; Chen et al., 1995; McDonald, 1997). Variation within pathogen 

populations is mainly assessed based on the phenotype (e.g. morphology or toxin 

production) or pathotype (e.g. host or cultivar specificity) or genotype (DNA data) or a 

combination of these characteristics. In view of the huge variation known in M. oryzae 

including spontaneous changes during regular sub-culturing, phenotypic characterisation 

particularly based on morphological appearance has major limitations and is not widely 

pursued. The conventional method widely used with the blast pathogen M. oryzae 

particularly in the context of rice is a pathotyping assay. This is carried out on a set of 

differentials each carrying a known resistance gene.  This method provides insight into the 

pathogen virulence diversity and the pathotype structure of the population. However, this 

method is resource intensive and is also strongly influenced by environmental variables and 

the host genetic background. In addition, these assays also require strong pathology 

expertise to avoid subjective scoring during experimentation. However, pathotyping is an 
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invaluable method that is commonly employed to understand the pathogen diversity 

including the AVR - R gene interaction patterns in rice blast. This approach is particularly 

facilitated by the recent development of mono-isogenic lines each containing a known R 

gene (Mutiga et al., 2017; Farman et al., 2017; Perello et al., 2017).  

Advances in molecular technologies and the need to answer fundamental questions relating 

to the population structure of the blast pathogen has led to the development and 

application of various approaches. The aim is to use these techniques to unravel DNA 

sequence diversity embedded within the genome of the pathogen (Babujee and 

Gnanamanickam, 2000). The range of molecular techniques that have been used to study 

the population patterns of M. oryzae can be broadly categorised as DNA band-based 

methods (DNA profiling or DNA fingerprinting) and DNA sequence-based methods (DNA 

barcoding).  

The DNA profiling methodologies used to characterise M. oryzae isolates include DNA 

hybridisation e.g. restriction fragment length polymorphisms (RFLPs), and PCR-based 

methods (Table 1.3). A key example of the DNA hybridisation method is MGR586 

fingerprinting originally developed by Levy et al. (1991) to define lineages of the rice blast 

pathogen populations. A range of PCR-based methods such as random amplified 

polymorphism DNA (RAPD), repetitive DNA-based polymerase chain reaction (Rep-PCR), 

amplified fragment length polymorphism (AFLP), microsatellite or simple sequence repeat 

(SSR) analysis, sequence characterised amplified region (SCAR), single strand conformation 

polymorphism (SSCP) and retrotransposon microsatellite polymorphism (REMAP) have been 

used to study the molecular genetic diversity of M. oryzae from different hosts and diverse 

geographic locations (Couch et al., 2005; Chadha and Gopalakrishna, 2007; Sere et al., 2007; 
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Silva et al., 2009; Takan et al., 2012; Maciel et al., 2014; Motlagh et al., 2015; Onaga et al., 

2015). DNA profile methods are based on scoring the presence or absence of similarly 

sized/positioned bands (McDonald, 1997). The PCR-based techniques operate on different 

principles, some of which do not require prior knowledge of DNA sequence to design the 

primers e.g. RAPD and AFLP (McDonald, 1997; Xu, 2006). For example, AFLP analysis showed 

positive resolution among the population of M. oryzae isolates associated with Tall fescue 

St. Augustine grass in Georgia (Tredway et al., 2005) and finger millet and related weed 

hosts in Kenya and Uganda (Takan et al., 2012). Conversely, methods such as Rep-PCR 

require the DNA sequence data of a specific repetitive element to design bespoke primers 

(George et al., 1998). 

With the advances in DNA sequencing technologies, direct sequencing of PCR products has 

been used extensively to analyse the intra- and inter- species differences in diverse fungal 

species including M. oryzae (Couch and Kohn, 2002; Xu, 2006; Sucher et al., 2012). Direct 

sequencing of PCR products only requires small quantities of DNA and offers high resolution 

and very little or no ambiguity at manageable costs making it an effective approach to 

investigate fungal pathogen genetic diversity and phylogenetic relationships relatively 

rapidly (Hibbett et al., 2016, Robert, 2016). Availability of a large number of DNA sequences 

of various marker genes or regions from diverse fungal species in the public databases 

serves as a significant resource. The most commonly used markers are from the ribosomal 

RNA (rRNA) gene block that comprises highly conserved genes and variable inter-genic 

regions (White et al., 1990; Schoch et al., 2012). This includes the 18S rRNA gene (small 

subunit), 28S rRNA gene (large subunit), internal transcribed spacer (ITS) and inter-genic 

spacer (IGS). Markers from the rRNA gene block have been used extensively to characterise 
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fungal phylogenetic relationships and the ITS maker is recognised as a fungal universal DNA 

barcode (Schoch et al., 2012). To achieve higher levels of resolution as well as to account for 

the different evolutionary rates among different parts of the genome, various protein-

coding genes have also been used to develop molecular genetic markers to investigate the 

pathogen population diversity and structure. Commonly used markers include housekeeping 

genes such as actin (ACT), translation elongation factor 1-α (TEF1), β-tubulin (TUB), histone 

(HIS3), calmodulin (CAL) and RNA polymerase II (RPB1) glyceraldehyde-3-phospate 

dehydrogenase (gpd) in various fungi including M. oryzae (e.g. Klaubauf et al., 2014).  

Complementing the housekeeping gene markers, functional genes such as MAT genes and 

MPG1 gene have also been used with M. oryzae to characterise populations prevailing in 

diverse biotic and abiotic environments in different geographic locations (Couch et al., 

2005). For example, markers from the Actin, Calmodulin and Beta-tubulin genes have been 

used to distinguish M. oryzae and M. grisea species associated with various cereal crops and 

grasses (Couch and Kohn, 2002; You et al., 2012).  

Characterisation of M. oryzae isolates from different geographic locations using a range of 

molecular techniques has been effective in revealing the population diversity and structure, 

particularly from rice blast (Table 1.3). A clear lineage-based structure of M. oryzae 

populations has been deciphered in the United State of America (USA), Columbia, Iran, West 

Africa (Ghana, Burkina Faso, Nigeria, and Cote d’Ivoire), Philippines and Europe. Some key 

trends in diversity and distribution pattern of the blast pathogen lineages have emerged 

from these studies (Table 1.3). The length of rice cultivation and the pattern of use of rice 

varieties had a major influence in shaping the lineage diversity. For example, in Africa, 

Europe and USA, where the history of rice cultivation ranges between 200 to 500 years, only 
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a limited number of lineages were identified (Levy et al., 1991; Levy et al., 1993; Roumen et 

al., 1997; Takan et al., 2012; Mwongera, 2018). Conversely, in parts of Asia with thousands 

of years of rice cultivation history, a huge diversity in blast pathogen lineages has been 

recorded as in the case of India and Thailand (Kumar et al., 1999; Mekwatanakarn et al., 

1999; Correll et al., 2000). Furthermore, analysis of rice blast populations from the same 

geographic locations but different periods revealed changes in pathogen lineages. For 

example, in Korea two lineages identified among isolates collected during 1990s were 

different from lineages detected in 1970s (Park et al., 2008).  Similarly, in Europe (rice blast 

in France, Spain, Italy, Portugal and Hungary), initially 5 lineages were reported during 1990s 

(Roumen et al., 1997), but a report by Lara-Alvarez et al. (2010) identified an additional 

lineage distinct in terms of the virulence spectrum. In some geographic locations a lack of 

clear lineage-based structure and, continuous genotypic variation has been observed with 

hosts such as finger millet and rice. For example, the M. oryzae populations have shown 

continuous genotypic variation on both rice and finger millet in East Africa (Takan et al., 

2012; Onaga et al., 2015). Whether sexual reproduction and recombination plays a role in 

these situations or is it due to the cultivation history including the host genetic background 

and any relationship to environmental conditions requires further detailed investigations. 

With a key food and nutrition security crop such as finger millet, our understanding of the 

blast pathogen population diversity, structure and evolution remains limited.   
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Table 1.3 Population structure of M. oryzae associated with different hosts and geographic 

locations based on the use of molecular techniques 

Country Period of 
collection 

Host No of 
Lineages 

Molecular 
Technique 
Used 

No of 
samples 
used 

Reference 

USA 1959-
1985 

Rice  8 RFLP (MGR 
586) 

42 Levy et al., 1991 

Colombia 1988-
1990 

Rice 6 RFLP (MGR 
586) 

151 Levy et al., 1993 

Korea 1981-
2000 

Rice _* RFLP (MGR 
586, 
MAGGY) 

6,315 Park et al., 2003 

Korea  1999 Rice  2 RFLP (MGR 
586, 
MAGGY) 

254 Park et al., 2008 

Iran 
/Uruguay 

NK Rice  4 AFLP 87 Taheri and Irrannejad, 2014 

Georgia  1999-
2000 

Tall fescue, 
St. 
Augustine 
grass 

5 AFLP 948 Tredway et al., 2005 

Japan 2002-
2003 

Rice 2 Rep-PCR 
(Pot2) 

1173 Suzuki et al., 2007 

Spain  1999-
2003 

Rice 6 RAPD 186 Lara-Alvarez et al., 2010 

North- 
Western 
Himalayan 
India 

NK Rice  5 RAPD 48 Rathour et al., 2004 

North India 2010-
2011 

Rice  5 RAPD NS Srivastava et al., 2014 

West Africa 1996-
1997 

Rice 9 RFLP (MGR 
586) 

305 Takan et al., 2012 

East Africa 2000-
2002 

Finger 
millet  

_* AFLP 328 Takan et al., 2012 

East Africa 2009-
2011 

Rice _* AFLP 88 Onaga et al., 2015 

Malaysia 2000-
2014 

Rice 4 RAPD/ ISSR 35 Abed-Ashtiani et al., 2016 

Karnataka, 2012- Rice 6 DNA (ITS) 72 Jagadeesh et al., 2018a 
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India 2014 sequencing  

Karnataka, 
India 

2012-
2014 

Rice 5 Rep-PCR 
(Pot2) 

72 Jagadeesh et al., 2018b 

NK- Not known     *- Continuous genetic variation or lack of distinctive lineages   **NS- Not specified 

RFLP- Restriction fragment length length polymorphisms; AFLP -Amplified fragment length 
polymorphisms; RAPD – Random amplified polymorphisms DNA; rep-PCR - Repetitive DNA-based 
polymerase chain reaction; ISSR- Inter simple sequence repeat. 

 

 

1.6.5 Genome sequencing of the blast pathogen M. oryzae 
 

Fredrick Sanger’s DNA sequencing by chain termination with dideoxynucleotides in 1970s 

(Sanger et al., 1977a; Sanger et al., 1977b) laid the basis for capillary sequencer-based 

automated high-throughput sequencing in early 1990s (Swerdlow et al., 1990; Hunkapiller 

et al., 1991). This led to the first genome sequencing of eukaryotic fungal species 

Saccharomyces cerevisiae (Goffeau et al., 1996) laying the foundation for the genome 

sequencing of diverse fungal systems including M. oryzae (Wood et al., 2002; Galagan et al., 

2003; Martinez et al., 2004; Dean et al., 2005; Nierman et al., 2005, Machida et al., 2005; 

Goodwin et al., 2011). M. oryzae was the first plant fungal pathogen genome to be 

sequenced enabling its emergence as a key model system to investigate host-pathogen 

interactions (Dean et al., 2005). The M. oryzae isolate 70-15 used was a laboratory strain 

developed from crosses of a rice blast isolate Guy11 and an isolate from weeping-love grass 

(Chao and Ellingboe et al., 1991; Dean et al., 2005). The genome size of M. oryzae isolate 70-

15 is ~ 38 Mb with 7 chromosomes and 11,109 protein coding genes (Dean et al., 2005). This 

landmark breakthrough provided initial insights into the adaptability of the blast pathogen 

to invade and colonise the host and processes related to the breakdown of host resistance. 

Some of the conceptual ideas to emerge from this work include identification of diverse 
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secreted proteins (subsequently designated effectors) involved in extracellular perception 

and signal transduction and genomic regions that are capable of generating genetic 

variation even in the absence of sexual reproduction, and specifically adapted regulatory 

pathways controlling infection related development (Dean et al., 2005).  

Rapid developments in the next generation sequencing (NGS) technologies over the last 10 

years has revolutionised the entire field of fungal genome biology. NGS technologies such as 

Roche 454, Illumina (solexa), Ion torrent, SOLiD, PacBio and Oxford Nanopore have enabled 

hitherto unimaginable levels of throughput and cost effectiveness (Schuster, 2007; 

Shendure and Ji, 2008; Van Dijk et al., 2014a; Han et al., 2014). High quality of the starting 

DNA and the DNA fragment libraries is critical to genome sequencing by NGS technologies 

along with proper curation of the sequence reads and their assembly using programs such 

as SPAdes and Velvet (Shendure and Ji, 2008; Linnarsson, 2010; Van Dijk et al., 2014b; 

McCormack et al., 2013, Head et al., 2014). The quality of the genome assembly is reflected 

by the number of contigs, length of the contigs, size of the assembled genome and the N50. 

N50 is the point at which 50% of the genome is contained in contigs of size N or greater and 

the N50 value is expected to be greater than the median gene size to perform the gene 

prediction (Yandell and Ence, 2012). Comparative genomic analysis based on the predicted 

gene set, genome synteny, single nucleotides polymorphism (SNPs), and the core and 

flexible parts of the genome enables a whole range of fundamental research questions to be 

addressed.   

Presently, more than 200 genomes of M. oryzae from diverse hosts and geographic 

locations have been deposited in various international databases such as the National 

Centre for Biotechnology Information (NCBI), Joint Genome Institute (JGI) and Broad 
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Institute (BI). Nearly 70 % of these genomes are from rice blast isolates. Various researchers 

are actively pursuing genome level comparative and functional analysis to decipher the 

infection biology of M. oryzae including the identification of novel genes, effectors and AVR 

genes as well as their function (Xue et al., 2012; Chen et al., 2013a; Dong et al., 2015; 

Gowda et al., 2015, Chiapello et al., 2015).  More recent efforts are beginning to focus on 

the phylogenomic analysis of the population biology of M. oryzae. Investigation of genome 

sequences of 100 rice blast pathogen isolates across the globe, identified 3 major genetically 

distinct clades that are distributed globally (Zhong et al., (2018). Further, this study 

confirmed Asia as the centre of origin of M. oryzae and that the populations in Asia generate 

diversity through recombination as has previously been suggested (Saleh et al., 2012a; 

2014). Another study based on the genome sequences of 76 M. oryzae isolates from 

different hosts and geographic locations identified 6 lineages mainly associated with specific 

hosts (Gladieux et al., 2018). Two of these lineages were restricted to China, whilst the 

remaining 4 spread both within China and to other geographic locations such as India, 

Burundi and USA (Gladieux et al., 2018). Based on a small number of isolates, this study has 

suggested the association of two lineages of M. oryzae with Eleusine species. This 

observation is consistent with an early report by Tanaka et al. (2009) based on the ITS 

marker. These studies have suggested that the two lineages have evolved independently. 

This is a fundamentally important question that needs to be further addressed in the 

context of Eastern Africa and India as the primary and secondary centres of diversity of 

finger millet. 
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1.7 Rationale, Aim and Objectives 
 

It is well recognised that crop fungal pathogens with high level of genetic variation are more 

likely to adapt rapidly to diverse biotic and abiotic environments and overcome disease 

control measures including resistant varieties than pathogens with limited genetic variation 

(e.g. McDonald and McDermott, 1993). Cereal blast pathogen M. oryzae is well known for 

its ability to infect more than 50 hosts in diverse geographic locations and ranks as one of 

the most important crop fungal diseases (Dean et al., 2005). A significant body of research 

carried out with the rice blast system has clearly established the varying levels of the genetic 

and pathogenic diversity displayed by the pathogen populations particularly in relation to 

the cropping history in different parts of the world (e.g. USA, Europe, India and Thailand) 

(Mekwatanakarn et al., 2000; Correll et al., 2000) and further research is continuing in other 

parts of the world on rice as well as wheat (e.g. Kenya rice (Mwongera, 2018); Bangladesh 

and Brazil wheat (Malaker et al., 2016; Cruz and Valent, 2017). With other economically 

important crops such as finger millet, our understanding of the blast pathogen biology, 

genetics and evolution still remains limited. Previous work has provided an initial 

assessment of the finger millet blast pathogen populations in Uganda and Kenya (Takan et 

al., 2012). International efforts with the rice blast system have shown that a clear 

understanding of the blast pathogen diversity and continued monitoring are critical for 

effective management of the blast disease.  

In this context, the main aim of this research is to gain an in-depth understanding of the 

finger millet blast pathogen genetic diversity, population structure and evolutionary 

relationships specifically in Eastern Africa, which is the centre of origin and domestication of 

the crop. This will be achieved through the following objectives: 
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1. To identify and/or develop DNA sequence-based molecular markers to characterise 

the pathogen genetic diversity in space and time by using MO isolates representing 

historical and contemporary populations. Use the single- and multi-locus data to 

identify pathogen genotypes, their distribution pattern and phylogenetic 

relationships.  

2. To investigate the pattern of occurrence of the Grasshopper repeat element, mainly 

associated with the Asian pathogen isolates, among the finger millet blast pathogen 

populations in Eastern Africa to enable an insight into the transcontinental 

movement of the host and the pathogen. 

3. To develop a reference genome sequence(s) for the finger millet blast pathogen and 

carry out genome resequencing of selected genotypes using next generation 

sequencing technology.  These resources will be used to perform comparative 

analysis to identify genome-level differences including gene content and single 

nucleotide polymorphisms (SNPs) associated with the pathogen diversity as well as 

to better understand pathogen evolution. 

4. To determine the sexual reproductive capability of the contemporary populations by 

initially identifying the mating type of each isolate using a diagnostic PCR analysis.  

Based on the known mating type data of individual isolates perform crosses with 

known tester isolates to assess the fertility status. Utilise the mating type 

distribution pattern and the fertility status data to assess the potential for sexual 

reproduction and recombination. 
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Thus, the overall purpose of this research is to develop new knowledge and resources of the 

pathogen critically essential for the identification, development and deployment of 

resistance to finger millet blast in Eastern Africa.  

 

  



48 

 

Chapter 2 
 

2.0 Materials and Methods 

 

2.1 Brief description of the origin of blast pathogen isolates  
 

This research work utilised 300 isolates of M. oryzae (Table 2.1A) from finger millet and 

associated weed hosts. The samples were collected from farmers’ fields and various 

screening sites in major finger millet-producing regions of four Eastern Africa countries: 

Kenya, Uganda, Tanzania and Ethiopia (Figure 2.1 A and B). Seventy-six (76) of these isolates 

were selected from 328 previously characterised blast pathogen isolates collected from 7 

and 15 districts in Kenya and Uganda, respectively during 2000 to 2004 (Takan, 2007; Takan 

et al., 2012) (Figure 2.1B and Table 2.1B). These 76 isolates represent the ‘historical 

populations’ in this study. Two hundred and twenty-four (224) isolates collected between 

2015 to 2017 from various districts in Kenya (8), Uganda (21), Tanzania (6) and Ethiopia (24) 

(Figure 2.1B and Table 2.1B). These 224 isolates represent the ‘contemporary populations’ 

in this study. For the contemporary populations, infected sample collection was carried out 

by research partners based in these countries and isolations were carried out at the 

National Semi Arid Resources Research Institute (NaSARRI) laboratory, Uganda and the 

University of Georgia, USA as part of a PEARL (Program for Emerging Agricultural Research 

Leaders) project funded by Bill and Melinda Gates Foundation (BMGF), in which University 

of Bedfordshire is a partner with Prof Prasad S Sreenivasaprasad as Co-PI. The 300 isolates 
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were obtained from infected leaf, neck and panicle (head) samples of finger millet and/or 

weed hosts (Table 2.1A). 
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Table 2.1A Details of M. oryzae isolates used in this study 

Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

1 K23/123 Kenya Busia Eleusine coracana Neck - - 2000 

2 K5/24w Kenya Busia Eleusine coracana - - - 2002 

3 K22/118 Kenya Busia Eleusine coracana Panicle - - 2000 

4 K4/21p Kenya Busia Eleusine coracana Panicle - - 2002 

5 K8/40 Kenya Busia Eleusine indica Panicle - - 2000 

6 K10 Kenya Busia Eleusine coracana Neck P224 Improved 2016 

7 K11 Kenya Busia Eleusine coracana Neck KENFM7 Improved 2016 

8 K12 Kenya Busia Eleusine coracana Neck KAT FM1 Improved 2016 

9 K13 Kenya Busia Eleusine africana Neck Wild E. Africana Weed 2016 

10 K23 Kenya Busia Eleusine coracana Neck - - 2017 

11 K24 Kenya Busia Eleusine coracana Neck - - 2017 

12 K25 Kenya Busia Eleusine coracana Neck - - 2017 

13 K26 Kenya Busia Eleusine coracana Neck - - 2017 

14 K27 Kenya Busia Eleusine coracana Neck - - 2017 

15 K28 Kenya Busia Eleusine coracana Neck - - 2017 

16 K29 Kenya Busia Eleusine coracana Neck - - 2017 

17 K30 Kenya Busia Eleusine coracana Neck - - 2017 

18 K31 Kenya Busia Eleusine coracana Neck - - 2017 

19 K1 Kenya Siaya Eleusine coracana Neck - Improved 2016 

20 K3 Kenya Siaya Eleusine coracana Neck - Improved 2016 

21 K6 Kenya Siaya Eleusine coracana Neck P224 Improved 2016 

22 K7 Kenya Siaya Eleusine coracana Neck P224 Improved 2016 

23 K8 Kenya Siaya Eleusine coracana Neck MS60D Improved 2016 

24 K2 Kenya Kisumu Eleusine coracana Neck - Improved 2016 

25 K4 Kenya Kisumu Eleusine coracana Head MS60D Improved 2016 

26 K5 Kenya Kisumu Eleusine coracana Neck - Improved 2016 

27 K9 Kenya Kisumu Eleusine coracana Neck MS60D Improved 2016 

28 K15 Kenya Kisumu Eleusine coracana Neck - Improved 2016 

29 K22 Kenya Kisumu Eleusine coracana Neck - Improved 2016 

30 K57/126p Kenya Gucha Eleusine coracana Panicle - - 2002 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

31 K58/128p Kenya Gucha Eleusine coracana Panicle - - 2002 

32 K60/131p Kenya Gucha Eleusine coracana Panicle - - 2002 

33 K55/124p Kenya Gucha Eleusine coracana Panicle - - 2002 

34 K14 Kenya Bungoma Eleusine coracana Neck - Improved 2016 

35 K32 Kenya Bungoma Eleusine coracana Neck - - 2017 

36 K17 Kenya Kakamega Eleusine africana Neck Wild E. africana Weed 2016 

37 K29/164 Kenya Suba Eleusine coracana Panicle - - 2000 

38 K18 Kenya Eldoret Eleusine coracana Neck - Landrace 2016 

39 K19 Kenya Eldoret Eleusine coracana Neck - Landrace 2016 

40 K20 Kenya Eldoret Eleusine coracana Neck U15 Improved 2016 

41 K21 Kenya Marakwet Eleusine coracana Head - Landrace 2016 

42 K64/137p Kenya Homabay Eleusine coracana Panicle - - 2002 

43 K33/189 Kenya Kericho Eleusine coracana Leaf - - 2000 

44 K33/184 Kenya Kericho Eleusine coracana Panicle - - 2000 

45 K47/114p Kenya Kisii Eleusine coracana Panicle - - 2002 

46 K45/112n Kenya Kisii Eleusine coracana Neck - - 2002 

47 K44/111p Kenya Kisii Eleusine coracana Panicle - - 2002 

48 K48/115n Kenya Kisii Eleusine coracana Neck - - 2002 

49 K16 Kenya Kisii Eleusine coracana Neck - Improved 2016 

50 K33 Kenya Kisii Eleusine coracana Neck - - 2017 

51 K34 Kenya Kisii Eleusine coracana Neck - - 2017 

52 K35 Kenya Kisii Eleusine coracana Neck - - 2017 

53 K36 Kenya Kisii Eleusine coracana Neck - - 2017 

54 K37 Kenya Kisii Eleusine coracana Neck - - 2017 

55 K38 Kenya Kisii Eleusine coracana Neck - - 2017 

56 K39 Kenya Kisii Eleusine coracana Neck - - 2017 

57 K40 Kenya Kisii Eleusine coracana Neck - - 2017 

58 K41 Kenya Kisii Eleusine coracana Head - - 2017 

59 K42 Kenya Kisii Eleusine coracana Neck - - 2017 

60 K43 Kenya Kisii Eleusine coracana Head - - 2017 

61 K44 Kenya Kisii Eleusine coracana Neck - - 2017 

62 K45 Kenya Kisii Eleusine coracana Neck - - 2017 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

63 K24/127 Kenya Kisii central Eleusine coracana Panicle - - 2000 

64 K28/82w Kenya Teso Eleusine coracana - - - 2002 

65 K1/15 Kenya Teso Eleusine coracana Panicle - - 2000 

66 K9/46 Kenya Teso Eleusine indica Panicle - - 2000 

67 K14/74 Kenya Teso Eleusine indica Neck - - 2000 

68 K65/142n Kenya Teso Eleusine coracana Neck - - 2002 

69 K26/76p Kenya Teso Eleusine coracana Panicle - - 2002 

70 K36/98n Kenya Teso Eleusine coracana Neck - - 2002 

71 K21/68n Kenya Teso Eleusine coracana Neck - - 2002 

72 K15/53n Kenya Teso Eleusine coracana Neck - - 2002 

73 K12/62 Kenya Teso Eleusine coracana Neck - - 2000 

74 K13/67 Kenya Teso Eleusine coracana Neck - - 2000 

75 K5/23 Kenya Teso Eleusine coracana Neck - - 2000 

76 K65/159w Kenya Alupe/Teso Eleusine coracana - - - 2002 

77 K65/140n Kenya Alupe/Teso Eleusine coracana Neck - - 2002 

78 U1 Uganda Arua Eleusine coracana Neck Akokonyara Local 2015 

79 U2 Uganda Arua Eleusine coracana Neck Anya Local 2015 

80 U3 Uganda Arua Eleusine coracana Neck - - 2015 

81 U42 Uganda Arua Eleusine coracana Neck Anya Local 2016 

82 U24 Uganda Apac Eleusine coracana Neck - Local 2016 

83 U25 Uganda Apac Eleusine coracana Neck - - 2016 

84 U26 Uganda Apac Eleusine coracana Neck Toodyang Local 2016 

85 D10/s71 Uganda Apac Eleusine indica Leaf - - 2002 

86 D10/s73 Uganda Apac Digitaria scalarum Leaf - - 2002 

87 D10/s63 Uganda Apac Eleusine coracana Panicle - - 2002 

88 D10/s77 Uganda Apac Eleusine coracana Panicle - - 2002 

89 U15 Uganda Amuria Eleusine coracana Head Ekama Local 2016 

90 U50 Uganda Amuria Eleusine coracana Neck Ekama Local 2016 

91 U19 Uganda Alebtong Eleusine coracana Neck Otopotop Local 2016 

92 U20 Uganda Alebtong Eleusine coracana Neck - - 2016 

93 U21 Uganda Alebtong Eleusine coracana Neck - - 2016 

94 U53 Uganda Alebtong Eleusine coracana Neck - - 2016 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

95 U29 Uganda Amuru Eleusine coracana Neck Ajuku Local 2016 

96 U30 Uganda Amuru Eleusine coracana Neck Odyera Layelo Local 2016 

97 U54 Uganda Amuru Eleusine coracana Neck Ajukmanyige Local 2016 

98 U34 Uganda Agago Eleusine coracana Neck Awiliwili Local 2016 

99 U35 Uganda Agago Eleusine coracana Neck Adyang ataar Local 2016 

100 D6/s1 Uganda Bugiri Eleusine coracana Panicle - - 2000 

101 D8/s15 Uganda Busia Eleusine coracana Panicle - - 2000 

102 D9/s56 Uganda Lira Eleusine coracana Neck - - 2002 

103 D9/s76 Uganda Lira Eleusine coracana Panicle - - 2002 

104 D9/s70 Uganda Lira Eleusine coracana Neck - - 2002 

105 D9/s54 Uganda Lira Digitaria aegytium Panicle - - 2002 

106 D9/s50 Uganda Lira Eleusine indica Panicle - - 2002 

107 U22 Uganda Lira Eleusine coracana Neck - - 2016 

108 U23 Uganda Lira Eleusine coracana Neck - - 2016 

109 U28 Uganda Lira Eleusine coracana Neck Okutuwiye Local 2016 

110 D13/s5 Uganda Katakwi Eleusine coracana Panicle - - 2000 

111 U13 Uganda Katakwi Eleusine coracana Neck Etiyo Local 2016 

112 U14 Uganda Katakwi Eleusine coracana Neck Etiyo Local 2016 

113 D3/s24 Uganda Mbale Eleusine coracana Panicle - - 2000 

114 D3/s3 Uganda Mbale Eleusine coracana Panicle - - 2000 

115 D3/s9 Uganda Mbale Eleusine coracana Panicle - - 2000 

116 U58 Uganda Mbale Eleusine coracana Neck - - 2016 

117 D7/s6 Uganda Kamuli Eleusine coracana Panicle - - 2000 

118 D5/s1 Uganda Iganga Eleusine coracana Panicle - - 2000 

119 D12/s2 Uganda Nakasongola Eleusine coracana Panicle - - 2000 

120 D11/s16 Uganda Masindi Eleusine coracana Panicle - - 2000 

121 U43 Uganda Masindi Eleusine coracana Neck Kal Local 2016 

122 D2/s26 Uganda Kumi Eleusine coracana Leaf - - 2000 

123 D2/s14 Uganda Kumi Eleusine coracana Panicle - - 2000 

124 U8 Uganda Kumi Eleusine coracana Neck Okurut musisi Local 2016 

125 U9 Uganda Kumi Eleusine coracana Neck - Local 2016 

126 U10 Uganda Kumi Eleusine coracana Neck Omodingot Local 2016 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

127 U16 Uganda Kumi Eleusine coracana Neck - - 2016 

128 U48 Uganda Kumi Eleusine coracana Neck Obeet Local 2016 

129 U49 Uganda Kumi Eleusine coracana Head - - 2016 

130 U17 Uganda Ngora Eleusine coracana Neck - Local 2016 

131 U18 Uganda Ngora Eleusine coracana Neck - Local 2016 

132 U51 Uganda Ngora Eleusine coracana Neck Obeet Local 2016 

133 U52 Uganda Ngora Eleusine coracana Neck Obeet Local 2016 

134 U27 Uganda Gulu Eleusine coracana Neck - Local 2016 

135 U31 Uganda Gulu Eleusine coracana Head Odyera Local 2016 

136 U32 Uganda Kitgum Eleusine coracana Neck - Local 2016 

137 U33 Uganda Kitgum Eleusine coracana Neck - - 2016 

138 U55 Uganda Lamwo Eleusine coracana Neck Agriculture Improved 2016 

139 U36 Uganda Manafwa Eleusine coracana Neck Namakala Local 2016 

140 U37 Uganda Manafwa Eleusine coracana Neck - Local 2016 

141 U38 Uganda Manafwa Eleusine coracana Neck - - 2016 

142 U56 Uganda Manafwa Eleusine coracana Neck - Local 2016 

143 U44 Uganda Hoima Eleusine coracana Neck Kabiriti Local 2016 

144 U46 Uganda Hoima Eleusine coracana Neck Bulo Local 2016 

145 U47 Uganda Hoima Eleusine coracana Neck Bulo Local 2016 

146 D14/s30 Uganda Kabermaido Eleusine coracana Leaf - - 2002 

147 D14/s27 Uganda Kabermaido Eleusine coracana Panicle - - 2000 

148 D1/s72 Uganda Pallisa Eleusine coracana Leaf - - 2002 

149 D1/s53b Uganda Pallisa Eleusine coracana Leaf - - 2002 

150 D1/s11 Uganda Pallisa Eleusine coracana Neck - - 2000 

151 D1/s19 Uganda Pallisa Eleusine coracana Panicle - - 2000 

152 D1/s44 Uganda Pallisa Eleusine coracana Panicle - - 2002 

153 D1/s50 Uganda Pallisa Eleusine coracana Panicle 157 - 2002 

154 U11 Uganda Pallisa Eleusine coracana Neck Seremi 2 Improved 2016 

155 U12 Uganda Pallisa Eleusine coracana Neck - - 2016 

156 U4 Uganda Moyo Eleusine coracana Neck Duhwi Landrace 2015 

157 U5 Uganda Serere Eleusine coracana Neck Obeet Local 2016 

158 U6 Uganda Serere Eleusine coracana Neck Emoru, engeny Local 2016 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

159 U7 Uganda Serere Eleusine coracana Neck Seremi 2 Improved 2016 

160 U45 Uganda Serere Eleusine coracana Neck Kabiriti Local 2016 

161 D15/s37 Uganda Soroti Digitaria horizontalis Leaf - - 2002 

162 D15/s47 Uganda Soroti Eleusine coracana Neck - - 2002 

163 D15/s6 Uganda Soroti Eleusine coracana Panicle - - 2000 

164 D15/s41 Uganda Soroti Eleusine coracana Leaf - - 2002 

165 D15/s12 Uganda Soroti Eleusine coracana Panicle - - 2000 

166 E11p-1-1 Uganda Soroti Eleusine coracana Panicle - - 2004 

167 Gup-2-1 Uganda Soroti Eleusine coracana Panicle - - 2004 

168 Odyp-2-1 Uganda Soroti Eleusine coracana Panicle - - 2004 

169 Pen-2-2 Uganda Soroti Eleusine coracana Neck - - 2004 

170 P665n-2-1 Uganda Soroti Eleusine coracana Neck - - 2004 

171 Secn-2-2 Uganda Soroti Eleusine coracana Neck - - 2004 

172 S1p-1-1 Uganda Soroti Eleusine coracana Panicle - - 2004 

173 D4/s12 Uganda Tororo Eleusine coracana Panicle - - 2000 

174 D4/s26 Uganda Tororo Eleusine coracana Panicle - - 2000 

175 D4/s41 Uganda Tororo Eleusine coracana Neck - - 2002 

176 U39 Uganda Tororo Eleusine coracana Neck - Local 2016 

177 U40 Uganda Tororo Eleusine coracana Neck - Local 2016 

178 U41 Uganda Tororo Eleusine coracana Neck - Local 2016 

179 U57 Uganda Tororo Eleusine coracana Neck - Local 2016 

180 T1 Tanzania Nkasi Eleusine coracana Head Kahurunge Landrace 2016 

181 T2 Tanzania Nkasi Eleusine coracana Neck Kahurunge Landrace 2016 

182 T3 Tanzania Nkasi Eleusine coracana Neck Kafumbata Landrace 2016 

183 T24 Tanzania Nkasi Eleusine coracana Neck Kahurunge Landrace 2016 

184 T26 Tanzania Nkasi Eleusine coracana Neck Nameka Landrace 2016 

185 T27 Tanzania Nkasi Eleusine coracana Neck Kahurunge Landrace 2016 

186 T28 Tanzania Nkasi Eleusine coracana Neck Kahurunge Landrace 2016 

187 T29 Tanzania Nkasi Eleusine coracana Neck Kafumbata Landrace 2016 

188 T30 Tanzania Nkasi Eleusine coracana Neck Kahurunge Landrace 2016 

189 T33 Tanzania Nkasi Eleusine coracana Neck Kafumbata Landrace 2016 

190 T4 Tanzania Sumbawanga Eleusine coracana Neck Kahurunge Landrace 2016 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

191 T12 Tanzania Sumbawanga Eleusine coracana Neck Sanzala Landrace 2016 

192 T31 Tanzania Sumbawanga Eleusine coracana Neck Kahurunge Landrace 2016 

193 T32 Tanzania Sumbawanga Eleusine coracana Neck Kahurunge Landrace 2016 

194 T34 Tanzania Sumbawanga Eleusine coracana Neck Kahurunge Landrace 2016 

195 T6 Tanzania Njombe Eleusine coracana Neck Mbudi Landrace 2016 

196 T7 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

197 T8 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

198 T9 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

199 T16 Tanzania Njombe Eleusine coracana Neck Mbudi Landrace 2016 

200 T18 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

201 T20 Tanzania Njombe Eleusine coracana Neck Mbudi Landrace 2016 

202 T45 Tanzania Njombe Eleusine coracana Neck Mbudi Landrace 2016 

203 T46 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

204 T47 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

205 T48 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

206 T49 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

207 T50 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

208 T51 Tanzania Njombe Eleusine coracana Neck Mbudi/Tanzalo Landrace 2016 

209 T52 Tanzania Njombe Eleusine coracana Head Nanga/Tanzalo Landrace 2016 

210 T53 Tanzania Njombe Eleusine coracana Neck Mbudi Landrace 2016 

211 T54 Tanzania Njombe Eleusine coracana Head Wibunda Landrace 2016 

212 T55 Tanzania Njombe Eleusine coracana Head Wibunda Landrace 2016 

213 T56 Tanzania Njombe Eleusine coracana Neck Wibunda Landrace 2016 

214 T57 Tanzania Njombe Eleusine coracana Head Wibunda Landrace 2016 

215 T58 Tanzania Njombe Eleusine coracana Head Wibunda Landrace 2016 

216 T10 Tanzania Madaba Eleusine coracana Neck Lihegula Landrace 2016 

217 T11 Tanzania Madaba Eleusine coracana Neck Lihegula Landrace 2016 

218 T14 Tanzania Madaba Eleusine coracana Head Lihegula/Mbude Landrace 2016 

219 T15 Tanzania Madaba Eleusine coracana Head Lihegula/Mbudi Landrace 2016 

220 T17 Tanzania Madaba Eleusine coracana Neck Lihegula/Mbude Landrace 2016 

221 T35 Tanzania Madaba Eleusine coracana Neck Lihegula/Mbude Landrace 2016 

222 T13 Tanzania Momba Eleusine coracana Neck Naupule Landrace 2016 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

223 T22 Tanzania Momba Eleusine coracana Neck Naupule/Sulila Landrace 2016 

224 T23 Tanzania Momba Eleusine coracana Neck Naupule Landrace 2016 

225 T36 Tanzania Momba Eleusine coracana Neck Naupule Landrace 2016 

226 T37 Tanzania Momba Eleusine coracana Neck Kahurunge Landrace 2016 

227 T38 Tanzania Momba Eleusine coracana Neck Naupule Landrace 2016 

228 T5 Tanzania Mbozi Eleusine coracana Neck Maburunge Landrace 2016 

229 T19 Tanzania Mbozi Eleusine coracana Neck Mburunje Landrace 2016 

230 T21 Tanzania Mbozi Eleusine coracana Neck Inyiru(mweusi) Landrace 2016 

231 T25 Tanzania Mbozi Eleusine coracana Neck Yumbayumba Landrace 2016 

232 T39 Tanzania Mbozi Eleusine coracana Neck Kaburunge Landrace 2016 

233 T40 Tanzania Mbozi Eleusine coracana Neck Kaburunge Landrace 2016 

234 T41 Tanzania Mbozi Eleusine coracana Neck Uzelu Landrace 2016 

235 T42 Tanzania Mbozi Eleusine coracana Neck Maburunge Landrace 2016 

236 T43 Tanzania Mbozi Eleusine coracana Neck Makopera/Mburunje Landrace 2016 

237 T44 Tanzania Mbozi Eleusine coracana Neck Uzelu Landrace 2016 

238 E1 Ethiopia Sire Eleusine coracana Neck - Landrace 2015 

239 E2 Ethiopia Wayu Tuka Eleusine coracana Neck - Landrace 2015 

240 E18 Ethiopia Wayu Tuka Eleusine coracana Neck - - 2016 

241 E19 Ethiopia Wayu Tuka Eleusine coracana Neck - - 2016 

242 E21 Ethiopia Wayu Tuka Eleusine coracana Neck - - 2016 

243 E3 Ethiopia Adet Eleusine coracana Neck - Landrace 2015 

244 E4 Ethiopia Diga Eleusine coracana Head - Landrace 2015 

245 E5 Ethiopia Diga Eleusine coracana Neck - Landrace 2015 

246 E6 Ethiopia Diga Eleusine coracana Head - Landrace 2015 

247 E7 Ethiopia Diga Eleusine coracana Neck - Landrace 2015 

248 E20 Ethiopia Diga Eleusine coracana Neck - - 2016 

249 E29 Ethiopia Diga Eleusine coracana Neck - - 2016 

250 E32 Ethiopia Diga Eleusine coracana Neck - - 2016 

251 E33 Ethiopia Diga Eleusine coracana Head - - 2016 

252 E34 Ethiopia Diga Eleusine coracana Neck - - 2016 

253 E37 Ethiopia Diga Eleusine coracana Neck - - 2016 

254 E8 Ethiopia Lalo Assabi Eleusine coracana Head - Landrace 2015 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

255 E9 Ethiopia Lalo Assabi Eleusine coracana Neck - Landrace 2015 

256 E30 Ethiopia Lallo Asabi Eleusine coracana Neck - - 2016 

257 E10 Ethiopia Nedjo Eleusine coracana Head - Landrace 2015 

258 E22 Ethiopia Nedjo Eleusine coracana Head - - 2016 

259 E23 Ethiopia Nedjo Eleusine coracana Neck - - 2016 

260 E24 Ethiopia Nedjo Eleusine coracana Neck - - 2016 

261 E25 Ethiopia Nedjo Eleusine coracana Neck - - 2016 

262 E12 Ethiopia Banja Eleusine coracana Head - Landrace 2015 

263 E38 Ethiopia Banja Eleusine coracana Head - Landrace 2015 

264 E39 Ethiopia Banja Eleusine coracana Neck - Landrace 2015 

265 E49 Ethiopia Banja Eleusine coracana Head - Landrace 2015 

266 E50 Ethiopia Banja Eleusine coracana Neck - Landrace 2015 

267 E27 Ethiopia Bila Eleusine coracana Neck - - 2016 

268 E13 Ethiopia Bahir Dar Zuria Eleusine coracana Head - Landrace 2015 

269 E14 Ethiopia Bahir Dar Zuria Eleusine coracana Neck - Landrace 2015 

270 E55 Ethiopia Bahir Dar Zuria Eleusine coracana Neck - Landrace 2015 

271 E56 Ethiopia Bahir Dar Zuria Eleusine coracana Head - Landrace 2015 

272 E57 Ethiopia Bahir Dar Zuria Eleusine coracana Neck - Landrace 2015 

273 E58 Ethiopia Bahir Dar Zuria Eleusine coracana Neck - Landrace 2015 

274 E15 Ethiopia Bure Eleusine coracana Head - Landrace 2015 

275 E59 Ethiopia Bure Eleusine coracana Head - Landrace 2015 

276 E16 Ethiopia Demecha Eleusine coracana Neck - Landrace 2015 

277 E17 Ethiopia Angebo Eleusine coracana Neck - Landrace 2016 

278 E26 Ethiopia Leta Sibu Eleusine coracana Head - - 2016 

279 E28 Ethiopia Boji Bermeji Eleusine coracana Neck - - 2016 

280 E31 Ethiopia Gimbi Eleusine coracana Head - - 2016 

281 E35 Ethiopia Leka dulecha Eleusine coracana Neck - - 2016 

282 E36 Ethiopia Leka dulecha Eleusine coracana Head - - 2016 

283 E45 Ethiopia Leka dulecha Eleusine coracana Head - - 2015 

284 E40 Ethiopia Dangla Eleusine coracana Neck - Landrace 2015 

285 E41 Ethiopia Dure Bete Eleusine coracana Head - Landrace 2015 

286 E42 Ethiopia Dure Bete Eleusine coracana Neck - Landrace 2015 
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Serial 
No. 

Isolate Country of 
origin 

District Host Plant 
part 

Finger millet name Improved/Landrace Year of 
collection* 

287 E43 Ethiopia Dure Bete Eleusine coracana Head - Landrace 2015 

288 E44 Ethiopia Dure Bete Eleusine coracana Neck - Landrace 2015 

289 E46 Ethiopia Mandura Eleusine coracana Neck - Landrace 2015 

290 E11 Ethiopia Guangua Eleusine coracana Neck - Landrace 2015 

291 E47 Ethiopia Guangua Eleusine coracana Head - Landrace 2015 

292 E48 Ethiopia Guangua Eleusine coracana Neck - Landrace 2015 

293 E51 Ethiopia Mecha Eleusine coracana Head - Landrace 2015 

294 E52 Ethiopia Mecha Eleusine coracana Neck - Landrace 2015 

295 E53 Ethiopia Mecha Eleusine coracana Head - Landrace 2015 

296 E54 Ethiopia Mecha Eleusine coracana Neck - Landrace 2015 

297 E60 Ethiopia Ankussa-Abdo Eleusine coracana Head - Landrace 2015 

298 E61 Ethiopia Jabi Tana Eleusine coracana Head - Landrace 2015 

299 E62 Ethiopia Jabi Tana Eleusine coracana Neck - Landrace 2015 

300 E63 Ethiopia Qilxxu Kara Eleusine coracana Head - Landrace 2015 

R1 G22 Japan - Eleusine coracana - - - - 

R2 Guy11 French Guyana - Oryza sativa - - - - 

R3 TH3 Thailand - Oryza sativa - - - - 

R4 JP15 Japan - Oryza sativa - - - - 

R5 BR62 Brazil - Eleusine indica/africana - - - - 

R6 I-R-22 - - Buff mutant – laboratory - - - - 

R7 4136-4-3 - - Laboratory strain, 
weeping love grass 

- - - - 

*Isolates collected from 2000 to 2004 represent historical populations and those from 2015 to 2017 represent contemporary populations. R1 to R7 are previously 
characterised isolates that were utilised for various experiments in this study. - Information not available. 
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Figure 2.1A.  Map of Africa showing the four countries in Eastern Africa where the samples 
surveyed Ethiopia, Kenya, Uganda and Tanzania  
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Figure 2.1B.  Districts where the samples were surveyed in the four countries in Eastern Africa – 
Ethiopia, Kenya, Uganda and Tanzania 

Numbers in Red are the districts where both historical and contemporary samples were collected 
and black areas where only the contemporary samples were collected. Detail of districts are 
available in Table 2.1B 
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Table 2. 1B Detail of the districts and number of M. oryzae isolates collected in the countries 

surveyed in Eastern Africa 

Country Serial No. 
on Map 

District No. of 
sample 

collected 

Country Serial No. 
on Map 

District No. of 
sample 

collected 

Kenya 1 Busia 18 Uganda 
 
 

27 Kamuli 1 

2 Siaya 5 28 Iganga 1 

3 Bungoma 2 29 Nakasongola 1 

4 Kisumu 6 30 Masindi 2 

5 Kakamega 1 31 Kumi 8 

6 Gucha 4 32 Ngora 4 

7 Suba 1 33 Gulu 2 

8 Eldoret 3 34 Kitgum 2 

9 Homabay 1 35 Lamwo 1 

10 Kisii 18 36 Manafwa 4 

11 Kericho 2 37 Hoima 3 

12 Kisii central 1 38 Kabermaido 2 

13 Teso 12 39 Pallisa 8 

14 Alupe Teso 2 40 Moyo 1 

15 Marakwet 1 41 Serere 4 

Uganda 16 Arua 4 42 Soroti 12 

17 Apac 7 43 Tororo 7 

18 Amuria 2 Tanzania 
 
 

44 Nkasi 10 

19 Alebtong 4 45 Sumbawanga 5 

20 Amuru 3 46 Njombe 21 

21 Agago 2 47 Madaba 6 

22 Bugiri 1 48 Momba 6 

23 Busia 1 49 Mbozi 10 

24 Lira 8 Ethiopia 50 Sire 1 

25 Katakwi 3 51 Wayu Tuka 4 

26 Mbale 4 52 Adet 1 
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Country Serial No. 
on Map 

District No. of 
sample 

collected 

Country Serial No. 
on Map 

District No. of 
sample 

collected 

Ethiopia 53 Diga 10 Ethiopia 64 Boji bermeji 1 

54 Lalo Assabi 3 65 Gimbi 1 

55 Nedjo 5 66 Leka delecha 3 

56 Guangua 3 67 Dangla 1 

57 Banja 5 68 Dure Bete 4 

58 Bahir Dar 
Zuria 

6 69 Mandara 1 

59 Bure 2 70 Mecha 4 

60 Demecha 1 71 Ankussa-Abdo 1 

61 Angebo 1 72 Jabi Tana 2 

62 Leta Sibu 1 73 Qilxxu Kara 1 

 63 Bila 1     
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2.2 Media preparation and culturing of M. oryzae isolates 

2.2.1 Preparation of solid and liquid media 
 

M. oryzae isolates used in this study were cultured on potato dextrose agar (PDA), oatmeal 

agar (OMA) and potato dextrose broth (PDB) as required for the specific experiments. The 

media were prepared as instructed by the manufacturer and autoclaved under standard 

conditions of 121OC for 15 minutes at 15 psi. For routine culturing on solid medium (PDA 

and OMA), approximately 25 ml of molten medium cooled to ~ 50OC - 60OC were dispensed 

into 9 cm diameter Petri dishes in a laminar flow bench. The medium was allowed to cool 

and solidify for approximately 30 minutes and stored at 4OC till further use. Autoclaved PDB 

was stored at the room temperature and to set-up fungal cultures, appropriate volume (~25 

ml) was poured into sterile 9 cm diameter Petri dishes as required.  

 

2.2.2 Revival and sub-culture of the isolates  
 

M. oryzae isolates used in this work were available on desiccated filter paper discs stored at 

-20 OC. Isolates were revived by placing the filter paper discs containing the fungal mycelium 

and spores on PDA plates, which were maintained for 10 days at 25OC in an incubator 

(Panasonic, UK- MIR-154 model). Isolates were sub-cultured on fresh PDA plates for 7 days 

and maintained as above.  

 

2.2.3 Liquid culture for genomic DNA extraction 
 

Small blocks of mycelial mass with no or minimal agar were harvested from the sub-cultured 

plates of each isolate using a sterile loop. The fresh mycelium was introduced into 25 ml of 

PDB in 9 cm Petri dishes for each isolate. These cultures were maintained in a stationary 
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incubator at 25OC for 7 days to induce growth. On day 7, the mycelial mat was harvested 

from the liquid medium by carefully draining the liquid. The mycelial mat was rinsed with 20 

ml of distilled water twice to remove any traces of the medium residue and the liquid 

discarded as above. The mycelial mat for each isolate was immediately placed into a sterile 

20 ml plastic container and stored at -20OC till further use. The liquid waste from these 

processes was discarded following the standard operating procedure stipulated for the 

biological waste disposal, as part of the licence issued by the Animal and Plant Health 

Agency (APHA) of UK-Defra to hold and work with the blast pathogen M. oryzae isolates at 

the School of Life Sciences laboratories, University of Bedfordshire.  

 

2.3 Isolation and quantification of genomic DNA 
 

 Two methods were utilised for the fungal genomic DNA extraction depending on the 

experimental purpose. This includes a column-based method using a commercial kit and 

Hexadecyltrimethylammonium bromide (CTAB) method. Prior to the DNA extraction for 

each isolate, frozen mycelial mat (section 2.2.3) was freeze-dried for approximately 24 

hours. The freeze-dried mycelial mat for each isolate was placed in a sterile mortar; a small 

amount of Chelex® and liquid nitrogen or sterile acidic sand were added depending on the 

purpose of the experiment. The freeze-dried mycelium was ground to fine powder with a 

sterile pestle (for 10 to 15 minutes with acidic sand and approximately 5 minutes with liquid 

nitrogen). The mycelial powder for each isolate was stored at -20OC till further use for the 

genomic DNA extraction.  
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2.3.1 Extraction of genomic DNA for PCR amplifications (column-based method)  
 

The extraction of the genomic DNA through the column-based method was carried using 

GenEluteTM Plant Genomic DNA Miniprep commercial Kit (Sigma, UK-G2N350-1KT). Prior to 

the use of the kit, the wash solution was prepared by diluting the concentrate from the kit 

with absolute ethanol as directed by the manufacturer. Approximately 100 mg of the 

mycelial powder was transferred into a 2ml Eppendorf tube and the DNA isolation was 

performed following the manufacturer protocol. To elute the DNA, 100 µl of pre-warmed 

sterile water at 65OC was added directly to the binding column and incubated at room 

temperature for 5 to 7 minutes. The DNA was eluted from the binding column by 

centrifugation at 13,000 RPM for a minute. The elution process was repeated by loading the 

first elute into the binding column and centrifugation at the same speed for a minute to 

ensure maximum yield and concentration of the DNA. After the second elution, the binding 

column was discarded, and the genomic DNA was stored at -20OC till further use.  

 

 

2.3.2 Extraction of genomic DNA for Illumina sequencing (column-based method) 
 

Approximately 200 mg of the mycelial powder was transferred into 2 ml Eppendorf tubes 

for the DNA extraction. The DNA extraction was performed using the method referred in 

section 2.3.1 with a slight modification to the manufacturer protocol. The volume of the 

lysis solutions A and B and the precipitation solution were doubled. RNase digestion was 

performed using 40 µl (20-40 mg/ml concentration) at 65OC as suggested by the 

manufacturer. The DNA elution was performed as stated in section 2.4.1 but using a pre-
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warmed (65OC) Tris-EDTA (TE) buffer solution (10mM Tris-HCI, 1mM disodium EDTA, pH 

8.0).  

 

2.3.3 Extraction of genomic DNA for PacBio sequencing (CTAB method) 
 

Genomic DNA was extracted from the mycelial powder using a modified CTAB extraction 

protocol. Cut tips were used for pipetting throughout the process to extract higher 

molecular weight DNA. Approximately 300 mg mycelial powder was transferred to a sterile 

15 ml Fisher tube containing 3 ml pre-warmed 2X CTAB buffer (CTAB 2 %, Tris base 100mM, 

EDTA 10mM and NaCl 0.7M), mixed vigorously and incubated at 65OC for 30 minutes. After 

the incubation, 3 ml of chloroform-isoamyl alcohol 24:1 was added and gently mixed on a 

shaking platform for 20 minutes. The sample was centrifuged at 4OC at 10,000 xg for 20 

minutes, the aqueous phase was carefully transferred to a fresh 15 ml tube. The chloroform-

isoamyl alcohol extraction was repeated twice to ensure maximum removal of protein and 

the RNA was digested with 70 µl of RNase solution (20-40 mg/ml concentration) at 37OC for 

45 minutes. To precipitate the nucleic, after the third chloroform-isoamyl alcohol extraction, 

the aqueous phase was transferred to a 15ml tube and 4 ml isopropanol was added, which 

is mixed by through inversion and incubated at -20OC for approximately 7 hours for maximal 

DNA precipitation. The sample was centrifuged at 10,000 xg at 4OC for 20 minutes and the 

filtrate discarded. The pellet was resuspended in 800 µl TE buffer till the pellet is no longer 

visible. The DNA solution was transferred to a 2 ml Eppendorf tube and equal volume of 

phenol-chloroform-isoamyl alcohol (25:24:1) was added. The sample was mixed on a 

shaking platform for 20 minutes at room temperature and centrifuged at 16,000 xg for 20 

minutes at 4OC. The aqueous phase was carefully pipetted into a fresh 2ml Eppendorf tube 
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and the DNA was reprecipitated with one tenth of 3M sodium acetate and 2 volumes of 

absolute ethanol. The sample was incubated at -20OC for 10 minutes and centrifuged at 

16,000 xg for 20 minutes at 4OC and the filtrate discarded. The pellet was washed with 70 % 

ethanol and the filtrate discarded. The pellet was air dried in a sterile hood for 

approximately 15 minutes and resuspended in 100 µl of pre-warmed (65OC) elution buffer 

by incubation for an hour at 4OC to allow the DNA pellet to completely dissolve. The 

genomic DNA was stored at -20OC till further use.  

 

2.3.4 Gel electrophoresis 
 

Agarose gels were routinely used for electrophoresis of genomic DNA (0.7 %) or PCR 

products (1.0 %). To prepare the gel, 0.7 or 1.0 g agarose powder (Sigma, UK- A9539) was 

added to 100 ml of 1X TAE buffer. The gel suspension was boiled in a microwave oven for 

approximately 3 minutes ensuring the agarose was fully melted. The gel solution was 

allowed to cool to approximately 50OC and 5 µl of ethidium bromide (10 mg/ml stock; 

E1510, Sigma, UK) was added. Prior to this, comb was placed into the gel tray. The gel 

solution containing the ethidium bromide was carefully poured into a gel tray avoiding the 

generation of air bubbles and allowed to polymerise for approximately 30 minutes.  

 

2.3.5 Quantification of Genomic DNA 
 

The DNA samples were quantified using the electrophoretic and Nanodrop methods to 

assess the concentration, quality and integrity. In the electrophoretic method, 2 µl DNA + 6 

µl of sterile water + 2 µl of 5X loading buffer was prepared for each genomic DNA sample in 

a 0.5 µl microfuge tube. The DNA samples and known concentrations (30 ng, 60 ng, 90 ng 
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and 120 ng) of Lambda DNA (λDNA) were loaded into wells of a 0.7 % agarose gel and 

electrophoresed for approximately 150 mins at 45 V. The DNA concentration was estimated 

by comparing the intensity of the DNA florescence in each sample with the known 

concentration of λDNA. For the Nanodrop method, the Nanodrop machine was initially 

calibrated using a known concentration of λDNA (1ng/µl) and the DNA samples were 

processed according to the manufacturer’s instructions. DNA concentration of each sample 

was recorded using the 50ng reference value for DNA. The quality of each sample was 

assessed and recorded based on the 260/230 and 260/280 ratios.  

 

2.4 Identification and screening of genetic markers used in this study 

2.4.1 Identification of highly variable loci from known genetic markers 
 

Fifty (50) genetic markers widely used for fungal diversity and phylogenetic analysis 

including the ITS region were initially assessed bioinformatically. This was done by 

identifying these genes and/or the region in the genome sequence of the M. oryzae 

reference isolate (70-15) available at the Broad institute database. The nucleotide sequence 

for each locus was extracted, and BLASTN analysis was performed against the genomes of 

nearly 50 M. oryzae isolates from 4 different hosts (Oryzae sativa, Eragrostic curvula, 

Eleucine indica, and Setaria viridis) and diverse geographic locations available at the NCBI 

database to identify any differences among the isolates. Further analysis of selected 

sequences showing differences was carried out by generating alignments using the 

ClustalOmega algorithm and the nucleotides differences was assessed (as number of SNPs) 

among M. oryzae isolates from the same host and between different hosts.  

 



70 

 

2.4.2 Identifying novel variable loci from the FUNYBASE (Fungal phylogenomic database) 
 

From the 246-single copy ortholog genes contained in the FUNYBASE, more than 150 genes 

were selected for bioinformatics analysis. The protein sequence of M. oryzae gene available 

in FUNYBASE was downloaded and used as a query to perform a tBLASTN search against the 

reference genome of the M. oryzae isolate 70-15 databases (Dean et al., 2005). The 

nucleotide sequence of the gene was downloaded and used to perform BLASTN analysis 

against the genome sequences of the range of M. oryzae isolates as described in Figure 2.2.  

 

2.4.3 Identifying novel variable loci from specific chromosomes  
 

Fifty loci were randomly selected from each of the chromosomes 1, 2, 6, and 7 reported to 

contain large number of variable genomic regions in M. oryzae (Gwoda et al., 2015). BLASTN 

analysis and alignments of each gene were performed as stated in section 2.4.1. The 

nucleotide differences for each gene was assessed and recorded. In addition, BLASTN 

analysis and alignments were performed as above with some of the contigs that were 

randomly identified from these chromosomes. The main purpose is to evaluate the 

potential of the inter-genic regions. 
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Figure 2.2: Flow diagram showing the key steps employed in the identification of a novel marker 
       from FUNYBASE 
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2.4.4 Design and development of molecular markers 
 

The loci that showed higher number of SNPs within a length of approximately 250 to 900 bp 

were selected. The primer sequences were designed from the 5’ and 3’ conserved 

sequences flanking the variable regions. To ensure the efficiency of new primers developed, 

various parameters such as the length of oligonucleotides, the G-C content and the 

sequence (e.g. avoiding a stretch of G) were considered. PCR products of the selected 

marker regions were sequenced from a set of 15 isolates chosen from previous collection. A 

total of 13 regions were screened (Table 2.2A).  Five markers were identified from 

previously published work related to fungal phylogenetics including M. oryzae. These 

include ITS and Histone 4 (HIS4) as well as TEF1-α, MPG1 and NUT1 markers (Couch et al., 

2005).  Eight markers containing parts of genomic loci newly identified in this work were 

amplified using PCR primers designed from the M. oryzae genome sequence in this study. 

These markers include MS393, MS501a & b, MS550, HyP1, HyP2, HyP3 and HyP4 (Table 

2.2A). The sequence data generated for each marker region from the 15 isolates were 

aligned and the number of SNPs and informative sites are recorded. 
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Table 2.2A. Primers for the target gene loci used in PCR with the annealing temperature and expected product size. 

S/N   Genetic locus Marker 
Designation 

Primer F 5’ -3’ Primer R 5’-3’ Annealing 
Temp. 

(OC) 

Expected size 
(bp) 

1 Internal transcribed 
spacer 

ITS1 & 4a 
 

TCCGTAGGTGAACCTGCGG TCCTCCGCTTATTGATATGC 55 600 

2 Translation elongation 
factor 

TEF1-αa CATCGAGAAGTTCGAGAAGG TACTTGAAGGAACCCTTACC 55 350 

3 Hydrophobin gene MPG1b AGAAGGTCGTCTCTTGCTGC TTCACTCAACGCTGATCGC 55 450 

4 Nitrogen regulatory 
protein 

NUT1b CATGATGCACGTCAATCTGC CTGTGTCGGTGTCGGTGTCTGAACGC 58 350 

5 Histone 4 HIS4c CTCTTGAGAGCGTAGACAAC CTCATCCCACATGCACTTGAC 62 400 

6 NN* MS393c GCTTTGCACTGGGTCCTAC CTCTCCCTCAACACCTTCCAT 64 722 

7 Karyopherin MS501ac GCTCAGGATGTCTTCACGCC TAGCAGCTCGGTTGTCCTCT 66 745 

8  
CDP* 

MS501bc TGGTCCCTGAGAGCGAAACT TGACCATGAAACGCCAGCAC 60 751 

9 MS550c CTTGTGCAGCCGTCTACAGA CAAGGATGGGCCTATGTCATG 60 650 

10 Hypothetical protein HyP1d CTCACTGTTACGACCAGACAG TGGTAGGTGCGTACCTGTAC 62 840 

11 Hypothetical protein HyP2d  ATCTCCTTGGTAAATGCTGCCC CGACTCGGAAAAATAATGCCGC 66 552 

12 Hypothetical protein HyP3d  CGCTCGTCCTGAGCATACAGT GACCCAGCATGAGCGAGTTGA 58 624 

13 Hypothetical protein HyP4d  GTTGGAGGCTCTTGTATATGCC TTTGGTGTCGACGAGGAGAGAAG 58 617 
aMarkers from Carbone and Kohn, 1999;   bMarkers from Couch et al., 2005; cMarkers developed in this work from FUNYBASE;  

dMarkers developed in this work by analysing the variable regions of the chromosomes in M. oryzae genome sequence  

*NN: N2, N2-Dimethlyguanosine tRNA methytransferase; *CDP: CDP-diacylglycerol-glycerol-3-phosphate-3-phosphatidyltransferase 

Marker regions identified and new PCR primers designed in this study are shown in Bold; 

Markers selected for further population analysis are shown in Green.  
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Table 2.2B. Primers used for specific targets in PCR with the annealing temperature and expected product size. 

S/N PCR Target Designation Primer Fa (5’ - 3’) Primer Ra (5’- 3’) Annealing 

Temp. 

(OC) 

Expected size 

(bp) 

1 M. oryzae specific MG CTGTCGTTGCTTCGGCGGGCACGC ACGCCGGGACGATCCGAACGAGGTTC 55 400 

2 Grasshopper PES GCGTTCGAAGCGTTGAAACAC AGCTATATAAGCCCTAAGGTATTGC 60 1347 

3 Grasshopper PKE CGGAATTCTTCAGTCACGGGAACACGC TCCGAGGTGCACATGTGTGAAACGC 60 836 

4 Mating type gene 

MAT1-1 

MAT1-1 TGCGAATGCCTACATCCTGTACCGC CGCTTCTGAGGAACGCAGACGACC 60 960 

5 Mating type gene 

MAT1-2 

MAT1-2 TCTGCTTGAAGCTGCAATACAACGG CATGCGAGGGTGCCATGATAGGC 60 802 

a Primers developed by Takan et al., 2012
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2.5 PCR Amplification and purification and quantification of products 
 

Initial optimisation of the PCR conditions for each molecular marker was carried out in 20 µl 

reaction volume followed by gel electrophoresis quantification of the products. Following 

successful amplification of the products, reactions were scaled-up to 50 µl reaction and the 

products were quantified.  Pre-mixed 2X Biomix red (Bioline, UK) was used routinely, the 

mixture contains the DNA polymerase, dNTPs, MgCl2, red dye which also serves as the 

loading buffer to achieve consistency in PCR experiments.  

 

2.5.1 Confirmation of the isolates as M. oryzae using diagnostic PCR 
 

Previously designed primers specific for M. oryzae, designated as MGF (forward) and MGR 

(reverse) (Table 2.2B) were used to screen isolates representing historical and 

contemporary population to confirm their identity as M. oryzae isolates. The primers were 

designed from the rRNA gene block internal transcribed spacer (ITS) region (Takan, 2007). 

For each isolate, 20 µl PCR contained 10 µl of 2X BioMix Red, 1 µl each of primer pair 

(forward and reverse), 7 µl of sterile water and 1 µl of template DNA. DNA of previously 

characterised isolate K23/123 and a tube with water instead of DNA were used as the 

positive and negative control, respectively. The amplification was performed in a thermal 

cycler with 35 cycles consisting of denaturation at 94OC, annealing at 55OC, and extension at 

72OC. The first cycle consisted of 94OC for 2 minutes and 55OC for a minute followed by 33 

cycles for 94OC, 55OC and 72OC for 30 seconds and a final cycle with extension for 5 minutes 

at 72OC. The PCR products were electrophoresed on 1 % agarose gel stained with ethidium 

bromide for 60 minutes at 70 Volts. The gels were viewed under UV light and the data 

documented.  
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2.5.2 PCR reactions to amplify the product for each marker region 
 

The details of the various primer pairs used in this initial screening and subsequent 

population characterisation work have been presented above (Table 2.2). For the initial PCR 

testing and optimisation of the various markers, 20 µl PCR were prepared containing 1 µl of 

template DNA, 1 µl each forward and reverse primer (20 µM stock), 10 µl 2X Biomix and 7 µl 

of sterile water. For negative controls with no DNA, 8 µl of sterile water was added along 

with all other components. Following successful optimisation and good amplification of the 

products, for subsequent experiments, the PCR was scaled-up to 70 µl.   

With the markers selected for further work, 70 µl PCR included 3 µl DNA, 3 µl each forward 

and reverse primer (20 µM stock), 35 µl of 2X Biomix and 26 µl of sterile water. For the 

negative controls, 29 µl of sterile water was added along with all other components except 

DNA. PCR amplifications were performed in a thermal cycler (Bio-rad) with 34 cycles 

consisting of denaturation, annealing (Table 2.2A) and extension. The first cycle consisted of 

94OC denaturation, specified annealing temperature (Table 2.2A) and 72OC extension for a 

minute followed by 33 cycles of denaturation, annealing and extension for 30 seconds and a 

final cycle with extension for 5 minutes. Following the PCR, products (5 µl of each sample) 

were routinely electrophoresed on 1 % agarose gel stained with ethidium bromide at 70 

Volts for 60 minutes. The gels were viewed under UV light and the data documented 

 

2.5.3 PCR amplicon purification and quantification 
 

The PCR products in the 65 µl volume that remained for each sample after the 

electrophoresis were purified using a PCR product purification kit (28006, QIAGEN, UK) 

according to the manufacturer protocol. The purified DNA was eluted in 30 µl pre-warmed 
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(65OC) sterile water. To quantify the purified DNA, a 10 µl mixture containing 2 µl purified 

amplicon, 2 µl 5X DNA loading dye and 6 µl sterile water were electrophoresed alongside a 

DNA quantification marker (Easyladder1, Bio-33062; Bioline, UK) on 1 % agarose gel at 70 

Volts for 60 minutes. The amplicon size and concentration were estimated with reference to 

the DNA quantification molecular ladder mentioned above.  

 

2.5.4 PCR screening of M. oryzae isolates representing contemporary populations for the 

Grasshopper (grh) repeat element 
 

Two primer pairs designated as PES (forward and reverse) and PKE (forward and reverse) 

from different regions of the grh repeat element (Table 2.2B) were used to amplify 

approximately 1347 bp and 836 bp fragments, respectively. These primers were previously 

designed from the grh sequence available in the EMBL database (Takan, 2007). For each 

isolate, two separate PCR reactions were set-up with the PES and PKE primer pairs. Each 20 

µl PCR consisted 10 µl 2X BioMix Red, 1 µl each of the forward and reverse primers (20 µM 

stock), 7 µl sterile water and 1 µl DNA. For these PCR experiments, DNA from the M. oryzae 

G22 from which the Grasshopper element was originally described (Dobinson et al., 1993) 

was used as positive control and sterile water as negative control. The thermal cycling 

conditions consisted of denaturation at 94OC, annealing at 60OC and 72OC for the extension. 

The first cycle consisted of 94OC for 2 minutes, a minute at 60OC and 72OC, followed by 40 

cycles of 94OC, 60OC and 72OC each for 30 seconds, and a final cycle with extension for 10 

minutes at 72OC. The PCR products were resolved on agarose gels and the data were 

recorded as described earlier.  
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2.6 DNA sequencing  

2.6.1 Nucleotide sequencing of PCR amplicons 
  

DNA capillary sequencing based on Sanger chemistry was carried out utilising the service 

providing facility at the University of Cambridge, UK. For each sequencing reaction, the 

required quantity of purified PCR product was provided in 10 µl as recommended. The 

quantity of template DNA for sequencing was calculated based on 20ng per each 100 bases 

of the target fragment. The sequencing primer was provided as a 10 µM stock. For each 

isolate, sequence data was generated routine using the forward primer. Sequence data with 

the reverse primer was generated for validation and/or to resolve any ambiguous bases 

with some isolates. BioEdit program (Hall and Carlsbad, 2011) was utilised to view the DNA 

sequence trace files and the data was exported into the Geneious software, v9.1.8 (Kearse 

et al., 2012) for further analysis.  

 

2.6.2 Genome sequencing of 18 M. oryzae isolates using the Illumina platform 
 

Approximately 4 µg of genomic DNA in elution buffer was used for the construction of 

libraries to generate Illumina genome sequence outputs. For isolates K23/123 and E34, 

which were used to develop the reference genomes, two libraries were prepared using the 

TruSeq DNA PCR-Free Illumina Paired end (PE) and the Nextera Mate-Pair (MP) kits. The 

DNA fragment size range was 350 to 550 bp for the PE libraries, whilst for the MP libraries, 

the DNA fragment size ranged from 2 to 4 kb. The two libraries were sequenced using the 

Illumina MiSeq 600 cycles system to generate reads of 35 to 301 nucleotide bases length 

from both forward and reverse fragments. This work was carried out utilising the service 

provision at the University of Cambridge, UK. 
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For the resequencing of 16 M. oryzae isolates representing the finger millet blast pathogen 

population diversity in Eastern Africa, paired end (PE) libraries was prepared using TruSeq 

DNA PCR-Free Illumina library kit with a fragment size range of 150 to 200 bp. The libraries 

were sequenced using the Illumina HiSeq 4000 system to generate 100 bases per read 

length from each end of the fragments. This work was carried out utilising the service 

provision facility at the McGill University-Genome Quebec Innovation Centre, Canada.  

 

2.6.3 PacBio sequencing of the reference isolates K23/123 and E34 
 

Approximately 25 µg of genomic DNA in elution buffer was used to construct libraries where 

the sheared DNA size selection cut-off was from 15 to 50 kb. The size selected fragments 

were used to prepare a single molecule real time bell (SMRT-bell) template library based on 

PacBio protocol. The cut-off step was repeated to remove any smaller fragments generated 

during the SMRT-bell library preparation to minimise the number of DNA fragments less 

than 15 kb when subjected to sequencing. The library was sequenced using the PacBio 

Sequel system. This work was carried out utilising the service provision facility at the 

University of Liverpool, UK. 

 

2.7 Bioinformatic analysis of DNA sequences 
 

2.7.1 Multiple sequence alignment of marker data  
 

DNA sequence data generated for each marker from each isolate were exported to the 

Geneious (v9.1.8) and analysed with various algorithms available as plugins both for 

multiple sequence alignment and phylogenetic analysis, unless otherwise stated. Multiple 
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sequences for each marker were initially aligned using MAFFY. The alignment was visually 

inspected, edited and/or trimmed where required to ensure the sequence data for all 

isolates covers the same region (i.e. starting and ending with conserved sequences both at 

the 5’ and 3’ ends). This data was realigned using the MUSCLE to generate a best-fit 

alignment for each marker.  These alignments were subsequently used to generate a multi-

locus concatenated alignment (combined sequences) containing ITS, HIS4, HyP1 and HyP2 

markers using Geneious.  

 

2.7.2 M. oryzae genotype diversity and distribution 
 

Multiple sequence alignment data were analysed using Population Analysis with Reticulate 

Trees (POPART) program (Leigh et al., 2015) to determine the number of genotypes (each 

representing one or more isolates with identical DNA sequence) formed based on single 

marker (single locus) and concatenated sequence (multi-locus) data. The alignments were 

exported into POPART programme and the traits were constructed based on the numbers of 

isolates collected from each country. The alignments and the traits files were used 

collectively to determine the genotypes produced per marker sequence using the median 

joining network. Each circle produced represents a genotype and its size corresponds to the 

number of isolates per circle. Within the circles, differently coloured slices reflect the 

number of isolates from each country. The output was edited appropriately for effective 

visualisation.  
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2.7.3 Phylogenetic analysis 
 

Phylogenetic trees were generated both from the single locus and the multi-locus alignment 

data using the Bayesian method. Prior to this, multiple sequence alignments were exported 

to MEGA v7.0.26 (Kumar et al., 2016) to calculate the best-fit nucleotide substitution model 

for each locus. Based on the nucleotide substitution model determined in MEGA for each 

locus, a Markov Chain Monte Carlo (MCMC) algorithm was used to generate the 

phylogenetic trees with Bayesian probabilities using MrBayes plugin within Geneious 

(Kearse et al., 2012). The MCMC analysis was performed using the best evolutionary 

nucleotide substitution models determined in MEGA (v7. 0.25) with 5,000,000 cycles set at 4 

heated chains and burn-in length of 100,000 were run and sampled every 500 generations. 

Geneious was used to estimate 70 % Consensus phylogenies of the Bayesian probability for 

each MrBayes run where the first 25 % trees were discarded as burn-in. Phylogenetic groups 

or clades were identified by visual inspection of the tree topology.  

 

2.7.4 Pre-processing of raw sequence reads, de novo assembly of the genome sequences 

and quality assessment 
 

The quality of the raw sequences generated and the presence of any adaptor sequences 

were initially checked using the FASTQC (v0.11.7) program. The adaptor sequences where 

present in the raw data and low-quality bases with the Phred score of less than Q20 were 

removed using BBDuk plugin in Geneious 9.1.8 (Kearse et al., 2012), Trimmomatic v0.35 

(Bolger et al., 2014) and NxTrim (O’Connell et al., 2015). De novo assemblies of the Illumina 

read sequences were performed using the SPAdes assembler software v3.11.1 (Bankevich et 

al., 2012) with default setting. Scaffolds less than 1 kb in size were removed.  CANU 
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assembler v1.6 software (Koren et al., 2017) with default setting was used to assemble the 

raw data from PacBio sequencing. Due to the error rate of PacBio sequencing (Ross et al., 

2013) the assembled genome from the CANU were polished using high-quality raw reads 

from Illumina PE sequencing from the corresponding isolates K23/123 and E34 using Pilon 

program (Walker et al., 2014) and the polished assemblies were merged to their 

corresponding genome assemblies from the SPAdes using Quickmerge program 

(Chakraborty et al., 2016) for isolates K23/123 and E34. All the assembled genomes were 

screened for mitochondrial sequences and other contaminant sequences, which were 

discarded to retain only the nuclear genome assemblies for each of the M. oryzae isolates 

selected for this study. The quality of the assembly was evaluated using the QUAST program 

(Gurevich et al., 2013) based on the standard assembly statistics such as the N50 values, 

number of contigs, average contig size and the total assembled genome size. In addition to 

this, the Benchmarking Universal Single-Copy Orthologs (BUSCO) algorithm was used to 

assess the presence of ortholog genes in Fungi (Simao et al., 2015) as part of the yardstick to 

measure the completeness of the genome assembly.  

 

2.7.5 De novo gene prediction and gene distribution patterns in M. oryzae isolates 
 

Augustus (v2.7) program (Hoff and Stanke, 2013) with Magnaporthe grisea as the model 

(species = Magnaporthe grisea, strand = both, gene model = complete) was used to predict 

the complete gene sets in the genomes of the M. oryzae isolates selected in this study. 

OrthoVenn program (Wang et al., 2015) was used to analyse the distribution pattern of the 

genes by comparing the total predicted protein coding gene set across various isolates 

representing the finger millet blast pathogen populations in Eastern Africa. 
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2.7.6 Genome synteny analsyis of M. oryzae isolates 
 

Synteny Mapping and Analysis Program (SyMap) (Soderlund et al., 2006) was used to 

compare the assemblies of the two reference genomes developed from isolates E34 and 

K23/123, each representing distinct M. oryzae populations. Following the default setting, 

SyMap uses NUCmer for multiple genome alignments through a modified Smith-Waterman 

algorithm. This analysis was used to generate a circular map showing the region specific to 

each M. oryzae isolate (representing the grh positive and grh negative type populations) 

and dot-pot displays of syntenic regions between the assemblies of the two isolates.  

 

2.7.7 Identification and analysis of Grasshopper element in the genome of FMB 

 pathogen isolates 
 

Previously deposited Grasshopper (grh) DNA sequence from G22 isolate available in the 

Genbank database was identified and downloaded (Dobinson et al., 1993). BLASTN analysis 

of the two reference genome assemblies generated in this study was performed using the 

downloaded grh element sequence (reference grh sequence). This analysis was used to 

identify the presence of full and partial DNA sequence and the level of coverage of grh 

element in the genome of the isolates. The longest DNA sequence of the grh element copy 

in the genome of the two isolates was aligned to assess the level of variation using the 

MUSCLE program in Geneious. Furthermore, DNA sequence of the selected copy of the grh 

element in the genome of each of these isolates was compared to the isolate G22.  
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2.7.8 Variant calling 
 

To initiate the process of identifying single nucleotide polymorphisms (SNPs), curated PE 

sequence reads for each isolate were mapped to the genome assembly of E34 (Reference 

isolate containing the grh element) using Burrows-Wheeler Aligner (BWA) v0.7.5a (Li et al., 

2009). Alignment files obtained from the reference mapping were filtered and sorted into 

the standard output format using SAMtools (v0.1.19). The alignment SAM files were 

converted into BAM files and sorted (Li et al., 2009; Li et al., 2009; Li, 2011). The alignment 

BAM files were subjected to a combination of pipeline tools including SAMtools (mpileup), 

BCFtools v0.1.19 (Narasimhan et al., 2016) and VCFtools v1.4.1 (Danecek et al., 2011) with 

default settings to remove misalignment and VCF file generated. The VCF file generated for 

each alignment contained both the heterozygous and homozygous SNPs, and the Indels. The 

VCF files were filtered to remove the heterozygous SNPs and Indels. The homozygous SNPs 

between the test isolate and the reference isolate were identified using a combination of 

tools including VCFtools, varfilter and vcfutils.pl (Danecek et al., 2011; Yoshida et al., 2016).  

 

2.7.9 Phylogenomic analysis of BUSCO ortholog genes using the maximum likelihood 

method 
 

For this analysis, alongside the 18 genome assemblies of the FMB pathogen isolates from 

Eastern Africa generated in this study, 9 genome assemblies of M. oryzae isolates from 

finger millet in India as well as from other hosts including rice, wheat, wild finger millet and 

foxtail millet available in the GenBank database were included to enable a wider 

comparative analysis. BUSCO analysis using Sardiomycete single copy gene sets model was 

carried out to predict the BUSCO genes in the genomes of all the 27 isolates. Predicted 

single copy core Sardiomycete genes in the assemblies were extracted and aligned to 
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identify the genes common in all genomes using MAFFT (Katoh and Standley, 2013). The 

genes found common in all the genome assemblies (isolates) with phylogenetically 

informative levels of variation were retained and the genes that did not show the levels of 

variation were trimmed using TrimAL v1.4.1 (Capella-Gutierrez et al., 2009). The identified 

genes were concatenated and various isolates were aligned and used to construct a 

phylogenetic tree using RAxML. A single consensus phylogeny tree was generated from the 

concatenated sequence data using ASTRAL v5.6.1 (Mirarab et al., 2014; Shekhar et al., 

2017). The resulted tree was visualised using the R package GGtree v1.12.4 (Yu et al., 2016).  

 

2.8 Mating type identification and fertility status of M. oryzae isolates 

2.8.1 Mating type-specific PCR screening of the M. oryzae isolates representing the 

contemporary populations  
 

Two primer pair designated as MAT1-1F (forward) and MAT1-1R (reverse) and MAT1-2F 

(forward) and MAT1-2R (reverse) developed previously (Table 2.2B, Takan et al., 2012) were 

used in PCR to check for the amplification of approximately 960 bp or 802 bp fragments 

specific for MAT1-1 and MAT1-2, respectively. These primers were used to screen 224 M. 

oryzae isolates (Table 2.1) representing the contemporary population in this study collected 

from different districts of Kenya, Uganda, Ethiopia and Tanzania. For each isolate, a 20 µl 

PCR consisted of 10 µl of BioMix Red, 1µl of each primer (20 µM stock), 1 µl of template 

DNA and 7 µl of sterile water. DNA from previously characterised known Tester isolates I-R-

22 and JP15 were used as positive control for MAT1-1 and MAT1-2, respectively and a tube 

with water instead of genomic DNA was used as a negative control. The PCR thermal cycling 

conditions were as follows: initial denaturation at 94OC for 2 minutes, annealing and 
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extension for a minute each at 60OC and 72OC, respectively followed by 41 cycles of 94OC, 

60OC and 72OC for 30 seconds each and a final extension for 5 minutes. The PCR products 

were routinely electrophoresed on 1 % agarose gel stained with ethidium bromide for 70 

minutes at 70 Volts. The gels were viewed under a UV light and results documented using a 

bioimager (Biorad).  

 

2.8.2 Fertility fitness of the known or potential tester isolates 
 

To determine the fertility fitness of the known tester isolates of M. oryzae (Table 2.1), 

previously described procedures were used (Takan, 2007). Previously known testers 

included isolates TH3, I-R-22, 4136-4-3, K23/123, JP 15, BR16 and Guy11) along with a 

potential tester isolates D15/s47 (Table 2.1). Prior to the assay, the known tester and 

potential tester isolates were screened by mating type-specific PCR amplified to reconfirm 

their mating type. Tester isolates of opposite mating type were paired by placing small plugs 

of mycelium from the edge of 7 to 8-day old cultures and placed on OMA approximately 4 

cm apart. The plates containing paired isolates were wrapped with parafilm and incubated 

at 27OC ± 2OC under 12 hrs light and 12 hours dark for 8 days for the isolates to grow 

towards each other known as the interaction zone. On the 8th day, the incubator conditions 

were changed to 20OC ± 2OC and continuous white light. The plates were monitored at 5-day 

intervals for the presence of perithecia. The black line formed at the interaction zone, 

indicate perithecia, which were further observed under a stereomicroscope to confirm the 

perithecia production and the presence of asci and ascospores approximately on the 29th 

day after crossing. The isolates were designated as male or female or hermaphrodite 

according to the previously established nomenclature (Itio et al., 1983).  
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2.8.3 Compatibility and fertility status of contemporary isolates 
 

Characterised isolates representing the contemporary population in this study were crossed 

with the selected testers of opposite mating type. Mating type of the new isolates 

representing the contemporary populations was determined by the mating type-specific 

PCR. The testers used in the crosses with new isolates included MAT1-1 isolates TH3, I-R-22 

and 4136-4-3 and MAT1-2 isolates K23/123, and D15/s47. The crosses were performed on 

OMA as stated above.  The sexual reproductive behaviour of the isolates was designated 

according to Itio et al. (1983).  In female fertile isolates, perithecia were formed by the new 

isolates, while in male fertile (female sterile) isolates, perithecia were formed only by the 

tester isolates. When the perithecia were formed by both the new isolates and the tester 

isolates, the new isolates were designated as hermaphrodites (i.e. they were able to 

function as both female and male). The number of perithecia formed on the culture surface 

was estimated to assess the relative degree of fertility of each new isolate. The presence or 

absence of asci and ascospores was determined by picking up ~ 15 perithecia and placing 

them in a drop of water on a glass slide and squashing under a glass cover slip. The slide was 

mounted and observed on a stereomicroscope. For each batch of the experimental set-up, 

the tester isolates of the opposite mating types were crossed as positive control and to 

monitor the formation of perithecia with asci and ascospores.  
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Chapter 3 
 

3.0 Genetic diversity of the finger millet blast pathogen in Eastern 

 Africa 
 

3.1 Introduction 
 

Finger millet blast caused by the fungus M. oryzae is an endemic disease found in locations 

wherever the crop is grown. The severity of this disease is such that it accounts for a 

considerable proportion of finger millet production losses sufficient enough to feed millions 

of people annually (Strange and Scott, 2005; Lenne et al., 2007; Babu et al., 2013a). Apart 

from finger millet, blast disease also infects other cereal crops such as rice and wheat and 

ranks among the most significant plant diseases in the world threatening food sustainability 

(Talbot, 2003; Dean et al., 2012). With its distinctive capability to attack finger millet at all 

stages of growth from seedlings to maturity, the blast disease invasion can lead to total crop 

loss (Talbot, 2003; Ryan, 2016). However, given the economic and nutritional importance of 

finger millet to millions of people in developing countries, particularly Africa and Asia, it is 

crucial to develop sustainable control measures that are environmentally friendly and cost 

effective to the farmers. Planting of resistant cultivars has been recommended as the most 

effective control measure in curbing the menace of the blast disease as the crop is 

predominantly grown by subsistence farmers who cannot afford other methods such as 

expensive fungicides (US National Research Council, 1996). However, research with the rice 

blast system shows that the pathogen can breakdown host resistance within a relatively 

short period (Talbot et al., 1993; Talbot, 2003). Knowledge about the pathogen population 
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structure and its pattern of distribution are critical in the identification, development, and 

deployment of resistant varieties.   

In understanding the population diversity and distribution pattern of fungal pathogens, 

various molecular techniques such as RFLP, AFLP and DNA sequencing are widely used to 

assess the potential of genes and transposable elements to identify and resolve the 

evolutionary relationships in diverse species including M. oryzae.  In fungi, the nuclear 

encoded ribosomal RNA (rRNA) gene block consists of the 18S (known as the small subunit, 

SSU), 5.8S and 28S (known as the large subunit, LSU) rRNA genes and the spacers in 

between the genes (White et al., 1990). The rRNA gene block is present in multiple copies in 

the genome and the size and copy number vary from species to species (Poczai and 

Hyvonen, 2010). The genes are separated by two internal transcribed spacers (ITS-1 and ITS-

2) and flanked by two external transcribed spacers (5’-ETS and 3’-ETS). The rRNA gene 

blocks are separated by non-transcribed DNA commonly known as the intergenic spacer 

(IGS) region (see Figure 3.1) containing a number of repeated sequences, which boost the 

promoter activity (Poczai and Hyvonen, 2010). The rRNA gene block has been used for 

fungal diagnostics and assessing phylogenetic relationships over a wide range of taxonomic 

levels for more than 25 years (e.g. White et al., 1990; Schoch et al., 2012). The 18S gene is 

less variable in fungi, while the 28S gene shows a good resolution at certain species level 

(Schoch et al., 2012). The ITS region covers the ITS-1, 5.8S gene and the ITS-2, which are 

flanked by the 18S gene at the 5’ end and the 28S at the 3’ end as shown in Figure 3.1 

(White et al., 1990; Schoch et al., 2012; Koljalg et al., 2013; Nilsson et al., 2017). This region 

is found to be conserved across the fungal kingdom enabling high amplification success 
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using standard primers to identify high levels of inter-specific variation and sometimes also 

at intra-specific level (e.g. Schoch et al., 2012; Underhill and Iliev, 2014).  

   

 

 

 

 

Figure 3.1 Diagrammatic representation of the nuclear encoded ribosomal RNA (rRNA) gene block  

The ‘green’ and ‘blue’ boxes represent the 18S/28S and 5.8S genes, respectively; ‘yellow’ boxes 
represent the external transcribed spacers (ETS); thin lines represent the internal transcribed 
spacers (ITS) 1 and 2 and the intergenic spacer (IGS). 

 

Over 300, 000 full length sequences of the ITS region have been deposited in the gene banks 

covering more than 14, 900 fungal species making the region one of the widely used genetic 

markers (Koljalg et al., 2013). The ITS region has been proposed as the universal fungal DNA 

barcode (Schoch et al., 2012; Koljalg et al., 2013) and this region of the nuclear rRNA gene 

block evolves rapidly and may be distinct among species within a genus or among 

populations within a species (White et al., 1990; Nilsson et al., 2008). ITS-based genetic 

markers have been used extensively in the classification and population study of both 

pathogenic and non-pathogenic fungi to understand their evolutionary relationships (e.g. 

White et al., 1990; Sreenivasaprasad et al., 1996; Talhinhas et al., 2002).  In one of the 

studies of 52 M. oryzae isolates associated with the Eleusine species from diverse 

geographical locations, ITS region sequences distinguished two groups and it has been 

5.8S 28S 18S  
IGS IGS 

ITS-1     

ITS  

5’ 3’ 
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suggested that these groups evolved independently (Tanaka et al., 2009). One of the groups 

was close to M. oryzae isolates from Eragrostis species while the other was close to isolates 

from Triticum in Brazil and isolates from Lolium in Japan (Tanaka et al., 2009). Similarly, ITS 

sequences were utilised to discriminate between M. oryzae isolates from Eleusine species 

and Digitaria species in East Africa (Takan 2007; Takan et al., 2012). However, researchers 

have accentuated some limitations in the resolution of the rRNA markers compared to the 

protein coding gene markers (Bruns et al., 1992; Geiser et al., 2006; Hofstetter et al., 2007; 

Schoch et al., 2009). 

Protein coding genes have been identified to be more efficient and superior compared to 

the rRNA genes for cataloguing relationships at various taxonomic levels (Hofstetter et al., 

2007; Schoch et al., 2009). Research has shown that intron rich protein coding genes 

generally offer better resolution of closely related species and populations compared to the 

rRNA gene block markers (e.g. Geiser et al., 2006). They have been used extensively in the 

identification, classification and phylogenetic analysis of fungal species (e.g. Glass and 

Donaldson, 1995; Couch and Kohn, 2002; Tanabe et al., 2004). Protein coding genes could 

be housekeeping genes such as translation elongation factor, actin, histone, beta-tubulin, 

calmodulin, and the largest subunit of RNA polymerase II or functional genes such as mating 

type (MAT, Kang et al., 1994; Ramirez-Prado et al., 2008) and hydrophobin (MPG1) genes 

particularly to analyse populations associated with different hosts and/or inter-species 

relationships (Talbot et al., 1993; Couch et al., 2005; Inoue et al., 2016). For example, 

molecular markers designed from some housekeeping and functional genes have been used 

for the phylogenetic analysis and separation of M. oryzae and M. grisea (Couch and Kohn, 

2002, You et al., 2012; Takan et al., 2012) and mainly for inter-specific relationships in other 
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fungi such as Fusarium species (Donaldson et al., 1995), Colletotrichum species (Baroncelli et 

al., 2015).  

Increase in the number of fungal genome sequences has revolutionised the possibilities for 

the identification and development of novel loci for diagnostics, diversity at the inter- and 

intra-species levels and phylogenetic relationships of many species (Aguileta et al., 2008). 

Applying resources from about 30 fungal genomes representing Ascomycetes, 

Basidiomycetes, Zygomycetes deposited in various databases such as NCBI, JGI, BROAD, 246 

single copy ortholog genes have been identified (Marthey et al., 2008). These genes are 

available for public access in the Fungal Phylogenomic Database (FUNYBASE) as a resource 

to identify genes with high informative value for comparative studies and phylogenetic 

reconstruction (Marthey et al., 2008). This resource has shown to be useful to identify novel 

markers that provide good resolution in the population study of some fungal pathogens e.g. 

Alternaria species and Fusarium species (Aguileta et al., 2008; Townsend and Lopez-

Giraldez, 2010, Feau et al., 2011; Walker et al., 2012; Armitage et al., 2015; Almiman, 2018). 

In addition, the genome data also serves as useful resources for identifying SNP-rich regions 

in the genome providing the prospect for developing novel molecular markers (e.g. Sun et 

al., 2013). High genetic variability often observed among M. oryzae isolates requires in-

depth characterisation and monitoring of the populations to enable the development and 

deployment of the resistant cultivars. Moreover, the availability of high-resolution 

molecular markers is useful to distinguish populations adapted to different host plants.  
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3.1.2 Aim and Objectives 
 

Investigations in this chapter aim to advance our understanding of the population structure 

and phylogenetic relationships of M. oryzae associated with finger millet production 

systems in Eastern Africa. Also, to evaluate the relationship between the M. oryzae isolates 

from finger millet in Africa and Asia based on the presence of the Grasshopper (grh) 

element in the fungal genome. The specific objectives are as follow: 

1. To utilise the available molecular genetics and genomic resources to identify and/or 

develop molecular markers showing high variability among the M. oryzae isolates 

from a single host. 

2. To assess the genetic diversity of the finger millet blast pathogen populations in 

Eastern Africa, representing historic and contemporary isolates, using the selected 

molecular markers. 

3. To gain insights into the pathogen distribution pattern in space and time and the 

evolutionary relationships within and between the populations originating from 

different countries.  

4.  To screen the contemporary population of M. oryzae from finger millet and related 

hosts in Eastern Africa for the presence of the grh element. 
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3.2. Experimental approaches 
 

Three hundred M. oryzae isolates (Table 2.1A) from four countries (Kenya, Uganda, Tanzania 

and Ethiopia) in Eastern Africa (Figure 2.1B) have been characterised using sequence-based 

molecular markers. Seventy-six isolates from Kenya and Uganda represent historic 

populations (2000-2004) and 224 isolates from all four countries represent contemporary 

populations (2015-2017) from key finger millet production locations (districts) (Table 2.1B). 

Genomic DNA extracted from each isolate was subjected to initial screening and validation 

with the M. oryzae diagnostic primers (MGF and MGR) (section 2.5.1). Three bioinformatic 

approaches were used to identify potential molecular markers with the resolution to 

decipher genetic diversity of M. oryzae isolates associated with a single host. These include 

i) screening known phylogenetic markers, ii) evaluation of genes in the FUNYBASE, and iii) 

analysis of variable chromosomes in the genome of M. oryzae isolates from a single host 

(e.g. rice) as described in Chapter 2 (sections 2.4.1 - 2.4.4). Subsequently, PCR amplification, 

sequencing and alignment of the 13 selected markers (Table 2.2A) were performed with 15 

M. oryzae isolates representing the populations associated with finger millet to determine 

the efficacy of the markers (section 2.5.2 and 2.5.3). Out of the 13 markers initially tested, 

four markers (ITS, HIS4, HyP1 and HyP2) were selected to characterise the 300 M. oryzae 

isolates (section 2.5.2 and 2.5.3). The nucleotide sequence data generated were subjected 

to a range of analysis such as multiple sequence alignment to assess the genetic diversity 

(e.g. number of SNPs, parsimony informative sites and genotypes) and the phylogenetic 

relationships (e.g. Reticulate network trees and Bayesian posterior probability trees) allied 

to the host domestication, intensification and geographic diversity (section 2.6 – 2.7). Also, 

the contemporary isolates were screened for the Grasshopper (grh) transposable element 



95 

 

using a PCR-based approach with two sets of primers targeted to amplify different parts of 

grh designated as PKE and PES (section 2.5.4). For this analysis, M. oryzae isolate G22 from 

finger millet in Japan was used a reference, as the grh element was originally described from 

this isolate (Dobinson et al., 1993). 

 

3.3 Results 
 

3.3.1 Screening and validation of fungal isolates as M. oryzae  
 

A total of 300 M. oryzae isolates (Table 2.1A) from various districts of Kenya, Uganda, 

Tanzania and Ethiopia as well as one reference isolate (G22) were used in this chapter. 

Initially, the isolates were observed for typical morphological appearance of M. oryzae on 

PDA plates (data not shown). Genomic DNA (gDNA) isolated from the cultures was screened 

using the diagnostic PCR with M. oryzae-specific primers designated as MGF (forward) and 

MGR (reverse) as described in Chapter 2 (Table 2.2B). In all the isolates approximately 400 

bp product was amplified (e.g. Figure 3.2), which is comparable to the K23/123 isolate used 

as the positive control, confirming all the isolates as M. oryzae. K23/123 isolate has been 

previously characterised as M. oryzae and used in various molecular and biological assays in 

our laboratory. As expected, R16, a Fusarium proliferatum isolate used as a negative control 

in the PCR analysis did not amplify any product. Majority of the 300 M. oryzae isolates were 

collected from finger millet landraces and/or local varieties, and very few were from 

improved varieties (Table 2.1A). 
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  Figure 3.2.  Agarose gel image showing the positive PCR product with the M. oryzae-specific primers  

The product size for each isolate is approximately 400 bp. Lane M – Known size DNA molecular ladder (bp); Lane 1 - K1; Lane 2 - K2; Lane 3 - 
U1; Lane 4 – U2; Lane 5 – U3; Lane 6 -T1; Lane 7-T2; Lane 8 – E1; Lane 9- E2; Lane 10- K23/123 (Positive control, previously characterised as 
M. oryzae isolate); Lane 11- R16 (Fusarium proliferatum isolate as a negative control); Lane W- PCR containing water instead of genomic 
DNA (Negative control). Isolate details are presented in Table 2.1A.
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3.3.2 Identification and development of high-resolution molecular markers  
 

Key resources used in this context are data from known fungal phylogenetic markers, the 

FUNYBASE and the genome sequence data of 49 M. oryzae isolates from various hosts as 

available in NCBI at the start of this work. These were used for the three different 

bioinformatics-based approaches taken to identify potential molecular genetic markers as 

described in 3.2. 

 

3.3.2.1. Screening of known phylogenetic markers  
 

Fifty previously used fungal phylogenetic markers (loci) including the ITS region that has 

been proposed as a universal fungal barcode marker were identified from the literature. The 

DNA sequence data of these markers were extracted from the M. oryzae genomes and 

analysed bioinformatically to determine the level of nucleotide variability among the blast 

pathogen isolates from a single host (e.g. rice) and different hosts. The number of SNPs in 

the alignment for each locus varied from 0 to 5 for the isolates from the same host and 

ranged from 0 to 21 for isolates from different hosts (Table 3.1). Loci that showed a high 

number of SNPs among isolates from a single host include ITS, histone 3 (HIS3) and histone 4 

(HIS4) ranging from 4 – 5 (Table 3.1).  
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Table 3.1: Number of SNPs identified for previously used fungal molecular genetic markers based on the data extracted for each marker utilising the 
genome sequences of 49 M. oryzae isolates accessed via the NCBI database 
 

S/N LOCUS NAME LOCUS TAG GENE 
LENGTH 

(bp) 

CHROMOSOME NUMBER OF 
SNPs WITHIN 

A HOST* 

LENGTH OF THE 
VARIABLE 

REGION** (bp) 

NUMBER of SNPs 
AMONG 

DIFFERENT 
HOSTS*** 

LENGTH OF THE 
VARIABLE 

REGION**** (bp) 

1 Internal transcribed 
spacer (ITS) 

- 550 - 5 550 7 550 

2 18s rRNA biogenesis 
protein (RCL1) 

MGG_04422 1418 2 1 1418 1-2 420 

3 Actin MGG_03982 2481 6 1 2481 6 2481 

4 Glyceraldehyde-3-
phosphate-

dehydrogenase 
(GAPDH) 

MGG_01084 1232 5 0 1232 2 420 

 

5 5s RNA MGG_20333 116 1 1 116 1 116 

6 Eukaryotic translation 

initiation factor elF-1 

MGG_13474 1356 4 1 1356 7 936 

7 Eukaryotic translation 
initiation factor subunit 

alpha 

MGG_13200 2090 3 1 2090 1 2090 

8 Hydrophobin like 

protein (MPG1) 

MGG_01315 926 7 2 540 6 540 

9 Chitin synthase 8 MGG_13013 6635 3 2 2000 9 6335 
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10 Translation initiation 

factor 

MGG_12301 2464 2 1 2464 3-7 1020 

11 Transcription 

elongation factor 

MGG_12268 3250 2 1-3 1860 12-14 1860 

12 Translation initiation 
factor elf- 2B subunit 

MGG_12177 2281 6 1 2281 2-16 1400 

13 Ras protein let-60 MGG_12077 2511 6 1 2511 5-12 1600 

14 Transcription 

elongation factor SPT6 

MGG_11491 4991 5 1 4991 2-6 4000 

15 Translation initiation 
factor IF-2 

MGG_11482 4117 5 1 4117 3-7 1000 

16 Eukaryotic translation 

initiation factor 3 

subunitA 

MGG_10192 4183 2 0 4183 1-2 4183 

17 Protease MGG_09246 2813 1 2 2100 4-6 2160 

18 Fungal specific 

transcription factor 

domain 

MGG_09027 3778 7 0 3778 9 1000 

19 Translation initiation 

factor e1F4E3 

MGG_08170 2746 2 1 2746 1-2 2746 
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20 Elongation factor Tu MGG_08162 2039 2 2 1740 4-10 1800 

21 Plasma membrane 

ATPase 

MGG_07200 4354 7 2 2940 3-7 1506 

22 Eukaryotic translation 

initiation factor 3 

subunit 

MGG_07109 1802 2 1 1802 3-10 1026 

23 Glutamine Synthetase MGG_06888 2768 1 2 2768 3-8 1806 

24 Calmodulin MGG_06884 977 1 1 977 1 977 

25 Histone H2A MGG_03577 1325 4 1 1325 4 2000 

26 Histone H2B MGG_03578 1069 4 1 1069 2-4 1000 

27 Histone H3 MGG_01159 1094 5 5 900 7-12 1000 

28 Histone 4 MGG_06293 1064 4 4 300 4 600 

29 Histone 4B MGG_01160 860 5 2 650 2 650 

30 Ras-like protein MGG_06154 2101 3 1 2101 1 2101 

31 Translation initiation 

factor e1F-2B subunit 

MGG_06077 1916 3 1 1916 2 600 

32 Eukaryotic Translation 

initiation factor 5B 

MGG_06066 4469 3 1 4469 1 4469 
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33 Chitin Synthase D MGG_06064 2702 3 1-2 700 3-6 1000 

34 Chitinase 1 MGG_05533 1388 1 1 1200 5 1250 

35 Chitinase MGG_04534 4604 2 2 4600 9-12 4600 

36 Chitin synthase 2 MGG_04145 4551 6 1 4511 9-11 1500 

37 Elongation factor 1-

alpha 

MGG_03641 2606 4 1-2 300 2-6 1000 

38 Chitin synthase 1 MGG_01802 4137 2 1-2 2 5 3000 

39 Hydrophobin MGG_01173 469 2 1 469 1-7 469 

40 Cutinase 1 MGG_00734 871 5 0 871 0 871 

41 Tubulin beta chain MGG_00604 2498 5 0 871 2 2498 

42 N-glycolase/ DNA lyase MGG_00367 1443 5 0 1443 6-7 1000 

43 DNA lyase 1 MGG_10609 1703 1 0 1703 7-8 1703 

44 DNA lyase 2 MGG_02980 3836 7 1 3836 3-8 1200 

45 DNA- directed RNA 
polymerase II largest 

subunit 

MGG_04652 6954 2 1 6954 4 2500 

46 DNA- directed RNA 
polymerase III subunit 

RPC1 

MGG_04477 4700 1 1 4700 11-12 2000 
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*Number of SNPs identified among the isolates of the same host, in this context -isolates from rice only. 

**Size of the variable regions (bp) among M. oryzae isolates from the same host; 

***Number of SNPs observed among the isolates from different hosts, in this context – isolates from rice and weeping lovegrass. 

****Size of the variable region (bp) among M. oryzae isolates from different hosts 

The locus in bold showed a higher number of SNPs in distinguishing isolates from the same host. However, only ITS and histone four were selected for 
further screening 

  

47 DNA- directed RNA 
polymerase 1 subunit 

RPA1 

MGG_01158 5790 5 1 5790 3 500 

48 Nitrogen regulatory 

protein 

MGG_02755 4817 7 1 4817 5 450 

49 Superoxide dismutase 

(SOD) 

MGG_00212 1305 5 1 1305 17-21 1000 

50 Superoxide dismutase 

(SOD) 

MGG_02625 903 7 1 903 3-4 600 
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3.3.2.2. Screening the FUNYBASE loci for the identification of novel phylogenetic 

markers 
 

Out of the 246 single copy genes available in FUNYBASE, more than 150 loci were identified 

and analysed using the bioinformatics approach as described in the materials and methods 

(section 2.4.2 and Figure 2.2). The bioinformatics analysis of the majority of the markers did 

not reveal any SNPS or revealed a small number of SNPs for the M. oryzae isolates from the 

same host. The number of SNPs among the isolates from different hosts was higher (Table 

3.2).  Among the loci analysed, 16 loci showed SNPs ranging from 1 to 12 among isolates 

from the same host and 2 to 57 with isolates from different hosts based on DNA sequence 

alignments (Table 3.2). Two loci MS393 (MGG_01448; N2, N2, - Dimethlyguanosine tRNA 

methytransferase) and MS501 (MGG_01449; Karyopherin) showed higher number of SNPs 7 

and 12, respectively for the M. oryzae isolates from the same host (Table 3.2).   
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Table 3.2: Number of SNPs identified from some selected FUNYBASE loci utilising the genome sequences of 49 M. oryzae isolates 

SN FUNYBASE 
ID 

Protein accession 
number 

Locus tag Locus name Chromosome Gene 
Length 

(bp) 

Size*  
(bp) 

No. 
of 

SNPs 

Size**   
(bp) 

No. 
of 

SNPs 

1 MS277 MGG_01087 MGG_01087 Ribosome biogenesis protein TSR1 5 3984 3984 1 2100 10 

MGG_06202 GTP binding protein Bms1 3 3984 3984 1 2100 10 

 
2 

 
MS447 

 
MGG_01205 

MGG_01205 tRNA-dihydrouridine synthase 3 2 2874 2874 0 2100 2 

MGG_08825 tRNA-dihydrouridine synthase 1 2 2317 2317 0 2150 1-3 

MGG_01648 tRNA-dihydrouridine synthase 2 2091 2091 1 2091 1-2 

3 MS393 MGG_01488 MGG_01448 N2, N2- Dimethlyguanosine   tRNA 
methytransferase 

2 2229 900 7 1300 9 

4 MS550 MGG_07543 MGG_07543 CDP-diacylglycerol-glycerol 3 phosphate – 3 
–phoshatidyltransferase 

3 2031 2031 0 1000 30-45 

5   MS501+ MGG_01449 MGG_01449 Karyopherin 2 3307 2280 12 2280 12-14 

6 FG909 MGG_07518 MGG_07518 Centromere/ microtubule-binding protein 
cbf 5 

3 3723 3723 1 1560 22-24 

7 FG1020 MGG_03255 MGG_03255 Ubiquitin conjugation factor E4 4 4666 4666 1 2500 11-12 

8 FG740 MGG_06712 MGG_ 06712 5 Methytetradropteroltrigkutamate – 
homocysteine-5-methytransferase 

1 3299 3299 1 3000 3 

9 FG533 MGG_05481 MGG_05481 Elongator complex protein 3 1 2172 2172 1 1200 15-25 

10 FG975 MGG_04478 MGG_04478 Fimbrin 1 2682 2682 1 800 5 

MGG_06475 Alpha-actinin 4 3358 3358 0 1200 4 

11 FG465 MGG_09222 MGG_16248 30s ribosomal protein S5 1 1354 1354 1 900 4 

12 FG649 MGG_01622 MGG_01622 Uroprophyrinogen decarboxylase 2 2277 2277 1 900 7 

13 FG1056 MGG_09555 MGG_09555 Double-strand break repair protein mus-23 2 2801 2801 0 2000 2 

14 FG1073 MGG_06348 MGG_06348 Adenylyl-Sulfate kinase 4 1118 225 1-2 500 3 

MGG_15027 Sulfate adenylyltransferase 7 2406 2406 1 1000 16 

15 MS320 MGG_07317 MGG_07317 Glutamate-cysteine ligase 2 3598 3598 1 1000 14 

 
16 

 
MS587 

 
MGG_02986 

MGG_02986 DNA polymerase zeta catalytic subunit 7 5892 840 2 5000 57 

MGG_08071 DNA polymerase delta catalytic subunit 2 3000 3000 0 3000 17 

MGG_06397 DNA polymerase alpha catalytic subunit 4 5302 5302 1 5302 2 

*Size of the variable regions (bp) among M. oryzae isolates from the same host; **Size of the variable region (bp) among M. oryzae isolates from different hosts. The FUNYBASE 
genes shown in bold were developed into molecular markers for further screening. 
+Two variable regions were identified for the development and testing of the PCR amplification and sequencing process of potential markers 
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3.3.2.3 Identification of novel markers representing highly variable regions of the genome  
 

A large number of variations have been reported to occur in chromosomes 1, 2, 6 and 7 in 

the genome of M. oryzae based on a comparative analysis of isolates B157 and MG01 from 

rice (Gowda et al., 2015). Around 50 loci were randomly selected from each of the 

chromosomes mentioned above from the M. oryzae reference genome (from strain 70-15) 

deposited in the BROAD institute database. These loci were analysed bioinformatically using 

the BLAST alignment tools. This led to the identification of a locus MGG_16180.7 that 

showed 13 SNPs differentiating the two rice blast isolates B157 and MG01. This locus relates 

to a hypothetical protein located in chromosome 1 with a gene size of 2765 bp in 70-15. The 

variable region spanning ~1000 to 2000 bases was used to develop the HyP1 marker. 

Subsequently, intergenic regions between the loci were analysed by aligning some contigs in 

these chromosomes. This also led to the identification of three potential marker regions 

(designated as HyP2 - HyP4) that showed high number of SNPs ranging from 16 to 20 among 

the isolates from the same host.   

 

3.3.3 PCR amplification and sequencing of potential markers 
 

To develop routinely usable genetic markers, initially, the most variable region was 

identified within each of the 13 potential marker loci identified from the three different 

bioinformatic approaches. The variable regions of these loci covered both exons and 

introns. Primers were designed from the upstream and downstream conserved sequences 

flanking the variable regions (Table 2.2A). The primers designed were used in PCR 

amplifications alongside some known markers enabling a base line comparison (Table 2.2A). 
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Fifteen isolates were selected from the historical population for the initial screening by PCR 

amplification and sequencing and the data was manually edited and aligned. The number of 

SNPs present and the number of parsimony informative sites (PIS) in the alignment of the 15 

isolates were used as the benchmark to identify markers for further analysis (Table 3.3). 

Four markers including ITS, HIS4, HyP1 and HyP2 were selected and used for the 

characterisation of the 300 isolates representing historical and contemporary populations. 

 

Table 3.3: DNA sequence variability data for the 13 potential markers following PCR amplification, 
sequencing and bioinformatics analysis in 15 M. oryzae isolates  

S/N Molecular markers Expected 
products size 

SNPs PIS** Indel 

1 ITS* 600 4 4 0 

2 TEF1-α 400 3 2 0 

3 MPG1 450 0 0 0 

4 NUT1 350 2 1 1 

5 HIS4* 400 4 4 0 

6 MS393 722 2 1 0 

7 MS501a 650 3 1 0 

8 MS501b 745 2 1 0 

9 MS550 650 1 0 0 

10 HyP1* 840 81 70 10 

11 HyP2* 550 49 36 2 

12 HyP3 620 16 16 3 

13 HyP4 630 3 2 3 

*Bold, Markers selected for further characterisation of the 300 isolates used in the study. 

**PIS, Parsimony informative site; a site that contains at least two types of nucleotides, and at least 
two of them occur with a minimum frequency of two among the samples as defined by Tamura K, 
Dudley J, Nei M & Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) 
software version 4.0. Molecular Biology and Evolution 24:1596-1599. 
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3.3.4 Evaluation of the Genetic diversity and phylogenetic relationships among the 300      

M. oryzae isolates  
 

Genotypic characterisation of 300 M. oryzae isolates associated with finger millet and 

related weed hosts from key cropping location in Kenya, Uganda, Tanzania and Ethiopia in 

Eastern Africa was carried out using the four molecular markers. These included two novel 

molecular genetic markers designated as HyP1 and HyP2 developed in this study, fungal 

universal DNA barcode marker ITS and a housekeeping gene marker HIS4. Among the 300 

isolates, seventy-six represented historic population from Kenya (32 isolates) and Uganda 

(44 isolates) selected from a previous collection of 328 isolates (Takan et al., 2012). Two 

hundred and twenty-four isolates represented contemporary population from Kenya (45), 

Uganda (58), Tanzania (58), and Ethiopia (63).  Raw sequence data generated for each 

isolate were checked for accuracy and any ambiguities were resolved using Bioedit and 

Geneious software. Multiple sequence alignments were generated for each marker using 

MAFFY and MUSCLE softwares plugin within Geneious, manually checked and/or edited to 

ensure optimal alignment. Multiple sequence alignments were end trimmed to ensure 

uniform start and end DNA bases for each isolate. Single locus (e.g. ITS) and multi-locus 

(concatenated ITS, HIS4, HyP1 and HyP2) multiple sequence alignments were used in the 

identification of genotypes (based on sequence identity) and to decipher phylogenetic 

relationships of M. oryzae isolates within a country and across the four countries surveyed 

in Eastern Africa. 
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3.3.4.1 M. oryzae genotype diversity, distribution and relationships based on the ITS 

marker  
 

The end trimmed sequence of the ITS genetic marker ranged from 499 to 508 bases in 

length. The multiple sequence alignment of the data from the 300 isolates aligned to a total 

length of 513 sites displaying 22 SNPs, 10 indels. Among the SNPs identified, 22 were 

parsimony informative sites. Seven genotypes (ITS-G1 to ITS-G7) were identified based on 

the nucleotide diversity of the ITS region in M. oryzae isolates from finger millet and nine 

other related weed hosts (including the wild millet E. indica) from different districts of 

Kenya, Uganda, Tanzania and Ethiopia (Table 3.4). All the genotypes identified represented 

more than one isolate. The overall range per genotype varied from 4 to 160 isolates that 

revealed identical ITS sequence among the FMB pathogen populations from Eastern Africa. 

Furthermore, some genotypes represented isolates from finger millet as well as related 

weed hosts e.g. isolates K8/40 and K13 in ITS-G1 were from wild millet E. indica (Table 3.4).  

Two major genotypes ITS-G1 and ITS-G2 represent 160 and 99 isolates, respectively and the 

other genotypes ITS-G3 to ITS-G7 represent from 4 to 17 isolates (Table 3.4 and Figure 3.4). 

Genotype ITS-G1 represents M. oryzae isolates from 47 districts across the four countries in 

Eastern Africa (Figure 3.3). This genotype also comprises isolates representing historical and 

contemporary populations, even from the same districts, for example Teso, Busia and Kisii in 

Kenya; Pallisa, Arua and Tororo in Uganda. This genotype is more dominant in Kenya (69 

isolates) and Uganda (78) compared to Ethiopia (7) and Tanzania (6) as shown in Figure 3.3. 

Within Kenya, this genotype includes historic (27 isolates) and contemporary (42 isolates) 

populations and a similar pattern is evident in Uganda with 37 and 41 isolates representing 

historic and contemporary populations, respectively (Table 3.4).  
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Genotype ITS-G2 contains 99 isolates present in all four countries but clearly more dominant 

in Ethiopia (54 isolates) and Tanzania (40) with very few isolates in Kenya (4) and Uganda (1) 

as shown in Table 3.4. The limited number of isolates present in Kenya and Uganda are from 

the historical population. Genotype ITS-G3 contains 17 isolates from Uganda (13 isolates 

including historic and contemporary samples), Kenya (3) and Ethiopia (1). Genotype ITS-G4 

is restricted to Tanzania (8 isolates) and Ethiopia (1), whilst Genotype ITS-G6 is restricted to 

Uganda (3 isolates) and Kenya (1) essentially including 4 historical isolates.  Genotypes ITS-

G5 (7 isolates) and ITS-G7 (4 isolates) are restricted to Uganda and Tanzania, respectively 

and contain only contemporary isolates from different districts.  

Bayesian phylogenetic tree was constructed from the multiple sequence alignment 

representing the 7 genotypes (ITS-G1 – ITS-G7) and an isolate from rice used as an 

outgroup, with 70 % posterior probability value (PPV). The Kimura 2-parameter (K2) model 

using a discrete gamma distribution (G) was determined to be the best evolutionary model 

(K2+G) for the ITS sequence dataset.  The tree clearly distinguished the Eastern African FMB 

isolates from the rice isolate and showed a strong relationship between the Genotypes ITS-

G2 and ITS-G4 at 95.8 % PPV; whilst other genotypes did not show a clear phylogenetic 

relationship (Figure 3.4).   
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Table 3.4. Diversity and distribution pattern of the M. oryzae genotypes identified among the finger millet blast pathogen populations in Kenya, Uganda, 

Tanzania and Ethiopia based on the ITS marker sequences 

Genotype No. of isolates 
in genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of 
isolates per 

country 

Isolate code  No. of 
district 

Population 
type 

ITS-G1 160 D1/s19 4 7 (E) E1, E3, E18, E32, E46, E61, E62 6 C 

    69 (K) 
 
 
 
 
 
 
 
 
 

K1, K2, K3, K4, K6, K7, K8, K9, K10, K11, K12, K13, 
K14, K15, K16, K17, K18, K19, K20, K21, K22, K23, 
K24, K25, K26, K27, K28, K29, K31, K30, K33, K32, 
K34, K35, K36, K37, K38, K39, K40, K42, K44, K45, 

K1/15, K4/21p, K5/23, K5/24w, K8/40, K9/46, 
K12/62, K13/67, K14/74, K15/53n, K21/68n, 

K22/118, K23/123, K26/76p, K28/82w, K29/164, 
K36/98n, K45/112n, K47/114p, K48/115n, 

K55/124p, K57/126p, K60/131p, K64/137p, 
K65/140n, K65/142n, K65/159w 

13 H & C 

    6 (T) T11, T14, T20, T39, T54, T58 3 H 

    78 (U) U2, U4, U6, U7, U8, U9, U10, U11, U12, U16, 
U17, U18, U20, U21, U22, U23, U24, U25, U26, 
U27, U28, U32, U33, U34, U36, U37, U38, U39, 
U40, U41, U44, U45, U47, U48, U49, U51, U52, 
U57, U55, U56, U58, D1/s19, D1/s44, D1/s53b, 
D1/s72, D2/s14, D2/s26, D3/s3, D3/s9, D3/s24, 
D4/s12, D4/s26, D4/s41, D5/s1, D6/s1, D7/s6, 

D8/s15, D9/s50, D9/s54, D9/s76, D10/s63, 
D10/s71, D10/s77, D12/s2, D13/s5, D14/s27, 

D14/s30, D15/s6, D15/s12, D15/s41, D15/s47, 
E11p-1-1*, Gup-2-1*, Odyp-2-1*, Pen-2-2*, 

P665n-2-1*, S1p-1-1*, Secn-2-2* 

25 H & C 

ITS-G2 99 D11/s16 4 54 (E) E2, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, 
E15, E16, E17, E19, E20, E21, E22, E23, E24, E25, 

19 C 
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E26, E27, E28, E29, E30, E31, E33, E34, E35, E36, 
E37, E38, E39, E40, E41, E42, E44, E45, E47, E48, 
E49, E50, E51, E52, E53, E54, E56, E58, E57, E59, 

E60, E63 

    4 (K) K24/127, K33/184, K33/189, K44/111p 3 H 

    40 (T) T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T12, T13, 
T15, T16, T18, T19, T21, T22, T23, T24, T25, T26, 
T27, T28, T29, T32, T41, T42, T43, T44, T45, T46, 

T47, T48, T49, T50, T51, T52, T56, T57 

6 C 

    1 (U) D11/s16 1 H 

ITS-G3 17 D1/s11 3 1 (E) E43 1 C 

    3 (K) K5, K43, K41 2 C 

    13 (U) U1, U3, U5, U14, U15, U29, U30, U43, U46, U54, 
D1/s11, D9/s56, D9/s70 

8 H & C 

ITS-G4 9 E55 2 1(E) E55 1 C 

    8 (T T33, T34, T36, T37, T38, T30, T31, T55 4 C 

ITS-G5 7 U13 1 7 (U) U13, U31, U35, U50, U53, U19, U42 6 C 

ITS-G6 4 D1/s50 2 1 (K) K58/128p 1 H 

    3(U) D1/s50, D15/s37, D10/s73 3 H 

ITS-G7 4 T17 1 4 (T) T17, T35, T40, T53 3 C 

H, historical isolates (2000-2004) and C, contemporary isolates (2015-2017); In the Isolate code, K-isolates collected from Kenya E-isolates collected from 
Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected from Uganda; *Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A.
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Figure 3.3: Reticulate median-joining network of 300 isolates representing the seven genotypes   

                    based on ITS marker sequences  

Overall circle sizes are proportional to the number of isolates within a specific genotype. Circle slice 

area is proportional to the number of isolates from a country, where colours indicate the country of 

collection of isolates with Kenya in green, Uganda in  blue, Tanzania in red and Ethiopia in yellow. 

The segment/hatch marks seen in the connecting lines reflect the mutation levels among the 

genotypes.  



113 

 

 

Figure 3.4: Bayesian consensus tree of the M. oryzae genotypes based on the ITS marker    

                    sequences  
The tree shows the number of isolates per genotype and their distribution pattern across the four 

countries: K- Kenya, U – Uganda, T- Tanzania and E- Ethiopia; + indicates present and – indicates 

absent based on the isolates characterised. The number over the branch of the tree represents the 

posterior probability value.
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3.3.4.2 M. oryzae genotype diversity, distribution and relationships based on the Histone 4 

(HIS4) marker 

 

The end trimmed sequence of the HIS4 genetic marker ranged from 378 to 380 bases in 

length. The multiple sequence alignment of the data from the 300 isolates aligned to a total 

length of 400 sites displaying 44 SNPs and 22 indels. Among the SNPs identified, 35 were 

parsimony informative sites. Nine genotypes (HIS-G1 to HIS-G9) were identified based on 

the nucleotide diversity of the HIS4 locus in M. oryzae isolates from finger millet and related 

weed hosts from different districts of Kenya, Uganda, Tanzania and Ethiopia (Table 3.5). 

Three major genotypes HIS-G1, HIS-G2 and HIS-G3 comprised 110, 103 and 58 isolates, 

respectively (Table 3.5 and Figure 3.5). Overall, these 3 genotypes represented 271 isolates 

(~90 % population), whilst other genotypes (HIS-G4 to HIS-G9) each comprised 2 to 7 

isolates representing a total of 29 isolates (Table 3.5). Furthermore, some genotypes 

included isolates from finger millet and weed hosts (for example, isolates K8/40 and 

D10/s73 in HIS-G3 and isolate K13 in HIS-G5). 

Genotype HIS-G1 represented isolates from all four countries, but more dominant in Kenya 

and Uganda containing 40 and 62 isolates, respectively with limited numbers from Ethiopia 

(6 isolates) and Tanzania (2 isolates). HIS-G1 isolates found in Kenya and Uganda comprised 

historic and contemporary populations at nearly equal level (Table 3.5). Genotype HIS-G2 

comprised 103 isolates distributed across Ethiopia, Tanzania and Kenya (Figure 3.5) but 

clearly are more dominant in Ethiopia (50 isolates) and Tanzania (48 isolates) relative to 

Kenya (5 isolates) as presented below (Table 3.5 and Figure 3.5). These 5 isolates (K24/127, 

K33/184, K33/189, K44/111p, K48/115n) from Kenya are from historical population and 

collected from 3 districts (Kericho, Kisii and Kisii central). HIS-G3 mainly comprised isolates 
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from Kenya (21) and Uganda (31) with only 6 isolates from Tanzania. In Kenya and Uganda, 

isolates found in HIS-G3 represented both historical and contemporary populations. 

Genotypes HIS-G4, HIS-G7 and HIS-G9 contained 7, 4 and 2 isolates from Ethiopia, Kenya 

and Tanzania, respectively but from different districts. HIS-G5, HIS-G6 and HIS-G8 present in 

Kenya and Uganda only contained limited number of isolates ranging from 2 to 7 (Table 3.5).    

 

Bayesian phylogenetic tree was constructed from the multiple sequence alignment of the 9 

genotypes (Table 3.5) and a rice blast (RB) isolate used as an outgroup, with 70 % posterior 

probability value (Figure 3.6). The Kimura 2-parameter (K2) model using a discrete gamma 

distribution (G) was determined to be the best evolutionary model (K2+G) for the HIS4 

sequences dataset. The phylogenetic analysis clearly distinguished the FMB pathogen 

isolates from the RB pathogen isolate (Figure 3.6). Eight of the FMB genotypes showed a 

strong phylogenetic relationship defined based on 86.9 % PPV. These genotypes comprised 

isolates from Ethiopia, Kenya, Tanzania and Uganda. However, HIS-G8 containing only 2 

isolates from Kenya and Uganda appears phylogenetically distinct from the other genotypes 

(Figure 3.6). 
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Table 3.5. Diversity and distribution pattern of the M. oryzae genotypes identified among the finger millet blast pathogen populations in Kenya, Uganda, 

Tanzania and Ethiopia based on the HIS4 marker sequences 

Genotype No. of 
isolates in 
genotype 

Representati
ve isolate 

No. of 
count-

ries 
present 

No. of 
isolates per 

country 

Isolate code  No. of 
district 

Population type 

HIS-G1 160 D1/s19 4 6 (E) E1, E3, E46, E55, E61, E62 6 C 

    40 (K) K4, K6, K10, K12, K14, K15, K20, K21, 
K24, K25, K28, K29, K30, K33, K34, 

K39, K41, K43, K44, K45, K1/15, 
K4/21p, K5/23, K5/24w, K12/62, 

K13/67, K14/74, K15/53n, K21/68n, 
K22/118, K23/123, K26/76p, K28/82w, 

K29/164, K36/98n, K45/112n, 
K47/114p, K60/131p, K64/137p, 

K65/140n 

12 H & C 

    2 (T) T39, T40 1 C 

    62 (U) U3, U5, U6, U8, U13, U16, U17, U18, 
U19, U20, U21, U25, U26, U28, U31, 
U32, U33, U34, U35, U36, U39, U41, 
U44, U45, U49, U50, U51, U52, U53, 

U55, U56, U58, D1/s11, D1/s19, 
D1/s44, D1/s50, D1/s53b, D1/s72, 

D2/s14, D2/s26, D3/s9, D3/s24, 
D4/s12, D4/s26, D4/s41, D5/s1, D6/s1, 

D7/s6, D8/s15, D9/s76, D10/s71, 
D10/s77, D14/s30, D15/s6, D15/s12, 
D15/s41, D15/s47, E11p-1-1*, Gup-2-
1*, Odyp-2-1*, S1p-1-1*, Secn-2-2* 

 
 

24 H & C 
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HIS-G2 103 E2 3 50 (E) E2, E10, E11, E13, E14, E15, E16, E17, 
E18, E19, E20, E21, E22, E23, E24, E25, 
E26, E27, E28, E29, E30, E31, E32, E33, 
E34, E35, E36, E37, E38, E39, E40, E41, 
E42, E43, E44, E45, E47, E48, E49, E50, 
E51, E52, E53, E54, E56, E57, E58, E59, 

E60, E63 

20 C 

    5 (K) K24/127, K33/184, K33/189, 
K44/111p, K48/115n 

3 H 

    48 (T) T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, 
T12, T13, T14, T15, T16, T18, T19, T21, 
T22, T23, T24, T25, T26, T27, T28, T29, 
T30, T31, T32, T33, T36, T37, T38, T41, 
T42, T43, T44, T45, T46, T47, T48, T49, 

T50, T51, T52, T55, T56, T57 

7 C 

HIS-G3 58 D3/s3 3 21 (K) K1, K2, K5, K9, K11, K19, K22, K23, 
K27, K31, K32, K35, K36, K40, K42, 
K8/40, K9/46, K55/124p, K57/126p, 

K65/142n, K65/159w 

9 H & C 

    6 (T) T11, T17, T20, T53, T54, T58 2 C 

    31 (U) U1, U2, U11, U12, U14, U15, U22, 
U23, U24, U27, U30, U37, U40, U43, 

U46, U47, U48, U54, U57, D3/s3, 
D9/s50, D9/s54, D9/s56, D9/s70, 

D10/s63, D10/s73, D12/s2, D13/s5, 
D14/s27, P665n-2-1*, Pen2-2* 

17 H & C 

HIS-G4 7 E4 1 7 (E) E4, E5, E6, E7, E8, E9, E12 3 C 

HIS-G5 7 K3 2 5 (K) K3, K8, K13, K37, K38 3 C 

    2 (U) U7, U9 2 C 

HIS-G6 7 D11/s16 2 1 (K) K26 1 C 

    6 (U) D11/s16, U4, U10, U29, U38, U42 6 H &C 

HIS-G7 4 K7 1 4 (K) K7, K16, K17, K18 4 C 
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HIS-G8 2 D15/s37 2 1 (K) K58/128p 1 H 

    1 (D) D15/s37 1 H 

HIS-G9 2 T34 1 2 (T) T34, T35 2 C 

H, historical isolates (2000-2004) and C, contemporary isolates (2015-2017);  

In the Isolate code, K-isolates collected from Kenya E-isolates collected from Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected 
from Uganda; *Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A.
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Figure 3.5: Reticulate median-joining network of 300 isolates representing the nine   genotypes  
      (HIS-G1 to HIS-G9) based on HIS4 marker sequences  

 

Overall circle sizes are proportional to the number of isolates within a specific genotype. Circle slice 
area is proportional to the number of isolates from a country, where colours indicate the country of 
collection of isolates with Kenya in green, Uganda in  blue, Tanzania in red and Ethiopia in yellow. 
The segment/hatch marks seen in the connecting lines reflect the mutation levels among the 
genotypes. 
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Figure 3.6: Bayesian consensus tree of the M. oryzae genotypes based on the HIS4 (Histone 4)  

                    marker sequences  
The tree shows the number of isolates per genotype and their distribution pattern across the four 

countries: K- Kenya, U – Uganda, T- Tanzania and E- Ethiopia; + indicates present and – indicates 

absent based on the isolates characterised. The number over the branch of the tree represents the 

posterior probability value.
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3.3.4.3 M. oryzae genotype diversity, distribution and relationships based on the HyP1 

marker 
 

The end trimmed sequence of the HyP1 genetic marker was ~743 - 799 bases in length. The 

multiple sequence alignment of the data from the 300 isolates aligned to a total length of 

874 bases showed 394 SNPs and 185 indels. Among the SNPs identified, 251 were 

parsimony informative sites. Eighty-five (85) genotypes were identified based on the 

nucleotide diversity of the HyP1 locus in M. oryzae isolates from finger millet and few 

related weed hosts from different districts of Kenya, Uganda, Tanzania and Ethiopia. Of 

these, 22 genotypes represented 237 isolates, with 2 to 73 isolates per genotype, which 

revealed identical nucleotide sequence (Table 3.6A) and these 22 are referred as shared 

genotypes. The other 63 genotypes were represented by single isolates (Table 3.6B, further 

details are available in Appendix 1) and these 63 are referred as single genotypes. Tables 

3.6A and B show the distribution pattern of the M. oryzae genotypes with reference to 

various geographic locations, hosts and period of collection. Figure 3.7 based on the 

reticulate network analysis shows the distribution pattern of the shared genotypes across 

the 4 countries distinguishing them into two major groups A and B. Group A predominantly 

included isolates from Kenya and Uganda, whilst Group B predominantly included isolates 

from Ethiopia and Tanzania. Three major shared genotypes HyP1-G1, HyP1-G2 and HyP1-G3 

were identified representing 61 % of the total isolates collected from the 4 countries. HyP1-

G1 contained 73 isolates with at least one isolate from each country. Genotype HyP1-G1 

isolates are dominant (86 %) in Ethiopia (25) and Tanzania (36), while the remaining 14 % 

were present in Kenya (10 isolates) and Uganda (2) as shown in Table 3.6A and Figure 3.8. 

Genotype HyP1-G2 comprised 72 isolates from Kenya, Uganda and Ethiopia (Table 3.6A) and 

is more dominant in Kenya (25) and Uganda (40) compared to Ethiopia (7). HyP1-G3 
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contained 38 isolates including 28 from different districts in Uganda, 9 from 3 districts in 

Kenya and 1 isolate from Tanzania. Genotypes HyP1-G4 to HyP1-22 included 2 or more 

isolates either from one or two countries. For example, genotypes 4 and 5 were found only 

in Ethiopia and Kenya, respectively, while genotype 6 represented a limited number of 

isolates from Kenya and Uganda (Table 3.6A and Figure 3.8). 

Bayesian phylogenetic tree was constructed from the multiple sequence alignment of the 85 

finger millet blast (FMB) genotypes (further details are available in Appendix 1) using a rice 

blast isolate as an outgroup, with 70 % PPV (Figure 3.8). The Hasegawa-Kishino-Yano (HKY) 

model using a discrete gamma distribution (G) was determined to be the best evolutionary 

model (HKY+G) for the HyP1 sequence dataset. Phylogenetic analysis distinguished the FMB 

pathogen genotypes from the outgroup RB isolate. Based on the tree topology, the M. 

oryzae genotypes were divided into 2 major groups A and B. Group A comprised 53 

genotypes at 99.9 % PPV including 2 major genotypes HyP-G2 and HyP-G3. Further, Group A 

comprised genotypes representing isolates predominantly from Kenya and Uganda including 

both historical and contemporary isolates, whilst in Ethiopia and Tanzania, these genotypes 

were less common. For example, among the 53 genotypes in the Group A representing 183 

isolates, 163 isolates were from Kenya and Uganda and only 20 isolates were from Ethiopia 

and Tanzania (Figure 3.8). Group B comprised 32 genotypes including one major genotype 

HyP-G1. Group B contained genotypes that are mostly dominant in Ethiopia and Tanzania 

and less common in Kenya and Uganda. For example, the 32 genotypes in Group B 

represented 117 isolates including 102 from Ethiopia and Tanzania and 15 from Kenya and 

Uganda (Figure 3.8). In addition, within the Groups A and B, some genotypes showed close 
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phylogenetic relationship based on high PPV, e.g.  G5, G8, G10, G63, G64, G65 and G66 in 

Group A with 99.9 % PPV (Figure 3.8). 
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Table 3.6A. Diversity and distribution pattern of shared genotypes of M. oryzae identified among the finger millet blast pathogen populations in Kenya, 

Uganda, Tanzania and Ethiopia based on the HyP1 marker sequences 

Genotype No. of 
isolates in 
genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of isolates per 
country 

Isolate code  No. of 
district 

Population 
type 

HyP1-G1 73 T56 4 25 (E) E2, E15, E19, E22, E26, E34, E35, E37, E38, 
E39, E41, E42, E44, E45, E47, E48, E49, E53, 

E54, E56, E57, E58, E59, E60, E63 

14 C 

    10 (K) K14, K21, K41, K24/127, K33/184, K33/189, 
K44/111p, K48/115n, K58/128p, K60/131p 

6 H & C 

    36 (T) T1, T2, T3, T6, T7, T8, T9, T10, T13, T18, T19, 
T22, T24, T26, T27, T28, T30, T31, T32, T33, 
T34, T36, T38, T41, T42, T43, T44, T45, T46, 

T47, T48, T49, T50, T51, T52, T56 

6 C 

    2 (U) D3/s9, D10/s73 2 H 

HyP1-G2 72 U57 3 7 (E) E18, E27, E43, E46, E55, E61, E62 6 C 

    25 (K) 

 
K1, K4, K5, K7, K8, K13, K15, K22, K27, K42, 

K43, K4/21p, K5/24w, K12/62, K21/68n, 
K22/118, K23/123, K26/76p, K28/82w, 

K36/98n, K55/124p, K5/23, K15/53n, K9/46, 
K65/159w 

7 H & C 

    40 (U) U1, U2, U4, U5, U7, U8, U20, U21, U24, U26, 
U32, U35, U36, U37, U39, U44, U55, U56, 

U57, D2/s14, D1/s11, D3/s3, D3/s24, D5/s1, 
D7/s6, D9/s76, D14/s27, Pen-2-2, D1/s72, 
D4/s12, D9/s50, D9/s56, D9/s70, D10/s63, 

D10/s77, D13/s5, D14/s30, D15/s12, 
D15/s41, D4/s41 

20 H & C 

HyP1-G3 38 U58 3 9 (K) K2, K3, K10, K11, K12, K24, K26, K33, K35 4 C 

    1 (T) T35 1 C 

    28 (U) U3, U6, U9, U10, U11, U12, U13, U14, U17, 17 H & C 
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Genotype No. of 
isolates in 
genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of isolates per 
country 

Isolate code  No. of 
district 

Population 
type 

U18, U19, U22, U23, U25, U29, U30, U31, 
U33, U38, U42, U46,  

U49, U50, U51, U53, U54, U58, D15/s6 

 
 

 
HyP1-G4 8 E33 1 8 (E) E21, E23, E24, E25, E28, E29, E31, E33 5 C 

HyP1-G5 5 K57/126p 1 5 (K) K34, K36, K39, K45/112n, K57/126p 2 H & C 

HyP1-G6 4 Secn-2-2 2 2 (K) K13/67, K28 2 H & C 

    2 (U) Secn-2-2*, D1/s19 2 H 
HyP1-G7 4 P665n-2-1 2 1 (K) K47/114p 1 H 

    3 (U) E11p-1-1*, Odyp-2-1*, P665n-2-1* 1 H 
HyP1-G8 3 T54 1 3 (T) T20, T53, T54 1 C 

HyP1-G9 3 U48 2 1 (K) K23 1 C 

    2 (U) U27, U48 2 C 

HyP1-G10 3 K40 1 3 (K) K37, K38, K40 1 C 

HyP1-G11 2 E11 1 2 (E) E7, E11 2 C 

HyP1-G12 2 E10 1 2 (E) E8, E10 2 C 

HyP1-G13 2 E32 1 2 (E) E9, E32 2 C 

HyP1-G14 2 K32 1 2 (K) K31, K32 2 C 

HyP1-G15 2 E3 1 2 (E) E1, E3 2 C 

HyP1-G16 2 U45 2 1 (K) K30 1 C 

    1 (U) U45 1 C 

HyP1-G17 2 T40 1 2 (T) T39, T40 1 C 

HyP1-G18 2 U52 1 2 (U) U41, U52 2 C 

HyP1-G19 2 K65/140n 2 1 (K) K65/140n 1 H 

    1 (U) D2/s26 1 H 

HyP1-G20 2 E51 1 2 (E) E50, E51 2 C 

HyP1-G21 2 D15/s37 1 2 (U) D1/s50, D15/s37 2 H 

HyP1-G22 2 T12 1 2 (T) T12, T16 2 C 

H, historical isolates (2000-2004) and C, contemporary isolates (2015-2017);  
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In the Isolate code, K-isolates collected from Kenya E-isolates collected from Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected 
from Uganda; *Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A. 
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Table 3.6B. Diversity and distribution pattern of single genotypesa of M. oryzae identified based on 
the HyP1 sequence data among the isolates associated with finger millet production in various 
districts in Ethiopia, Kenya, Tanzania and Uganda 

Country District Number of 

Genotypes/Isolates 

Finger millet  Other 

weed 

hostsb 

Populationc 

Ethiopia Diga 4 4 0 C 

Lallo Assabi 1 1 0 C 

Banja 1 1 0 C 

Bahir Dar Zuria 2 2 0 C 

Demecha 1 1 0 C 

Angebo 1 1 0 C 

Leka Dulecha 1 1 0 C 

Dangla 1 1 0 C 

Mecha 1 1 0 C 

Total 13 13 0 C 

Kenya Siaya 1 1 0 H 

Homabay 1 1 0 H 

Suba 1 1 0 H 

Kisumu 1 1 0 H 

Busia 2 2 0 C 

Kisii 3 3 0 C 

Kakamega 1 1 0 C 

Eldoret 3 3 0 C 

Teso 3 2 1 H 

Total 16 15 1 H & C 
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Tanzania Nkasi 1 1 0 C 

Sumbawanga 1 1 0 C 

Mbozi 3 3 0 C 

Njombe 3 3 0 C 

Madaba 4 4 0 C 

Momba 2 2 0 C 

Total 14 14 0 C 

Uganda 

Apac 1 0 1 H 

Amuria 1 1 0 C 

Agago 1 1 0 C 

Busia 2 1 1 H 

Bugiri 1 1 0 H 

Lira 2 1 1 H & C 

Masindi 2 2 0 H & C 

Kumi 1 1 0 C 

Pallisa 2 2 0 H 

Nakasongola 1 1 0 H 

Hoima 1 1 0 C 

Soroti 3 3 0 H 

Tororo 2 2 0 H & C 

Total 20 17 3 H & C 

Total 37 63 59 4 NA 

a Single genotype are individual isolates with distinct HyP1 marker sequence; 

b Isolates from other weed hosts include Eleusine indica, E. africana, Digitaria scalarum, D. aegytium, 
D. horizontalis;   

c H - historical isolates (2000-2004), C - contemporary isolates (2015-2017);  

NA - Not applicable 

Further details of isolates belonging to these genotypes are available in Appendix 1. 
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Figure 3.7: Reticulate median-joining network of 237 isolates represented by 22 shared genotypes  
                    based on HyP1 marker sequences (Table 3.6A) 
 

Detail of isolates represented by the 22 genotypes are avilable in Table 3.6A with further detilas in 
Appendix 1. Overall circle sizes are proportional to the number of isolates within a specific genotype. 
Circle slice area is proportional to the number of isolates from a country, where colours indicate the 
country of collection of isolates with Kenya in green, Uganda in  blue, Tanzania in red and Ethiopia in 
yellow. The segment/hatch marks seen in the connecting lines reflect the mutation levels among the 
genotypes. The reticulate analysis resulted in 2 groups with A containing the majority of isolates 
from Kenya and Uganda, and B containing the majority of isolates from Ethiopia and Tanzania. 
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Figure 3.8: Bayesian consensus tree of the M. oryzae genotypes based on the HyP1 marker  
                    sequences 
The tree shows the number of isolates per genotype and their distribution pattern across the four 
countries: K- Kenya, U – Uganda, T- Tanzania and E- Ethiopia; + indicates present and – indicates 
absent based on the isolates characterised. The number over the branch of the tree represents the 
posterior probability value. 
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3.3.4.4  M. oryzae genotype diversity, distribution and relationships based on the HyP2 

marker 
  

The end trimmed sequence of the HyP2 genetic marker was ~507 - 508 bases in length. The 

multiple sequence alignment of the data from the 300 isolates aligned to a total length of 

508 bases and showed 133 SNPs and 5 indels. Among the SNPs identified, 77 were 

parsimony informative sites. The alignment distinguished the population of 300 M. oryzae 

isolates into 80 genotypes.  Of these, 22 were shared genotypes representing 234 isolates 

with 2 to 48 isolates per genotype that revealed identical nucleotide sequence (Table 3.7A). 

The other 58 genotypes were represented by single isolates from 4 the countries (Table 

3.7B). Tables 3.7A and B show the distribution pattern of the M. oryzae genotypes with 

respect to various geographical locations, hosts and period of collection.  Five shared 

genotypes were identified as major genotypes (HyP2-G1 to HyP2-G5) containing nearly 50 % 

(148) of the total isolates. Genotypes 6 to 10 each represented 11 to 14 isolates and 

genotypes 11 to 22 each represented 2 to 5 isolates. Further, isolates originating from weed 

hosts were represented by the genotypes sharing the HyP2 marker sequence with FMB 

pathogen isolates, e.g. D9/s50 and D9/s54 in HyP2-G2 and K9/46 in HyP2-G5 (Table 3.7A). 

The rest of the genotypes HyP2-G23 to HyP2-G80 were represented by single isolates and 

five of these were represented by isolates originating from weed hosts (Table 3.7B, further 

details are available in Appendix 2). 

Genotype HyP2-G1 contained 48 isolates from Ethiopia (35) and Tanzania (13) from various 

districts (Table 3.7A). HyP2-G2 contained 35 isolates from Uganda (20), Kenya (13) and 

Ethiopia (2). Genotype HyP2-G2 represented both historic and contemporary isolates from 

Kenya and Uganda. Nearly similar pattern was observed in HyP2-G3 comprising isolates 
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from Uganda (14), Kenya (7) and Ethiopia (3), but all the isolates represented by this 

genotype are from the contemporary collection and present in more than one district. 

Genotypes 4 and 5 contained 20 isolates each with HyP2-G4 representing isolates from 

Tanzania (17) and Kenya (3), whilst HyP2-G5 representing isolates from Kenya (11) and 

Uganda (9) as shown in Table 3.7A. Reticulate network analysis shows the distribution 

pattern of the shared genotypes across the 4 countries revealing two major groups. Group A 

represented genotypes predominantly from Kenya and Uganda, whilst Group B represented 

genotypes predominantly from Tanzania and Ethiopia (Figure 3.9).  

Bayesian phylogenetic tree was constructed with the multiple sequence alignment of the 80 

genotypes identified (further details are available in Appendix 2) and a rice blast isolate 

sequence used as an out-group, with 70 % PPV (Figure 3.10). The Tamura 3-parameter (T92) 

model with discrete gamma distribution (G) was determined to be the best evolutionary 

model (T92+G) for the HyP2 sequence dataset. Phylogenetic analysis clearly distinguished 

the FMB pathogen isolates from the rice blast isolate. Based on the tree topology, the M. 

oryzae genotypes were divided into 2 groups A and B. Group A comprised 59 genotypes 

representing 205 isolates that are mostly dominant in Kenya and Uganda (173 isolates) and 

32 isolates were from Tanzania and Ethiopia (Figure 3.10). Group B with an overall 99.9 % 

PPV comprised 21 genotypes representing 95 isolates mainly from Tanzania and Ethiopia (88 

isolates) with only 7 were isolates from Kenya and Uganda (Figure 3.10).  
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Table 3.7A. Diversity and distribution pattern of shared genotypes M. oryzae identified among the finger millet blast pathogen populations in Kenya, 

Uganda, Tanzania and Ethiopia based on the HyP2 marker sequences 

Genotype No. of isolates in 
genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of isolates per 
country 

Isolate code  No. of 
districts 

Population type 

HyP2-G1 48 T57 2 35 (E) E2, E4, E5, E7, E11, E12, E14, E15, E19, 
E20, E22, E29, E33, E34, E36, E37, E38, 
E39, E41, E44, E45, E47, E48, E49, E50, 
E51, E52, E53, E54, E56, E57, E58, E59, 

E60, E63 

13 C 

    13 (T) T1, T2, T3, T5, T8, T10, T22, T25, T47, 
T49, T51, T55, T57 

5 C 

HyP2-G2 36 U36 3 2 (E) E46, E62 2 C 

    13 (K) K7, K9, K15, K18, K24, K27, K35, K42, 
K5/23, K14/74, K47/114p, K60/131p, 

K65/140n 

8 H & C 

    21 (U) U4, U24, U25, U34, U36, D6/s1, D2/s14, 
D2/s26, D3/s3, D5/s1, D9/s50, D9/s54, 

D9/s56, D9/s76, D10/s71, D13/s5, 
D14/s30, E11p-1-1*, Odyp-2-1*, Secn-

2-2* 

12 H & C 

HyP2-G3 24 E9 3 3 (E) E9, E17, E27 3 C 

    7 (K) K1, K2, K3, K10, K11, K12, K33 4 C 

    14 (U) U6, U11, U12, U16, U17, U22, U23, 
U29, U42, U46, U49, U50, U52, U58 

10 C 

HyP2-G4 20 T52 2 3 (K) K33/184, K33/189, K48/115n 2 H 

    17 (T) T6, T7, T9, T18, T19, T21, T24, T28, T32, 
T34, T36, T38, T41, T43, T44, T48, T52 

5 C 

HyP2-G5 20 U54 2 11 (K) K5, K19, K23, K26, K39, K41, K43, 
K9/46, K28/82w, K21/68n, K29/164 

6 H & C 

    9 (U) U10, U14, U27, U30, U38, U48, U54, 
D1/s44, D14/s27 

7 H & C 
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HyP2-G6 14 U31 3 4 (E) E3, E32, E43, E55 4 C 

    3 (K) K4, K45, K1/15 3 H & C 

    7 (U) U2, U31, D1/s72, D15/s12, D15/s47, 
Gup-2-1*, P665n-2-1* 

4 H & C 

HyP2-G7 12 U45 2 3 (K) K30, K5/24w, K65/159w 2 H & C 

    9 (U) U15, U28, U37, U43, U44, U45, D4/s41, 
D11/s16, D1/s53b, 

8 H & C 

HyP2-G8 12 U55 2 1 (K) K26/76p 1 H 

    11 (U) U3, U7, U8, U18, U26, U33, U39, U53, 
U55, U20, D15/s6 

9 H & C 

HyP2-G9 12 U1 2 10 (E) E8, E10, E21, E23, E24, E25, E26, E30, 
E31, E42 

6 H & C 

    2 (U) U1, D9/s70 2 H & C 

HyP2-G10 11 D7/s6 2 6 (K) K14, K25, K29, K23/123, K36/98n, 
K65/142n 

3 H & C 

    5 (U) U56, U57, D7/s6, D8/s15, D15/s41 5 H &C 

HyP2-G11 5 T58 3 1 (K) K22 1 C 

    3 (T) T35, T53, T58 2 C 

    1 (U) Pen2-2 1 H 

HyP2-G12 4 T42 1 4 (T) T30, T33, T37, T42 3 C 

HyP2-G13 4 T16 2 1 (K) K58/128p 1 H 

    3 (T) T4, T12, T16 2 C 

HyP2-G14 4 U5 2 2 (K) K6, K40 2 C 

    2 (U) U5, S1p-1-1* 2 H & C 

HyP2-G15 3 K4/21p 2 1 (K) K4/21p 1 H 

    2 (U) D3/s9, D4/s12 2 H 

HyP2-G16 2 E13 1 2 (E) E6, E13 2 C 

HyP2-G17 2 E35 1 2 (E) E16, E35 2 C 

HyP2-G18 2 K13/37 1 2 (K) K13, K13/67 2 H & C 

HyP2-G19 2 T40 1 2 (T) T39, T40 1 C 

HyP2-G20 2 U13 1 2 (U) U9, U13 2 C 

HyP2-G21 2 D10/s63 1 2 (U) D1/s50, D10/s63 2 H 

HyP2-G22 2 K57/126p 1 2 (K) K55/124p, K57/126p 1 H 

H, historical isolates (2000-2004) and C, contemporary isolates (2015-2017);  
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In the Isolate code, K-isolates collected from Kenya, E-isolates collected from Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected 
from Uganda; *Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A. 
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Table 3.7B. Diversity and distribution pattern of single genotypesa of M. oryzae identified based on 
the HyP2 sequence data among the isolates associated with finger millet production in various 
districts in Ethiopia, Kenya, Tanzania and Uganda 

Country District Number of 
Genotypes/Isolates 

Finger millet  Other weed 
hostsb 

Populationsc 

Ethiopia Sire 1 1 0 C 

 Waju Tuka 1 1 0 C 

 Boji Bermeji 1 1 0 C 

 Dangla 1 1 0 C 

 Jabi Tana 1 1 0 C 

 Total 5 5 0 C 

Kenya Siaya 1 1 0 C 

 Homabay 1 1 0 C 

 Busia 4 3 1 H & C 

 Bungoma 1 1 0 C 

 Kisii 8 8 0 H & C 

 Kisii central 1 1 0 H 

 Kakamega 1 1 0 C 

 Eldoret 1 1 0 C 

 Marakwet 1 1 0 C 

 Teso 2 2 0 H 

Total  21 20 1 H & C 

Tanzania Nkasi 3 3 0 C 

 Sumbawanga 1 1 0 C 

 Njombe 6 6 0 C 

 Madaba 4 4 0 C 

 Momba 2 2 0 C 

Total  16 16 0 C 

Uganda Apac 2 1 1 H 

 Alebtong 2 2 0 C 

 Agago 1 1 0 C 
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 Mbale 1 1 0 H 

 Ngora 1 1 0 C 

 Kitgum 1 1 0 C 

 Pallisa 2 2 0 H 

 Nakasongola 1 1 0 H 

 Hoima 1 1 0 C 

 Soroti 1 0 1 H 

 Tororo 3 3 0 H & C 

Total  16 14 2 H & C 

Total 31 58 55 3 NA 

a Single genotype are individual isolates distinct HyP2 marker sequence; 

b Other weed host isolates include Eleusine indica, E. africana, Digitaria scalarum, D. aegytium, D. 
horizontalis;    

c H - historical isolates (2000-2004), C- contemporary isolates (2015-2017);  

NA - Not applicable; 

Further details of the isolates represented by these genotypes are available in Appendix 2.
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Figure 3.9: Reticulate median-joining network of 234 isolates represented by 22 shared genotypes  

                    based on HyP2 marker sequences (Table 3.7A)  

Detail of isolates represented by the 22 genotypes are avilable in Table 3.7A with further detilas in 
Appendix 2. Overall circle sizes are proportional to the number of isolates within a specific genotype. 
Circle slice area is proportional to the number of isolates from a country, where Kenya is in green, 
Uganda in  blue, Tanzania in red and Ethiopia in yellow. The segment/hatch marks reflect mutation 
levels between genotypes. Group A includes majority of isolates from Kenya and Uganda and Group 
B includes majority of isolates from Tanzania and Ethiopia. 
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Figure 3.10: Bayesian consensus tree of the M. oryzae genotypes based on the HyP2 marker  

                      sequences 

The tree shows the number of isolates per genotype and their distribution pattern across the four 
countries: K- Kenya, U – Uganda, T- Tanzania and E- Ethiopia; + indicates present and – indicates 
absent based on the isolates characterised. The number over the branch of the tree represents the 
posterior probability value. 
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3.3.4.5 Multi-locus sequence (MLS) analysis of genetic diversity among M. oryzae isolates 

associated with finger millet in Eastern Africa 
 

The concatenated data of end-trimmed sequence from each marker namely HIS4, ITS, HyP2 

and HyP1 generated for the 300 M. oryzae isolates (section 2.1) led to a total length ranging 

from 2135 to 2207 bases. Multiple sequence alignment of the concatenated data of the 300 

isolates led to a total length of 2303 base with 560 SNPs and 178 indels.  Among the SNPs 

identified, 375 were parsimony informative sites. The sequence variation distinguished 

among the 300 M. oryzae isolates led to the identification of 207 genotypes. Of these, 28 

genotypes ML-G1 to ML-G28 were shared genotypes representing 121 isolates, with each 

genotype representing 2 to 26 isolates based on identical ML sequences (Table 3.8A). The 

remaining 179 genotypes were represented by single isolates (Table 3.8B). Nearly 60 % of 

the total isolates are different to each other based on the ML analysis and in some districts, 

all the isolates collected were different. For example, in Siaya district of Kenya all isolates 

were different genotypes, also in Busia district of Kenya 15 out of the 18 isolates were 

different genotypes (Table 3.8B). The remaining 40 % included two or more isolates with 

shared ML sequence data. In some instances, the isolates originated from the same 

geographic location, whilst others originated from different locations (Table 3.8A and Figure 

3.11). Figure 3.11 shows the distribution pattern of the shared genotypes across the 4 

countries. Furthermore, the network analysis showed a close relationship among the 

isolates from Kenya and Uganda (designated as group A), and those from Ethiopia and 

Tanzania (designated as group B).  

ML-G1 (Table 3.8A) is the most common genotype containing 26 isolates collected from 

finger millet in different districts of Ethiopia (17) and Tanzania (9); ML-G2 is the second 
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largest genotype containing 15 isolates from Kenya (2) and Tanzania (13). Some genotypes 

represented isolates from one country, e.g. ML-G6, ML-G7, ML-G14. Other genotypes 

represented isolates from different countries, e.g. ML-G3, ML-G4, ML-G8, ML-9 in Kenya 

and Uganda (Table 3.8A).  

Bayesian phylogenetic tree was constructed from the multiple sequence alignment of the 

207-finger millet blast pathogen (FMB) with a rice blast pathogen isolate (RB) used as an 

outgroup, with 70 % PPV (Figure 3.12). The Kimura 2-parameter model using a discrete 

gamma distribution (G) with 5 rate categories that contain certain fraction of sites and 

evolutionary invariable (I) was determined to be the best evolutionary model (K2+G+I) for 

the concatenated sequence dataset. Based on the tree topology, the M. oryzae genotypes 

were divided into 2 distinct groups A and B (Figure 3.12). Eight genotypes such as K5 and 

K14 (Kenya), D3/s9 and D10/s71 (Uganda) and T11 (Tanzania) were distinctive and not 

represented in either of these groups (Table 3.8C). Group A represented 181 isolates from 

Eastern Africa predominantly from Uganda (97) and Kenya (66) with a limited number from 

Tanzania (9) and Ethiopia (9) as shown in Table 3.8C). The nucleotide differences among the 

isolates in Group A ranged from 0 to 3 % (Table 3.8C). Group B contained 117 isolates 

predominantly from Ethiopia (54) and Tanzania (48) with a limited number from Kenya (6) 

and Uganda (3) as shown in Table 3.8C. The nucleotide differences among the isolates in 

Group B ranged from 0 to 11 % (Table 3.8C). 
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Table 3.8A. Diversity and distribution pattern of shared genotypes of M. oryzae identified among the finger millet blast pathogen populations in Kenya, 

Uganda, Tanzania and Ethiopia based on the multi-locus marker sequences 

Genotype No. of 
isolates in 
genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of 
isolates per 

country 

Isolate code  No. of 
district 

Population 
type 

ML-G1 26 T51 2 17 (E) E2, E15, E19, E22, E34, E37, E38, E39, E44, E48, E49, 
E53, E54, E58, E59, E60, E63 

12 C 

    9 (T) T1, T2, T3, T8, T10, T22, T47, T49, T51 4 C 
ML-G2 15 T52 2 13 (T) 

 
T6, T7, T9, T18, T19, T24, T28, T32, T41, T43, T44, T48, 

T52 
4 C 

    2 (K) K33/184, K33/189 1 H 
ML-G3 7 U58 2 4 (U) U6, U17, U49, U58 4 C 

    3 (K) K10, K12, K33 2 C 
ML-G4 6 U23 2 2 (K) K2, K11 2 C 

    4 (U) U11, U12, U22, U23 2 C 

ML-G5 5 K15 3 2 (E) E46, E62 2 C 

    2 (U) D5/s1, D9/s76 2 H 

    1 (K) K15 1 C 
ML-G6 5 U55 1 5 (U) U8, U20, U26, U39, U55 5 C 

ML-G7 5 E31 1 5 (E) E21, E23, E24, E25, E31 3 C 

ML-G8 4 U24 2 3 (U) D9/s50, D13/s5, U24 3 H & C 

    1 (K) K27 1 C 

ML-G9 4 U56 2 2 (K) K23/123, K36/98n 2 H 

    2 (U) D7/s6, U56 2 H & C 
ML-G10 3 K4 2 1 (K) K4 1 C 

    2 (U) D1/s72, D15/s12 2 H 

ML-G11 3 U48 2 1 (K) K23 1 C 

    2 (U) U27, U48 2 C 

ML-G12 3 U36 2 1 (K) K5/23 1 H 

    2 (U) D14/s30, U36 2 H & C 
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ML-G13 3 Odyp-2-1 2 1 (K) K47/114p 1 H 

    2 (U) E11p-1-1*, Odyp-2-1* 1 H 

ML-G14 3 U54 1 3 (U) U14, U30, U54 2 C 

ML-G15 3 U33 1 3 (U) D15/s6, U18, U33 3 H & C 

ML-G16 2 T16 1 2 (T) T12, T16 2 C 

ML-G17 2 T33 1 2 (T) T30, T33 1 C 

ML-G18 2 T38 1 2 (T) T36, T38 1 C 

ML-G19 2 E33 1 2 (E) E29, E33 1 C 

ML-G20 2 E51 1 2 (E) E50, E51 2 C 

ML-G21 2 E57 1 2 (E) E56, E57 1 C 

ML-G22 2 K28/28w 1 2 (K) K21/68n, K28/82w 1 H 

ML-G23 2 K65/140n 2 1 (U) D2/s26 1 H 

    1 (K) K65/140n 1 H 

ML-G24 2 U25 2 1 (U) U25 1 C 

    1 (K) K24 1 C 

ML-G25 2 K42 2 1 (U) D3/s3 1 H 

    1 (K) K42 1 C 

ML-G26 2 U45 2 1 (U) U45 1 C 

    1 (K) K30 1 C 

ML-G27 2 U37 2 1 (U) U37 1 C 

    1 (K) K65/159w 1 H 

ML-G28 2 U10 2 1 (U) U10 1 C 

    1 (K) K26 1 C 

H, historical isolates (2000-2004) and C, contemporary isolates (2015-2017);  

In the Isolate code, K-isolates collected from Kenya E-isolates collected from Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected 
from Uganda; *Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A.
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Table 3.8B. Diversity and distribution pattern of single genotypesa of M. oryzae identified based on 
the multi-locus sequence data among the isolates associated with finger millet production in 
various districts in Ethiopia, Kenya, Tanzania and Uganda 

Country District Number of 

Genotypes/Isolates 

Finger 

millet 

Other weed 

hostsb 

Populationsc 

Ethiopia Adet 1 1 0 C 

 Angebo 1 1 0 C 

 Banja 1 1 0 C 

 Bila 1 1 0 C 

 Bahir Dar 

Zuria 

3 3 0 C 

 Demecha 1 1 0 C 

 Dure Bete 3 3 0 C 

 Diga 6 6 0 C 

 Gaungau 2 2 0 C 

 Sire 1 1 0 C 

 Lallo Assabi 3 3 0 C 

 Leta Sibu 1 1 0 C 

 Leta dulecha 3 3 0 C 

 Mecha 1 1 0 C 

 Nedjo 1 1 0 C 

 Waju Tuka 1 1 0 C 

 Boji Bermeji 1 1 0 C 

 Dangla 1 1 0 C 

 Jabi Tana 1 1 0 C 

Total  33 33 0 C 

Kenya Siaya 5 5 0 C 

 Suba 1 1 0 H 

 Homabay 1 1 0 H 

 Busia 9 7 2 H & C 

 Bungoma 2 2 0 C 

 Gucha 4 4 0 H 

 Kisumu 3 3 0 C 

 Kisii 15 15 0 H & C 

 Kisii central 1 1 0 H 

 Kakamega 1 1 0 C 

 Eldoret 3 3 0 C 

 Marakwet 1 1 0 C 

 Teso 8 6 2 H 

Total  54 50 4 H & C 

Tanzania Nkasi 3 3 0 C 

 Sumbawanga 3 3 0 C 
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 Njombe 10 10 0 C 

 Madaba 5 5 0 C 

 Momba 3 3 0 C 

 Mbozi 6 6 0 C 

Total  30 30 0 H &C 

Uganda Apac 4 2 2 H 

 Arua 4 4 0 C 

 Alebtong 3 3 0 C 

 Agago 2 2 0 C 

 Amuria 2 2 0 C 

 Amuru 1 1 0 C 

 Bugiri 1 1 0 H 

 Busia 1 1 0 H 

 Gulu 1 1 0 C 

 Mbale 2 2 0 H & C 

 Masindi 2 2 0 H 

 Manafwa 1 1 0 C 

 Moyo 1 1 0 C 

 Ngora 2 2 0 C 

 Katakwi 1 1 0 C 

 Kabermaido 1 1 0 H 

 Kumi 3 3 0 H & C 

 Kitgum 1 1 0 C 

 Lira 4 3 1 H 

 Pallisa 5 5 0 H 

 Nakasongola 1 1 0 H 

 Hoima 3 3 0 C 

 Serere 2 2 0 C 

 Soroti 8 7 1 H 

 Tororo 6 6 0 H & C 

Total  62 58 4 H & C 

Total 63 179 175 8 NA 
a Single genotype are individual isolates with distinct multi-locus sequence data; 

b Isolates from other weed hosts include Eleusine indica, E. africana, Digitaria scalarum, D. aegytium, 
D. horizontalis;   

c H - historical isolates (2000-2004), C - contemporary isolates (2015-2017);  

NA - Not applicable 

Further details of isolates belonging to these genotypes are available in Appendix 3. 
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Figure 3.11: Reticulate median-joining network of 121 isolates represented by 28 shared genotypes (Table 3.8B) based on the multi-locus sequence data  

                      (HIS4, ITS, HyP2 and HyP1) 

Detail of isolates represented by the 28 genotypes are avilable in Table 3.8A with further detilas in Appendix 3. Overall circle sizes are proportional to the 
number of isolates within a specific genotype. Circle slice area is proportional to the number of isolates from a country, where Kenya is in green, Uganda in  
blue, Tanzania in red and Ethiopia in yellow. The segment/hatch marks reflect mutation levels between genotypes.Group A includes majority of isolates 
from Kenya and Uganda and Group B includes majority of isolates from Tanzania and Ethiopia. 
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Figure 3.12: Bayesian consensus tree of the M. oryzae genotypes based on the multi-locus    

                       sequence data  

The tree reflects the two main phylogenetic groups of M. oryzae isolates associated with finger 
millet production in Eastern Africa. Also, some isolates were not represented in either group (the 
three lines between the two-coloured circles). The number next to the branch of the tree represents 
the posterior probability value. Isolates in each group are presented in Table 3.8C and further details 
of isolates are available Appendix 3. 
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Table 3.8C Diversity and distribution of the phylogenetic groups based on the multi-locus sequence data from HIS4, ITS, HyP2 and HyP1 markers 

Group Total 
isolates 

per group   

Isolates+ Country Total 
isolates per 

country 

Nucleotide 
differences  

 (%)** 

A 181 D10/s77, U21, Pen-2-2, D4/s12, S1p-1-1*, U5, D1/s19, D1/s11, U7, U32, U8, U20, U26, 
U39, U55, U51, U53, D15/s6, U33, U38, D1/s72, D15/s12, U18, U3, D9/s70, U1, P665n-2-

1*, U2, Gup-2-1*, D15/s47, D1/s53b, U45, D1/s44, U11, U12, U22, U23, U9, U50, U19, 
U13, U16, U6, U17, U49, U58, U31, D4/s26, U28, U15, D11/s16, U43, U47, U44, U37, 

D4/s41, U41, U52, U29, U42, U14, U30, U54, U10, U34, D5/s1, D9/s76, D3/s24, U27, U48, 
D9/s50, D13/s5, U24, D14/s27, U46, D2/s14, D8/s15, D6/s1, U35, D12/s2, D10/s63, U25, 

U4, D2/s26, U40, D14/s30, U36, D9/s56, D3/s3, D9/s54, E11p-1-1*, Odyp-2-1*, U57, Secn-
2-2*, D15/s41, U56, D7/s6 

Uganda 97 0 - 3  

 K1, K1/15, K2, K3, K4, K4/21p, K5, K5/23, K5/24w, K7, K8, K8/40, K9, K9/46, K10, K11, 
K12, K12/62, K13, K13/67, K14/74, K15, K15/53n, K16, K17, K18, K19, K20, K21/68, K22, 
K22/118, K23, K23/123, K24, K25, K26, K27, K26/76p, K28, K28/82w, K29, K29/164, K30, 

K31, K32, K33, K34, K35, K36, K36/98n, K37, K38, K39, K40, K42, K45/112n, K43, K44, K45, 
K47/114p, K55/124p, K57/126p, K64/137p, K65/140n, K65/142n, K65/159w 

Kenya 66 

 T14, T17, T20, T35, T39, T40, T53, T54, T58 Tanzania 9 

 E1, E3, E18, E27, E43, E46, E55, E61, E62 Ethiopia 9 

B 111 E2, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E15, E14, E16, E17, E19, E20, E21, E22, E23, 
E24, E25, E26, E28, E29, E30, E31, E32, E33, E34, E35, E36, E37, E38, E39, E40, E41, E42, 

E44, E45, E47, E48, E49, E50, E51, E52, E53, E54, E56, E57, E58, E59, E60, E63 

Ethiopia 54 0-11 

 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T12, T13, T15, T16, T18, T19, T21, T22, T23, T24, 
T25, T26, T27, T28, T29, T30, T31, T32, T33, T34, T36, T37, T38, T41, T42, T43, T44, T45, 

T46, T47, T48, T49, T50, T51, T52, T55, T56, T57 

Tanzania 48 

   K24/127, K33/184, K33/189, K44/111p, K48/115n, K58/128p   Kenya 6 

 D1/s50, D10/s73, D15/s37 Uganda 3 

 K*/ -isolates from Kenya (Historical), K- isolates from Kenya, E-isolates from Ethiopia, T-isolates from Tanzania, U-isolates from Uganda (Contemporary), D-isolates from Uganda (Historical). 

*Isolates from Uganda. ** Percentage of nucleotide sequence variation within a group. Isolates K5, K14, K21, K41, K60/131p (Kenya), D3/s9 and D10/s71 (Uganda), and T11 (Tanzania) were not 

represented in either Group A or B. Isolates in bold and normal front are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A. 
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3.3.4.6 Multi-locus analysis of the genetic diversity among the M. oryzae isolates within 

Ethiopia 
 

The concatenated data of end-trimmed sequence from each marker namely HIS4, ITS, HyP2 

and HyP1 generated for isolates from Ethiopia ranged from 2175 to 2181 bases in length. 

Multiple sequence alignment of the data from the 63 isolates led to a total alignment length 

of 2121 bases showing 200 SNPs and 81 indels. Among the SNPs identified, 158 were 

parsimony informative sites. The alignment distinguished the 63 M. oryzae isolates from 

Ethiopia into 39 genotypes. Of these, 6 were shared genotypes representing 30 isolates, 

with each of the genotype representing 2 to 17 isolates that revealed identical multi-locus 

sequences (Table 3.9A). The remaining 33 genotypes were represented by single isolates 

(Table 3.9B). ET-G1 is the most distributed genotype representing 17 isolates and found in 

11 districts of Ethiopia. ET-G2 isolates were found in 3 districts and the remaining shared 

genotypes were found in 1 or 2 districts of Ethiopia (Table 3.9A). Bayesian phylogenetic tree 

was constructed from the multiple sequence alignment of 63 FMB pathogen isolates from 

Ethiopia and a rice blast isolate used as an outgroup, with 70 % PPV (Figure 3.13). The 

Kimura 2-parameter model using a discrete gamma distribution (G) with 5 rate categories 

that contain certain fraction of sites and evolutionary invariable (I) was determined to be 

the best evolutionary model (K2+G+I) for the concatenated sequence dataset. Based on the 

tree topology, FMB pathogen isolates from Ethiopia were divided into 4 distinct groups ET1 

to ET4 (Figure 3.13). Four isolates (E17, E26, E40 and E42) were distinctive and were not 

represented in any of the groups (Figure 3.13 and Table 3.9C). ET1 contained 29 isolates 

distributed in 12 districts of Ethiopia including Diga (6 isolates) and Banja (4) as presented in 

in Table 3.9C. ET2 contained 9 isolates distributed across 8 districts.  ET3 contained 13 

isolates distributed across 7 districts including Nedjo (4 isolates) and Diga (3).  ET4 contained 



150 

 

8 isolates distributed across 6 districts including Bahir Dar Zuria (2 isolates) and Mecha. The 

extent of nucleotide difference within the groups varied considerably (Table 3.9C). 
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Table 3.9A: Diversity and distribution pattern of shared genotypes of M. oryzae identified among the isolates collected from finger millet in various 

districts of Ethiopia based on the multi-locus sequence data analysis 

Genotypes Isolate code Total no. of isolates District No. of districts Plant part Variety  Year of collection 

ET-G1 
 
 
 
 
 
 
 
 

E2 17 Wayu Tuka 11 Neck Landrace 2015 

E19 Wayu Tuka Neck - 2016 

E15 Bure Head Landrace 2015 

E59 Bure Head Landrace 2015 

E22 Nedjo Neck - 2016 

E34 Diga Neck - 2016 

E37 Diga Neck - 2016 

E38 Banja Head Landrace 2015 

E39 Banja Neck Landrace 2015 

E49 Banja Head Landrace 2015 

E53 Mecha Head Landrace 2015 

E54 Mecha Neck Landrace 2015 

E48 Guangau Neck Landrace 2015 

E60 Ankussa-Abdo Gor Head Landrace 2015 

E58 Bahir Dar Zuria Neck Landrace 2015 

E44 Dure Bete Neck Landrace 2015 

E63 Qilxxu Kara Head Landrace 2015 

ET-G2 
 
 
 

E21 5 Wayu Tuka 3 Neck - 2016 

E23 Nedjo Neck - 2016 

E24 Nedjo Neck - 2016 

E25 Nedjo Neck - 2016 

E31 Gimbi Head - 2016 

ET-G3 
 

E29 2 Diga 1 Neck - 2016 

E33 Diga Head - 2016 

ET-G4 
 

E46 2 Mandura 2 Neck Landrace 2015 

E62 Jabi Tana Neck Landrace 2015 

ET-G5 
 

E50 2 Banja 2 Neck Landrace 2015 

E51 Mecha Head Landrace 2015 

ET-G6 
 

E56 2 Bahir Dar Zuria 1 Head Landrace 2015 

E57 Bahir Dar Zuria Neck Landrace 2015 

+ Numbers in parentheses are the number of isolates represented by a genotype 

 - Information not available. 
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Table 3.9B. Diversity and distribution pattern of single genotypes of M. oryzae identified among 

the isolates collected from finger millet in various districts of Ethiopia based on the multi-locus 

sequence data analysis 

District Number of isolates collected* Number of single genotypes* 

Adet 1 1 

Angebo 1 1 

Banja 5 1 

Bila 1 1 

Bahir Dar Zuria 6 3 

Demecha 1 1 

Dure Bete 4 3 

Diga 10 6 

Gaungau 3 2 

Lallo Assabi 3 3 

Leta Sibu 1 1 

Leta dulecha 3 3 

Mecha 4 1 

Nedjo 5 1 

Waju Tuka 4 1 

Boji Bermeji 1 1 

Dangla 1 1 

Jabi Tana 2 1 

Sire 1 1 

Bure 2 0 

Mandura 1 0 

Ankussa-Abdo 1 0 

Gimbi 1 0 

Qilxxu Kara 1 0 
Total 63 33 

* Where the numbers are not the same in a district, the isolates belong to shared genotype 
presented in Table 3.9A. 
Further details of isolates belonging to these genotypes are available in Appendix 4. 



153 

 

 

 

Figure 3.13: Bayesian consensus tree based on the multi-locus sequence data of the finger millet  

                      blast pathogen M. oryzae isolates from Ethiopia 

The phylogenetic tree (based on ITS, HIS4, Hyp1 and HyP2) representing distinctive groups ET1 to 

ET4. Isolates belonging to each of the groups are listed in the Table 3.9C; isolates such as E17, E26, 

E40 and E42 were distinctive and were not included in any of the groups. 
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Table 3.9C Finger millet blast pathogen phylogenetic groups in Ethiopia and their distribution 

pattern across different districts  

Group* Number of 
isolates per 

group 

Isolates** Number of 
districts 

Nucleotide 
Difference 

(%)e 

ET1 29 E2, E5, E6, E7, E11, E12, E15, E19, E20, 
E22, E34, E35, E37, E38, E39, E41, E44, 
E45, E47, E48, E49, E53, E54, E56, E57, 

E58, E59, E60, E63 

12a 0 - 5.04 

ET2 9 E1, E3, E18, E27, E43, E46, E55, E61, E62 8b 0 - 0.32 

ET3 13 E8, E9, E10, E21, E23, E24, E25, E28, E29, 
E31, E32, E33, E36 

7c 0 - 1.2 

ET4 8 E4, E13, E14, E16, E30, E50, E51, E52 6d 0 - 4.25 
a Twelve districts include Ankussa-Abdo Gor, Bahir Dar Zuria, Banja, Bure, Diga, Dure Bete, Guangau, 
Leka dulecha, Nedjo, Mecha, Qilxxu Kara and Wayu Tuka 

b Eight districts include Adet, Bila, Bahir Dar Zuria, Mandura, Dure Bete, Jabi Tana, Sire and Wayu 
Tuka 

c Seven districts include Bahir Dar Zuria, Banja, Diga, Demecha, Lallo Asabi and Mecha 

d Six districts include Boji Bermeji, Diga, Gimbi, Leka dulecha, Nedjo, Wayu Tuka and Lallo Assabi  

e Percent nucleotide difference within a group 

*The groups identified include isolates represented by shared (Table 3.9A) and single (Table 3.9B) 
genotypes; shared genotype ET-G5 is included within ET4, whilst the other five shared genotypes are 
included within ET1. 

**Isolates E17, E26, E40 and E42 were not included in any of the groups. 
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3.3.4.7 Multi-locus analysis of the genetic diversity among the M. oryzae isolates within 

Tanzania 
 

The concatenated data of end-trimmed sequence from each marker namely ITS, HIS4, HyP1 

and HyP2 of the 58 M. oryzae isolates from Tanzania yielded a total sequence from 2167 to 

2181 bases in length. Multiple sequence alignment of the data led to a total alignment 

length of 2317 bases showing 280 SNPs and 87 indels. Among the SNPs identified, 207 were 

parsimony informative sites. The alignment distinguished the 58 M. oryzae isolates collected 

from Tanzania into 35 genotypes. Of these, 5 shared genotypes represented 28 isolates with 

each genotype representing 2 to 13 isolates that revealed identical multi-locus sequences. 

TZ-G1 and TZ-G2 were the most distributed genotypes containing 13 and 9 isolates, 

respectively (Table 3.10A). The remaining 30 were single genotypes (Table 3.10B). Bayesian 

phylogenetic tree was constructed from the concatenated multiple sequence alignment of 

58 FMB pathogen isolates and a rice blast isolate as outgroup (Figure 3.14).  The Kimura 2-

parameter model using a discrete gamma distribution (G) with 5 rate categories that contain 

certain fraction of sites and evolutionary invariable (I) was determined to be the best 

evolutionary model (K2+G+I) for the dataset. FMB pathogen isolates were clearly 

distinguished from the rice blast isolate. Based on the tree topology, FMB pathogen isolates 

from Tanzania were divided into 3 distinct groups TZ1, TZ2, and TZ3 (Figure 3.14). Isolate 

T11 was distinctive and was not included in any of the groups (Figure 3.14 and Table 3.10C). 

TZ1 contained 40 isolates with 0 to 2.1 % nucleotide difference and this group comprised 

isolates from 6 districts of Tanzania including Nkasi (10 isolates) and Njombe (15). TZ2 

contained 9 isolates from 3 districts, Njombe (4 isolates), Madaba (3) and Mbozi (2). TZ3 

contained 8 isolates from 5 districts including Mbozi (3 isolates) and Momba (2). Taken 

together, all the phylogenetic groups identified (TZ1, TZ2 and TZ3) were represented in 
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Njombe, Mbozi and Madaba districts and the 3 groups showed varied levels of nucleotide 

differences (Table 3.10C). 
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Table 3.10A: Diversity and distribution pattern of shared genotypes of M. oryzae identified among the isolates collected from finger millet in various 

districts of Tanzania based on the multi-locus sequence analysis 

Genotype Isolate code Total no. of 
isolates 

District No. of districts Plant part Improved/Landrac
e 

Year of collection 

TZ-G1  
 

T6 13 Njombe 4 Neck Landrace 2016 

T7 Njombe Neck Landrace 2016 

T9 Njombe Neck Landrace 2016 

T18 Njombe Neck Landrace 2016 

T48 Njombe Neck Landrace 2016 

T52 Njombe Head Landrace 2016 

T19 Mbozi Neck Landrace 2016 

T41 Mbozi Neck Landrace 2016 

T43 Mbozi Neck Landrace 2016 

T44 Mbozi Neck Landrace 2016 

T24 Nkasi Neck Landrace 2016 

T28 Nkasi Neck Landrace 2016 

T32 Sumbawanga Neck Landrace 2016 

TZ-G2  
 

T1 9 Nkasi 4 Neck Landrace 2015 

T2 Nkasi Neck Landrace 2016 

T3 Nkasi Neck Landrace 2016 

T8 Njombe Neck Landrace 2016 

T47 Njombe Neck Landrace 2016 

T49 Njombe Neck Landrace 2016 

T51 Njombe Neck Landrace 2016 

T10 Madaba Neck Landrace 2016 

T22 Momba Neck Landrace 2016 

TZ-G3 
 

T30 2 Nkasi 1 Neck Landrace 2016 

T33 Nkasi Neck Landrace 2016 

TZ-G4 
 

T36 2 Momba 1 Neck Landrace 2016 

T38 Momba Neck Landrace 2016 

TZ-G5 
 

T12 2 Sumbawanga 2 Neck Landrace 2016 

T16 Njombe Neck Landrace 2016 
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 Table 3.10B. Diversity and distribution pattern of single genotypes of M. oryzae identified among 

the isolates collected from finger millet in various districts of Tanzania 

District Total no. of isolates collected No. of single genotypes 

Nkasi 10 3 

Sumbawanga 5 3 

Njombe 21 10 

Madaba 6 5 

Momba 6 3 

Mbozi 10 6 

Total 58 30 
 
Details of isolates belonging to these genotypes are available in Appendix 5. 
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Figure 3.14: Bayesian consensus tree based on the multi-locus sequence data of the finger millet  

                      blast pathogen M. oryzae isolates from Tanzania  
 

The phylogenetic tree based on ITS, HIS4, Hyp1 and HyP2 representing distinctive groups TZ1, TZ2 

and TZ3. Isolates belonging to each group are listed in the Table 3.10C; Isolate T11 was distinctive 

and not included in any of the groups.
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Table 3.10C. Finger millet blast pathogen phylogenetic groups in Tanzania and their distribution 

pattern across different districts  

Group* Number of 
isolates per 

group 

Isolates** Number of 
districts 

Nucleotide 
difference 

(%)d 

TZ1 40 T1, T2, T3, T6, T7, T8, T9, T10, T12, T13, T16, 
T18, T19, T22, T24, T26, T27, T28, T29, T30, 
T31, T32, T33, T34, T36, T38, T41, T42, T43, 
T44, T45, T46 T47, T48, T49, T50, T51, T52, 

T55, T56,  

6a 0 – 2.1 

TZ2 9 T14, T17, T20, T35, T39, T40, T53, T54, 
T58 

3b 0 – 3.0 

TZ3 8 T4, T5, T15, T21, T23, T25, T37, T57 5c 0 – 4.0 
a Five districts include Nkasi, Njombe, Madaba, Momba, Mbozi and Sumbawanga 

b Three districts include Madaba, Njombe and Mbozi 

c Five districts include Sumbawanga, Mbozi, Madaba, Momba and Njombe 

d Percentage nucleotide difference within a group 

*The groups identified include isolates represented by shared (Table 3.10A) and single (Table 3.10B) 
genotypes; all the shared genotypes are within TZ1. 

**Isolate T11 was distinctive and not included in any of the groups.
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3.3.4.8 Multi-locus analysis of the genetic diversity among the M. oryzae isolates within 

Kenya 
 

The concatenated data of end-trimmed sequence from each marker namely ITS, HIS4, HyP1 

and HyP2 of the 77 M. oryzae isolates from Kenya led to a total of 2136 to 2181 bases in 

length. These 77 isolates comprised 32 isolates representing historical collection (2000 - 

2004) and 45 isolates representing contemporary collection (2015 to 2017). Multiple 

sequence alignment of the concatenated sequence of these isolates led to a total alignment 

length of 2198 bases showing 280 SNPs and 78 indels. Among the SNPs identified, 160 were 

parsimony informative sites. The alignment distinguished the 77 M. oryzae isolates collected 

from Kenya into 71 genotypes. Of these, 5 were shared genotypes representing 2 to 3 

isolates each (Table 3.11A) and the remaining 66 were single genotypes (Table 3.11B). This 

pattern shows that M. oryzae isolates in Kenya are diverse irrespective of the host and 

location. For example, all the isolates collected from Siaya, Gucha and Eldoret districts were 

different to each other based on the multi-locus sequence analysis. No dominant genotype 

could be identified among the M. oryzae isolates collected from finger millet production 

systems in Kenya. The evolutionary relationships of these isolates were assessed based on 

Bayesian analysis with Kimura 2-parameter model using a discrete gamma distribution (G) 

with 5 rate categories that contain certain fraction of sites and evolutionary invariable (I) 

chosen as the best evolutionary model (K2+G+I) and a rice blast isolate as outgroup. The 

analysis distinguished FMB pathogen isolates from Kenya into 3 groups KN1, KN2, and KN3. 

K6 isolate was not group and designated as ungroup (Figure 3.15 and Table 3.11C). KN1 

contained 54 isolates (70 %) from 12 districts in Kenya including Busia (18 isolates), Kisii (6), 

and Teso (11). KN2 comprised 10 isolates from 6 districts including Gucha (2 isolates) and 

Kisii (3). KN3 contained 12 isolates from 4 districts including Kisii (9 isolates). Each of the 
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groups contained isolates representing historical and contemporary populations. The extent 

of nucleotide difference within the groups varied considerably (Table 3.11C). 
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Table 3.11A: Diversity and distribution pattern of shared genotypes of M. oryzae identified among 

the isolates collected from finger millet in various districts of Kenya based on the multi-locus 

sequence analysis 

Genotype* 
 

Isolate 
code 

District No. of 
districts 

Plant 
part 

Variety/type Year of 
collection 

KN-G1  
(3) 

K10 Busia 2 Neck Improved 2016 

K12 Busia Neck Improved 2016 

K33 Kisii Neck - 2017 

KN-G2 
(2) 

K2 Kisumu 2 Neck Improved 2016 

K11 Busia Neck Improved 2016 

KN-G3 
(2) 

K23/123 Busia 2 Neck - 2000 

K36/98n Teso Neck - 2002 

KN-G4 
(2) 

K33/184 Kericho 1 Panicle - 2000 

K33/189 Kericho Leaf - 2000 

KN-G5 
(2) 

K21/68 Teso 1 Neck - 2002 

K28/82w Teso - - 2002 

 

* Numbers in parentheses are the number of isolates represented by a genotype 

- Information not available
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Table 3.11B: Diversity and distribution pattern of single genotypes of M. oryzae identified among 

the isolates collected from finger millet in various districts of Kenya 

Districts Total no. isolates 
collected* 

Number of single  
Genotypes* 

Population 

Siaya 5 5 C 

Suba 1 1 H 

Homabay 1 1 H 

Busia 18 15 H & C 

Bungoma 2 2 C 

Gucha 4 4 H 

Kisumu 6 5 C 

Kisii 18 17 H & C 

Kisii central 1 1 H 

Kakamega 1 1 C 

Eldoret 3 3 C 

Marakwet 1 1 C 

Alupe/Teso 2 2 H 

Teso 12 8 H 

Kericho 2 0 H 

Total 77 66  
 
H - historical isolates (collected from 2000-2004) and C - contemporary isolates (collected 
from 2015 to 2017).  
* Where the numbers are not the same in a district, the isolates belong to shared genotype 
presented in Table 3.11A. 
Details of isolates belonging to these genotypes are available in Appendix 6. 
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Figure 3.15: Bayesian consensus tree based on the multi-locus sequence data of the finger millet  

                      blast pathogen M. oryzae isolates from Kenya  

The phylogenetic tree based on ITS, HIS4, Hyp1 and HyP2 representing distinctive groups KN1, KN2 

and KN3. Isolates belonging to each group are listed in the Table 3.11C; Isolate K6 was distinctive 

and not included in any of the groups.  
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Table 3.11C Finger millet blast pathogen phylogenetic groups in Kenya and their distribution 

pattern across different districts 

Group* Number of 

isolates 

per group 

Isolates** Number 

of 

districts 

Nucleotide 

difference 

(%)d 

KN1 54 K1, K1/15, K2, K3, K4, K4/21p, K5, K5/23, K5/24w, K7, 
K8, K8/40, K9, K9/46, K10, K11, K12, K12/62, K13, 

K13/67, K14/74, K15, K15/53n, K17, K18, K19, K20, 
K21/68, K22, K22/118, K23, K23/123, K24, K25, K26, 

K26/76p, K27, K28, K28/82w, K29/164, K30, K31, K32, 
K33, K35, K36/98n, K42, K43, K45, K47/114p, 
K55/124p, K65/140n, K65/142n, K65/159w  

12a 0 – 2.7 

KN2 10 K14, K21, K41, K24/127, K33/184, K33/189, 

K44/111p, K48/115n, K58/128p, K60/131p  

6b 0 -7.9 

KN3 12 K16, K29, K34, K36, K37, K38, K39, K40, K44, 
K45/112n, K57/126p, K64/137p 

4c 0 – 1.5 

a Twelve districts include Eldoret, Kisii, Busia, Bungoma, Kisumu, Siaya, Teso, Gucha, Alupe/Teso, 
Kakamega, Eldoret and Suba 

b Six districts include Bungoma, Gucha, Kisii, Kisii central, Kericho and Marakwet  

C Four districts include Busia, Gucha, Homabay and Kisii 

d Percentage nucleotide difference within a group 

*The groups identified include isolates represented by shared (Table 3.11A) and single (Table 3.11B) 
genotypes; genotype KN-G4 is included within KN2, whilst the other four genotypes are included 
within KN1.  

**Isolate K6 was distinctive and not included in any of the groups.



167 

 

3.3.4.9 Multi-locus analysis of the genetic diversity among the M. oryzae isolates within 

Uganda 
 

The concatenated data of end-trimmed sequence from each marker namely ITS, HIS4, HyP1 

and HyP2 of the 102 M. oryzae isolates from Uganda yielded a total sequence of 2136 to 

2207 bases in length. These 102 isolates comprised 44 isolates from historical collection 

(2000 - 2004) and 58 isolates from contemporary collection (2015 to 2017). Multiple 

sequence alignment of the data led to a total alignment length of 2231 bases showing 364 

SNPs and 82 indels. Among the SNPs identified, 198 were parsimony informative sites. The 

alignment distinguished the isolates into 80 genotypes. Of these, 12 were shared genotypes 

representing 37 isolates (Table 3.12A) with each shared genotype representing 2 to 5 

isolates. The remaining 68 genotypes were represented by single isolates (Table 3.12B). 

There is no dominant genotype identified among the M. oryzae isolates associated with 

finger millet production systems in Uganda. The majority of the isolates are different to 

each other, for example, all the isolates from Arua district and the majority of the isolates 

from locations such as Apac, Tororo and Soroti are genetically different based on the multi-

locus sequence data. The evolutionary relationships of these isolates were assessed based 

on Bayesian analysis with Kimura 2-parameter model using a discrete gamma distribution 

(G) with 5 rate categories that contain certain fraction of sites and evolutionary invariable (I) 

chosen as the best evolutionary model (K2+G+I) with a rice blast isolate as outgroup. Based 

on the tree topology, FMB pathogen isolates from Uganda were divided into 2 distinct 

groups UG1 and UG2. Isolates D3/s9 and D10/s73 were distinctive and were not included in 

either of the groups (Figure 3.16). UG1 contained 97 isolates (95 %) from 28 districts of 

Uganda. UG1 comprised isolates representing both historical and contemporary populations 

and the nucleotide difference ranged from 0 to 2.9 % in this group. UG2 represented 3 
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isolates from Apac, Soroti and Pallisa districts with a nucleotide difference of 0 to 8.5 % 

(Figure 3.16 and Table 3.12C). 
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Table 3.12A: Diversity and distribution pattern of shared genotypes of M. oryzae identified among the isolates collected from finger millet in various 

districts of Uganda based on the multi-locus sequence analysis 

Genotype+ Isolate code District No. of districts Plant part Finger millet variety/type  Year of collection 

UG-G1  
(5) 

U8 Kumi 5 Neck Local 2016 

U20 Alebtong Neck - 2016 

U26 Apac Neck Local 2016 

U39 Tororo Neck Local 2016 

U55 Lamwo Neck Improved 2016 

UG-G2 
(4) 

U6 Serere 4 Neck Local 2016 

U17 Ngora Neck Local 2016 

U49 Kumi Head - 2016 

U58 Mbale Neck - 2016 

UG-G3 
(4) 

U11 Pallisa 2 Neck Improved 2016 

U12 Pallisa Neck - 2016 

U22 Lira Neck - 2016 

U28 Lira Neck Local 2016 

UG-G4 
(3) 

D9/s50 Lira 3 Panicle - 2002 

D13/s5 Katakwi Panicle - 2002 

U24 Apac Neck Local 2016 

UG-G5 
(3) 

U14 Katakwi 2 Neck Local 2016 

U30 Amuru Neck Local 2016 

U54 Amuru Neck Local 2016 

UG-G6 
(3) 

D15/s6 Soroti 3 Panicle - 2000 

U13 Katakwi  Neck Local 2016 

U18 Ngora Neck Local 2016 

UG-G7 
(2) 

D5/s1 Iganga 2 Panicle - 2000 

D9/s76 Lira Panicle - 2002 

UG-G8 
(2) 

E11p-1-1 Soroti 1 Panicle - 2004 

Odyp-2-1 Soroti Panicle - 2004 

UG-G9 D14/s30 Kabermaido 2 Leaf - 2002 
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(2) U36 Manafwa Neck Local 2016 

UG-G10 
(2) 

D7/s6 Kamuli 2 Panicle - 2000 

U56 Manafwa Neck Local 2016 

UG-G11 
(2) 

U27 Gulu 2 Neck Local 2016 

U48 Kumi Neck Local 2016 

UG-G12 
(2) 

D1/s72 Pallisa 2 Leaf - 2002 

D15/s12 Soroti Panicle - 2000 

 + Numbers in parentheses are the number of isolates represented by a genotype 

 - Information not available. 
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Table 3.12B Diversity and distribution pattern of single genotypes of M. oryzae identified among 

the isolates collected from finger millet in various districts of Uganda 

Districts Total no. of isolates 
collected per district*  

Number of single  
Genotypes* 

Population 

Apac 7 5 H & C 

Arua 4 4 C 

Alebtong 4 3 C 

Agago 2 2 C 

Amuria 2 2 C 

Amuru 3 1 C 

Bugiri 1 1 H 

Busia 1 1 H 

Gulu 2 1 H 

Mbale 4 3 H 

Masindi 2 2 H & C 

Manafwa 4 2 C 

Moyo 1 1 C 

Ngora 4 2 C 

Katakwi 3 1 C 

Kabermaido 2 1 H 

Kumi 8 5 H & C 

Kitgum 2 1 C 

Lira 8 4 H & C 

Pallisa 8 5 H 

Nakasongola 1 1 H 

Hoima 3 3 C 

Serere 4 3 C 

Soroti 12 8 H 

Tororo 7 6 H & C 

Iganga 1 0 H 

Kamuli 1 0 H 

Lamwo 1 0 C 

Total 102 68 H & C 
 
H - historical isolates (collected from 2000-2004) and C - contemporary isolates (collected 
from 2015 to 2017).   
*Where the numbers are not the same in a district, the isolates belong to shared genotype 
presented in Table 3.12A. 
Details of isolates belonging to these genotypes are available in Appendix 7. 
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Figure 3.16: Bayesian consensus tree based on the multi-locus sequence data of the finger millet  

                       blast pathogen M. oryzae isolates from Uganda  

The phylogenetic tree based on ITS, HIS4, Hyp1 and HyP2 representing distinctive groups UG1 and 

UG2. Isolates belonging to each group are listed in the Table 3.12C; Isolates D3/s9 and D10/s73 were 

distinctive and not included in either of the groups.  

 

 

 



173 

 

Table 3.12C Finger millet blast pathogen phylogenetic groups in Uganda and their distribution 

pattern across different districts 

Group* Number 

of isolates 

per group 

Isolates** Number 

of 

districts 

Nucleotide 

difference 

(%)c 

UG1 97 U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12, 
U13, U14, U15, U16, U17, U18, U19, U20, U21, U22, 
U23, U24, U25, U26, U27, U28, U29, U30, U31, U32, 
U33, U34, U35, U36, U37, U38, U39, U40, U41, U42, 
U43, U44, U45, U46, U47, U48, U49, U50, U51, U52, 

U53, U54, U55, U56, U57, U58, D1/s11, D1/s19, 
D1/s44, D1/s72, D1/s53b, D2/s14, D2/s26, D3/s3, 

D3/s24, D4/s12, D4/s26, D4/s41, D5/s1, D6/s1, D7/s6, 
D8/s15, D9/s50, D9/s54, D9/s56, D9/s70, D9/s76, 

D10/s63, D10/s77, D11/s16, D12/s2, D13/s5, D14/s27, 
D14/s30, D15/s6, D15/s12, D15/s41, D15/s47, Gup-2-
1, E11p-1-1, S1p-1-1, Secn-2-2, Odyp-2-1, P665n-2-1, 

Pen-2-2 

28a 0 – 2.9 

UG2 3 D1/s50, D10/s71, D15/s37 3b 0 – 8.5 
a All 28 districts in Uganda where samples were collected for this study 

b Three districts include Apac, Soroti and Pallisa 

c Percentage nucleotide difference within a group 

* The groups identified include isolates represented by shared (Table 3.12A) and single (Table 3.12B) 
genotypes; all the shared genotypes are within UG1. 

**Isolates D3/s9 and D10/s73 were distinctive and not included in either of the groups.
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3.3.5 PCR screening of the contemporary populations of M. oryzae for the Grasshopper 

(grh) repeat element  
 

Initially, the PCR conditions including the two pairs of primers available (designated as PES 

and PKE) for two different regions of the grh element (Takan et al., 2012) were validated 

using a limited number of previously characterised isolates, along with a reference isolate 

G22. The PCR conditions and sets of primers were effective in the amplification of the two 

regions of the grh element (data not shown).  

In Figure 3.17, out of the nine contemporary isolates screened, six isolates T1 to K4 were 

identified as grh positive based on the presence of the amplicons with the PKE and PES 

primer pairs (~840 bp and ~1340 bp, respectively) comparable to the reference isolate G22. 

On the contrary, isolates K5, K6 and U1 were identified as grh negative based on the 

absence of corresponding amplicons in the PCR screening. This approach was used to screen 

the entire collection of contemporary isolates from Ethiopia (63), Kenya (45), Tanzania (58) 

and Uganda (58) for the grh repeat element. 
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Figure 3.17. Agarose gel showing example of PCR screening of M. oryzae and identification of grasshopper (grh) positive and grh negatives isolates 

In the gel image A, the PCR product is ~840 bp using PKE primers and in the gel image B, the PCR product is ~1340 bp using PKE primers. The M. oryzae isolates 
shown on the gel are: T1, T3, T4 from Tanzania; E2 and E4 from Ethiopia; K4, K5 and K6 from Kenya; and U1 form Uganda. G22 used a reference (positive 
control) is a previously characterised M. oryzae isolate from finger millet in Japan from which the grh repeat element was originally described (Dobinson et al., 
1993; Takan et al., 2012). Lane M is a DNA molecular ladder of kwon sized fragments and Lane W is a PCR negative control reaction containing water instead 
of DNA. Further details of the isolates are available in Table 2.1. 

NOTE: 6 isolates T1 to K4 are identified as grh positive based on the presence of the amplicons with the PKE and PES primer pairs comparable to the reference 
isolate G22; Isolates K5 to U1 are identified as grh negative based on the absence of corresponding amplicons in the PCR screening.  

A) PKE 
Primers 

B) PES 
Primers 
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Out of the 224 isolates screened, 110 isolates yielded grh positive products in PCR and 114 

isolates tested grh negative (Table 3.13). The grh positive isolates includes 55 from Ethiopia, 

49 from Tanzania, 5 from Kenya and 1 from Uganda (Table 3.13). In Ethiopia, 55 out of the 

63 isolates tested were grh positive and were found almost in all the districts apart from 

Adet, Jabi Tana, Mandura and Sire. In Tanzania, 49 out of the 58 isolates tested were grh 

positive and were found in all the districts (Table 3.13). Five M. oryzae isolates from Kisii, 

Kisumu and Siaya districts of Kenya and an isolate (U46) from Hoima district of Uganda 

tested grh positive in PCR amplification method. Majority of the grh positive isolates were 

obtained from varietal mixtures and local landraces of finger millet. Isolates K4 and K8 from 

Kisumu and Siaya districts in Kenya were obtained from an improved variety MS60D. Overall 

contemporary collection of isolates from Eastern Africa revealed a near equal distribution of 

the grh positive (49.1 %) and grh negative (50.9 %) M. oryzae isolates (Figure 3.18A) based 

on the PCR screening method. Based on the PCR screening analysis, grh positive isolates are 

dominant in Ethiopia and Tanzania (~86 %), while the grh negative isolates are dominant (~ 

94 %) in Kenya and Uganda (Figure 3.18B). 
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Table 3.13.  Distribution pattern of the grh positive and grh negative M. oryzae isolates collected 
from finger millet in Eastern Africa 

Country/ Region District Number of 
isolates* 

Grasshopper (grh) element PCR 

Positive Negative 

East Africa Total 224 110 114 

 
 
 
 
 
 
 
 
 

Ethiopia 

Sire 1 0 1 

Waju Tuka 4 4 0 

Adet 1 0 1 

Diga 10 9 1 

Lalo Assabi 3 3 0 

Nedjo 5 5 0 

Guangau 3 3 0 

Banja 5 5 0 

Bahir Dar Zuria 6 5 1 

Bure 2 2 0 

Demecha 1 1 0 

Angebo 1 1 0 

Leta Sibu 1 1 0 

Bila 1 1 0 

Boji Bermeji 1 1 0 

Gimbi 1 1 0 

Leka Dulecha 3 3 0 

Dangla 1 1 0 

Dure Bete 4 3 1 

Mandura 1 0 1 

Mecha 4 4 0 

Ankussa-Abdo Gor 1 1 0 

Jabi Tana 2 0 2 

Qilxxu Kara 1 1 0 

Total 63 55 8 

 
 
 

Tanzania 

Nkasi 10 10 0 

Sumbawanga 5 5 0 

Mbozi 10 8 2 

Njombe 21 17 4 

Madaba 6 3 3 

Momba 6 6 0 

Total 58 49 9 

 
 
 

Kenya 

Siaya 5 1 4 

Kisumu 6 1 5 

Busia 13 0 13 

Bungoma 2 0 2 

Kisii 14 3 11 

Kakamega 1 0 1 

Eldoret 3 0 3 
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Marakwet 1 0 1 

Total 45 5 40 

 
 

Uganda 

Arua 4 0 4 

Apac 3 0 3 

Amuria 2 0 2 

Alebtong 4 0 4 

Amuru 3 0 3 

Agago 2 0 2 

Lira 3 0 3 

Katakwi 2 0 2 

Mbale 1 0 1 

Ngora 4 0 4 

Gulu 2 0 2 

Kitgum 2 0 2 

Lamwo 1 0 1 

Masindi 1 0 1 

Kumi 6 0 6 

Moyo 1 0 1 

Pallisa 2 0 2 

Manafwa 4 0 4 

Hoima 3 1 2 

Serere 4 0 4 

Tororo 4 0 4 

Total 58 1 57 
*Total number of M. oryzae isolates collected during 2015 - 2017. Further information about the 
isolates characterised as PCR Grh+ and Grh- are presented in Appendices 4 to 7. 
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Figure 3.18A Proportion of the grh positive and grh negative M. oryzae isolates associated with  

                        finger millet in East Africa 

 

 

Figure 3.18B Pattern of occurrence of grh positive M.oryzae isolates in the four countries surveyed



180 

 

3.4 Discussion  
 

The work reported in this chapter utilized a distinctive collection of 300 isolates of the blast 

pathogen M. oryzae, representing historic (2000 - 2004) and contemporary (2015 - 2017) 

populations, from finger millet and related hosts in Eastern Africa. These isolates were from 

Ethiopia (63), Kenya (77), Tanzania (58) and Uganda (102) representing key cropping 

locations (districts). The finger millet blast (FMB) pathogen populations were analysed using 

a set of DNA sequence-based molecular markers identified and/or developed in this study. 

Isolates representing the contemporary populations were screened for the Grasshopper 

(grh) element, which is known to be mainly present in FMB pathogen isolates in certain 

geographic locations.  

In the initial identification and/or development of the DNA sequence-based molecular 

markers, genome sequence data from 49 isolates of M. oryzae from various host systems 

including rice blast available in the NCBI database were extremely useful. This resource 

enabled a rapid and efficient evaluation of the level of nucleotide differences in any selected 

locus among M. oryzae isolates from a single host. To my knowledge, this is the first study to 

harness this resource for this specific purpose, particularly in the context of the FMB 

pathogen population analysis. Among the three different bioinformatics-based approaches 

evaluated to identify and/or develop the molecular markers, the FUNYBASE resource was 

not effective and the limited number of loci identified for testing by PCR and sequencing 

were not suitable for further development. This is in contrast to recent reports where 

FUNYBASE genes were an effective source to develop novel markers for major fungal 

pathogens such as Alternaria alternata and Fusarium proliferatum from diverse hosts 

(Armitage et al., 2015; Almiman, 2018). This is because vast majority of the single copy 
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orthologs represented in the FUNYBASE showed minimal or no differences among M. oryzae 

isolates reflecting the highly conserved nature of various parts of the genome in this fungus.  

Evaluation of the known fungal phylogenetic markers enabled the identification of the 

internal transcribed spacer (ITS) and the histone 4 (HIS4) gene as markers yielding a good 

level of resolution with the FMB system.  The Internal transcribed spacer (ITS) has been 

widely used as a universal DNA barcode marker for diverse range of fungal species including 

M. oryzae from rice and eleusine blast (e.g. Takan et al., 2012; Xu, 2016; Nilsson et al., 2017; 

Lear et al., 2018; Jagadeesh et al., 2018a). In this study, ITS sequences distinguished the 300 

FMB pathogen isolates from Eastern Africa into 7 genotypes (ITS-G1 to ITS-G7) with the 

phylogenetic tree displaying close relationship of isolates represented by genotypes ITS-G2 

and ITS-G4 isolates at 95.8% confidence level (Figure 3.4). The level of SNPs among the M. 

oryzae genotypes (Figure 3.3) was limited apart from genotype ITS-G6 that showed 

significant differences to others (Table 3.4). Low variability of ITS sequences among the 

Eastern African FMB pathogen isolates is similar to the pattern reported recently among the 

Kenyan rice blast pathogen isolates where 138 isolates were grouped into 5 clades and each 

of the clades were only separated by 3 to 4 nucleotide bases (Mwongera, 2018). Similar 

results have been reported for other fungal pathogens such as Fusarium proliferatum (Mule 

et al., 2004; Visentin et al., 2009; Almiman, 2018) and Colletotrichum acutatum (Talhinhas et 

al., 2002; Baroncelli, 2012). The HIS4 marker developed from the histone 4 locus in this 

study, covers both the exon and intron part of the gene (Figure 3.19). The HIS4 marker 

provided more resolution in differentiating FMB pathogen isolates in Eastern Africa 

compared to the ITS marker. The HIS4 sequence distinguished the FMB pathogen isolates 

into 9 genotypes (Table 3.5), among which the HIS-G8 was distinctive with 32 SNPs (Figure 
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3.5). The other 8 genotypes displayed close phylogenetic relationship at 86.9 % confidence 

value (Figure 3.6).  

 

Figure 3.19. Schematic diagram of histone 4 locus and histone 4 marker region 

The diagram illustrates the Histone 4 locus with 1064 bases within which the Histone 4 (HIS4) marker 
region  (green) covering both exon (purple) and intron (red) regions spanning nucleotide bases 295 
to 716 is shown. 

 

To my knowledge, this is the first use of HIS4 gene sequences for the population analysis of 

M. oryzae from a single host, although histone 4 sequences have been used in other fungal 

pathogens such as Fusarium and Colletotrichum species (e.g. Glass and Donaldson, 1995; 

Donaldson et al., 1995; Talhinhas et al., 2002). 

Intensive analysis of the variable chromosomes of M. oryzae led to the identification of two 

novel markers HyP1 and HyP2 from different genomic regions, in this study. These markers 

provided nearly 10-fold higher resolution in differentiating the FMB pathogen isolates 

compared to ITS and HIS4. It is pertinent to highlight that, markers from SNP-rich genomic 

regions provided a similarly higher resolution among fungal pathogen Ustilagoinoidea virens 

isolates compared to phylogenetic markers from conserved regions/housekeeping genes 

(Sun et al., 2013). Further detailed evaluation using BLAST analysis revealed that the two 

novel markers HyP1 and HyP2 were from regions of the M. oryzae genome reflecting the 

typical characteristics of genomic islands known to cause chromosomal rearrangements. 
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These genomic islands are known to be rich in pathogenicity genes including effector genes 

and repeat elements (Dobrindt et al., 2004). The HyP1 marker contains partial sequence of a 

hypothetical protein (HyP) and telomere. A candidate AVR-Pita2 gene is present at the 

upstream of the HyP1 marker, whilst the downstream part includes telomere region (Figure 

3.20). In the case of the HyP2 marker, non-LTR (MoTeR1) and LTR (Inago1) retrotransposon 

repeat elements flank the downstream, whilst the up-stream region (approximately 2 kb) 

has no homology to known sequences in M. oryzae and/or other fungal genomes (Figure 

3.21).  

Figure 3.20. Schematic diagram representing the architecture of the genomic island harbouring the 
HyP1 marker in M. oryzae  

Following the successful PCR amplification of the HyP1 marker region and subsequent sequencing, 
BLAST analysis was used to identify and extract a corresponding 5 kb region in the genome of the M. 
oryzae isolate K23/123 (one of the reference genomes developed in this work presented in Chapter 
4). Further bioinformatic analysis enabled the determination of the genomic architecutre of this 
region containing the HyP1 marker sequence including the hypothetical protein (purple), telomere 
region (blue), uncharacterised nucleotide sequence with no similarity in the databases (white) and a 
candidate AVR-Pita2 gene (green).  
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Figure 3.21. Schematic diagram representing the architecture of the genomic island harbouring the  
                      HyP2 marker in M. oryzae  
Following the successful PCR amplification of the HyP2 marker region and subsequent sequencing, 
BLAST analysis was used to identify and extract a corresponding 5 kb region in the genome of the M. 
oryzae isolate K23/123 (one of the reference genomes developed in this work presented in Chapter 
4). Further bioinformatic analysis enabled the determination of the genomic architecutre of this 
region containing the HyP2 marker sequence including uncharacterised nucleotide sequence with no 
similarity in the databases (white) and repeat elements MoTeR1 and Inago1, known in M. oryzae 
(Table 1.1) 

 

Thus, the two novel markers identified (HyP1 and HyP2) represent genomic islands that are 

dynamic regions rich in transposable elements and repetitive sequences in the FMB 

pathogen M. oryzae. Recent and emerging research in the rice blast and other systems has 

highlighted that these genomic hotspots are critically important in the adaptive divergence 

of the fungal pathogens to diverse host and environmental conditions (Starnes et al., 2012; 

Santana et al., 2014; Faino et al., 2016; Bialas et al., 2018).  

Among the four markers used in this study, ITS and HIS4 revealed a comparable level of 

resolution distinguishing the 300 FMB pathogen isolates from Eastern Africa into 7 to 9 

genotypes. Likewise, the level of resolution provided by the HyP1 and HyP2 markers was 

comparable with 85 and 80 genotypes, respectively. This distinctive pattern of genotype 

diversity revealed by these two sets of markers is reflective of the two-speed nature of the 

M. oryzae genomes (Dong et al., 2015; Yoshida et al., 2016; Faino et al., 2016). Markers such 

as ITS and HIS4 represent the highly conserved areas of the genome including the house 
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keeping genes. Markers such as HyP1 and HyP2 represent the highly variable areas of the 

genome rich in transposable and repeat elements as well as effector genes including 

avirulence genes. Furthermore, both HyP1 and HyP2 markers distinguished the genotypes 

representing the FMB pathogen in Eastern Africa into two sub-populations represented by 

Groups A and B (Figure 3.8 and Figure 3.10), which were geographically clustered. These 

markers were also useful in deciphering the close relatedness of certain genotypes, e.g. 

within Group A, genotypes HyP1-G5, HyP1-G64, HyP1-G65 and HyP1-G66 from Kenya were 

closely related supported by 99.9% confidence value with the HyP1 marker. Further, Group 

A mainly included isolates from Kenya and Uganda, whilst in Group B, majority of the 

isolates were from Ethiopia and Tanzania. With the ITS and HIS4 markers, this pattern was 

not readily apparent, although these and similar markers such as ACT and MPG1 have been 

widely used in characterising various crop fungal pathogens (e.g. Couch et al., 2005; 

Jagadeesh et al., 2018a). This highlights the value of the novel markers HyP1 and HyP2 

developed in this study in gaining an in-depth understanding of the genotype diversity, their 

distribution pattern and the overall population structure of the FMB pathogen in Eastern 

Africa.  

Multi-locus sequence (MLS) analysis based on the concatenated sequences of HIS4, ITS, 

HyP2 and HyP1 (total 2303 bases) provided a refined assessment of the FMB pathogen 

populations in Eastern Africa, relative to the single locus analysis. MLS data distinguished 

FMB pathogen isolates in Eastern Africa into 207 genotypes, whilst the single locus 

phylogenies revealed 7 (ITS marker) to 85 (HyP1 marker) genotypes. MLS phylogenies also 

revealed some interesting trends in the distribution pattern of the genotypes in space and 

time. For example, 15 genotypes contained isolates from Kenya and Uganda including 4 
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genotypes that contained isolates representing both historic and contemporary populations 

in these countries (Table 3.8A). Conversely, a considerable number of genotypes (single and 

shared) were restricted to one country only, e.g. 33 genotypes in Tanzania and 65 in Uganda 

(Tables 3.8A – 3.8B). It is pertinent to mention that the MLS analysis also distinguished 2 

distinct sub-populations of the FMB pathogen in Eastern Africa (Figure 3.12), corresponding 

to the pattern recorded with the HyP1 and HyP2 markers in single locus analysis. 

Furthermore, MLS analysis of country level data was also effective in distinguishing 

phylogenetic groups within each country ranging from 2 groups in Uganda to 4 groups in 

Ethiopia (Figure 3.13 - 3.16).  

Overall, the MLS analysis is more informative than the single locus analysis in deciphering 

the genetic diversity, population structure and phylogenetic relationships of the finger millet 

blast pathogen M. oryzae in Eastern Africa. Further, the MLS analysis has also enabled the 

integration of sequence data from loci displaying varied evolutionary rates. This is consistent 

with the patterns reported in other fungal pathogens such as Alternaria, Colletotrichum and 

Fusarium species based on MLS analysis (Talhinhas et al., 2002; Armitage et al., 2015; 

Baroncelli et al., 2015; O’Donnell et al., 2015; Almiman, 2018). However, it is important to 

highlight the value of appropriate single locus marker-based analysis depending on the 

research aim and also in view of the resource efficiency. For instance, using the 9 genotypes 

identified by the HIS4 marker (Table 3.5) as a framework, specific sets of isolates 

representing various geographic locations for each genotype can be selected to analyse 

their virulence spectrum or aggressiveness levels in initial varietal screening assays. 

Likewise, in the next stage screening, any promising varieties can be tested against selected 

isolates represented by the wider range of genotypes identified by a marker such as HyP1. 
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Equally, the high resolution offered by single locus analysis with HyP1 maker would make it 

a suitable candidate for future monitoring of FMB pathogen population dynamics in 

locations where the baseline data is available. 

Finger millet blast pathogen population structure at a regional level in Eastern Africa, based 

on the genotype diversity and distribution, shows a continuous genetic variation pattern 

reflecting varying degrees of genotype flow across countries. AFLP and SSR analyses also 

showed similar pattern of the finger millet blast pathogen in Kenya and Uganda (Takan et 

al., 2012) as well as in India (Babu et al., 2013b). The continuous genetic variation pattern of 

the FMB pathogen populations in Eastern Africa as well as in India is distinctive to the clonal 

lineage-based structure well documented with the rice blast pathogen in various geographic 

locations (Levy et al., 1991; Takan et al., 2012; Wang et al., 2017; Pagliaccia et al., 2018). 

Blast pathogen diversity, reflected by the number of lineages and/or haplotypes, has 

directly been related to the history of crop cultivation in a geographic location. For example, 

several reports have shown that M. oryzae populations were highly diverse in countries with 

a long history of crop cultivation as in the case of rice in Asia (Silva et al., 2009; Le et al., 

2010; Saleh et al., 2014; Zhong et al., 2018; Gladieux et al., 2018a), and wheat in Brazil 

(Castroagulin et al., 2017). Thus, in India and China, where rice has been cultivated for 

thousands of years, 157 and 381 haplotypes of the rice blast pathogen M. oryzae, 

respectively have been reported (Kumar et al., 1999; Chen et al., 2006). On the contrary, in 

diverse locations (e.g. USA, Colombia, Europe, Iran, and West Africa), where rice cultivation 

is relatively recent (~200 to 500 years) dominated by a limited range of blast resistant 

varieties, only 2 to 8 lineages of M. oryzae have been reported (e.g. Consolo et al., 2008; 

Park et al., 2008; Takan et al., 2012; Wang et al., 2017b; Pagliaccia et al., 2018).  A very 
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similar pattern is emerging with the wheat blast system and 198 M. oryzae genotypes have 

been identified in Brazil, which has a long history of wheat cultivation and viewed as the 

centre of domestication (Castroagulin et al., 2017). Conversely, in Bangladesh, where wheat 

blast outbreak has recently been reported, a single clonal lineage of the pathogen has been 

identified (Islam et al., 2016).  

The varying patterns of association of the blast pathogen genetic diversity with the 

cultivation history of rice and wheat discussed above are particularly relevant to the genetic 

diversity and population structure of the finger millet blast pathogen in Eastern Africa. This 

is because, it is now well recognised that Eastern Africa - more specifically the highland 

stretches across Ethiopia and Uganda, is the centre of origin and domestication of finger 

millet with ~5000 years of cultivation history (Hilu et al., 1979; de Wet et al., 1984).  

Ethiopia, Kenya, Tanzania and Uganda selected for this investigation are regions of high crop 

diversity through traditional cultivation of landraces and/or varietal mixtures for many 

centuries and also the cultural exchange of genetic materials by the ancient farmers. It is 

also important to note recent efforts at the development and introduction of improved 

varieties in the region (Manyasa et al., 2015; De Villiers et al., 2015; Gimode et al., 2016; 

Tesfaye and Mengistu, 2017; Lule et al., 2018). These factors are likely to have strongly 

influenced the FMB pathogen population diversity and structure in Eastern Africa reported 

in this study, as proposed by Zhao et al. (2010) in the wider context of the centre of origin 

and domestication of crops and pathogen evolution.  

Further, the Bayesian as well as reticulate median-joining phylogenies based on MLS 

analysis have distinguished the FMB pathogen in Eastern Africa into two geographically 

clustered sub-populations designated Groups A and B (Figures 3.11 and 3.12, Table 3.8C). 
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Group A mainly included isolates from Kenya and Uganda, whilst Group B predominantly 

included isolates from Ethiopia and Tanzania. Formal and/or informal seed exchanges and 

movement of planting materials between countries in the Eastern African region are known 

(Lenne et al., 2007; Louwaars and de Boef, 2012). This has been suggested as a key 

mechanism for the spread of crop pathogens (Tanaka et al., 2009; Zhao et al., 2010) 

including wheat blast (Ceresini et al., 2018). However, the specific pattern of geographic 

clustering of the two sub-populations of the FMB pathogen in Eastern Africa identified in 

this study is intriguing and requires further investigations of the plant genetic background, 

because Ethiopia and Tanzania are geographically separated by Kenya. This brings into 

consideration the complex history of the genetic background and movement of finger millet, 

which originated from and was first domesticated in Eastern Africa ~ 5000 years ago and 

then introduced into Asia ~3000 years ago (Hilu et al., 1979; de Wet et al., 1984).  

Within finger millet, African highlands race and Afro-Asiatic lowland race are recognized and 

it is considered that the African highlands race was derived from E. africana under 

cultivation giving rise to the African lowland race. Subsequently, Afro-Asiatic lowland race 

developed from the African lowland race following its migration to India (Mathur et al., 

2012). Cultivated finger millet Eleusine coracana includes two sub-species E. coracana 

subsp. Africana, and E. coracana subsp. coracana (Werth et al., 1994; Gimode et al., 2016). 

Collaborative seed exchange programmes are considered to have led to the reintroduction 

of E. coracana subsp. coracana back into Eastern Africa from Asia (Werth et al., 1994; 

Gimode et al., 2016). These two-sub species of E. coracana are genetically distinct (Werth et 

al., 1994; Gimode et al., 2016) including 4 groups within subsp. africana and 5 groups within 

subsp. coracana identified by genotyping (Gimode et al., 2016).  This leads to the hypothesis 
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that the two sub-populations of the FMB pathogen in Eastern Africa identified in this study 

have co-evolved and are associated with the cultivation and material exchange patterns of 

the two types of finger millet across the region (Hilu et al., 1979; de Wet et al., 1984; Werth 

et al., 1994; Gimode et al., 2016). Ongoing work on the genetics and pathology of finger 

millet varieties by the project collaborators is likely to shed further light on this hypothesis. 

Moreover, a recent study has reported two distinct lineages of M. oryzae associated with 

Eleusine species based on genomic analysis of a small number of samples from different 

geographic locations (Gladieux et al., 2018). Potential occurrence of two groups of the FMB 

pathogen has also been suggested previously (Tanaka et al., 2009). Given the widely 

accepted view that Eastern Africa is the centre of origin of finger millet, from where it was 

introduced and spread to other parts of the world, how the two sub-populations of the 

finger millet blast pathogen in Eastern Africa identified in this study relate to the two 

lineages reported from wider geographic locations requires further in-depth investigations. 

Finger millet blast pathogen diversity at the country level showed some interesting trends, 

taking into careful consideration of the sampling bias due to the varied number of isolates 

available from each country. In each of the four countries surveyed, MLS analysis revealed 

high genotype diversity. For instance, the number of M. oryzae genotypes present in 

Tanzania and Ethiopia were 35 and 39 from 58 and 63 isolates characterised, respectively 

(Tables 3.9A and B to 3.10A and B). Relative to these, a higher proportion of M. oryzae 

genotypes were identified in Uganda with 80 genotypes detected from 102 isolates (Tables 

3.12A and B), whilst the highest proportion of genotypes was in Kenya with 71 genotypes 

identified from 77 isolates (Tables 3.11A and B). The higher proportion of genotypes in 

Uganda and Kenya reflects that the historical and contemporary populations analysed in 
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each of these countries are relatively distinctive. It is important to note that genotypes such 

as UG-G4 and UG-G10 in Uganda contained isolates from both historical and contemporary 

populations (Table 3.12A). Likewise, it is also pertinent to note that some M. oryzae 

genotypes represented isolates from 2 or more countries (Table 3.8A).  

Bayesian analysis of the M. oyzae genotypes from each country enabled their clustering into 

a limited number of genetic groups revealing some interesting trends in the evolutionary 

relationship of these genotypes. For example, in Uganda, where 80 genotypes were 

identified, only two genetic groups were present. Among these, Group UG1 comprised ~95% 

of the M. oryzae isolates from a wide geographical area including historic and contemporary 

populations (Figure 3.16) with the nucleotide diversity ranging from 0 to 2.9 % (Table 3.12C). 

Conversely, in Ethiopia, the 39 genotypes present were clustered into 4 genetic groups 

(Figure 3.13) and the nucleotide diversity within Group ET1 ranged from 0 to 5.04 % (Table 

3.9C). In Kenya, Group KN2 showed nucleotide diversity ranging from 0 to 7.9 % (Table 

3.11C). Finger millet varietal development and consequently the grower cultivation patterns 

vary considerably across these countries. For example, Uganda Government has supported 

the development and introduction of improved varieties such as ENGENY and GULU E 

(Wanyera, 2005a and b) and some of these varieties have also been shared with Kenya. In 

Tanzania and Ethiopia, majority of the farmers are known to use landraces and varietal 

mixtures (Dida et al., 2008).  

At this stage, adequate details of name and/or genetic background of the varieties with 

which these genotypes are associated are not available for various reasons including the 

growers’ lack of awareness. However, as discussed above, the cultivation pattern of the 

finger millet material is most likely to have influenced the pathogen genotype diversity and 
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distribution as highlighted by the breeders and geneticists working on the characterisation 

of finger millet varieties in the region (Dida et al., 2008, Gimode et al., 2016).  

Grasshopper (grh) is a repeat element present in M. oryzae isolates mainly associated with 

finger millet but previous research reported only a sporadic occurrence (e.g. only 13 isolates 

out of 328 screened) of this type of isolates in Eastern Africa (Dobinson et al., 1993; Takan et 

al., 2012). Results from this investigation revealed a very different picture with 110 out of 

224 M. oryzae isolates collected across key finger millet production areas in Eastern Africa 

showing the presence of the grh element in a PCR based screening assay (Figure 3.18A). 

Results from the grh-screening assay have again highlighted the distinctiveness of the FMB 

pathogen populations from Ethiopia and Tanzania (104 grh+ isolates) compared to those in 

Kenya and Uganda (6 grh+ isolates; Figure 3.18B). The distribution pattern of grh+ isolates 

again is strikingly different, with wide distribution in Ethiopia and Tanzania (27 districts) and 

restricted occurrence in Kenya and Uganda (4 districts; Table 3.13). 

Previous reports have suggested that the grh+ M. oryzae isolates in Eastern Africa might 

have been introduced through seed exchange programmes with Asia, where the finger 

millet blast pathogen isolates more commonly contain the repeat element (Dobinson et al., 

1993; Viji et al., 2000; Takan et al., 2012). However, this study has shown, for the first time, 

wide spread occurrence of the FMB pathogen isolates containing the grh element in parts of 

Eastern Africa particularly in Ethiopia and Tanzania. Present results have broader 

significance both in terms of the differences among the countries in Eastern Africa and also 

in relation to the origin and spread of M. oryzae populations along with the movement of 

finger millet including research for development and trade (Kato et al., 2000; Tanaka et al., 

2009). In view of these key issues, genome level differences in M. oryzae isolates 
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representing the grh+ and grh- populations of the finger millet blast pathogen populations 

in Eastern Africa have been further investigated in Chapter 4.  

In conclusion, results reported this chapter have led to the development of new resources 

as well as to gain new insights of the finger millet blast pathogen genetic diversity, 

population structure and phylogenetic relationships as briefly summarised below. Novel 

markers HyP1 and HyP2 developed provide nearly 10-fold higher level of resolution of the 

FMB pathogen genetic diversity (80-85 genotypes) compared to the ITS and HIS4 markers 

identified (7-9 genotypes). An extensive assessment of the distribution pattern of the FMB 

pathogen genotypes at a regional level in Eastern Africa and in each of the 4 countries 

surveyed based on both single locus and multi-locus analysis. This is the first report of the 

identification of two geographically clustered sub-populations of the FMB pathogen in 

Eastern Africa based on both Bayesian and Reticulate Network analyses of historic and 

contemporary populations using 300 M. oryzae isolates. Finally, first report of the wide 

occurrence of the M. oryzae isolates containing the grh element in Eastern Africa 

particularly in Ethiopia and Tanzania. These exciting new observations provided the baseline 

for further genome-level investigations using 18 representative M. oryzae isolates in 

Chapter 4. 
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Chapter 4 

4.0 Comparative Genomic Analysis of Finger Millet Blast Pathogen in Eastern          

Africa 

 

4.1 Introduction 
 

Genome comparison studies have become essential approaches in understanding the 

genetic diversity and evolutionary relationships in plant, animal and human pathogens (Li et 

al., 2014; Taylor, 2015; Baroncelli et al., 2016, McMullan et al., 2018; Gladieux et al., 2018). 

These approaches are emerging as a new gold standard for unravelling population diversity, 

speciation and cryptic processes at a high level of resolution allowing fine-grained 

epidemiological surveillance and evidence-based regulatory decisions (Gladieux et al., 

2018). In addition, whole-genome analyses provide an avenue to gain novel insights into the 

genetic basis of life history traits, factors influencing the process of speciation and the 

signatures of speciation that are apparent from the patterns of variability in genomic 

architecture (Seehausen et al., 2014; Planet et al., 2017; Wolf and Ellegren, 2017). Several 

studies (e.g. Howlett et al., 2015; Teixeira et al., 2016; Sheppard et al., 2018) have shown 

that in-depth knowledge of the pathogen adaptive divergence is crucial for the development 

and deployment of effective disease control measures including resistant varieties.  

Comparative genome analyses of plant pathogens have revealed uneven evolutionary rates 

across the genomes including the genes in the essential and conditionally dispensable 

(accessory) chromosomes (Dong et al, 2015; Wang et al., 2017b). These patterns have now 

been reported in the genomes of a range of crop pathogens such as Magnaporthe oryzae, 

Leptosphaeria maculans, Zymoseptoria tritici, Phytophthora infestans and Fusarium 
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graminearum (Raffaele et al., 2010; Stukenbrock et al., 2010; Grandaubert et al., 2014; 

Chiapello et al., 2015; Gowda et al., 2015; Yoshida et al., 2016; Wang et al., 2017b). These 

uneven evolutionary patterns led to the “two-speed genome” concept in which pathogen 

genomes have a bipartite architecture with the gene sparse, repeat-rich compartments 

serving as sites of adaptive evolution (Raffaele and Kamoun, 2012; Dong et al, 2015; Wang 

et al., 2017b; Faino et al., 2016).  

This “two-speed genome” concept has been used to define the slow and fast evolving 

regions of the genomes. The slow speed sub-genome also referred as the core sub-genome 

has been recognised as essential for basic cellular functions. The fast speed sub-genome 

also referred as the flexible sub-genome constitutes repeat elements, mobile genetic 

elements and pathogenicity-related genes (Ogier et al., 2010; Croll and McDonald, 2012). 

Compared to the slow speed sub-genome, the fast speed sub-genome has a lower GC 

content, shorter gene length and higher variation of exon numbers. In addition, the flexible 

sub-genome is primarily considered as the hot spots for duplication, deletion and 

recombination that underlie rapid evolution through increased structural variation (Croll et 

al., 2015). Deciphering the fast speed sub-genome is crucial in understanding the pathogen 

evolution, adaptation and the processes involved in overcoming host immunity (Wang et al., 

2017b). Phylogenomic investigations of pathogen populations or their representatives 

associated with a single host or multiple hosts offer a unique opportunity to identify the 

genomic features associated with host range expansion, host shifts and biogeographic 

relationships. 

This study has focused on M. oryzae, causative agent of blast disease on finger millet 

particularly in Eastern Africa – the centre of origin and domestication of the crop. 
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Ascomycete fungal pathogen M. oryzae has been well studied in the context of rice blast 

disease and has emerged as a model system to understand plant-microbe interactions and 

co-evolution due to its economic significance and genetic tractability (Talbot, 2003; Dean et 

al., 2005). M. oryzae was the first plant pathogenic fungus sequenced to genome level 

(Dean et al., 2005). M. oryzae has now been assembled into 7 chromosomes with a total size 

of ~41.98 Mbp and used as a reference to generate a significant volume of genome data of 

the pathogen isolates. This landmark breakthrough was initially built on using Sanger 

capillary sequencing and subsequently NGS technologies such as sequencing by synthesis 

(SBS) and single molecule real time (SMRT) sequencing platforms (e.g. Xue et al., 2012; 

Chiapello et al., 2015; Gladieux et al., 2018; Zhong et al., 2018). Presently, genome sequence 

data of more than 200 isolates of M. oryzae from different host plants and geographical 

locations are available in global databases such as the National Centre for Biotechnology 

Information (NCBI) and the Joint Genome Institute (JGI).  

Comparative analysis of genome sequences of M. oryzae isolates established differences in 

the genome architecture with an evolutionary trend that is mostly driven by the repeat-rich 

regions (Chen et al., 2013; Gowda et al., 2015). Another key advance is the recognition of 

the diversification of some effector proteins including avirulence (AVR) genes that function 

as factors modulating the host immune system and promote infection (Khang et al., 2008; 

Huang et al., 2014; Howlett et al., 2015). These effector proteins are not randomly 

distributed in the genome but tend to reside more in the regions enriched in repetitive 

sequences and mobile genetic elements (Rouxel and Balesdent, 2017; Wang et al., 2017a). 

Based on recent and emerging  research, M. oryzae isolates possess a two speed genome, as 

recognised in some major filamentous crop pathogens, including the slow speed sub-
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genome and fast speed sub-genome (e.g. Dong et al., 2015; Yoshida et al., 2016). These two 

sub-genomes have been analysed separately or wholly to gain insight on the evolutionary 

relationships in M. oryzae isolates causing blast disease on different hosts such as rice and 

wheat using various bioinformatic tools such as VCFtool, GATK, and ASTRAL (Danecek et al., 

2011; Mirarab et al., 2014). Recent phylogenomic analysis of sequence data from slow and 

fast evolving regions distinguished 76 M. oryzae isolates from multiple cereals and grass 

hosts into distinct lineages associated with specific hosts (Gladieux et al., 2018). In a similar 

study, using whole-genome sequence data, 100 M. oryzae isolates associated with rice blast 

in various geographical locations were distinguished as 3 groups based on their phylogenetic 

relationships (Zhong et al., 2018). Based on this result, the researchers hypothesised that 

one of the groups might have given rise to the other two groups that emerged in parallel 

(Zhong et al., 2018). Initial phylogenetic analysis using ITS marker, and more recent research 

using a limited level of genome sequence data have suggested that two lineages of M. 

oryzae are associated with Eleusine species which includes the cultivated finger millet- 

Eleusine corocana (Tanaka et al., 2009; Gladieux et al., 2018). To my knowledge, however, 

in-depth and detailed genome level analysis of the finger millet blast pathogen M. oryzae 

and its biogeographic relationships have not so far been reported. 

Results presented in Chapter 3 of this thesis have clearly identified 2 major Groups A and B 

among the finger millet blast FMB) pathogen populations in Eastern Africa including Kenya, 

Uganda, Ethiopia and Tanzania. Further, population level analysis of the FMB pathogen 

using 300 isolates and DNA sequence-based markers provided a clear picture of the 

pathogen genotype diversity and distribution pattern in space and time in Eastern Africa, 

which is the centre of origin and domestication of finger millet.  
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4.1.2. Aim and Objectives  
 

The main aim of the work reported in this chapter is to gain an in-depth understanding of 

the genome level differences of the finger millet blast (FMB) pathogen M. oryzae in Eastern 

Africa and its relationship to blast pathogen isolates from finger millet in Asia as well as from 

other key hosts such as rice and wheat. The objectives are:  

1. To develop the reference genome sequence for FMB pathogen isolates representing 

the Groups A and B. 

2. To develop genome resequence data for another 16 M. oryzae isolates representing 

the biogeographic diversity. 

3. To utilise the sequence data to carry out comparative analysis to gain novel insights 

into the genomic architecture of the FMB pathogen M. oryzae. 

4. To identify genome level differences including the gene content and single 

nucleotide polymorphisms (SNPs) 

5. To analyse the differences in the Grasshopper (grh) element amplification pattern 

representing the grh positive and grh negative M. oryzae isolates 

6. To decipher the phylogenomic relationships among the blast pathogen from finger 

millet in Eastern Africa and Asia as well as other major hosts. 

 

4.2 Experimental approaches 
 

Eighteen M. oryzae isolates (Table 4.1) from finger millet in Eastern Africa were selected on 

the basis of the molecular characteristics including the genotype and grh positive or 
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negative, phylogenetic relationships, geographic location and year of collection from the 

300 isolates (Table 2.1) characterised in Chapter 3. Selected isolates were cultured as 

described in Chapter 2 (Section 2.2.2 – Section 2.2.3). The mycelium was carefully 

harvested, freeze-dried and ground into a fine powder in liquid nitrogen with a sterile pestle 

and mortar (Section 2.3.1). Genomic DNA was extracted from the mycelial powder using the 

CTAB method for the preparation of genomic libraries and single molecular real-time (SMRT, 

PacBio) sequencing of the K23/123 and E34 isolates (Section 2.3.3). Genomic DNA extracted 

from mycelial powder using a column-based method (GenElute Plant Genomic DNA 

Miniprep kit- Sigma, UK) was used for the preparation of paired end and mate pair libraries 

and sequencing using Illumina sequencing platforms MiSeq600 or HiSeq4000 (Section 2.3.2). 

Prior to the preparation of the libraries, extracted genomic DNA was quantified using gel 

electrophoresis and NanoDrop methods to check the quantity, quality and integrity of each 

sample (Section 2.3.5). To develop the reference genome of isolates K23/123 and E34, 

initially, a combination of the paired end and mate pair libraries were sequenced using the 

Illumina MiSeq600 system (Section 2.6.2). The average length of DNA fragments used was 

550 bp for the paired end and 2 to 4 kb for the mate pair libraries (Section 2.6.2). SMRT-bell 

libraries with 20 to 40 kb insert size were also prepared for the reference isolates and 

sequenced using SMRT (PacBio) sequencing technology (Sequel platform, Section 2.6.3). To 

generate the genome resequence data for the 16 isolates, paired end libraries were 

prepared with an average insert size of 100 to 150 bp and sequenced using the Illumina 

HiSeq 4000 system (Section 2.6.2). Details of the service providers utilised in the library 

preparation and sequencing processes are presented in Chapter 2. 
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Quality of the reads generated and elimination of the adaptor sequence were checked using 

the FASTQC program. Low quality bases of less than Q20 and adaptor sequences where 

present, were filtered using the BBDuk plugin in Geneious, Trimmomatic and NxTrim 

(Section 2.7.4). Curated reads were assembled with the SPAdes program for the Illumina 

sequencing, and the CANU program for the PacBio sequencing, with default settings (section 

2.7.4). Reference assemblies integrating the Illumina and PacBio reads were optimised using 

different programs such as Pilon and Quickmerge to reduce nucleotide base errors to 

further enable accurate further analysis (section 2.7.4). The assemblies were screened for 

the presence of mitochondrial and any potential contamination sequences using BLASTN 

search and contaminated sequences were removed to have a nuclear genome for further 

analysis. Standard assembly statistics and quality parameters such as N50 values, number of 

contigs/scaffolds and the total genome size of the nuclear genome assemblies were 

evaluated using QUAST program. BUSCO program was used to further evaluate the genome 

sequence assembly quality by analysing the presence of the established set of fungal 

Ortholog genes (section 2.7.4). The syntenic regions between the two isolates used to 

develop the reference genomes were identified and mapped using SyMap (section 2.7.6). 

Complete gene sets were predicted using the Augustus program (v3.3) based on available 

data of Magnaporthe grisea as the model (Section 2.7.5). The distribution pattern of the 

protein-coding genes among the M. oryzae isolates was analysed using OrthoVenn program 

(section 2.7.5).  For the SNP calling, curated sequence reads were aligned to the reference 

genome assembly of E34 isolate from this study with BWA (v0.7.5a).  The alignment SAM 

files were converted and sorted into BAM files using SAMtools (v0.1.19). A combination of 

tools including SAMtools, BCFtools (v0.1.19) and VCFtools (v1.4.1) was used to filter the 
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bases in the alignment based on the quality thresholds as well as removing the 

heterozygous SNPs and Indels from the alignments. The final SNP data generated is based 

on the homozygous SNP calling (section 2.7.8).  

For the phylogenomic relationship analysis, in addition to the 18 genome assemblies of the 

FMB pathogen isolates from East Africa generated in this study (serial numbers 1-18, Table 

4.1), 9 genome assemblies available via NCBI were included (serial numbers 19-27, Table 

4.1). The 9 additional genome assemblies included were from M. oryzae isolates from 

Eleusine coracana in Asia (India, 3 isolates), E. indica (1), Setaria italic (1), Oryza sativa (2), 

and Triticum aestivum (1) as well as the 70-15, a lab strain from which the first M. oryzae 

genome sequence was developed (Table 4.1). Single copy ortholog genes present in the 

genome assemblies were predicted and identified using BUSCO program and the sequence 

data of genes found common in all the assemblies were concatenated and used to construct 

a phylogenetic tree using the RAxML suite of programs (section 2.7.9). A single consensus 

tree was generated at the 80 % Bootstrap support values using the ASTRAL program and 

viewed using the Rpackage GGtree v1.12.4 (section 2.7.9).  In addition to this, coding 

sequences of selected avirulence genes known in M. oryzae (Guy11) were searched from 

the genome assemblies of the 18 FMB isolates from this study using BLASTN analysis. Where 

present, the nucleotide sequences were aligned and the variation observed was checked for 

synonymous and nonsynonymous substitutions. The reference genome assemblies of 

isolates E34 (grh positive) and K23/123 (grh negative) were analysed using the original 

Grasshopper element described and the sequence data deposited in GenBank (Dobinson et 

al., 1993). BLASTN analysis of the two genome assemblies with the reference grh sequence 

(Dobinson et al., 1993) enabled the initial identification of the scaffolds showing varying 
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levels of coverage and identities and their detailed analysis using the options within the 

Geneious package (section 2.7.7). 
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Table 4.1: Details of the M. oryzae isolates selected for the genome sequencing and comparative analysis in this work 

S/N Isolate* Host Location Collection 

Year 

Grasshopper 

(grh) element 

Genotypea Group** Accession No. Reference 

1 E1  Eleusine coracana Sire, Ethiopia 2015 - ML-G91 A  This study 

2 E7  Eleusine coracana Diga, Ethiopia 2015 + ML-G96 B  This study 

3 E17  Eleusine coracana Angebo, Ethiopia 2016 + ML-G105 B  This study 

4 E34 Eleusine coracana Diga, Ethiopia 2016 + ML-G1 B  This study 

5 K5 Eleusine coracana Kisumu, Kenya 2016 - ML-G128 A  This study 

6 K13/67 Eleusine coracana Teso, Kenya 2000 + ML-G138 A  This study 

7 K48/115n Eleusine coracana Kisii, Kenya 2002 + ML-G173 B  This study 

8 K23/123 Eleusine coracana Busia, Kenya 2000 - ML-G9 A PHFK00000000 This study 

9 K38 Eleusine coracana Kisii, Kenya 2017 + ML-G162 A  This study 

10 T5 Eleusine coracana Nbozi, Tanzania 2016 + ML-G179 B  This study 

11 T11 Eleusine coracana Madaba, Tanzania 2016 + ML-G180 NA  This study 

12 T12 Eleusine coracana Sumbawanga, Tanzania 2016 + ML-G16 B  This study 

13 T17  Eleusine coracana Madaba Tanzania 2016 - ML-G184 A  This study 

14 D1/s11 Eleusine coracana Pallisa, Uganda 2000 + ML-G33 A  This study 

15 D8/s15  Eleusine coracana Busia, Uganda 2000 - ML-G44 A  This study 

16 D15/s47 Eleusine coracana Soroti, Uganda 2002 - ML-G54 A  This study 

17 U13  Eleusine coracana Katakwi, Uganda 2016 - ML-G67 A  This study 

18 U47 Eleusine coracana Hoima, Uganda 2016 - ML-G85 A  This study 

19 MG03 Eleusine coracana Bangalore, India 2012 + NK NK LNTJ000000000 Shirke et al., 2016 

20 MG04 Eleusine coracana Bangalore, India 2012 + NK NK LNTK000000000 Shirke et al., 2016 

21 MG12 Eleusine coracana Bangalore, India 2012 + NK NK LNTO000000000 Shirke et al., 2016 

22 CD156 Eleusine indica NK NK NK NK NK UELY00000000 NK 
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23 US71 Setaria italica NK NK NK NK NK UCOF00000000 NK 

24 Guy11 Oryza sativa Guyana 1978 NK NK NK MQOP00000000 NK 

25 FJ81278 Oryza sativa Fujian, China 1981 NK NK NK MQOO00000000 NK 

26 Mo70-15 Lab strain NK NK NK NK NK AACU00000000 Dean et al., 2005 

27 BTJP4.1 Triticum aestivum NK NK NK NK NK UEMB00000000 NK 

28 G22 Eleusine coracana Japan 1976 + na na M77662 Dobinson et al., 1993 

Serial numbers 1-18 are isolates for which the genome sequencing was done in this study and 19-27 are genome assemblies downloaded via NCBI and used 
for comparative analysis 

Grasshopper (grh) element: M. oryzae isolates identified as grh positive (+) or grh negative (-) based on the presence or absence of the two amplicons in 
PCR screening with the PKE and PES primer pairs  

aThe genotypes identified based on the multi-locus sequence data identity among the 300 isolates including historical and contemporary populations 

*The grh element DNA sequence of the isolate G22 was downloaded and used for the identification and comparative analysis 

**The major groups identified based on the phylogenetic analysis of the multi-locus sequence data in Figure 3.12 and Table 3.8C   

NA, Isolate T11 was distinctive and was not included in either Group A or Group B; NK, Not Known    

Mo70-15 is a lab strain developed by crossing the Guy11 isolate from rice and a weeping love grass isolate from which the first genome sequence data was 
generated (Dean et al., 2005). 
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4.3 Results 

4.3.1 Genome sequencing, de novo assembly characteristics and gene prediction 
 

Genome level data generation and analysis of the finger millet blast pathogen M. oryzae in 

Eastern Africa was carried out utilising a set of 18 isolates representing the genetic and 

biogeographic diversity of the 300 isolates characterised based on the analyses of the HIS4, 

ITS, HyP2 and HyP1 markers (Chapter 3). The two approaches pursued in this work were: i) 

generation of reference genome data utilising a combination of Illumina and PacBio 

platforms for 2 isolates representing the major phylogenetic groups A and B identified, and 

ii) genome resequencing using the Illumina platform of 16 isolates representing the two 

groups.  

In the first approach, isolate K23/123 representing Group A and the grh negative isolates, 

and E34 representing Group B and the grh positive isolates were used to develop the 

reference genomes. The total number of Illumina (MiSeq600) and PacBio sequence reads 

generated for the two reference genomes were 13.74 and 16.91 million for isolates K23/123 

and E34, respectively (Table 4.2). The Illumina reads length varied from 35 to 301 bases and 

the PacBio reads length varied from 1000 to 92,752 bases. Using the combination of raw 

data set from Illumina paired end and mate pair sequencing and the PacBio SMRT 

sequencing platforms resulted in a total sequence of approximately 8.21 billion bases (Bb) 

for K23/123 and 12.16 Bb for E34. Curated reads from the two platforms were assembled 

using SPAdes and CANU programmes along with other programmes such as Quickmerge to 

polish the assemblies. This led to the generation of reference genome assemblies 

comprising 21 and 31 scaffolds for isolates K23/123 and E31, respectively. The assembly 

resulted in a total genome size of approximately 42.58 Mb for isolate K23/123 and 44.15 Mb 
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for isolate E34. Other key statistical parameters generated and evaluated are suggestive of 

the high quality of the two de novo assemblies. Genome assembly quality assessment using 

BUSCO version 3.0.2 (Simao et al., 2015) with the Sordariomycetes ortholog gene data set 

(3725 genes) as reference showed the presence of the orthologs ranging from 3568 (95.7 % 

gene content) in isolate E34 to 3641 (97.8 % gene content) in isolate K23/123. To predict the 

total gene set for each isolate, the nuclear genomes were analysed using the Augustus 

pipeline with Magnaporthe grisea as the model and the total protein coding genes 

predicted were 10,692 in isolate K23/123 and 11,271 in isolate E34 (Table 4.2).  
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Table 4.2. Genome assembly’s statistics and gene prediction information of the two reference M. 
oryzae isolates representing the two major phylogenetic group A and B 
 

Features* M. oryzae isolates** 

K23/123 E34 
No. of reads from PE library (M) 6.45 3.55 
No. of reads from MP library (M) 10.11 9.26 

No. of reads from SMRT library (M) 0.35 0.94 
Total reads (M) 16.91 13.75 

Total sequence generated (Bb) 8.21 12.16 
Coverage (X) 192.69 275.45 

Assembly size (Mb) 42.58 44.15 
No. of Scaffolds 21 31 

Largest Scaffolds (Mb) 7.30 12.35 
N50 (Mb) 5.36 4.73 
N75 (Mb) 4.14 3.28 

L50 4 3 
L75 6 6 

BUSCO completeness (%) 97.8 95.7 

No. of BUSCO genes 3641 3568 

GC content (%) 49.92 50.17 

Predicted protein coding genes 10692 11271 

 * PE – Paired end; MP – Mate pair; M – Million, Mb – Million bases, Bb – Billion bases 
N50 – the length for which the collection of all contigs covers at least half (50%) an assembly size,   
N75 - the length for which the collection of all contigs covers at least 75% an assembly size,  
 L50 & L75 – the number of contigs equal to or longer than N50 and N75, respectively. 
 BUSCO – Benchmarking Universal Single-Copy Orthologs 
 ** Isolate details are presented in Table 2.1 and Table 4.1. 

 
 
 
In the second approach, resequencing of 16 isolates representing the molecular and 

geographic diversity of the FMB pathogen populations in Eastern Africa was carried out 

using the lllumina HiSeq4000 system and PE libraries. The total number of reads generated 

for each isolate varied from approximately 15.18 (isolate K5) to 26.06 million (isolate 

K48/115n) (Table 4.3). A uniform read length of 100 bases was achieved and the total 

sequence data generated for each isolate varied from 3.04 billion bases (Bb) for isolate K5 to 

5.21 Bb for isolate K48/115n. The de novo assembly of the curated reads was performed 

using SPAdes assembler at default setting and scaffolds less than 1 kb were filtered. The 
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overall coverage of the assemblies for the 16 isolates varied from ≥70X to 128X and the 

estimated size of the assembled genomes ranged from 40.66 Mb (isolate T12) to 43.75 Mb 

(isolate E7) as shown in Table 4.3. The number of scaffolds of the assembled genomes 

varied from 1367 (isolate E7) to 2188 (isolate K48/115n) as presented in Table 4.3   BUSCO 

analysis showed the presence of the gene orthologs ranging from 3603 (96.7 % gene 

content) in isolate K38 to 3618 (97.2 % gene content) in isolate U13 (Table 4.3). The 

predicted total protein coding gene set for each of the 16 isolates varied from 10,566 in 

isolate U47 to 10,778 in isolate K5 (Table 4.3).  
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Table 4.3: Genome assembly’s statistics and gene prediction information of 16 resequencing M. oryzae isolates representing diverse geographical 

 locations in Eastern Africa 

FEATURES* M. oryzae isolates** 

K5 K38 K13/67 K48/115n D1/s11 D8/s15 D15/s47 U13 U47 

No. of reads from PE 
library (M) 

15.18 21.63 24.53 26.06 20.94 21.02 23.05 25.47 23.23 

Total reads (M) 15.18 21.63 24.53 26.06 20.94 21.02 23.05 25.47 23.23 

Total sequence 
generated (Bb) 

3.04 4.33 4.91 5.21 4.19 4.20 4.61 5.09 4.65 

Coverage (X) 72.03 105.22 118.55 128.04 101.10 101.71 111.36 121.63 114.00 

Assembly size (Mb) 42.15 41.11 41.39 40.70 41.42 41.33 41.39 41.88 40.75 

No. of Scaffolds 2127 1869 1876 2188 1942 1886 1894 2037 1646 

Largest Scaffolds (Mb) 0.248 0.225 0.193 0.159 0.225 0.171 0.237 0.221 0.520 

N50 (Mb) 0.035 0.039 0.039 0.034 0.036 0.039 0.038 0.036 0.111 

N75 (Mb) 0.020 0.021 0.021 0.019 0.020 0.021 0.021 0.020 0.051 

L50 357 319 330 359 335 325 323 343 113 

L75 758 679 692 763 713 693 687 733 243 

BUSCO completeness 
(%) 

96.8 96.7 96.9 96.8 97.1 97.1 97.0 97.2 97.1 

No. of BUSCO genes 3604 3603 3608 3605 3616 3614 3612 3618 3616 

GC content (%) 50.07 50.22 50.12 50.52 50.09 50.12 50.10 50.10 51.30 

Predicted protein coding 
genes 

10778 10657 10647 10740 10646 10639 10647 10706 10566 
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                                                                                                                                                                                    (Table 4.3 Continued) 

FEATURES* M. oryzae isolates** 

E1 E7 E17 T5 T11 T12 T17 

No. of reads from PE 
library (M) 

21.39 21.85 24.68 23.08 20.13 21.35 21.63 

Total reads (M) 21.39 21.85 24.68 23.08 20.13 21.35 21.63 

Total sequence 
generated (Bb) 

4.28 4.37 4.94 4.61 4.03 4.27 4.32 

Coverage (X) 103.73 99.80 120.11 110.35 96.66 105.03 104.82 

Assembly size (Mb) 41.23 43.75 41.11 41.83 41.64 40.66 41.26 

No. of Scaffolds 1832 1367 2117 1932 2145 2163 1839 

Largest Scaffolds (Mb) 0.224 0.671 0.170 0.206 0.167 0.320 0.180 

N50 (Mb) 0.039 0.120 0.036 0.037 0.036 0.033 0.039 

N75 (Mb) 0.021 0.053 0.019 0.021 0.020 0.018 0.021 

L50 317 107 348 341 339 360 324 

L75 674 242 750 720 731 774 681 

BUSCO completeness 
(%) 

97.0 97.0 96.9 97.0 96.8 96.8 96.9 

No. of BUSCO genes 3614 3613 3609 3613 3607 3607 3610 

GC content (%) 50.19 50.57 50.35 50.08 50.17 50.39 50.10 

Predicted protein 
coding genes 

10629 10594 10731 10724 10709 10698 10628 

       * PE – Paired end; M – Million; Mb – Million bases; Bb – Billion bases; 
        N50 – the length for which the collection of all contigs covers at least half (50%) an assembly size; 
         N75 - the length for which the collection of all contigs covers at least 75% an assembly size; 
         L50 & L75 – the number of contigs equal to or longer than N50 and N75, respectively; 
         BUSCO – Benchmarking Universal Single-Copy Orthologs 
        ** Isolate details are presented in Table 2.1 and Table 4.1.
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4.3.2 Genome synteny between finger millet blast pathogen isolates 
 

Synteny plot analysis of the genome assemblies of K23/123 and E34 was carried out using 

the SyMap programme (Figure 4.1). Large scaffolds 1 to 8 of isolate K23/123 mapped to 

large scaffolds 1 to 7 of isolate E34 showing major syntenic blocks. Some of the smaller 

scaffolds of K23/123 (e.g. scaffold 9) also mapped to some of the large scaffolds in E34 (e.g. 

scaffold 2). Furthermore, some of the mapping patterns either with K23/123 (e.g. scaffold 4) 

or with E34 (e.g. scaffold 2 and 4) are suggestive of putative genomic rearrangements such 

as duplication and/or translocation. A number of scaffolds (11) in K23/123 did not map to 

any of the scaffolds in E34. Likewise, a number of scaffolds (20) in E34 did not map to any of 

the scaffolds in K23/123. These scaffolds were designated as putative isolate specific regions 

(Figure 4.1). The size of the regions specific to K23/123 and E34 is approximately 0.5 Mb and 

1.6 Mb, respectively.  
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  Figure 4.1. The synteny plot between K23/123 and E34 genomes obtained using SyMap 

The circular plot shows mapping of some of the syntenic blocks between the scaffolds of K23/123 in the upper half with the scaffolds in E34 in the lower 

half of the circle. Syntenic mapping of the scaffolds is indicated by the corresponding colour blocks between K23/123 and E34. 
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4.3.3 Comparative analysis of the predicted protein coding genes among the finger 

millet  blast pathogen M. oryzae isolates in Eastern Africa 
 

The predicted protein coding genes identified in each isolate using the Augustus pipeline 

were further analysed with the OrthoVenn program to identify the distribution pattern of 

the genes among the 18 FMB isolates representing the pathogen populations in Eastern 

Africa. This enabled the identification of genes common to two or more isolates, and genes 

specific to an isolate. Based on the OrthoVenn analysis, 10216 protein coding genes were 

identified as common between M. oryzae isolates K23/123 and E34, whilst 19 and 37 genes 

were unique to isolates K23/123 and E34, respectively as shown in the Venn diagram (Figure 

4.2).  

OrthoVenn analysis of the 16 FMB pathogen isolates that were resequenced with isolates 

K23/123 and E34 used to develop the reference genomes enabled the identification of 

genes common among each resequenced isolate and the reference isolates as well as genes 

that are specific to each isolate (Table 4.4). For example, genes common among any one of 

the resequenced isolate and the two reference isolates ranged from 10,139 (isolate U47) to 

10,173 (isolate D15/s47). The OrthoVenn programme initially identifies the genes common 

to each resequenced isolate and the two reference isolates. Subsequently, the programmes 

analyse the left-over gene set to identify genes common to the resequenced isolate and 

K23/123 or the resequenced isolate and E34 or K23/123 and E34 (Table 4.4). Finally, the 

number of genes specific to an isolate is identified, which varied from 0 to 38 among the 18 

isolates including the 2 reference isolates (Table 4.4). 

OrthoVenn analysis was also carried out amongst isolates from each of the 4 countries 

surveyed in Eastern Africa to assess the gene distribution pattern (Figures 4.3 – 4.6). For 
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example, 10,164 protein coding genes were common among the 5 FMB pathogen isolates 

from Kenya including the reference isolate K23/123, whilst the number of genes unique to 

each isolate varied from 0 to 7 (Figure 4.3). In addition to the 10,164 genes identified as 

common among the five isolates, some genes were identified as common among 4 isolates 

only (e.g. 14 to 109), some genes were identified as common among 3 isolates only (e.g. 11 

to 28) and some genes were identified as common among two isolates only (e.g. 8 to 40) as 

shown in Figure 4.3. Among the 5 isolates from Uganda, 10,247 protein coding genes were 

common and the number of genes unique to each isolate varied from 0 to 2 (Figure 4.4). A 

further 11 to 95 genes were common among 4 isolates, 6 to 25 were common among 3 

isolates and 6 to 29 were common among 2 isolates (Figure 4.4).  In the case of the 4 FMB 

pathogen isolates from Tanzania, 10,212 genes common and the number of specific genes 

to each isolate varied from 0 to 5 (Figure 4.5).  In addition, 14 to 182 genes were common 

among three isolates and 5 to 98 genes were common among two isolates (Figure 4.5). 

Similarly, among the 4 FMB pathogen isolates from Ethiopia including the reference isolate 

E34, 10,112 genes were common and the number of genes specific to each isolate varied 

from 0 to 22 (Figure 4.6). A further 26 to 124 genes were common among 3 isolates and 17 

to 79 genes were common among 2 isolates (Figure 4.6).  
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Figure 4.2. Distribution pattern of the predicted protein coding genes between isolates E34 and  

                    K23/123 used to develop the reference genomes as representatives of the major   

                    phylogenetic Groups A and B as well as the grh positive and grh negative isolates 

Gene distribution pattern between the isolate E34 (purple) and isolate K23/123 (red) based on 

OrthoVenn analysis. The Venn diagram shows the clustered genes common to the two isolates (e.g. 

10,216) and the number of genes specific to each isolate. The X-axis shows the isolates analysed and 

the Y-axis shows the number of clustered genes present.  

The output was generated using OrthoVenn - http://www.bioinfogenome.net/OrthoVenn/start.php 

 
 
 
 
 
 
 
 

http://www.bioinfogenome.net/OrthoVenn/start.php
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Table 4.4 Distribution pattern of the predicted protein coding genes among the 16 resequenced 

finger millet blast pathogen isolates compared to the isolates K23/123 and E34 developed as 

reference genomes  

Isolate Distribution pattern of predicted protein coding genes 

*Common 

to the 

isolate, 

K23/123 

and E34  

**Common 

to the isolate 

& K23/123 

only 

**Common 

to the 

isolate & 

E34 only 

**Common 

to K23/123 

& E34 only 

Isolate 

specific 

K23/123 

specific 

E34 

specific 

K5 10151 217 78 70 5 7 33 

K38 10161 197 41 62 0 8 30 

K13/67 10156 217 39 63 0 8 37 

K48/115 10144 120 162 74 0 12 20 

D1/s11 10159 226 40 59 0 5 36 

D8/s15 10168 226 36 47 0 5 37 

D15/s47 10173 222 39 50 0 6 35 

U13 10169 213 57 53 0 7 35 

U47 10139 184 50 82 1 14 38 

E1 10159 210 41 59 0 5 32 

E7 10147 91 164 70 0 18 27 

E17 10165 115 174 53 3 11 21 

T5 10144 210 65 72 1 8 23 

T11 10143 204 68 75 0 9 30 

T12 10151 108 173 67 0 12 27 

T17 10148 207 34 74 0 6 35 

Predicted protein coding genes of each isolate were clustered with those of K23/123 and E34 using 
OrthoVenn  

*Column shows the number of genes common to each resequenced isolate and the reference 
isolates K23/123 and E34 

** The left-over gene set is analysed by OrthoVenn progamme to identify genes common to each 
resequenced isolate and K23/123 only; each resequenced isolate and E34 only; K23/123 and E34 
ony. The process enables the programme to identify genes specific to each resequenced isolate, 
K23/123, and E34. 
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Figure 4.3. Distribution pattern of predicted protein coding genes among FMB pathogen isolates  

                    including reference isolate K23/123 from Kenya  

Comparison of isolates K23/123 (green), K5 (blue), K38 (red), K13/67 (yellow) and K23/123 (orange). 

The Venn diagram shows the number of genes common to all 5 isolates (e.g. 10,164), genes common 

among 4 isolates, among 3 isolates and among 2 isolates, and the number of genes specific to each 

isolate. The X-axis shows the isolates analysed and the Y-axis shows the number of clustered genes 

present.  

The output was generated using OrthoVenn - http://www.bioinfogenome.net/OrthoVenn/start.php 

 

 

 

 

 

http://www.bioinfogenome.net/OrthoVenn/start.php
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Figure 4.4. Distribution pattern of the predicted protein coding genes among FMB pathogen  

                   isolates from Uganda 

Comparison of isolates D1/s11 (green), D8/s15 (blue), D15/s47 (red), U13 (yellow) and U47 (orange). 

The Venn diagram shows the number of genes common to all 5 isolates (e.g. 10,247), genes common 

among 4 isolates, among 3 isolates and among 2 isolates, and the number of genes specific to each 

isolate. The X-axis shows the isolates analysed and the Y-axis shows the number of clustered genes 

present.  

The output was generated using OrthoVenn - http://www.bioinfogenome.net/OrthoVenn/start.php 

 

 

 

http://www.bioinfogenome.net/OrthoVenn/start.php
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Figure 4.5. Distribution pattern of predicted protein coding genes among FMB pathogen isolates  

                    from Tanzania 

Comparison of isolates T5 (green), T11 (blue), T12 (red) and T17 (yellow). The Venn diagram shows 

the number of genes common to all 4 isolates (e.g. 10,212), genes common among 3 isolates and 

among 2 isolates, and the number of genes specific to each isolate. The X-axis shows the isolates 

analysed and the Y-axis shows the number of clustered genes present.  

The output was generated using OrthoVenn - http://www.bioinfogenome.net/OrthoVenn/start.php 

Y-

axis  

X-axis  

http://www.bioinfogenome.net/OrthoVenn/start.php
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Figure 4.6. Distribution pattern of predicted protein coding genes among FMB pathogen isolates     

                    including the reference isolate E34 Ethiopia 

Comparison of isolates E34 (green), E1 (blue), E7 (red) and E17 (yellow). The Venn diagram shows 

the number of genes common to all four isolates (e.g. 10,112), genes common among 3 isolates and 

among 2 isolates, and the number of genes specific to each isolate. The X-axis shows the isolates 

analysed and the Y-axis shows the number of clustered genes present.  

The output was generated using OrthoVenn - http://www.bioinfogenome.net/OrthoVenn/start.php 

 

 

 

http://www.bioinfogenome.net/OrthoVenn/start.php
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4.3.4 Evaluation of the concept of genes common to all isolates, and genes specific to 

certain isolates using selected avirulence genes as a model 

 

4.3.4.1 Distribution of the AVR-Piz-T gene in FMB M. oryzae isolates from Eastern Africa  

The nucleotide sequence of the AVR-Piz-T deposited in the GenBank for Guy11 (isolate from 

rice) with the accession number LC175909.1 was extracted and used to interrogate the 

genomes of the 18 FMB pathogen isolates from Eastern Africa (Table 4.1) using BLASTN 

analysis. The BLASTN analysis showed that all 18 isolates harboured the AVR-Piz-T gene (327 

bases) in their genomes reflecting a typical example of a gene common to all isolates as 

identified in the earlier parts of this Chapter (section 4.3.3). 

The multiple sequence alignment of the AVR-Piz-T gene for the 18 isolates with the Guy 11 

as reference shows the nucleotide substitutions (Figure 4.7). The nucleotide sequence 

variability resulted in changes in the amino acid sequence due to non-synonymous 

substitutions (Figure 4.8).  
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  30                   90 

Guy 11 CCTCTTCACCGGGCTCGCCTCCGCCAGCTTCGTACAATGCAATCATCATCTCCTGTACAAT 

Group FMB1 CCTCTTCACCGGGCTCGCCTCCGCCAACTTCGTACAATGCAATCATCATCTCCTGTACAAT 

Group FMB2 CCTCTTCACCGGGCTCGCCTCCGCCAACTTCGTACAATGCAATCATCATCTCCTGTACAAT 

 

  120                        180 

Guy 11 GGCGGGTTGGGCCGTTAGATTTTACGAAGAAAAACCAGGGCAGCCAAAGAGGCTGGTCGCG 

Group FMB1 CGCGGGTTGGGCCGTTAGATTTTACGAAGAAAAACCCAACCAGCCAAAGAGGCTGGTCGCG 

Group FMB2 CGCGGGTTGGGCCGTTAGATTTTACGAAGAAAAACCAGACCAGCCAAAGAGGCTGGTCGCG 

 

  181                 240 

Guy 11 ATTTGCAAAAACGCGTCACCCGTACACTGCAACTATCTGAAATGCACCAATTTGGCAGCA 

Group FMB1 ATTTGCAAAAACGCGTCACCCGTACACTGCAACTATCTGAAATGCACCAATTTGGCACCA 

Group FMB2 ATTTGCAAAAACGCGTCACCCGTACACTGCAACTATCTGAAATGCACCAATTTGGCACCA 

 

Figure 4.7. Multiple sequence alignment of the AVR-PIZ-T gene among the 18 M. oryzae isolates  

                    from finger millet in Eastern Africa with Guy 11 as reference 

Nucleotide substitutions in the test isolates are shown in red with the corresponding bases in Guy11 
shown in green. Only the regions that showed nucleotide substitutions are presented and the 
numbers above the alignment refer to base positions in the gene sequence.  

Group FMB1 contained 17 isolates: K5, K38, K23/123, K13/67, D1/s11, D8/s15, D15/s47, E1, E7, 
E17, E34, T5, T11, T12, T17, U13, U47. 

Group FMB2 contained 1 isolate (K48/115n).  

Guy11 from rice blast in South America was used as the reference.   

Further detail of the isolates is available in Table 4.1. 
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 Figure 4.8. Multiple sequence alignment of amino acid encoded by AVR-Piz-T protein in M. oryzae isolates representing the 2 allelic groups 
 identified among finger millet blast isolates in Eastern Africa with reference to data from isolate Guy11  
 

 Amino acid substitutions in the test isolates are shown in red and the corresponding amino acid in Guy 11 are shown in green. Only the regions 
 showing amino acid substitution are presented. Numbers above the alignment refer to amino acid positions in the protein sequence. 

 Group FMB1 contained 17 isolates: K5, K38, K23/123, K13/67, D1/s11, D8/s15, D15/s47, E1, E7, E17, E34, T5, T11, T12, T17, U13, U47. 

 Group FMB2 contained 1 isolate (K48/115n).  

 Guy11 from rice blast in South America was used as the reference.   

 Further detail of the isolates is available in Table 4.1 
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4.3.4.2  Distribution of the AVR-Pik gene in FMB M. oryzae isolates from Eastern Africa 
 

The nucleotide sequence of AVR-Pik deposited in the GenBank for Guy11 with the accession 

number AB498876.1 was extracted and used to interrogate the genome of 18 FMB isolates 

from Eastern Africa (Table 4.1) using BLASTN analysis. The BLASTN analysis showed that only 

6 of the isolates contained the AVR-Pik gene (342 bases) in their genome reflecting a typical 

pattern of isolate specific genes.  

The multiple sequence alignment of the AVR-Pik of the 6 isolates with Guy11 as the 

reference showed nucleotide substitution (Figure 4.9). The nucleotide sequence variability 

resulted in amino acid sequence changes due to non-synonymous substitutions (Figure 

4.10). 
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  61            120 

Guy 11 GCCGAAACGGGCAACAAATATATAGAAAAACGCGCTATCGACCTAAGTCGAGAGCGAGAC 

Group PiK1 GCTGAAACGGGCAACAAATATATAGAAAAACGCACTATCGACCTGAGTCGAGAGCGAGAC 

 

  121            180 

Guy 11 CCTAACTTTTTCGACAACCCTGGTATTCCTGTACCCGAATGTTTTTGGTTTATGTTTAAA 

Group PIK1 CCTAACTTTTTCGACCACCCTGGTATTCCTGTACCCGAATGTTTTTGGTTTATGTTTAAA 

 

  181            240 

Guy 11 AACAACGTACGTCAAGATGATGGAACCTGTTACAGCTCTTGGAAAATGGACATGAAAGTT 

Group PIK1 AACAACGTACGTCAAGATGCTGGAACCTGTTACAGCTCTTGGAAAATGGACATGCGAGTT 

 

Figure 4.9. Multiple sequence alignment of the AVR-Pik gene in the 6 FMB M. oryzae isolates and  
                    the Guy 11 used as reference  

Nucleotide substitutions in the test isolate are shown in red and the corresponding bases in Guy 11 
are shown in green. Only the regions that showed nucleotide substitutions were extracted from the 
alignment and presented. Number above the alignment refer to base positions in the gene 
sequence. 

Group PIK1 included the 6 FMB isolates from Eastern Africa:  E7, E34, K5, K48/115n, U13, U47;  

Guy 11 from rice blast in South America was used as the reference  

Further details of the isolates can be seen in Table 4.1 

 



226 

 

  30         80 

Guy 11 KRAIDLSRERDPNFFDNPGIPVPECFWFMFKNNVRQDDGTCYSSWKMDMKV 

Group PIK1 KRTIDLSRERDPNFFDHPGIPVPECFWFMFKNNVRQDAGTCYSSWKMDMRV 

Figure 4.10. Multiple sequence alignment of the AVR-Pik protein in the 6 M. oryzae isolates from  
                      finger millet in Eastern Africa with corresponding data from Guy 11  

Amino acid substitutions in the test isolates are shown in red and the corresponding amino acid in 
Guy 11 are shown in green. Only the regions of the amino acid sequence showing variation was 
extracted from the alignment and presented. Numbers above alignment refer to amino acid 
positions in the protein sequence. 

Group PIK1 contained 6 isolates from Eleusine coracana in Eastern Africa: E7, E34, K5, K48/115n, 
U13, U47; Guy11, a rice blast isolate was used as reference. 
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4.3.5 Genome-wide variation of finger millet blast pathogen isolates in Eastern Africa 

based on single nucleotide polymorphisms 
 

Genome-wide variation among the M. oryzae representing the blast pathogen populations 

in finger millet production systems in 4 Eastern African countries Kenya, Uganda, Ethiopia 

and Tanzania was evaluated based on the number of single nucleotide polymorphisms 

(SNPs). Curated Illumina PE sequence reads of seventeen isolates including K23/123 were 

mapped onto the ~44.15 Mb reference genome of the isolate E34. The homozygous SNPs 

between each isolate and the reference genome were identified utilising a suite of 

bioinformatics tools both for initial SNP calling and subsequent verification analyses 

(Chapter 2, Section 2.7.6). Indels and heterozygous SNPs were filtered to minimise 

differences due to misalignment or multiple regions alignment as the extracted genomic 

DNAs were from the haploid mycelium of M. oryzae isolates. The number of SNPs identified 

among the 17 isolates, compared to the reference genome of isolate E34, varied 

considerably ranging from 40,612 for isolate E7 to 200,949 for isolate K13/67. M. oryzae 

isolates within a country also displayed considerable differences in the number of SNPs, e.g. 

the range among the 4 isolates from Tanzania was 73,236 in isolate T12 to 197442 in isolate 

T17 (Table 4.5 and 4.6). The SNPs identified in this analysis reflect the genome-wide 

differences among M. oryzae isolates including the genic regions of both coding and non-

coding as well as the intergenic regions.  
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Table 4.5. Single nucleotide polymorphisms (SNPs) identified among 17 finger millet blast 

pathogen isolates in comparison with isolate E34 used as the reference genome 

S/N Isolate code* SNPs 

1 E7 40,612 

2 T12 73,236 

3 K48/115n 79,837 

4 E17 106,197 

5 T11 173,656 

6 U47 178,137 

7 K23/123 185,409 

8 U13 186,375 

9 D1/s11 189,636 

10 K5 190,144 

11 D8/s15 190,823 

12 K38 191,933 

13 E1 196,140 

14 T5 196,317 

15 T17 197,442 

16 D15/s47 199,587 

17 K13/67 200,949 

*Isolates code: K, Kenya; U & D, Uganda; T, Tanzania and E, Ethiopia 

Further details of the isolates are included in Table 2.1 (Chapter 2) 
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Table 4.6. The range of single nucleotide polymorphisms (SNPs) identified among M. oryzae 

isolates from each country 

Country No. of isolates Range of SNPs 

Kenya 5 79,837 - 200,949 

Uganda 5 178,137 - 199,587 

Tanzania 4 73,236 - 197,442 

Ethiopia 3 40,612 - 196,140 
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4.3.6 Phylogenomic analysis of M. oryzae isolates representing the finger millet blast 

pathogen populations in Eastern Africa based on ortholog genes in the genomes 
 

Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis was used to initially 

interrogate the genomes of 27 M. oryzae isolates from different hosts and geographical 

locations for the presence of the 3725 single copy gene set conserved in fungal species of 

the Sordariomycetes. The analysis showed that the BUSCO genes present in the genomes of 

the 27 M. oryzae isolates varied from 3568 to 3641. Of these, 944 genes were identified as 

phylogenetically informative among the M. oryzae isolates using the randomised 

accelerated maximum likelihood (RAxML) analysis (Stamatakis, 2014). A phylogenetic tree 

was constructed based on the concatenated alignment of the 944 single copy genes using 

the Accurate Species Tree Algorithm (ASTRAL, Mirarab et al., 2014). The phylogenetic tree 

branches with 80 % (= 0.8) or more bootstrap support value (BSV) are shown in black line 

and those with less than 80 % BSV are shown in dotted lines (Figure 4.11).  

The tree topology distinguished the 27 M. oryzae isolates into two major clades. Among 

these, Clade 1 showed clear monophyletic relationship of finger millet blast (FMB) pathogen 

isolates from Eastern Africa and Asia (India) based on 80 % or more BSV. Clade 1 was further 

divided into ‘1A’ and ‘1B’, where Clade 1A comprised FMB pathogen isolates from Eastern 

Africa only and Clade 1B contained FMB pathogen isolates from India (Figure 4.11).  

Clade 1A was further partitioned into two groups of Eastern Africa M. oryzae isolates from 

finger millet (1Ai and 1Aii). Clade 1Ai comprised 5 isolates from Uganda (U13, U47, D1/s11, 

D8/s15 and D15/s47), 4 isolates from Kenya (K5, K38, K13/67 and K23/123), 3 isolates from 

Tanzania (T5, T11, T17) and isolate E1 from Ethiopia. These included both grh positive (5) 

and grh negative (8) isolates.   Clade 1Aii included isolates E7, E17 and E34 from Ethiopia, 
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isolate T12 from Tanzania and isolate K48/115n Kenya. These isolates were all grh positive. 

Within Clade 1Ai, some isolates showed a strong phylogenetic relationship based on their 

geographic location e.g. isolates T5, T11 and T17 from Tanzania with 80 % or more BSV 

(Figure 4.11). 

Clade 2 contained isolates from various hosts with the 3 isolates (FJ81278, Guy11 and 

Mo70-15) from rice (Oryza sativa) forming a strong group (Clade 2Ai) distinct from the 

wheat blast isolate (BJTP4.1, Triticum aestivum) (Clade 2Aii).  Clade 2B included the isolates 

from foxtail millet (US71, Setaria italic) and wild finger millet (CD156, Eleusine indica) as 

observed in Figure 4.11. 
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Figure 4.11. Maximum parsimony consensus phylogeny tree based on the 944-single copy ortholog  
                      genes 
The tree reflects the diversity and phylogenetic relationships among 27 M. oryzae isolates from various hosts. 
Isolates from Eleusine coracana in Clade 1; isolates from Oryza sativa, Triticum aestivum, Setaria italica and 
Eleusine indica in Clade 2. Branches with 80 % (= 0.8) or more bootstrap support values (BSV) are shown in 
black lines, whilst branches with less than 80 % BSV are shown with dotted lines. Among the FMB isolates from 
Eastern Africa in Clade 1A, the circles and triangles at branch ends indicate grh positive and grh negative 
isolates, respectively.  
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4.3.7 Identification of the complete Grasshopper (grh) element in the Eastern African 

FMB pathogen and comparative analysis of the grh positive and grh negative isolates  
 

The genome assemblies of isolates E34 and K23/123 were analysed for the presence of grh 

repeat element by BLASTN analysis using the previously reported 5233 bases of grh 

fragment sequence (Accession number M77662, Dobinson et al., 1993). In this study, for the 

first time, the full-length sequence of the grh element with 7610 bases and its typical 

structure was identified in the genome of isolate E34 isolate from Ethiopia (Figure 4.12A). 

The full grh element length was defined based on the identification of the nucleotide 

sequence of the 198-bp long terminal repeats (LTRs) at the 5’ and 3’ end of the grh element 

(Figure 4.12B). The LTRs were flanked by a short direct repeat (AAATA) at both ends in the 

genome of E34 (Figure 4.12B). The grh element included LTRs, gag protein encoded by 1047 

bases, pol protein encoded by 4196 bases and an uncharacterised region of 2202 bases.  

Comparative analysis of the genome assemblies of the isolates E34 (grh positive) and 

K23/123 (grh negative) provided very different patterns. In isolate E34, BLASTN analysis 

resulted in 6 hits corresponding to the number of copies of full-length sequence of grh 

element present in scaffolds 1, 5, and 7. Further, ~ 56 copies of the grh element varying in 

size ranging from 425 to 7000 bases were identified in E34 with nearly 28 copies in the 5000 

to 7000 bases range (Table 4.9). On the contrary, genome assembly of K23/123 did not 

contain any copies of the full-length grh element. However, incomplete or partial sequence 

of the grh element was present and the maximum length identified was 5975 bases located 

in scaffold 5 of the K23/123 genome assembly. Other BLASTN hits in the genome of K23/123 

ranged from 196 to 5000 bases (Table 4.7).  
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Comparative analysis of the grh element sequence from isolate E34 with the data from M. 

oryzae isolate G22 from finger millet in Japan from which the partial grh element sequence 

was originally reported (Dobinson et al., 1993) showed a high level of sequence identity (~ 

99 %). On the contrary, comparative analysis of the ~5795 base sequence from the largest 

size fragment of the grh element in the genome of K23/123 with corresponding ~5975 bases 

of the grh sequence from E34 showed a high level of variation (Figure 4.13).  

Figure 4.12A. Schematic representation of the structure of the full-length sequence of the        

                         Grasshopper (grh) element 

Long terminal repeats (LTRs, red colour), the intergenic region (yellow colour) adjacent to the 5’ LTR, 
the complete gag protein (GP), complete pol protein (PP), uncharacterised region (UR, blue colour). 
Each LTR is 198-nucleotide bases, intergenic region is 43 bases, GP is 1049 bases, PP is 4196 bases 
and the UR is 2202 bases. The grh element full sequence and structure was defined following the 
identification of the LTRs at both ends which were flanked by the short direct repeats as shown in 
figure 4.6B. 
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Figure 4.12B. Sequence of the Grasshopper (grh) element showing the flanking short repeats, long terminal repeats (LTRs) and some  
                         nucleotide bases internal to the LTRs 
The flanking short repeats are in blue colour, the LTRs are in red colour, and nucleotide bases internal to the LTRs are in black colour.  

AAATATGTTACGGATTCGTGCTGATTGCACGTATCCCCGTATATAGATAGCA

GCGGGGACCACGTGATAAGTTGCATTGTATATAAGGGAGGAAGGGTCGCCAA

GACCTTTTCCGCACCCCTTTCTTCTCCTTTTCCTTAGCGATAATAATAACTC

CTTTCGGGTACCCAACCGTTGTATGATCGTTGGCCTACCCTATAACATTTAT

TATCGCTCATTATTCTTC………………//……………TTTTCGGTAGGGGAGGAAGGG

GGCTATGTTACGGATTCGTGCTGATTGCACGTATCCCCGTATATAGATAGCA

GCGGGGACCACGTGATAAGTTGCATTGTATATAAGGGAGGAAGGGTCGCCAA

GACCTTTTCCGCACCCCTTTCTTCTCCTTTTCCTTAGCGATAATAATAACTC

CTTTCGGGTACCCAACCGTTGTATGATCGTTGGCCTACCCTATAACAAAATA 

5’ 

3’ 
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Table 4.7. Distribution pattern of Grasshopper (grh) element copies and their size range in the 

genome of finger millet blast pathogen isolates E34 and K23/123 from Eastern Africa 

 Size (bases) and number of copies of the grh element sequence in 
the genome  

Isolate ≥ 7000 6000 ≥ 6999 ≥ 5000   < 5000 

E34 6 5 23 28 

K23/123 0 0 3 29 
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Figure 4.13. Schematic representation of the high sequence variation between the Grasshopper (grh) element in the genomes of isolates E34 (grh  
                      positive) and K23/123 (grh negative) 
The black lines and bars reflect the level of nucleotide differences between the isolates; as noted in the results description, grh sequence in E34 showed 
high level of identity to the grh element originally described from FMB isolate G22 (Dobinson et al., 1993). 
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 4.4 Discussion 
 

Work reported in this chapter focused on the development and comparative analysis of the 

genome data from a distinctive set of 18 M. oryzae isolates (Table 4.1) representing the 

biogeographic diversity of the finger millet blast pathogen populations in Eastern Africa. The 

different DNA fragment libraries and the NGS platforms used proved effective in the 

genome level characterisation of the representative isolates. For instance, use of a 

combination of the Illumina MiSeq (PE and MP libraries) and PacBio Sequel (SMRT library) 

platforms was effective to develop the reference genome data of isolates E34 and K23/123 

representing the two sub-populations identified by the MLS analysis. Likewise, the Illumina 

HiSeq platform using PE libraries was effective in resequencing the genomes of 16 isolates. 

This is reflected by the genome assembly parameters including the high levels of 

representation of the BUSCO genes ranging from 95.7 % to 97.8 % (Tables 4.2 and 4.3). The 

assembled genome size of the 18 isolates ranged from 40.66 Mb to 44.15 Mb, which is 

within the range of the assembled genomes size (35.8 Mb to 46.4 Mb) of a wide range of M. 

oryzae isolates (206, available at the NCBI database). Considerable differences in the 

genome size of M. oryzae isolates from diverse hosts and geographic locations have been 

reported (e.g., Xue et al., 2012; Shirke et al., 2016; Yoshida et al., 2016; Gladieux et al., 

2018). Based on in-depth comparative genomic analysis of well-characterised isolates, the 

genome size variation reflects the differences in the genome evolution and architecture 

including the nature and distribution of repetitive regions and consequent genomic 

rearrangements as well as the presence and absence of specific components such as AVR 

genes (Yoshida et al., 2016; Bao et al., 2017).  In this context, the NGS methodologies used 
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as well as the sequence coverage depth are important caveats before drawing firm 

conclusions (Dean et al., 2005; Bao et al., 2017; Gladieux et al., 2018).  

This study is the first effort in establishing the reference genomes of the FMB pathogen 

isolates and the assembly scaffold levels achieved (21 to 31) is comparable to the reference 

genome of the rice blast isolate 70-15 (53 scaffolds). The genome assembly data for 

K23/123 has already been deposited at NCBI following successful completion of their 

validation tests (Accession Number PHFK00000000; Shittu et al., 2017, unpublished). 

Despite the major syntenic blocks identified between the E34 and K23/123 genome 

assemblies, the SyMap analysis revealed small regions suggestive of translocation in the 

genome of E34 and duplication in the genome of K23/123 (Figure 4.1). Similar patterns of 

genomic rearrangements (chromosomal translocations) have recently been reported 

between two rice blast isolates in India (Gowda et al., 2015) as well as in Japan (Bao et al., 

2017).  Presence of retroelements and transposable elements in these genomic regions has 

been considered to play a key role in mediating the translocations in M. oryzae isolates 

(Shnyreva, 2002; Gowda et al., 2015; Bao et al., 2017). The putative translocated regions 

identified in the M. oryzae isolate(s) in this study provide the basis to test whether similar 

mechanisms operate in the FMB pathogen. 

Furthermore, the genomic regions identified as putatively specific to E34 (~1.6 Mb) and 

K23/123 (0.5 Mb) in the synteny analysis are equally interesting and important (Figure 4.1). 

This type of isolate-specific genomic regions has been strongly related to genes driving the 

host interaction patterns in the rice blast pathogen (e.g., Yoshida et al., 2009; Xue et al., 

2012; Dong et al., 2015; Gowda et al., 2015). For instance, compared to the isolate 70-15 

reference genome, isolate Ina168 contained a 1.68 Mb unique region containing 316 
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candidate effector genes (Yoshida et al., 2009) and isolate 98-06 had a similar 1.4 Mb 

unique region with 134 candidate effector genes (Dong et al., 2015). The putative isolate-

specific genomic regions identified in this study presents an excellent platform for further 

comparative genomic and functional analysis of the effector/AVR genes, which is completely 

unexplored in the FMB pathogen at this time.  

Prediction of the total gene set for each of the 18 isolates using Augustus programme 

(Stanke et al., 2006) and their comparative analysis provided an insight into potential gene 

content differences in the FMB pathogen (Table 4.2). The total gene content in these M. 

oryzae isolates ranged from 10,566 (isolate U47) to 11,271 (isolate E34), which is 

comparable to the total gene set predicted in the genomes of blast pathogen isolates from 

various hosts including rice (Gowda et al., 2015; Shirke et al., 2016; Yoshida et al., 2016). 

However, OrthoVenn analysis of the protein-coding genes in E34 and K23/123, predicted 19 

genes and 37 genes putatively unique to each isolate, respectively in addition to 10,216 

genes that are common (Figure 4.2). Similar comparative analysis of the protein-coding 

genes among the FMB pathogen isolates from the same country predicted up to 38 genes as 

potentially unique to an isolate (Table 4.3). The putative unique genes identified are likely to 

play key roles in determining the outcome of the host-pathogen interactions, which can be 

further analysed by functional annotation and analysis. Initial tests of this hypothesis carried 

out by comparative analysis of the 18 FMB pathogen isolates using two AVR genes well 

characterised in rice blast as models provided results reflecting differential gene content in 

various isolates. For instance, the AVR-Piz-T gene was present in all isolates, albeit in two 

allelic forms, which is an example of the genes common in the FMB pathogen (Figure 4.7). 

Conversely, the AVR-Pik gene was present only in 6 isolates, which is an example of genes 
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unique to certain isolates (Figure 4.9). The differences in the gene content of the FMB 

pathogen isolates recorded in this study aligns well with the emerging concept of the gene 

expansion and contraction (also referred as gene gain and loss), which has been strongly 

linked with the host range and pathogenic processes in major systems such as rice blast and 

anthracnose diseases caused by Colletotrichum species (Powell et al., 2008; Cantarel et al., 

2008; Zhao et al., 2013; Morales-Cruz et al., 2015; Baroncelli et al., 2016). Availability of a 

whole range of computational algorithms such as InterProScan, RunIprscan and HMMER, 

and databases such as dbCAN and MEROPs is facilitating further investigations of the gene 

expansion and contraction in crop fungal pathogens (e.g. Morales-Cruz et al., 2015; 

Baroncelli et al., 2016). 

Comparative analysis based on the homozygous SNPs identified for 17 M. oryzae isolates 

using E34 as the reference assembly revealed considerable variation in genome wide 

differences (SNPs ranged from 40,612 to 200,949) in the FMB pathogen in Eastern Africa 

(Table 4.5 and 4.6). M. oryzae isolates within a country also showed considerable 

differences based on SNPs as in the case Ethiopia (e.g. 40,612 - 196,140 SNPs; Table 4.6). In 

India, where finger millet is widely grown in some parts, 3 FMB pathogen isolates from the 

same district were found to be genetically distinct based on genome wide SNPs (Shirke et 

al., 2016). Similar patterns of genome wide differences based on SNPs have been reported 

with rice blast isolates from the same field in China (Xue et al., 2012), different districts in 

India (Gowda et al., 2015) and different regions in Kenya (Mwongera, 2018). Among the 17 

M. oryzae isolates representing the FMB pathogen in Eastern Africa, 4 isolates (E7, T12, 

K48/115n and E17) showed an SNP range of 40,612 - 106,197. These isolates belonged to the 

one of the sub-populations (Group B) identified based on MLS analysis (Table 3.8C). In the 
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13 other isolates, the SNPs ranged from 173,656 - 200,949 and the majority of these isolates 

belonged to the second sub-population (Group A). The patterns based on genome wide 

SNPs further highlight the occurrence and spread of two sub-populations of the FMB 

pathogen within Eastern Africa meriting further investigations. 

Phylogenomic analysis of the 18 FMB pathogen isolates from Eastern Africa along with 9 

other M. oryzae isolates based on 944 genes (from the Sordariomycetes - BUSCO) provided 

insights into the evolutionary relationships of the blast pathogen associated with various 

hosts (Figure 4.11). Existence of host specific or host adapted forms of the blast pathogen 

M. oryzae related to key crops such as rice and wheat and their phylogenetic relationships 

are well established (Couch et al., 2005; Chiapello et al., 2015; Yoshida et al., 2016; Gladieux 

et al., 2018). Clades 1 and 2 defined in this study based on the phylogenomic analysis 

reflected the varying degrees of association of the host-related forms of the blast pathogen. 

It is important to emphasise the monophyletic nature of the finger millet blast isolates 

inclusive of the 18 from Eastern Africa and 3 from India suggesting a common origin of the 

pathogen (Clade 1). This model fits well with the widely recognised view of Eastern Africa as 

the primary centre of origin and diversification of finger millet and India as the secondary 

centre of diversity following the introduction into Asia ~3000 years ago from Africa 

(Chiapello et al., 2015; Gimode et al., 2016). This work is the first report to establish the 

phylogenomic relationship between FMB pathogen isolates from Eastern Africa and Asia. 

Previous reports had suggested some level of reintroduction of FMB pathogen from India 

into Eastern Africa (Dobinson et al., 1993; Takan et al., 2012). However, within Clade 1, FMB 

pathogen isolates from Eastern Africa and India formed distinctive genetic groups (Sub-

Clades 1A and 1B). Further, the FMB pathogen isolates from Eastern Africa were also divided 
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into two genetic groups (Sub-Clades 1Ai and Aii), which broadly relate to the two sub-

populations identified by the MLS analysis in Chapter 3. As discussed earlier, diversity of the 

planting material used in finger millet production systems in Eastern Africa along with seed 

movement is likely to have led to the pathogen population patterns identified (De Villiers et 

al., 2015; Howlett et al., 2015; Gimode et al., 2016; Tesfaye and Mengistu, 2017; Lule et al., 

2018). Some recent phylogenomic studies mainly focused on rice blast and wheat blast have 

included a limited number of isolates from finger millet (Eleusine coracana) and/or wild 

millet (E. indica) for wider comparison (Yoshida et al., 2016; Shirke et al., 2016; Gladieux et 

al., 2018). In one such study, based on 3 isolates from E. coracana (in Japan and Philippines) 

and 5 isolates from E. indica (in China, Bolivia, Brazil and Ivory coast), 2 lineages of M. oryzae 

have been reported (Gladieux et al., 2018). An earlier study based on grh fingerprinting and 

ITS sequencing also suggested this pattern (Tanaka et al., 2009). In this context, it is 

pertinent to mention that the CD156 isolate from E. indica in Ivory coast included in the 

present study was part of Clade 2B and very distinctive to the FMB pathogen isolates in 

Clade 1, reflecting the two lineages discussed above.   

 

Grasshopper (grh) is a key repeat element identified in the M. oryzae from Eleusine species 

including finger millet. The size of grh element was reported as ~8 Kb defined by the 

flanking short direct repeat sequence and long terminal repeats (LTRs). However, only the 

partial sequence of 5233 bases without the flanking short direct repeat sequence and long 

terminal repeats (LTRs) at the 3’ end was deposited in the GenBank with accession number 

M77662 from isolate G22 (Dobinson et al., 1993). Utilising the reference genome assembly 

of E34, this study has identified the complete DNA sequence of grh element including the 3’ 
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flanking short direct repeat sequence and long terminal repeats (LTRs) for the first time to 

define 7610 bases including a 2202 base region with no homology to any known fungal 

sequences (Figure 4.6 A and B). The DNA sequence of the grh element identified has high 

homology to the previously submitted grh element sequence of isolate G22 in the GenBank 

(Dobinson et al., 1993). Comparative genomic analysis of E34 and K23/123 assemblies 

provided a novel insight into presence and amplification pattern of the grh element among 

the finger millet blast pathogen M. oryzae populations in Eastern Africa.  

 

Previous research based on Southern hybridisation and/or PCR had reported that only some 

FMB pathogen isolates contained the grh element (Dobinson et al., 1993; Tanaka et al., 

2009). This type of isolates was mainly thought to be present in Asia (Japan and India) with 

very limited presence in Eastern Africa (Viji et al., 2000; Tanaka et al., 2009; Takan et al., 

2012). Using the previously developed diagnostic PCR (Takan et al., 2012), this study showed 

for the first-time wide occurrence of grh positive M. oryzae isolates from finger millet in 

Eastern Africa (110 isolates mainly from Ethiopia and Tanzania; Chapter 3, Table 3.13 and 

Figure 3.18A). This prompted further in-depth analysis of the genome-level data from 18 

isolates representing the grh positive and grh negative M. oryzae isolates, in this Chapter. 

Comparative analysis revealed that both types of isolates contained the grh element but 

with major differences in the genomic architecture. For instance, in isolate E34, which 

represents the grh positive type isolates, there were ~34 copies of the grh element with the 

size of the copies ranging from ≥ 5000 bases to ≥7000 bases. Conversely, in K23/123, which 

represents the grh negative type isolates, there were only 3 copies of ≥ 5000 bases (Table 

4.7) with the largest ~5975 bases. Comparative analysis of the corresponding ~5975 bases in 
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isolates E34 and K23/123 revealed a significant level of nucleotide differences of ~844 bases 

(Figure 4.13). Further analysis using the ~5233 bases of grh sequence originally reported 

from isolate G22 from finger millet blast in Japan (Accession number M77662, Dobinson et 

al., 1993) with corresponding sequence in E34 revealed high homology with ~10 nucleotides 

differences (Figure 4.14). Conversely, comparison of grh fragment sequences from K23/123 

with G22 revealed a striking difference of ~729 bases in K23/123 (Figure 4.15) spanning the 

regions used for designing the grh diagnostic PCR primers from the original sequence in G22 

(Figure 4.17). The high level of nucleotide differences recorded in isolates such as K23/123 is 

reflective of the grh negative results reported previously by Southern hybridisation 

(Dobinson et al., 1993; Tanaka et al., 2009) as well as diagnostic PCR (Takan et al., 2012). 

Recent work with genome data from 3 isolates of the FMB pathogen in India also showed 

the presence of grh elements (Shirke et al., 2016). Overall, based on present results, there 

appear to be at least two types of grh elements in the FMB pathogen isolates with 

differences in their genomic architecture particularly in Eastern Africa, which requires 

further investigations.  
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Figure 4.14. Schematic representation of the variation between the grh element in the  

                      genome of isolates E34 and G22 

The black lines reflect the level differences between the isolates.  

The grh sequence of G22 from which the element was originally described (Dobinson et al.,1993) was 
used as reference. 
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Figure 4.15. Schematic representation of the high degree of variation between the Grasshopper 

 (grh) element in the genomes of isolates K23/123 and G22 

The black lines and bars reflect the level of nucleotide differences between the isolates.  

The grh sequence of G22 from which the element was originally described (Dobinson et al.,1993) was 
used as reference. 
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Figure 4.16. Grasshopper diagnostic PCR primer regions showing variation in the isolate K23/123           

                      compared to the isolates G22 and E34  

The bases that are different in K23/123 are shown in red. 
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In conclusion, the work reported in this chapter led to the development of a significant 

volume of genomic resources for the FMB pathogen. Two reference genomes have been 

developed for isolates E34 and K23/123 representing the two sub-populations of the FMB 

pathogen in Eastern Africa along with the 16 resequenced genomes. Comparative genomic 

analysis has evidenced putative isolate specific regions and/or genes likely to be pivotal in 

driving host interaction patterns, providing a platform for further functional annotation and 

analysis. Analysis of two model AVR genes from rice blast revealed presence and absence 

polymorphisms as well as different allelic versions in the FMB pathogen opening-up a vast 

unexplored area of research. SNP data as well as the phylogenomic analysis results have 

enhanced our understanding of the FMB pathogen origin and evolution with the 

identification a monophyletic group from Eastern Africa and India, potentially related to 

movement of the host material and the pathogen within and across continents. Finally, the 

present work has revealed the occurrence of at least two types of the Grasshopper element 

in the FMB pathogen within Eastern Africa with significant differences in their genomic 

architecture, with the potential to further clarify this aspect in the FMB pathogen isolates 

representing other geographic locations such as India. Overall, the genomic resources 

developed and the genome level knowledge gained will enable rapid advances in our 

understanding of the finger millet blast pathogen genetics, pathology and biology including 

the sexual reproductive potential, which is the main focus of investigation in the next 

chapter.   

 



250 

 

Chapter 5 
 

5.0 Sexual reproductive capability of the finger millet blast 

pathogen M. oryzae populations in Eastern Africa 

5.1  Introduction 
 

Pathogen diversity is principally driven by a combination of processes including mutation, 

reproduction, recombination and natural selection (Saleh et al., 2012; Seidl and Thomma, 

2014, Milgroom, 2015). These processes aid crop pathogens’ adaptation to diverse 

environmental conditions as well as in enhancing their ability to overcome host resistance 

(Saleh et al., 2012; Seidl and Thomma, 2014; Milgroom, 2015). Among these processes 

however, reproduction is recognised to play a critical role in pathogen evolution and genetic 

diversity (Billiard et al., 2012). Fungi display diverse modes of reproductive behaviour 

including asexual, sexual and parasexual reproduction (Seidl and Thomma, 2014).  In some 

species, the sexual reproductive forms may be cryptic or facultative, thus making it more 

difficult to detect the structures in nature even under specific conditions (Saleh et al., 2012). 

Understanding the key factors influencing an organism’s reproductive mode is 

fundamentally important to decipher the evolutionary process (Billiard et al., 2012). Like 

various fungal species, reproductive behaviour of the cereal blast pathogen M. oryzae is 

complex as it predominantly reproduces asexually in nature during crop infection cycles, but 

its sexual reproductive capability under in vitro conditions in the lab is well known (Hebert, 

1971, Itoi et al., 1983). The key question regarding whether the pathogen reproduces 

sexually in nature in any of the crop production systems remains unresolved. However, the 
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haploid asexual state of the pathogen can be readily recognised when isolated from their 

host and grown in pure culture normally (Ajello and Cheng, 1967). 

M. oryzae is one of the earliest and well-studied pathogenic fungi and its sexual or perfect 

state was first demonstrated by crossing isolates from crabgrass (Digitaria sanguinalis L.), 

demonstrating the heterothallic nature of the fungus (Herbert, 1971). Ever since, efforts 

have been made to produce the perfect state of the M. oryzae under controlled conditions 

on artificial media using hermaphroditic isolates from Eleusine coracana and Oryza sativa as 

testers to cross new isolates from the field (Kato and Yamaguchi, 1982; Itoi et al., 1983; Viji 

and Gnanmanickam, 1998; Metwatanakarn et al., 1999; Takan et al., 2012). Compatible 

strains in the crosses produce perithecia, which is the fruiting body of the fungus reflecting 

the sexual state (Metwatanakarn et al., 1999; Takan et al., 2012). Besides the artificial 

media, perithecia production has been observed on dead tissue of leaf sheaths and nodes of 

standing rice plants in a humid chamber under control conditions (Nottegham and Silue, 

1992; Hayashi et al., 1997). The perithecia produced on the dead tissue contained asci and 

viable ascospores similar to those observed on the artificial media (Notteghem and Silue, 

1992; Hayashi et al., 1997; Takan et al., 2012). However, to date, there are no reports of 

perithecia production by M. oryzae isolates in the field (Zeigler, 1998; Saleh et al., 2012).  

Consistent efforts have been made to study the sexual reproductive potential of M. oryzae 

isolates from different hosts in various parts of the world using mating assays under 

controlled conditions, and successful production of the perfect stage of the fungus had been 

reported in Japan (Kato and Yamaguchi, 1982), China (Zeng et al., 2009), Thailand 

(Mekwatanakam et al., 1999), India (Viji and Gnanamanickam, 1998; Adarisini et al., 1999; 

Karthikeyan and Gnanamanickam, 2008b; Dayakar et al., 2012), Argentina (Consolo et al., 
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2005) and Sub-Saharan African countries such as Kenya and Uganda (Takan et al., 2012). As 

recognised in other ascomycetes, the perfect state of M. oryzae is governed by genes found 

as a single locus designated as MAT1, with individual isolates containing either a MAT1-1 or 

MAT1-2 gene (Turgeon and Yoder, 2000; Paoletti et al., 2005; Kanamori et al., 2007; Amorim 

et al., 2017). These mating type genes are idiomorphs (Glass et al., 1988; Debuchy and 

Coppin, 1992; Kang et al., 1994). The MAT1-1 locus (3.5 kb) contains a characteristic alpha 

(α) box gene, whereas the MAT1-2 locus (2.5kb) contains a single open reading frame (ORF) 

encoding a high mobility group (HMG) gene (Paoletti et al., 2005; Kanamori et al., 2007; Tsui 

et al., 2013; Bihon et al., 2014) as shown in Figure 5.1. Kanamori et al. (2007) further 

identified novel ORF(s) designated as MAT1-1-3 and MAT1-2-2 within the MAT1-1 and 

MAT1-2 idiomorphs, respectively. The sequences of these genes encode pheromone 

precursors designated as MF1-1 and MF2-1 related to the corresponding genes and their 

structure in Saccharomyces cerevisiae (Shen et al., 1999; Bobrowicz et al., 2002).  The 

mating type genes MAT1-1 and MAT1-2 from M. oryzae isolates have been cloned and 

sequenced using a genomic subtraction method (Kang et al., 1994). 
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Figure 5.1. Schematic showing the organisation of the MAT1 locus in M. oryzae  

The white and dark boxes are MAT1 idiomorphs presented as MAT 1-1 and MAT 1-2, and striped 
lines are the flanking regions. The images were modified from Kanamori et al., 2007.  

 

Availability of the sequence of these mating type genes has facilitated characterisation of 

the M. oryzae populations into MAT 1-1 or MAT 1-2 using molecular probes or PCR primers 

instead of performing time consuming and labour-intensive crossing assays with tester 

strains without knowing the mating type characteristic of a new isolate. These approaches 

have been used to assess the mating type distribution pattern among the blast pathogen 

populations from different hosts in various parts of the world.  Subsequently, clonal or 

skewed distribution of the two mating types among the M. oryzae populations associated 

with rice from different parts of the world (Adarisini et al., 1999; Consolo et al., 2005; Takan 

et al., 2012; Samanta et al., 2014; Imam et al., 2015; Onaga et al., 2015; Sirisathaworn et al., 

2017) and other hosts such as wheat (D’Avila et al., 2016) has been reported commonly. 

However, with the finger millet blast pathogen populations in Kenya and Uganda, an overall 

near equal distribution of the two mating types was observed (Takan et al., 2012). 
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The sexual phase of M. oryzae requires two strains of opposite mating types and at least 

one of which must be female-fertile, to come in contact with the other and interact to 

produce perithecia (Saleh et al., 2012). The pattern of fertility in M. oryzae isolates ranges 

from sterile – the inability to mate with any other isolates, male fertile – the ability to mate 

with another isolate leading to the production of perithecia by that isolate; female fertile – 

the ability to mate with another isolate and produce perithecia and hermaphrodite - the 

ability to mate with another isolate leading to the production of perithecia by both the 

isolates wherein the isolates are able to act as both male and female (Itoi et al., 1983). 

However, the pattern of fertility observed so far largely correlates with the host-specific 

forms of M. oryzae. For example, many M. oryzae isolates from plant hosts such as finger 

millet, goose grass, weeping love grass are hermaphrodites producing mature perithecia 

generating numerous viable ascospores (Valent et al., 1991; Notteghem and Silue, 1992). In 

contrast, M. oryzae isolates from rice, in crosses with hermaphrodite tester isolates, are 

mainly either male or female sterile with only a very limited number producing mature 

perithecia or producing barren perithecia or perithecia with poorly viable ascospores (Valent 

et al., 1991; Notteghem and Silue, 1992). It has been suggested that M. oryzae isolates 

infecting rice might have lost their female fertility during the dispersal of the fungus from its 

centre of origin to the other parts of the world (Saleh et al., 2012). Even though the sexual 

phase of M. oryzae has not been reported in nature, characterisation of the finger millet 

blast pathogen in Kenya and Uganda revealed the presence of hermaphrodite and female 

fertile isolates in the region (Takan et al., 2012). This pattern is suggestive of the potential 

for sexual reproduction and recombination (Crawford et al., 1986; Saleh et al., 2012). The 

ability of M. oryzae isolates to produce perithecia is thought to be controlled by genes at 
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several regions, segregating independent of the mating type and pathogenicity on different 

hosts (Kolmer and Ellingboe, 1987). Understanding the occurrence of recombination in crop 

fungal pathogen populations is imperative in predicting the potential frequency of particular 

genetic groups that might represent distinctive pathotypes compatible with resistant 

cultivars or specific strains resistant to fungicides (Petes, 2001; Bernstein and Bernstein, 

2010; Milgroom, 2015). Some of the criteria employed to predict the potential for 

recombination include the presence of sexual structures, genotype diversity levels, possible 

recombinant genotypes, and genome wide diversity. This can be evaluated using the mating 

type ratios, genotypic diversity index and gametic disequilibrium (Milgroom, 2015).  

 

5.1.2 Aim and Objectives 
 

The main aim of the work reported in this chapter is to assess the sexual reproductive 

capability underlying the possibility for recombination of the blast pathogen M. oryzae 

populations prevailing in finger millet production systems in Eastern Africa specifically in 

Kenya, Uganda, Tanzania and Ethiopia. The Objectives are:  

1. To determine the mating type of the M. oryzae isolates using the mating type-

specific PCR and map the distribution pattern of the two mating types MAT1-1 and 

MAT 1-2.  

2. To assess the fertility status of the M. oryzae isolates by performing the mating 

crosses with designated testers of the opposite mating type. 

3. To integrate the mating type distribution and the fertility status data as a basis for 

evaluating the sexual reproduction and recombination potential in shaping the finger 
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millet blast pathogen populations in the context of effective management of host 

resistance. 

 

5.2 Experimental approach 
 

Mating type-specific PCR assay with MAT 1-1 forward and reverse, and MAT 1-2 forward 

and reverse primers was carried out (section 2.8.1) to determine the mating type of the 224 

M. oryzae isolates representing the contemporary populations used in this study. Each 

batch of PCR assays included positive control isolates TH3 (MAT 1-1) and K23/123 (MAT 1-

2), respectively and a tube with sterile water instead of fungal genomic DNA as negative 

control. Mating crosses of new isolates representing the contemporary populations were 

carried out using previously characterised tester isolates of known mating type. The testers 

used were MAT 1-1 isolates 4136-4-3, I-R-22 and TH3, and MAT 1-2 isolates Guy11, JP 15, BR 

62, K23/123 and D15/s47. Mating crosses were set up by co-culturing a new isolate of 

known mating type with a tester isolate of the opposite mating type. In these assays, the 

inoculum discs of the two isolates were placed 4 cm apart on OMA plates, which were then 

incubated under a specific temperature and light regime for approximately 4 weeks (section 

2.8.2 and 2.8.3). The mating crosses were monitored periodically over this period for 

production of perithecia and where present, the perithecia were counted under a 

stereomicroscope. Each new isolate from each cross was scored as fertile or infertile based 

on the presence and absence of perithecia either on the side of the new isolate or the tester 

or both. The fertile isolates were classified as male or female or hermaphrodite according to 

the nomenclature of Itoi et al. (1983) based on the pattern of production of perithecia by 

the new isolate and the tester (section 2.8.2 and 2.8.3).  
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5.3 Results 
 

5.3.1 Mating type identification and their distribution pattern  
 

Initially, the efficacy of the mating type-specific primers designated MAT 1-1F and R, and 

MAT 1-2F and R and the PCR conditions (Takan et al., 2012) was validated in distinguishing 

the previously characterised M. oryzae tester isolates into mating types MAT 1-1 and MAT 

1-2 based on the production of an amplicon of the expected size (data not shown). 

Subsequently, the mating type-specific PCR was used routinely to screen the 224 M. oryzae 

isolates representing the contemporary populations in this study. Each batch of PCR 

included appropriate positive and negative controls as described previously. Each M. oryzae 

isolate was identified as either MAT 1-1 or MAT 1-2 based on the PCR product size 

corresponding to ~960 bp or 802 bp, respectively, with reference to the product size of the 

positive control isolates, TH3 and K23/123 (example, Figure 5.2).  Based on this assay the 

mating type of 224 M. oryzae isolates from Eastern Africa was determined as MAT 1-1 or 

MAT 1-2 (Table 5.1). Among these isolates, 55.8 % (125 isolates) were MAT 1-1 and 44.2 % 

(99 isolates) were MAT 1-2 (Figure 5.3). Both mating types were present in all 4 countries 

surveyed in Eastern Africa. However, based on the characterisation of 63 isolates from 

Ethiopia, 45 from Kenya, 58 from Tanzania, and 58 from Uganda collected from various 

locations (districts), the overall proportion of the two mating types varied in these countries 

(Figure 5.4).  In Ethiopia, Kenya and Uganda, the proportions of MAT 1-1 isolates are higher 

than MAT 1-2 isolates, whilst in Tanzania opposite pattern was recorded with a clearly 

higher proportion of MAT 1-2 isolates compared to the MAT 1-1 type (Figure 5.4).  For 

instance, in Kenya, Uganda and Ethiopia, the proportion of MAT 1-1 isolates ranged from 

56.9 % to 68.3 % and the proportion of MAT1-2 isolates ranged from 31.7 % to 43.1 %. 



258 

 

Among the 58 M. oryzae isolates from Tanzania, 39.7 % were MAT 1-1 and 60.3 % were MAT 

1-2 (Table 5.1). Further, the distribution the MAT 1-1 and MAT 1-2 isolates at different 

locations (districts) within each of the countries revealed complex patterns. For example, in 

Tanzania, MAT 1-1 was clearly dominant in Mbozi (9 out of 10 isolates) and MAT 1-2 was 

dominant (16 out of 21 isolates) in Njombe. In Nkasi (10 isolates), MAT 1-1 and MAT 1-2 

levels were comparable, where as in Madaba, MAT 1-1 was not recorded as all 6 isolates 

tested were MAT 1-2. Similar complexity was observed in the distribution pattern of the M. 

oryzae isolates belonging to the two mating types in various districts in the other 3 countries 

surveyed in Eastern Africa (Table 5.1).  
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  Figure 5.2.  Agarose gel showing the MAT 1-1 (960 bp) and MAT 1-2 (802 bp) specific amplicons in a set of M. oryzae isolates 

  Isolates with the 960 bp PCR fragment were identified as MAT 1-1 and isolates with 802 bp PCR fragment were identified MAT 1-2, with  

  reference to positive controls.    

  Lane M is the molecular known size DNA marker (Easy ladder1, Bioline-UK); Lane W – water (negative control).  

  Lanes 1 to 11 are M. oryzae isolates T1 to T11 from Tanzania; Lanes 1-1 and 1-2 are isolates TH3 (MAT 1-1 positive control) and K23/123  

  (MAT 1-2 positive control), respectively.  

  Further details of the isolates are available in Table 2.1A.
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Figure 5.3. Proportion of the M. oryzae isolates of the two mating types MAT 1-1 and MAT 1-2 in  
                    finger millet production systems in Eastern Africa  
Percentage values were calculated based on the number of isolates containing either the MAT1-1 or 
the MAT1-2 mating type gene among the 224 M. oryzae isolates representing the contemporary 
population in this study.  

The blue and orange colours relate to MAT 1-1 and MAT 1-2 mating type isolates, respectively. 
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Figure 5.4. Pattern of occurrence of the MAT 1-1 and MAT 1-2 type M. oryzae isolates in the four  
                    countries 
The number of MAT 1-1 isolates is represented by the blue colour bars and number of MAT 1-2 
isolates is represented by the orange colour bars. 
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Table 5.1.  Distribution pattern of the two mating types MAT 1-1 and MAT 1-2 among M. oryzae 
isolates in some of the locations (districts) in Ethiopia, Kenya, Tanzania and Uganda 

Region/ 
Country 

District* Number of 
isolatesX 

MAT 1-1Y MAT 1-2Z 

Eastern Africa Total 224  125 (55.8 %) 99 (44.2 %) 

 
 
 
 

Ethiopia 

Waju Tuka 4 4 0 

Diga 10 9 1 

Nedjo 5 5 0 

Banja 5 4 1 

Bahir Dar Zuria 6 0 6 

Dure Bete 4 2 2 

Mecha 4 2 2 

Total 63 43 (68.3 %) 20 (31.7 %) 

 
 

Kenya 

Siaya 5 1 4 

Kisumu 6 5 1 

Busia 13 8 5 

Kisii 14 9 5 

Total 45 26 (57.8 %) 19 (42.2 %) 

 
 
 

Tanzania 

Nkasi 10 4 6 

Sumbawanga 5 3 2 

Mbozi 10 9 1 

Njombe 21 5 16 

Madaba 6 0 6 

Momba 6 2 4 

Total 58 23 (39.7 %) 35 (60.3 %) 

 
 
 

Uganda 

Arua 4 1 3 

Serere 4 2 2 

Kumi 6 5 1 

Ngora 4 4 0 

Alebtong 4 2 2 

Manafwa 4 0 4 

Tororo 4 1 3 

Total 58 33 (56.9 %) 25 (43.1 %) 
* District level data shown is only the locations from which at least 4 or more isolates were 
collected; whereas, totals shown for Eastern Africa and each Country are based on the overall 
number of isolates collected and characterised from various locations 

XNumber of M. oryzae isolates representing the contemporary population (2015-2017) YNumber of 
MAT 1-1 isolates present in Eastern Africa or in a country or in certain districts  

ZNumber of MAT 1-2 isolates present in Eastern Africa or in a country or in certain districts 

Numbers in parentheses are percentage values of the proportion of MAT 1-1 and MAT 1-2 isolates.  
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5.3.2 Fertility status of the M. oryzae contemporary populations 
 

Initial validation experiments were performed to determine the sexual fitness of the mating 

testers (I-R-22, TH3 and 4136-4-3 as MAT 1-1) and BR62, Guy11, JP15 and K23/123 as MAT 

1-2). This was carried out by crossing the opposite mating type isolates among the testers to 

mainly check the production of perithecia. The assay is temperature, light and the growth 

medium sensitive. The crossing assays were performed on OMA plates under regulated 

conditions. Initial screening showed variation in the number of perithecia produced per 

crossing. Mating testers I-R-22, TH3, 4136-4-3 and K23/123 retained their sexual fitness as 

evidenced by the production of perithecia with asci and viable ascospores. However, Guy11 

was extremely slow growing, which affected the interaction zone (crossing point) and the 

mating period (data not shown). Further, isolates BR62 and JP15 were not efficient testers in 

mating with all the isolates crossed. Subsequently, 6 hermaphrodite isolates (D9/s76, D9/s9, 

D3/s3, D15/s47, K9/47 and K30/90w) from previous work (Takan et al., 2012), were selected 

and screened as potential testers as described above. This led to the identification of isolate 

D15/s47 (MAT 1-2) as a suitable mating tester. D15/s47 was isolated from finger millet in 

Uganda and showed similar levels of mating capability as the previously established tester 

isolates (Data not shown). Following the two standardisation experiments, isolates I-R-22, 

TH3 and 4136-4-3 (MAT 1-1) and isolates K23/123 and D15/s47 (MAT 1-2) were selected as 

the mating testers to screen the 224 M. oryzae isolates representing the contemporary 

population.  

With each new MAT 1-1 isolate, crossing assays were performed with two testers of the 

opposite mating type, and with each new MAT 1-2 isolate, crossing assays were performed 

with three testers of the opposite mating type (Table 5.2). From a total of 547 crosses, 226 
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crosses were compatible and resulted in the production of perithecia (Table 5.2). With some 

isolates, perithecia were observed as early as 10 to 12 days after crossing, but with most 

isolates, perithecia were formed after 3 to 4 weeks after crossing. Further, taking the 

compatible crosses into account, it was clear that some of new the isolates were not 

successfully compatible will all the testers of the opposite mating type. Consequently, new 

isolates that produced perithecia with at least one tester isolate were considered fertile 

(137 isolates) and new isolates that were not compatible with any of the mating testers 

were considered infertile (87 isolates). However, among the fertile isolates, their ability to 

mate with opposite mating type testers varied considerably. For example, among the MAT 

1-2 isolates (99), 14 produced perithecia with all three MAT 1-1 testers used, 33 isolates 

produced perithecia with two MAT 1-1 testers and 21 isolates produced perithecia with only 

one MAT 1-1 tester used. Among the MAT 1-1 isolates (125), 33 isolates produced perithecia 

with two MAT 1-2 testers and 36 isolates produced perithecia with one MAT 1-2 tester. The 

new mating tester isolate D15/s47 (MAT 1-2) identified in the study proved to be efficient in 

the crossing assays (Table 5.2). This also suggests that a higher proportion of the MAT 1-2 

isolates are fertile (68 out of 99 isolates) compared to the MAT 1-1 isolates (69 out of 125 

isolates). 
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Table 5.2. Proportion of compatible crosses of new M. oryzae isolates with the mating testers 

based on the production of perithecia  

M. oryzae 
tester 

isolates 

Tester  
mating 
type* 

Number 
of 

crosses 

**Number of crosses with perithecia Total no. of 
crosses with 

perithecia 

Ethiopia Kenya Tanzania Uganda  

I-R-22 1-1 99 13 15 15 16 59 

TH3 1-1 99 7 14 7 16 44 

4136-4-3 1-1 99 8 8 4 3 23 

D15/s47 1-2 125 23 6 8 14 51 

K23/123 1-2 125 18 6 9 16 49 

Total na 547 69 49 43 65 226 

 
 
*MAT 1-1 testers were used in crossing assays with new isolates established as MAT 1-2 by the PCR 
method.  
*MAT 1-2 testers were used in crossing assays with new isolates established as MAT 1-1 using the 
PCR method.  
NA, Not applicable 
 
** Numbers for each country are related to the number of successful crosses with the testers (and 
don't directly relate to the number of isolates collected/tested from each country) 

 
 
 
Overall, among the M. oryzae isolates characterised across the 4 countries (Ethiopia, Kenya, 

Tanzania and Uganda) in Eastern Africa, 61% were fertile (137) and 39 % were infertile (87) 

as presented in Figure 5.5. However, among the 4 countries, the proportion of fertile 

isolates in Ethiopia (47 out of 63 isolates) and Uganda (38 out of 58 isolates) was clearly 

higher compared to Kenya (23 out of 45 isolates) and Tanzania (29 out of 58 isolates), which 

both showed comparable proportions of fertile and infertile isolates (Figure 5.6). The 

distribution pattern of the fertile M. oryzae isolates at various locations (districts) across the 

4 countries in Eastern Africa is detailed in Table 5.3. 
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Figure 5.5.  Proportion of the fertile and infertile M. oryzae isolates overall in Eastern Africa  

Percentage values are based on the number of fertile and infertile isolates identified among the 224 
isolates representing the contemporary population (collection period was 2015 to 2017). 
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Figure 5.6. Proportion of fertile and infertile M. oryzae isolates identified in Ethiopia, Kenya,  

                    Tanzania and Uganda  

Identification is based on the sexual compatibility and incompatibility of the new isolates to the 
standard mating testers  

Identification as fertile isolates is based on the production of perithecia in compatible crosses with at 
least one tester isolate of the opposite mating type  

Blue and Orange bars represent the fertile and infertile isolates, respectively among the total 
number of isolates characterised in Ethiopia (63), Kenya (45), Tanzania (58) and Uganda (58). 
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Table 5.3. Distribution of the fertile and infertile finger millet blast pathogen isolates across the 

four countries 

Isolates 
status* 

Country No. of 
isolates in 

country 

Isolates Districts** 

 
 
 
 
 

Fertile 
(137) 

Ethiopia 47 E3, E4, E5, E7, E8, E9, E12, E13, E14, E15, E16, E17, 
E18, E20, E21, E23, E25, E27, E28, E30, E31, E33, 
E36, E37, E38, E39, E34, E40, E41, E42, E44, E45, 
E47, E48, E49, E50, E51, E52, E53, E54, E56, E57, 

E58, E59, E60, E61, E62 

20a 

Kenya 23 K1, K6, K7, K8, K10, K13, K14, K17, K19, K20, K21, 
K24, K25, K26, K27, K30, K31, K32, K36, K37, K39, 

K40, K44, K45 

7b 

Tanzania 29 T1, T2, T5, T6, T9, T10, T11, T12, T14, T15, T16, 
T17, T18, T21, T22, T24, T26, T29, T31, T32, T33, 

T35, T36, T42, T47, T50, T51, T53, T58 

6c 

Uganda 38 U1, U2, U3, U5, U6, U7, U8, U9, U10, U11, U13, 
U15, U19, U20, U21, U22, U23, U25, U27, U29, 
U30, U31, U35, U36, U37, U38, U39, U40, U42, 
U43, U44, U48, U49, U52, U53, U55, U56, U57, 

17d 

 
 
 

Infertile 
(87) 

Ethiopia 16 E1, E2, E6, E10, E19, E22, E24, E26, E29, E32, E35, 
E41, E43, E46, E55, E63 

10e 

Kenya 22 K2, K3, K4, K5, K9, K11, K12, K15, K16, K18, K22, 
K23, K28, K29, K33, K34, K35, K38, K41, K42, K43 

5f 

Tanzania 29 T3, T4, T7, T8, T13, T19, T20, T23, T25, T27, T28, 
T30, T34, T37, T38, T39, T40, T41, T43, T44, T45, 

T46, T48, T49, T52, T54, T55, T56, T57 

5g 

Uganda 20 U4, 12, U14, U16, U17, U18, U24, U26, U28, U32, 
U33, U34, U41, U45, U46, U47, U50, U51, U54, U58 

15h 

 
*Fertile isolates are compatible with at least one mating tester and produced perithecia.  
* Infertile isolates are incompatible with all the testers and no perithecia were produced in crosses.  
** Some of the districts appear in both categories as both fertile and infertile isolates are present in 
these locations. 
aThe 20 districts in Ethiopia include Adet, Diga, Lallo Assabi, Banja, Bahir Dar Zuria, Bure, Demecha, 
Angebo, Wayu Tuka, Nedjo, Bila, Boji Bermeji, Gimbi, Leka dulecha, Dangla, Dure Bete, Guangau, 
Mecha, Ankussa-Abdo Gor, Jabi-Tana.  
bThe 7 districts in Kenya include Busia, Bungoma, Eldret, Marakwet, Kakamega, Kisii, Siaya.  
CThe 6 districts in Tanzania include Nkasi, Njombe, Mbozi, Madaba, Momba, Sumbawanga.  
dThe 17 districts in Uganda include Arua, Serere, Kumi, Pallisa, Katakwi, Amuria, Alebtong, Lira, Apac, 
Gulu, Amuru, Agago, Manafwa, Tororo, Masindi, Ngora, Lamwo.  
eThe 10 districts in Ethiopia include Sire, Wayu Tuka, Diga, Nedjo, Leta Sibu, Leka dulecha, Dure Bete, 
Mandura, Bahir Dar Zuria, Qilxxu Kara.  
fThe 5 districts in Kenya include Kisumu, Siaya, Busia, Kisii, Eldoret.  
gThe 5 districts in Tanzania include Nkasi, Sumbawanga, Njombe, Momba, Mbozi.    
hThe 15 districts in Uganda include Moyo, Pallisa, Katakwi, Kumi, Ngora, Apac, Lira, Kitgum, Agago, 
Tororo, Serere, Hoima, Amuria, Amuru, Mbale. 
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Sexual behaviour of fertile M. oryzae isolates is further evaluated using the Itoi et al. (1983) 

nomenclature based on perithecia production by the new isolate and/or the tester in 

crosses as described in previous sections and the patterns shown here (Figure 5.9A and B). 

Sexual behaviour of the fertile M. oryzae isolates identified among the contemporary 

population from Eastern Africa is detailed in Table 5.4. In vast majority of the isolates and 

crosses mature perithecia with asci and ascospores were observed. However, with some 

isolates and crosses, the perithecia produced were barren lacking asci and ascospores (e.g.  

E20, E25, E53, U25, U31, U42, and U56) as indicated in Table 5.4.   
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Figure 5.7A.   Sexual status of M. oryzae isolates collected from finger millet from Ethiopia and Tanzania  

The images show the pattern of perithecia production by female, male and hermaphrodite isolates.   

Female isolate formed perithecia on the side of the new isolate E34; Male isolate formed perithecia on the side of the tester isolate (TH3); and 

Hermaphrodite isolate formed perithecia by the new isolate (T5) as well as the tester isolate (K23/123).  

The 137 fertile new isolates were designated according to the Itoi et al. (1983). 
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Figure 5.7B. Perithecia production by new M. oryzae isolates from finger millet and the tester isolates   

A) Perithecia produced on both sides of the compatibility zone by hermaphrodite isolates U1 and K23/123 

B) Perithecia produced by a compatible cross between isolates TH3 and E16 acting as female and male fertile, respectively 

A B 

U1 K23/123 TH13 E16 
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Table 5.4. Sexual behaviour of the fertile FMB pathogen isolates identified among the 

contemporary population in Eastern Africa based on crosses with mating testers  

 

Isolate* Mating 
typea 

Testerb No. of 
Peritheciac 

Sexual 
behaviourd 

Sexual structurese 

Isolate Tester 

E3 MAT 1-2 4136-4-3 600 1200 Hermaphrodite Perithecia, asci, 
ascospores 

E3 MAT1-2 TH3 650 110 Hermaphrodite Perithecia, asci, 
ascospores 

E3 MAT1-2 I-R-22 720 1300 Hermaphrodite Perithecia, asci, 
ascospores 

E4 MAT1-1 K23/123 0 1320 Female Perithecia, asci, 
ascospores 

E5 MAT1-1 K23/123 586 700 Hermaphrodite Perithecia, asci, 
ascospores 

E5 MAT1-1 D15/s47 500 720 Hermaphrodite Perithecia, asci, 
ascospores 

E7 MAT1-1 K23/123 0 500 Male Perithecia, asci, 
ascospores 

E7 MAT1-1 D15/S47 80 100 Hermaphrodite Perithecia, asci, 
ascospores 

E8 MAT1-1 D15/s47 800 920 Hermaphrodite Perithecia, asci, 
ascospores 

E9 MAT1-1 D15/S47 0 750 Male Perithecia, asci, 
ascospores 

E11 MAT1-1 K23/123 0 800 Male Perithecia, asci, 
ascospores 

E12 MAT1-2 TH3 0 400 Male Perithecia, asci, 
ascospores 

E12 MAT1-2 I-R-22 0 400 Male Perithecia, asci, 
ascospores 

E13 MAT1-2 4136-4-3 0 1000 Male Perithecia, asci, 
ascospores 

E13 MAT1-2 TH3 0 1100 Male Perithecia, asci, 
ascospores 

E13 MAT1-2 I-R-22 0 959 Male Perithecia, asci, 
ascospores 

E14 MAT1-2 TH3 80 988 Hermaphrodite Perithecia, asci, 
ascospores 

E14 MAT1-2 I-R-22 0 1105 Male Perithecia, asci, 
ascospores 

E15 MAT1-1 K23/123 1105 1450 Hermaphrodite Perithecia, asci, 
ascospores 

E15 MAT1-1 D15/s47 1200 1500 Hermaphrodite Perithecia, asci, 
ascospores 

E16 MAT1-2 TH3 0 1000 Male Perithecia, asci, 
ascospores 

E16 MAT1-2 I-R-22 0 270 Male Perithecia, asci, 



273 

 

ascospores 

E17 MAT1-2 K23/123 0 900 Male Perithecia, asci, 
ascospores 

E18 MAT1-1 D15/s47 500 200 Hermaphrodite Perithecia, asci, 
ascospores 

E20 MAT1-1 D15/s47 0 400 Male Perithecia 

E20 MAT1-1 K23/123 0 500 Male Perithecia 

E21 MAT1-2 K23/123 0 800 Male Perithecia, asci, 
ascospores 

E23 MAT1-1 D15/s47 0 400 Male Perithecia, asci, 
ascospores 

E25 MAT1-1 K23/123 0 100 Male Perithecia 

E27 MAT1-1 D15/s47 600 400 Hermaphrodite Perithecia, asci, 
ascospores 

E28 MAT1-1 D15/s47 0 650 Male Perithecia, asci, 
ascospores 

E30 MAT1-1 D15/s47 0 500 Male Perithecia, asci, 
ascospores 

E31 MAT1-1 D15/s47 70 100 Hermaphrodite Perithecia, asci, 
ascospores 

E33 MAT1-1 D15/s47 200 400 Hermaphrodite Perithecia, asci, 
ascospores 

E34 MAT1-1 D15/s47 500 0 Female Perithecia, asci, 
ascospores 

E36 MAT1-1 K23/123 150 170 Hermaphrodite Perithecia, asci, 
ascospores 

E37 MAT1-1 K23/123 0 500 Male Perithecia, asci, 
ascospores 

E38 MAT1-1 K23/123 0 1000 Male Perithecia, asci, 
ascospores 

E38 MAT1-1 D15/s47 0 1004 Male Perithecia, asci, 
ascospores 

E39 MAT1-1 D15/s47 0 500 Male Perithecia, asci, 
ascospores 

E40 MAT1-1 K23/123 250 400 Hermaphrodite Perithecia, asci, 
ascospores 

E40 MAT1-1 D15/s47 900 1205 Hermaphrodite Perithecia, asci, 
ascospores 

E43 MAT1-1 D15/s47 1020 1000 Hermaphrodite Perithecia, asci, 
ascospores 

E44 MAT1-1 K23/123 1000 1020 Hermaphrodite Perithecia, asci, 
ascospores 

E44 MAT1-1 D15/s47 0 500 Male Perithecia, asci, 
ascospores 

E45 MAT1-2 I-R-22 0 600 Male Perithecia, asci, 
ascospores 

E47 MAT1-2 4136-4-3 0 700 Male Perithecia, asci, 
ascospores 

E47 MAT1-2 I-R-22 0 100 Male Perithecia, asci, 
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ascospores 

E48 MAT1-1 K23/123 0 800 Male Perithecia, asci, 
ascospores 

E48 MAT1-1 D15/s47 500 540 Hermaphrodite Perithecia, asci, 
ascospores 

E49 MAT1-1 D15/s47 0 960 Male Perithecia, asci, 
ascospores 

E50 MAT1-1 K23/123 0 200 Male Perithecia, asci, 
ascospores 

E50 MAT1-1 D15/s47 0 700 Male Perithecia, asci, 
ascospores 

E51 MAT1-1 K23/123 0 700 Male Perithecia, asci, 
ascospores 

E52 MAT1-2 TH3 0 150 Male Perithecia, asci, 
ascospores 

E52 MAT1-2 I-R-22 0 700 Male Perithecia, asci, 
ascospores 

E53 MAT1-1 D15/s47 0 200 Male Perithecia 

E54 MAT1-2 I-R-22 0 100 Male Perithecia, asci, 
ascospores 

E54 MAT1-2 4136-4-3 0 120 Male Perithecia, asci, 
ascospores 

E56 MAT1-2 TH3 0 70 Male Perithecia, asci, 
ascospores 

E57 MAT1-2 I-R-22 0 1800 Male Perithecia, asci, 
ascospores 

E58 MAT1-2 4136-4-3 0 100 Male Perithecia, asci, 
ascospores 

E58 MAT1-2 I-R-22 0 560 Male Perithecia, asci, 
ascospores 

E59 MAT1-2 4136-4-3 804 0 Female Perithecia, asci, 
ascospores 

E59 MAT1-2 I-R-22 0 890 Male Perithecia, asci, 
ascospores 

E60 MAT1-1 K23/123 0 250 Male Perithecia, asci, 
ascospores 

E61 MAT1-2 4136-4-3 0 1050 Male Perithecia, asci, 
ascospores 

E61 MAT1-2 TH3 1025 0 Female Perithecia, asci, 
ascospores 

E62 MAT1-2 4136-4-3 0 200 Male Perithecia, asci, 
ascospores 

E62 MAT1-2 TH3 0 250 Male Perithecia, asci, 
ascospores 

E62 MAT1-2 I-R-22 858 0 Female Perithecia, asci, 
ascospores 

K1 MAT1-2 4136-4-3 700 800 Hermaphrodite Perithecia, asci, 
ascospores 

K1 MAT1-2 TH3 851 900 Hermaphrodite Perithecia, asci, 
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ascospores 

K1 MAT1-2 I-R-22 450 700 Hermaphrodite Perithecia, asci, 
ascospores 

K6 MAT1-2 4136-4-3 1500 0 Female Perithecia, asci, 
ascospores 

K6 MAT1-2 TH3 1500 1000 Hermaphrodite Perithecia, asci, 
ascospores 

K6 MAT1-2 I-R-22 1500 1200 Hermaphrodite Perithecia, asci, 
ascospores 

K7 MAT1-2 TH3 0 800 Male Perithecia, asci, 
ascospores 

K7 MAT1-2 I-R-22 0 900 Male Perithecia, asci, 
ascospores 

K8 MAT1-2 4136-4-3 0 1000 Male Perithecia, asci, 
ascospores 

K8 MAT1-2 TH3 0 700 Male Perithecia, asci, 
ascospores 

K8 MAT1-2 I-R-22 0 800 Male Perithecia, asci, 
ascospores 

K10 MAT1-1 K23/123 0 2500 Male Perithecia, asci, 
ascospores 

K10 MAT1-1 D15/s47 0 1500 Male Perithecia, asci, 
ascospores 

K13 MAT1-2 TH3 0 1056 Male Perithecia, asci, 
ascospores 

K13 MAT1-2 I-R-22 0 1000 Male Perithecia, asci, 
ascospores 

K14 MAT1-2 I-R-22 0 1000 Male Perithecia, asci, 
ascospores 

K17 MAT1-2 TH3 0 506 Male Perithecia, asci, 
ascospores 

K17 MAT1-2 I-R-22 0 1000 Male Perithecia, asci, 
ascospores 

K19 MAT1-1 K23/123 0 2000 Male Perithecia, asci, 
ascospores 

K19 MAT1-1 D15/s47 0 2000 Male Perithecia, asci, 
ascospores 

K20 MAT1-2 TH3 0 700 Male Perithecia, asci, 
ascospores 

K20 MAT1-2 I-R-22 0 1000 Male Perithecia, asci, 
ascospores 

K21 MAT1-1 D15/s47 1500 1500 Hermaphrodite Perithecia, asci, 
ascospores 

K24 MAT1-2 TH3 0 1150 Male Perithecia, asci, 
ascospores 

K24 MAT1-2 I-R-22 0 2005 Male Perithecia, asci, 
ascospores 

K25 MAT1-1 K23/123 1790 2000 Hermaphrodite Perithecia, asci, 
ascospores 
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K25 MAT1-1 D15s47 1300 1795 Hermaphrodite Perithecia, asci, 
ascospores 

K26 MAT1-2 4136-4-3 0 600 Male Perithecia, asci, 
ascospores 

K26 MAT1-2 TH3 0 890 Male Perithecia, asci, 
ascospores 

K26 MAT1-2 I-R-22 0 500 Male Perithecia, asci, 
ascospores 

K27 MAT1-2 TH3 0 800 Male Perithecia, asci, 
ascospores 

K27 MAT1-2 I-R-22 0 700 Male Perithecia, asci, 
ascospores 

K30 MAT1-2 4136-4-3 0 200 Male Perithecia, asci, 
ascospores 

K30 MAT1-2 TH3 0 100 Male Perithecia, asci, 
ascospores 

K30 MAT1-2 I-R-22 0 200 Male Perithecia, asci, 
ascospores 

K31 MAT1-1 K23/123 0 1200 Male Perithecia, asci, 
ascospores 

K32 MAT1-2 TH3 2500 2550 Hermaphrodite Perithecia, asci, 
ascospores 

K32 MAT1-2 I-R-22 0 1680 Male Perithecia, asci, 
ascospores 

K36 MAT1-1 D15/s47 300 1200 Hermaphrodite Perithecia, asci, 
ascospores 

K37 MAT1-2 4136-4-3 0 450 Male Perithecia, asci, 
ascospores 

K37 MAT1-2 TH3 0 800 Male Perithecia, asci, 
ascospores 

K37 MAT1-2 I-R-22 0 800 Male Perithecia, asci, 
ascospores 

K39 MAT1-1 K23/123 0 950 Male Perithecia, asci, 
ascospores 

K40 MAT1-1 K23/123 0 2750 Male Perithecia, asci, 
ascospores 

K40 MAT1-1 D15/s47 0 2500 Male Perithecia, asci, 
ascospores 

K44 MAT1-2 4136-4-3 0 1200 Male Perithecia, asci, 
ascospores 

K44 MAT1-2 TH3 0 1700 Male Perithecia, asci, 
ascospores 

K44 MAT1-2 I-R-22 0 2000 Male Perithecia, asci, 
ascospores 

K45 MAT1-2 4136-4-3 0 800 Male Perithecia, asci, 
ascospores 

K45 MAT1-2 I-R-22 800 2560 Male Perithecia, asci, 
ascospores 

T1 MAT1-2 TH3 0 500 Male Perithecia, asci, 
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ascospores 

T1 MAT1-2 I-R-22 0 1200 Male Perithecia, asci, 
ascospores 

T2 MAT1-2 TH3 0 650 Male Perithecia, asci, 
ascospores 

T2 MAT1-2 I-R-22 0 1000 Male Perithecia, asci, 
ascospores 

T5 MAT1-1 K23/123 400 800 Hermaphrodite Perithecia, asci, 
ascospores 

T5 MAT1-1 D15/s47 400 2100 Hermaphrodite Perithecia, asci, 
ascospores 

T6 MAT1-1 K23/123 0 600 Male Perithecia, asci, 
ascospores 

T6 MAT1-1 D15/s47 0 550 Male Perithecia, asci, 
ascospores 

T9 MAT1-2 4136-4-3 0 100 Male Perithecia, asci, 
ascospores 

T9 MAT1-2 I-R-22 0 800 Male Perithecia, asci, 
ascospores 

T10 MAT1-2 I-R-22 0 800 Male Perithecia, asci, 
ascospores 

T11 MAT1-2 4136-4-3 0 150 Male Perithecia, asci, 
ascospores 

T11 MAT1-2 TH3 0 1400 Male Perithecia, asci, 
ascospores 

T12 MAT1-2 TH3 0 100 Male Perithecia, asci, 
ascospores 

T12 MAT1-2 I-R-22 0 800 Male Perithecia, asci, 
ascospores 

T14 MAT1-2 I-R-22 0 200 Male Perithecia, asci, 
ascospores 

T15 MAT1-2 I-R-22 0 920 Male Perithecia, asci, 
ascospores 

T16 MAT1-2 I-R-22 0 800 Male Perithecia, asci, 
ascospores 

T17 MAT1-2 4136-4-3 800 0 Female Perithecia, asci, 
ascospores 

T17 MAT1-2 TH3 500 1200 Hermaphrodite Perithecia, asci, 
ascospores 

T17 MAT1-2 I-R-22 1150 1200 Hermaphrodite Perithecia, asci, 
ascospores 

T18 MAT1-1 K23/123 0 150 Male Perithecia, asci, 
ascospores 

T18 MAT1-1 D15/s47 0 200 Male Perithecia, asci, 
ascospores 

T21 MAT1-1 K23/123 0 200 Male Perithecia, asci, 
ascospores 

T21 MAT1-1 D15/s47 0 500 Male Perithecia, asci, 
ascospores 
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T22 MAT1-2 4136-4-3 400 0 Female Perithecia, asci, 
ascospores 

T22 MAT1-2 I-R-22 0 600 Male Perithecia, asci, 
ascospores 

T24 MAT1-1 K23/123 0 2600 Male Perithecia, asci, 
ascospores 

T26 MAT1-1 K23/123 0 100 Male Perithecia, asci, 
ascospores 

T26 MAT1-1 D15/s47 0 100 Male Perithecia, asci, 
ascospores 

T29 MAT1-1 K23/123 0 500 Male Perithecia, asci, 
ascospores 

T31 MAT1-1 D15/s47 0 100 Male Perithecia, asci, 
ascospores 

T32 MAT1-1 D15/s47 0 100 Male Perithecia, asci, 
ascospores 

T35 MAT1-2 I-R-22 0 500 Male Perithecia, asci, 
ascospores 

T36 MAT1-1 K23/123 500 100 Hermaphrodite Perithecia, asci, 
ascospores 

T36 MAT1-1 D15/s47 100 0 Female Perithecia, asci, 
ascospores 

T42 MAT1-1 D15/s47 0 400 Male Perithecia, asci, 
ascospores 

T47 MAT1-2 TH3 900 0 Female Perithecia, asci, 
ascospores 

T50 MAT1-2 I-R-22 0 900 Male Perithecia, asci, 
ascospores 

T51 MAT1-2 I-R-22 0 300 Male Perithecia, asci, 
ascospores 

T53 MAT1-1 K23/123 0 100 Male Perithecia, asci, 
ascospores 

T58 MAT1-2 4136-4-3 0 100 Male Perithecia, asci, 
ascospores 

T58 MAT1-2 TH3 0 150 Male Perithecia, asci, 
ascospores 

T58 MAT1-2 I-R-22 0 100 Male Perithecia, asci, 
ascospores 

U1 MAT1-1 K23/123 1006 650 Hermaphrodite Perithecia, asci, 
ascospores 

U2 MAT1-2 TH3 0 1200 Male Perithecia, asci, 
ascospores 

U2 MAT1-2 I-R22 0 700 Male Perithecia, asci, 
ascospores 

U3 MAT1-2 4136-4-3 0 100 Male Perithecia, asci, 
ascospores 

U3 MAT1-2 TH3 0 900 Male Perithecia, asci, 
ascospores 

U3 MAT1-2 I-R-22 0 400 Male Perithecia, asci, 
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ascospores 

U5 MAT1-2 4136-4-3 500 600 Hermaphrodite Perithecia, asci, 
ascospores 

U5 MAT1-2 TH3 490 550 Hermaphrodite Perithecia, asci, 
ascospores 

U5 MAT1-2 I-R-22 500 570 Hermaphrodite Perithecia, asci, 
ascospores 

U6 MAT1-1 K23/123 500 1115 Hermaphrodite Perithecia, asci, 
ascospores 

U6 MAT1-1 D15/s47 590 1300 Hermaphrodite Perithecia, asci, 
ascospores 

U7 MAT1-1 K23/123 0 1300 Male Perithecia, asci, 
ascospores 

U7 MAT1-1 D15/s47 0 1150 Male Perithecia, asci, 
ascospores 

U8 MAT1-1 K23/123 0 1054 Male Perithecia, asci, 
ascospores 

U8 MAT1-1 D15/s47 0 1204 Male Perithecia, asci, 
ascospores 

U9 MAT1-1 K23/123 0 1500 Male Perithecia, asci, 
ascospores 

U9 MAT1-1 D15/s47 0 1250 Male Perithecia, asci, 
ascospores 

U10 MAT1-2 TH3 0 600 Male Perithecia, asci, 
ascospores 

U10 MAT1-2 I-R-22 0 510 Male Perithecia, asci, 
ascospores 

U11 MAT1-1 K23/123 0 1057 Male Perithecia, asci, 
ascospores 

U11 MAT1-1 D15/s47 0 968 Male Perithecia, asci, 
ascospores 

U13 MAT1-1 K23/123 500 1205 Hermaphrodite Perithecia, asci, 
ascospores 

U13 MAT1-1 D15/s47 0 456 Male Perithecia, asci, 
ascospores 

U15 MAT1-1 K23/123 0 500 Male Perithecia, asci, 
ascospores 

U19 MAT1-1 D15/s47 0 250 Male Perithecia, asci, 
ascospores 

U20 MAT1-2 TH3 0 400 Male Perithecia, asci, 
ascospores 

U20 MAT1-2 I-R-22 0 800 Male Perithecia, asci, 
ascospores 

U21 MAT1-2 4136-4-3 700 0 Male Perithecia, asci, 
ascospores 

U21 MAT1-2 TH3 600 800 Hermaphrodite Perithecia, asci, 
ascospores 

U21 MAT1-2 I-R-22 900 1251 Hermaphrodite Perithecia, asci, 
ascospores 
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U22 MAT1-1 K23/123 0 400 Male Perithecia, asci, 
ascospores 

U22 MAT1-1 D15/s47 0 500 Male Perithecia, asci, 
ascospores 

U23 MAT1-1 K23/123 0 400 Male Perithecia, asci, 
ascospores 

U25 MAT1-2 TH3 0 100 Male Perithecia 

U25 MAT1-2 I-R-22 0 250 Male Perithecia 

U27 MAT1-1 K23/123 0 1200 Male Perithecia 

U27 MAT1-1 D15/s47 0 400 Male Perithecia 

U29 MAT1-2 TH3 0 450 Male Perithecia 

U30 MAT1-1 K23/123 0 250 Male Perithecia, asci, 
ascospores 

U30 MAT1-1 D15/s47 0 200 Male Perithecia, asci, 
ascospores 

U31 MAT1-2 TH3 0 500 Male Perithecia 

U31 MAT1-2 I-R-22 0 320 Male Perithecia 

U35 MAT1-2 I-R-22 0 250 Male Perithecia 

U36 MAT1-2 TH3 0 400 Male Perithecia, asci, 
ascospores 

U36 MAT1-2 I-R-22 0 450 Male Perithecia, asci, 
ascospores 

U37 MAT1-2 4136-4-3 0 350 Male Perithecia, asci, 
ascospores 

U37 MAT1-2 I-R-22 0 350 Male Perithecia, asci, 
ascospores 

U38 MAT1-2 TH3 0 100 Male Perithecia 

U39 MAT1-2 I-R-22 0 900 Male Perithecia 

U40 MAT1-1 K23/123 0 800 Male Perithecia, asci, 
ascospores 

U40 MAT1-1 D15/s47 0 900 Male Perithecia, asci, 
ascospores 

U42 MAT1-2 TH3 0 1000 Male Perithecia, asci, 
ascospores 

U42 MAT1-2 I-R-22 0 400 Male Perithecia 

U43 MAT1-2 TH3 0 450 Male Perithecia, asci, 
ascospores 

U43 MAT1-2 I-R-22 0 250 Male Perithecia, asci, 
ascospores 

U44 MAT1-2 TH3 0 350 Male Perithecia, asci, 
ascospores 

U44 MAT1-2 I-R-22 0 100 Male Perithecia 

U48 MAT1-1 K23/123 0 720 Male Perithecia 

U49 MAT1-1 D15/s47 0 1230 Male Perithecia 

U52 MAT1-1 K23/123 0 200 Male Perithecia 

U53 MAT1-1 K23/123 0 1200 Male Perithecia, asci, 
ascospores 

U53 MAT1-1 D15/s47 400 1400 Hermaphrodite Perithecia, asci, 
ascospores 
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*Isolates were collected from: E-Ethiopia, K- Kenya, T- Tanzania and U- Uganda.  
aIsolate mating type determined by the PCR assay.  
bTester isolates of opposite mating type including isolate D15/s47 identified as a mating tester in this 
study have the capability to cross with new isolates and produce perithecia.  
cPerithecia is the fruiting body of M. oryzae resulting from the cross of two compatible isolates of 
opposite mating type.   
dSexual behaviour was determined according to the nomenclature by Itoi et al. (1983) where, 
Hermaphrodites – Perithecia produced on the side of the mating tester as well as the new isolate; 
Female – Perithecia produced by the new isolate only; Male – Perithecia produced by the mating 
tester only.  
eIncludes examples where isolates and crosses produced barren perithecia without asci and 
ascospores, these are denoted as Perithecia in the corresponding rows. 
 

U54 MAT1-1 D15/s47 0 700 Male Perithecia, asci, 
ascospores 

U56 MAT1-2 TH3 0 950 Male Perithecia, asci, 
ascospores 

U56 MAT1-2 I-R-22 0 100 Male Perithecia 

U57 MAT1-2 TH3 700 1000 Hermaphrodite Perithecia, asci, 
ascospores 
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Among the fertile M. oryzae isolates identified overall in Ethiopia, Kenya, Uganda and 

Tanzania, in terms of sexual behaviour a major proportion of the crosses led to their 

identification in terms of sexual behaviour as males (175), followed by hermaphrodite (46) 

and female (10) as summarised below (Table 5.5).  However, there were some variations in 

these trends among the 4 countries. For example, the data for Kenya reflects a higher 

proportion of hermaphrodites, where as in Uganda no female isolates were identified (Table 

5.5).  

Table 5.5. Summary of sexual behaviour of the fertile M. oryzae isolates identified among the 

contemporary population from Ethiopia, Kenya, Tanzania and Uganda 

Country Sexual behaviour of the FMB pathogen M. oryzae isolates based on the 

number of crosses 

Total* 

Malea Femaleb Hermaphroditec 

Ethiopia 46 5 20 71 

Kenya 39 1 10 50 

Tanzania 35 4 5 44 

Uganda 55 0 11 66 

*Total 175 10 46  

aMale isolate that supported the production of perithecia only by the tester isolate.  

bFemale isolates that formed perithecia only by the new isolates. 

 cHermaphrodite isolates that formed perithecia both by the new isolate and the tester isolate. 

*Numbers reflect the sexual behaviour of each isolate with one or more testers (and not related to 
the total number of isolates collected and characterised from each country or the four countries 
together). 
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5.4 Discussion 
 

Work in this chapter focused on assessing the sexual reproductive potential of the finger 

millet blast (FMB) pathogen, utilising 224 M. oryzae isolates representing the contemporary 

populations (2015-2017) from Eastern Africa. These isolates were collected in four countries 

including Kenya (45), Tanzania (58), Uganda (58) and Ethiopia (63). Integrated use of the 

mating type specific PCR and mating culture assays was effective in addressing the 

objectives of the study. A number of investigations have been carried out to assess the 

reproductive behaviour in M. oryzae isolates associated with crop and grass hosts in diverse 

geographic locations (Karthikeyan and Gnanamanickam, 2008b; Zeng et al., 2009; Tredway 

et al., 2003; Consolo et al., 2005; Takan et al., 2012; Onaga et al., 2015; Kema et al., 2018). 

However, only some studies have used the combination of the two methodological 

approaches required to develop a fuller assessment of the blast pathogen sexual 

reproductive potential (e.g. Takan et al., 2012). 

The PCR assay clearly showed the presence of both mating types at a high proportion (MAT 

1-1, 56 % and MAT 1-2, 44 %) among the 224 FMB pathogen isolates from Kenya, Tanzania, 

Uganda and Ethiopia in Eastern Africa (Figures 5.2 and 5.3). The overall pattern is similar to 

previous findings where the presence of both mating types at a high proportion (MAT 1-1, 

47 % and MAT 1-2, 53 %) was recorded in Kenya and Uganda during 2000-2004 (Takan et al., 

2012). Despite the similarity in overall pattern, there is a noticeable difference in the 

proportion of the two mating types between the two studies reflective of potential 

differences associated with space and time. This is highlighted by the clear differences in the 

proportion of the mating types MAT 1-1 and MAT 1-2 across the four countries in Eastern 

Africa. MAT 1-1 isolates were dominant in 3 countries, ranging between ~57 % in Uganda 
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and ~68 % in Ethiopia with the corresponding range of MAT 1-2 isolates from 38 % to 43%. 

Conversely, in Tanzania, MAT 1-2 isolates were dominant at ~60 % and MAT 1-1 isolates 

were 40 % (Table 5.1). Mating type distribution pattern among the FMB pathogen 

populations varied considerably in different countries in Asia. For example, in India, where 

finger millet has a long cultivation history (~3000 years) as in Eastern Africa (~5000 years) 

presence of both mating types at a high proportion MAT 1-1, 54 % and MAT1-2, 46 % among 

28 isolates) was recorded (Viji and Gnanamanickam, 1998). Limited evidence available in 

Japan and Nepal, where the cultivation of finger millet is considered more recent, suggests 

that the distribution pattern of the two mating types MAT 1-1 and MAT 1-2 is highly skewed 

with the domination of MAT 1-1 isolates (Yaegashi and Udagawa, 1978).  

In the case of blast pathogen populations from other crops and grass hosts, the mating type 

distribution pattern again varies according to the host as well as the geographic location. 

Occurrence of both mating types at variable proportions has been reported among the blast 

pathogen isolates infecting rice and wheat at different geographical locations such as East 

Africa, West Africa and Brazil (Takan et al., 2012; Onaga et al., 2015; Urashina et al., 1993; 

Maciel et al., 2014, Mwongera, 2018). Further, in rice, wheat, perennial ryegrass and St. 

Augustine turf grass blast pathogen populations, where both mating types were recorded, 

the common pattern is highly skewed distribution either dominated by MAT 1-1 or MAT 1-2 

(Nottenghem and Silue, 1992; Kumar et al., 1999; Dayakar et al., 2000; Tredway et al., 2003; 

Takan et al., 2012; Maciel et al., 2014; Onaga et al., 2015, Mwongera, 2018). For example, In 

East Africa, among 80 isolates of the rice blast pathogen, only 17 were MAT 1-2 mating type 

(Onaga et al., 2015). In addition, the presence of only one mating type was recorded among 

the blast pathogen isolates infecting rice and perennial ryegrass in Argentina, Thailand and 
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USA (Viji and Uddin 2002; Consolo et al., 2005; Peixoto, 2014; D’Avilla et al., 2016; 

Sirisathaworn et al., 2017).  

It is important to emphasise that, despite the overall high proportion of occurrence of both 

mating types at a country level or regional level in Eastern Africa, their distribution pattern 

varies considerably at a local or district level within a country (Table 5.1). For instance, high 

proportion of both mating types was recorded in locations such as Busia and Kisii in Kenya 

and Nkasi in Tanzania. Conversely, dominance of one of the mating types was recorded in 

districts such as Diga and Banja in Ethiopia and Siaya and Kusumu in Kenya.  Finally, 

presence of only one mating type was recorded in some areas and the examples include 

Waju Tuka and Bahir Dar Zuria in Ethiopia, and Ngora and Manafwa in Uganda. The number 

of isolates characterised from each location is a caveat in the wider interpretation of these 

distinctive patterns at a local level. Nonetheless, there is some commonality to the patterns 

recorded from contemporary populations (2015-2017) of the FMB pathogen in Eastern 

Africa and the data from historical populations (2000-2004) within the region. For example, 

occurrence of both mating types at a high proportion in the Busia district, Kenya as recorded 

in the present study as well as previously (Takan et al., 2012). A similar pattern was 

observed among the rice blast pathogen isolates from the same location in Asia with near 

equal distribution of both mating types among the contemporary and historical populations. 

On this basis, the occurrence of sexual reproduction has been suggested (Saleh et al., 2012). 

Likewise, based on the wide occurrence of both mating types in wheat blast pathogen 

populations in Brazil, scope for the episodic occurrence of sexual reproduction among 

regular cycles of asexual reproduction has been proposed (Maciel et al., 2014).  
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Presence of both mating types within a location is reflective of the opportunity for the 

occurrence of sexual reproduction (Saleh et al., 2012; Maciel et al., 2014; Saleh et al., 2014). 

However, it is well recognised that, this pattern alone will not clearly reveal the sexual 

reproductive capability of fungal populations (e.g. Couch et al., 2005; Maciel et al., 2014). 

Thus, in the present study, the fertility status of the contemporary population was 

determined in mating assays (Table 5.2). The results highlighted the presence of both fertile 

and infertile M. oryzae isolates in Eastern Africa across the four countries with the fertile 

isolates occurring at a higher frequency (~ 60 %, Figure 5.5 and Table 5.3). This pattern is 

similar to the previous findings, where a high proportion of fertile isolates (84 to 89 %) was 

found in the FMB pathogen in Kenya and Uganda (Takan et al., 2012). Similarly, in India, 

field isolates of M. oryzae infecting finger millet and wild millet have generally been 

reported to be very fertile (Viji and Gnanmannickam, 1998, Karthikeyan and 

Gnanamanickam, 2008). Likewise, high fertility status of M. oryzae isolates has also been 

reported from grass hosts such as weeping love grass and goosegrass (Crawford et al., 1986; 

Tredway et al., 2003). However, the pattern differs markedly among the rice blast pathogen 

populations in diverse locations, where the level of fertile isolates is low. For instance, only 

33 % of the rice blast pathogen isolates were fertile in Thailand (Mekwatanakan et al., 

1999), 39.6 % of the M. oryzae isolates from rice were fertile in India (Kumar et al., 1999) 

and only 7.2 % of the isolates were fertile in Argentina (Consolo et al., 2005).  

Among the FMB pathogen isolates characterised in this study, ~40 % were infertile. M. 

oryzae isolates that are infertile have been commonly reported with the rice blast system in 

diverse locations (Mekwatanakan et al., 1999; Kumar et al., 1999; Consolo et al., 2005) and 

also with other hosts such as finger millet and foxtail millet in India and East Africa (Viji and 
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Gnanamanickam, 1998; Karthikeyan and Gnanamanickam, 2008; Takan et al., 2012). It has 

been suggested that the infertility observed might have been due to the incompatibility of 

the isolates with the mating testers used in these assays (Viji and Gnanamanickam, 1998). 

However, the influence of genetic changes leading to infertility is an equally important 

consideration, particularly based on the use of well-characterised testers (Milgroom, 2015). 

Within Eastern Africa, based on the present sampling during 2015-2017, the range of fertile 

M. oryzae isolates of the FMB pathogen varied from 50 % in Tanzania to 74 % in Ethiopia 

(Table 5.3), which is lower than the range reported in Kenya and Uganda (84% - 89%) based 

on field sampling during 2000 – 2004. Further, the high fertility status of M. oryzae isolates 

from weeping love grass and goosegrass has been attributed mainly to the presence of 

hermaphrodites (Crawford et al., 1986; Tredway et al., 2003). Similarly, a high proportion of 

hermaphroditic M. oryzae isolates (64% of the fertile isolates) from finger millet has been 

recorded in Kenya and Uganda (Takan, 2007; Takan et al., 2012). However, in this study, 

among the fertile isolates, the highest proportion behaved as males, followed by 

hermaphrodites, and females (Table 5.4 and 5.5). In general, with the rice blast system in 

various locations, occurrence of hermaphroditic isolates is very rare and normally M. oryzae 

isolates behaving as the males is common (e.g. Consolo et al., 2005). Some exceptions have 

been reported as in the case of specific rice blast pathogen populations in a part of China 

and India with the presence of a very high frequency of female fertile isolates (Saleh et al., 

2012).  

Increase in the proportion of M. oryzae isolates associated with finger millet in Eastern 

Africa behaving as fertile males suggests a loss of hermaphroditic and female reproductive 

behaviour. It is important to point out that it was not possible to establish a direct 
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correlation between the mating type distribution pattern and the fertility status of the M. 

oryzae isolates within a location. The effect of the space and time as well as underlying 

genetic processes are key considerations in this context. Further, in this study, a proportion 

of fertile isolates produced barren perithecia (without asci and/or ascospores, Table 5.4). 

The perithecial barrenness has been ascribed to genetic differences in compatibility and 

genetic abnormalities including chromosomal duplications and mutations (Saleh et al., 

2012). The loss of fertility over space and time in crop fungal pathogens such as M. oryzae 

has been attributed to genetic processes as well as agro-ecological contexts such as a 

selective advantage of female sterile strains and host selection pressure (Saleh et al., 2012). 

Thus, the reproductive cycle including the occurrence of sexual reproduction in M. oryzae 

populations depend on a whole range of factors including the isolate genotype, 

compatibility, genetic regulation, and agro-ecological contexts including gene and genotype 

flow (Viji and Gnanamanickam, 1998; Milgroom, 2015; Saleh et al., 2012; Bazin et al., 2014). 

The overall pattern of mating type distribution and the fertility status of the contemporary 

pathogen populations in the FMB pathogen in Eastern Africa reflects a strong potential for 

random mating as reported in other plant and animal pathogens (e.g. Kema et al., 2018; 

Persinoti et al., 2018).  

In conclusion, the present study confirmed the wide occurrence of a high proportion of both 

mating types MAT 1-1 and MAT 1-2 among the M. oryzae isolates associated with finger 

production in Eastern Africa. The frequency of occurrence of the two mating types vaired 

across the 4 countries and in various locations/districts within the countries.  Presence and 

wide distribution of a high proportion of fertile M. oryzae isolates was recorded among the 

contemporay populaitons of the FMB pathgoen. Among the fertile isolates, a higher 
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proportion of isolates showed sexual behaviour as males, followed by hermaphrodites and 

females.  A comparison of the data with the contemporary populaitons (2015-17) with 

previous data from historic populaitons (2000-04) suggest a decrease in fertility level as well 

as the proportion of hermaphrodites and females. The overall pattern of the mating type 

distribution and the fertility status of the M. oryzae isolates associated with finger millet 

blast in Easteran Africa shows strong potential for a mixed reproductive system including 

asexual reproduction and episodic sexual reproduction and recombination. 
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Chapter 6 

6.0 General Discussion, Conclusions and Future Perspectives 
 

It is now widely recognized that finger millet originated in the highland stretches across 

Ethiopia and Uganda and was first domesticated in Eastern Africa, where landraces and 

traditional varietal mixtures have been cultivated for ~5000 years. Finger millet was 

subsequently introduced into Asia, particularly India ~ 3000 years ago and the crop is widely 

cultivated in certain parts (Hilu et al., 1979; de Wet et al., 1984; Gimode et al., 2016). Thus, 

Eastern Africa and India are recognised as the primary and secondary centres of finger millet 

diversity, respectively (Mathur et al., 2012).  

There is a growing recognition of the food and nutritional security potential of finger millet 

both in Africa and India (Onyango, 2016; Wafula et al., 2018). However, in Eastern Africa as 

well as in India, blast disease caused by M. oryzae constitutes one of the major constraints 

to finger millet production and causes substantial loss of grain, which if saved is enough to 

feed millions of people annually (Lenne et al., 2007; Takan, 2007; Takan et al., 2012). 

Compared to the considerable progress made in deciphering the population biology and 

infection biology of major systems such as rice blast and wheat blast, research into these 

aspects with the finger millet systems lags behind significantly. 

Integrating the application of molecular genetic, genomic and computational analsyses as 

well as biological assays, the present study characterised a distinctive set of 300 isolates of 

the finger millet blast (FMB) pathogen M. oryzae from Eastern Africa. This set includes 76 

isolates representing historical populations from 2000-2004 and 224 isolates representing 

contemporary populations from 2015-2017, covering four key finger millet producing 
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countries Ethiopia, Kenya, Tanzania, and Uganda in Eastern Africa. Furthermore, it is 

important to emphasise that, based on the information available, the FMB pathogen 

isolates characterised in this study have originated from a real mixture of landraces, local 

varieties and some improved varieties across the locations surveyed in Eastern Africa. For 

example, in Tanzania and Ethiopia, the blast pathogen isolates almost exclusively represent 

landraces, at least where known. Whilst in Kenya and Uganda, the blast isolates represent a 

wider spectrum of improved varieties, local varieties and landraces. In Eastern Africa, 

movement of finger millet seeds and/or plant material via cultural exchanges, research for 

development programmes and trade is well known (Lenne et al., 2007; Gimode et al., 2016). 

Population diversity and structure of fungal pathogens of crops is known to be influenced by 

the historical background of the host as well as the agro-environmental conditions of the 

geographical locations (McDonald, 1997). The high genotype diversity, distribution of some 

genotypes across country boundaries and the overall continuous genetic variation pattern 

allied to the high proportion of the two mating types and the high fertility status of the FMB 

pathogen in Eastern Africa is typical of the patterns recorded with the blast pathogen in the 

centres of diversity of rice in Asia and wheat in Brazil (Kumar et al., 1999; Mekwatanakarn, 

et al., 1999; Chen et al., 2006; Maciel et al., 2014). Further, the genetic diversity and 

population structure recorded in Eastern Africa is also reflective of genotype and/or gene 

flow due to pathogen movement linked to anthropogenic activities (Nangoti, et al., 2004; 

Takan et al., 2012; Gimode et al., 2016). 

In this context, some of the key patterns from the population diversity analysis in Chapter 3, 

the genome-wide analysis in Chapter 4 and the assessment of sexual reproductive capacity 

in Chapter 5 provide a holistic view of the finger millet blast pathogen biology, genetics and 
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evolution particularly in Eastern Africa (e.g. Table 6.1). The MLS analysis used has been 

previously utilised to analyse populations of major fungal pathogens including M. oryzae 

(Couch and Kohn, 2002; Couch et al., 2005; Armitage et al., 2015; Baroncelli et al., 2015; 

Baroncelli et al., 2017; Luo et al., 2017; Almiman, 2018; Jagadeesh et al., 2018a; Mannai et 

al., 2018). MLS phylogenies distinguished the FMB pathogen associated with finger millet in 

Eastern Africa into two sub-populations (Groups A and B) that are geographically clustered. 

Group A contained ~90 % of M. oryzae isolates from finger millet in Kenya and Uganda. Both 

mating types were recorded at a high proportion in both countries. In the PCR assay, the 

vast majority of the isolates from this group tested grh negative (Table 6.1). Group B mostly 

contained M. oryzae isolates from Ethiopia and Tanzania. Nearly ~96 % of these were grh 

positive in the PCR assay. Both mating types were present at high proportion in Tanzania 

and in Ethiopia MAT 1-1 type was predominant (Table 6.1).  

Phylogenomic analysis based on 944 BUSCO genes also divided the 18 representative 

isolates into two groups (Clade 1Ai and 1Aii; Figure 4.11) further substantiating the pattern 

of two sub-populations identified by the MLS analysis discussed above. In addition, the two 

ranges of genome-wide SNPs identified also divided the 18 representative isolates into two 

groups broadly corresponding to the two sub-populations/groups discussed above. Further, 

Ethiopia and Tanzania have a high proportion of grh element containing M. oryzae isolates 

and at least two types of grh element with significant differences in their sequence and 

genomic architecture are present in different M. oryzae isolates within Eastern Africa within 

the context of the two sub-populations/groups considered above. This emerging pattern of 

the two sub-populations overall merits further phylogenomic investigations of the FMB 

pathogen movement within and across the African and Asian continents. 
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Table 6.1. Overview of the characteristics of the blast pathogen M. oryzae isolates associated with finger millet production in Eastern Africa 

Group* Total 
isolates per 

group 

Nucleotides 
differences 

(%)** 

Country Total 
isolates per 

country 

Grasshopper (grh) element 
PCR*** 

Mating type (PCR)**** Population 
type 

Positive Negative MAT 1-1 MAT 1-2 

A 181 0-3 Uganda 97 2 95 50 47 H & C 

Kenya 66 8 58 36 30 H & C 

Tanzania 9 0 9 3 6 C 

Ethiopia 9 2 7 3 6 C 

B 111 0-11 Ethiopia 54 53 1 39 15 C 

Tanzania 48 48 0 21 27 C 

Kenya 6 6 0 3 3 H 

Uganda 3 0 3 1 2 H 
H, historical population (2000-2004) and C, contemporary population (2015-2017);  

Eight isolates were not represented in either Group A or B, and these include five isolates from Kenya (H & C), two from Uganda (H), and one from Tanzania; 

*The two sub-populations identified in the multi-locus sequence analysis (Figure 3.12 and Table 3.8C); Further details of the isolates available in Table 2.1A.   

**Percentage of nucleotide sequence variation within a group 

***Grasshopper (grh) element: M. oryzae isolates identified as grh positive (grh+) or grh negative (grh-) based on the presence or absence of the two 
amplicons in the PCR screening with the PKE and PES primer pairs 

****Mating types: M. oryzae isolates identified as MAT 1-1 or MAT 1-2 using the mating type specific PCR (Figure 5.3 and Table 5.1). 

The grh element and mating type data for the historical isolates were adopted from previous work (Takan, 2007). 
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The overall genetic variation pattern of the M. oryzae pathogen populations associated with 

finger millet production in Eastern Africa linked to sexual reproduction potential aligns well 

with the model of ancient and recombining populations as previously suggested with the 

rice and finger millet blast system in the Indian Himalayas and East Africa (Kumar et al., 

2009; Takan et al., 2012). The high proportion of MAT 1-1 and MAT 1-2 and the presence of 

a high proportion of fertile isolates among the M. oryzae isolates associated with finger 

millet production in Eastern Africa are typical of the patterns observed in other plant and 

animal fungal pathogen where strong potential for random mating has been suggested 

(Kumar et al., 1999; Couch et al., 2005; Paoletti et al., 2005; Fraser et al., 2007; O’Gorman et 

al., 2009; Amorium et al., 2017; Kema et al., 2018; Persinoti et al., 2018). The presence of 

both mating type isolates in the two sub-populations identified (Table 6.1) suggests the 

possiblity for increase in genetic diversity over time through sexual reproduction potential 

linked to enhanced pathogenic diversity leading to the break-down of host resistance. 

Further, formation of perithecia on dead plant tissue has been shown by experimental co-

inoculation of opposite mating type isolates of M. oryzae on rice plants (Silue and 

Notteghem, 1990; Hayashi et al., 1997).  These reports highlight the need for effective 

clearance of the crop debris in locations such as Eastern Africa for the effective control of 

finger millet blast disease as well as to reduce the chances of episodic sexual reproductive 

cycles. With wheat blast system in Brazil, a mixed reproductive system including asexual 

cycles and episodic sexual cycle has been reported following the wide occurrence of both 

mating types allied to high pathogen genetic diversity (Maciel et al., 2014).  
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The two M. oryzae isolates E34 and K23/123, used to develop the reference genomes, 

showed putative translocations that could lead to genomic rearrangements and similar 

patterns have been reported extensively in fungi, e.g. a large fraction of translocation 

occurring among or between Colletotrichum species isolates (Rao and Nandineni, 2017; 

Buiate et al., 2017). Identification of the genes present in these locations, as well as in the 

putative unique genomic fragments identified in E34 and K23/123 would necessitate further 

refinement of gene prediction using algorithms such as MAKER and BRAKER and 

comparative analysis (Cantarel et al., 2008; Campbell et al., 2014; Hoff et al., 2016). 

Likewise, the identification of allelic versions of the AVR-Piz-T gene among the 18 

representative isolates suggests the scope for further analysis in the finger millet blast 

system as the existence of allelic versions of AVR genes and their role in the rice blast 

system is well recognized (e.g. Khang et al., 2008; Chuma et al., 2011; Huang et al., 2014; 

Bialas et al., 2017).  

This research work has achieved significant advances in the knowledge of the finger millet 

blast pathogen genetic diversity, population structure and phylogenetic relationships as well 

as the sexual reproductive capability across four countries in Eastern Africa countries. 

Further, a considerable level of genomic resources and key opportunities for further 

computational and functional analysis as well as phylogenomic of the pathogen origin and 

evolution has been generated. These knowledge and resources will feed into ongoing and 

future efforts for effective finger millet blast management by various stakeholders such as 

the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and National 

Agricultural Research and Extension Services (NARES). The progress achieved in this study 

with the FMB pathogen genetics and biology would provide a critically important framework 
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for further research in the identification, development and deployment of host resistance in 

Eastern Africa. The new resources developed in this work will also provide a baseline for 

future monitoring of the FMB pathogen populations in Sub-Saharan Africa, where the 

disease is viewed as a threat to the food and nutrition security potential of finger millet.  

 

6.2 Conclusions and Future Perspectives 
 

In conclusion, this study has led to the development of new knowledge and resources 

presented below: 

1. Two novel genetic markers HyP1 and HyP2 were identified and developed for the 

finger millet blast (FMB) pathogen M. oryzae. These markers were phylogenetically 

informative with a high content of SNPs and offered high resolution applicable in 

deciphering the pathogen genotype diversity and distribution pattern across 

different countries.  

2. The HyP1 and HyP2 markers were used in conjunction with the ITS and HIS4 markers 

selected from known phylogenetic markers. 

3. Single- and multi-locus analysis provided a clear assessment of the genotype 

diversity and distribution pattern both at a country level and a regional overview in 

Eastern Africa. 

4. ITS and HIS4 identified 7-9 genotypes among the 300 isolates analysed, whilst HyP1 

and Hyp2 identified 80-85 genotypes. This pattern clearly shows that the ITS and 
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HIS4 markers reflects the conserved areas and the HyP1 and HyP2 markers reflect 

the highly variable regions in the genomes of the FMB pathogen. 

5. The genotype diversity and their distribution pattern have been deciphered in each 

of the four countries surveyed in Eastern Africa based on the Multi-locus sequence 

(MLS) analysis. Certain genotypes included M. oryzae isolates from two or more 

countries. Further analysis of the data enabled the clustering of these genotypes into 

genetic groups in each country.  

6. Multi-locus sequence (MLS) analysis revealed high genetic diversity of the FMB 

pathogen in Eastern Africa with 207 genotypes, which showed a continuous genetic 

variation pattern. 

7. Vast majority of the genotypes identified in Eastern Africa were distinguished into 

two sub-populations designated as Groups A and B with geographic clustering. 

Group A predominantly included M. oryzae isolates from Kenya and Uganda, whilst 

the Group B predominantly included pathogen isolates from Ethiopia and Tanzania. 

8. PCR-based screening revealed for the first time, the presence of the Grasshopper 

(grh) element in a high proportion of the FMB pathogen isolates in Eastern Africa 

specifically in Ethiopia and Tanzania (in 85 % of the isolates).  

9. Recent advances in the next generation sequencing technologies have been 

effectively utilised to establish high quality reference genome assemblies of two 

isolates (E34 and K23/123) representing the two sub-populations identified in the 

FMB pathogen in Eastern Africa.  
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10. Genome resequence data has been developed and assembled for sixteen M. oryzae 

isolates representing the genetic and geographic diversity of the FMB pathogen in 

Eastern Africa. 

11. Comparative analysis based on Synteny mapping and OrthoVenn analysis enabled 

the identification of genomic regions and genes putatively unique to specific M. 

oryzae isolates representing the FMB pathogen in Eastern Africa. These unique 

regions/genes are likely to influence host interaction patterns/pathogenicity. This 

hypothesis was tested initially by selecting two well-characterised avr gene models 

from rice blast. The results showed that AVR-Piz-T gene was present in all 18 isolates 

tested revealing two allelic forms, whilst AVR-Pik gene was only present in 6 of these 

isolates. 

12. Phylogenomic analysis using a core set of Sordariomycete-BUSCO genes showed for 

the first time, the monophyletic nature of the finger millet blast pathogen from 

Eastern Africa and Asia (Clade A). Within Clade A, two sub-clades are evident broadly 

corresponding to the two sub-populations identified in the MLS analysis. Likewise, 

genome-wide SNPs of the set of 18 isolates also revealed two ranges, which relate 

the two sets of isolates to the above discussed sub-populations/Clades. 

13. Based on in-depth analysis of the reference assemblies of isolates E34 and K23/123, 

for the first time, the full DNA sequence of Grasshopper (grh) element was identified 

and the structure defined from E34.  

14. New insights of grh presence and its genomic architecture gained by identifying at 

least two versions of grh element that are present among the M. oryzae isolates 
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associated with finger millet in Eastern Africa. Isolates E34 and K23/123 typify the 

two versions of the grh with E34 showing a high level of sequence identity to the 

original sequence from G22, whilst K23/123 showed a high level of nucleotide 

differences. 

15. Mating type specific PCR revealed clearly that both mating types MAT 1-1 (56 %) and 

MAT 1-2 (44 %) are present at a high proportion among the M. oryzae isolates 

representing the contemporary population in Eastern Africa as well as in the four 

countries surveyed, albeit at variable levels. 

16. Mating culture assays revealed that a high proportion of M. oryzae isolates 

representing the contemporary population Identification are fertile (60 %). Among 

the fertile isolates, male sexual behaviour was dominant, followed by 

hermaphrodites and females. These emerging patterns are indicative of a gradual 

decrease in fertility and loss of hermaphroditic and female sexual behaviour. 

17. Integration of the mating type distribution data with the fertility status information 

strongly suggets the possibility of a mixed reproduction system including asexual 

cycles and episodic sexual cycles of the FMB pathogen in Eastern Africa. 

18. Overall, the new knowledge and resources developed provide an improved 

understanding of the biology and genetics of the finger millet blast pathogen M. 

oryzae. This would serve as a framework to take a structured approach for the 

identification, development and deployment of finger millet resistance to blast in 

Eastern Africa as well as future monitoring of pathogen population dynamics. 

Furthermore, the new knowledge and resources developed would serve as platform 
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for advancing the comparative genomic and functional analyses in this key 

pathosystem.  

 

Based on the current results, suggested further work includes: 

1. Investigations of the evidence for sexual recombination in field populations by allelic 

distribution and linkage disequilibrium analysis.  

2. Comparative analysis and annotation of transposable elements and repeat elements 

in selected isolates including the genomic architecture of the grh element building 

on the genome sequence data. 

3. Phylogenomic analysis of a wider set of M. oryzae isolates associated with finger 

millet production in Eastern Africa, India and other geographic locations to decipher 

the pathogen origin, evolution and transcontinental movement. 

4. In-depth computational analysis and annotation of the genomic regions and genes 

unique to specific isolates from the Synteny mapping and OrthoVenn analyses.  

5. Interrogation of the genomic architecture of key genes such as candidate effector 

genes including avr genes to identify genomic islands reflective of adaptive 

divergence and to decipher the role of transposable elements and repeat elements. 

6. Explore the utility of the established rice blast pathogen mutants as a model to test 

the functional complementation of allelic forms of candidate effector/avirulence 

genes from the finger millet blast isolates to initiate the identification of avr gene 

mediated host interactions. 
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8.0 Appendix 

Appendix 1. Diversity and distribution pattern of the M. oryzae genotypes identified among the finger millet blast pathogen populations in 

Kenya, Uganda, Tanzania and Ethiopia based on the HyP1 marker sequences 

Genotype No. of 
isolates in 
genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of 
isolates per 

country 

Isolate code  No. of 
districts 

Population 
type 

HyP1-G1 73 T56 4 25 (E) E2, E15, E19, E22, E26, E34, E35, E37, E38, E39, E41, 
E42, E44, E45, E47, E48, E49, E53, E54, E56, E57, E58, 

E59, E60, E63 

14 C 

    10 (K) K14, K21, K41, K24/127, K33/184, K33/189, K44/111p, 
K48/115n, K58/128p, K60/131p 

6 H & C 

    36 (T) T1, T2, T3, T6, T7, T8, T9, T10, T13, T18, T19, T22, T24, 
T26, T27, T28, T30, T31, T32, T33, T34, T36, T38, T41, 
T42, T43, T44, T45, T46, T47, T48, T49, T50, T51, T52, 

T56 

6 C 

    2 (U) D3/s9, D10/s73 2 H 

HyP1-G2 72 U57 3 7 (E) E18, E27, E43, E46, E55, E61, E62 6 C 

    25 (K) 

 
K1, K4, K5, K7, K8, K13, K15, K22, K27, K42, K43, 

K4/21p, K5/24w, K12/62, K21/68n, K22/118, K23/123, 
K26/76p, K28/82w, K36/98n, K55/124p, K5/23, 

K15/53n, K9/46, K65/159w 

7 H & C 

    40 (U) U1, U2, U4, U5, U7, U8, U20, U21, U24, U26, U32, U35, 
U36, U37, U39, U44, U55, U56, U57, D2/s14, D1/s11, 
D3/s3, D3/s24, D5/s1, D7/s6, D9/s76, D14/s27, Pen-2-
2, D1/s72, D4/s12, D9/s50, D9/s56, D9/s70, D10/s63, 
D10/s77, D13/s5, D14/s30, D15/s12, D15/s41, D4/s41 

20 H & C 

HyP1-G3 38 U58 3 9 (K) K2, K3, K10, K11, K12, K24, K26, K33, K35 4 C 

    1 (T) T35 1 C 

    28 (U) U3, U6, U9, U10, U11, U12, U13, U14, U17, U18, U19, 
U22, U23, U25, U29, U30, U31, U33, U38, U42, U46, 

U49, U50, U51, U53, U54, U58, D15/s6 

17 H & C 
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HyP1-G4 8 E33 1 8 (E) E21, E23, E24, E25, E28, E29, E31, E33 5 C 

HyP1-G5 5 K57/126p 1 5 (K) K34, K36, K39, K45/112n, K57/126p 2 H & C 

HyP1-G6 4 Secn-2-2 2 2 (K) K13/67, K28 2 H & C 

    2 (U) Secn-2-2*, D1/s19 2 H 
HyP1-G7 4 P665n-2-1 2 1 (K) K47/114p 1 H 

    3 (U) E11p-1-1*, Odyp-2-1*, P665n-2-1* 1 H 
HyP1-G8 3 T54 1 3 (T) T20, T53, T54 1 C 

HyP1-G9 3 U48 2 1 (K) K23 1 C 

    2 (U) U27, U48 2 C 

HyP1-G10 3 K40 1 3 (K) K37, K38, K40 1 C 

HyP1-G11 2 E11 1 2 (E) E7, E11 2 C 

HyP1-G12 2 E10 1 2 (E) E8, E10 2 C 

HyP1-G13 2 E32 1 2 (E) E9, E32 2 C 

HyP1-G14 2 K32 1 2 (K) K31, K32 2 C 

HyP1-G15 2 E3 1 2 (E) E1, E3 2 C 

HyP1-G16 2 U45 2 1 (K) K30 1 C 

    1 (U) U45 1 C 

HyP1-G17 2 T40 1 2 (T) T39, T40 1 C 

HyP1-G18 2 U52 1 2 (U) U41, U52 2 C 

HyP1-G19 2 K65/140n 2 1 (K) K65/140n 1 H 

    1 (U) D2/s26 1 H 

HyP1-G20 2 E51 1 2 (E) E50, E51 2 C 

HyP1-G21 2 D15/s37 1 2 (U) D1/s50, D15/s37 2 H 

HyP1-G22 2 T12 1 2 (T) T12, T16 2 C 

HyP1-G23 1 E17 1 1 E17 1 C 

HyP1-G24 1 E40 1 1 E40 1 C 

HyP1-G25 1 T11 1 1 T11 1 C 

HyP1-G26 1 U34 1 1 U34 1 C 

HyP1-G27 1 D8/S15 1 1 D8/S15 1 H 

HyP1-G28 1 E12 1 1 E12 1 C 

HyP1-G29 1 E6 1 1 E6 1 C 

HyP1-G30 1 E20 1 1 E20 1 C 

HyP1-G31 1 E36 1 1 E36 1 C 
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HyP1-G32 1 T14 1 1 T14 1 C 

HyP1-G33 1 T58 1 1 T58 1 C 

HyP1-G34 1 D6/s1 1 1 D6/s1 1 H 

HyP1-G35 1 K17 1 1 K17 1 C 

HyP1-G36 1 D12/s2 1 1 D12/s2 1 H 

HyP1-G37 1 T17 1 1 T17 1 C 

HyP1-G38 1 Gup-2-1 1 1 Gup-2-1 1 H 

HyP1-G39 1 K14/74 1 1 K14/74 1 H 

HyP1-G40 1 K65/142n 1 1 K65/142n 1 H 

HyP1-G41 1 K1/15 1 1 K1/15 1 H 

HyP1-G42 1 K18 1 1 K18 1 C 

HyP1-G43 1 K25 1 1 K25 1 C 

HyP1-G44 1 U28 1 1 U28 1 C 

HyP1-G45 1 D1/s53b 1 1 D1/s53b 1 H 

HyP1-G46 1 K8/40 1 1 K8/40 1 H 

HyP1-G47 1 U15 1 1 U15 1 C 

HyP1-G48 1 U16 1 1 U16 1 C 

HyP1-G49 1 U43 1 1 U43 1 C 

HyP1-G50 1 U47 1 1 U47 1 C 

HyP1-G51 1 D11/s16 1 1 D11/s16 1 H 

HyP1-G52 1 K20 1 1 K20 1 C 

HyP1-G53 1 K45 1 1 K45 1 C 

HyP1-G54 1 D4/s26 1 1 D4/s26 1 H 

HyP1-G55 1 K9 1 1 K9 1 C 

HyP1-G56 1 S1p-1-1 1 1 S1p-1-1* 1 H 

HyP1-G57 1 D15/s47 1 1 D15/s47 1 H 

HyP1-G58 1 D9/s54 1 1 D9/s54 1 H 

HyP1-G59 1 D1/s44 1 1 D1/s44 1 H 

HyP1-G60 1 K19 1 1 K19 1 C 

HyP1-G61 1 K29/164 1 1 K29/164 1 H 

HyP1-G62 1 U40 1 1 U40 1 C 
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HyP1-G63 1 K29 1 1 K29 1 C 

HyP1-G64 1 K44 1 1 K44 1 C 

HyP1-G65 1 K16 1 1 K16 1 C 

HyP1-G66 1 K64/137p 1 1 K64/137p 1 H 

HyP1-G67 1 T21 1 1 T21 1 C 

HyP1-G68 1 T37 1 1 T37 1 C 

HyP1-G69 1 T4 1 1 T4 1 C 

HyP1-G70 1 T15 1 1 T15 1 C 

HyP1-G71 1 T23 1 1 T23 1 C 

HyP1-G72 1 E13 1 1 E13 1 C 

HyP1-G73 1 E4 1 1 E4 1 C 

HyP1-G74 1 E30 1 1 E30 1 C 

HyP1-G75 1 E14 1 1 E14 1 C 

HyP1-G76 1 E16 1 1 E16 1 C 

HyP1-G77 1 E52 1 1 E52 1 C 

HyP1-G78 1 T25 1 1 T25 1 C 

HyP1-G79 1 T57 1 1 T57 1 C 

HyP1-G80 1 T5 1 1 T5 1 C 

HyP1-G81 1 D10/s71 1 1 D10/s71 1 H 

HyP1-G82 1 K6 1 1 K6 1 C 

HyP1-G83 1 T55 1 1 T55 1 C 

HyP1-G84 1 T29 1 1 T29 1 C 

HyP1-G85 1 E5 1 1 E5 1 C 
H, historical population (2000-2004) and C, contemporary population (2015-2017);  

In the Isolate code, K-isolates collected from Kenya E-isolates collected from Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected from Uganda; 
*Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A. 
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Appendix 2. Diversity and distribution pattern of the M. oryzae genotypes identified among the finger millet blast pathogen populations in 

Kenya, Uganda, Tanzania and Ethiopia based on the HyP2 marker sequences 

Genotype No. of 
isolates in 
genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of 
isolates per 

country 

Isolate code  No. of 
districts 

Population 
type 

HyP2-G1 48 T57 2 35 (E) E2, E4, E5, E7, E11, E12, E14, E15, E19, E20, E22, E29, 
E33, E34, E36, E37, E38, E39, E41, E44, E45, E47, E48, 
E49, E50, E51, E52, E53, E54, E56, E57, E58, E59, E60, 

E63 

13 C 

    13 (T) T1, T2, T3, T5, T8, T10, T22, T25, T47, T49, T51, T55, 
T57 

5 C 

HyP2-G2 36 U36 3 2 (E) E46, E62 2 C 

    13 (K) K7, K9, K15, K18, K24, K27, K35, K42, K5/23, K14/74, 
K47/114p, K60/131p, K65/140n 

8 H & C 

    21 (U) U4, U24, U25, U34, U36, D6/s1, D2/s14, D2/s26, D3/s3, 
D5/s1, D9/s50, D9/s54, D9/s56, D9/s76, D10/s71, 

D13/s5, D14/s30, E11p-1-1*, Odyp-2-1*, Secn-2-2* 

12 H & C 

HyP2-G3 24 E9 3 3 (E) E9, E17, E27 3 C 

    7 (K) K1, K2, K3, K10, K11, K12, K33 4 C 

    14 (U) U6, U11, U12, U16, U17, U22, U23, U29, U42, U46, 
U49, U50, U52, U58 

10 C 

HyP2-G4 20 T52 2 3 (K) K33/184, K33/189, K48/115n 2 H 

    17 (T) T6, T7, T9, T18, T19, T21, T24, T28, T32, T34, T36, T38, 
T41, T43, T44, T48, T52 

5 C 

HyP2-G5 20 U54 2 11 (K) K5, K19, K23, K26, K39, K41, K43, K9/46, K28/82w, 
K21/68n, K29/164 

6 H & C 

    9 (U) U10, U14, U27, U30, U38, U48, U54, D1/s44, D14/s27 7 H & C 

HyP2-G6 14 U31 3 4 (E) E3, E32, E43, E55 4 C 

    3 (K) K4, K45, K1/15 3 H & C 

    7 (U) U2, U31, D1/s72, D15/s12, D15/s47, Gup-2-1*, P665n-
2-1* 

4 H & C 
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HyP2-G7 12 U45 2 3 (K) K30, K5/24w, K65/159w 2 H & C 

    9 (U) U15, U28, U37, U43, U44, U45, D4/s41, D11/s16, 
D1/s53b, 

8 H & C 

HyP2-G8 12 U55 2 1 (K) K26/76p 1 H 

    11 (U) U3, U7, U8, U18, U26, U33, U39, U53, U55, U20, 
D15/s6 

9 H & C 

HyP2-G9 12 U1 2 10 (E) E8, E10, E21, E23, E24, E25, E26, E30, E31, E42 6 H & C 

    2 (U) U1, D9/s70 2 H & C 

HyP2-G10 11 D7/s6 2 6 (K) K14, K25, K29, K23/123, K36/98n, K65/142n 3 H & C 

    5 (U) U56, U57, D7/s6, D8/s15, D15/s41 5 H &C 

HyP2-G11 5 T58 3 1 (K) K22 1 C 

    3 (T) T35, T53, T58 2 C 

    1 (U) Pen2-2 1 H 

HyP2-G12 4 T42 1 4 (T) T30, T33, T37, T42 3 C 

HyP2-G13 4 T16 2 1 (K) K58/128p 1 H 

    3 (T) T4, T12, T16 2 C 

HyP2-G14 4 U5 2 2 (K) K6, K40 2 C 

    2 (U) U5, S1p-1-1* 2 H & C 

HyP2-G15 3 K4/21p 2 1 (K) K4/21p 1 H 

    2 (U) D3/s9, D4/s12 2 H 

HyP2-G16 2 E13 1 2 (E) E6, E13 2 C 

HyP2-G17 2 E35 1 2 (E) E16, E35 2 C 

HyP2-G18 2 K13/37 1 2 (K) K13, K13/67 2 H & C 

HyP2-G19 2 T40 1 2 (T) T39, T40 1 C 

HyP2-G20 2 U13 1 2 (U) U9, U13 2 C 

HyP2-G21 2 D10/s63 1 2 (U) D1/s50, D10/s63 2 H 

HyP2-G22 2 K57/126p 1 2 (K) K55/124p, K57/126p 1 H 

HyP2-G23 1 D10/s73 1 1 D10/s73 1 H 

HyP2-G24 1 T29 1 1 T29 1 C 

HyP2-G25 1 K24/127 1 1 K24/127 1 H 

HyP2-G26 1 K44/111p 1 1 K44/111p 1 H 

HyP2-G27 1 T31 1 1 T31 1 C 

HyP2-G28 1 T23 1 1 T23 1 C 
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HyP2-G29 1 T26 1 1 T26 1 C 

HyP2-G30 1 T15 1 1 T15 1 C 

HyP2-G31 1 T27 1 1 T27 1 C 

HyP2-G32 1 T13 1 1 T13 1 C 

HyP2-G33 1 T46 1 1 T46 1 C 

HyP2-G34 1 U40 1 1 U40 1 C 

HyP2-G35 1 T45 1 1 T45 1 C 

HyP2-G36 1 D10/s77 1 1 D10/s77 1 H 

HyP2-G37 1 T11 1 1 T11 1 C 

HyP2-G38 1 D1/s11 1 1 D1/s11 1 H 

HyP2-G39 1 E1 1 1 E1 1 C 

HyP2-G40 1 K21 1 1 K21 1 C 

HyP2-G41 1 K31 1 1 K31 1 C 

HyP2-G42 1 K64/137p 1 1 K64/137p 1 H 

HyP2-G43 1 K17 1 1 K17 1 C 

HyP2-G44 1 K22/118 1 1 K22/118 1 H 

HyP2-G45 1 E61 1 1 E61 1 C 

HyP2-G46 1 D15/s37 1 1 D15/s37 1 H 

HyP2-G47 1 D3/s24 1 1 D3/s24 1 H 

HyP2-G48 1 K8/40 1 1 K8/40 1 H 

HyP2-G49 1 U35 1 1 U35 1 C 

HyP2-G50 1 D1/s19 1 1 D1/s19 1 H 

HyP2-G51 1 E18 1 1 E18 1 C 

HyP2-G52 1 K36 1 1 K36 1 C 

HyP2-G53 1 K32 1 1 K32 1 C 

HyP2-G54 1 K34 1 1 K34 1 C 

HyP2-G55 1 D4/s26 1 1 D4/s26 1 H 

HyP2-G56 1 K8 1 1 K8 1 C 

HyP2-G57 1 K20 1 1 K20 1 C 

HyP2-G58 1 U47 1 1 U47 1 C 

HyP2-G59 1 T20 1 1 T20 1 C 
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HyP2-G60 1 T14 1 1 T14 1 C 

HyP2-G61 1 T17 1 1 T17 1 C 

HyP2-G62 1 U51 1 1 U51 1 C 

HyP2-G63 1 U32 1 1 U32 1 C 

HyP2-G64 1 K44 1 1 K44 1 C 

HyP2-G65 1 U41 1 1 U41 1 C 

HyP2-G66 1 K38 1 1 K38 1 C 

HyP2-G67 1 K16 1 1 K16 1 C 

HyP2-G68 1 K28 1 1 K28 1 C 

HyP2-G69 1 K45/112n 1 1 K45/112n 1 H 

HyP2-G70 1 E28 1 1 E28 1 C 

HyP2-G71 1 T54 1 1 T54 1 C 

HyP2-G72 1 U19 1 1 U19 1 C 

HyP2-G73 1 U21 1 1 U21 1 C 

HyP2-G74 1 E40 1 1 E40 1 C 

HyP2-G75 1 K37 1 1 K37 1 C 

HyP2-G76 1 K12/62 1 1 K12/62 1 H 

HyP2-G77 1 K15/53n 1 1 K15/53n 1 H 

HyP2-G78 1 T50 1 1 T50 1 C 

HyP2-G79 1 T56 1 1 T56 1 C 

HyP2-G80 1 D12/s2 1 1 D12/s2 1 H 
H, historical population (2000-2004) and C, contemporary population (2015-2017);  

In the Isolate code, K-isolates collected from Kenya E-isolates collected from Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected from Uganda; 
*Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A. 
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Appendix 3. Diversity and distribution pattern of the M. oryzae genotypes identified among the finger millet blast pathogen populations in 

Kenya, Uganda, Tanzania and Ethiopia based on the multi-locus sequence analysis 

Genotype No. of 
isolates in 
genotype 

Representative 
isolate 

No. of 
countries 
present 

No. of 
isolates 

per 
country 

Isolate code  No. of 
districts 

Population 
type 

ML-G1 26 T51 2 17 (E) E2, E15, E19, E22, E34, E37, E38, E39, E44, E48, E49, E53, 
E54, E58, E59, E60, E63 

12 C 

9 (T) T1, T2, T3, T8, T10, T22, T47, T49, T51 4 C 
ML-G2 15 T52 2 13 (T) T6, T7, T9, T18, T19, T24, T28, T32, T41, T43, T44, T48, T52 4 C 

2 (K) K33/184, K33/189 1 H 
ML-G3 7 U58 2 4 (U) U6, U17, U49, U58 4 C 

3 (K) K10, K12, K33 2 C 
ML-G4 6 U23 2 2 (K) K2, K11 2 C 

4 (U) U11, U12, U22, U23 2 C 

ML-G5 5 K15 3 2 (E) E46, E62 2 C 

2 (U) D5/s1, D9/s76 2 H 
1 (K) K15 1 C 

ML-G6 5 U55 1 5 (U) U8, U20, U26, U39, U55 5 C 

ML-G7 5 E31 1 5 (E) E21, E23, E24, E25, E31 3 C 

ML-G8 4 U24 2 3 (U) D9/s50, D13/s5, U24 3 H & C 

ML-G9 4 U56 2 2 (K) K23/123, K36/98n 2 H 

ML-G10 3 K4 2 1 (K) K4 1 C 

ML-G11 3 U48 2 1 (K) K23 1 C 

2 (U) U27, U48 2 C 

ML-G12 3 U36 2 1 (K) K5/23 1 H 

2 (U) D14/s30, U36 2 H & C 

ML-G13 3 Odyp-2-1 2 1 (K) K47/114p 1 H 

2 (U) E11p-1-1*, Odyp-2-1* 1 H 

ML-G14 3 U54 1 3 (U) U14, U30, U54 2 C 

ML-G15 3 U33 1 3 (U) D15/s6, U18, U33 3 H & C 

ML-G16 2 T16 1 2 (T) T12, T16 2 C 

ML-G17 2 T33 1 2 (T) T30, T33 1 C 
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ML-G18 2 T38 1 2 (T) T36, T38 1 C 

ML-G19 2 E33 1 2 (E) E29, E33 1 C 

ML-G20 2 E51 1 2 (E) E50, E51 2 C 

ML-G21 2 E57 1 2 (E) E56, E57 1 C 

ML-G22 2 K28/28w 1 2 (K) K21/68n, K28/82w 1 H 

ML-G23 2 K65/140n 2 1 (U) D2/s26 1 H 

1 (K) K65/140n 1 H 

ML-G24 2 U25 2 1 (U) U25 1 C 

1 (K) K24 1 C 

ML-G25 2 K42 2 1 (U) D3/s3 1 H 

1 (K) K42 1 C 

ML-G26 2 U45 2 1 (U) U45 1 C 

1 (K) K30 1 C 

ML-G27 2 U37 2 1 (U) U37 1 C 

1 (K) K65/159w 1 H 

ML-G28 2 U10 2 1 (U) U10 1 C 

1 (K) K26 1 C 

ML-G29 1 D1/s50 1 1 D1/s50 1 H 

ML-G30 1 D2/s14 1 1 D2/s14 1 H 

ML-G31 1 D1/s44 1 1 D1/s44 1 H 

ML-G32 1 D1/s53b 1 1 D1/s53b 1 H 

ML-G33 1 D1/s11 1 1 D1/s11 1 H 

ML-G34 1 D1/s19 1 1 D1/s19 1 H 

ML-G35 1 D3/s9 1 1 D3/s9 1 H 

ML-G36 1 D3/s24 1 1 D3/s24 1 H 

ML-G37 1 D4/s26 1 1 D4/s26 1 H 

ML-G38 1 D4/s41 1 1 D4/s41 1 H 

ML-G39 1 D6/s1 1 1 D6/s1 1 H 

ML-G40 1 D4/s12 1 1 D4/s12 1 H 

ML-G41 1 D9/s70 1 1 D9/s70 1 H 

ML-G42 1 D10/s77 1 1 D10/s77 1 H 

ML-G43 1 D11/s16 1 1 D11/s16 1 H 
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ML-G44 1 D8/s15 1 1 D8/s15 1 H 

ML-G45 1 D12/s2 1 1 D12/s2 1 H 

ML-G46 1 D9/s56 1 1 D9/s56 1 H 

ML-G47 1 D9/s54 1 1 D9/s54 1 H 

ML-G48 1 D10/s71 1 1 D10/s71 1 H 

ML-G49 1 D10/s63 1 1 D10/s63 1 H 

ML-G50 1 D10/s73 1 1 D10/s73 1 H 

ML-G51 1 D14/s27 1 1 D14/s27 1 H 

ML-G52 1 D15/s41 1 1 D15/s41 1 H 

ML-G53 1 D15/s37 1 1 D15/s37 1 H 

ML-G54 1 D15/s47 1 1 D15/s47 1 H 

ML-G55 1 Gup-2-1 1 1 Gup-2-1* 1 H 

ML-G56 1 P665n-2-1 1 1 P665n-2-1* 1 H 

ML-G57 1 Pen-2-2 1 1 Pen-2-2 1 H 

ML-G58 1 S1p-1-1 1 1 S1p-1-1* 1 H 

ML -G59 1 Secn-2-2 1 1 Secn-2-2* 1 H 

ML -G60 1 U1 1 1 U1 1 C 

ML -G61 1 U2 1 1 U2 1 C 

ML -G62 1 U3 1 1 U3 1 C 

ML -G63 1 U4 1 1 U4 1 C 

ML -G64 1 U5 1 1 U5 1 C 

ML -G65 1 U7 1 1 U7 1 C 

ML -G66 1 U9 1 1 U9 1 C 

ML -G67 1 U13 1 1 U13 1 C 

ML -G68 1 U15 1 1 U15 1 C 

ML -G69 1 U16 1 1 U16 1 C 

ML -G70 1 U19 1 1 U19 1 C 

ML -G71 1 U21 1 1 U21 1 C 

ML -G72 1 U28 1 1 U28 1 C 

ML -G73 1 U29 1 1 U29 1 C 

ML -G74 1 U31 1 1 U31 1 C 
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ML -G75 1 U32 1 1 U32 1 C 

ML -G76 1 U34 1 1 U34 1 C 

ML -G77 1 U35 1 1 U35 1 C 

ML -G78 1 U38 1 1 U38 1 C 

ML -G79 1 U40 1 1 U40 1 C 

ML -G80 1 U41 1 1 U41 1 C 

ML -G81 1 U42 1 1 U42 1 C 

ML -G82 1 U43 1 1 U43 1 C 

ML -G83 1 U44 1 1 U44 1 C 

ML -G84 1 U46 1 1 U46 1 C 

ML -G85 1 U47 1 1 U47 1 C 

ML -G86 1 U50 1 1 U50 1 C 

ML -G87 1 U51 1 1 U51 1 C 

ML -G88 1 U52 1 1 U52 1 C 

ML-G89 1 U53 1 1 U53 1 C 

ML-G90 1 U57 1 1 U57 1 C 

ML-G91 1 E1 1 1 E1 1 C 

ML-G92 1 E3 1 1 E3 1 C 

ML-G93 1 E4 1 1 E4 1 C 

ML-G94 1 E5 1 1 E5 1 C 

ML-G95 1 E6 1 1 E6 1 C 

ML-G96 1 E7 1 1 E7 1 C 

ML-G97 1 E8 1 1 E8 1 C 

ML-G98 1 E9 1 1 E9 1 C 

ML-G99 1 E10 1 1 E10 1 C 

ML-G100 1 E11 1 1 E11 1 C 

ML-G101 1 E12 1 1 E12 1 C 

ML-G102 1 E13 1 1 E13 1 C 

ML-G103 1 E14 1 1 E14 1 C 

ML-G104 1 E16 1 1 E16 1 C 

ML-G105 1 E17 1 1 E17 1 C 
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ML-G106 1 E18 1 1 E18 1 C 

ML-G107 1 E20 1 1 E20 1 C 

ML-G108 1 E26 1 1 E26 1 C 

ML-G109 1 E27 1 1 E27 1 C 

ML-G110 1 E28 1 1 E28 1 C 

ML-G111 1 E30 1 1 E30 1 C 

ML-G112 1 E32 1 1 E32 1 C 

ML-G113 1 E35 1 1 E35 1 C 

ML-G114 1 E36 1 1 E36 1 C 

ML-G115 1 E40 1 1 E40 1 C 

ML-G116 1 E41 1 1 E41 1 C 

ML-G117 1 E42 1 1 E42 1 C 

ML-G118 1 E43 1 1 E43 1 C 

ML-G119 1 E45 1 1 E45 1 C 

ML-G120 1 E47 1 1 E47 1 C 

ML-G121 1 E52 1 1 E52 1 C 

ML-G122 1 E55 1 1 E55 1 C 

ML-G123 1 E61 1 1 E61 1 C 

ML-G124 1 K1 1 1 K1 1 C 

ML-G125 1 K1/15 1 1 K1/15 1 H 

ML-G126 1 K3 1 1 K3 1 C 

ML-G127 1 K4/21p 1 1 K4/21p 1 H 

ML-G128 1 K5 1 1 K5 1 C 

ML-G129 1 K5/24w 1 1 K5/24w 1 H 

ML-G130 1 K7 1 1 K7 1 C 

ML-G131 1 K6 1 1 K6 1 C 

ML-G132 1 K8 1 1 K8 1 C 

ML-G133 1 K8/40 1 1 K8/40 1 H 

ML-G134 1 K9 1 1 K9 1 C 

ML-G135 1 K9/46 1 1 K9/46 1 H 

ML-G136 1 K12/62 1 1 K12/62 1 H 
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ML-G137 1 K13 1 1 K13 1 C 

ML-G138 1 K13/67 1 1 K13/67 1 H 

ML-G139 1 K14 1 1 K14 1 C 

ML-G140 1 K14/74 1 1 K14/74 1 H 

ML-G141 1 K15/53n 1 1 K15/53n 1 H 

ML-G142 1 K16 1 1 K16 1 C 

ML-G143 1 K17 1 1 K17 1 C 

ML-G144 1 K18 1 1 K18 1 C 

ML-G145 1 K19 1 1 K19 1 C 

ML-G146 1 K20 1 1 K20 1 C 

ML-G147 1 K21 1 1 K21 1 C 

ML-G148 1 K22 1 1 K22 1 C 

ML-G149 1 K22/118 1 1 K22/118 1 H 

ML-G150 1 K24/127 1 1 K24/127 1 H 

ML-G151 1 K25 1 1 K25 1 C 

ML-G152 1 K26/76p 1 1 K26/76p 1 H 

ML-G153 1 K28 1 1 K28 1 C 

ML-G154 1 K29 1 1 K29 1 C 

ML-G155 1 K29/164 1 1 K29/164 1 H 

ML-G156 1 K31 1 1 K31 1 C 

ML-G157 1 K32 1 1 K32 1 C 

ML-G158 1 K34 1 1 K34 1 C 

ML-G159 1 K35 1 1 K35 1 C 

ML-G160 1 K36 1 1 K36 1 C 

ML-G161 1 K37 1 1 K37 1 C 

ML-G162 1 K38 1 1 K38 1 C 

ML-G163 1 K39 1 1 K39 1 C 

ML-G164 1 K40 1 1 K40 1 C 

ML-G165 1 K41 1 1 K41 1 C 

ML-G166 1 K43 1 1 K43 1 C 

ML-G167 1 K44 1 1 K44 1 C 
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ML-G168 1 K44/111p 1 1 K44/111p 1 H 

ML-G169 1 K45 1 1 K45 1 C 

ML-G170 1 K55/124p 1 1 K55/124p 1 H 

ML-G171 1 K65/142n 1 1 K65/142n 1 H 

ML-G172 1 K45/112n 1 1 K45/112n 1 H 

ML-G173 1 K48/115n 1 1 K48/115n 1 H 

ML-G174 1 K57/126p 1 1 K57/126p 1 H 

ML-G175 1 K58/128p 1 1 K58/128p 1 H 

ML-G176 1 K60/131p 1 1 K60/131p 1 H 

ML-G177 1 K64/137p 1 1 K64/137p 1 H 

ML-G178 1 T4 1 1 T4 1 C 

ML-G179 1 T5 1 1 T5 1 C 

ML-G180 1 T11 1 1 T11 1 C 

ML-G181 1 T13 1 1 T13 1 C 

ML-G182 1 T14 1 1 T14 1 C 

ML-G183 1 T15 1 1 T15 1 C 

ML-G184 1 T17 1 1 T17 1 C 

ML-G185 1 T20 1 1 T20 1 C 

ML-G186 1 T21 1 1 T21 1 C 

ML-G187 1 T23 1 1 T23 1 C 

ML-G188 1 T25 1 1 T25 1 C 

ML-G189 1 T26 1 1 T26 1 C 

ML-G190 1 T27 1 1 T27 1 C 

ML-G191 1 T29 1 1 T29 1 C 

ML-G192 1 T31 1 1 T31 1 C 

ML-G193 1 T34 1 1 T34 1 C 

ML-G194 1 T35 1 1 T35 1 C 

ML-G195 1 T37 1 1 T37 1 C 

ML-G196 1 T39 1 1 T39 1 C 

ML-G197 1 T40 1 1 T40 1 C 

ML-G198 1 T42 1 1 T42 1 C 
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ML-G199 1 T45 1 1 T45 1 C 

ML-G200 1 T46 1 1 T46 1 C 

ML-G201 1 T50 1 1 T50 1 C 

ML-G202 1 T53 1 1 T53 1 C 

ML-G203 1 T54 1 1 T54 1 C 

ML-G204 1 T55 1 1 T55 1 C 

ML-G205 1 T56 1 1 T56 1 C 

ML-G206 1 T57 1 1 T57 1 C 

ML-G207 1 T58 1 1 T58 1 C 

H, historical population (2000-2004) and C, contemporary population (2015-2017);  

In the Isolate code, K-isolates collected from Kenya E-isolates collected from Ethiopia, T-isolates collected from Tanzania and U and D-isolates collected 
from Uganda; *Isolates from Uganda;  

Isolates in bold and normal font are contemporary and historic collections, respectively. Further details of the isolates are available in Table 2.1A.
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Appendix 4: Diversity and distribution pattern of the M. oryzae genotypes (shared and single) identified among the isolates collected from 

finger millet in various districts of Ethiopia based on the multi-locus sequence analysis 

S/N Genotypea Isolate District No. of District Plant part Finger millet 
variety 

Year of collection Grasshopperb Mating typec 

1 ET-G1 
(17) 

 
 
 
 
 
 
 
 

E2 Wayu Tuka 11 Neck Landrace 2015 + 1-1 

2 E19 Wayu Tuka Neck NK 2016 + 1-1 

3 E15 Bure Head Landrace 2015 + 1-1 

4 E59 Bure Head Landrace 2015 + 1-2 

5 E22 Nedjo Neck NK 2016 + 1-1 

6 E34 Diga Neck NK 2016 + 1-1 

7 E37 Diga Neck NK 2016 + 1-1 

8 E38 Banja Head Landrace 2015 + 1-1 

9 E39 Banja Neck Landrace 2015 + 1-1 

10 E49 Banja Head Landrace 2015 + 1-1 

11 E53 Mecha Head Landrace 2015 + 1-1 

12 E54 Mecha Neck Landrace 2015 + 1-2 

13 E48 Guangau Neck Landrace 2015 + 1-1 

14 E60 Ankussa-
Abdo Gor 

Head Landrace 2015 + 1-1 

15 E58 Bahir Dar 
Zuria 

Neck Landrace 2015 + 1-2 

16 E44 Dure Bete Neck Landrace 2015 + 1-1 

17 E63 Qilxxu Kara Head Landrace 2015 + 1-1 

18 ET-G2 
(5) 

 
 
 

E21 Wayu Tuka 3 Neck NK 2016 + 1-1 

19 E23 Nedjo Neck NK 2016 + 1-1 

20 E24 Nedjo Neck NK 2016 + 1-1 

21 E25 Nedjo Neck NK 2016 + 1-1 

22 E31 Gimbi Head NK 2016 + 1-1 

23 ET-G3 
(2) 

E29 Diga 1 Neck NK 2016 + 1-1 

24 E33 Diga Head NK 2016 + 1-1 

25 ETG-4 E46 Mandura 2 Neck Landrace 2015 - 1-2 
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26 (2) E62 Jabi Tana Neck Landrace 2015 - 1-2 

27 ET-G5 
(2) 

E50 Banja 2 Neck Landrace 2015 + 1-1 

28 E51 Mecha Head Landrace 2015 + 1-1 

29 ET-G6 
(2) 

E56 Bahir Dar 
Zuria 

1 Head Landrace 2015 + 1-2 

30 E57 Bahir Dar 
Zuria 

Neck Landrace 2015 + 1-2 

31 ET-G7 E1 Sire 1 Neck Landrace 2015 - 1-1 

32 ET-G8 E3 Adet 1 Neck Landrace 2015 + 1-2 

33 ET-G9 E4 Diga 1 Head Landrace 2015 + 1-1 

34 ET-G10 E5 Diga 1 Neck Landrace 2015 + 1-1 

35 ET-G11 E6 Diga 1 Head Landrace 2015 + 1-1 

36 ET-G12 E7 Diga 1 Neck Landrace 2015 + 1-1 

37 ET-G13 E8 Lallo Assabi 1 Head Landrace 2015 + 1-1 

38 ET-G14 E9 Lallo Assabi 1 Neck Landrace 2015 + 1-1 

39 ET-G15 E10 Nedjo 1 Head Landrace 2015 + 1-1 

40 ET-G16 E11 Guangau 1 Neck Landrace 2015 + 1-1 

41 ET-G17 E12 Banja 1 Head Landrace 2015 + 1-2 

42 ET-G18 E13 Bahir Dar 
Zuria 

1 Head Landrace 2015 + 1-2 

43 ET-G19 E14 Bahir Dar 
Zuria 

1 Neck Landrace 2015 + 1-2 

44 ET-G20 E16 Demecha 1 Neck Landrace 2015 + 1-2 

45 ET-G21 E17 Angebo 1 Neck Landrace 2016 + 1-1 

46 ET-G22 E18 Wayu Tuka 1 Neck NK 2016 + 1-1 

47 ET-G23 E20 Diga 1 Neck NK 2016 + 1-1 

48 ET-G24 E26 Leta Sibu 1 Head NK 2016 + 1-1 

49 ET-G25 E27 Bila 1 Neck NK 2016 + 1-1 

50 ET-G26 E28 Boji Bermeji 1 Neck NK 2016 + 1-1 

51 ET-G27 E30 Lallo Asabi 1 Neck NK 2016 + 1-1 

52 ET-G28 E32 Diga 1 Neck NK 2016 - 1-2 
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53 ET-G29 E35 Leka 
dulecha 

1 Neck NK 2016 + 1-2 

54 ET-G30 E36 Leka 
dulecha 

1 Head NK 2016 + 1-1 

55 ET-G31 E40 Dangla 1 Neck Landrace 2015 + 1-1 

56 ET-G32 E41 Dure Bete 1 Head Landrace 2015 + 1-2 

57 ET-G33 E42 Dure Bete 1 Neck Landrace 2015 + 1-1 

58 ET-G34 E43 Dure Bete 1 Head Landrace 2015 - 1-2 

59 ET-G35 E45 Leka 
dulecha 

1 Head NK 2015 + 1-2 

60 ET-G36 E47 Guangau 1 Head Landrace 2015 + 1-2 

61 ET-G37 E52 Mecha 1 Neck Landrace 2015 + 1-2 

62 ET-G38 E55 Bahir Dar 
Zuria 

1 Neck Landrace 2015 - 1-2 

63 ET-G39 E61 Jabi Tana 1 Head Landrace 2015 - 1-2 
aGenotypes identified based on the multi-locus sequence data of HIS4, ITS, HyP2 and HyP1 

bM. oryzae isolates identified as grh positive (+) or grh negative (-) based on the presence or absence of the two amplicons in PCR screening with the PKE 

and PES primer pairs 

cMating type was determined using PCR assay and the M. oryzae isolates were characterised as MAT 1-1 or MAT 1-2 

Numbers in parentheses are the number of isolates represented by a genotype  

NK: Information not available 
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Appendix 5: Diversity and distribution pattern of the M. oryzae genotypes (shared and single) identified among the isolates collected from 

finger millet in various districts of Tanzania based on the multi-locus sequence analysis 

S/N Genotype
a
 Isolate District No. of District Plant part Finger millet variety Year of collection Grasshopper

b
 Mating type

c
 

1 TZ-G1  
(13) 

T6 Njombe 4 Neck Landrace 2016 + 1-1 

2 T7 Njombe Neck Landrace 2016 + 1-2 

3 T9 Njombe Neck Landrace 2016 + 1-2 

4 T18 Njombe Neck Landrace 2016 + 1-1 

5 T48 Njombe Neck Landrace 2016 + 1-2 

6 T52 Njombe Head Landrace 2016 + 1-2 

7 T19 Mbozi Neck Landrace 2016 + 1-1 

8 T41 Mbozi Neck Landrace 2016 + 1-1 

9 T43 Mbozi Neck Landrace 2016 + 1-1 

10 T44 Mbozi Neck Landrace 2016 + 1-1 

11 T24 Nkasi Neck Landrace 2016 + 1-1 

12 T28 Nkasi Neck Landrace 2016 + 1-1 

13 T32 Sumbawanga Neck Landrace 2016 + 1-1 

14 TZ-G2  
(9) 

T1 Nkasi 4 Neck Landrace 2015 + 1-2 

15 T2 Nkasi Neck Landrace 2016 + 1-2 

16 T3 Nkasi Neck Landrace 2016 + 1-2 

17 T8 Njombe Neck Landrace 2016 + 1-2 

18 T47 Njombe Neck Landrace 2016 + 1-2 

19 T49 Njombe Neck Landrace 2016 + 1-1 

20 T51 Njombe Neck Landrace 2016 + 1-2 

21 T10 Madaba Neck Landrace 2016 + 1-2 

22 T22 Momba Neck Landrace 2016 + 1-2 

23 TZ-G3 
(2) 

T30 Nkasi 1 Neck Landrace 2016 + 1-2 

24 T33 Nkasi Neck Landrace 2016 + 1-2 

25 TZ-G4 
(2) 

T36 Momba 1 Neck Landrace 2016 + 1-1 

26 T38 Momba Neck Landrace 2016 + 1-2 

27 TZ-G5 
(2) 

T12 Sumbawanga 2 Neck Landrace 2016 + 1-2 

28 T16 Njombe Neck Landrace 2016 + 1-2 
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29 TZ-G6 T4 Sumbawanga 1 Neck Landrace 2016 + 1-1 

30 TZ-G7 T5 Mbozi 1 Neck Landrace 2016 + 1-1 

31 TZ-G8 T11 Madaba 1 Neck Landrace 2016 + 1-2 

32 TZ-G9 T13 Momba 1 Neck Landrace 2016 + 1-1 

33 TZ-G10 T14 Madaba 1 Head Landrace 2016 - 1-2 

34 TZ-G11 T15 Madaba 1 Head Landrace 2016 + 1-2 

35 TZ-G12 T17 Madaba 1 Neck Landrace 2016 - 1-2 

36 TZ-G13 T20 Njombe 1 Neck Landrace 2016 - 1-2 

37 TZ-G14 T21 Mbozi 1 Neck Landrace 2016 + 1-1 

38 TZ-G15 T23 Momba 1 Neck Landrace 2016 + 1-2 

39 TZ-G16 T25 Mbozi 1 Neck Landrace 2016 + 1-2 

40 TZ-G17 T26 Nkasi 1 Neck Landrace 2016 + 1-1 

41 TZ-G18 T27 Nkasi 1 Neck Landrace 2016 + 1-2 

42 TZ-G19 T29 Nkasi 1 Neck Landrace 2016 + 1-1 

43 TZ-G20 T31 Sumbawanga 1 Neck Landrace 2016 + 1-1 

44 TZ-G21 T34 Sumbawanga 1 Neck Landrace 2016 + 1-2 

45 TZ-G22 T35 Madaba 1 Neck Landrace 2016 - 1-2 

46 TZ-G23 T37 Momba 1 Neck Landrace 2016 + 1-2 

47 TZ-G24 T39 Mbozi 1 Neck Landrace 2016 - 1-1 

48 TZ-G25 T40 Mbozi 1 Neck Landrace 2016 - 1-1 

49 TZ-G26 T42 Mbozi 1 Neck Landrace 2016 + 1-1 

50 TZ-G27 T45 Njombe 1 Neck Landrace 2016 + 1-2 

51 TZ-G28 T46 Njombe 1 Neck Landrace 2016 + 1-2 

52 TZ-G29 T50 Njombe 1 Neck Landrace 2016 + 1-2 

53 TZ-G30 T53 Njombe 1 Neck Landrace 2016 - 1-1 

54 TZ-G31 T54 Njombe 1 Head Landrace 2016 - 1-2 

55 TZ-G32 T55 Njombe 1 Head Landrace 2016 + 1-2 

56 TZ-G33 T56 Njombe 1 Neck Landrace 2016 + 1-1 

57 TZ-G34 T57 Njombe 1 Head Landrace 2016 + 1-2 

58 TZ-G35 T58 Njombe 1 Head Landrace 2016 - 1-2 
 aGenotypes identified based on the multi-locus sequence data of HIS4, ITS, HyP2 and HyP1 
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b M. oryzae isolates identified as grh positive (+) or grh negative (-) based on the presence or absence of the two amplicons in PCR screening with the PKE 

and PES primer pairs 

cMating type was determined using PCR assay and the M. oryzae isolates were characterised as MAT 1-1 or MAT 1-2 

Numbers in parentheses are the number of isolates represented by a genotype 
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Appendix 6: Diversity and distribution pattern of the M. oryzae genotypes (shared and single) identified among the isolates collected from 

finger millet in various districts of Kenya based on the multi-locus sequence analysis 

S/N Genotypea Isolate District No. of Districts Plant part Finger millet variety Year of collection Grasshopperb Mating typec 

1 KN-G1  
(3) 

K10 Busia 2 Neck Improved 2016 - 1-1 

2 K12 Busia Neck Improved 2016 - 1-1 

3 K33 Kisii Neck NK 2017 - 1-1 

4 KN-G2 
(2) 

K2 Kisumu 2 Neck Improved 2016 - 1-1 

5 K11 Busia Neck Improved 2016 - 1-1 

6 KN-G3 
(2) 

K23/123 Busia 2 Neck NK 2000 NI NI 

7 K36/98n Teso Neck NK 2002 NI NI 

8 KN-G4 
(2) 

K33/184 Kericho 1 Panicle NK 2000 NI NI 

9 K33/189 Kericho Leaf NK 2000 NI NI 

10 KN-G5 
(2) 

K21/68 Teso 1 Neck NK 2002 NI NI 

11 K28/82w Teso NK NK 2002 NI NI 

12 KN-G6 K58/128p Gucha 1 Panicle NK 2002 NI NI 

13 KN-G7 K24/127 Kisii 
central 

1 Panicle NK 2000 NI NI 

14 KN-G8 K44/111p Kisii 1 Panicle NK 2002 NI NI 

15 KN-G9 K6 Siaya 1 Neck Improved 2016 - 1-2 

16 KN-G10 K48/115n Kisii 1 Neck NK 2002 NI NI 

17 KN-G11 K21 Marakwet 1 Head Landrace 2016 - 1-1 

18 KN-G12 K41 Kisii 1 Head NK 2017 - 1-1 

19 KN-G13 K60/131p Gucha 1 Panicle NK 2002 NI NI 

20 KN-G14 K14 Bungoma 1 Neck Improved 2016 - 1-2 

21 KN-G15 K34 Kisii 1 Neck NK 2017 - 1-1 

22 KN-G16 K39 Kisii 1 Neck NK 2017 - 1-1 

23 KN-G17 K36 Kisii 1 Neck NK 2017 - 1-1 

24 KN-G18 K45/112n Kisii 1 Neck NK 2002 NI NI 

25 KN-G19 K57/126p Gucha 1 Panicle NK 2002 NI NI 

26 KN-G20 K64/137p Homabay 1 Panicle NK 2002 NI NI 
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27 KN-G21 K16 Kisii 1 Neck Improved 2016 - 1-2 

28 KN-G22 K44 Kisii 1 Neck NK 2017 - 1-2 

29 KN-G23 K38 Kisii 1 Neck NK 2017 + 1-1 

30 KN-G24 K37 Kisii 1 Neck NK 2017 + 1-2 

31 KN-G25 K40 Kisii 1 Neck NK 2017 + 1-1 

32 KN-G26 K29 Busia 1 Neck NK 2017 - 1-1 

33 KN-G27 K12/62 Teso 1 Neck NK 2000 NI NI 

34 KN-G28 K31 Busia 1 Neck NK 2017 - 1-1 

35 KN-G29 K17 Kakamega 1 Neck Weed 2016 - 1-2 

36 KN-G30 K25 Busia 1 Neck NK 2017 - 1-1 

37 KN-G31 K14/74 Teso 1 Neck NK 2000 NI NI 

38 KN-G32 K47/114p Kisii 1 Panicle NK 2002 NI NI 

39 KN-G33 K15 Kimusu 1 Neck Improved 2016 - 1-1 

40 KN-G34 K7 Siaya 1 Neck Improved 2016 - 1-2 

41 KN-G35 K18 Eldoret 1 Neck Landrace 2016 - 1-1 

42 KN-G36 K22/118 Busia 1 Panicle NK 2000 NI NI 

43 KN-G37 K65/142n Teso 1 Neck NK 2002 NI NI 

44 KN-G38 K42 Kisii 1 Neck NK 2017 - 1-2 

45 KN-G39 K55/124p Gucha 1 Panicle NK 2002 NI NI 

46 KN-G40 K5/23 Teso 1 Neck NK 2000 NI NI 

47 KN-G41 K27 Busia 1 Neck NK 2017 - 1-2 

48 KN-G42 K9 Kisumu 1 Neck Improved 2016 - 1-2 

49 KN-G43 K8/40 Busia 1 Panicle NK 2000 NI NI 

50 KN-G44 K65/140n Alupe/Teso 1 Neck NK 2002 NI NI 

51 KN-G45 K24 Busia 1 Neck NK 2017 - 1-2 

52 KN-G46 K35 Kisii 1 Neck NK 2017 - 1-2 

53 KN-G47 K1/15 Teso 1 Panicle NK 2000 NI NI 

54 KN-G48 K45 Kisii 1 Neck NK 2017 - 1-2 

55 KN-G49 K15/53n Teso 1 Neck NK 2002 NI NI 

56 KN-G50 K4 Kisumu 1 Head Improved 2016 + 1-1 

57 KN-G51 K22 Kisumu 1 Neck Improved 2016 - 1-1 
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58 KN-G52 K4/21p Busia 1 Panicle NK 2002 NI NI 

59 KN-G53 K26/76p Teso 1 Panicle NK 2002 NI NI 

60 KN-G54 K65/159w Alupe/Teso 1 NK NK 2002 NI NI 

61 KN-G55 K20 Eldoret 1 Neck Improved 2016 - 1-2 

62 KN-G56 K30 Busia 1 Neck NK 2017 - 1-2 

63 KN-G57 K5/24w Busia 1 NK NK 2002 NI NI 

64 KN-G58 K8 Siaya 1 Neck Improved 2016 + 1-2 

65 KN-G59 K13 Busia 1 Neck Weed 2016 - 1-2 

66 KN-G60 K13/67 Teso 1 Neck NK 2000 NI NI 

67 KN-G61 K1 Siaya 1 Neck Improved 2016 - 1-2 

68 KN-G62 K3 Siaya 1 Neck Improved 2016 - 1-1 

69 KN-G63 K26 Busia 1 Neck NK 2017 - 1-2 

70 KN-G64 K9/46 Busia 1 Panicle NK 2000 NI NI 

71 KN-G65 K23 Busia 1 Neck NK 2017 - 1-1 

72 KN-G66 K5 Kisumu 1 Neck Improved 2016 - 1-1 

73 KN-G67 K43 Kisii 1 Head NK 2017 - 1-1 

74 KN-G68 K32 Bungoma 1 Neck NK 2017 - 1-2 

75 KN-G69 K19 Eldoret 1 Neck Landrace 2016 - 1-1 

76 KN-G70 K29/164 Suba 1 Panicle NK 2000 NI NI 

77 KN-G71 K28 Busia 1 Neck NK 2017 - 1-1 
aGenotypes identified based on the multi-locus sequence data of HIS4, ITS, HyP2 and HyP1 

bM. oryzae isolates identified as grh positive (+) or grh negative (-) based on the presence or absence of the two amplicons in PCR screening with the PKE 

and PES primer pairs 

cMating type was determined using PCR assay and the M. oryzae isolates were characterised as MAT 1-1 or MAT 1-2 

Numbers in parentheses are the number of isolates represented by a genotype NK: Information not available  

NI:   Isolates not included in the Grasshopper and mating type PCR analyses as theses have previously been characterised (Takan et al., 2012)



394 

 

Appendix 7: Diversity and distribution pattern of the M. oryzae genotypes (shared and single) identified among the isolates collected from 

finger millet in various districts of Uganda based on the multi-locus sequence data analysis 

S/N Genotypea Isolate District No. of District Plant part Finger millet variety Year of collection Grasshopperb Mating typec 

1 UG-G1  
(5) 

U8 Kumi 5 Neck Local 2016 - 1-1 

2 U20 Alebtong Neck NK 2016 - 1-2 

3 U26 Apac Neck Local 2016 - 1-2 

4 U39 Tororo Neck Local 2016 - 1-2 

5 U55 Lamwo Neck Improved 2016 - 1-1 

6 UG-G2 
(4) 

U6 Serere 4 Neck Local 2016 - 1-1 

7 U17 Ngora Neck Local 2016 - 1-1 

8 U49 Kumi Head NK 2016 - 1-1 

9 U58 Mbale Neck NK 2016 - 1-1 

10 UG-G3 
(4) 

U11 Pallisa 2 Neck Improved 2016 - 1-1 

11 U12 Pallisa Neck NK 2016 - 1-1 

12 U22 Lira Neck NK 2016 - 1-1 

13 U28 Lira Neck Local 2016 - 1-2 

14 UG-G4 
(3) 

D9/s50 Lira 3 Panicle NK 2002 NI NI 

15 D13/s5 Katakwi Panicle NK 2002 NI NI 

16 U24 Apac Neck Local 2016 - 1-1 

17 UG-G5 
(3) 

U14 Katakwi 2 Neck Local 2016 - 1-1 

18 U30 Amuru Neck Local 2016 - 1-1 

19 U54 Amuru Neck Local 2016 - 1-1 

20 UG-G6 
(3) 

D15/s6 Soroti 3 Panicle NK 2000 NI NI 

21 U13 Katakwi  Neck Local 2016 - 1-1 

22 U18 Ngora Neck Local 2016 - 1-1 

23 UG-G7 
(2) 

D5/s1 Iganga 2 Panicle NK 2000 NI NI 

24 D9/s76 Lira Panicle NK 2002 NI NI 

25 UG-G8 
(2) 

E11p-1-1 Soroti 1 Panicle NK 2004 NI NI 

26 Odyp-2-1 Soroti Panicle NK 2004 NI NI 

27 UG-G9 D14/s30 Kabermaido 2 Leaf NK 2002 NI NI 
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28 (2) U36 Manafwa Neck Local 2016 - 1-2 

29 UG-G10 D7/s6 Kamuli 2 Panicle NK 2000 NI NI 

30 UG-G10 U56 Manafwa  Neck Local 2016 - 1-2 

31 UG-G11 U27 Gulu 2 Neck Local 2016 - 1-1 

32  U48 Kumi Neck Local 2016 - 1-1 

33 UG-G12 D1/s72 Pallisa 2 Leaf NK 2002 NI NI 

34  D15/s12 Soroti Panicle NK 2000 NI NI 

35 UG-G13 D15/s47 Soroti 1 Neck NK 2002 NI NI 

36 UG-G14 U31 Gulu 1 Head Local 2016 - 1-2 

37 UG-G15 Gup-2-1 Soroti 1 Panicle NK 2004 NI NI 

38 UG-G16 U2 Arua 1 Neck Local  2015 - 1-2 

39 UG-G17 P665n-2-
1 

Soroti 1 Neck NK 2004 NI NI 

40 UG-G18 U1 Arua 1 Neck Local  2015 - 1-1 

41 UG-G19 D9/s70 Lira 1 Neck NK 2002 NI NI 

42 UG-G20 D1/s19 Pallisa 1 Neck NK 2000 NI NI 

43 UG-G21 Pen-2-2 Soroti 1 Neck NK 2004 NI NI 

44 UG-G22 U5 Serere 1 Neck Local 2016 - 1-2 

45 UG-G23 S1p-1-1 Soroti 1 Panicle NK 2004 NI NI 

46 UG-G24 D1/s11 Pallisa 1 Neck NK 2000 NI NI 

47 UG-G25 U7 Serere 1 Neck Improved 2016 - 1-1 

48 UG-G26 U32 Kitgum 1 Neck Local 2016 - 1-2 

49 UG-G27 U3 Arua 1 Neck NK 2015 - 1-2 

50 UG-G28 U51 Ngora 1 Neck Local 2016 - 1-1 

51 UG-G29 U53 Alebtong 1 Neck NK 2016 - 1-1 

52 UG-G30 U21 Alebtong 1 Neck NK 2016 - 1-2 

53 UG-G31 D10/s77 Apac 1 Panicle NK 2002 NI NI 

54 UG-G32 D4/s12 Tororo 1 Panicle NK 2000 NI NI 

55 UG-G33 U28 Lira 1 Neck Local 2016 - 1-2 

56 UG-G34 U45 Serere 1 Neck Local 2016 - 1-2 

57 UG-G35 D11/s16 Masindi 1 Panicle NK 2000 NI NI 
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58 UG-G36 U15 Amuria 1 Head Local 2016 - 1-1 

59 UG-G37 U43 Masindi 1 Neck Local 2016 - 1-2 

60 UG-G38 U47 Hoima 1 Neck Local 2016 - 1-1 

61 UG-G39 U37 Manafwa 1 Neck Local 2016 - 1-2 

62 UG-G40 U44 Hoima 1 Neck Local 2016 - 1-2 

63 UG-G41 D4/s41 Tororo 1 Neck NK 2002 NI NI 

64 UG-G42 D1/s53b Pallisa 1 Leaf NK 2002 NI NI 

65 UG-G43 D4/s26 Tororo 1 Panicle NK 2000 NI NI 

66 UG-G44 D14/s27 Kabermaido 1 Panicle NK 2000 NI NI 

67 UG-G45 D1/s44 Pallisa 1 Panicle NK 2002 NI NI 

68 UG-G46 D15/s41 Soroti 1 Leaf NK 2002 NI NI 

69 UG-G47 U57 Tororo 1 Neck Local 2016 - 1-2 

70 UG-G48 D8/s15 Busia 1 Panicle NK 2000 NI NI 

71 UG-G49 D3/s24 Mbale 1 Panicle NK 2000 NI NI 

72 UG-G50 D6/s1 Bugiri 1 Panicle NK 2000 NI NI 

73 UG-G51 Secn-2-2 Soroti 1 Neck NK 2004 NI NI 

74 UG-G52 U40 Tororo 1 Neck Local 2016 - 1-1 

75 UG-G53 D2/s26 Kumi 1 Leaf NK 2000 NI NI 

76 UG-G54 U25 Apac 1 Neck NK 2016 - 1-2 

77 UG-G55 D3/s3 Mbale 1 Panicle NK 2000 NI NI 

78 UG-G56 U35 Agago 1 Neck Local 2016 - 1-2 

79 UG-G57 U4 Moyo 1 Neck Landrace 2015 - 1-2 

80 UG-G58 D9/s54 Lira 1 Panicle NK 2002 NI NI 

81 UG-G59 D10/s63 Apac  1 Panicle NK 2002 NI NI 

82 UG-G60 D9/s56 Lira 1 Panicle NK 2002 NI NI 

83 UG-G61 D12/s2 Nakasongola 1 Panicle NK 2000 NI NI 

84 UG-G62 U34 Agago 1 Neck Local 2016 - 1-1 

85 UG-G63 U46 Hoima 1 Neck Local 2016 + 1-1 

86 UG-G64 U29 Amuru 1 Neck Local 2016 - 1-2 

87 UG-G65 U42 Arua 1 Neck Local 2016 - 1-2 

88 UG-G66 U50 Amuria 1 Neck Local 2016 + 1-1 
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89 UG-G67 U19 Alebtong 1 Neck Local 2016 - 1-1 

90 UG-G68 U13 Katakwi 1 Neck Local 2016 - 1-1 

91 UG-G69 U9 Kumi 1 Neck Local 2016 - 1-1 

92 UG-G70 U16 Kumi 1 Neck NK 2016 - 1-1 

93 UG-G71 U52 Ngora 1 Neck Local 2016 - 1-1 

94 UG-G72 U41 Tororo 1 Neck Local 2016 - 1-1 

95 UG-G73 D10/s71 Apac 1 Leaf NK 2002 NI NI 

96 UG-G74 D15/s37 Soroti 1 Leaf NK 2002 NI NI 

97 UG-G75 D1/s50 Pallisa 1 Panicle NK 2002 NI NI 

98 UG-G76 D3/s9 Mbale 1 Panicle NK 2000 NI NI 

99 UG-G77 D10/s73 Apac 1 Leaf NK 2002 NI NI 

100 UG-G78 D2/s14 Kumi 1 Panicle NK 2000 NI NI 

101 UG-G79 U10 Kumi 1 Neck Local 2016 - 1-2 

102 UG-G80 U38 Manafwa 1 Neck NK 2016 - 1-2 
aGenotypes identified based on the multi-locus sequence data of HIS4, ITS, HyP2 and HyP1 

bM. oryzae isolates identified as grh positive (+) or grh negative (-) based on the presence or absence of the two amplicons in PCR screening with the PKE 

and PES primer pairs 

cMating type was determined using PCR assay and the M. oryzae isolates were characterised as MAT 1-1 or MAT 1-2 

Numbers in parentheses are the number of isolates represented by a genotype NK: Information not available  

NI:   Isolates not included in the Grasshopper and Mating types PCR analyses as these have previously been characterised (Takan et al., 2012)
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