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Success, but not failure feedback guideslearning during neur ofeedback: An ERP study

Abstract

Neurofeedback is a promising self-regulation tegbai used to modify specific targeted brain
patterns. During neurofeedback, target brain agtig monitored in real time and fed back to the
subject in a chosen format (e.g. visual stimullig).date, we do not know how success and failure
feedback are processed during neurofeedback learidere we analysed the event related potentials
(ERPs) in response to success and failure feedtbadkg a single neurofeedback session in two
experiments. Participants in experiment 1 (n = @0k part in one of the three neurofeedback
conditions: RLA: trained to increase alpha powettmnright frontal in relation to the left; LRA:¢h
reverse of the RLA; FPA: trained to increase alpbwer on the mid-frontal in relation to the mid-
parietal region. In experiment 2 (n = 45), partagifs took part in a similar session but one group
received random feedback whereas the other recewied feedback to increase right frontal alpha
power. We analysed the feedback related nega{i"lRN), correct positivity (CP), and P3a and P3b
in response to success and failure feedback. Werada$ stronger FRN and CP in response to success
compared to failure feedback. Additionally, the R3aesponse to success feedback was higher in
epochs preceded by subsequent good adjustmentdindings indicate that people respond more
strongly to success than failure feedback and thatP3a might mediate the encoding of the
reinforced patterns in the brain.

Key-words: neurofeedback, FRN, ERP, learning, feedback.

1. Introduction

Neurofeedback is a technique which enables peaplearn to regulate their own brain
activity (Sitaram et al., 2017). During neurofeedatarget brain signals or patterns are recorded
(e.g. EEG, fMRI) and presented to the participanteial time as feedback in any sensory modality
(e.g. visual, auditory). The participant’s taskidgslearn how to control the feedback by modifying
her/his own brain activity, and several studiesehstvown that this learning can occur in as litdea
single session (for a review, see: Enriquez-Gepptrster, & Herrmann, 2017). Neurofeedback is a
promising technique which can be used to investigatin function or to improve cognitive and
affective function (Sitaram et al., 2017). For arste, it was observed that training to increasetdt
alpha asymmetry (to the right) was associated avitbduction in stress (Quaedflieg et al., 2016) and
mood disorders (Mennella, Patron, & Palomba, 20iléurofeedback has also been used to increase

creativity in performing arts (Gruzelier, 2014).

The success of neurofeedback depends directly wnwell people can learn to regulate the
target brain signals. Therefore, it is crucial that understand how people learn in this contextstMo
researchers in the field claim that learning duringurofeedback happens through operant

conditioning. The first study reported with thigh@iqgue monitored the activity of monkeys’ single



neurons and delivered food pellets when these nsunzreased firing (Fetz, 1969). It was found that
the pairing of this target increase in firing witie reward was associated with an increase in heura
firing, up to 500%. Neurofeedback was later usetiiimans: for example, feedback based on EEG
has been used to increase control over alpha wsea historical perspective, see: Kamiya, 2011),
and, more recently, neurofeedback has been usedMRI to regulate activity in target brain regions
with a high spatial resolution (for a review, sBetiz, Buyukturkoglu, Rana, Birbaumer, & Sitaram,
2014). Most studies in the field rely on operamditoning as the main mechanism of learning, but
do not evaluate the neural mechanisms associatidpnocessing feedback during neurofeedback
learning. As such, we know very little about howople process the feedback information for

learning. This is interesting since the feedbadigial for learning in this context.

To the best of our knowledge only one study to dats looked into how people process
success and failure feedback in a neurofeedbadiose$Radua, Stoica, Scheinost, Pittenger, &
Hampson, 2018). This study recorded fMRI signalsirdua neurofeedback session designed to
increase activity in the orbitofrontal cortex. Thepserved that failure was associated with a
deactivation of the cuneus and posterior cingutateex, whereas success was associated with the
deactivation of the medial prefrontal cortex antedor cingulate cortex. Interestingly, they obsstv
that only the responses to feedback indicating esgcavere associated with learning, suggesting
different processes for learning from success ature feedback information. Because this was an
fMRI study, it is difficult to know the fast and dgmical responses to feedback, especially
considering that in most used EEG-neurofeedbackopots, feedback is provided at every half

second of brain activity, which is not well-captuifey fMRI.

There is a great deal of research investigating/ \early and fast brain responses to
performance feedback, rewards and punishmentshandthey are associated with learning using
EEG (some good reviews: Cohen, Wilmes, & van deerjj2011; Ullsperger, Fischer, Nigbur, &
Endrass, 2014; Walsh & Anderson, 2012). One of riiest well-known event related potentials
(ERPs) associated with feedback processing iseb@bfack-related negativity (FRN). The FRN is a
negative deflection in the ERPs at the mid-froarglas which starts as early as 140 ms following the
feedback presentation (Miltner, Braun, & Coles, 199The FRN is sensitive to a number of
parameters of the feedback, including its relevapcebability and learning (Walsh & Anderson,
2012). Other important ERP components associatdl feiedback processing are the correct
positivity (CP) (Holroyd, PakzaWaezi, & Krigolson, 2008) and the P300 or P3 (Rul2007). These
signals are highly informative of the learning magisms involved in feedback guided learning (for a
review: Luft, 2014), however no study has invesidawhether they are similar in a neurofeedback

task and how they enable learning of self-regulatath activity.



In this study, we investigated the event-relatetbmiials in response to success and failure
feedback during a neurofeedback task. This is Bacgssince success and failure are not equally
processed in the brain. Knowing how the brain ledrom these two types of feedback is crucial for
the development of more efficient neurofeedbackquals. It is of interest to understand how the
brain responses to feedback affect how we leamedalate brain signals. In most feedback learning
situations, feedback information has to be constarged to update our models of the environment.
During neurofeedback, this brain response hasfextefely update predictions about brain activity
itself, which could possibly affect the procesgating a special type of feedback learning. In otde
address this question, we conducted two experimbntke first, we monitored the ERPs in response
to success and failure feedback during a neurotekdgession using three different protocols tantrai
a change in: right-left alpha brain asymmetry (RLAJt-right alpha brain asymmetry (LRA) and
mid-fronto-parietal alpha difference (FPA). In thexperiment, we focused on brain asymmetry
neurofeedback since the RLA is often used to tadfaictive disorders (e.g. Mennella et al., 2017;
Quaedflieg et al., 2016). In a subsequent expetinvez compared the ERP responses to success and
failure feedback when the feedback was random favas. when it was valid in a session which
trained participants to up-regulate their alpha @oin the right frontal region. We investigatedilig
differences in the ERPs in response to successadnce neurofeedback, focusing on the main ERP
components associated with feedback learning (FENand P3); 2) whether the ERP responses to
success and failure feedback were associated wibseguent adjustments in brain activity; 3)
whether these brain responses are dependent osptwfic trained parameter; 4) whether the
differences in the ERP responses to success dndefdeedback are similar when the feedback is
non-informative (random); 5) whether these diffeesiremain significant in a protocol to up-regulate

a single brain parameter.

2. Methods Experiment 1
2.1. Participants

One-hundred and thirty neurologically healthy asl(it7 females) aged between 18 - 32 years
(21.88 £ 2.63; Mean = SD) with normal or correctedrormal vision (self-reported) took part in the
experiment. Three participants were not includedhie analysis due to noisy EEG data. Each
participant was randomly assigned to one of threerafeedback conditions: 1) Right alpha up
(right/left) (RLA; N = 41): Participants were trained to increase alpbaer on right frontal in
relation to left frontal regions (electrodes F4/F2) Left alpha up (left/right) (LRAN = 43):
Participants were trained to increase alpha powelefi frontal in relation to right frontal regions
(F3/F4); and 3) Mid-frontal alpha up (frontal/paa@ (FPA; N = 43): Participants were trained to



increase alpha power in the mid-frontal in relationparietal regions (Fz/Pz). All groups were
matched for age and gender.

Participants were recruited opportunistically trgbwvord of mouth and were reimbursed at a
rate of £7.50 per hour. All participants gave werittinformed consent before the beginning of the
experiment. The study protocol was approved by @MUL college ethics board. Ethical
considerations were met as all the data were kephyanous and confidential, by using a unique
identifier code for each participant. All particiga were informed of their right to withdraw, and

were debriefed at the end of the study.

2.2. Neurofeedback (NF)

Each participant completed three 5-minute boutsenirofeedback (NF) while their EEG was
recorded (see Figure 1). A fixation cross was presein the centre of the screen for 1.5 minutes
before and after each NF session while the restaig EEG was recorded with eyes open. At the start
of each bout, a small white square was presentdtkigentre of the screen. Every 500 ms the power
at the target electrodes (depending on the NF gneap calculated usinigst fourier transform. The
trained EEG patterns were different in each gréigu.the RLA, the natural log of alpha power (8-12
Hz) was calculated at the right and left frontaotlodes (F4 and F3) and then subtracted from each
other ([F4 — F3]). For the LRA, the same proceduas adopted but the final value was the reverse
subtraction ([F3 — F4]). Finally for the FPA, thdex was the natural log of the alpha power on the
mid-frontal minus mid-parietal ([Fz — Pz]). Afteraéh epoch was processed (600 epochs per
neurofeedback bout), the participant received faekliftime-delay was tested and under 10ms). The
feedback could be either success or failure. Ifténget EEG pattern increased, the size of therequa
increased and went green. If the target EEG patteoneased, the square became smaller and red.
The size of the increase/decrease was defined sbywitmber of pixels, calculated as: increase:
squaresize = current squaresize + (100 + squar@sifl); decrease: squaresize = current squaresize
- (100 + squaresize*0.001). The square size clthragesvery epoch but only by the described
proportional amount. Participants were requiredtrjoto increase the size of the square whilst
learning to control and alter their own brain aityivAs one bout was 5 mins and feedback was given
every 500 ms, feedback was provided 600 times ah &@ut. The size of the square increased (or
decreased) the same amount of pixels each timepéamtlently of the amount of change of the EEG
signal. Therefore, participants knew that they iowed (or not), but were not aware of the amount of

improvement (or decrement).
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Figure 1. Illustration of experimental design. Each session consisted of three 5-minute
neurofeedback (NF) bouts. Before, in between, dtet the NF bouts, there were four 1.5-
minute resting state blocks (top figure). EEG wascorded throughout the session. An
example of a few NF trials is given (bottom figurEyery 500 ms the EEG is processed with
Fast Fourier Transform (600 epochs per bout).dfEEG pattern increases (depending on the
NF condition), the square becomes larger and gaEngwhereas if it decreases it becomes
smaller and red. It is important to notice that thange was only dependent on whether the
trained pattern increased or decreased, which ntbahg was independent of the amount of
the increase. This was done to ensure that theteffg the feedback valence were not
confounded by the size of it and that the participdnave some control over the feedback but
not to the point of changing the proportion/proligbof success and failure feedback.

2.3. Procedure

Participants were seated in front of a computer guiet room. Through written instructions
on screen, they were informed that they would dieé¢d to control their brain waves. They were
instructed to try to increase the size of the sgbgrmanipulating their brain/thoughts. They were
verbally informed that the size and colour of teare was related to their brain activity at that
moment, as it would be analysed real-time. Theallduration was approximately 20 minutes. The
neurofeedback task was programmed in Matlab. Theramication between StarStim and Matlab
was interfaced usiniglatnic (Neuroelectrics, Spain,

http://www.neuroelectrics.com/products/softwarem@atemote-stimulation-client/) and the visual

feedback was presented using the Psychtoolboxr@mi& Vision, 1997).

2.4. EEG recording and pre-processing



The EEG signals were recorded with 18 PiStim ebelets placed according to the extended
10-20 electrode system (Jasper, 1958) using arpaltiven system (StarStim, Neuroelectrics, Spain).
The EEG electrodes were: P8, F8, F4, C4, T8, P2, Fpl, Fz, Cz, Pz, Oz, P3, F3, F7, C3, T7, and

P7. Two ECG electrodes were attached to the rigiélc bone to reduce noise, especially at 50 Hz.

The EEG data were re-referenced to the algebraammogthe right and left earlobe electrodes
(Essl & Rappelsberger, 1998). Continuous data Wwerel-pass filtered from .5 - 47 Hz, and epoched
from -.1 to 0.5 around the onset of the feedbacktaDrom electrodes with consistently poor signal
quality, observed by visual inspection and by siiglyhe topographical maps of their power spectra,
were removed and reconstructed by interpolatiormfroeighbouring electrodes. Subsequently,
independent component analysis was run to cormcteye-blink related artefacts. Epochs with
amplitude exceeding + 70 uV were automatically reeab Further, the epoched data was low-pass
filtered at 30 Hz, and baseline corrected to -1@0bmfore the feedback presentation. The data was

averaged separately for each condition to anahs&RPs.

2.5. Data analysis

Neurofeedback learning: In order to investigate whether any of the neurdibeek groups learned and
improved during the neurofeedback session, we ledxlithe mean trained EEG patterns for each
bout, separately for each group. Trained EEG pwtare defined differently for each group; for
example, the trained EEG pattern of the RLA grauihé value of the natural log of the right frontal
alpha minus the natural log of left frontal alpleaver. The higher the trained EEG pattern, the more
successful the neurofeedback learning was. Thistgtat analyses adopted to address each question

are described in the results section.

Feedback-related negativity (FRN) and correct positivity (CP) during neurofeedback: We analysed

two ERP components elicited in response to faiamd success feedback: first, a feedback-related
negavity (FRN)-like component peaking around 120-2@s after feedback, and, second, a correct
positivity (CP)-like component peaking around 22B3ns after feedback. Mean ERP amplitudes

were calculated at the Fz electrode.

Neurofeedback adjustment following feedback: In order to investigate whether the responses to
success and failure feedback actually resulteddjoséed brain activity during neurofeedback, we
divided the data according to whether the feedbmak followed by a good vs. bad/maladaptive
change in the trained EEG index (increase vs. dseraespectively). We analysed three ERPs: FRN
(120 to 200 ms at Fz), P3a (220 to 300 ms at Pd)R8b (320 to 450 ms at Pz)-like components.

Mean ERP amplitudes were obtained for each of thesgonent’'s time windows and locations. All



statistical analyses were conducted using the IBMisSical Package for the Social Sciences (IBM
Corp. Released 2013. IBM SPSS Statistics for Wirgjowersion 22.0. Armonk, NY: IBM Corp.).

3. Results Experiment 1

3.1. Neurofeedback learning

First, we examined whether participants succegsfldarned the neurofeedback (three
different neurofeedback protocols) during the ti¥eainute bouts. We entered the mean trained EEG
indices for each group in each bout in an@ifofeedback condition: RLA, LRA, FPA) X 3 (raining
bout: 1, 2, 3) mixed ANOVA. We observed a significarsimeffect oftraining bout (F 2,245 = 3.42,p
= .034, partial #°= .027) due to an increase in alpha power over thesb confirmed by a linear
trend in the within-subject contrasts(104)= 4.97,p = .028, partial n?=.028) (Fig. 2A). There was
also a significant effect afeurofeedback condition (F,126)= 3.67,p = .028, partial n?= .056), as the
trained values were lower for the FPA group compranethe other groups (Fig. 2B). This is attributed
to the fact that posterior alpha power is normdligher than frontal, making it hard for the FPA
group to increase their frontal alpha comparedh¢oposterior. Pairwise contrasts indicated sigaific
differences between FPA and LFA (boutds 3= 2.27,p = .027; bout 21;.3= 2.63,p = .011; bout
3: te10)= 2.31,p = .025). There was no significant difference betwdenRLA and LRA groups in
any of the boutsp( > .3). Importantly, there was no interaction betweeaining bout and
neurofeedback condition (Fa,24¢)= .516,p = .724, partial n? = .008), suggesting that this effect was
independent of the neurofeedback protocol. Pairetsgrasts showed that the trained EEG indices
increased significantly from the first to the lastut ¢.26)= 2.22,p = .028), but only marginally from
the first to the second{s= 1.97p = .051) and not significantly from the second to thiedt bout
(taze)= .598,p = .551). This suggests that participants improvedeimentally from the first to the

last bout of neurofeedback.

Considering that asymmetry is a relative measure, garticipants could learn by either
downregulating alpha in one site or up-regulatitgha on the other. For example, in the RLA
condition the participants could learn by eithecrégasing alpha power in the right frontal or by
decreasing alpha power in the left frontal. Sirtoeré are different mechanisms associated with up
and down-conditioning (Thompson, Chen, & Wolpaw)2)) we investigated whether the observed
changes in alpha asymmetry (right/left and froptaterior) were associated with increasing the
activity in one site or decreasing in another. ideo to evaluate that, we compared the alpha power
values between neurofeedback bouts in each ofréiieet sites (F3, F4, Fz, Pz) and entered the

values (separated by site) in a repeated measul€dVA with training bout as a factor. We



conducted one ANOVA per neurofeedback condition ARILRA, FPA). First, we observed a
significant increase in alpha power over in théatifyontal (F4) only in the RLA groug 36 57.1)=
4.04,p = .037,partial 4°= .088), but not in the LFAR( 4361.4= .295,p = .670, partial 4°= .007),
nor in the FPAK.64657)= 2.49,p = .100, partial ;72= .056). Alpha power on the left frontal did not
change significantly in the RLA grouy{ ssss.1y=-572,p = .506, partial #?= .013) nor in the LRA
group .38 505=.647,p= .473,partial ;12= .015), but increased in the FPA grotip, 63 64.3= 4.46,

p = .023,partial #°= .096). We observed a significant increase in ajphaer at the frontal midline
electrode (FZ) over the FPA sessidf, (1) = 4.40,p = .025, partial n* = .095), but not for the
groups which trained to change frontal asymmetrgluding the RLA E@1.2552.9= 1.82,p = .183,
partial = .041) and the LRAR( 4562.4)= -629,p = .487,partial #°= .014). Finally, we tested the
differences in alpha power at the posterior mid(jRe) and observed no significant effect in any of
the training conditions including RLAS( 3355.9)= 1.84,p = .178,partial ;72= .042), LRA E@73743=
.051,p = .931,partial °= .001) and FPAR 1 6468.= 1.37,p = .259,partial #°= .032). Altogether,
these findings seem to indicate that the particgamght learn to change their brain asymmetry by

up-regulating their alpha activity on one regiothea than the opposite.

We also tested whether changes in the trained BE{Bds would outlast the neurofeedback
by comparing their values during rest before amerdlie session. We entered the trained valuefin a
(resting state sesson: before and after) X 3néurofeedback condition: RLA, LRA, FPA) mixed-
design ANOVA (Fig. 2C). We observed no significamiin effect ofresting state session (F,126) =
149, p = .700, partial # >= .001) or interaction betweeresting state session and neurofeedback
condition (F,126)= .513,p = .600, partial n°= .008) There was a significant effect néurofeedback
condition (F(,126) = 6.95,p = .004, partial n” = .099) due to the same reason explained above. The
trained value of the FPA group was smaller thanatsyammetry of the RLA and LRA in both pre-
(FPA vs. RLA:tgs.27= 2.28,p = .026; FPA vs. LRA156.39= 2.58,p = .013) and post-neurofeedback
(FPA vs. RLA:te1.36= 2.99,p= .004; FPA vs. LRL1s1)= 3.17,p = .002). There was no significant
difference between the RLA and LRA groups in the-ar post-neurofeedback sessipr(.7).

Since this study is focused on the evoked respotsefeedback, we looked into the
percentage of success feedback in relation to dted feedback (total = success + failure). Even
though the amplitude of the trained signal seerdthte increased over the session, we observed a
similar percentage of success and failure feedlackind 50% (Fig. 2D). We entered the percentage
of success feedback in a 1@(rofeedback condition: RLA, LRA, FPA) X 3 ¢raining bout: 1, 2, 3)
mixed ANOVA. We observed no significant effecttiodining bout (F, 24¢)= 1.68,p = .188, partial 0
= .013) nor interaction witmeurofeedback condition (F 245 = .960,p = .430, partial n° = .015).

There was also no main effect of neurofeedbackitondF; 124)= 2.41,p = .123,partial n?=.019).
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Figure 2. Perfor mance before, during and after neurofeedback. A. Average trained EEG
pattern (see in B) during the three 5-minute needback boutd. Average power ratio at
the trained pattern in each neurofeedback condérmheach bout. The trained pattern was
different for each group — RLA: right alpha mine$t lalpha band power, LRA: left alpha
minus right alpha, FPA: mid-frontal alpha minus mprietal alphaC. Average trained EEG
pattern during rest before (blue) and after (rbd)rieurofeedback sessi@h.Proportion of
success feedback during each neurofeedback boeaébr neurofeedback condition. Error

bars represent +/- 1 S.E.M.
3.2. Feedback-related negativity (FRN) and correct positivity (CP) during neurofeedback

We investigated ERP responses to success ancefégledback during neurofeedback. An
FRN-like component peaking at the fronto-centralline was observed around 120 to 200 ms after
both types of feedback (Fig. 3AB). This componeasyiollowed by a large positivity resembling a
correct positivity (CP) peaking between 220 to &t¥0after the feedback (Fig. 3AB). We analysed



these two components in two separatée@ipack valence: success vs. failure) X 3igurofeedback
condition: RLA, LRA, FPA) mixed-design ANOVAs.

For the FRN (average amplitude at the Fz electfoma 120 to 200 ms after feedback), we
observed a significant effect tdedback type (F,125)= 14.26,p < .001, partial n? = .102), since the
FRN was larger following success compared to faifeedback (Fig. 2C). There was no significant
effect of neurofeedback condition (F 125 = .394,p = .675,partial n?= .006), however, there was a
significant interaction betweeieedback type and neurofeedback condition (F 125 = 3.75,p = .026,
partial #?= .057). Follow up pairwise contrasts showed thdy eme of the groups (LRA) did not
show a significant difference in the FRN betweeccsess and failure feedbadk 4= .045,p = .964),
whereas this difference was statistically significtor both the FPAt(, = 3.765,p < .001) and RLA
groups {41 = 2.597,p = .013). For the CP-like component (average amplitaidthe Fz electrode
from 220 to 300 ms after feedback), we observedrafieant effect offeedback type (F (1,125 = 35.43,

p < .001,partial > = .221), since the amplitude of CP was higher follgvsuccess compared to
failure feedback. There was no significant effefchaurofeedback condition (F;,125 = .041,p = .959,
partial ;12 .001), and no significant interaction betweenwhgables E 125)= 2.84,p = .062,partial
n?=.043) (Fig. 3D).
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Figure 3. ERP responses to success and failure feedback. A. ERP waveforms in response
to success (blue) and failure (red) feedback atRhelectrode. The highlighted areas are
associated with the FRN (feedback-related neggjiehd CP (correct positivity) and their
averages per condition are shown in C and D, réispéc B. Topographical distributions of



the ERP amplitudes following failure and successliiack, as well as the difference between
them in the two time windows highlighted in &. Average amplitudes in response to
feedback at Fz from 120 ms to 200 ms after feedfasik highlighted time window, FRN).
D. Average amplitudes in response to feedback atdfm 220 ms to 300 ms after feedback
(second highlighted time window, CP). Error bargresent +/- 1 S.E.M.

3.3. Neurofeedback adjustment following feedback

In order to investigate whether the brain respotsdsedback are relevant to adjusting brain
activity during neurofeedback, we divided the datzording to whether the success and failure
feedback was followed by subsequent good vs. bdddaptive changes in the trained EEG patterns
(increase vs. decrease, respectively). In Fig. €/pvesent the ERP waveforms in response to success
(left) and failure (right) feedback in trials folled by good (blue) and bad (red) adjustments. We
analysed the FRN (120 to 200 ms at Fz), and P3ZR3do 300ms / P3b: 320 to 450 ms at Pz) -like
ERP components. For each of these components, tesedrihe values as the dependent variable in a
2 (feedback valence: success vs. failureX 2 (adjustment: good vs. bad X 3 (neurofeedback
condition: RLA, LRA, FPA) mixed-design ANOVA.

Regarding the FRN, there was no statistically §icgnt difference between trials which were
followed by a good vs. a bad performance adjustr(ahtistment: F; 1.5 = .007,p = .935,partial n?
< 0.001), and no significant interaction betwéestlback valence andadjustment (F 125y= .001,p =
.979, partial = < 0.001). There was a significant effectfeédback valence (Fa 125 = 4.745,p =
.031, partial #?= .037), since success feedback was associatedavtitpher FRN-like amplitude as

previously shown.

With regards to the P3a-like component (Fig. 4Acosel row), we observed a significant
interaction betweefeedback valence andadjustment (F 1,125 = 5.07,p = .026,partial n°= .039) since
a stronger P3a was elicited in response to sudeestback on trials immediately before a good
adjustment or improvement. Pairwise contrasts atdd a significantly higher P3a in response to
success feedback leading to a subsequent goodradjitscompared to a bad adjustmegpi (= 2.56,
p = .012), whereas there was no such a difference bet®8a preceding good and bad adjustments
following failure feedbackt,7)= -.637,p = .525). No significant effects or interactions with the
neurofeedback group were observed > .1), suggesting that this result was consistambss
conditions (Fig. 4B).

The difference in the ERPs in response to feedieatling to good and bad performance

adjustments carried on to a later time window &poading to the P3b (320-450 ms, Fig. 4C). We



observed an interaction betweferdback type and adjustment (F(; 125y = 8.09,p = .005, partial 0=
.061), since the differences between good and bagstments were only significant in response to
success feedbacki 7= 2.98,p = .003) but not to failure feedback. .= -.998,p = .326). We also
found a three-way interaction betwefeadback type, adjustment andneurofeedback condition (F,125)

= 3.93,p = .022,partial 4°= .059): this reflected the fact that the FPA graigp showed a difference
between good and bad adjustments in responseltoefdeedbackt(, = -3.76,p = .001), but this
difference was not significant in the RLA«{,= .636,p = .529) or LRA feedback conditions.¢)=
1.42,p = .164).
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Figure 4. ERP responses to success and failure feedback in trials preceding good and

bad adjustments in brain activity. A. ERP waveforms in response to success (left) and
failure (right) feedback in trials followed by goddlue) and bad/maladaptive (red) brain
activity adjustments at the mid-frontal electrodez:(top plots) and at the mid-parietal



electrode (Pz: second row). The highlighted aréwsvsthe time-windows associated with
adequate adjustments in brain activiB.. Average amplitude at Pz during the P3a time-
window (220-300 ms) in trials leading to good (Blaed bad (red) adjustments following
success feedback.. Average amplitude at Pz during the P3b time-wind820-450 ms) in
trials leading to good (blue) and bad (red) adjestis following success feedback. *Note
that the error bar figures for the failure feedbaok not presented as we observed no effects
in response to incorrect feedback. Error bars ssoriet+/- 1 S.E.M.

4. Methods Experiment 2

We conducted another experiment to investigatedifferences in the ERP responses to
feedback when the feedback is invalid/random vemihis valid and the protocol targets an increase

in alpha activity in a single region.

4.1. Participants

Fifty neurologically healthy adults (25 femaleseddoetween 17 - 41 years (22.18 + 3.81,;
Mean = SD) with normal or corrected-to-normal visi@elf-reported) took part in one experimental
session. The participants were randomly assigneshto of the two conditions, to avoid potential
carry-over effects of one condition to the othérRandom neurofeedbackl & 30); and 2) Right
frontal alpha neurofeedback (valid feedbadi)= 20). Three participants had to be excluded due to
technical problems and two participants were exadudue to poor data quality. The final sample was
26 participants in in the random feedback group Ehih the valid feedback group. Participants gave
written informed consent before the beginning af dxperiment and were reimbursed at a rate of
£7.50 per hour. The study protocol was approvethbyQMUL ethics board. Ethical considerations
were met as all the data were kept anonymous amfileatial, by using a unique identifier code for
each participant. All participants were informedtle¢ir right to withdraw, and were debriefed at the

end of the study.

4.2. Neurofeedback (NF)

The neurofeedback session followed the same proeesfuExperiment 1, i.e. there were
three 5-minute bouts of NF, separated by 1.5 miresting state EEG recording (Fig.1). However, for
the random group the feedback was completely rantiaihof the times (300 epochs) the size of the
square increased and it went green, whereas hé#fiedfimes (300) the size of the square decreased
and it went red (random order). The random feediakdefined by a random vector before the start

of the experiment, and was different for each pgxint. The valid neurofeedback group received



success feedback everytime alpha power (calculatied) the same methods described in experiment

1) increased in the F4 electrode (right frontal).

4.3. Procedure

Participants were seated in front of a computeat Boundproof room. They were given the
same instructions as in Experiment 1, i.e. theyevirstructed to try to increase the size of theasgu
by manipulating their brain/thoughts. The overaliration was approximately 20 minutes. The
neurofeedback task was programmed in Matlab. Timenmaanication between StarStim and Matlab
was interfaced using Matnic (Neuroelectrics, Spain,

http://www.neuroelectrics.com/products/softwarem@atemote-stimulation-client/) and the visual

feedback was presented using the Psychtoolboxr{@mei& Vision, 1997).

4.4, EEG recording and pre-processing

We used the same EEG set-up and followed the seergrpcessing steps as in Experiment

3.5. Data analysis

Neurofeedback learning: We calculated the mean relative alpha power in eacinofeedback bout for
random and valid neurofeedback and also beforeaftedthe neurofeedback. The statistical analysis
is described in the results section.

Feedback-related negativity (FRN) and correct positivity (CP) during neurofeedback: We analysed

two ERP components elicited in response to faimd success feedback: first, a feedback-related
negavity (FRN)-like component peaking around 120-Bs after feedback, and, second, a correct
positivity (CP)-like component peaking around 28®m3ns after feedback. Mean ERP amplitudes

were calculated at the Fz electrode.

Neurofeedback adjustment following feedback: We compared the ERP responses to success and
failure feedback which were followed by good vsd Ipgrformance adjustments (i.e. increase in alpha
power). We focused on the P3a (mean amplitude &pbRz220 ms to 300 ms after feedback) and the
P3b (mean amplitude at Pz from 320 ms to 450 nes &tdback) for this analysis since these were

the significant components observed in experiment 1

5. Results Experiment 2



5.1. Neurofeedback learning

First, we examined whether participants increased ttained pattern (right frontal alpha
power) during the three 5-minute bouts in the ceahpared to the random feedback session (Fig.5A).
We entered the mean trained alpha power for eamipgn each bout in a 2eédback validity: valid
vs. random) X 3tfaining bout: 1, 2, 3) mixed design ANOVA. The results showeahan effect of
training bout E g5 = 3.87,p = .025, partial n? = .082), reflecting an increase in alpha during the
session. Since it increased in the same directidooth groups, there was no significant interaction
between feedback validity and training bokig g = 2.15,p = .127, partial n?= .047). Nonetheless,
pairwise comparisons showed a significant incréassdpha power over the bouts only in the group
which performed neurofeedback with valid feedbdakn bout 1 to bout 3tgs= 2.32,p = .032), but
not significant from bout 2 to bout §,¢= 1.90,p = .073) or from bout 1 to Z(g= 1.14,p = .112).
For the random feedback, alpha power was not gigmifly different in any contrast, between bout 1
and 3 {25 = 0.646,p = .524), bout 1 vs. 25 = 0.81,p = .427) and between 2 and 34 = -0.11,p
= .911).

Second, we investigated whether these effects stetiahe feedback session. We compared
alpha power over the right frontal electrode (Fdyimy rest before and after the neurofeedback
session (Fig. 5B). We entered the values into fee@lifack validity: valid vs. random) x 2résting
state session: before vs. after) repeated-measures ANOVA. We eksesignificant effects afesting
state session (F1,43y = 5.89,p = .019, partial n?= .121), a trend for the interaction betweesting
state andfeedback validity (F 43 = 3.45,p = .070,partial n?=.074), and no main effect féeedback
validity (F,43 = .672,p = .417, partial n? = .015). Pairwise contrasts were similar to the ryri
session alpha contrasts: a significant increasdpina in the post-test in the group that receivadatlv
feedback ;5= 2.25,p = .037), but not for the group which received randeedbackt(,s= 0.57,p
= .574). Altogether these findings showed that theas @& trend towards improvement for the valid

feedback group, but the effects were not robustigindo show that solid learning occurred for the

group.
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Figure 5. Performance before, during and after neurofeedback. A. Average trained EEG
pattern (normalised alpha power at F4) during thiee 5-minute neurofeedback bouts of the
session with random (blue) vs. valid (red) feedb&ckAverage trained EEG pattern during
rest before (blue) and after (red) the neurofeeklisa@ssions with random (transparent) vs.
Valid (solid) feedback. Error bars represent +5.E.M.

5.2. Feedback-related negativity (FRN) and correct positivity (CP) during neurof eedback

We investigated the differences in the FRN andrORsponse to valid vs. random feedback.
We entered the FRN values in a feeflback validity: valid vs. random) x 2 (feedback valence:
success vs. failure) mixed-design ANOVA. We observed a main effect feedback valence(; 43 =
5.54,p = .023,partial 4°= .114), replicating the key previous finding ofostger FRN in response to
success feedback (Fig.6A). There was no interaetitinfeedback validity K 43y = 0.009,p = .926,
partial #° < .001), suggesting that this effect was similar whearticipants did the task with
invalid/random feedback. Next, we conducted theesam 2 mixed-design ANOVA using the CP as
the dependent variable. Consistent with experimierthere was a strong effect of feedback valence
(F1.43= 22.911p < .001, partial n?= .348) since the CP was higher in response to sadeedback.
We observed a non-significant interaction treRgd 4, = 2.94,p = .094, partial n?= .064) between

feedback validity and valence. This reflected thet that the difference in the CP between success



and failure feedback was stronger in the partidgpavho received validt{s = 3.65,p = .002) vs.
random {25y = 2.76,p = .011) feedback, even though the effect was steisti significant in both

groups.

In order to track how the responses to feedbaehgéd over the course of the feedback
session, we compared the FRN and the CP acroghrée bouts of neurofeedback (Fig. 6B). First,
we entered the FRN values in angufofeedback bout: 1, 2, and 3) x 2féedback valence: success vs.
failure) x 2 (eedback validity: valid vs. random) mixed-design ANOVA. Beyond the already
observed main effects déedback valence, we observed a significant interaction between faekb
valence and neurofeedback bo#,gs = 5.36,p = .006, partial n? = .111), showing that the
differences between success and failure feedbaok significantly higher at the beginning than the
end of the session (see pairwise contrasts in &@). There was a significant main effect of
neurofeedback boufF s = 3.86,p = .025, partial n? = .082) which suggests that the decrease in
difference between success and failure was accdegbdy a more general decrease in FRN. There
were no significant effects of feedback validityr nother significant interactionsp(> .1). We
conducted the same statistical analysis using tRea€ the dependent variable. Similarly to the
analysis of the FRN, we observed a significant nediact of neurofeedback bouk{ s = 6.02,p =
.004, partial #° = .123), and this factor interacted with feedbackdiig (Fe.ss = 3.45,p = .036,
partial 4°= .074), as the group receiving valid feedback ditiraduce their CP as much as the group
receiving random feedback did. Pairwise contrastiscate that the group receiving valid feedback
showed a trend towards higher difference in CP éetwsuccess and failure feedback over the course

of the session, but the contrasts did not readfifiignce p > .05, Fig.6D).
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Figure 6. ERP responses to success and failure feedback in response to random vs. valid
feedback. A. ERP waveforms in response to success (blue) ahaddred) feedback at the
Fz electrode in response to random feedback @eid) valid feedback (rightB. First row:
ERP responses to success (blue) and failure (esd)bfick in the random condition in each
bout (from left to right); Second row: the same E®R&eforms but in the valid feedback
condition. C. FRN difference between success and failure feedbadakagh bout during



random and valid feedback neurofeedback conditions. CP difference in each
neurofeedback bout during random and valid feedbaalor bars and shades represent +/- 1
S.E.M. *p< .05.

5.3. Neurofeedback adjustment following feedback

We tested whether stronger P3a and P3b compoimen¢sponse to success feedback were
also predictive of a good adjustment, as was obslervexperiment 1. We entered the P3a values in a
2 (feedback valence: success vs. failure) x 2eedback adjustment: good vs. bad) repeated-measures
ANOVA. In the group receiving valid feedback, wesebved a significant effect of feedback valence
(Fa1 = 6.27,p = .022, partial n*= .258) and a significant interaction between feedlkmdjustment
and valenceHR, 15 = 6.24,p = .022,partial n?= .258), but no main effect of adjustmeRf. (5= 2.12,
p = .162, partial 4° = .106). This is because the differences in ampitbétween good and bad
adjustments were only significant following succéssdback (see contrasts in Fig.7B). Importantly,
there was no significant effect of these factorthenP3a in the group receiving random feedbaek: th
main effects of feedback adjustméht; ,sy= 0.81,p = .779, partial n?= .003) and feedback valence
(Fazs = 1.83,p = .188, partial > = .068), and the interactiof¥{ ,5 = .563,p = .460, partial #°=
.022) all failed to reach significance. We condddfee same analyses using the P3b as the dependent
variable. As it is visible in Fig.7, none of thdesfts were significantp(> .5) except for the effect of
feedback valence during valid feedbaF (s) = 4.90,p = .040, partial n?= .214). This suggests that
there is a possibility that the effects we observeB3b in experiment 1 were a residual of P3a. The
main findings (FRN, CP and P3a) of experiments ©l &1 can be visualised in Figure S1

(Supplementary Material).
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6. Discussion

This is the first study to investigate the eventater potentials (ERPS) in response to

feedback during neurofeedback. It is also the fosdnalyse how these responses are associated with



subsequent adjustments to the trained brain actiie observed stronger ERP responses to success
feedback, including higher feedback related neggtiFRN) and correct positivity (CP). The
strength of the responses to success feedbackedatdr components (P3a and P3b) were associated
with good adjustments on the subsequent epochsieafdhe responses to failure feedback were
uninformative (unknown to the participants). All thiese results, except for the P3b, were replicated
in experiment 2, in which we contrasted random il feedback using a different neurofeedback
protocol. Our findings contribute to the existingunofeedback and feedback processing literature in
four important ways. First, these results indicttat the ERPs in response to feedback during
neurofeedback are similar to the ERPs in respam$eeidback in other learning contexts. Although
this was hypothesised by Radua et al. (2018), mualyss the first to examine this question directly
Second, we demonstrated that success feedbacks ediconger responses than failure feedback,
suggesting that in a neurofeedback task, succegbdek might be the most relevant for subsequent
adjustments to brain activity. Third, we found tlaecific ERP responses to success feedback were
higher preceding adaptive adjustment, whereasdbponses to failure feedback were not. Finally,
our results showed that the trained brain pattienpsoved during feedback in a single neurofeedback
session, but not at rest once the feedback ha@aebsthis section the discussion of the main ERP
findings is followed by an explanation of how respes to success feedback can be quickly integrated
to facilitate learning, elaborating on why succiessiback might be more relevant to learning through
neurofeedback.

Our findings confirm the prediction by Radua et(2018) that the processing of feedback
during neurofeedback resembles the processing afesa and failure in other feedback learning
contexts. We found an FRN-like component in respdodeedback, which is an important signature
of feedback processing (Miltner et al., 1997) ahd most investigated ERP component in the
feedback learning literature (Walsh & Anderson, 20Me observed a negative deflection starting
around 120 ms after feedback and lasting until @a200 ms and peaking at the midfrontal region.
This is similar to a typical FRN, although slightiarlier than originally described (Miltner et,al.
1997). This negativity was observed following bd#ilure and success feedback. This finding is
surprising for three reasons. First, the FRN isdtlypsised to be a signature of processing reward
prediction errors (Holroyd & Coles, 2002) or ungdgrprediction errors (Hauser et al., 2014), hehce i
is generally found to be higher in response to likety outcomes (e.g. Cohen, Elger, & Ranganath,
2007; Hauser et al., 2014; Oliveira, McDonald, &a@man, 2007; Walsh & Anderson, 2011; Walsh
& Anderson, 2012). However, in the current studgcass and failure feedback were equally likely
(both around 50%). Second, in situations wherelfaekitypes are equally likely (as in our study), we
would expect the FRN in response to failure feekliacbe higher due to the previously observed
optimistic bias effect on the FRN (Oliveira et &007). This study found the opposite: a higher FRN

in response to success feedback. Third, the FRMsé® be more sensitive to failure than success



feedback (e.g. Hajcak, Moser, Holroyd, & Simons)@0Luft, Nolte, & Bhattacharya, 2013; Yeung
& Sanfey, 2004). Since neurofeedback depends oficiinprain processes which cannot be easily
monitored without external feedback, we suggedt tfie FRN codes the relevance of the provided
information. This suggestion is supported by stsidibowing a stronger FRN in response to more
reliable (e.g. Ernst & Steinhauser, 2018) and miofermative (e.g. Schiffer, Siletti, Waszak, &
Yeung, 2017) feedback.

We also observed a steep positive deflection orEREs, especially at the midline fronto-
central area after the FRN. This component resesntble early positivity (early Pe) which is a
positive deflection starting immediately after theRN at the same mid-frontal region around 200ms
after feedback (for a review see: Ullsperger et2014). A similar positivity is the P2a, which was
first observed in selective attention tasks (Kenmesna&ok, & Smulders, 1993) and it was later
observed in response to rewards (Potts, MartintdBu& Montague, 2006). To avoid confusion, here
we called this component correct positivity (CPhisT component has been found to code the
motivational relevance of the stimulus (Potts et 2006), which can be used to signal the need for

enhanced control of the prefrontal cortex.

Here we suggest that the increased FRN and CRBjpomee to success feedback indicate that
this information is more relevant for learning hdw regulate brain activity. Neither of these
components were associated with adjustments intréieed brain activity, which suggests that they
signal the importance of the event without necdgsassuring the integration of such information
into the subsequent epoch. One important differebeeveen a neurofeedback task and more
traditional cognitive tasks is that learning isHiigimplicit during neurofeedback as it is not alea
how one can control her/his own brain activity. Fwstance, a previous study observed that explicit
instructions did not help neurofeedback learningMRI) to control the activity in the supplementar
motor area whereas monetary rewards did (Sepulkedbl, 2016). A previous review study from our
group (Luft, 2014) observed that the FRN was oelgvant for learning when the experimental task
was explicit (e.g. probabilistic learning taskshefefore, we suggest that these components are
associated with the initial processing of the femdtbdepending on its relevance for neurofeedback

learning.

Regarding the incorporation of feedback informatioio the subsequent time, we observed
that a later component around the P3 time-windove Weaind to be associated with subsequent
adaptive brain activity adjustment. The positivéledion started slightly earlier, around 200 nrs, i
the parietal region and lasted until almost the efdhe epoch (around 450ms). The component
resembles the well-known P3 (Sutton, Braren, ZuRidphn, 1965) which is a positive deflection in
the ERPs in response to unexpected or relevanmttiattal stimuli of multiple sensory modalities. In

the current study, the P3 was associated with adaatijustments to feedback. In line with previous



work in the feedback learning literature (for aiesw. Polich, 2007), we also identified two sub-
components which we labelled the P3a and P3b. Ilinsightful review (Polich, 2007), it was
suggested that the P3a increases in response teatimtally or sensory salient stimulus, leading to
higher attentional mechanisms, whereas the P3b qiemmmemory operations in temporal-parietal
areas for subsequent memory processing. In our bafe sub-components seem to have led to good
adjustments on the following trial in experimenthich suggests that such operations are important
for incorporating the feedback into the coming twiedow for learning. However, in experiment 2
the P3b effect was not replicated, which seemsdaate that P3a is more relevant for successful
short-term adjustments required in the neurofeddtzsk. In sum, then , our findings indicate thnet t
P3a in response to success feedback is cruciaref@mining the trained brain patterns during

neurofeedback.

Importantly, our findings illuminate the discussioegarding the learning adjustment
mechanisms of neurofeedback. Most researchers unofeedback theoretise that one can learn how
to control her/his own brain activity through op#rar instrumental conditioning (Enriqguez-Geppert
et al., 2017): in other words, promoting strongoa&gtions between a specific pattern of brain #@gtiv
and a specific outcome can allow individuals tordaow to control this activity to obtain the desir
outcomes. This was the key idea behind the fitgties of neurofeedback with animals. For instance,
Fetz (Fetz, 1969) recorded the activity of singdeimons in the precentral cortex of unanesthetized
monkeys and provided rewards when their firinggatereased (food pellet paired with auditory and
visual feedback). He observed that monkeys incte#ise activity of newly isolated cells by 50 to
500%. It is important to note that this study relen rewards (success feedback) as a teachind.signa
Considering that the brain is a complex dynamigatesn which exhibits a large range of random and
ordered activity (Chialvo, 2010), it has been hyesised (Ros et al., 2016) that these fluctuating
signals will eventually meet the threshold for redyaand after some repeated events/rewards they can
be “tuned” to the feedback through synaptic pl#gtidhis will cause the brain to memorize a new
“set-point” and tune to it for reaching the rewardotably, in such a scenario success feedback
would be more informative. Failure feedback wouddless informative since memorizing the brain
activity leading to failure would require incrediblarge memory resources given the infinite
possibilities of variable brain states. Our curr@émdings support this explanation since the FRR, C
and P3 were higher in response to sucess feedibalcthase signals are sensitive to the relevance of
feedback information for learning (for a review:ft,u2014). Since most neurofeedback studies in
humans present provide both success and failewbéek (e.g. Mennella et al., 2017; Ros et al.,
2016), we suggest that future studies test theaaf§i of providing feedback only when the participan
presents the desired pattern, as this might be efteetive (as in Quaedflieg et al., 2016).

Interestingly, a recent study (Radua et al., 20di&lysing the brain responses to varying

posititive and negative feedback using fMRI obsdragorogressive reduction of sensitivity to failure



and an increase in response to success feedbaely. dlko observed that only the responses
associated with processing success feedback @axtigation of the medial prefrontal cortex and
anterior cingulate cortex) were correlated with noéeedback learning. We suggest that it could be
that the failure signals are processed more inkgragehe beginning of learning, but as they do not
provide enough information for effective learningey start being inhibited in order to favour the
most informative feedback for learning. In our stilde differences between the ERPs in response to
success and failure feedback reduced during theseonf the session, and the ERPs were overall
weaker, but this reduction was higher when the Haekl was random. Altogether these findings
might suggest that the responses to feedback reshoce when they are not informative or are

redundant.

In this study, we can conclude that success feddgorocessed more intensely than failure
feedback during neurofeedback. We did not find istest differences in feedback processing
between different neurofeedback protocols, whiclghhisuggest that this is a general learning
mechanism in EEG-neurofeedback protocols. As stioh, feedback processing mechanisms we
observed may be valid for a variety of neurofeedli@otocols. However, our study was limited to a
single and short session. Additionally, the leagnive observed in this short session was weak and
limited by the format of the feedback, which did soale to the size of the change in the brainasign
Future studies need to investigate how these sigeddte learning over multiple sessions, and how
this could lead to long-term changes in restingeskaiain activity, which were not observed in this

study.
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