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To obtain a better understanding of which coformers to combine for the

successful formation of a cocrystal, techniques from data mining and network

science are used to analyze the data contained in the Cambridge Structural

Database (CSD). A network of coformers is constructed based on cocrystal

entries present in the CSD and its properties are analyzed. From this network,

clusters of coformers with a similar tendency to form cocrystals are extracted.

The popularity of the coformers in the CSD is unevenly distributed: a small

group of coformers is responsible for most of the cocrystals, hence resulting in an

inherently biased data set. The coformers in the network are found to behave

primarily in a bipartite manner, demonstrating the importance of combining

complementary coformers for successful cocrystallization. Based on our

analysis, it is demonstrated that the CSD coformer network is a promising

source of information for knowledge-based cocrystal prediction.

1. Introduction

The opportunity to alter several physico-chemical properties

of high-value chemicals, such as pharmaceuticals (Berry &

Steed, 2017) and agrochemicals (Nauha & Nissinen, 2011),

without changing their molecular structure and function, has

promoted the use of multi-component crystals (or systems) as

a formulation tool. Multi-component systems, such as salts,

solvates and cocrystals, are crystalline aggregates containing

multiple ionic and/or neutral species in the crystal lattice

(Grothe et al., 2016). For a molecule of interest, a variety of

multi-component solid forms can be prepared, each char-

acterized by a distinct set of properties including solubility,

bioavailability, hydration stability, and mechanical, optical and

thermal properties. Additionally, the crystallization behavior

of chiral molecules is influenced when using multi-component

systems, possibly resulting in the formation of chiral

conglomerates (i.e. a physical mixture of separate enantiomer

crystals), enabling their efficient separation using crystal-

lization-based techniques (Lorenz & Seidel-Morgenstern,

2014).

Having knowledge of the solid-state landscape of the

molecule, not only in terms of polymorphism but also in terms

of the available multi-component forms, is therefore crucial

during the design and optimization of the final product and its

production route. The types of multi-component systems a

molecule can form is strongly influenced by its molecular

structure. For instance, the lack of ionizable functional groups

generally precludes the molecule from forming salts, leaving

only solvate formation or cocrystallization as feasible options.

Yet, whereas the pairing of complementary ions for the
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formation of salts is rather straightforward, the design of

solvates, and in particular cocrystals, using weak (directional)

non-covalent interactions remains challenging. Nevertheless,

the number of additional components (or coformers) is much

larger than the available solvents or counterions (Almarsson

& Zaworotko, 2004), making cocrystallization an attractive

formulation tool.

There are several strategies to design a new cocrystal. A

well-known approach uses supramolecular synthons

(Desiraju, 1995) (i.e. a variety of common intermolecular

interactions) to rationalize the feasibility of cocrystal forma-

tion. In general, one aims to match complementary hydrogen

bond motifs, �–� interactions, ion–� interactions, halogen

bonds or even van der Waals interactions between the cofor-

mers to predict the formation of a cocrystal. A distinction is

generally made between homosynthons, using self-comple-

mentary functional groups such as carboxylic acids or amides,

and heterosynthons, where the moieties of different functional

groups are combined (e.g. combining a carboxylic acid with an

amide group). Although this strategy has been quite successful

and conforms with general, chemical insights, the synthon-

based approach is based on an a posteriori understanding of

crystal structures and relies on isolated structural attributes.

The method does not account for more complex factors

beyond functional group matching, such as issues with

packing, or experimental difficulties (e.g. difference in solu-

bility). Additionally, a recent study (Taylor & Day, 2018) has

demonstrated that just the presence of hydrogen and halogen

bonds alone is not necessarily a good descriptor for successful

cocrystallization, stressing the importance of including more

subtle effects in the design process.

Because the experimental determination of cocrystals is

time and labor intensive, various computational tools have

been developed to understand and predict cocrystallization.

These methods include the use of molecular modelling (Taylor

& Day, 2018; Issa et al., 2009; Karamertzanis et al., 2009), the

analysis and application of molecular descriptors (Fabian,

2009; Wicker et al., 2017), the use of hydrogen bond propensity

calculations (Delori et al., 2013) and molecular electrostatic

potential surfaces (Grecu et al., 2014). Again, a possible

drawback of these tools is their focus on isolated molecular

features and dependence on too general or simplified rules for

cocrystallization.

A valuable addition to the set of tools would therefore be a

more comprehensive (or holistic) method that looks beyond

the isolated structural properties of coformers and implicitly

includes the decisive but subtle factors for successful cocrys-

tallization. In this article, we present a knowledge-based

approach that attempts to do this by studying cocrystallization

in the form of a network with the theoretical tools provided

through network science. Network science is a growing field

that has originated from graph theory and has found many

applications in diverse research areas. By converting a

complex problem into a network, a set of new characteristics

of the system can be revealed that can improve the under-

standing and use of its underlying structure and dynamics.

The Cambridge Structural Database (CSD; Groom et al.,

2016) is the most extensive crystallographic database and

currently contains about a million small molecule entries,

including a large number of cocrystal structures. By identifying

the relations between the coformers found in these cocrystals,

a network can be constructed, which can then be analyzed.

The goal of this network analysis is to provide a set of

empirical, data-driven insights about cocrystallization that can

later be applied in an enhanced design strategy.

2. Methods

A network is essentially a collection of nodes and edges (or

connections) between these nodes. The binary cocrystals (i.e.

containing two distinct coformers) from the Cambridge

Structural Database (CSD; version 5.39, November 2017 + two

updates) were used to build up the network, drawing them as

the edges and their coformers as the nodes (as illustrated in

Fig. 1a). By converting the database’s cocrystal entries into a

network, an enormous amount of relational information is

deduced that is normally not accessible with the CSD’s soft-

ware [e.g. ConQuest (Bruno et al., 2002), Mercury (Macrae

et al., 2008)]. The network was subsequently studied using a set

of common network analysis techniques to acquire a better

understanding of its structure. These tools, as described below,

include clustering, analyzing the network’s degree distribution

and determining to which network type it belongs. The

extraction of cocrystal data, construction of the network and

further analyses were all performed with scripts written in

Python (version 2.7.15) in conjunction with the CSD’s Python

API.
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Figure 1
(a) Example of a network, consisting of nodes (coformers) and edges
(cocrystals). (b) A monopartite network, characterized by a single set of
nodes, and edges between any of the nodes. (c) A bipartite network with
two distinct sets of nodes, and edges only between these sets. (d) A
mixture network, having the properties of both networks (b) and (c).



2.1. Construction of the network

The CSD was scanned for entries that contain two distinct

chemical entities, are organic, non-ionic, error-free, and have

their three-dimensional coordinates determined (including

disordered structures). From these entries, the binary cocrys-

tals were discriminated from solvates, or structures crystallized

with a gas molecule, using a custom classifier algorithm (see

Appendix A). The algorithm also removes erroneous entries1

and effectively handles difficulties arising from chiral entries,

adding cocrystals for only one representative enantiomer. The

process resulted in a set of binary cocrystals, formed by a set of

unique coformers.

The set of cocrystals was then transformed into an undir-

ected, unweighted network G(N, E), consisting of nodes N

(coformers) and edges E (cocrystals). In fact, an adjacency

matrix A 2 RjNjxjNj is constructed, of which the row and

column indices correspond to the nodes (coformers), and for

which the elements are set to 1 for every known edge

(cocrystal) between these nodes (Fig. 2). The adjacency matrix

is a symmetric matrix that serves as the mathematical basis of

the network and permits the study of its properties.

Our philosophy behind the construction of the network was

to solely map the relations originating from cocrystals, hence

without including polymorphism, stoichiometry, structural

information or (physico-)chemical properties. Nevertheless,

the resulting network is informative enough to study cocrys-

tallization from a theoretical point of view: our results show

that structural and chemical properties can be recovered using

the correct tools from network science.

2.2. Clustering

The extent to which the structure of the network can reflect

some of the generally accepted principles of cocrystallization

was studied by clustering the coformers. Clusters are mutually

exclusive groups of nodes that are related through some

measure of topological similarity, and are expected to

demonstrate a specific function within the network. In the case

of coformers, it is envisaged that clusters will emerge that are

responsible for different cocrystallization mechanisms (e.g

hydrogen bond acceptors). The proposed similarity, also

known as the Jaccard similarity coefficient (Jaccard, 1912),

between two coformers i and j is defined as:

si;j ¼
jni \ njj

jni [ njj
; ð1Þ

with ni and nj the sets of neighbors of coformers i and j,

respectively. The neighbors of a coformer are defined as the

set of all the coformers it forms cocrystals with, or mathe-

matically ni ¼ fj 2 NjAði;jÞ ¼ 1g, with A the adjacency matrix

and N the set of nodes of the network. The similarity measure

in equation (1) is larger for combinations of coformers that

have more neighbors in common, and punishes those that

cocrystallize with more diverse partners. The similarity was

calculated for each pair of coformers and stored in a coformer

similarity matrix. This matrix is similar to the adjacency

matrix, but instead of containing 0’s or 1’s, it contains the

calculated similarities for each coformer combination

(si;j 2 ½0; 1�).

A smaller set of m popular coformers was then clustered

using Ward’s hierarchical clustering method (Ward, 1963) [as

implemented in the SciPy library (Jones et al., 2001)]. The

coformer similarity matrix was first transformed into a

dissimilarity or distance matrix, containing distances

di;j ¼ 1� si;j. Next, the coformers were placed in m separate

clusters or singletons and the cluster pair with the lowest

distance is merged into a larger cluster, reducing the number

of clusters to m � 1. The distance matrix was updated for the

smaller set of clusters, where the distance to a joined cluster p

is defined as:

dðp; qÞ ¼

�
jqj þ jsj

jqj þ jsj þ jtj
dðq; sÞ

2
þ
jqj þ jtj

jqj þ jsj þ jtj
dðq; tÞ

2

�
jqj

jqj þ jsj þ jtj
dðs; tÞ

2

�1=2 ð2Þ

with p the cluster that is formed by joining clusters s and t, and

q one of the remaining clusters. This agglomerative process

was repeated, recording the distances at which clusters were

merged, and was terminated when a single cluster, containing

all the coformers, was obtained. In contrast to coformers, the

distance between clusters can exceed a value of 1: for a

remaining cluster q that is relatively dissimilar to clusters s and

t, the first two terms under the square root in equation (2) can

be large compared to the last term, resulting in a cluster

distance larger than 1. Cluster merges at such a distance are,

however, only expected in the final stages of the procedure,

where rather distant clusters are eventually combined.
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Figure 2
Addition of the cocrystal entry SOVDIQ to the adjacency matrix. The
cocrystal is first split into its coformers (4,40-bipyridine and glutaric acid),
which are then labeled as i and j. Next, elements Aði;jÞ and Aðj;iÞ of the
adjacency matrix are set to 1 for the existing cocrystal. Conversely,
coformer combinations for which no cocrystal is known, are set to 0.

1 For some entries, the three-dimensional data, and more specifically the
connectivities between its atoms, is poorly determined. As a result, the distinct
coformers cannot be extracted from the entry, and are therefore discarded
from the data set. Also, an additional check of the coformer’s neutrality is
performed, removing any ionic molecules that may have been incorrectly
added to the data set.



The clustering process was graphically represented using a

tree-like dendrogram. The dendrogram has the separate

coformers (or singleton clusters) as its endpoints and sche-

matically shows the relative (dis)similarity of coformers or

clusters of coformers using the distance d at which they were

merged. In the case of a merge between two coformers

(singletons), this distance is simply equal to di; j ¼ 1� si; j, and

for multi-coformer clusters, the distance is given by

equation (2). Therefore, the smaller the distance at which two

clusters are merged, the more neighbors are shared among its
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Table 1
Summary of the clusters of coformers in Fig. 5.

The coformers are grouped per cluster and labeled by an index that corresponds to the endpoints in the dendrogram going from left to right (e.g. coformers 3 and 4
are the leftmost and second leftmost endpoints of cluster b). Additionally, the coformers are provided with their number of distinct, observed cocrystals in the CSD
(i.e. coformer degree k) between parentheses.



members. By cutting the dendrogram at a carefully chosen

distance d, a set of clusters was obtained that was analyzed

further.

2.3. Degree distribution and power-law model

A characteristic property of a network is the distribution of

its nodes’ connectivities, or degrees. The degree k of a node is

defined as the number of neighbors it has (ki ¼ jnij), or here,

the number of distinct cocrystals known for a given coformer.

The degree distribution is usually presented as the fraction of

nodes p(k) with degree k as a function of the degree k.

Because the shape of this distribution for the coformer

network is right-skewed, the data was transformed to a log log

plot, where it is found to demonstrate quasi-linear behavior.

Consequently, a power-law model in the form of:

pðkÞ ¼ Ck�� ð3Þ

was fitted to the data. Here, � is the exponent of the power-law

model, which was estimated from the distribution data using a

maximum-likelihood estimator (MLE), and C is a constant.

The estimation protocol for � and C is described in more detail

in Appendix B.

2.4. Network types

Two main types of networks can be used to represent many

real-world problems: monopartite and bipartite. In a mono-

partite network (Fig. 1b), all nodes belong to one single group

and may be connected to any other node through edges. This is

similar to popular social media platforms, where an associa-

tion between any two users (or nodes) is possible. On the

other hand, bipartite networks (Fig. 1c) consist of two distinct,

non-overlapping groups of nodes with connections only

between nodes of different groups. Examples of bipartite

networks are a co-authorship network, consisting of author-

article relationships, and a consumer-product network. A third

type of network consists of a mixture of a mono- and bipartite

network. Similar to a bipartite network, still two types of

nodes can be identified; however, some nodes may form edges

to both sets instead of only one, breaking the constraint for

pure bipartition (Fig. 1d). In principle, the mixture network

can be seen as a general way to describe the type of a network,

with mono- and bipartite networks as its limiting cases (Chang

& Tang, 2014). An example of such a mixture network is a

network of shareholders: while there are two sets of nodes,

owners and corporations, some corporations may also act as

shareholders and have shares in other corporations, leading to

a mixture network.

Having knowledge of the network’s type is crucial when

trying to understand its structure and when trying to develop

strategies to use the network’s information. For instance, link

prediction algorithms2 require the knowledge of the network’s

type to produce relevant new edge suggestions. For mixture

networks, it may therefore be interesting to analyze them in

terms of their limiting cases. For example, if the network

appears to be mostly bipartite (with only a few monopartite

nodes), the use of bipartite link prediction algorithms can be

justified for the mixture network.

Whereas a network of binary organic salts can be inter-

preted as a purely bipartite network with two ion sets (cat- and

anions), there is no such straightforward grouping for

cocrystals. A certain degree of complementarity has been

observed between coformers, such as in hydrogen-bonding or

�-electron systems, suggesting that the network is bipartite.

However, it is sometimes impossible to unambiguously define

the nature (or role) of coformers in such a framework. For

example, isonicotinamide (Table 1, coformer 40) has the

structural features of both a hydrogen bond donor and

acceptor. Besides, since most coformers form crystalline

structures with themselves, it comes as no surprise that

cocrystals exist that combine structurally analogous molecules

[e.g. cocrystal NEHJER (Eddleston et al., 2012) consisting of

theophylline and caffeine (coformers 41 and 42, respectively].

Therefore, instead of hypothesizing to which (limiting) type

the coformer network belongs, it was assumed to be of a mixed

type and was consequently quantified in terms of its mono-

and bipartiteness. To that end, each cocrystal present in the

network was consecutively investigated by mapping out the

direct periphery of its nodes (i.e. paths of length 2 and 3,

involving single and pairs of nodes, respectively). These small

subnetworks were characterized using different formulations

of the common neighbors (CN) and local community links
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Figure 3
Example of a subnetwork encountered upon the inspection of a cocrystal,
containing two types of common neighbors (CN) and three types of local
community links (LCLs).

2 These algorithms attempt to find missing edges within a network based on its
structural properties. Hereby, it is assumed that some topological measure (e.g.
the degree) is related to the likelihood of forming edges between nodes, and
hence node combinations with higher values are presumed to exist.



(LCL) (Fig. 3) that were introduced by Cannistraci et al.

(2013) and Daminelli et al. (2015):

Monopartite CN: the number of (first) common neighbors,

equivalent to jni \ njj.

Bipartite CN: the number of first neighbors connected to

each other (excluding monopartite common neighbors).

Monopartite LCL: the number of links between the

monopartite common neighbors.

Bipartite LCL: the number of links between bipartite

common neighbors.

Monopartite-bipartite LCL: the number of links between

mono- and bipartite common neighbors.

The calculation of these metrics using the adjacency matrix

is straightforward. By mapping these for each cocrystal in the

network, conclusions can be drawn regarding the overall

coformer network type.

3. Results and discussion

3.1. Network construction

A set of 9222 cocrystals, formed by 7188 unique coformers,

was successfully extracted from CSD using the classifier

algorithm (see Appendix A). The cocrystals were subse-

quently transformed into a network of coformers (or adja-

cency matrix), permitting the analysis of its properties and

characteristics. The subnetwork formed by the coformers with

30 or more unique cocrystals in the CSD (and the cocrystals

between them) is shown in Fig. 4a. A graphical representation

of the total network, or even the subnetwork presented here,

is rather uninformative. Using the techniques discussed in

Sections 3.2, 3.3 and 3.4, quantitative statements about the

structure and type of the network can be made, resulting in a

deeper understanding about how coformers relate to each

other and how new cocrystals could be predicted.

3.2. Coformer clusters

It is common to design cocrystals using supramolecular

synthons (Berry & Steed, 2017), where structural motifs are

combined that are known to play an important role in the

formation and stabilization of the cocrystal. Consequently,

coformers are often labeled with a specific function; for

example, carboxylic acid containing molecules are classified as

hydrogen bond donors and acceptors, and can be combined

with themselves (homosynthon) or a different hydrogen bond

donor and/or acceptor (heterosynthon). To investigate

whether such a grouping of coformers, based on molecular

features, can be retrieved from the network, clusters of

coformers are sought. Because clusters bring together mole-

cules which have coformers in common, hence without taking

any chemical features into account, they are anticipated to

reveal purely functionally related coformers.

The clustering is performed for the subset of 69 highly-

connected coformers introduced in Section 3.1. Using the data

from the complete adjacency matrix, a 69 � 69 similarity

matrix is computed, which is subsequently clustered using the

abovementioned agglomerative procedure. The dendrogram

resulting from such a clustering is shown in Fig. 5, from which

a set of relevant clusters is extracted by taking the groups that

merged below a distance of 1. This ensures that subsets of the

most related coformers are found and prevents completely

dissimilar coformers (di,j = 1) from being clustered.

In general, the molecular structures of the coformers found

in the same clusters in Fig. 5 are similar. For example in

Table 1, cluster b consists entirely of small aliphatic dicar-
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Figure 4
The part of the network showing the 69 distinct coformers with more than
30 neighbors, and the cocrystals formed between them. The numbers and
letters each correspond to the coformers and clusters shown in Table 1.
(a) Random placement of the nodes. (b) Placement of the nodes
according to the clusters and grouped in a hierarchical way.

Figure 5
The dendrogram resulting from clustering the set of 69 popular coformers
(for which k > 30). The clusters are labeled by letters, and the structures
corresponding to these clusters can be found in Table 1.



boxylic acids, and the coformers of cluster l are all sixfold

substituted aryl halides. As expected, the structural features

that connect the clustered coformers play a profound role in

the formation of cocrystals: groups of hydrogen-bond donors,

acceptors, or containing electron rich or deficient �-systems

are identified among the clusters. The network approach thus

recovers the grouping of coformers that is often used a priori

for the design of new cocrystals (with for example specific

synthons).

On the other hand, for some clusters, the molecular struc-

tures involved can be rather different. For instance in cluster

d, the aggregation mechanism of the cocrystals formed by

these coformers is mostly face-to-face planar stacking [e.g.

CSD entries REQWAM (Rosokha et al., 2006), MURPYR

(Damiani et al., 1965), ANTPML01 (Robertson & Stezowski,

1978) and PVVBHJ01 (Banerjee, & Brown, 1985)]. However,

tetrathiafulvalene (coformer 15), a heterocyclic sulfur-

containing compound, is structurally dissimilar to the other

polycyclic aromatic hydrocarbons in the cluster. Another

example is cluster e, of which the coformers all can function as

both non-aromatic hydrogen bond acceptors [e.g. CSD entries

QUIDON (Sakurai, 1968), COLGUG (Timmons et al., 2008),

FEQXIJ (Ghosh et al., 2005)] and electron-pair donors in

halogen bonds [e.g. entries BNQBRP (Shipley & Wallwork,

1967), FUYDEK (Catalano et al., 2015), QIHCOZ (Walsh et

al., 2001)]. Again, while being functionally similar, 1,4-

benzoquinone (coformer 19) is structurally different from the

other coformers in the same cluster. The two examples above

highlight the power of this data-driven approach: it is able to

successfully identify functionally similar coformers, free of any

structural prejudices.

The hierarchical structure of the dendrogram in Fig. 5 exists

at several scales, and therefore, cutting off the tree at heights

different from the one proposed above (d = 1) is also assumed

to result in meaningful clusters. This is exemplified in Fig. 6,

where four distinct clusters are extracted at a distance d = 1.3.

As expected, the larger clusters contain more diverse cofor-

mers, which still exhibit a tendency to cocrystallize with similar

coformers. By reorganizing the small 69� 69 adjacency matrix

in such a way that clustered coformers are placed side-by-side,

blocks of dense interconnections (or cocrystals) can be seen

(illustrated in Fig. 6). The most obvious example is the block

connecting the green and blue clusters, demonstrating the

clear complementarity between coformers containing

carboxylic acid groups and aromatic nitrogen atoms in the

formation of hydrogen bonds (see also Fig. 4b). Coformers

within the same cluster also rarely form cocrystals with

themselves (sparse blocks on the diagonal), hinting that the

network is organized primarily in a bipartite way (and hence

not monopartite). The subnetwork of popular coformers is,

however, only a very small part of the complete network, and

a more in-depth analysis of the network type is presented in

Section 3.4.

3.3. Coformer popularity and bias

A closer look at Fig. 4 and the coformer degrees in Table 1

reveals that some coformers are significantly more popular

than others; for instance, whereas 4,40-bipyridine (coformer 28)

has cocrystallized with 288 different coformers, malonic acid

(coformer 7) is found in only 34 distinct cocrystals. In addition,

while the network consists of 7188 unique coformers, only 69

of them appear to have more than 30 cocrystals, implying that

the coformer degree is unevenly distributed.

The imbalance of popularity was analyzed using the

coformer degree distribution (Fig. 7). Remarkably, a

(quasi-)linear relation between logp(k) and logk is seen, and

the distribution was fitted with a power-law model

[equation (3)]. Networks that have such a degree distribution

are classified as scale-free3 and are characterized by a set of

interesting properties (see Appendix B). In the case of the

coformer network, this implies that while most coformers are

present in only one or a few cocrystals [small k, large p(k)], a

small group exists for which the degree is up to two orders of

magnitude larger [large k, small p(k)]. By plotting the cumu-

lative fraction of cocrystals W as a function the fraction of

highest degree coformers p (Fig. 8), the imbalance in popu-

larity becomes even clearer: a relatively small group of

coformers (10% of the total number) is found in most of the

cocrystals (approximately 70%).
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Figure 6
A visual representation of the adjacency matrix from the set of 69 popular
coformers, reorganized using the dendrograms (cut off at d = 1.3). The
small black squares correspond to existing cocrystals between the
coformers. Areas with a relatively large density of cocrystals are
emphasized in grey, and black lines are added as guides to distinguish
between the clusters. The clusters, characterized by a color, consist of the
following smaller clusters that were determined earlier in Fig. 5. Blue: a,
b, c. Red: d, e, f. Green: g, h, i. Yellow: j, k, l, m, n, o, p, q.

3 That is, when the degree distribution is fitted with a power-law model and has
an exponent � between 2 and 3.



The cocrystal data in the CSD is thus heavily biased:

combinations of the same, popular coformers (large k) with

relatively unknown coformers (small k) make up for the

largest part of the cocrystals entries. Consequently, knowl-

edge-based approaches that use data sets obtained by

randomly selecting cocrystals are undoubtedly susceptible to

this bias, which may hinder the formulation of general design

rules for cocrystallization. On the other hand, as shown in

Fig. 8, omitting these highly popular coformers would drasti-

cally reduce the number of cocrystals in the data set, making it

impossible to obtain an overall understanding about cocrys-

tallization since only niche cocrystals would be left in the data

set.

A plausible explanation for the scale-free topology of the

coformer network is that the choice of a second coformer for

cocrystallization experiments is frequently biased. For

example, new pharmaceuticals are commonly combined with a

small group of well-known GRAS4 coformers

[US Food & Drug Administration (FDA), 2018], such as

benzoic acid and nicotinamide (coformer 9 and 39 in Table 1,

respectively). This suggests that preferential attachment

(Barabási & Albert, 1999; Albert & Barabási, 2002) plays a

crucial role in the expansion of the network: whereas highly-

connected coformers are very likely to be used for cocrystal

formation, coformers with smaller connectivity remain rela-

tively unexplored, resulting in a power-law distribution of the

degrees. It may thus be worthwhile to consider a broader

coformer set when designing new cocrystals, looking beyond

the select group of coformers in the tail of Fig. 7 (or in Table 1).

Further, although models based on preferential attachment

are presumed to describe the network’s evolution fairly well5,

they do not coincide with the abovementioned cocrystal

design strategies. Therefore, models that take into account the

inherent bias of the network should be regarded when

choosing a suitable prediction algorithm.

The specific distribution of the degree influences the clus-

tering of the coformers. For highly-connected coformers, the

denominator of equation (1) is generally large, resulting in

relatively low similarities, usually independent of the other

coformer. Indeed, as illustrated in Fig. 5, the distance d
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Figure 7
(a) Distribution of the coformer degrees. The solid blue line is the fitted power-law model for k � kmin and the dashed blue line is an extrapolation of the
model over the initial part of the degree range. (b) Largest connected component of the coformer network, containing 83% of the cocrystals and 62% of
the coformers. The arrows highlight the structural differences in (b) associated with the data points in (a). While most of the nodes have k = 1 (and are
drawn towards the outside of the network), the central core or glue of the network, consisting of a small number of coformers with a larger k, is
responsible for the coherent structure of the network.

Figure 8
Cumulative fraction of the edges (or cocrystals) W plotted against the
fraction of nodes (or coformers) with the highest degrees p. In practise, a
list of nodes with decreasing degrees is constructed, and one records the
fraction of edges covered by these nodes while descending through the
list. The solid blue line corresponds to a theoretical curve for the power-
law model [equation (9)] with � = 2.26.

4 Generally recognized as safe.
5 That is, popular nodes are more likely to form new connections.



between any coformer pair is larger than 0.5 (si, j < 0.5), and

closer inspection of the degrees in Table 1 confirms that the

difference between the degrees in some clusters (for example

in cluster n) can be rather large. Additionally, the coformer

network is far from complete, and the clusters that were

obtained here are likely to be susceptible to the choices made

by researchers in the past few decades when designing

cocrystallization experiments. The true set of neighbors (or

profile) of a coformer may be unattainable, and the actual set

of neighbors may be just a reflection of biased experiments,

which unavoidably directs the outcome of the clustering

procedure. Nevertheless, the obtained clusters still manage to

present similar coformers for cocrystallization, and are

assumed to improve with the discovery of new cocrystals.

3.4. Coformer network type

The type of the coformer network is not a priori known, and

is therefore assumed to be a mixture of mono- and bipartite.

The extent to which the network is similar to either of these

two limiting types, is studied by mapping the five metrics

introduced above (Section 2.4) for every single cocrystal in the

network.

The bipartiteness of the network is analyzed in Fig. 9, where

the number of monopartite CN, bipartite CN and bipartite

LCL (i.e. local community links, edges between bipartite CN)

is visualized for each cocrystal present in the network. As a

logical consequence of the power-law behavior of the degree

distribution, a large part (53%) of the cocrystals cannot be
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Figure 9
Part of the three-dimensional scatter plot that quantifies the cocrystals in
the network according to their number of monopartite CN, bipartite CN
and bipartite LCL (low monopartite CN part). For clarification, the small
subnetwork of Fig. 3, highlighted for the relevant metrics, is included. Of
the 9222 cocrystals, 3572 behave as purely bipartite (red points;
monopartite CN = 0, bipartite CN > 0), 72 as purely monopartite (blue
points; monopartite CN > 0, bipartite CN = 0), 671 as mixed (purple
points; monopartite CN > 0, bipartite CN > 0) and 4907 cannot be
characterized by any common neighbors (yellow points; monopartite
CN = bipartite CN = 0).

Figure 10
An analysis of the peripheral metrics for the 743 cocrystals with monopartite common neighbors. (a) Number of mono-bipartite LCL and (b) number of
monopartite LCL versus the number of monopartite common neighbors (CN). The color of the dots corresponds to a number of cocrystals with those
values (using the attached color bars).



characterized by a number of CN (yellow points) due to the

limited connectivity of most of the coformers in the network

(73% of the coformers with k = 1, Fig. 7). Of the remaining

cocrystals that are interconnected, only a minority of the

coformer combinations (2%) is connected exclusively through

monopartite common neighbors. On the other hand,

approximately 83% behaves purely bipartite (red points) and

16% demonstrates mixed behavior (purple points), with

diverse numbers of bipartite CN and LCL, and usually small

numbers of monopartite CN (� 5).

The analysis above therefore suggests that at least the

interconnected part of the coformer network is primarily

organized in a bipartite manner. Also, as seen in Fig. 9, the

number of bipartite CN and LCL is strongly correlated

(Pearson correlation coefficient of 0.95), which further

supports the claim that this part of the coformer network is

predominantly bipartite.

A similar study of the number of monopartite and mono-

bipartite LCL for the 743 monopartite and mixed cocrystals

(Fig. 10) shows that the number of monopartite common

neighbors for most cocrystals rarely exceeds 1. Surprisingly,

whenever monopartite neighbors are present, they always

form one or several cocrystals with other bipartite common

neighbors (via mono-bipartite LCL, Fig. 10a), and hardly ever

with the other monopartite neighbors (via monopartite LCL,

Fig. 10b), thus contributing to the bipartiteness of the network.

While an exact bipartition of the entire network in two

groups is in principle not possible due to the presence of

monopartite noise, it is nevertheless remarkable that a certain

level of complementarity is seen for 99% of the inter-

connected cocrystals. This observation supports the above-

mentioned cocrystal design approaches (e.g. combining

complementary hydrogen bonds or �-electron systems), while

being free of any prior hypothesis.

The design of new cocrystals using the network (e.g. with

link prediction) should therefore be performed in a bipartite

way instead of a monopartite way. For example, when two

APIs (API 1 and API 2) have several coformers in common

(U ¼ n1 [ n2), candidates for new cocrystals with API 1 and

API 2 should be sought in the sets of non-shared neighbors of

API 2 and API 1 (n2 n U and n1 n U, quadrangular closure),

respectively, rather than combining API 1 and API 2 (trian-

gular closure). The exact algorithm for cocrystal prediction

based on the network should nonetheless be validated on the

data itself, and take into account the other results discussed

here. Link prediction applied to cocrystallization will be the

topic of a subsequent paper.

4. Conclusions

A network of 7188 coformers was successfully constructed

from the information contained in the CSD, making it possible

to study cocrystallization using techniques from data mining

and network science.

The network is divided in groups or clusters of coformers,

which are connected by a common interaction principle (e.g.

hydrogen bond acceptor). With the addition of new cocrystals

to the database (and consequently to the network), an even

more accurate profile of the coformers in terms of bonding will

be obtained, leading to better, more refined clusters. Notably,

the coformers in these clusters are not necessarily structurally

similar, but exhibit an analogous role or function for cocrystal

formation. The latter is beneficial when screening for chiral

conglomerate cocrystals, since more structural variation is

included in the experiments.

The popularity of the coformers in the network is distrib-

uted unevenly, and varies approximately over two orders of

magnitude. The CSD contains a relatively small subset of

highly-popular coformers that is responsible for most of the

cocrystals, and hence the data on cocrystallization is inher-

ently biased towards these coformers. Therefore, it is more

insightful to choose coformers outside of this small subset

when designing new cocrystals and studying cocrystallization

in general.

The distribution of the coformer degrees (or connectivities)

follows a power law over the largest part of its range, and the

network is classified as scale-free (see Appendix B). An

interesting consequence of the network’s specific structure is

its lack of an internal scale. Because of the arbitrary fluctua-

tions around it, the average degree is a poor parameter to

assess a coformer. A possible reason for the network’s scale-

freeness is its evolution through preferential attachment,

where a select group of coformers is consistently chosen for

cocrystallization experiments. While such an evolution can be

modelled and is even anticipated to have a good validation

performance on the network, its underlying principle (i.e.

higher connectivity corresponds to higher likelihood of

forming a cocrystal) seems unreasonable compared to the

cocrystal design strategies proposed in literature.

Even though the coformer network was initially assumed to

be of a mixed type, almost all of the interconnected cocrystals

in the network are found to behave in a bipartite way. While

an exact bipartition of the network (division of the nodes in

two groups) is inconsistent due to monopartite noise, there are

several clusters (or modules) of coformers in the network that

are complementary to each other. This observation may serve

as the basic principle to model the coformer network’s

evolution (with link prediction) and develop an automated,

knowledge-based prediction tool.

In conclusion, we have confirmed that the coformer

network is a rational representation of cocrystal information,

rather than a random assembly of nodes. An automated

screening tool based on the structure of the network can thus

be justified, provided that the correct model is used. We have

developed such a tool, and it is currently being validated using

cocrystallization experiments.

APPENDIX A
Classifier algorithm

A1. Splitting

There are three possible types of multi-component crystals

that can emerge when inspecting a non-ionic, binary entry
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from the CSD. These include cocrystals, solvates and crystals

containing a gas molecule. To correctly classify binary entries,

an algorithm was written in Python that first converts the

structural data of the entries into canonical SMILES strings

(Weininger, 1988; Daylight Chemical Information Systems Inc.,

2008) [with OpenBabel (O’Boyle et al., 2011)] and then splits

these strings into their components using standard string

manipulations.

SMILES strings are human-readable representations of

molecules, or systems containing multiple molecules. When

several, distinct molecules are present in the crystal, the

SMILES string of the entry is made up of the strings of its

constituents, separated by a ‘.’ . The canonicalization of such a

SMILES string then results in a unique string for each mole-

cule, promoting the use of canonical SMILES strings as

molecular identifiers. In addition, canonical SMILES include

the correct absolute configuration of chiral substances

(stereogenic centres, cis-trans chirality) when computed from

three-dimensional data.

A2. Classification

After splitting the strings of the entries into their consti-

tuents, the multi-component crystals are correctly classified as

cocrystal, solvate or structure containing a gas molecule by

comparing the components to a predefined list of 182 common

solvents and 384 common gases. An additional check is

performed, confirming the neutrality of the molecule and

filtering out erroneous systems coming from faulty three-

dimensional coordinates.

A2.1. Chirality. When one of the coformers is chiral, the

cocrystal can be either enantiopure, because the cocrystal was

crystallized from an enantiopure solution or due to the

formation of a racemic conglomerate cocrystal, or racemic,

where the two enantiomers and coformer are present in the

same lattice.6

When imposing that due to their configurational difference,

enantiomers are different molecules, racemic cocrystals are in

principle ternary systems. However, often only one of the

enantiomers is present in the asymmetric unit of such a

cocrystal, whereas the other one is implied by symmetry

operations. In this case, the nature of such a cocrystal is still

regarded as binary, and hence racemic compound cocrystals

are treated as binary cocrystals (one for each enantiomer).

The choice of enantiomer taken up in the asymmetric unit is

arbitrary, and thus splitting the cocrystal would result in a

system with only one of the enantiomers. Therefore, the same

cocrystal but with the counter enantiomer (or exact mirror

image) is added to the dataset. In the case where both enan-

tiomers are present in the asymmetric unit of a racemic

cocrystal, a binary cocrystal for each enantiomer is added. The

deliberate addition of binary cocrystals for racemic systems

can also be justified by the observation that enantiopure

cocrystals are likely to exist when the racemic compound was

successfully cocrystallized (George et al., 2014).

For enantiopure cocrystals, it is very challenging to distin-

guish a racemic conglomerate cocrystal from a cocrystal that is

obtained from a enantiopure mixture.7 In the case of racemic

conglomerates, the enantiomer in the asymmetric unit is again

arbitrary, and hence the counter enantiomer should be added

to the data set. Because of mirror symmetry, cocrystallization

of one of the enantiomers also implies that a cocrystal with the

other enantiomer must exist. Therefore, regardless of

conglomerate forming behaviour, the counter enantiomer is

always deliberately added. While a counter-enantiomer may

not always exist in the case of enantiopure cocrystallization,

this procedure ensures no indications are missed (so no

enantiomers are given too few cocrystals).

The explicit addition of chiral cocrystals, however, falsely

increases the popularity (or degree, see section 2.3) of the

counter coformer; for example, two edges are drawn for every

racemic compound a coformer cocrystallizes with. Conse-

quently, for every pair, only one representative enantiomer

was kept, effectively dealing with the randomness of the

asymmetric unit of racemic compound and conglomerate

cocrystals, while not overestimating the popularity of the

counter coformer.

APPENDIX B

B1. Power-law model fitting

A power-law model in the form pðkÞ ¼ Ck�� was fitted to

the degree distribution data. Instead of fitting a straight line to

the logarithmic data (which is known to result in biased

parameter estimations (Goldstein et al., 2004), the exponent of

the power-law � was calculated from the distribution data

itself using a maximum-likelihood estimator (MLE)

(Newman, 2015):

� ¼ 1þ ntail

X
i

ln
ki

kmin �
1
2

" #
; ð4Þ

where the summation is performed over data points i in the

tail of the distribution (ntail data points) with a degree larger

than or equal to the lower bound kmin, which is the point from

where the distribution can be described by a power-law. The

exact value of kmin is usually not a priori known, and is

therefore estimated from the data by iteratively increasing its

value from 1 to 25 and testing where � reaches a stable value.

The simultaneous estimation of � and kmin is shown by the

blue curve in Fig. 11, where � reaches a temporarily stable

value of 2.26 at kmin = 6. Hereby, a trade-off is made between

the accuracy of � and the number of observations (ntail) used

for its determination, since ntail drastically decreases with

increasing kmin (red curve in Fig. 11).
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6 These includes racemic compounds as well as kryptoracemates.

7 This requires a check of the literature, since the CSD does not provide such
information.



The constant C is determined by summing over both sides

of equation (3) in the power-law region (k � k min):

X1
k¼kmin

pðkÞ ¼ C
X1

k¼kmin

k�� ð5Þ

C ¼

P1
k¼kmin

pðkÞP1
k¼kmin

k��
¼

P1
k¼kmin

pðkÞ

�ð�; kminÞ
ð6Þ

with �ð�; kminÞ the generalized Riemann zeta function. Using

the estimations for � and kmin, equation (6) resulted in C =

0.783.

The goodness of the power-law fit was quantified using the

Kolmogorov-Smirnov statistic (or KS-statistic) (Clauset et al.,

2009; Press et al., 1992):

D ¼ max
k�kmin

jSðkÞ � PðkÞj; ð7Þ

where D is the largest absolute difference between the

observed cumulative degree distribution SðkÞ and its power-

law fit P(k), both in the power-law region (k � k min). The

cumulative degree distribution is an alternative representation

of the degree distribution, where the ordinate axis is trans-

formed to the fraction of nodes P(k) with a degree � k, or

mathematically PðkÞ ¼
P1

k0¼k pðk0Þ. By approximating this

sum as an integral, the corresponding power-law expression

for the cumulative degree distribution becomes:

PðkÞ ’
C

�� 1
k�ð��1Þ: ð8Þ

The estimated values of the model parameters for the first 15

lower bound degrees, together with the length of the distri-

bution tail ntail and KS statistic for the model fit are

summarized in Table 2. The power-law distribution model fits

the data reasonably well: the KS statistic for the model fit was

0.011, which is sufficiently small to confirm the power-law

hypothesis for the data with sample size ntail = 520 (Goldstein

et al., 2004).

Networks for which the degree distribution follows a power-

law with an exponent � 2 [2,3] are classified as scale-free.

Scale-free networks are characterized by a peculiar structure:

a dense, central core exists, containing only a small fraction of

the nodes, but most of the edges (see Figs. 7b and 8), which is

surrounded by a large number of unpopular nodes in

its periphery. Unlike random networks that are generally

characterized by a mean degree and variance, scale-free

networks lack such an internal scale: due to its uneven

distribution, the expected node degree can be either very

small or arbitrarily large8, making it a meaningless property.

Moreover, assuming a perfect power-law distribution, a

theoretical expression can be formulated for the cumulative

edge data (Newman, 2015):

W ¼ P
��2
��1: ð9Þ

As was shown in Fig. 8, the theoretical formulation slightly

underestimates the network’s data. This can be explained by

the fact that equation (9) assumes pure power-law behavior

over the entire degree range, whereas for the coformer

network, it only holds for degrees larger than the lower bound

kmin = 6.
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Table 2
Summary of the power-law model parameters and corresponding KS
statistics for the first 15 kmin values.

The row where kmin is equal to 6 contains the chosen model parameters.

kmin � C ntail KS statistic

1 1.94 0.59 7188 0.376
2 2.03 0.44 1941 0.062
3 2.10 0.50 1165 0.027
4 2.18 0.61 843 0.016
5 2.20 0.65 635 0.011
6 2.26 0.78 520 0.011
7 2.28 0.84 427 0.011
8 2.26 0.77 349 0.011
9 2.25 0.76 297 0.011
10 2.26 0.77 259 0.011
11 2.24 0.73 226 0.011
12 2.25 0.75 203 0.011
13 2.24 0.73 182 0.011
14 2.26 0.79 168 0.011
15 2.29 0.90 157 0.011

Figure 11
Blue line: determination of the lower bound kmin using the power-law
exponent �. Starting at kmin = 6, � temporarily reaches a stable value, and
increases again around kmin = 14. Red line: number of coformers in the
tail of the distribution (ntail) as a function of the lower bound kmin.

8 Because the second and higher order moments diverge for power-law
distributions with a large number of nodes (n!1), the fluctuations around
the mean of k are very large.
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