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COMPLEXITY REDUCTION FOR CALIBRATION TO AMERICAN
OPTIONS

OLENA BURKOVSKA, KATHRIN GLAU, MIRCO MAHLSTEDT, AND BARBARA WOHLMUTH

ABSTRACT. American put options are among the most frequently traded single stock op-
tions, and their calibration is computationally challenging since no closed-form expression
is available. Due to the higher flexibility in comparison to European options, the mathe-
matical model involves additional constraints, and a variational inequality is obtained. We
use the Heston stochastic volatility model to describe the price of a single stock option.
In order to speed up the calibration process, we apply two model reduction strategies.
Firstly, we introduce a reduced basis method. We thus reduce the computational com-
plexity of solving the parametric PDE drastically, compared to a classical finite element
method, which renders applications of standard minimization algorithms for the calibra-
tion significantly faster. Secondly, we apply the so-called de-Americanization strategy.
Here, the main idea is to reformulate the calibration problem for American options as
a problem for European options and to exploit closed-form solutions. Both reduction
techniques are systematically compared and tested for both synthetic and market data
sets.

1. INTRODUCTION

Automatic and high-speed trading give rise to new computational challenges in the
calibration of financial models. Both the frequent tradings and the constantly changing
market situations make a steady recalibration necessary. Reliable risk assessment requires
the estimation of the model parameters with adequate speed and precision.

In calibration procedures, the model parameters are chosen to optimally fit the op-
tion prices of the most liquid products. The calibration problem can be formulated as a
least-squares minimization problem, namely to find a model parameter constellation that
minimizes the quadratic discrepancy between the model and market option prices. These
problems typically require the computation of model prices many times for different values
of the parameters, which incurs to a high computational cost, in proportion with the effort
of the underlying pricing routine.

Considering index derivatives, the most liquid options typically are of European style and
the major part of the literature focuses on calibration to this class of options. Moreover,
the availability of fast and highly accurate prices of European options for the purpose of
calibration ranges among the basic model requirement. The most frequently traded single
stock options, however, are of American style, which makes it necessary to use them for
calibration as well. American option prices are path-dependent, as the option holder has
the right to exercise at any time until maturity. This makes the design of methods to
price options of American style considerably more involved than those for their European
counterparts.
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Both European and American options can be priced by solving a parameter-dependent
partial differential equation (PDE) in time and asset price, see, e.g., Achdou and Piron-
neau (2005a); Hilber et al. (2013) and the references therein. However, due to the higher
flexibility of exercising American options compared to European options, the pricing PDE
for an American options has to be enriched by a suitable inequality constraint, reflecting
the early-exercise feature. The problem under consideration can be reformulated as a weak
variational inequality problem to which semi-smooth Newton schemes can be applied as
non-linear solvers. Classical discretization schemes such as finite elements or finite differ-
ences then require rather high-dimensional basis spaces, which leads to large systems to be
solved.

To tackle the rising computational challenges, numerical techniques to reduce the com-
plexity of the pricing problem are especially promising. Therefore, in order to accelerate
the calibration to American options while still providing accurate results, we explore two
different types of complexity reduction techniques. The first is based on reduced basis
methods (RBM), which are tailored to efficiently solve parameter-dependent partial differ-
ential equations. In contrast, the second, de-Americanization method (DAS), exploits the
fact that semi-closed form solutions can be accessed for the structurally simpler European
options.

The key idea of the reduced basis method is to replace the basis of the standard finite ele-
ment method (FEM) by a basis that is adapted to the parametric problem. This is achieved
by forming the basis functions as linear combinations of suitable snapshot solutions, i.e.
solutions of the PDE with specific choices of parameters. The striking advantage of this
approach is that it typically is able to generate a basis of very small dimension compared to
the classical basis functions, such as the local hat functions employed in FEM, that leads to
the same range of accuracy. Thus, we obtain dense algebraic systems of remarkably smaller
size. This leads to an iterative approximation procedure, which is considerably faster to
solve when compared to the classical FEM. For this reason, RBM have been extensively
studied and successfully applied in different fields of numerical analysis and engineering
sciences over the last decade, see, e.g., Quarteroni et al. (2016); Hesthaven et al. (2016)
and the references therein. First and highly promising results of RBM for option pricing
can be found in Cont et al. (2011); Pironneau (2011, 2012). Recent work on model re-
duction techniques in finance with a primary focus on proper orthogonal decomposition
(POD) methods include, e.g., Sachs and Schneider (2014); Pironneau (2012); Peherstorfer
et al. (2015), and RBM, e.g., Mayerhofer and Urban (2016). Moreover, the RBM has been
applied to accelerate the model calibration to European options, see Cont et al. (2011);
Pironneau (2009). This motivates us to extend the approach to the more involved case of
American options, which to the best of our knowledge, has not yet been addressed.

To this aim, we apply the RBM to price American options in the calibration routine and
we investigate the performance of the method. American option prices, as described above,
can be described by parabolic variational inequalites. The construction of an appropriate
reduced basis space is much more challenging than for variational equalities. To tackle this,
POD-Angle-Greedy strategies Burkovska et al. (2015) or non-negative matrix factorization
algorithms Balajewicz et al. (2016); Balajewicz and Toivanen (2016) can be used. We
also mention the relevant works on RBM for variational inequalities for the stationary
case Haasdonk et al. (2012); Zhang et al. (2016) and instationary case in a space-time
framework, e.g., Glas and Urban (2014). Here, we rely on the RBM to price American
options, which has been developed in Burkovska et al. (2015); Burkovska (2016); Balajewicz
and Toivanen (2016).
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Whereas discretization techniques for PDEs, such as FEM or RBM, form a rather flexible
and abstract framework that have proven highly beneficial in different fields of applications,
the de-Americanization technique is specially designed for the valuation of American op-
tions. It has been developed in the financial industry, where it is considered to be the
benchmark method, see Carr and Wu (2010); Burkovska et al. (2018). This technique first
transforms the price into a pseudo-European option price and secondly calibrates the Euro-
pean option by directly applying the computationally less expensive closed-form solution.
In Burkovska et al. (2018), the de-Americanization technique is studied numerically, which
reveals its strengths as well as limitations.

In this article, we investigate both model reduction techniques (RBM and de-America-
nization) numerically for calibration of the Heston model, and we compare their perfor-
mances.

The rest of the paper is structured as follows: We conclude the introduction with a
short discussion of related literature. Then we briefly introduce the Heston model and the
calibration procedure in Section 2. In Section 3 and Section 4 we discuss different pricing
methodologies considered in this paper. We outline the main idea of the de-Americanization
method in Section 3. The reduced basis method we present in Section 4. Here, we derive the
variational formulation of the problem, present its discretized counterpart, and construct
the reduced order model. Section 5 is devoted to the description of the calibration procedure
based on the example of the Heston model. In Section 6 we present numerical results
and comparative study of the calibration procedure with the reduced basis and the de-
Americanization methods for synthetic as well as for marked data sets.

1.1. Related literature. The calibration problem can be also studied in the context of
the theory of inverse problems and we provide a brief overview of the related literature.
Many works are concerned with reconstructing the volatility surface for European options
in the local-volatility variant of the Black-Scholes model. This then leads to an infinite-
dimensional inverse problem, where a distributed parameter needs to be reconstructed
from the given market data. We refer, e.g., to Bouchouev and Isakov (1997), where unique
solvability and stability of the inverse problem are analyzed, and to Egger and Engl (2005),
where an appropriate Tikhonov regularization strategy is proposed to address the inherent
ill-posedness of the problem. Similarly, in Achdou (2005); Achdou and Pironneau (2005b), a
Tikhonov regularized problem with a local volatility is considered for American options, and
the existence of solutions is derived together with their optimality conditions. In the present
case, we consider the stochastic volatility Heston model. In the resulting inverse problem,
we are confronted with the task of recovering only a finite number of global parameters.
Since the dimension of the parameter space is typically much smaller then the number of
available market observations, the inverse problem is over-determined. Therefore, we set
up a least-squares minimization problem without including a regularization term.

We note that for calibration one can also work directly in the stochastic framework
and compute the model prices, e.g., using a Monte-Carlo method by applying a backward
regression scheme as in Longstaff and Schwartz (2001) or by using different Monte-Carlo
estimates as in e.g. Broadie and Glasserman (1997); Fu et al. (2001); Rogers (2002).
Alternatively one can apply (binomial) tree methods as e.g. in Cox et al. (1979); Rubinstein
(1994). For European options, closed-form solutions can be used, or FFT techniques, see,
e.g., Mrézek et al. (2014); Schoutens et al. (2004); Gerlich et al. (2012). Fourier transform
based pricing methods have been extended to price American options, see for instance Fang
and OQosterlee (2011) and Levendorskii (2004). These methods are applicable when the
Fourier transform of the modelling stochastic process evaluated at fixed times is available
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in closed-form. In this article we focus on a PDE-based approach that has a more general
scope.

2. PROBLEM FORMULATION

To calculate the price of an option (European or American) in a specific model, suitable
data must be provided. These data consist of the current asset price Sy > 0, the maturity
time T" > 0, the strike price K > 0, and the set of model parameters, such as, e.g., the
interest rate, the long-run variance, the rate of mean reversion, the volatility of volatility
and the correlation in the Heston model. We denote by the vector g € P the set of
parameters, where P C RP is a parameter domain. Whereas the first three components,
So, K, T, are known and provided by the market data, the input parameter vector p is
not known a priori, except for the interest rate r > 0, and needs to be estimated from the
market. These types of problems are referred to as parameter identification or calibration
problems. That is, given a set of observations of market option prices, we are interested in
the parameter p that provides the best fit to the observed market data.

Generally, the market data is characterized by the actual spot price Sy and the market
option prices bes = P°%(Sy, T;, K;) for different maturities T; and for different strikes K,
i = 1,..., M. Mathematically, the calibration of option prices can be stated as a least
squares minimization problem: find g € P, that solves

M
win J(u),  J(w) = 57 D P = PP, (2.1)
i=1

where P;(pn) = P(So,T;, K;; pp) are the model prices. Numerous approaches exist to cal-
culate the model price P(u). The most common ones are analytic formulae, Monte Carlo
methods, binomial/trinomial trees, numerical method for approximating the PDEs (finite
elements, finite differences). While the Monte Carlo method is the most general approach
that is applicable to many models, it suffers from the expensive computational cost and
lack of accuracy. In contrast, the numerical approximation of the PDEs are more accurate
methods, however they also come with the high computational cost as soon as the number
of degrees of freedom of the discrete system increases. In the context of the calibration
problems, where multiple evaluation of the solution for different parameter values are re-
quired, the computational cost is then significantly amplified. To make these problems
feasible in application, approaches with a low computational cost are in favor.

In the following, we investigate two different computationally efficient approaches which
also preserve the accuracy of problem, the RBM, described in Section 4.5 and DAS, pre-
sented in Section 3. For the numerical experiments of this paper we choose the Heston
model, Gerlich et al. (2012); Mrazek et al. (2014); Schoutens et al. (2004), and consider
the pricing of American and European put options. We point out that the methodologies
presented here are applicable more generally to other models and option types as well.

2.1. Heston model. The Heston model, considered as a benchmark example in this paper,
is described by the following stock price (2.2a) and volatility (2.2b) dynamics,

dS = 1Sdr + o Sdw!, (2.2a)
dv = k(y — v)dr + E/vdW?2, (2.2b)

The asset price S := {S; : 7 > 0} exhibits geometric Brownian motion with Wiener process
W1 drift « and volatility o := /v. The stochastic instantaneous variance v := {v, : 7 > 0}
is driven by a mean-reverting square-root process (known as the Cox-Ingersoll-Ross (CIR)
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process) with long-run variance v > 0, rate of mean reversion x > 0, and volatility of
variance (also called the volatility of volatility) & > 0. The Wiener processes W' and W?
are correlated by p € [—1,1]. Moreover, the so-called Feller condition is assumed, which
states that the variance process (2.2b) is strictly positive if the parameters satisfy

26y > €2, (2.3)

see, e.g., Janek et al. (2011). Unless otherwise stated, we focus on setting the parameters
such that the Feller condition is always fulfilled.

3. DE-AMERICANIZATION STRATEGY (DAS)

The de-Americanization method transforms the observed American market prices into
pseudo-European prices prior to the calibration. The rationale behind the de-America-
nization strategy is the following. Calibrating a sophisticated model to American option
prices is computationally costly and technically challenging. In contrast, calibrating simple
e.g. single-parameter models to American option prices is feasible. Yet fitting a single-
parameter model to a whole option surface is not expected to yield useful results. One can,
however, expect that a well-chosen single-parameter model can represent a single observed
option price very well. This line of thoughts is exploited in the de-Americanization strategy
by a multi-stage calibration procedure. First, for each pair of strike and maturity the corre-
sponding observed American option price is used to fit a single-parameter model. Second,
the European option prices in all of the resulting single-parameter models are computed.
This gives a surface of pseudo-European option prices. This part of the procedure can be
seen as a data pre-processing step where the observed prices are transferred into a more
accessible data set, namely European option prices. The advantage is that in the second
phase, the actual calibration is performed as a calibration to observed European option
prices, for which a rich set of feasible and efficient tools is available. Putting this into more
technical terms, given an input data of American put options, we consider the minimization

problem (2.1) with J(u) =~ J(p),

M
N 5 1 =
minJ(p), J(p) =57 > 1B = P, (3.1)
i=1
where the prices ]sfbs, j =1,...,M, are the pseudo-European put prices. These are

obtained by perturbing the American put prices PJ‘?bS, ie., ﬁ]‘?bs = D(bes), where D :
RM — RM and the corresponding prices P;(u) are the European put prices. As simple
single-index model in the data-preprocessing phase, we use the binomial tree model of Cox
et al. (1979) as in Burkovska et al. (2018). In other words, we use the binomial tree to
transform each American option price into a pseudo-European option price. In a nutshell,
once the observed market prices PJ‘?bS, j =1,..., M, have been collected, for each single

stock option an individual binomial tree is calibrated to match this option price PJ‘?bS. The
resulting tree is used to price the associated so-called pseudo-European option with the
same strike and maturity. A detailed description of the de-Americanization method is
given in (Burkovska et al., 2018, Algorithm 1).

The advantage of this method is that the complexity of the non-linear problem for pricing
American options can be reduced to that of the linear problem for pricing European options,
allowing closed-form solutions or Fourier techniques to be exploited. The concept is highly
attractive for the financial industry since the complex computational problem is reduced to
standard ingredients that are typically available, well tested, heavily used and maintained in
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their computational library. The method is currently a market standard. We note that from
the computational point of view, the DAS is very attractive, particularly in combination
with the closed-form solutions. However, for each set of observations, an additional pre-
processing time to transform the American data into European one is required, and, as
we will see later, this step can dominate the computational cost of the entire calibration
routine.

4. REDUCED BASIS METHOD (RBM)

Reduced basis methods have become very popular in numerical analysis. Today they
are still less common in finance. We therefore introduce the concept carefully. We start
by presenting the PDE framework along with the variational formulation of the problem
followed by the standard FEM discretization that we apply. Finally, we introduce the
complexity reduction which consists in establishing a basis that is adapted to the parametric
PDE problem.

4.1. PDE framework. By means of It6 calculus the option pricing problem can be recast
as a PDE, see, e.g., Achdou and Pironneau (2005a). More precisely, let P(u) denote a
price of the European option, then P(u) solves the following pPDEs:

OP(p)
or

+ L(pn)P(p) =0, in [0,7) xRY, (4.1a)
P(T;p)="H, in R, (4.1b)

where H is a pay-off functional (#(S) = (K —S5)+ for the put and H(S) = (S — K)4 for the
call), n = 1,2, and 7 denotes the time to maturity 7. The operator L is a second order linear
differential operator of a convection-diffusion reaction type, and is defined by the model used
to price the option, e.g., Black-Scholes, Black and Scholes (1973), CEV, Heston, Heston
(1993). In particular, for the Heston model, the parameter p := (&, p,7,k,r), and the
operator £(p) is defined as follows

L1 GOPW) . PP 1, 9P 0P
L(p)P(p) := in 552 + &vpS T + 55 v 502 +rS 59
+6(y—v) al;fj“) —rP(p).

In the case of American put options, an early exercise property of the option is incor-
porated by additional inequality constraints. Denoting by P(u) the price of an American
put option, we have that P(u) satisfies

agi“) + L(p)P(p) <0, in [0,T) x R, (4.2a)
P(p) > H, in [0,T) x R%, (4.2b)
(81;(7“) + ﬁ(u)P(u)) (P(p) —H) =0, in [0,7) xRY, (4.2¢

)
P(T;p) =H, in RY, (4.2d)
with H(S) := (K — S)4.

Concerning the mathematical theory, we remark that, if complemented with suitable
boundary conditions, the problems (4.1) and (4.2) typically admit unique solutions. How-
ever, while in the linear case (4.1) we can expect classical solutions, for the set of inequal-
ities (4.2) one has to resort to a more general concept such as of weak solutions. We do
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not go into further details here, since, for the purposes of the paper, we consider a further
approximation of the problem on a bounded domain.

4.2. Truncation to a bounded domain. In the present work, in order to build the
approximation methods such as finite elements or the reduced basis method, we recast
the PDE problem in a variational form, and work with the corresponding weak solutions.
However, we do not work with (4.1)—(4.2) directly, but instead, we perform a further
truncation of the PDE to a bounded domain € C R? with Lipschitz continuous boundary
02 = I'p UI'y, where I'p corresponds to the non-trivial Dirichlet part of the boundary 0€2,
i.e., I'p # (0, and I'y stands for the part associated with the natural boundary conditions.
Furthermore, we impose suitable Dirichlet and natural boundary conditions on these sub-
domains. Additionally, the operator L is typically degenerate for S = 0, and it is standard
practice to perform a log-transformation of S by introducing a new variable = := log(S/K).
Together with a log-transformation of S, we transform the PDE into a forward problem
in time and we define ¢ := T — 7. Then we denote by w(t,z,u) := P(T —t, Ke®; ) the
option price in the new variables, and by x(z) := (K — Ke®) the pay-off functional for a
put (or x(z) := (Ke* — K)4 for a call).
In the transformed variables, we can write the operator for the Heston model as

Lp)w= -V - (A(p)Vw) + b(p)Vw + rw,

T o . . .
where V = (%, a%) , and the diffusion matrix and the velocity vector are given by

1 2 _ _ 142
A =30 |5 b(w) = | VR (43)

The computational domain €2 for the Heston model is defined as follows:
Q:= (Vmin’ Vmax) X (Iminyxmax) C Rz, with  ZTmin <0 < ZTmax, 0 < Vmin < Vmax-

Here, we follow the approach already used in, e.g., Kunoth et al. (2012); Winkler et al.
(2001). In particular, v = vy > 0, helps to avoid the degeneracy of the PDE at v = 0. On
0L} we impose suitable boundary conditions. We note that for the Heston model several
boundary conditions have been proposed in the literature. Here, we follow a functional
analytic set up of the problem, which provides an existence and uniqueness of the weak
solution. In particular, we consider Dirichlet together with the natural boundary conditions
which arise from the weak formulation. In particular, for European put options, we consider
the boundary conditions similar as in Diiring and Fournié (2012),

ngu(t, v,x) =0, on I'n:={(v,z) € Q: v € {Vmin, Vmax}}, (4.4a)
L
w(t,v,r) = Ke ™, on T'h:={(r,2) € Q:z=znn}, (4.4Db)
w(t,v,x) =0, on T3 :={(v,2) €Q: 2z =Tma}, (4.4c)

where Qw/Ony, := A(p)Vw - n is the conormal derivative of w, and n is the outward unit
normal to 9. For American put options, we specify the boundary conditions similar as
proposed in Clarke and Parrott (1999); Diiring and Fournié (2012),

ow
w(t,v,z) = x(xz), on I'p:=THUT%, 8—(2&,1/,:6) =0, on I\. (4.5a)
nr
We note that we choose the truncated boundaries Tmin, Tmax; Ymin, Ymax remote enough
such that the truncation of the boundary does not influence the value of the option in the
region of pricing interest.
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4.3. Variational formulation. Based on the truncated problem, we are ready to state
the variational formulation of the problem which is the base for the development of the
discrete approximation techniques.

We denote by L?(Q2) a space of square integrable functions on 2, endowed with the
corresponding inner product and norm, denoted by (-,-)z2(q) and || - ||z2(q), respectively.
We denote by H'(f2) a usual Sobolev space and introduce the following functional spaces

X=H'(Q):={vel?Q): Vve*Q)}, V:i={veX: v, =0}, (4.6)

equipped with the norms ||v]|% = ”’UH%_N(Q) = ||Vl L2(0) + 0]l 12 () and [Jo]|} = |v\§{1(ﬂ) =
[Vl 12, which correspond to the H' () norm and semi-norm respectively. Let V' be the
dual space of V', and denote by (-,-) the duality pairing of V' with V’. We then introduce
a bilinear form, a : V x V x P — R, which is derived from the differential operator £, and
for the case of the Heston model is defined as

a(u,v; p) 1= / A(p)Vu- Vo +/ b(p) - Vuv —I—/ ruv, (4.7)
Q Q Q
where A(p) and b(p) are specified in (4.3). Note that v > vyin > 0, p € (—1,1) and hence
A(p) is positive definite on Q. It follows from the admissible values of the parameters that
for all g € P the bilinear form a(-,-; p) is continuous and satisfies a Garding inequality
on V x V. That is, there exist constants 0 < @, < ag(p), 0 < v.(p) < 7, < o0,
0 < Aa(pt) < Ay < 00, such that

la(u,v; p)| < va(p)lullvlvllvy Vu,v eV, (continuity)
a(v,v; ) > aq(w)|v]|F — )\a(u)HvHig(Q) Vv e V. (Garding inequality)

To tackle non-homogeneous Dirichlet boundary conditions, we denote by ur(p) a con-
tinuous extension of the Dirichlet data to the interior of the domain. We can express
w(t; w) = u(t; w)+ur(t; w), where u solves the problem with homogeneous Dirichlet bound-
ary conditions with w(0; p) = uo(p) = w(0; ) — ur(0; ).

Then the weak form corresponding to the European option pricing problem reads: Given
uo(p) € LA(Q), f(p) € L*0,T;V"), p € P, find u(p) € L*(0,T;V) N HY0,T;V’) such
that for a.e. ¢t € (0,7) and all i € P holds

(Gt v) + atults ). i) = (6 )0l Vo€V, (1.99)
u(0) = uo(p), (4.9b)
where (f(t;p),v) = — <Bg—f(t; u),v> — a(ur(t; p),v; ). The above problem is well-posed,

see, e.g., (Quarteroni and Valli, 1994, Theorem 11.1.1, Remark 11.1.1). To recast the
American put price PDE in a variational form we introduce the following set of admissible
solutions

Kt;p)={veV, v>X({t;n) inQ}, ae tel0,T],

where Y (¢; ) = x — ur(t; ). Then the weak formulation of the American put price PDE
leads to the following variational inequality problem: Given ug(p) € K(w), f(w), f'(p) €
L2(0,; V"), u € P, find u(p) € L*(0,T7;V) N HY(0,T; V'), such that u(t;u) € K(t;p) for
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a.e. t € (0,T) and for all p € P satisfies

<?;;(t; w), v> t alult; w), v —ult; p); ) > (f(tp),v —ultsp), Vo€ K(t;p), (4.10a)
w(0) = wo (). (4.10D)

The variational inequality problem (4.10) admits a unique solution, see, e.g., (Glowinski
et al., 1981, Chapter 6, Theorem 2.1).

4.4. Discretization of the PDE by finite-differences in time and finite elements
in space. For the temporal discretization the 6-scheme is used, 6 € [0,1] with § = 1,
6 = 1/2 corresponding to the implicit Euler and Crank-Nicolson methods respectively. We
subdivide the time interval [0, 7] into I subintervals of equal length, t* := kEAt, 0 < k < I

with At = T/I. For all u € P, 0 < k < I, we introduce the notation w*(u) = u¥(u) +

uf () == wtk, p), uF(p) € V, uf (n) € X, and X*(p) := X(t%; ) = x — uf (). Then for

a given u € P, 6 € [0,1], u®(u) = up(p), we arrive in the following semi-discrete version
of (4.9): Find u***(u) € V, 0 < k < I — 1, such that

1
Kt(uk'H —uF 0) + a(@uFT + (1 =0k, v ) = fFlop), veV, (4.11)
where f¥(v;p) == —Ait(ulfrl — ki v) + a(@uiT 4 (1 - 0)uk vy ).

By means of a Lagrange multiplier, the variational inequality problem (4.10), we reformu-
late in an equivalent mixed problem or a so-called saddle point problem, see, e.g., (Kikuchi
and Oden, 1988, Chapter 3). The advantage of this formulation is that instead of construct-
ing a conforming approximation of the convex set I we will deal with an approximation of
the linear space. Define a bilinear form b : V' x V' — R as a duality pairing b(n, v) := (n,v),
ne V', veV. We introduce a set M C V' (referred as a dual cone), defined as

M:={neV': bnwv)>0 veV, v>0} (4.12)

Then we consider the following semi-discrete weak saddle point problem: For pu € P,
0<k<I-1,0¢€]0,1], find u**(u) € V, \F+1(u) € M, satisfying
1
E(u’ngl —uF v) + a(@uPT (1 = 0P, vy p) — bV 0) = o), veV, (4.13a)
b(n — NFFL yf L — R > ne M. (4.13b)

Note that for all w € P, 0 < k < I —1, f*¥ € V' and the bilinear form a(-,-; u)
is continuous and satisfies the Garding inequality. Thus, for a small enough time step
At < (1/6X.(p)), by a generalized Lax-Milgram argument, the problem (4.11) admits a
unique solution u(p) € V, see, e.g., (Quarteroni and Valli, 1994, Theorem 5.1.1). For the
variational inequality problem (4.13) to be well-posed we additionally need to guarantee
that b(-,-) satisfies the inf-sup stability condition on V' x V| i.e., there exists Sy > 0 such
that inf, ey sup,ey b(n, v)/||nllv||v|lv = Bo > 0. For the present choices of the functional
spaces we have 5y = 1, and unique solvability of (4.13) is given, see, e.g., (Brezzi et al.,
1978, Theorem 2.1).

Next we consider a spatial discretization of the presented problems. We approximate
the solution spaces X, V, V' by finite dimensional subspaces Xnr C X, Viy C V, Vi, C V/
of the dimensions Ny, Ny and N, respectively:

N/
Xy = span{gi)p}fn\gl, W=XynNnV= span{qbp}ﬁi’l, Vi = span{(p},Y .
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The discrete Lagrange multiplier cone My C Vj, is defined as

\4
N/
My = spanJr{Cq}q:V1 = {77 eVy: n= Zach, ag > 0}. (4.14)

For a given u € P and 0 < k < I — 1, the solution pair (u*+1(u), \¥¥1(u)) € V x M is
then approximated by (u k'H( ), )\k'H( )) € Vir X Mys, where

k+1 Z uk+l ¢p7 )\k+1 E )\kJrl

The Dirichlet lift function u L( ) € X is approximated by the discrete lift function u} N(u) €
X, which can be chosen as, e.g., a nodal interpolation of the Dirichlet datum. Accordingly,
a discrete modified pay-off )?f\/(u) € X, approximates x*(p) and we set ul(p) = X (1).
Then, for the European put options ﬁ;’l( e Vi, peP,0<k<TI-—1,solves the
following discrete problem

£y = {31 (! = wleow) +aOul + (L= 00 ) = M),
(uN—uO,v)Vzo, ve V.

The solution pair ( j“\;rl( )s )\kH( ) € Ve X My, p€ P, 0 <k <1I-1, for the American
put option problem in turn satisfies the following saddle point problem

A (Ui = ) + a(OulF (1= Ok, vs ) — BOGE 0) = S (s ),
B () = { by Ak ) > 0,
(u?\/ —u®, v)y = 0.

Due to the conformity of the discrete spaces the continuity and coercivity (or Garding
inequality) of the bilinear forms are carried over to the discrete spaces, that ensures the
well-posedness of the discrete problem EE/U(;L) In contrast, for the saddle-point problem
EA™ (p), the inf-sup stability of b(-, -) does not follow directly. In our numerical experiments
in Section 6 we use discontinuous piecewise linear biorthogonal basis functions Wohlmuth
(2000) to discretize the dual space V', and standard piecewise linear continuous finite
element basis functions to approximate the primal space V. This setting of discrete spaces
ensures the inf-sup stability condition, see Wohlmuth (2000).

4.5. Complexity reduction by the reduced basis method (RBM). The high-fidelity

discrete problems [, Bu/ Am(u) (which are often called in the reduced basis literature “the de-
tailed problems”), in general, are computationally expensive for large Ny, and significantly
slow down the calibration procedure. To reduce the complexity, we apply the reduced basis
method. The basis idea of the RBM is to construct the reduced-order surrogate model
E%u/ Am( ), which can approximate the original high-fidelity problem EEu/ Am( ) for dif-
ferent values of p € P at a low computational cost. The reduced model is constructed
based on an approximation of Vs, VJ(/, M s by low-dimensional reduced spaces Vy C Vs
for European options and Vy C Vi, Vi C Vi, My C My for American options with

dim(Vy) < dim(Vy), dim(Vy) < dim(Vy,). Then for a given g € P, we approximate
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uf\fl € Vy by v (pn) € Vy, Aﬁfrl(u) € My by \sl(u) € My, 0 < k < T —1. The re-
duced surrogate models for pricing European and American options are defined as follows

EN (1) = A7 (uh! = o) poggy T O+ (L= )l vip) = fHi ),

(WY — ulrv)y =0, veVn.
A (uh =) o F OO+ (1= 0w ) —BOKT0) = (s ),
A _ ~
ENm(lL) B b(77 - A§V+17u§€v+1 - X.I/C\;"rl) > 07 ne MN» v € VN?

(uQ — u?v,v)v =0.

Additionally, we require that the reduced spaces Vi, VJ; are constructed such that the
bilinear form b(-,-) is uniformly inf-sup stable on Vi, x Vi with respect to N. Thus the
well-posedness of the reduced problems EX"(u) and EA™(p) is given, see also Burkovska
et al. (2015); Haasdonk et al. (2012). The algebraic system of equations resulting from the
discrete inequality problem can be solved by, e.g., a primal-dual-active set method. For
more details on implementation and assembly of the reduced saddle point problem Eﬁm( w)
we refer to, e.g., Burkovska et al. (2015); Burkovska (2016).

Numerous approaches exist for the construction of the reduced basis approximation
spaces. Their common goal is to exploit the parameter dependence of the problem and
to incorporate this information into the construction of the reduced bases. Typically, this
is done by applying an iterative greedy strategy to a set of snapshots, i.e., solutions com-
puted for different parameter values. For linear parabolic problems, a popular choice is a
combination of the greedy strategy for parameter selection and a proper orthogonal decom-
position (POD) in time resulting in a so-called POD-Greedy algorithm Haasdonk (2013);
Haasdonk and Ohlberger (2008). For parabolic variational inequalities, the construction is
more challenging due to the requirement of uniform inf-sup stability. For stationary vari-
ational inequalities, a greedy sampling is commonly used, Haasdonk et al. (2012); Zhang
et al. (2016), while for time-dependent problems a POD-Angle-Greedy Burkovska et al.
(2015) and a POD-NNMF ! Balajewicz et al. (2016) have been considered in the literature.
In the present work, we follow the idea of the POD-Greedy algorithm for European op-
tions and POD-Angle-Greedy algorithm for American options, presented in Algorithm 1,
Section 4.6.

A computational speed-up of the reduced basis method is achieved by a so-called of-
fline/online procedure, which relies on the assumption that the problem has an affine de-
pendence on its parameters. That is, for every p € P the bilinear and linear forms are
parameter separable, i.e., there exist ©F : P — R, ¢ = 1,...,Q,, such that a(-,-;pu) =
ZqQ:a1 05 (p)ag(+,+), where ag : V x V' — R are parameter-independent. The same argu-
ments apply to f*(-; ), )va(u) and u?v(u). For example, while f(z;u) := psin(nzx) is
affine in the parameter p, the function f(z;u) := sin(umrz) is not. We note that for the
Heston model the bilinear from a(-, ;) in (4.7) is affine in the parameter p. For non-
affine in parameter or nonlinear problems, one can employ, e.g., an empirical interpolation
method, see, e.g., Barrault et al. (2004), to resolve to the affine in parameter structure
and preserve the efficiency of the RBM. Then an offline routine requires the evaluation of
all parameter-independent quantities, e.g., a4(-,-), ¢ = 1,...Q,. Usually this procedure is
computationally cost-intense and depends on the dimension of the detailed problem Ny,
however it is performed only once. In turn, the online procedure is computationally cheap

INNMEF refers to a non-negative matrix factorization procedure, Lee and Seung (1999).
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and involves assembling the parameter-dependent components, e.g., @Z(u), qg=1,...,Qq,
and solving the reduced system. This stage is executed multiple times for each new pa-
rameter value pu € P; see, e.g., Hesthaven et al. (2016); Quarteroni et al. (2016) for more
details. In Figure 1 we schematically demonstrate the computational procedure for the
RBM in comparison to the standard FEM.

—»{Discretize and solve uPDEs by FEM ujl\/(u)

Given
neP RB-Online Approximation of
***************************** the option price P

e.g., An(p) = Y0, 0% (p) A}

Assemble RB system, J 1

Compute FEM matrices and vectors,
I N
e.g., A}J\/ = (aq(qﬁi,qﬁj))i’j":l, g=1,...,Q.

Generate reduced bases,
eg., Uy = (Y1,...,9¥n,), VN =span{Un}
Project on RB spaces,
e.g., A?V = \I/]:C]AJI\/\I/N, qg=1,...,Qq.

FiGURE 1. The FEM and RBM procedure for option pricing at a glance.

4.6. Reduced basis construction. Here we describe the algorithm used to construct the
reduced basis spaces. Since the European option problem can be considered as a particular
case of the American option problem formulation, we focus on the description of the basis
construction for the latter problem and comment only on the differences.

Consider a finite subset Py := {pty,...,un}, H; # B, Vi # j, N € N and define
the reduced spaces Vy := span{¥y} and V}; := span{Ex}, where the primal ¥y :=
{¢1,...,¥n,} C Vi, and the dual Ey := {&1,...,&n,,} C Vj reduced bases are con-
structed from the large set of snapshot solutions uf (p;) and A (p;), 1 < k < I, i =
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1,...,N. The reduced cone is defined as My := span+{£j};y:"1' = {Zjvz"ll &, aj > O}.
By construction §; € My and thus My C My .

The approach we follow to construct Wy and =y is presented in Algorithm 1. We
investigate the parameter domain P, that is replaced by a finite set Pirain C P, by a greedy
search (Step 5-Step 13). In the greedy loop, we identify a “worst” parameter py, i.e., a
parameter which leads to the worst RB approximation, and add it to the training set. In
other words, at each iteration of the algorithm we select g which maximizes En(p), where
En(p) can be chosen, e.g., as a “true” error between the detailed and reduced solutions:

; 1/2
En(p) = (Z [ufr (1) — va(ﬂ)l!%) :
k=0

Such selection procedure ensures that the error in this particular parameter will be reduced
in the subsequent iterations of the algorithm.

Algorithm 1 POD-Angle-Greedy Algorithm

Input: Maximum number of iterations Npax > 0, training sample set Pirain C P, target
tolerance eto), 1:={0,...,1 — 1}, I :={0,...,I}

Output: RB bases Uy, =y and RB spaces Vi, V}
arbitrarily choose pg € Pirain and k' € T

1:

2: compute {ufr(ko) beto, (AN (1) }rer

3: set &0 = AN (ko) /AR (o) v, o = {&}, V§ = span{Zo}
4: set Uy = orthonormalize {uﬁ}“(uo), T&)}, Vo = span{ ¥y}

5. for N =1,..., Npax do
6
7
8
9

PN = arg MaXuep,,;, En-1(p)
if Ef,{,am < €to] then return
end if

b = argmaxger (£ (M (), Vi1 ) )
10: & = M (n)/IANY () v En = Envo1 U {En} Vi = span{Zn}
11: YN = POD; <{u5€\/(NN) — vy, (u.lf\f(“N))}ke]I())

12: U = orthonormalize {Ux_1 U {¢n,TEN}}, Vv = span{¥x}
13: end for

The error measure En () can be also set as an a posteriori error bound Burkovska
et al. (2015); Haasdonk and Ohlberger (2008). The availability and efficient computation of
the latter choice makes it more attractive from a computational point of view. Next, for the
selected parameter, we compute primal and dual bases and repeat this process Npyax times
or until the desired tolerance €] of the stopping criterion is reached. For the primal reduced
space construction, we apply the standard POD-Greedy procedure (Step 11), where the
difference between the worst resolved trajectory uj“\/(u ~)s 0 <k <I—1, and its orthogonal
projection onto the current RB space HVN,IUﬁ/(H ) is compressed to the first dominant
POD mode:

POD; <{’l}k}k€]10) := arg min Z [vF — (%, 2)v 2%
llzllv=1 kely

To construct the dual RB space, the vectors that maximize the volume of the resulting
cone, i.e., vectors showing the largest deviation from the current RB space (Step 9, are
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selected. We denote £(n,Y) := arccos (|Iyn||v//||n|lv/) the angle between the vector
n € V' and the linear space Y C V', where IIy7 is an orthogonal projection of  onto Y.

Additionally, to form a uniformly stable pair of the reduced spaces Vi, Vy;, we enrich the
primal space Viy by the “supremizers” T¢x, Rovas (2003); Rozza and Veroy (2007), where
T : V§, — Vi is a “supremizing” operator, defined as a solution of (T¢n,v)y = b(&n,v),
for all v € V. Tt is easy to see that this inclusion ensures the inf-sup stability of b(-,-) on
Vi % Vi, see, e.g., Haasdonk et al. (2012); Rozza and Veroy (2007).

For the case of European options no dual space is required and thus the steps in Al-
gorithm 1 involving the Lagrange multiplier space are omitted, resulting in a standard
POD-Greedy algorithm.

5. CALIBRATION PROCEDURE

Here we describe the procedure for the calibration problem (2.1) using the Heston
model Heston (1993).

Given Sy and the observations PiObs at (T;, K;),i=1,..., M, we denote by P;(vp, So, T;, K;)
the prices in the Heston model, where vy € R is the initial volatility. Since, the value
of 1y is not observable on the market, it needs to be defined together with the param-
eters &, p,v,k. We collect all parameters to be identified into the single vector ® =
(O1,...,05) = (&, p,7, K, 1) € Popt, where

Popt = {© €R® : Opini < O; < Opansy 1=1,...,5}. (5.1)

Then the minimization problem (2.1) for the Heston model can be written in the following
form

M
1
i ) Q)= — P> — p(@)%. 5.2
@rggth( ), J(®) M;M (©)] (5.2)

We apply the FEM and the RBM to compute the model prices P;(®). For i =1,..., M
we denote the approximate model price as

P"*(©) := wy(T;,log(So/ K;), vo; 1),

(2

where the superscript n = N corresponds to the FEM approximation and n = N stands
for the RBM approximation, s = {Eu, Am}. Here w,(u) := un(p) + upa(p) and wu,(p)
is a solution of E,(u) := Es(p), s = {Eu,Am}, n = {N,N} fori=1,...,M, p € P and
T = max(T;). By abuse of notation, we often omit the index s in the notation of PlN #if it

is clear from context. Then we obtain the following minimization problem for the detailed
(n =N) or reduced (n = N) models

M
1
in J,(© (©) = — PP _ pr(@)|2. 5.3
S Ja(©),  Ju(®) M;M (©)] (5.3)

We note that due to the presence of the box constraints this finite-dimensional minimization
problem admits a solution due to continuity of the objective functional.

We also extend the de-Americanization strategy to the calibration of the Heston model.
Let P]‘?bs are the pseudo-European put prices obtained by the DAS. We consider the FEM

and the semi-closed-form solutions PZ-CF Heston (1993) to compute the European put model
prices. Then the minimization problem (3.1) becomes

M
~ ~ 1 ~
in J,(© n@::7§jp.°btp"@2 5.4
o, n(©) In(©) Mizly o RO o4
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where P*(®) are European put prices in the Heston model computed by either the FEM
(n = N) or by the semi-closed-form solutions (n = CF).

Remark 5.1. One could also consider a combination of the RBM with the de-Americani-
zation strategy, i.e., applying the RBM to approximate E}%}‘ by E%“. The corresponding
minimization problem can be stated as follows

M
. ~ ~ 1 ~b N 9
m ) O) = — E pPePs — PN (O 5.5
@E,’l)lolthN( )7 ']N( ) -7‘[2-:1’ i i ( )’ ) ( )

with PN (@) = PN (@).

Remark 5.2. Note that the interest rate v is not determined by a calibration procedure and
1s fized beforehand. In our case, the market data will be a single stock in the U.S., and for an
approximation of the risk-free rate we use the rates of the U.S. Department of the Treasury.
Hence, to construct the reduced basis spaces, we only need to consider the variation of four
parameters p = (£,p,7v,k) € P C R However, this choice is restrictive and for new
market data we would need to construct a new reduced basis set. Therefore, to conserve
generality in our approach, we consider the variation of all parameters, u = (&, p,7, k,T),
and consequently the constructed reduced basis will be entirely market-independent.

6. NUMERICAL RESULTS

Before we provide concrete numerical results, we comment on the algorithmic aspects of
the optimization procedure. We first note, that the problems under consideration belong
to the class of finite-dimensional optimization problems with box constraints. For the
numerical realization, we use the MATLAB Optimization Toolbox and apply the built-in
optimization solver 1sqnonlin or fmincon, in which the gradients of the prices with respect
to the parameters are approximated by finite differences.

We note that, for the case of American put options, due to the presence of the inequality
constraints in the option pricing model, the objective functional may not be differentiable
at certain parameter values, see, e.g., Achdou and Pironneau (2005a). However, problems
with differentiability are rarely encountered in practical computations, cf. also (Achdou
and Pironneau, 2005a, Remark 5).

For the numerical experiments we set T'= 2, [ = 250, At =T/I = 0.008, § = 1/2. The
computational domain Q = (Vnin, Ymax) X (ZTmin, Tmax) = (107°,3) x (=5, 5) is resolved by a
triangulation Txs of €2, consisting of .J simplices T%,, 1 < j < .J, such that Q = UT/\/ET/\/TN‘
We use standard conforming nodal first-order finite element approximation spaces X»r C X,
Vi C V, where X :={ve X: Ui, € IP’I(T/{/), 1 <j < J}, and P! is a space of linear
polynomials with degree at most one, and dim(X ) = Nx = 4753. To discretize the dual
space V', we use discontinuous piecewise linear biorthogonal basis functions defined on the
same mesh as the basis functions of Vs, Wohlmuth (2000). That is, Vi, := span{{,, ¢ =
L..., Ny}, dim(Vy,) = Nyr = Ny, where (; satisfy a local biorthogonality relation:

.<q¢p—5pq/,¢p20a ¢p€VN7 p7q:17"'7NV'
T3 T3

For these settings of the discrete spaces, we obtain that (Vj, VJ(/) form a uniformly inf-sup
stable pairing.
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For p = (&, p,7,K,7) € P C R and © := (£, p,7, K, 1) € P°P* C R, we define
P =10.1,0.9] x [~0.95,0.95] x [0.01,0.5] x [0.1,5] x [0.0001,0.8], (6.1)
PPt = [0.1,0.9] x [—0.95,0.3] x [0.01,0.5] x [0.1,5] x [1072, 1. (6.2)

We set vmin = 107° to be sufficiently small, compared to the range of the possible values of
the volatility v, in order to reduce the effect of the truncation of the boundary on the option
price for small values of v. Unless otherwise stated, the calibration routine is performed
with 1sqnonlin, which uses a Trust-Region-Reflective algorithm, and the stopping criterion
is set as J(@®) — J(©*) < 10712 |© — ©*||2 < 1075, where ®* is a locally optimal solution.
The algebraic system of equations resulting from the detailed Eﬁfm( p) and reduced Eﬁm( w)
problems are solved using the Primal-Dual-Active-Set strategy.

6.1. Calibration based on RBM. We consider a training set Pipain composed of uni-
formly distributed points in P with |Pirain| = 1024 for the European put and |Pyain| = 3125
for the American put options. The bases are generated by the POD-Greedy and POD-
Angle-Greedy algorithms for the European and the American options, respectively. The
reduced systems have dimension Ny = 100 for European put and Ny = 125 for Amer-
ican put options. Firstly, we consider the quality of the calibration in terms of the RBM
applied to a synthetic data set with » = 5%:

Sp =1,
1

Ti=g K= {0.95,0.975,1,1.025,1.05},
1

==, Ky=K;U{0.9,0.9251.075 1.1},

279 2 U4 } (6.3)

3

Ty=7.  K3=IKyU{0.85,08751.125 115},

Ty =1, K, = K5 U {0.8,0.825,1.175,1.2},

Ts = 2, Ks = K, U{0.75,0.775,1.225,1.25}.

For each pair (T;, K;)i=1,..5, we generate two artificial sets of observations pobs consisting
of 65 European and American put options at ® = (0.7,—0.8,0.3,1.4,0.3). That is, we
solve the detailed problems Eﬁ/m and IE/]%P for the parameter p = (0.7,—0.8,0.3,1.4,0.05)
and K = 1 and interpolate the corresponding solution K;un (T;,v,z; p) at v* = vy, zf =
log(So/Ki).

We perform the optimization routine (5.3) with the reduced surrogate model (n = N)
and the high-fidelity detailed problem (n = N'). In both cases, we use the same initial guess
®;, for the optimization algorithm. The results of the calibration for two different data
sets of American and European options are presented in Table 1. We observe that, using
the detailed models E3;, {s = Am, Eu}, we can basically recover the exact parameters @cy.
The reduced surrogate models provide still accurate enough results but are computationally
much less expensive.

The influence of the calibration process on the accuracy of the option price for different
strike and maturity values are shown in Figure 2 for both American and European options.
In all plots, we hardly observe any differences in the option price obtained from the synthetic
and the calibrated data with the detailed problem and the reduced problem.

The run-time performance is reported in Table 2. Additionally, we state the number of
required iteration steps in the optimization algorithm and the number of function calls.
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Method E(p) © 13 p v K vy ||Oex — OF|2
®Oc 0.700 -0.800 0.300 1.400 0.300
®;, 0.601 -0.682 0.487 2.020 0.496
In(O) EJA\/m ®* 0.700 -0.800 0.300 1.399 0.300 2.14e-5
JIN(O) E%m ®©* 0.694 -0.831 0.298 1.447 0.303 5.62e-2
In(O) EJE\}I ®* 0.700 -0.800 0.300 1.399 0.300 2.05e-5
JN(O) E]]%,u ®* 0.616 -0.886 0.293 1.306 0.300 1.52e-1

TABLE 1. Calibration of the synthetic data set of American and European
put options in the Heston model using detailed and reduced problems.

Calib. value: £ =0.7000 p =-0.8000 ~ =0.3000 x =1.4000 1 =0.3000
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o

gy, .
i, 0 05 g
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Calib. value: £ =0.6940 p =-0.8314 ~ =0.2983 r =1.4466 1y =0.3013
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i, 0 05 g&i\\‘e

FIGURE 2. Results of the calibration to the synthetic data set of American
(upper row) and European (lower row) put options in the Heston model
using the detailed model Ear(p) (left) and the reduced surrogate model
En(p) (right). The circles are the synthetic prices and the stars are the

prices in the calibrated model.
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In this example, the optimization routine with the surrogate reduced model is about 100
times faster for American put options and about 350 times faster for European put options.
The reduced model for American options recovers the parameter slightly better than the
European one. This fact can be explained by the larger dimension of the reduced system
for American options and the larger training set, which is also reflected in the run-time
performance. We point out, that depending on the priority of the task, i.e., accuracy vs.
the run-time, one can always manually adjust the dimension of the reduced system.
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Method E(u) # iter. # J calib. time J(©%)

Jn(©) EAm 7 48  15.59 hrs  1.698¢-16

IN(®) Ey 8 54 9.50 min  9.515e-9

Jn(©) ERF 7 48  11.67 hrs  1.242¢-16

Jn(©®) ERM 11 72 1.996 min 1.157e-08
TABLE 2. Calibration results for the synthetic data set of American and
European put options in the Heston model in terms of the run-time per-
formance. The number “# iter.” corresponds to the number of iterations
and “# J” is the total number of function evaluations performed by the
optimization routine.

To quantify the differences between reduced and detailed calibration, we plot the point-
wise relative errors |PPPS — PS(@*)|/PPP, s = {N,N}, i = 1,..., M in Figure 3. We
observe that the reduced models yield a very good fit to the synthetic data with relative
errors within the 0.5%-margin.

0.5 . 0.5
%r,-,y 0.166667 "’ufi,y 0.166667

0825 o 0.825 ¥

%1077 %103

0.75
0.775 0.75

0.5
%’un-,y 0.166667

0.75
0.775
0.8

/l{a 0.5
1. .
11175/ 0.166667 0.825 $“\y@

0825 ¥

FIGURE 3. Calibration results for the synthetic data set of American (upper
row) and European (lower row) put options in terms of point-wise absolute
relative errors, |PPPS — Pis’Am(('-)*)|/Pi°bS, i =1,...,M, using the Heston
model. Left: calibration with the detailed model Exr(p), s = A. Right:
calibration with the reduced surrogate model Ex(p), s = N.



COMPLEXITY REDUCTION FOR CALIBRATION TO AMERICAN OPTIONS 19

6.2. Comparison between RBM and DAS. Next, we perform a numerical comparison
of the calibration with American put options using both model reduction techniques. That
is, we consider the minimization problems (5.3) (n = N) and (5.4) (n = N). For compar-
ative purposes, we also carry out the calibration with the detailed finite element solution
(5.4) (n=N).

First, we use a synthetic set of observations P°" given by (6.3). We consider different
parameter scenarios corresponding to different values of ® € Pgpt; see Table 3. For each

scenario, we construct an artificial set of observations PZ»Obs = PZN ’Am, i=1,...,65. In
general, the parameter k is price-insensitive, see, e.g., Janek et al. (2011), and thus it cannot
be reconstructed. Therefore, we fix x to its exact value and do the parameter estimation
only for &, p,~, and vy. The results of the calibration are summarized in Tables 4 and 5.
We observe that, overall, all methods provide a good reconstruction of the parameters. As
can be expected, the most cost-intense variant also provides the results with the highest
accuracy. However all of our surrogate models yield quite good results.

§ p v K 0

p1 0.10 -0.20 0.07 0.5 0.07
p2 0.25 -0.50 0.10 0.5 0.10
p3 040 -0.50 0.15 0.6 0.15
pgs  0.55 -0.45 0.20 1.2 0.20
ps  0.70 -0.80 0.30 1.4 0.30
pe 0.2928 -0.7571 0.0707 0.6067 0.0707

TABLE 3. Overview of the parameter sets used to generate the synthetic
data set.

We observe that both reduction approaches provide a significant speed-up compared
to the expensive detailed solver, which on average takes about eight hours for each sce-
nario. Although the DAS allows for an extremely efficient calibration process, it requires
an additional pre-processing step for the data. In contrast to the RBM, this pre-processing
depends on the actual market data and therefore can not be performed in advance. This
is a serious bottleneck compared to the RBM approach.

Figure 4 shows the influence of the different calibration approaches on the parameters.
It can be seen that in all approaches the main difficulty arises in in identifying £ and p. In
fact, this tendency has been also observed for the detailed solver (see cases p1, ps, Table 5).
The remaining parameters v and 1y are recovered almost exactly. We also note that for
scenarios p1—ps, which correspond to the cases when £, vy and p are the smallest, the DAS
calibration is able to provide a better reconstruction of the parameter £ than the RBM.
By contrast, in the scenarios py and ps, which correspond to large values of the correlation
parameter, the DAS gives poorer results for £ and p.

To summarize our findings, the cases with “extreme” parameter values have a significant
impact on the performance of the optimization routine, in both the detailed and the reduced
problems. A numerical study of the effect of the de-Americanization method for such
“extreme” scenarios has been investigated in great details in a recent work Burkovska
et al. (2018). In the case of the reduced basis method, this difficulty may be overcome
for example by increasing the number of snapshots or increasing the dimension of the
reduced system. This, of course, may result in the computational increase of the offline
cost to construct the reduced bases and of the online cost required to compute the solution.



COMPLEXITY REDUCTION FOR CALIBRATION TO AMERICAN OPTIONS 20

Scenario Method E(u) +.J calib. time pre-process. time for PP
Jn(®) ER™ 75 8.524 hrs

P Jn(®)  ERr 145 18.018 min 36.045 min
Jn(©®) EA™ 70 3.912 min
Jn(®) ER™ 65  8.035 hrs

P2 Jn(®)  ERr 70 8.895 min 36.830 min
Jn(©®) EA™ 70 3.489 min
Jy(®) ER™ 60  8.341 hrs

D3 Jnv(©) ERr 60 8.083 min 35.374 min
Jn(©®) EA™ 70 3.574 min
Jy(®) EAR™ 50  7.088 hrs

D4 Jv(©) ER* 45  6.031 min 36.660 min
Jn(©®) EA™ 55 2813 min
Jy(®) ER™ 40 6.331 hrs

s Jnv(©) ER* 65 8.607 min 36.574 min
Jn(©®)  EA™ 45 2271 min
Jn(®) ER™ 70 9.665 hrs

D6 Jyv(©) ER* 70 9.555 min 36.960 min
Jn(©®)  EA™ 90 4.503 min

TABLE 4. Computational time for calibrating American put options using
different model reduction techniques.

However, in contrast to the DAS, the theoretical framework of the RBM allows to derive
efficient a posteriori error estimates which can be used to speed up the construction of
the reduced model as well as to certify the approximation quality and reliability of the
method.

6.3. Real market data. Finally, we extend our approach to the calibration of a real
market data set, provided by options on the Google stock. Since the Google stock does
not pay dividends, the American call options can be priced the same as the European
call options, Hull (2003). Hence, we restrict consideration to only American put options.
Namely, we consider the data P°" of 401 American put options with Sy = 523.755, r =
0.15% on February 2nd, 2015. The data is pre-processed using the methodology applied to
the volatility index (VIX) by the Chicago board of exchange CBOE (2009):

e For each option with strike price K;, we consider the midpoint of the bid-ask spread.

e Options with zero bid prices are neglected.

e If two puts with consecutive strike prices have zero bid prices, no puts with lower
strike prices are included.

The used data is given in Appendix A, see Table A.1. In terms of the moneyness, we
consider all types, out-of-the money (K; < Sp), at-the-money (K; = Sp) and in-the-money
(K; > Sp) options.

In our synthetic test scenarios, the Feller condition (2.3) was automatically satisfied.
However, this does not hold for general calibration processes. Thus, we impose the following
additional constraint on ©® = (&, p,7, k, 1) € Popt

Popt = {© €R® : Opini < O; < Opanis 2030, — 07 <0, i=1,...,5}. (64)
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Scenario Method E(p) © ¢ p ~y Vo J(©%)
O 0.1 -0.2 0.07 0.07
D1 I (O®) Eﬁfm ®* 0.1002 -0.1997 0.07 0.07 7.8806e-14

()]
Jv(©®) ERr  ©* 0.1000 -0.3003 0.0701 0.0688 1.0248e-07
®) EA™ ©* 0.1477 -0.0788 0.0697 0.0700 4.3440e-08

Ou 025 05 0.1 0.1
Po Jv(©®) EAm @ 025  -05 0.1 0.1 6.4756e-17
Jv(©®) EEr @ 02404 -0.5388 0.1001 0.0991 1.1363¢-08
©) EA™ ©* 0.2860 -0.4824 0.0968 0.1015 9.9148¢-08

Qo 0.4 0.5 015  0.15

D3 Jv(®) EAm @ 04 0.5 015  0.15  2.9834e-18
Jv(®) EEr @ 04282 -0.4620 0.1544 0.1492 2.2003e-09
©) EA™ ©* 03537 -0.5731 0.1456 0.1504 6.2085e-09

O 0.55 -0.45 0.2 0.2
D4 In(©) Eﬁfm ®* 0.5502 -0.4499 0.2 0.2 4.8235e-14
In(©) IEE}‘ ®* 0.5801 -0.4220 0.2044 0.1989 1.5377e-09
Q) Exm ®* 05048 -0.4980 0.1989 0.1995 1.6681e-08

O 0.7 -0.8 0.3 0.3
Ds Jn(®) ER™ ©F 0.7 -0.8 0.3 0.3 3.4388e-18
jN(G) EEr @ 0.8433 -0.6668 0.3170 0.2990 1.8369e-08
®) EA™ ©* 0.6881 -0.8259 0.2994 0.3006 1.0533e-08

O 0.2928 -0.7571 0.0707 0.0707
De Jv(©®) EA™ ©* 02928 0.7571 0.0707 0.0707 6.5746e-18
j_/\[(@) EEF  ©* 0.3690 -0.6026 0.0736 0.0685 1.6179¢-07
JN(@®) Ef™ @ 0.3096 -0.7049 0.0700 0.0718 9.6369¢-08

TABLE 5. Calibration results on the synthetic data set of American put
options in the Heston model with different model reduction techniques: the
RBM, the de-Americanization method and the detailed problem.

As optimization algorithm, we take the MATLAB function fmincon based on the Interior-
Point method and which, in contrast to lsqnonlin, allows the inclusion of inequality
constraints. We consider the same termination condition for the optimization routine as
previously.

To calibrate the parameters, we consider the detailed and reduced minimization prob-
lems (5.3) (n = N, N) and the DAS (5.4) (n = N). For completeness, we also consider the
calibration of the de-Americanized data using the closed-form solution of (5.4) (n = CF).

The results of the calibration are presented in Table 6. As before, v and 1y can be
easily identified by all our approaches. The rate of mean reversion k appears to be a non-
identifiable parameter, and all models provide quite different results. For the remaining
parameters £ and p, we observe that the DAS tends to underestimate the volatility of
volatility § and the correlation p, compared to the detailed and RBM approach. This is
clearly reflected in all models that use the perturbed de-Americanized data, i.e., Jy(©)
and jCF(G)). This is in good agreement with our observations for the synthetic data sets
(see scenario ps and pg), wherefor large (absolute) values of the correlation parameters the
DAS was unable to provide a good reconstruction of the parameters £ and p.
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FIGURE 4. Reconstructed parameters for the different scenarios obtained
by calibrating American put options with different model reduction tech-

niques.
Method E(pu) © £ P ~y K Vo
®;, 0.6005 -0.6815 0.4867 2.02 0.4961
In(O) Eﬁ/m ©®* 0.5953 -0.7210 0.0527 3.3615 0.0584
IN(O®) E%m ©* 0.5144 -0.7964 0.0521 2.5906 0.0554
In(©) ER*  ©* 0.4095 -0.6818 0.0516 1.6262 0.0567
Jcr(©) ©* 0.3927 -0.6518 0.0580 1.4554 0.0546

TABLE 6. Parameters obtained by the calibration on American put options
given on the Google stock using different methods.

The results of the run-time performance of the different methods is given in Table 7. We
observe that the detailed approach is much more cost-intense than the proposed surrogate
models. The cost can be drastically reduced from a couple of days to less than an hour.
Notably, we observe the substantial speed-up obtained by evaluating model prices with
the closed-form solutions. This approach appears to us the most efficient when dealing
with European options. However, taking into consideration the additional time for pre-
processing the data in the DAS, the total time for calibration with this method can be
much slower than the calibration with American options using the RBM, depending how
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Method E(p) # iter. # J calib. time pre-process. time for P°Ps

Jy(©®) Ep™ 35 219 68.72 hrs

JN(®) EA™ 38 260 44.20 min

Jv(©) ERF 34 207 56.47 min 4.96 hrs

Jor(©) 43 265 4.30 min 4.96 hrs
TABLE 7. Computational time for calibrating American put options given
on the Google stock in the Heston model using different methods.

often the calibration has to be performed with new market data. However, the DAS pre-
processing time could be sped up by implementing more advanced tree methods. We also
note that, in contrast to the DAS, the RBM approach allows us to control the accuracy by
increasing the dimension of the reduced spaces.

Calib. val.: £ =0.5953 p =-0.7210 ~ =0.0527 x =3.3615 1, =0.0584

O market data
* calibrated data

400 ®

)
=3
=1

Option price
- .
=]

3
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“,,  0.375342
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335
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Detailed problem, Jy(®)

Calib. val.: £ =0.5144 p=-0.7964 ~ =0.0521 K =2.5906 1, =0.0554

O market data
* calibrated data
&

Option price

1.96712
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FIGURE 5. Left: the Google data set of American put options (circles)
and the calibrated model data in the Heston model (stars). Right: the
relative error of the market and calibrated data, | PP — PS4™(@%)|/ Pobs,
i=1,...,.M,s={N,N}

Figure 5 shows the calibration results based on market data for the detailed and the
RBM approaches and the results for the two DAS are provided in Figure 6. The relative
error for all approaches does not exceed 50% and increases in the out-of-the money region,
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which corresponds to the smallest option prices. To reduce this effect, one could consider
different weights in the objective functional, e.g., imposing larger weights for small option
price values.

Calib. val.: £ =0.4095 p=-0.6818 ~ =0.0516 x =1.6262 1, =0.0567

O market data
400 R calibrated data

&

Option price

1.96712
0.950685
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550 660 40 G, 0375302
495 380 oy T

415 77 e . 0.20274
033327 3357 o™

De-Americanized problem, Jx/(©)
Calib. val.: £ =0.3927 p =-0.6518 ~ =0.0580 k =1.4554 1, =0.0546
O market data
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FIGURE 6. Left: the Google data set of the de-Americanized American
put options (circles) and the calibrated model data in the Heston model
(stars). Right: the relative error of the market and calibrated data, |P°PS —

PiS’Eu(@*)VPZ'ObSa 1=1,...,M,s= {N, CF}

7. CONCLUSION

In this paper, we applied the reduced basis methodology to the calibration of European
and American put options. In the case of American options we additionally considered a
de-Americanization strategy. Both reduction strategies are compared numerically. While
RBM techniques aim to achieve smaller dimensions for the discrete spaces in the variational
formulations of the problem, the DAS replaces the constrained PDE model of an American
option with the unconstrained model of a European option. By doing so, a model error
of fixed size occurs, but the RBM offer flexibility by allowing us to adaptively adjust the
accuracy.
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Appendices

APPENDIX A. GOOGLE MARKET DATA

[(K\T ] 0.2027 | 0.3753 | 0.6247 | 0.9507 | 1.9671 | [ K\ | 0.2027 | 0.3753 | 0.6247 | 0.9507 | 1.9671

250
260
265
270
275
280
285
290
295
300 0.28
305 0.40
310 0.40
315 0.40
320 0.47
325 0.57
330 0.65
335 0.72
340 0.78
345 0.82
350 0.88
355 0.97
360 1.05
365 1.12
370 1.25
375 1.38
380 1.52
385 1.65
390 2.05

525 22.50 28.55
530 24.70 31.05
535 27.40 33.50

2.50
2.90

3.30

3.80

4.65

10.90

12.55

14.30

16.45

18.30

20.85

22.85

25.55

28.30

31.35

34.00

37.80

41.45

45.20

49.20

53.50

58.15

62.90

67.90

30.20
33.25
37.15

181.10
186.15
191.10
196.05
201.05
205.85
211.00
216.80
221.80
226.55
231.80
236.80
241.95
246.95
251.80
256.80
267.00
276.95
287.25

181.75
186.25
191.35
195.85
201.80
206.50
211.05
216.80
221.90
226.85

150.50
154.90
159.45
164.05
168.65
173.15
178.15

188.40
197.15
206.95
216.20
226.20
236.15
246.05
256.05
265.70
276.05
286.05
296.05
306.05
316.05

336.05
356.05

72.65

78.50

84.05

90.40

96.45

103.00

108.85

116.45

123.75

130.65

138.10

153.70

169.45

186.40

203.70

222.30

240.60

258.90

277.70

TABLE A.1. Google market data consisting of 401 American put options

with Sy = 523, 755 on February 2nd, 2015.
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