## Supplementary data

## Methods

The list of antimicrobial compounds that were tested was through the disk diffusion assay included: amoxicillin, amoxicillin-clavulanic acid, ticarcillin, ticarcillin-clavulanic acid, piperacillin, piperacillin-tazobactam, temocillin, cefoxitin, cefixime, ceftazidime, cefotaxime, cefepim,aztreonam ertapenem, meropenem, imipenem, amikacin, gentamicin, tobramycin, netilmicin, cotrimoxazole, norfloxacin, ofloxacin, levofloxacin, ciprofloxacin, fosfomycin, tigecycline.

Whole-genome sequences obtained from Illumina NextSeq 2x150 bp were analysed with an in-house bioinformatic pipeline named PETANC for "Plasmid-Exploration Typing Assembly N'Contig-ordering", which we describe below.

MLST (Warwick and Pasteur Institute schemes) and serotype are determined using SRST2 0.2.0 with standard parameters.9 Previously unknown Warwick STs are determined on EnteroBase website (https://enterobase.warwick.ac.uk/). Genomes are assembled with SPAdes 3.10.0 with "careful" option. The distances between a set of 313 reference E. coli complete circularised genomes (Table S1) and the chromosome sequences of the studied isolates are estimated using Mash 1.1.1.50 The 5 closest reference genomes for each studied isolate are determined with an in-house biopython script.<sup>51</sup> These are used as reference for Ragout software, with option "solid-scaffolds", to determine the order of the contigs and therefore enhance the assembly quality.<sup>7</sup> Subsequently, the phylogroup of each isolate is ClermonTyper.<sup>8</sup> determined with Abricate is the Then, used (https://github.com/tseemann/abricate) to determine i) the resistome with the Resfinder database using minimum identity (minID) of 95% and minimum coverage (minCOV) of 90%, ii) the virulome (minID 90%, minCOV 90%) with a custom database mixing Virulencefinder, VFDB, and specific genes from extra-intestinal *E. coli* (Table S2), iii) the plasmid type with PlasmidFinder database (minID 90%, mincov 90%).<sup>10,11,52,53</sup> InPEC and ExPEC virulence scores were computed based on presence/absence of InPEC and ExPEC virulence genes as previously described.<sup>34,54</sup> Subsequently, chromosome and plasmid sequences are predicted with PlaScope and resistome and virulome are reassessed in the same way on the predictions to determine gene's location.<sup>12,55</sup>

| NC_000913 | NC_013364 | NZ_AP014857 | NZ_CP009166 | NZ_CP010170 | NZ_CP010344 | NZ_CP012127 | NZ_CP014316 | NZ_CP015912 | NZ_CP018237 | NZ_CP019629 |
|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| NC_002695 | NC_013654 | NZ_CP005930 | NZ_CP009273 | NZ_CP010171 | NZ_CP010371 | NZ_CP012625 | NZ_CP014348 | NZ_CP015995 | NZ_CP018239 | NZ_CP019777 |
| NC_004431 | NC_013941 | NZ_CP005998 | NZ_CP009644 | NZ_CP010172 | NZ_CP010438 | NZ_CP012631 | NZ_CP014488 | NZ_CP016007 | NZ_CP018241 | NZ_CP019778 |
| NC_007779 | NC_016902 | NZ_CP006027 | NZ_CP009685 | NZ_CP010176 | NZ_CP010439 | NZ_CP012633 | NZ_CP014492 | NZ_CP016018 | NZ_CP018243 | NZ_CP019903 |
| NC_007946 | NC_017625 | NZ_CP006262 | NZ_CP009789 | NZ_CP010177 | NZ_CP010440 | NZ_CP012635 | NZ_CP014495 | NZ_CP016182 | NZ_CP018245 | NZ_CP019944 |
| NC_008253 | NC_017626 | NZ_CP006632 | NZ_CP009859 | NZ_CP010178 | NZ_CP010441 | NZ_CP012693 | NZ_CP014497 | NZ_CP016358 | NZ_CP018247 | NZ_CP020048 |
| NC_008563 | NC_017628 | NZ_CP006636 | NZ_CP010116 | NZ_CP010180 | NZ_CP010442 | NZ_CP012802 | NZ_CP014522 | NZ_CP016404 | NZ_CP018250 | NZ_CP020055 |
| NC 009800 | NC 017631 | NZ CP007025 | NZ CP010117 | NZ CP010183 | NZ CP010443 | NZ CP012868 | NZ CP014583 | NZ CP016497 | NZ CP018252 | NZ CP020058 |
| NC 009801 | NC 017632 | NZ CP007133 | NZ CP010119 | NZ CP010186 | NZ CP010444 | NZ CP012869 | NZ CP014641 | NZ CP016546 | NZ CP018770 | NZ CP020092 |
| NC 010468 | NC 017633 | NZ_CP007136 | NZ CP010121 | NZ CP010191 | NZ CP010445 | NZ CP012870 | NZ CP014642 | NZ CP016625 | NZ CP018801 | NZ CP020106 |
| NC 010473 | NC 017634 | NZ CP007149 | NZ CP010122 | NZ CP010196 | NZ CP010585 | NZ CP013025 | NZ CP014667 | NZ CP016628 | NZ CP018948 | NZ CP020107 |
| NC 010498 | NC 017635 | NZ_CP007265 | NZ CP010125 | NZ CP010200 | NZ_CP010816 | NZ CP013029 | NZ CP014670 | NZ_CP017100 | NZ CP018053 | NZ_CP020116 |
| NC 011252 | NC 017628 | NZ_CP007200 | NZ_CP010120 | NZ_CP010200 | NZ_CD010876 | NZ_CP012021 | NZ_CP015020 | NZ_CP017240 | NZ_CD018057 | NZ_CD020268 |
| NC 011415 | NC_017641 | NZ_CP007390 | NZ_CP010129 | NZ_CP010200 | NZ_CP011019 | NZ_CP013031 | NZ_CP015020 | NZ_CP017251 | NZ_CP018957 | NZ_CP020508 |
| NC_011415 | NC_017641 | NZ_CP007391 | NZ_CP010132 | NZ_CP010213 | NZ_CP011018 | NZ_CP013112 | NZ_CP015023 | NZ_CP01/251 | NZ_CP018962 | NZ_CP020543 |
| NC_011601 | NC_017646 | NZ_CP007392 | NZ_CP010133 | NZ_CP010219 | NZ_CP011061 | NZ_CP013190 | NZ_CP015069 | NZ_CP017434 | NZ_CP018965 | NZ_HF572917 |
| NC_011740 | NC_017651 | NZ_CP007393 | NZ_CP010134 | NZ_CP010221 | NZ_CP011113 | NZ_CP013253 | NZ_CP015074 | NZ_CP017436 | NZ_CP018970 | NZ_HG738867 |
| NC_011741 | NC_017652 | NZ_CP007394 | NZ_CP010137 | NZ_CP010226 | NZ_CP011124 | NZ_CP013483 | NZ_CP015076 | NZ_CP017438 | NZ_CP018976 | NZ_HG941718 |
| NC_011742 | NC_017656 | NZ_CP007442 | NZ_CP010140 | NZ_CP010228 | NZ_CP011134 | NZ_CP013658 | NZ_CP015138 | NZ_CP017440 | NZ_CP018979 | NZ_LM993812 |
| NC_011748 | NC_017660 | NZ_CP007491 | NZ_CP010143 | NZ_CP010229 | NZ_CP011320 | NZ_CP013662 | NZ_CP015159 | NZ_CP017442 | NZ_CP018983 | NZ_LM995446 |
| NC_011750 | NC_017663 | NZ_CP007592 | NZ_CP010145 | NZ_CP010230 | NZ_CP011321 | NZ_CP013663 | NZ_CP015228 | NZ_CP017444 | NZ_CP018991 | NZ_LN832404 |
| NC_011993 | NC_017664 | NZ_CP007594 | NZ_CP010148 | NZ_CP010231 | NZ_CP011324 | NZ_CP013831 | NZ_CP015229 | NZ_CP017446 | NZ_CP018995 | NZ_LT601384 |
| NC_012759 | NC_017906 | NZ_CP007799 | NZ_CP010150 | NZ_CP010235 | NZ_CP011331 | NZ_CP013835 | NZ_CP015240 | NZ_CP017631 | NZ_CP019000 | NZ_LT615377 |
| NC 012892 | NC 018650 | NZ CP008697 | NZ CP010151 | NZ CP010236 | NZ CP011342 | NZ CP014197 | NZ CP015241 | NZ CP017669 | NZ CP019005 | NZ LT615378 |
| NC 012947 | NC 018658 | NZ CP008801 | NZ CP010152 | NZ CP010237 | NZ CP011343 | NZ CP014225 | NZ CP015831 | NZ CP017844 | NZ CP019008 |             |
| NC 012967 | NC 018661 | NZ CP008805 | NZ CP010157 | NZ CP010238 | NZ CP011416 | NZ CP014268 | NZ CP015832 | NZ CP018103 | NZ CP019012 |             |
| NC 012071 | NC 020163 | NZ CP008957 | NZ CP010160 | NZ CP010240 | NZ CP011495 | NZ CP014269 | NZ CP015834 | NZ CP018109 | NZ CP010015 |             |
| NG 612971 | NG 02051- | NZ_CF000757 | NZ_CF010100 | NZ_CF010240 | NZ_CE011493 | NZ_CF014209 | NZ_CF013634 | NZ_CE010109 | NZ_CE019013 |             |
| NC_013008 | NC_020518 | NZ_CP009072 | NZ_CP010163 | NZ_CP010242 | NZ_CP011938 | NZ_CP014270 | NZ_CP015842 | NZ_CP018115 | NZ_CP019020 |             |
| NC_013353 | NC_022364 | NZ_CP009104 | NZ_CP010167 | NZ_CP010304 | NZ_CP012125 | NZ_CP014272 | NZ_CP015843 | NZ_CP018121 | NZ_CP019029 |             |
| NC_013361 | NC_022648 | NZ_CP009106 | NZ_CP010169 | NZ_CP010315 | NZ_CP012126 | NZ_CP014314 | NZ_CP015846 | NZ_CP018206 | NZ_CP019213 |             |

 Table S1. Accession number of 313 E. coli reference genomes for Ragout ordering

| Gene name        | Accession number         |
|------------------|--------------------------|
| сеа              | U15633                   |
| Chromosomal_ompT | CP025268:583729-584682   |
| clbQ             | AE014075:2265084-2265806 |
| cvaC             | CP019268:43764-44075     |
| Episomal_ompT    | CP019282:79325-80278     |
| etsC             | JX077110:124931-126301   |
| fyuA             | CP009836:3377794-3379815 |
| hek              | CP000243:4785401-4786156 |
| hlyF             | CU928146:131210-132331   |
| irp2             | CP006806:2552888-2558995 |
| kpsE             | CU928164:3584271-3585419 |
| malX             | CP000247:1618614-1620206 |
| mcbA             | M24253:408-614           |
| neuC             | M84026                   |
| papGI            | X61239:8679-9686         |
| papGII           | AE014075:3429593-3430603 |
| papGIII          | CP000243:4789101-4790108 |
| terC             | AE005174:1102902-1103942 |
| tia              | CU928161:3229672-3230427 |
| traT             | J01769.1:403-1134        |
| usp              | CP000247:123276-125057   |
| hra              | U07174.1:83-826          |

 Table S2. Specific extra-intestinal E. coli virulence genes with their name and accession

 number

Table S3. The antimicrobial susceptibility, the resistome and the genetic support of the *mcr-1* gene of the plasmid mediated colistin resistant *E*. coli strains

| Strain | Colistin | Antimicrobial     | Resistome**                                                                                                       | mcr genetic support                       |                 |            |
|--------|----------|-------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|------------|
| ID     | MIC      | resistance*       | A couired gene                                                                                                    | Chromosomal                               | Incompatibility | Associated |
|        | (mg/L)   |                   | Acquired gene                                                                                                     | mutation                                  | group           | resistance |
| 370D   | 4        | AMP, LLFQ,<br>SXT | strB, strA, aadA2, aph(3')-Ia, oqxA, oqxB, dfrA12, tet(B), tet(M),<br>sul2, sul3, cmlA1                           | gyrA (S83L)                               | IncX4           | none       |
| 436A   | 4        | SXT               | strB, strA, aadA5, qnrS1, dfrA17, tet(A), sul2                                                                    | -                                         | IncX4           | none       |
| 635A   | 4        | AMP, GTN,<br>SXT  | blaTEM-1b, strB, strA, aadA2, aph(3')-Ic, aac(3)-IId, qnrS1,<br>dfrA12, tet(A), tet(M), sul1, sul3, catA2, mph(A) | -                                         | IncX4           | none       |
| 925B   | 8        | HLFQ              | -                                                                                                                 | gyrA (S83L,<br>D87N), parC<br>(S80I)      | IncI2           | none       |
| 933A   | 8        | AMP, HLFQ,<br>SXT | blaTEM-1b, strB, strA, dfrA14, tet(A), sul2, floR, catA1                                                          | gyrA (D87G,<br>S83L) parC<br>(E84G, S80I) | IncHI2          | none       |
| 1057A  | 4        | AMP, GTN,<br>HLFQ | blaTEM-1b, aadA2, aph(4)-Ia, aph(3')-Ia, aac(3)-Iva, tet(A),<br>tet(M), sul2, sul3, cmlA1, floR,mph(A)            | gyrA (S83L,<br>D87N), parC<br>(S80I)      | IncHI2          | ND***      |
| 1263A  | 4        | AMP, LLFQ,<br>SXT | blaTEM-1b, strB, strA, dfrA1, tet(A) sul1, sul2                                                                   | gyrA (S83L)                               | IncI2           | none       |

\* Acquired resistance to ampicillin (AMP), fluoroquinolones (low level: LLFQ, high level: HLFQ), cotrimoxazole (SXT), gentamicin / tobramycin / netilmicin (GTN) determined by disk diffusion method. \*\* The detection of the resistances is based on the whole genome sequence data.

\*\*\* ND=not done.

**Figure S1.** Map of the University hospitals of Paris ("Assistance Publique-Hôpitaux de Paris") with Paris *intra-muros* in blue and its suburb outside in white. The six hospitals where the Coli-RED study was performed are indicated. For each hospital, the name of the hospital is provided. For the four suburb hospitals, the code of the district followed by the town are indicated. The number close to each hospital corresponds to the number of beds.



Figure S2. Flow chart of the ColiRED study showing the strategy used for the screening of colistin resistant E. coli strains in 1,217 patients.



\* all the 16 strains exhibited a colistin MIC < 2 mg/L and a negative mcr PCR

<sup>\$</sup> all the 15 strains exhibited a negative *mcr* PCR

Figure S3. Genetic environment of the plasmid-borne mcr-1 genes.

Strains are indicated by their ID and ordered as in Table S3. Coding sequences in a window of 5 kbp around mcr-1 gene are represented by arrows. Contig borders are indicated by black vertical lines. The mcr related CDS are in red, pap2 genes in blue (hatched if fragmented), and ISApl1 related sequences in green.





hp



| Strain ID | ST Warwick | ST Pasteur | Phylogroup | Serotype    | Protein | Nucleic variation                                                        | Proteic variation | Type of mutation      | MIC |
|-----------|------------|------------|------------|-------------|---------|--------------------------------------------------------------------------|-------------------|-----------------------|-----|
| 130A      | 131        | 43         | B2         | O25b:H4     | PmrA    | 505_510del                                                               | V169del/H170del   | 2 A.A. deletion       | 8   |
| 353A      | 69         | 77         | D          | O17:H18     | PmrB    | 329T <g< td=""><td>L110X</td><td>Truncating mutation</td><td>8</td></g<> | L110X             | Truncating mutation   | 8   |
| 389A      | 165        | 898        | А          | Unknown:H10 | PmrB    | 329T <g< td=""><td>L110X</td><td>Truncating mutation</td><td>4</td></g<> | L110X             | Truncating mutation   | 4   |
| 12B       | 961        | 882        | B2         | O4:H5       | PmrB    | 151_412dup                                                               | S138KfsX10        | 0 Truncating mutation |     |
|           |            |            |            |             |         | 143_144delTAinsGGG /                                                     |                   |                       |     |
| 411A      | 38         | 8          | D          | O86:H18     | PmrB    | 149delAinsCTAT                                                           | L48RfsX14         | Truncating mutation   | 8   |
| 156A      | 10         | 2          | А          | O8:H4       | PmrB    | 209_238dup                                                               | I70_L79dup        | 10 A.A. duplication   | 8   |
| 619A      | 38         | 535        | D          | O7:H18      | PmrB    | 209_238dup                                                               | I70_L79dup        | 10 A.A. duplication   | 4   |
| 962A      | 1604       | 884        | B2         | O75:H5      | PmrB    | 587_592dup                                                               | L199_A200dup      | 2 A.A. duplication    | 8   |
| 142A      | 62         | 757        | F          | O7:H45      | PmrB    | 200_229del                                                               | A67_M76_del       | 10 A.A. deletion      | 8   |
| 383A      | 5924       | 880        | B2         | O18:H4      | PmrB    | 289_303del                                                               | E97_E101del       | 5 A.A. deletion       | 16  |
| 393A      | 421        | 70         | B2         | O1:H7       | PmrB    | 291_303del                                                               | L98_E101del       | 4 A.A. deletion       | 8   |
| 775A      | 12         | 35         | B2         | O4:H5       | PmrB    | 343_351del                                                               | I115_S117del      | 3 A.A. deletion       | 16  |
| 684A      | 73         | 29         | B2         | O2:H1       | PmrB    | 379_381del                                                               | S127del           | 1 A.A. deletion       | 32  |

**Table S5.** Mutations in pmrA and pmrB genes altering the length of the predicted proteins