Supporting information

Anion-induced structural diversity of Zn and $\mathbf{C d}$ coordination polymers based on bis-9,10-(pyridine-4-yl)-anthracene, their luminescent properties and highly efficient sensing of nitro derivatives and herbicides
Serhii I. Vasylevskyi, \dagger^{*} Dario M. Bassani,.t* Katharina M. Fromm * \dagger
\dagger University of Fribourg, Chemin du Musee 9, Switzerland, 1700 Fribourg.
\ddagger University of Bordeaux, ISM CNRS UMR 5255, 33400 Talence, France
Corresponding Authors:
serhii.vasylevskyi@gmail.com; katharina.fromm@unifr.ch;

Contents

1. Structure descriptions..S2
2. UV-Vis absorption ... S7
3. Solid-state steady state spectra .. S7
4. Lifetimes of the ligand and complexes.. S8
5. Sensing of nitro explosives ..S11
6. Sensing gas-phase ...S16
7. Calculation of limit of the detection (LOD) and limit of quantification (LOQ)S18
8. Powder X-Ray diffraction of complexes .. S22
9. Thermal stability of the complexes ..S24
10. FT-IR spectra... 527
11. BET measurement for 4. ..S29
12. Crystallographic data ... S31

1. Structure descriptions

$\left\{\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}(\mathrm{p}-\mathrm{Tos})_{2}\right]\right\}_{n}(\mathbf{1})$. Coordination polymer 1 gives a structure of 1D coordination chain formed by bridging coordination mode of BA to Zn^{2+} metal centres occupying axial position of octahedral geometry with the coordination bond at distance $\mathrm{Zn} 1-\mathrm{N} 1=2.110(3) \AA$. Equatorial positions are occupied by two coordinated MeOH and p-Tos through oxygen atoms in distance $\mathrm{Zn} 1-$ $\mathrm{O} 1=2.158(3) \AA$ and $\mathrm{Zn} 1-\mathrm{O} 2=2.115(3) \AA$ (Fig. S1a). 1D polymers of Zn^{2+} self-assembled through weak hydrogen bonds forming graph-set of S1,1(6) with donation of a proton from coordinated methanol molecules in distance $2.144 \AA$. This proton also takes part in intermolecular interaction with another scaffold of 1D polymer in a, b-directions forming 2D polymer constructed by weak contacts (Fig. S1b). Additionally, 1D coordination chains are connected between each other through $\mathrm{H}-\pi$ interactions between proton from pyridine ring and benzene ring from tolyl-fragment of tosylate anion in distance of $\mathrm{H} 4_{\text {pyridine }}$ to the centroid of tosylate $=2.644 \AA$. General structure of the compound can be imagined as a construction of "linear" 1D-polymers into 2D lattice assembled by weak hydrogen bonds and $\mathrm{H}-\pi$ interactions (Fig. S1b).

Figure S1. (a) Coordination geometry of Zn^{2+} in coordination polymer 1. (b) Formation of linear 1D polymers of Zn^{2+} formed by bridging coordination of BA, followed by self-assembly into 2D lattice of stacked 1D polymers by $\mathrm{H}-\pi$ interactions.
$\left\{\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right]\right\}_{n}$. (2). Compound 2 crystalizes in monoclinic space group $\mathrm{C} 2 / c, \mathrm{Z}=4$. Atoms of Zn have distorted octahedral coordination geometry (Fig. S2a). Equatorial positions are occupied by two coordinated N -atoms in distance $\mathrm{Zn} 1-\mathrm{N} 1=2.145(3) \AA$ from pyridyl- of BA in synposition and also coordinated $\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}$anion through O -atoms in distance $\mathrm{Zn} 1-\mathrm{O} 2=2.114(3) \AA$ occupied another syn-positions of equatorial plane. Axial positions are occupied by coordination molecules of MeOH , which are disordered into two positions with a ratio of $0.58(3) ; 0.42(3)$. Oxygen atoms of the first part of MeOH coordinates to Zn in distance $\mathrm{Zn} 1-01 \mathrm{~A}=1.975(11) \mathrm{A}$ that is shorter than for the second part with distance of $Z n 1-O 1 B=2.409(15) \AA$. A short bond can be explained by
the formation of inter hydrogen bond between methanol proton and oxygen atom from TFA anion coordinated to the same Zn atom in distance of $\mathrm{H} 1 \mathrm{~A}-\mathrm{O}_{\mathrm{TFA}}=2.036 \AA$ However, elongated coordinated MeOH has intermolecular interaction with another 1D Zig-Zag chain to the oxygen atom of TFA in distance $2.201(3) \AA$ (Fig. S2b). In comparison with previous coordination polymer 1, compound 2 has a "Zig-Zag" structure. Thus, mixed coordination behaviour of methanol stabilizes self-assembly of $\mathbf{2}$. Formation of "Zig-Zag" structure of 1D polymers is realised by syn-coordination of the BA to the Zn^{2+} atoms of tetrahedral geometry. It demonstrates a great linear rigidity of the ligand as an alternative self-assembly leading to the formation of Zig-Zag 1D coordination polymer of Zn^{2+}.

Figure S2. (a) Coordination node of $\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right]$ (2). (b) Projection of self-assembly of "Zig-Zag" 1D coordination chains of $\mathbf{2}$ in a-direction.
$\left\{\mathrm{BA} @\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right\}_{n}$ (3). Coordination polymer 3 crystalizes in triclinic space group P-1. Compound 3 has structure similar to the complex 1 which represents 1D polymer constructed by connection of Zn^{2+} atoms by bridging coordination BA. Zn^{2+} atoms have distorted octahedral environment formed by four oxygen atoms from coordinated water molecules and methanol in equatorial positions in distances $\mathrm{Zn} 1-\mathrm{O} 1_{\text {water }}=2.106(2) \AA$ and $\mathrm{Zn} 1-\mathrm{O} 2_{\text {methanol }}=2.168(2)$ \AA (Fig. S3a). Axial positions are occupied with N -atoms from coordinated BA in distance with Zn1 - N1 $=2.102(2) \AA$ A. Triflate anion remains uncoordinated and occupies position in the space between linear coordinated 1D ribbons and simultaneously takes part in intermolecular interaction with a proton of methanol in distance $\mathrm{O}_{3} \mathrm{~A}_{\mathrm{tf}}-\mathrm{H} 2_{\text {methanole }}=1.825(2) \AA$ Aith bond angle $\mathrm{O} 3 \mathrm{~A}-\mathrm{H} 2-\mathrm{O} 2=169.924^{\circ}$ and with coordinated molecule of water with $\mathrm{H}_{1} \mathrm{~B}_{\text {water }}-05 \mathrm{~A}_{\mathrm{tf}}=1.944(2) \AA, \mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}-05 \mathrm{~A}=172.002^{\circ}$
(Fig. S3a). Interesting feature of the compound 3 is that it has encapsulated and remained uncoordinated BA which takes part also in intermolecular interaction with proton from coordinated water molecule in distance $\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A}=1.932(2)$ Å. Such intermolecular interaction leads to the selfassembly of the 2D net formed by connecting of coordinated ribbons by hydrogen bonds involving uncoordinated BA linker, where uncoordinated triflate anions are logged (Fig. S3b).

Figure S3. (a) Coordination mode of Zn^{2+} centres in compound 3. (b) Self-assembly of 1D chains of 3 with intercalation of uncoordinated BA (triflate and hydrogen atoms are omitted for clarity).
$\left\{\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{BA}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot \mathrm{n}(\mathrm{DCM})\right\}_{\mathrm{n}}(4)$. Compound 4 crystalizes in monoclinic space group $C 2 / \mathrm{c}, \mathrm{Z}=4$. $\mathrm{Cd}^{\prime \prime}$ atoms have distorted coordination geometry occupied by four N -atoms from BA in distance Cd1 - N1 $=2.312(5) \AA$ And $\mathrm{Cd} 1-\mathrm{N} 2=2.310(5)$ Å. Axial positions are occupied by oxygen atoms from coordinated perchlorate anions have disordered into two positions $\mathrm{Cd} 1-\mathrm{O}_{1} \mathrm{~A}_{\text {part1 }}=2.460(6) \AA$ and $\mathrm{Cd} 1-01 \mathrm{~B}_{\text {part2 }}=$ $2.167(12)$ Å with a ratio of part 1:2 $=0.729: 0.217$ (Fig. S4a). Bridging coordination of BA leads to the self-assembly of 2D coordination polymer of Cd^{2+} with topology of the net 4,4 (Fig. S4b). The content of the voids were squeezed due to the highly disordered DCM solvent molecules and remaining electron density was assigned to the 5.5 molecules of DCM per asymmetric unit. Solvent logged in between 2D lattices and in the frame formed coordination of BA to Cd^{2+}. Additionally, perchlorate anion takes part in short anion - H interactions in distances $\mathrm{O}_{2} \mathrm{~A}_{\text {perchlorate }}-\mathrm{H} 14=2.572 \AA$ from pyridine
that helps to self-assemble of the 4,4- topological nets together forming stack of the 2D nets, one on top of another, leading to the formation of the 3D supramolecular polymer of Cd^{2+}.
b

Figure S4. a) Coordination geometry around $\mathrm{Cd}(\mathrm{II})$ in compound $\mathbf{4}$, axial position occupied with coordinated perchlorate anion; b) formation of 2D polymeric net of 4 with topology of grids 4,4 with cross-section of pores $11.2 \times 11.2 \AA$ Ancluding Van der Waals radii.
$\left\{\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2} \text { (Dioxane) }\left(\eta_{2}-\text { SiF }_{6}\right)\right] \text {-mDioxane }\right\}_{n}$ (5). Coordination polymer 5 crystalizes in monoclinic space group in a $P 2_{1} / \mathrm{c}$ space group, $\mathrm{Z}=4$. Metal centres of Cd^{2+} have pentagonal bipyramidal coordination geometry forming of which proceeds due to axial coordination of BA in distance Cd1 $-\mathrm{N} 1=2.261(3) \AA$ (Fig. S5a). The pentagonal equatorial positions are formed by coordination of two methanol molecules $\mathrm{Cd} 1-\mathrm{O} 1=2.349(4) \AA$ Å, $\mathrm{Cd} 1-\mathrm{O} 2=2.398(4) ~ \AA ̊$. Two bridging $\mathrm{SiF}_{6}{ }^{2-}$ anions in antisyn-coordinated Cd^{2+} with distances $\mathrm{Cd} 1-\mathrm{F} 1=2.457(2) \AA, \mathrm{Cd} 1-\mathrm{F} 2=2.252(2) \AA$ that additionally connects 1 D chains of Cd^{2+} linked by BA into one 2D lattice (Fig. S5a). The pentagonal geometry completes with coordination of one more dioxane molecule through O -atom to Cd^{2+} at distance $\mathrm{Cd} 1-\mathrm{O}=2.439(3) \AA$ (Fig. S5a). Methanol protons that are involved into coordination to the Cd^{2+} are forming intermolecular hydrogen bonds with F -atoms from $\mathrm{SiF}_{6}{ }^{2-}$ in moderate distance H 1 $\mathrm{F} 6=1.714(2) \AA$ with bond angle $\mathrm{O} 1-\mathrm{H} 1-\mathrm{F} 6=163.914^{\circ}$ and further stabilize the connection of 1 D
ribbons of $\mathrm{Cd}\left(\mu_{2}-\mathrm{BA}\right)$ through bridging $\mathrm{SiF}_{6}{ }^{2-}$. This leads to the formation of the sandwich structure of anthracene moiety of BA which is filled with dioxane molecules (Fig. S5b), the disorder of which was not modelled due to the random distribution of electron density in Fourrier electron density difference map. Remaining residual electron density was assigned to dioxane molecules which is consistent with elemental analysis.

Figure S5. (a) Heptacoordinated Cd^{2+} ions in coordination polymer 5. (b) Formation of 2D network of 5 by bridging coordination of BA and $\mu_{2}-\mathrm{SiF}_{6}{ }^{2-}$.

2. UV-Vis absorption

Figure S6. Solid-state UV-Vis absorption spectra of the ligand BA (L) and complexes (1-5).

3. Solid-state steady state spectra

Figure S7. Solid-state emission spectra of BA (L) and complexes (1-5) excited at 370 nm recorded in front face-geometry.
4. Lifetimes of the ligand and complexes

Figure S8. Lifetime of the ligand BA: black - response of the instrument; red - Emission decay; blue-fitted with triexponential decay. Green curve - residual data from fitting. Insertion: $t_{1}, t_{2}, t_{3}-$ values of lifetime, second insertion A, B_{1}, B_{2}, B_{3} - parameters of triexponential decay.

Figure S9. Lifetime of the 1: black - response of the instrument; red - Emission decay; blue-fitted with triexponential decay. Green curve - residual data from fitting. Insertion: t_{1}, t_{2}, t_{3} - values of lifetime, second insertion A, B_{1}, B_{2}, B_{3} - parameters of triexponential decay.

Figure S10. Lifetime of the 2: black - response of the instrument; red - Emission decay; blue-fitted with tetraexponential decay. Green curve - residual data from fitting. Insertion: $t_{1}, t_{2}, t_{3} t_{4}-$ values of lifetime, second insertion $A, B_{1}, B_{2}, B_{3} B_{4}-$ parameters of tetraexponential decay.

Figure S11. Lifetime of the 3: black - response of the instrument; red - Emission decay; blue-fitted with triexponential decay. Green curve - residual data from fitting. Insertion: t_{1}, t_{2}, t_{3} - values of lifetime, second insertion A, B_{1}, B_{2}, B_{3} - parameters of triexponential decay.

Figure S12. Lifetime of the 4: black - response of the instrument; red - Emission decay; blue-fitted with tetraexponential decay. Green curve - residual data from fitting. Insertion: $t_{1}, t_{2}, t_{3} t_{4}-$ values of lifetime, second insertion $A, B_{1}, B_{2}, B_{3} B_{4}-$ parameters of tetraexponential decay.

Figure S13. Lifetime of the 5: black - response of the instrument; red - Emission decay; blue-fitted with triexponential decay. Green curve - residual data from fitting. Insertion: t_{1}, t_{2}, t_{3} - values of lifetime, second insertion A, B_{1}, B_{2}, B_{3} - parameters of triexponential decay.

5. Sensing of nitro explosives

Figure S14. Sensing of 1 mM of 1-chloro-2-4dinitrobenzene; legend: volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$.

Figure S16. Sensing of 1 mM of $3,5-$ dinitroaniline; legend: volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$.

Figure S15. Sensing of 1 mM of 2,4dinitroaniline; legend: volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$.

Figure S17. Sensing of 1 mM of 3nitrotoluene; legend: volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$.

Figure S18. Sensing of 1 mM of 2,4-dinitrotoluene; legend volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$.

Figure 19. Sensing of 1 mM of 2,6dinitrotoluene (2,6-DNT); legend: volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5$ ml)

Figure S21. Sensing of 1 mM of trinitrobenzene (TNB); legend: volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$

Figure S23. Sensing of 1 mM of trinitrophenole (TNP); legend: volume of added analyte in $\mu \mathrm{L}$ to 1 mg of complex 4 dispersed in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$

Figure S20. Stern-Volmer plot of quenching of 4 with 2,6-DNT with $\mathrm{K}_{\mathrm{sv}}=$ $77814 \mathrm{M}^{-1}$

Figure S22. Stern-Volmer plot of quenching of 4 with TNB with $\mathrm{K}_{\mathrm{sv}}=$ $36855 \mathrm{M}^{-1}$

Figure S24. Stern-Volmer plot of quenching of 4 with TNP with $\mathrm{K}_{\mathrm{sv}}=$ $96907 \mathrm{M}^{-1}$

Sensing of Pesticides

Figure S25. Sensing of 2,4,6-trichloroanisole (TCA) by CP 4 the legend: the volume $\mu \mathrm{L}$ of added analyte in mM concentration of TCA

Figure S27. Stern-Volmer plot of TCA sensing with compound $4, K_{s v}=90247 \mathrm{M}^{-1}$

Figure S29. Fluorescence sensing of Trinitrobenzene (TNB) by CP 4 in MeCN. Inset: plot of the quenching of 4 by TNB according to eq(2). *Volume of analyte added is in $\mu \mathrm{L}$ of 1 mM concentration.

Figure S26. Sensing of Simazine by CP 4 the legend: the volume $\mu \mathrm{L}$ of added analyte in mM concentration of Simazine

Figure S28. Stern-Volmer plot of Simazine sensing with compound $4, \mathrm{~K}_{\mathrm{sv}}=40214 \mathrm{M}^{-1}$

Figure S30. Plot of the quenching of 4 by TNB according to eq(2). With slope value $=33019.3$

Figure S31. Fluorescence sensing of 2,6Dinitrotoluene ($2,6-\mathrm{DNT}$) by CP 4 in MeCN. Inset: plot of the quenching of 4 by DNT according to eq(2). *Volume added of analyte is in $\mu \mathrm{L}$

Figure S33. Plot of the quenching of 4 by TNP according to eq(2). With slope value $=66797.5$

Figure S35. Fluorescent quenching of 4 in water with TNP (1 mM concentration) with λ_{em} is 450 nm ($\lambda_{\text {ex }}$ is 375 nm).

Figure S32. Plot of the quenching of 4 by DNT according to eq(2). With slope value $=45743.2$

Figure S34. Plot of the quenching of 4 by TCA according to eq(2). With slope value $=54260.4$

Figure S36. Stern-Volmer plot of the intermolecular quenching of BA by TNP in acetonitrile. $\lambda e x=370 \mathrm{~nm}, \lambda e \mathrm{~m}=450 \mathrm{~nm}$. Line represents best linear fit ($K_{\mathrm{sv}}=270 \mathrm{M}^{-1}$).

Figure S37. Detection of TNP (1 mM concentration) by $4 \mathrm{in} \mathrm{CH}_{3} \mathrm{CN}$ in the presence of 1 mM solution of each NAC: 1-chloro-2-4-dinitrobenzene, 3,5-dinitroaniline, 2,4-dinitrotoluene, 2,4-dinitroaniline.

Figure S38. Response of sensor 4 after adding 20 $\mu \mathrm{L}$ of TNP and sequential addition of $200 \mu \mathrm{~L}$ 1-chloro-2,4-dinitrobenzene. Stock solutions of TNP and $1-\mathrm{Cl}-2,4-\mathrm{DNB}$ are 1 mM .

Figure S40. Response of sensor 4 after adding 20 $\mu \mathrm{L}$ of TNP and sequential addition of $200 \mu \mathrm{~L}$ 2,4dinitroaniline (2,4 -DNA). Stock solutions of TNP and $2,4-$ DNA are 1 mM .

Figure S39. Response of sensor 4 after adding $20 \mu \mathrm{~L}$ of TNP and sequential addition of $200 \mu \mathrm{~L}$ 2,4dinitrotoluene (2,4-DNT). Stock solutions of TNP and 2,4 -DNT are 1 mM .

Figure S41. Response of sensor 4 after adding $20 \mu \mathrm{~L}$ of TNP and sequential addition of $200 \mu \mathrm{~L}$ 2.6dinitroaniline ($2,6-$ DNA). Stock solutions of TNP and 2,6 -DNA are 1 mM .

Figure S42. TNP detection by 4,4 is dispersed in water containing 1 mM solution of each cation: Na^{+}, $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ and anions: $\mathrm{Cl}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$. (TNP concentration in water is 1 mM).

6. Sensing gas-phase

Figure S43. Sensing of 2,4,6-trichloroanisole (TCA) from the gas-phase with 4. The experiment performed with a neat vapour pressure at $25^{\circ} \mathrm{C}$ of TCA.

Figure S44. Sensing of 1,3,5-trinitrobenzene (TNB) from the gas-phase with 4 deposited in glass substrate. The experiment performed with a neat vapour pressure at $25^{\circ} \mathrm{C}$ of TNB.

Figure S45. Reusability of the sensor 4 in sensing of TCA. A drop-cast film of 4 was exposed for 30 min to vapours of TCA (30 min , green line). After exposure to ambient for 3 hours, the fluorescence response (blue line) reached ca. 80% of the original emission intensity..

Figure S46. Sensing of 2,6-dinitrotoluene (2,6-DNT) from the gas-phase with 4 deposited in glass substrate. The experiment performed with a neat vapour pressure at $25^{\circ} \mathrm{C}$ of $2,6-\mathrm{DNT}$.

7. Calculation of limit of the detection (LOD) and limit of quantification (LOQ)

Table S1. Standard deviation (σ) determined as a three times response of the blank in fluorescence

intensity O_{n}	
O_{1}	3365302
O_{2}	3359530
O_{3}	3353356
standard deviation σ	5974.127
10σ	59741.27

Calculations used to determine LOD and LOQ for pesticides and nitro aromatics:

$$
\begin{gathered}
y_{\frac{1}{I}}=\ln \left(\frac{I_{0}}{I_{0}-3 \sigma}\right) \text { for LOD and } y_{\frac{1}{I}}=\ln \left(\frac{I_{0}}{I_{0}-10 \sigma}\right) \text { for LOQ } \\
\text { LOD or LOQ }=\frac{y-b}{K_{s v}}
\end{gathered}
$$

Figure S47. Plotting of $\ln \left(\mathrm{I}_{0} / \mathrm{I}\right)$ of 4 in acetonitrile upon addition of solution of TCA (stock solution is 1 mM) in acetonitrile with $\lambda_{\text {em }}$ is 450 nm ($\lambda_{\text {ex }}$ is 375 nm).

Table S2. Calculation of LOD and LOQ for TCA with 4.

$y_{\frac{1}{l}}^{I_{0}}$ for LOD	$y_{\frac{I_{0}}{I}}$ for LOQ	$K_{\text {sv }}$	b	$\mathrm{LOD} \mathrm{mol} / \mathrm{L}$	$\mathrm{LOQ} \mathrm{mol} / \mathrm{L}$	LOD, ppb	LOQ ppb
0.005131	0.017206	54263	0.0018	$6.13832 \mathrm{E}-08$ $(61 \mathrm{nM})$	$2.83917 \mathrm{E}-07$ $(0.28 \mu \mathrm{M})$	16.5	76

SIM

Figure S48. Plotting of $\ln \left(\mathrm{I}_{0} / \mathrm{I}\right)$ of 4 in acetonitrile upon addition of solution of SIM (stock solution is 1 mM) in acetonitrile with $\lambda_{\text {em }}$ is 450 nm ($\lambda_{\text {ex }}$ is 375 nm).
Table S3. Calculation of LOD and LOQ for SIM with 4.

$y_{\frac{l_{0}}{I}}$ for LOD	$y_{\frac{1}{I}}^{I_{0}}$ for LOQ	$K_{\text {sv }}$	b	LOD mol/L	LOQ mol/L	LOD, ppb	LOQ, ppb
0.007263	0.024419	35977	0.0096	$4.77894 \mathrm{E}-07$ $(478 \mathrm{nM})$	$3.64698 \mathrm{E}-06$ $(3.65 \mu \mathrm{M})$	122	932

Figure S49. Plotting of $\ln \left(\mathrm{I}_{0} / \mathrm{I}\right)$ of $\mathbf{4}$ in acetonitrile upon addition of solution of TNP (stock solution is 1 mM) in acetonitrile with $\lambda_{\text {em }}$ is 450 nm ($\lambda_{\text {ex }}$ is 375 nm).
Table S4. Calculation of LOD and LOQ for TNP with 4

$y_{\frac{0}{I}}$ for LOD	$y_{0_{0}}^{I}$ for LOQ	b	$K_{\text {sv }}$	LOD mol/L	LOQ mol/L	LOD, ppb	LOQ, ppb
0.007175	0.024121	0.0036	66798	$5.35253 \mathrm{E}-08$ $(54 \mathrm{nM})$	$3.07209 \mathrm{E}-07$ $(0.31 \mu \mathrm{M})$	15.5	89.5

Figure S50. Plotting of $\ln \left(\mathrm{I}_{0} / \mathrm{I}\right)$ of $\mathbf{4}$ in acetonitrile upon addition of solution of TNB (stock solution is 1 mM) in acetonitrile with $\lambda_{\text {em }}$ is 450 nm ($\lambda_{\text {ex }}$ is 375 nm).
Table S5. Calculation of LOD and LOQ for TNB with 4

$y_{\frac{1}{l}}^{I}$ LOD	$y_{\frac{1}{I}}$ for LOQ	b	$K_{\text {sv }}$	$\mathrm{LOD} \mathrm{mol} / \mathrm{L}$	$\mathrm{LOQ} \mathrm{mol} / \mathrm{L}$	LOD, ppb	LOQ, ppb
0.005758	0.019324	-0.0526	33019	$1.65381 \mathrm{E}-06$ $(1.65 \mu \mathrm{M})$	$2.17825 \mathrm{E}-06$ $(2.17 \mu \mathrm{M})$	448	590

Figure S51. Plotting of $\operatorname{In}\left(\mathrm{I}_{0} / \mathrm{I}\right)$ of 4 in acetonitrile upon addition of solution of 2,6-DNT (stock solution is 1 mM) in acetonitrile with $\lambda_{\text {em }}$ is 450 nm ($\lambda_{\text {ex }}$ is 375 nm).
Table S6. Calculation of LOD and LOQ for 2,6-DNT with 4

$y_{\frac{I_{0}}{I}}$ for LOD	$y_{\frac{0}{I}}^{I}$ for LOQ	b	$K_{\text {sv }}$	LOD mol/L	LOQ mol/L	LOD, ppb	LOQ, ppb
0.004646	0.015573	0.0099	45743	$3.18002 \mathrm{E}-07$ $(320 \mathrm{nM})$	$5.56863 \mathrm{E}-07$ $(0.56 \mu \mathrm{M})$	73.6	128.9

Table S7. Comparison table of LOD for reported sensors for detection of TNP

Sensor type	$K_{\mathrm{Sv}^{\mathrm{a}} \mathrm{M}^{-1}}$	$c v^{\mathrm{b}}$	LOD $\mu \mathrm{M}(\mathrm{ppb}$ or $\mathrm{ppm})^{\mathrm{c}}$	LOQ $\mu \mathrm{M}$ Zn-MOF	3.11×10^{4}
ACR-1	1.50×10^{4}	-	$0.45(102 \mathrm{ppb})$	-	1
Zn-MOF	6.19×10^{4}		$0.56(128 \mathrm{ppb})$	-	2
Zr-MOF	2.49×10^{4}	-	$7.12(1.63 \mathrm{ppm})$	-	4
SBA-15	2.50×10^{5}	-	$1.74(400 \mathrm{ppb})$	-	5
Zn-MOF	1.36×10^{4}	-	$0.49(110 \mathrm{ppb})$	-	6
Cd-MOF	2.68×10^{4}		$0.27(62 \mathrm{ppb})$	-	7
Cd-MOF	2.43×10^{4}		$0.15(35 \mathrm{ppb})$	-	8
Cd-MOF	4.86×10^{4}		$6.3(1.4 \mathrm{ppm})$	-	9
Zn-MOF	4.60×10^{4}		$0.013(2.9 \mathrm{ppb})$	-	10
Eu-MOF	1.50×10^{4}	-	$4.98(1.14 \mathrm{ppm})$	-	11
Cd-CP (4)	13.9×10^{4}	66800	$0.054(12.4 \pm 0.1$	$0.31(90)$	This work

${ }^{\text {a }}$ Determined at low analyte concentration. ${ }^{\text {b }}$ Determined according to eq(2). 9 In ppm/ppb by volume.

8. Powder X-Ray diffraction of complexes

Figure S52. Powder diffraction of complex $\left\{\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}(\mathrm{p}-\mathrm{Tos})_{2}\right]\right\}_{\mathrm{n}}(1)$.

Figure S53. Powder diffraction of complex $\left\{\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right]\right\}_{\mathrm{n}}(\mathbf{2})$

Figure S 54 . Powder diffraction of $\left\{\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{BA}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot n(\mathrm{DCM})\right\}_{\mathrm{n}}(4)$.

Figure S 55 . Powder diffraction of $\left\{\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}(\text { Dioxane })\left(\eta_{2}-\mathrm{SiF}_{6}\right)\right] \cdot \text { mDioxane }\right\}_{\mathrm{n}}(5)$.

9. Thermal stability of the complexes

Thermal analyses (TGA) for $\mathbf{1 , 2 , 4 , 5}$ were performed under N_{2} flow at the heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ from 20 to $600^{\circ} \mathrm{C}$ in a Mettler Toledo SDTA 851a (Fig. S56-S59). Complex 1 shows mass loss of $\sim 11.5 \%$ starting from rt upon heating to $120^{\circ} \mathrm{C}$ which can be assigned to the removal of the uncoordinated MeOH and DCM guest molecules. Further heating over $330^{\circ} \mathrm{C}$ leads to the decomposition of organic linkers and coordinated p-Tos anions with mass loss of $\sim 51 \%$. Similar trend was observed for complex 2, upon heating from rt to $100^{\circ} \mathrm{C}$ coordination polymer loses uncoordinated MeOH molecules, continuous heating over $330^{\circ} \mathrm{C}$ results in decomposition of 1 D polymer followed by destruction of organic ligands. 2D polymer network of compound 4 also shows instability under heating from rt to $80^{\circ} \mathrm{C}$ obviously followed by losing DCM molecules trapped in the network structure of 4. Further heating over ${ }^{\sim} 340^{\circ} \mathrm{C}$ leads to decomposition of organic part of the compound and collapsing of the 2D structure. Interesting behaviour demonstrates complex 5, upon heating in the range from 20 to $600^{\circ} \mathrm{C}$ complex shows a multistep decomposition. First step begins from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ with mass loss of $\sim 14 \%$ corresponding to the evaporation of uncoordinated dioxane molecules. Further heating to $150^{\circ} \mathrm{C}$ results in removal of coordinated to $\mathrm{Cd}(\mathrm{II})$ dioxane molecule with integrated mass loss of $\sim 14 \%$. The third step begins after heating over $250^{\circ} \mathrm{C}$ leading to mass loss of $\sim 36 \%$, it presumably corresponds to the decomposition of organic linkers. Additional mass loss of $\sim 6 \%$ might be assigned to the decomposition of $\mathrm{SiF}_{6}{ }^{2-}$ anions.

Figure S56. TGA of complex 1.

Figure S57. TGA of complex 2

Figure S58. TGA of complex 4.

Figure S59. TGA of Complex 5.

10. FT-IR spectra

Figure S60. FT-IR of complex $\left\{\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}(\mathrm{p}-\mathrm{Tos})_{2}\right]\right\}_{\mathrm{n}}(\mathbf{1})$.

Figure S61. FT-IR of complex $\left\{\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right]\right\}_{n}$. (2).

Figure S62. FT-IR of complex $\left\{\mathrm{BA} @\left[\mathrm{Zn}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right\}_{\mathrm{n}}(3)$.

Figure S63. FT-IR of complex $\left\{\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{BA}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot \mathrm{n}(\mathrm{DCM})\right\}_{\mathrm{n}}(4)$.

Figure S64. FT-IR of complex $\left\{\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{BA}\right)(\mathrm{MeOH})_{2}(\text { Dioxane })\left(\mu_{2}-\mathrm{SiF}_{6}\right)\right] \text { •mDioxane }\right\}_{\mathrm{n}}(5)$.

11. BET measurement for 4.

Figure S65. BET isotherm absorption for coordination polymer 4 with N_{2}.

Figure S66. BET surface area plot for 4 with output below for the fitting:
Table S8. Fitting result of isotherm for $4, \mathrm{~N}_{2}$ gas for BET surface determination was used.

BET Surface Area	$30.2960 \pm 0.7203 \mathrm{~m}^{2} / \mathrm{g}$
Slope	$3.223349 \pm 0.066188 \mathrm{~g} / \mathrm{mmol}$
Y-Intercept	$0.002696 \pm 0.038506 \mathrm{~g} / \mathrm{mmol}$
Correlation coefficient	0.9968526
Maximum pore volume	$0.105483 \mathrm{~cm}^{3} / \mathrm{g}$
Median pore width	15.6925 nm
Micropore volume	$0.042 \mathrm{~cm}^{3} / \mathrm{g}$

Figure S67. Cumulative pore volume plot distribution for 4
12. Crystallographic data

Table S9. Crystallographic data for complexes 1-5.

Identification code	1-1843186	2-1843187	3-1843188	4-1843184	5-1843191
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Zn}$	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Zn}$	$\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Zn}$	$\mathrm{C}_{48} \mathrm{H}_{32} \mathrm{CdCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{8}$	$\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{CdF}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$
Formula weight	804.21	687.88	1128.40	976.07	739.06
Temperature/K	200	250	200	200	250
Crystal system	triclinic	monoclinic	triclinic	monoclinic	monoclinic
Space group	P-1	C2/c	P-1	C2/c	$\mathrm{P}_{1} / \mathrm{c}$
a/Å	7.4634(5)	10.5996(10)	10.1618(6)	13.7850(14)	15.5646(11)
b/Å	11.3831(8)	11.6402(10)	10.4605(6)	25.4887(13)	16.3882(9)
c/Å	12.4240(9)	$22.1602(17)$	13.6324(8)	16.1626(15)	15.3720(13)
$\alpha{ }^{\circ}$	70.731(5)	90	71.447(5)	90	90
$\beta /{ }^{\circ}$	78.927(5)	92.636(7)	88.517(5)	101.201(8)	118.141(5)
V/ ${ }^{\circ}$	78.523(5)	90	69.964(5)	90	90
Volume/ \AA^{3}	967.29(12)	2731.3(4)	1285.00(14)	5570.7(8)	3457.5(4)
Z	1	4	1	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.381	1.673	1.458	1.164	1.420
μ / mm^{-1}	0.797	0.990	0.643	0.535	0.733
F(000)	418.0	1400.0	580.0	1976.0	1496.0
Crystal size/mm ${ }^{3}$	$0.32 \times 0.173 \times 0.1$	$0.16 \times 0.123 \times 0.07$	$0.25 \times 0.173 \times 0.04$	$0.31 \times 0.17 \times 0.1$	$0.54 \times 0.297 \times 0.1$
Radiation	MoKa ($\lambda=0.71073$)	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Reflections collected	12508	15488	16354	35269	43536
Independent reflections	$3442\left[R_{\text {int }}=0.0633, \mathrm{R}_{\text {sigma }}=0.0475\right]$	$2441\left[R_{\text {int }}=0.0966, \mathrm{R}_{\text {sigma }}=0.0554\right]$	$\begin{gathered} 4516\left[R_{\text {int }}=0.0491, R_{\text {sigma }}=\right. \\ 0.0393] \end{gathered}$	$4976\left[R_{\text {int }}=0.1132, R_{\text {sigma }}=0.0709\right]$	$6178\left[R_{\text {int }}=0.1114, R_{\text {sigma }}=0.0747\right]$
Data/restraints/parameters	3442/111/301	2441/74/234	4516/0/345	4976/24/294	6178/36/411
Goodness-of-fit on F^{2}	0.964	1.160	1.066	1.090	0.837
Final R indexes [l>=2 $(1)]$	$\mathrm{R}_{1}=0.0451, \mathrm{wR}_{2}=0.1209$	$\mathrm{R}_{1}=0.0598, \mathrm{wR}_{2}=0.1136$	$\mathrm{R}_{1}=0.0466, \mathrm{wR}_{2}=0.1193$	$\mathrm{R}_{1}=0.0520, \mathrm{wR}_{2}=0.1234$	$\mathrm{R}_{1}=0.0406, \mathrm{wR}_{2}=0.0872$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0606, \mathrm{wR}_{2}=0.1294$	$\mathrm{R}_{1}=0.0876, \mathrm{wR}_{2}=0.1228$	$\mathrm{R}_{1}=0.0589, \mathrm{wR}_{2}=0.1250$	$\mathrm{R}_{1}=0.0938, \mathrm{wR}_{2}=0.1314$	$\mathrm{R}_{1}=0.0868, \mathrm{wR}_{2}=0.0996$
Largest diff. peak/hole / e \AA^{-3}	1.02/-0.51	0.46/-0.67	0.42/-0.51	0.59/-0.66	0.63/-0.81

References:

(1) Wiwasuku, T.; Boonmak, J.; Siriwong, K.; Ervithayasuporn, V.; Youngme, S. Highly Sensitive and Selective Fluorescent Sensor Based on a Multi-Responsive Ultrastable Amino-Functionalized Zn(II)-MOF for Hazardous Chemicals. Sensors Actuators B Chem. 2019, 284, 403-413.
(2) Chemate, S.; Erande, Y.; Mohbiya, D.; Sekar, N. Acridine Derivative as a "Turn on" Probe for Selective Detection of Picric Acid via PET Deterrence. RSC Adv. 2016, 6 (87), 84319-84325.
(3) Xing, S.; Bing, Q.; Qi, H.; Liu, J.; Bai, T.; Li, G.; Shi, Z.; Feng, S.; Xu, R. Rational Design and Functionalization of a Zinc Metal-Organic Framework for Highly Selective Detection of 2,4,6Trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9 (28), 23828-23835.
(4) SK, M.; Biswas, S. A Thiadiazole-Functionalized Zr(Iv)-Based Metal-organic Framework as a Highly Fluorescent Probe for the Selective Detection of Picric Acid. CrystEngComm 2016, 18 (17), 3104-3113.
(5) Li, D.; Liu, J.; Kwok, R. T. K.; Liang, Z.; Tang, B. Z.; Yu, J. Supersensitive Detection of Explosives by Recyclable AIE Luminogen-Functionalized Mesoporous Materials. Chem. Commun. 2012, 48 (57), 7167.
(6) Deng, Y.; Chen, N.; Li, Q.; Wu, X.; Huang, X.; Lin, Z.; Zhao, Y. Highly Fluorescent Metal-Organic Frameworks Based on a Benzene-Cored Tetraphenylethene Derivative with the Ability to Detect 2,4,6-Trinitrophenol in Water. Cryst. Growth Des. 2017, 17 (6), 3170-3177.
(7) Rachuri, Y.; Parmar, B.; Bisht, K. K.; Suresh, E. Mixed Ligand Two Dimensional Cd(Ii)/Ni(Ii) Metal Organic Frameworks Containing Dicarboxylate and Tripodal N-Donor Ligands: Cd(Ii) MOF Is an Efficient Luminescent Sensor for Detection of Picric Acid in Aqueous Media. Dalt. Trans. 2016, 45 (18), 7881-7892.
(8) Rachuri, Y.; Parmar, B.; Suresh, E. Three-Dimensional Co(II)/Cd(II) Metal-Organic Frameworks: Luminescent Cd-MOF for Detection and Adsorption of 2,4,6-Trinitrophenol in the Aqueous Phase. Cryst. Growth Des 2018, 18, 30.
(9) Gogia, A.; Mandal, S. K. A Rational Design and Green Synthesis of 3D Metal Organic Frameworks Containing a Rigid Heterocyclic Nitrogen-Rich Dicarboxylate: Structural Diversity, CO_{2} Sorption and Selective Sensing of 2,4,6-TNP in Water. Dalt. Trans. 2019, 48 (7), 23882398.
(10) Joarder, B.; Desai, A. V.; Samanta, P.; Mukherjee, S.; Ghosh, S. K. Selective and Sensitive Aqueous-Phase Detection of 2,4,6-Trinitrophenol (TNP) by an Amine-Functionalized MetalOrganic Framework. Chem. - A Eur. J. 2015, 21 (3), 965-969.
(11) Song, X.-Z.; Song, S.-Y.; Zhao, S.-N.; Hao, Z.-M.; Zhu, M.; Meng, X.; Wu, L.-L.; Zhang, H.-J. Single-Crystal-to-Single-Crystal Transformation of a Europium(III) Metal-Organic Framework Producing a Multi-Responsive Luminescent Sensor. Adv. Funct. Mater. 2014, 24 (26), 40344041.

