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ABSTRACT
A well-known conformance relation for model-based testing is

ioco. A conformance relation expresses when an implementation

is correct with respect to a specification. Unlike many other con-

formance and refinement relations, ioco has different domains for

implementations and for specifications. Consequently, ioco is nei-

ther reflexive nor transitive, implying that a specification does not

implement itself, and that specifications cannot be compared for

refinement. In this paper, we investigate how we can compensate

for the lack of reflexivity and transitivity. We show that (i) given
a specification, we can construct in a standard way a canonical

conforming implementation that is very ‘close’ to the specifica-

tion; and (ii) a refinement preorder on specification models can

be defined such that a refined model allows less ioco-conforming

implementations. We give declarative and constructive definitions

of both, we give examples of unimplementable corner-cases, we

investigate decidability, and we do that for ioco as well as for the

ioco-variant uioco. The latter turns out to be simpler and on more

aspects decidable.
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1 INTRODUCTION
Software testing involves checking of desired properties of a soft-

ware product by systematically executing the software, while stim-

ulating it with inputs, and observing and checking outputs. Model-
Based Testing (MBT) is a form of black-box testing where a System

Under Test (SUT) is tested for conformance to a model. The model

specifies, in a formal way, what the system is allowed to do andwhat

it shall not do. As such, the model is the basis for the algorithmic

generation of test cases and for the evaluation of test results.

An important prerequisite for MBT is the precise definition of

what it means for an SUT to conform to its model. Conformance is

expressed using an implementation relation or conformance relation.
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Although an SUT is a black box, we can assume it could be modelled

by somemodel instance in a domain of implementationmodels. This

assumption is commonly referred to as the testability hypothesis, or
testability assumption [7]. This assumption allows reasoning about

SUTs as if they were formal models, and makes it possible to define

a conformance relation as a formal relation between the domain of

specification models and the domain of implementation models.

One of the formal theories for model-based testing uses La-

belled Transition Systems (LTSes) as models and ioco (input-output-
conformance) as conformance relation [17, 18]. An LTS is a struc-

ture with states, representing the states of the actual system, and

with transitions between states representing the actions that the

system may perform. Actions can be inputs, outputs, or internal

steps. The conformance relation ioco expresses that an SUT con-

forms to its specification if the SUT never produces an output that

cannot be produced by the specification in the same situation. A

particular, virtual output is quiescence, actually expressing the ab-

sence of real outputs. The ioco-testing theory for LTSes provides

a test generation algorithm that is sound and exhaustive, i.e., the
(possibly infinitely many) test cases generated from an LTS model

detect all and only ioco-incorrect implementations. The ioco-testing

theory constitutes a well-defined theory of model-based testing,

and it forms the basis for various practical MBT tools, like TorX,

TGV, Uppaal-Tron, Axini Test Manager, JTorx, and TorXakis.

Many conformance relations from the literature have nice proper-

ties, such as being reflexive and transitive on the domain of models

(i.e., they are preorders). Reflexivity implies that any model is a

correct implementation of itself, and transitivity enables step-wise

refinement: a high-level specification is refined to more detailed de-

sign models, which are refined to an implementation model. Hence,

such a preorder is often called a refinement relation. Examples are

trace inclusion, failure preorder [9], and alternating refinement [1].

The ioco conformance relation, however, is neither reflexive nor

transitive, the reason being that the domains of specifications and

implementations differ. An implementation is assumed to be an

LTS that is input-enabled, that is, any input to the implementation

is accepted in every state, whereas specifications are just LTSes.

Inputs that are not accepted in a specification state are considered

to be underspecified: no behaviour is specified for such inputs, thus

leaving implementation freedom to the implementer.

In this paper, we will investigate quasi-reflexivity and quasi-
transitivity for ioco. Specifically, the following questions arise:

(Q1) Given a specification, is it possible to construct in a standard

way an implementation that is akin to the specification, i.e.,

can we derive a canonical conforming implementation from

a specification?
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(Q2) Is it possible to define an ioco-refinement preorder on the

domain of specification models, such that a refined model

allows less ioco-conforming implementations?

Question (Q1) addresses a practical use of specifications: they

should be effectively ioco-implementable, preferably in an algorith-

mic manner. In ioco-literature, (Q1) is often approached by angelic
completion: a non-input enabled specification is turned into an

input-enabled one, by adding an input self-loop to each state where

that input is not accepted. Wewill discuss this approach in Section 4.

We will also re-discuss the common informal interpretation of such

not-accepted inputs in specifications, i.e., that “an implementation

is completely free to do anything it likes after [that input]” [18],

and we will show that this interpretation is at least inaccurate.

Question (Q2) naturally leads to an equivalence on specifications

bymutual refinement, expressing preservation of ioco-conformance.

More generally, the answer to (Q2) leads to a specification lattice

with the usual lattice-operations such as join (disjunction of specifi-

cations), meet (conjunction of specifications), top element (universal

specification), and bottom element (unimplementable specification).

The answers to (Q1) and (Q2) are first investigated via a couple of

corner-case examples in Section 3, and then elaborated in Section 4

based on so-called conformal traces and an ioco-characterization of

specifications based on these traces. But these first answers will

only address the “is it possible”-part of the questions; conformal

traces are not at all constructive and therefore not easily computable.

Therefore, in two steps, we will turn this into a more constructive

approach. First, in Section 5, we define a class of languages with

quiescence, named suspension languages, for which a canonical

implementation can be derived. Secondly, in Section 6, we introduce

a construction on LTSes to obtain the ioco-characterization of a

specification, thus leading to an algorithmic answer to (Q1) and

(Q2) for finite specifications. Correctness follows from the language-

theoretic results in Section 5. For infinite specifications, we prove

undecidability of the ioco-characterization. Lastly, in Section 7, we

consider the conformance relation uioco which is a slight variation

of ioco [4]. We show that a similar characterization for uioco is

simpler than the ioco-characterization, and moreover decidable.

Summarizing, our main contributions are

• a formal characterization of specifications, for ioco and uioco,

• a translation between suspension languages and implemen-

tation models,

• a structured approach for answering (Q1) and (Q2), and

• decidability results for the characterizations.

Proofs can be found in the technical report [10].

1.1 Related Work
As the introduced questions are so natural, solutions have been pro-

posed, but mostly partial ones. Our work is thus strongly inspired

by these solutions, which we combine into a coherent theory.

Most notably, Bourdonov and Kossatchev [5] remark that some

ioco-specifications contain traces, not contained in any conforming

implementation, which they name nonconformal. They show that a

sequence of transformations can remove these traces, to obtain a

reflexive extension of ioco. We base our characterization upon these

traces, and show that the resulting relation can be generalized to a

preorder of language inclusion to answer questions (Q1) and (Q2).

Willemse [20] identified constraints on trace sets which capture

precisely the traces of ioco-specifications. This yields a trace char-

acterization of a different form, suitable for reasoning about the

correspondence between LTSes and languages. Beneš et al. [2] de-

tect invalid specifications which violate these constraints, resulting

from compositions of initially valid specifications. They also intro-

duce transformations from invalid specifications to valid ones. We

show that the characterization of nonconformal traces is strongly

related to the one by Willemse, and that the transformations of

Beneš et al. can be used to remove nonconformal traces.

Volpato and Tretmans [19] investigate question (Q2) for the con-

formance relation uioco, instead of ioco. They analyse dependencies

between traces of specifications, similarly to Willemse, in order to

reduce redundant test cases. The analysis is limited to trace sets of

specifications, and as these are generally infinite, no constructive or

algorithmic approaches for LTSes follow. Furthermore, they claim

that uioco is to be preferred over ioco, but no explicit motivation

is given. Our work thus improves on this by giving constructive

characterizations, and by comparing the two conformance relations.

2 PRELIMINARIES
We first recall the basics of labelled transition systems and ioco

theory. We refer to [18] for a more elaborate overview.

2.1 Labelled Transition Systems
Definition 2.1. A labelled transition system (LTS) with inputs and

outputs is a 5-tuple (Q,AI ,AU ,T ,q
0), where

• Q is a non-empty, countable set of states,

• AI and AU are disjoint sets of input and output actions,

• T ⊆ Q × (AI ∪AU ∪ {τ }) ×Q is a transition relation, and

• q0 ∈ Q is the initial state.

The special action τ < AI ∪ AU denotes the occurrence of an

unobservable, internal transition. We make the usual assumption

that there are no infinite sequences (q,τ ,q′), (q′,τ ,q′′), . . . of τ -
transitions. The domain of LTSes with this assumption is denoted

LTS (AI ,AU ), for inputs AI and outputs AU . Given an LTS s , we
writeQs ,Ts and q

0

s for respectively its states, transitions and initial

state. We fix AI and AU as disjoint sets of inputs and outputs with

A = AI ∪ AU , unless stated otherwise, for the remainder of this

paper. We use LTS as a shorthand for LTS (AI ,AU ). This is our
domain of specifications.

Standard notation is used to express sets of traces as for formal

languages: σ1 · σ2 or σ1σ2 denotes concatenation; σn denotes repe-

tition; σ ∗ denotes the Kleene-star, with σ+ = σσ ∗; and ϵ denotes
the empty sequence. We use the following auxiliary definitions.

Definition 2.2. Let s ∈ LTS; q,q′ ∈ Qs ; Q ⊆ Qs ; ℓ ∈ A; σ ∈ A
∗
;

ℓτ ∈ A ∪ {τ } and στ ∈ (A ∪ {τ })∗. Then we define

q
ϵ
−→ q′

def

⇔ q = q′ (→ ∈ Q × (A ∪ {τ })∗ ×Q )

q
στ ℓτ
−−−−→ q′

def

⇔ ∃q′′ ∈ Qs : q
στ
−−→ q′′ ∧ (q′′, ℓτ ,q

′) ∈ Ts

q
ϵ
=⇒ q′

def

⇔ ∃n ∈ N : q
τ n
−−→ q′ (⇒ ∈ Q ×A∗ ×Q )

q
σ ℓ
==⇒ q′

def

⇔ ∃q1,q2 ∈ Qs : q
σ
=⇒ q1

ℓ
−→ q2

ϵ
=⇒ q′

q
σ
=⇒

def

⇔ ∃q′ : q
σ
=⇒ q′ (we overload⇒ ∈ Q ×A∗)

traces (q)
def

= {σ ∈ A∗ | q
σ
=⇒} q after σ

def

= {q′ ∈ Qs | q
σ
=⇒ q′}

traces (s )
def

= traces (q0

s ) s after σ
def

= {q0

s after σ }

2197



traces (Q )
def

=
⋃
{traces (q) | q ∈ Q }

Q after σ
def

=
⋃
{q after σ | q ∈ Q }

init(Q )
def

= {ℓ ∈ A | ∃q ∈ Q : q
ℓ
−→} out(Q )

def

= init(Q ) ∩AU

s is input-enabled
def

⇔ ∀q ∈ Qs : ∀a ∈ AI : q
a
=⇒

s is deterministic
def

⇔ ∀q ∈ Qs : ∀σ ∈ traces (q) : |q after σ | = 1

IOTS
def

= {s ∈ LTS | s is input-enabled}

To avoid ambiguity, we sometimes add the name of an LTS as a

subscript to the introduced notation, e.g. we distinguish q afters σ
andq aftert σ , ifq ∈ Qs andq ∈ Qt . Our domain of implementations

is IOTS, so our testability assumption is that a system under test

behaves as if it were an IOTS model.

2.2 Quiescence and ioco
An environment can supply an IOTS with inputs from AI , and

observe outputs in AU . When a system is in a state without any

output or internal transitions, it cannot change state by itself, and it

will stay quiescent. Quiescence can be observed by the environment,

in practice by waiting for an output until a time-out has expired.

This is made explicit by adding self-loops with virtual output action

δ < A ∪ {τ }, representing quiescence. We fix the sets of actions

AδU = AU ∪ {δ } and A
δ = A∪ {δ }. The notation of Definition 2.2 is

also used with δ as an output.

Definition 2.3. Let s ∈ LTS (AI ,AU ), and q ∈ Qs . Then

q is quiescent in s
def

⇔ ¬∃ℓ ∈ AU ∪ {τ } : q
ℓ
−→

The deltafication [16] of s is defined as ∆(s ) ∈ LTS (AI ,A
δ
U ), with

Q∆(s )
def

= Qs

T∆(s )
def

= Ts ∪ {(q,δ ,q) | q ∈ Qs ,q is quiescent in s}

q0

∆(s )
def

= q0

s

The suspension traces of s are defined as Straces (s )
def

= traces (∆(s ))

Conformance of implementations to specifications is expressed

with the ioco relation [17], based on the deltafication. Intuitively, the

implementation should only produce outputs appearing in the spec-

ification, including quiescence, after specified suspension traces.

Absence of an input in specifications denotes underspecification:

any behaviour is allowed afterwards.

Definition 2.4. Let i ∈ IOTS, s ∈ LTS. Then

i ioco s
def

⇔ ∀σ ∈ Straces (s ) : out(∆(i ) after σ ) ⊆ out(∆(s ) after σ )

Since IOTS ⊆ LTS, every implementation can also act as a

specification. When only relating implementations, ioco is already

a preorder, namely that of suspension trace inclusion. Furthermore,

a weak form of transitivity holds.

Lemma 2.5. [18] Let i, i ′ ∈ IOTS, s ∈ LTS. Then
i ioco i ′ ⇐⇒ Straces (i ) ⊆ Straces (i ′)
i ioco i ′ ∧ i ′ ioco s =⇒ i ioco s (quasi-transitivity)

2.3 Refinement
To address question (Q2) posed in the introduction, we define an ex-

plicit notion of refinement for ioco: does one specification have less

conforming implementations than another? Likewise, equivalence

expresses having the same implementations.

∆(sA )
τ

τ

δ

a?x !

∆(sB )
τ

τ

δ

a?

a?x !

∆(sC )
τ

τ

δ

a?

a?x !

Figure 1: LTSes sA, sB and sC , with AI = {a?} and AU = {x !}.
Deltafication has been applied.

Definition 2.6. Let s, s ′ ∈ LTS. Then

s ≼ s ′
def

⇔ ∀i ∈ IOTS : i ioco s =⇒ i ioco s ′

s ≃ s ′
def

⇔ s ≼ s ′ ∧ s ′ ≼ s

3 CORNER-CASE EXAMPLES
In the introduction wementioned some commonly used approaches

and interpretations for ioco, such as making a specification model

input-enabled by angelic completion, implementation freedom for

underspecified inputs, and implementability of specifications. In

this section we show three examples that illustrate that these ap-

proaches and interpretations are not completely accurate, which is

relevant when answering (Q1) and (Q2).

Example 3.1 (Angelic completion). Consider specification sA in

Figure 1. Specification sA is not input-enabled: the upper-right

state does not have an a? transition. Applying angelic completion,

i.e., adding an a?-self-loop in the upper-right state, results in sB .
But sB is not ioco-conforming to sA, since out(∆(sB ) after a?) =
{δ ,x !} �⊆ out(∆(sA ) after a?) = {x !}. So, adding self-loops to non-

input-enabled specification states may result in non-ioco conform-

ing implementations. This shows that missing inputs are not under-

specified per state, but only per trace: trace a? is specified (by the

lower branch), so performing angelic completion (which modifies

the behaviour after a? in the upper branch) does not result in a

conforming implementation.

Adding the missing a?-transition in the way it is done in sC , does
result in a conforming implementation: sC ioco sA.

Example 3.2 (Implementation freedom). The only difference be-

tween sA and sC is that sA has an underspecified input-transition,

whereas sC does not. Because of this, δa? ∈ Straces (sC ), whereas
δa? < Straces (sA ). Since unspecified traces would lead to imple-

mentation freedom, one would expect that sA is a more liberal

specification than sC , and that it would allow more conforming

implementations.

This, however, is not the case: since δ -transitions are always

self-loops, any potential implementation i having suspension trace

δa?δ , will also have a?δ . And having trace a?δ implies that δ ∈
out(i after a?), whereas δ < out(sA after a?). Consequently, any
conforming implementation i ioco sA cannot have the suspension

trace δa?δ , and thus, despite the seemingly underspecified trace

δa?, there is no full implementation freedom after δa?.

Actually, we will later show that sA ≃ sC , so they allow the same

implementations: sC explicitly specifies the behaviour after δa?,

whereas sA does so implicitly, through the dependency between

traces such as δa?δ and a?δ .
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∆(sD )

τ

τ

τ

δ

a?

δ

a?

τ
a?

δ

τ
a?

δ

a?

x !

y!

Figure 2: Specification sD , with AI = {a?} and AU = {x !,y!}.

Example 3.3 (Implementability). Consider sD in Figure 2, intro-

duced by Bourdonov and Kossatchev [5]. Assume an implementa-

tion i ∈ IOTS with i ioco sD . We have that δa?δa? ∈ Straces (i ),
because:

(1) ϵ ∈ Straces (i ); (2) then out(∆(i ) after ϵ ) , ∅; moreover,

out(∆(sD ) after ϵ ) = {δ }, so it must be that out(∆(i ) after ϵ ) = {δ },
and consequently δ ∈ Straces (i ); (3) then also δa? ∈ Straces (i )
since i is input-enabled; (4) analogous to (2): out(∆(sD ) after δa?) =
{δ }, thus out(∆(i ) after δa?) = {δ }, so also δa?δ ∈ Straces (i ); (5)
analogous to (3): δa?δa? ∈ Straces (i ), as i is input-enabled.

Let out(i after δa?δa?) = X , then, because δa?δa? ∈ Straces (i )
it holds that X , ∅ (since there is either a ’real’ output x ! or y!, and

if not, there is output δ ). Moreover, since δ -transitions are always
added as loops in ∆(i ), we can leave them out, and the resulting

traces will at least have the same outputs as after δa?δa?:

out(∆(i ) after δa?a?) ⊇ X and out(∆(i ) after a?δa?) ⊇ X

Furthermore, if i ioco sD holds, then we must have that:

out(∆(i ) after δa?a?) ⊆ out(∆(sD ) after δa?a?) = {x !}, and, like-

wise, out(∆(i ) after a?δa?) ⊆ out(∆(sD ) after a?δa?) = {y!}.

Combining all these constraints for X , we conclude that there is

no possible X satisfying all of them. This implies that the conform-

ing implementation i cannot exist: sD is a specification that has no

conforming implementations at all. Apparently, there exist unim-
plementable specifications. Of course, this might pose a problem

when considering some form of reflexivity.

4 TRACE CHARACTERIZATION OF IOCO
As a first step towards formalizing the examples in the previous sec-

tion, and partly answering questions (Q1) and (Q2), we characterize

every specification by a set of traces.

This characterization is motivated by the fact that a specification

shall specify which behaviour of implementations is allowed and

which behaviour is forbidden. Behaviour of implementations is

expressed as suspension traces, so a specification describes which

suspension traces are allowed, and which are not. This is most

easily done if specifications are also characterized explicitly by a

set of suspension traces. This set, however, is not the same as the

suspension traces of the specification as defined in Definition 2.3.

Sometimes the characterization set is larger, if underspecified traces

are allowed, and sometimes it is smaller, if the set of suspension

traces according to Definition 2.3 contains traces which cannot

occur in any conforming implementation, as was illustrated in

Example 3.3. Following Bourdonov and Kossatchev [5] we call such

unimplementable traces nonconformal traces, or conversely, an

ioco-conformal trace is a suspension trace that can occur in some

ioco-conforming implementation.

Definition 4.1. Let σ ∈ (Aδ )∗ and s ∈ LTS. Then

σ iocfl s
def

⇔ ∃i ∈ IOTS : i ioco s ∧ σ ∈ Straces (i )

⟨s⟩ioco
def

⇔ {σ ∈ (Aδ )∗ | σ iocfl s}

We call ⟨s⟩ioco the ioco-characterization of s .

We now revisit the examples of Section 3, and interpret these

examples in terms of conformal traces.

Example 4.2 (Angelic completion). Adding self-loops to sA, as
done in Example 3.1, leads to adding the trace a?δ , which is a

nonconformal trace of sA. No conforming implementation i can
contain this trace because, if it would, it would also have: δ ∈
out(∆(i ) after a?) �⊆ out(∆(sA ) after a?) = {x !}.

Example 4.3 (Implementation freedom). In Example 3.2 we ar-

gued that the trace δa?δ is underspecified in sA, yet, it cannot be
implemented in any conforming implementation. This means that

it is nonconformal. If an implementation i would implement δa?δ ,
then, because δ -transitions always occur as loops in ∆(i ), also a?δ
would occur, which leads to non-conformance as above.

Actually, our claim in Example 3.2 that sA ≃ sC , can be proved

by showing that ⟨sA⟩ioco = ⟨sC ⟩ioco.

Example 4.4 (Implementability). Specification sD in Example 3.3

does not have any conforming implementations, so it also has no

conformal traces: ⟨sD ⟩ioco = ∅.

4.1 Properties of ioco Characterizations
Ioco characterizations of specifications and implementations have a

couple of nice properties which, together with Lemma 2.5, already

partly answer our questions (Q1) and (Q2).

Theorem 4.5. Let i ∈ IOTS and s, s ′ ∈ LTS. Then
(1) ⟨i⟩ioco = Straces (i )

(2) ⟨i⟩ioco ⊆ ⟨s⟩ioco ⇐⇒ i ioco s
(3) ⟨s⟩ioco ⊆ ⟨s ′⟩ioco ⇐⇒ s ≼ s ′

(4) ⟨s⟩ioco = ⟨s ′⟩ioco ⇐⇒ s ≃ s ′

Question (Q1), construction of a canonical conforming imple-

mentation is from a specification s , can be answered by taking

is ∈ IOTS such that Straces (is ) = ⟨s⟩ioco. According to Theo-

rem 4.5.1 and 4.5.2 we then have is ioco s . As Examples 3.3 and 4.4

show, this approach is only possible if s is implementable, that

is, if ⟨s⟩ioco , ∅. Question (Q2), definition of an ioco-refinement

preorder, follows directly from Theorem 4.5.3.

The answers are partial, because, though well-defined, these

definitions do not help in actually constructing the canonical imple-

mentation nor in checking refinement, since Definition 4.1 is not at

all constructive. It is expressed in terms of conformal traces, which

in turn are expressed in terms of the existence of a conforming

implementation. In the next sections we will give more construc-

tive descriptions of conformal-trace sets and ioco-characterizations.

Theorem 4.5.1 shows that this will be relatively easy for input-

enabled implementations. For specifications, however, it is more
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intricate and involves both adding to and removing traces from

Straces (s ), as the examples in the previous section showed.

The more constructive approach is given in two steps. First, in

Section 5, we define suspension languages to characterize specifi-

cations and implementations. Second, in Section 6, we will show

how the manipulation of suspension languages can be lifted to

constructive transformations on labelled transition systems.

5 SUSPENSION LANGUAGES
We will now present an alternative formulation of the ioco char-

acterization, expressed as a set of constraints on its traces. These

constraints follow from the construction of implementations, as

traces of ∆(i ) for some IOTS i . They are inspired by the rules of

Willemse [20] for LTSes with explicit quiescence, which capture

whether the traces of such an LTS are the suspension traces of any

specification in LTS. This characterization leads to a correspon-

dence between implementations and languages with quiescence.

Definition 5.1. A trace σ ∈ (Aδ )∗ is anomalous if it contains an
output x following δ , that is, if σ = σ1δxσ2 for some σ1,σ2 ∈ (Aδ )∗

and x ∈ AU .

Definition 5.2. In the following definitions, let σ and ρ range

over (Aδ )∗ and let ℓ range over Aδ . A language L ⊆ (Aδ )∗ is
− prefix-closed

def

⇔ ∀σℓ ∈ L : σ ∈ L
− input-enabled

def

⇔ ∀σ ∈ L : ∀a ∈ AI : σa ∈ L,

− non-blocking
def

⇔ ∀σ ∈ L : ∃x ∈ AδU : σx ∈ L

− anomaly free
def

⇔ ∀σ ∈ L : σ is not anomalous

− quiescence reducible
def

⇔ ∀σδρ ∈ L : σρ ∈ L
− quiescence stable

def

⇔ ∀σδρ ∈ L : σδδρ ∈ L
Language L is a suspension language if L , ∅ and if all of the above

holds. The domain of suspension languages is denoted by SL.

Prefix-closedness and non-emptiness hold for the traces of any

LTS. Input-enabledness corresponds to the equally named property

on LTSes, and holds by definition for any IOTS. The remaining prop-

erties arise from Definition 2.3 of ∆. Non-blockingness holds, as any
trace leading to states without actual outputs, is extended with ar-

tificial output δ . Anomaly-freedom holds since quiescence denotes

the absence of outputs, which cannot be followed by an output.

Quiescence reducibility and stability follow from δ -transitions be-
ing self-loops: if δ appears in a suspension trace, it may be removed

or replicated by taking the self-loop less or more often.

Suspension languages form a bounded semi-lattice: they are

partially ordered by inclusion, and no least element exists (as ∅ <
SL), but there is a greatest element. We denote this element by Lχ .

Definition 5.3. Lχ
def

= {σ ∈ (Aδ )∗ | σ is not anomalous}

Lemma 5.4. Lχ is the greatest suspension language.

The traces of Lχ are the traces of a chaotic state with explicit

quiescence, shown in Figure 3. Such a state is used in [2] as the

state that contains all possible suspension traces.

5.1 Implementations as Suspension Languages
In this section, we will show the correspondence between imple-

mentations and the class of suspension languages. We already es-

tablished that the suspension traces of any IOTS are a suspension

language.

qχ qΩA

δ

δ

AI

Figure 3: A chaotic state with traces (qχ ) = Lχ . Arrows with
A and AI represent sets of transitions for those actions.

Lemma 5.5. For i ∈ IOTS, we have Straces (i ) ∈ SL.

Conversely, from a suspension language L, we can construct a

canonical IOTS which has exactly the traces of L. We prove this by

lifting the canonical specification of Willemse [20] to the level of

suspension languages. This canonical specification is based on the

Myhill-Nerode equivalence, which is a right-congruence [13].

Definition 5.6. For L ⊆ (Aδ )∗, the Myhill-Nerode equivalence

≡L ⊆ L × L is defined as

σ ≡L σ ′
def

⇔ ∀ρ ∈ (Aδ )∗ : σρ ∈ L ⇐⇒ σ ′ρ ∈ L .

We write [σ ]L to denote the equivalence class of σ ∈ L.

Theorem 5.7. (Myhill-Nerode congruence [13]) Let L ⊆ (Aδ )∗,
and σ ,σ ′ ∈ L with σ ≡L σ ′ and σℓ ∈ L. Then σ ′ℓ ∈ L and σℓ ≡L
σ ′ℓ.

The general approach for defining canonical automata for lan-

guages is to take every equivalence class [σ ]L to be a state, with

transitions [σ ]L
ℓ
−→ [σℓ]L for every extension σℓ. This gives a min-

imal, deterministic automaton. For IOTSes, this approach fails, as

the suspension language contains occurrences of δ , which cannot

be encoded as explicit transitions. Transitions for τ can be used in-

stead. This results in a non-deterministic automaton, so minimality

results for canonical deterministic finite automata cannot be lifted

in a trivial manner.

Definition 5.8. Let L ∈ SL. We define the canonical IOTS of L to

be can(L) with

Q
can(L)

def

= {[σ ]L | σ ∈ L}

T
can(L)

def

= {([σ ]L , ℓ, [σℓ]L ) | ℓ ∈ A,σℓ ∈ L}

∪ {([σ ]L ,τ , [σδ ]L ) | σ ∈ L,σ .L σδ }

q0

can(L)
def

= [ϵ]L

By Theorem 5.7, the transition relation does not depend on the

choice of representatives for equivalence classes and is thus well de-

fined. Furthermore, quiescence reducibility and stability imply that

any trace σδ ∈ L must have σδ ≡L σδδ . This prevents successive
τ -transitions, and in particular infinite sequences of τ -transitions.
The suspension traces of this IOTS represent exactly the given

suspension language.

Lemma 5.9. Let L ∈ SL. Then Straces (can(L)) = L.

Together with Lemma 5.5, we can now define the central result of

this section: we can reason about IOTSes as suspension languages,

and vice versa. This lifts the Nerode theorem for DFAs and regular

languages [13] to IOTSes and suspension languages.

Theorem 5.10. Let L ∈ (Aδ )∗. Then

L ∈ SL ⇐⇒ ∃i ∈ IOTS : Straces (i ) = L
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5.2 Specifications as Suspension Languages
Whereas the correspondence between suspension languages and

implementations is clear, the correspondence with specifications

is less so. The suspension traces of a specification LTS satisfy all

conditions for suspension languages, by the same reasoning as

for implementations, except for input-enabledness. For example,

specification sA in Figure 1 contains trace δ but not δa?.

Lemma 5.11. [20] For s ∈ LTS, Straces (s ) is prefix-closed, non-
blocking, anomaly free, quiescence stable and quiescence reducible.

Next to angelic completion, specifications are often made input-

enabled by demonic completion [4], i.e., by adding missing input

transitions to a chaotic state such as qχ in Figure 3. If any sus-

pension trace non-deterministically leads to multiple specification

states, of which one has a transition for input a? and another does

not, then this form of input completion considers that input to be

underspecified. For example, trace a? is then underspecified in sA,
and trace a?δ is then allowed by sA. This does not correspond to the
notion of input underspecification according to ioco, as explained

in Example 3.1. We therefore take a different approach, in which

we conclude underspecification based on the suspension traces.

Definition 5.12. Let L ⊆ (Aδ )∗ be a language. Then the input-
enabling of L, denoted by inp(L), is defined as

inp(L)
def

= L ∪ {σaρ | σ ∈ L,a ∈ AI ,σa < L, ρ is not anomalous}

Definition 5.13. Let s ∈ LTS. Then the Itraces of s are defined
as

Itraces (s )
def

= inp(Straces (s ))

Remark that the Itraces and Straces of an implementation are

the same, as input-enabling does not affect the Straces of an IOTS.

Lemma 5.14. Let i ∈ IOTS, s ∈ LTS. Then

i ioco s ⇐⇒ Straces (i ) ⊆ Itraces (s )

This lemma states that a conforming implementation may only

contain the Itraces of a specification, so the Itraces seem to be

precisely the conformal traces. This, however, does not take into

account the dependencies between traces. We repeat the examples

of Section 3, now using the properties of suspension languages of

Definition 5.2.

Example 5.15. Trace δa?δ is added to the suspension traces of

sA by transformation inp: the suspension traces contain δ but not

δa?, and extension δ is non-anomalous. Trace δa?δ is therefore

in Itraces (sA ), but a?δ is not. This proves that Itraces (sA ) is not
quiescence reducible.We observed in Examples 3.2 and 4.3 that δa?δ
is not an ioco-conformal trace of sA, as implementations cannot

contain δa?δ without also containing the non-conformal trace a?δ .
This is because implementations are quiescence reducible. More

generally, the traces in Itraces (sA ) violating quiescence reducibility
are the traces δ+a?δρ, for non-anomalous ρ, which are all non-

conformal.

Example 5.16. We cast Examples 3.3 and 4.4 to the domain of sus-

pension languages. We prove that sD is unimplementable, by assum-

ing an implementation i with i ioco sD . This must lead to a contra-

diction. The suspension traces of i are a suspension language (The-

orem 5.2), contained in Itraces (sD ) (Lemma 5.14). Thus, Straces (i )

cannot contain the following traces: a?δa?δ , a?δa?x ! and δa?a?y!

(not in Itraces (sD )); δa?δa?δ , δa?δa?x ! and δa?δa?y! (quiescence

reducibility); δa?δa? (non-blockingness); δa?δ (input-enabledness);

δa?x ! and δa?y! (not in Itraces (sD )); δa? (non-blockingness); δ
(input-enabledness); x ! and y! (not in Itraces (sD )); and finally, ϵ
(non-blockingness).

From ϵ < Straces (i ), it follows by prefix-closedness that no trace
can be in Straces (i ), so it is empty. This cannot occur for any IOTS.

To summarize, the suspension traces of a specification are not a

suspension language, because they are not input-enabled. They be-

come input-enabled by transformation inp, but we lose quiescence

reducibility.

Lemma 5.17. Transformation inp adds input-enabledness, pre-
serves prefix-closedness, non-blockingness, anomaly freedom, and
quiescence stability, but does not preserve quiescence reducibility.

Although the Itraces of a specification are not a suspension lan-

guage, they may have a greatest suspension language contained

in them, which we may use instead. The suspension traces of all

implementations conforming to a specification s are contained in

Itraces (s ), so their union also is contained in it. Since suspension

languages are closed under union, this union is the greatest suspen-

sion language contained in s . This suspension language contains

precisely all traces of conforming implementations, and is therefore

the ioco characterization of s . This always holds, except for unim-

plementable specifications, as their ioco characterization is empty.

As such, the empty language is the only ioco characterization which

is not a suspension language.

Definition 5.18. We denote the domain of ioco characterizations
by SL∅

def

= SL ∪ {∅}.

For L ⊆ (Aδ )∗, we define ic(L) as the greatest ioco characteriza-

tion included in L.

Lemma 5.19. Let s ∈ LTS. Then ⟨s⟩ioco = ic(Itraces (s ))

The domain of ioco characterizations extends the semi-lattice

of suspension language to a complete lattice, by adding the least

element ∅. We conclude that every implementable specification

has a suspension language as ioco characterization, and thus also

has a canonical implementation, through Theorem 5.10. Unimple-

mentable specifications do not. Remark that ∅ meets all the condi-

tions for being a suspension language, except for being non-empty:

any ioco characterization therefore meets these conditions as well.

Figure 4 gives an overview of the introduced transformations

for ioco, the relevant properties that (do not) hold after every trans-

formation, and the conformance and refinement relations.

6 LTS CHARACTERIZATIONS OF IOCO
So far, we have found a semantical characterization of specifica-

tions in terms of conformal traces, and in terms of constraints on

suspension languages. These characterizations have been proven

to answer (Q1) and (Q2), based on canonical IOTSes, and the con-

struction of these canonical IOTSes has been treated. However,

to construct the canonical IOTS of Definition 5.8, we require an

explicit, syntactical representation of the (equivalence classes of)

traces in ic(Itraces (s )). As such, we lift the required transforma-

tions to concrete LTS-representations of these trace sets. For finite
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s ∈ LTS

∆(s )

Straces (s )
(not input-enabled)

Itraces (s )
(not quiescence reducible)

⟨s⟩ioco
(ioco characterization)

i ∈ IOTS

∆(i )

Straces (i ) = Itraces (i ) = ⟨i⟩ioco
(suspension language)

∆

traces

inp

ic

∆

traces

ioco conformance

trace inclusion

(ioco conformance)

trace inclusion

(ioco refinement)

Figure 4: An overview of the introduced trace transforma-
tions. Rounded nodes are LTSes, and boxes represent lan-
guages with the given properties. Dashed lines represent re-
lations between domains.

LTS LTS (AI ,A
δ
U )

LT Sδ (Aδ )∗

LT Sδ (Aδ )∗

LT Sδ

LT Sδ SL∅

∆

Straces
traces

inp

ic

Γ

Ξ
traces

ζ
traces

η
traces

Figure 5: Transformations from specification LTSes to ioco
characterizations, via LTS-representation (left) and on their
traces (right).

specifications, this directly provides algorithmic means for compar-

ing ioco characterizations and for generating canonical IOTSes. For

infinite specifications, this gives insight into the computability of

ioco characterizations.

A straightforward representation of traces with explicit δ actions,

is by a deterministic LTSes with explicit δ -transitions. Note that a
deterministic LTS has no internal transitions.

Definition 6.1. LT Sδ def

= {s ∈ LTS (AI ,A
δ
U ) |

s is deterministic and traces (s ) is anomaly free}

Figure 5 gives an overview of the transformations on traces and

the corresponding transformations on LTSes: a computation of the

Itraces is introduced in Section 6.1, and operation ic is discussed in

Section 6.2. We perform an analysis of the properties for suspen-

sion languages, which should be obtained or preserved by these

transformations. Formally, we want this diagram to commute.

6.1 Itraces of LTSes
We obtain a deterministic LTS representing the suspension traces

of specification s by determinizing ∆(s ), using the standard subset

construction. This is also known as the suspension automaton of

s [17]. Its traces are the suspension traces of s .

Definition 6.2. Let s ∈ LTS. Then the suspension automaton
Γ(s ) ∈ LT Sδ is defined by

QΓ(s )
def

= P (Q∆(s ) ) \ ∅

TΓ(s )
def

= {(q, ℓ,q after
∆(s) ℓ) | q ∈ QΓ(s ) , ℓ ∈ L

δ , (q after
∆(s) ℓ) , ∅}

q0

Γ(s )
def

= q0

∆(s ) after ϵ

Lemma 6.3. [17] Let s ∈ LTS. Then traces (Γ(s )) = Straces (s ).

After performing determinization, the input completion of Γ(s )
can be obtained by demonic completion [2]. This adds missing input

transitions to a chaotic state with explicit quiescence, such as qχ
in Figure 3.

Definition 6.4. Let s ∈ LT Sδ , and choose χ ∈ LT Sδ with

traces (χ ) = Lχ and Qs ∩Qχ = ∅. Then Ξ(s ) ∈ LT Sδ is defined

by

QΞ(s )
def

= Qs ∪Qχ

TΞ(s )
def

= Ts ∪Tχ ∪ {(q,a,q
0

χ ) | q ∈ Qs ,a ∈ AI ,q ��
a
−→)}

q0

Ξ(s )
def

= q0

s

The left LTS in Figure 6 shows the result of applying Γ and Ξ
on specification sA of Figure 1. Demonic completion on specifica-

tions in LTS has been studied in the context of ioco [4], but is

usually performed without determinization. The approach of Beneš

et al. is similar to ours [2], performing demonic completion on

determinized suspension automata, but they do not remark that the

resulting suspension automatonmay violate quiescence reducibility.

Instead, they assume input-enabled, quiescence reducible suspen-

sion automata, restricting their results. For example, this excludes

specification Ξ(Γ(sA )).
By Lemmas 6.3 and 6.5, the Itraces of a specification are the traces

of Ξ(Γ(s )). We can consequently use trace inclusion to Ξ(Γ(s )) to
check for ioco conformance to s (Lemma 5.14). For finite specifica-

tions (that is, having a finite set of states and transitions), the size

of Γ(s ) is exponential in the size of s [17], and trace inclusion for

deterministic specifications is polynomial. This is in line with the

known, exponential complexity bounds [14].

Lemma 6.5. Let s ∈ LT Sδ . Then
(1) traces (Ξ(s )) = Itraces (s ),
(2) Ξ(s ) ∈ LT Sδ holds, that is, Ξ(s ) is deterministic and its

traces are anomaly free.

6.2 Transformation ic on LTSes
The last step of computing ioco characterizations is by translating

transformation ic to LTSes. This is done in two steps, and resem-

bles the construction of validization by Beneš et al. [2], as well as

transformation D by Bourdonov and Kossatchev [5]. The first step

(ζ ) ensures quiescence reducibility and stability, while the second

(η) ensures non-blockingness.
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q0

Ξ(Γ(sA ))

q1

q2

qχ qΩ

δ

x !

a?

δ

a?

x !

a?

a?

x !

δ

a?

δ {q0}

ζ (Ξ(Γ(sA )))

{q0,q1}

{q2}

{q2,qχ }

δ

x !

a?

δ

a?

a?

x !

a?

x !

Figure 6: Successive application of Γ and Ξ (left) and ζ (right)
on sA. The dotted transition is added by Ξ.

Definition 6.6. Let s ∈ LT Sδ . Then we define ζ (s ) ∈ LT Sδ

by

Qζ (s )
def

= P (Qs ) \ {∅}

Tζ (s )
def

= {(r , ℓ, r afters ℓ) | r ∈ Qζ (s ) , ℓ ∈ A, ∀q ∈ r : q
ℓ
=⇒s }

∪ {(r ,δ ,R(r )) | r ∈ Qζ (s ) , ∀q ∈ r ,∀n ∈ N : q
δn
==⇒s }

where R(r )
def

=
⋃
{r afters δ

n | n ∈ N}

q0

ζ (s )
def

= {q0

s }

In the construction of ζ (s ), a singleton state {q} has the same

behaviour as q in the original LTS s for actions in A. The behaviour
for δ is changed: δ -transitions in s may cause ζ (s ) to move from

a singleton to a non-singleton state. Intuitively, ζ (s ) after σ is the

set of states of s which are reached by σ , or by any trace created

by removing or duplicating δ -occurrences from σ . A trace is not

allowed by such a set in ζ (s ), if any state of this set does not allow

it in s . This ensures quiescence reducibility.

Example 6.7. The right LTS in Figure 6 results from applying ζ
to Ξ(Γ(sA )). From the initial state, after a or x , the behaviour is not
changed with respect to Ξ(Γ(sA )) itself. We find R({q0}) = {q0,q1},

so {q0}
δ
−→ζ (Ξ(Γ(sA ))) {q0,q1}. This is because trace δ reaches q1,

but trace ϵ (which is trace δ with a δ -occurrence omitted) reaches

q0. State {q0,q1} is similar to q1 in Ξ(Γ(sA )), except that the latter

contains trace aδ , whereas the former does not, since q0 ��
aδ
==⇒. Conse-

quently, unimplementable trace δa?δ is removed by ζ . This yields
a quiescence reducible LTS, trace equivalent to specification ∆(sC ).

Example 6.8. Figure 7 shows ζ applied on Ξ(Γ(sD )), for sD in

Figure 2. States of Γ(sD ) have been renamed for readability. In sD
itself, δa?δa? is underspecified, so this trace leads to qχ inΞ(Γ(sD )).
If δ -occurrences are removed from this trace, states 3, 8 and 9 can

be reached, so ζ (Ξ(Γ(sD ))) after δa?δa? = {3, 8, 9,qχ }. This state
allows only outputs allowed by each of the individual states. All

outputs are allowed by qχ , but states 8 and 9 allow respectively

{y!} and {x !}. The intersection is empty, so {3, 8, 9,qχ } is blocking.

Lemma 6.9. Let s ∈ LT Sδ . Then ζ (s ) ∈ LT Sδ , and the largest
quiescence reducible and stable subset of traces (s ) is traces (ζ (s )).

0

Ξ(Γ(sD ))
1

3

4

7

6

8

2

5 9

10

qχ

qΩ

a?

δ

a?

δ
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a?
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y!

y!

x !

δ

a?

a?

a?

a?

a?

a?

a?
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y!

δ
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δ

{0}

ζ (Ξ(Γ(sD )))
{1}

{3}

{1, 4}

{7}

{6}

{3, 8}

{0, 2} {1, 5} {3, 9}

{1, 4, 5, 10}

{7, 8}

{6, 9}

{3, 8, 9,qχ }

{qχ }

{qΩ }

a?

δ

a?

δ

a?

δ

x !

y!

x !

y!

a?

δ

a?

δ

y!

x !

x !

y!

δ

a?

a?

a?

a?

a?

a?

a?

a?

a?

a?

x !

y!

δ
a?

δ

Figure 7: Successive application of Γ and Ξ (above) and ζ (be-
low) on specification sD , forAI = {a?} andAU = {x !,y!}. Tran-
sitions to qχ and {qχ } are dotted to improve readability.

Transformation ζ is used to regain quiescence reducibility, which

may be lost after performing Ξ. In turn, ζ does not preserve non-

blockingness, shown by state {3, 8, 9,qχ } in Example 6.8. We use

the pruning-procedure introduced in [2] to solve this.

Definition 6.10. Let s ∈ LT Sδ . Then the set of invalid states,
denoted by inv(s ) ⊆ Qs , is defined as the smallest set of states

q ∈ Qs , for which

• ∃a ∈ AI : q after a ⊆ inv(s ), or
• ∀x ∈ out(q) : q after x ⊆ inv(s ).

If q0

s ∈ inv(s ), then we define η(s )
def

= ⊥ with traces (⊥)
def

= ∅.

If q0

s < inv(s ), then we define η(s ) ∈ LT Sδ by

Qη (s )
def

= Qs \ inv(s )

Tη (s )
def

= Ts ∩ (Qη (s ) ×A
δ ×Qη (s ) )

q0

η (s )
def

= q0

s

Note that a blocking state serves as an inductive basis for inv,

as it vacuously satisfies the second condition for being invalid.
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Intuitively, η removes all blocking states and transitions to and

from those states. If this causes any new states to become blocking

or non-input-enabled, we recursively remove these as well. The

traces of the resulting LTS (or ⊥) are non-blocking, and preserve

quiescence stability and reducibility.

Lemma 6.11. Let s ∈ LT Sδ . Then
(1) if q0

s < inv(s ), then indeed η(s ) ∈ LT Sδ ,
(2) traces (η(s )) is the largest input-enabled and non-blocking

subset of traces (s ), and
(3) traces (η(s )) is quiescence stable or reducible, if traces (s ) is,

respectively.

Theorem 6.12. Let s ∈ LTS. Then

⟨s⟩ioco = traces (η(ζ (Ξ(Γ(s )))))

Example 6.13. In Figure 6, ζ (Ξ(Γ(sA ))) only has non-blocking

states. Consequently, η leaves it unchanged, which means that

⟨sA⟩ioco = traces (ζ (Ξ(Γ(sA )))). Since sC is an IOTS, we have

⟨sC ⟩ioco = Straces (sC ) = traces (∆(sC )). As ζ (Ξ(Γ(sA ))) is trace
equivalent to ∆(sC ), we thus have ⟨sA⟩ioco = ⟨sC ⟩ioco. By Theo-

rem 4.5.4, specifications sA and sC are thus proven to be equivalent.

Example 6.14. To find the ioco characterization of sD , we apply
η on ζ (Ξ(Γ(sD ))), in Figure 7. Blocking state {3, 8, 9,qχ } is invalid,
as well as states {1, 4, 5, 10}, {1, 5}, {0, 2} and initial state {0}. Hence,

the result is ⊥, so ⟨sD ⟩ioco = ∅.

All trace operations in Figure 4 are now instantiated by transfor-

mations on LTSes. Canonical IOTSes can be created from this using

Definition 5.8. Ioco refinement and equivalence can be checked by

trace inclusion on transformed specifications, using Theorems 4.5.3,

4.5.4 and 6.12.

6.3 Complexity and Undecidability
As both Γ and ζ are exponential, the construction of the LTS-

representation has a double exponential upper bound. Since opera-

tion ζ is required to remove nonconformal traces from the Itraces,

we conjecture that deciding refinement and equivalence for finite

specifications is not in PSPACE. The relevance of this complexity

is limited, because specifications are often (practically) infinite. For

example, they can be represented by process algebras [18] or sym-

bolic transition systems [6], containing data parameters. Computing

explicit LTS representations is therefore often infeasible.

Amore feasible approach for infinite systems is to check whether

individual traces are conformal. This does not allow checking equiv-

alence or refinement, but it would allow comparing finite parts

of specifications. Furthermore, a conforming implementation can

then be derived in a lazy manner. For example, one could build

a ‘simulator’ for a specification which behaves like a conforming

implementation, by producing conformal traces.

Unfortunately, deciding whether traces are conformal is unde-

cidable, even if the after-set q after ℓ of every state q and action ℓ is

finite and computable.
1
Any trace σ may be nonconformal because

some extension σρ of unknown length is blocking. In general, the

entire state space of the specification must be checked for blocking

states, by construction of η, to detect nonconformal traces.

1
Without this assumption, incomputability is trivial, as a single step q after ℓ may

already be incomputable. [3] describes a formal definition of computability of after-sets.

χ∆
τ

AU

AI

AI

∆(Ξ∆ (sA )) τ

τ

δ

a?

x !

a?
τ

x !

a?

a?

δ

Figure 8: A chaotic state without explicit quiescence, and de-
monic completion Ξ∆ of sA.

Theorem 6.15. Let σ ∈ (Aδ )∗, and let s ∈ LTS where Ts is
finitely branching, and Qs , AI and AU are enumerable, and where
init(q) and q after

∆(s) ℓ are computable for all ℓ ∈ Aδ and all q ∈ Qs .
Determining whether σ iocfl s holds is undecidable.

7 UIOCO REFINEMENT
The need for constructions ζ and η arises from the problems with

input underspecification, in combination with non-determinism.

We now repeat the analysis for the alternative conformance relation

uioco [4]. Whereas in ioco, allowed suspension traces are made

explicit by performing demonic completion after adding quiescence
and determinization (transformation Γ), uioco performs demonic

completion on the initial specification, before applying Γ. There-
fore, a chaotic state without explicit quiescence and with internal

transitions is used [4], such as the initial state of χ∆ in Figure 8.

This explicitly transforms an LTS specification to an IOTS.

Definition 7.1. Let s ∈ LTS, and choose χ∆ ∈ IOTS with

Straces (χ∆ ) = Lχ and Qs ∩ Qχ∆ = ∅. Then Ξ∆ (s ) ∈ IOTS is

defined by

QΞ∆ (s )
def

= Qs ∪Qχ∆

TΞ∆ (s )
def

= Ts ∪Tχ∆ ∪ {(q,a,q
0

χ∆ ) | q ∈ Qs ,a ∈ AI ,q ��
a
=⇒)}

q0

Ξ∆ (s )
def

= q0

s

Definition 7.2. Let i ∈ IOTS and s ∈ LTS. Then

i uioco s
def

⇔ i ioco Ξ∆ (s )

The right LTS in Figure 8 results from demonic completion Ξ∆. It

shows that for uioco, sA allows suspension trace a?δ , whereas this
is not the case for ioco. In general, uioco is weaker than ioco [4].

We define characterizations similarly to for ioco.

Definition 7.3. Let σ ∈ (Aδ )∗ and s, s ′ ∈ LTS. Then

σ uiocfl s
def

⇔ ∃i ∈ IOTS : i uioco s ∧ σ ∈ Straces (i )

⟨s⟩uioco
def

= {σ ∈ (Aδ )∗ | σ uiocfl s}

s ≼u s ′
def

⇔ ∀i ∈ IOTS : i uioco s =⇒ i uioco s ′

Since every specification s is explicitly transformed to an IOTS,

uioco-conformance to s is equivalent to suspension trace inclusion

to Ξ∆ (s ), by Lemma 5.14. This entails that the suspension traces of

the completed specification act directly as the uioco characteriza-

tion. Consequently, the domain of uioco-characterizations is SL.

Moreover, Ξ∆ (s ) acts directly as a canonical implementation of

specification s , as it is uioco-equivalent to s .
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Theorem 7.4. Let s, s ′ ∈ LTS and i ∈ IOTS. Then

(1) ⟨i⟩uioco = Straces (i )
(2) ⟨s⟩uioco = Straces (Ξ∆ (s ))
(3) ⟨s⟩uioco ∈ SL
(4) i uioco s ⇐⇒ ⟨i⟩uioco ⊆ ⟨s⟩uioco
(5) s ≼u s ′ ⇐⇒ ⟨s⟩uioco ⊆ ⟨s

′⟩uioco

Hence, we can check uioco conformance or refinement directly

by checking suspension trace inclusion, after performing demonic

completion on the specification. This is PSPACE-complete [15].

In contrast to the ioco-characterization, this characterization

is decidable. Intuitively, to check whether a suspension trace σ is

conformal to s , we traverse s by following σ . We do this inductively,

per action. If an output contained in σ leads to an empty set of states,

then it is forbidden and σ is not allowed. If any input contained

in σ is underspecified, then σ is allowed. If we encounter no such

forbidden outputs or underspecification inputs, then σ is allowed.

Theorem 7.5. Let σ ∈ (Aδ )∗, and let s ∈ LTS where Ts is
finitely branching, and Qs , AI and AU are enumerable, and where
init(q) and q after

∆(s) ℓ are computable for all ℓ ∈ Aδ and all q ∈ Qs .
Determining whether σ uiocfl s holds is decidable.

8 DISCUSSION AND CONCLUSIONS
We answered (Q1): given a specification, we can construct a canoni-

cal conforming implementation using the ioco-characterization set

of the specification, if this set is not empty. If it is empty, no con-

forming implementation exists. We also answered (Q2): we defined

an ioco-refinement preorder for specification models, such that a re-

fined model allows less conforming implementations. Both answers

were first given declaratively, i.e., defined in terms of properties,

and were then turned into a constructive form.

We established a computable refinement preorder for both ioco

and uioco. The characterization for ioco forms a complete lattice, as

the empty characterization can be expressed by actual specifications.

This paves the way for using results from lattice theory in the

context of ioco theory. For example, themerge operator, introduced
by Beneš et al. [2], acts as the greatest lower bound in this lattice,

which we can now express as language intersection. In that work,

an artificial unimplementable specification is introduced, but this

is unneeded: example specification sD acts as one. For uioco, no

unimplementable specification exists, so uioco specifications form

a semi-lattice without a least element. Defining a merge operator

for uioco thus requires adding such a least element artificially.

The combination of quiescence and trace-based input under-

specification in ioco has unexpected consequences for the ioco

characterization, such as the high computational complexity for

finite specifications, and undecidability in general. In particular,

simulating an ioco-conforming implementation is not possible. This

treatment of underspecified inputs and quiescence is found in many

variants of ioco, such as modal ioco [12], symbolic ioco [6] and

probabilistic ioco [8], so we expect similar consequences for these

relations. To overcome these problems, a uioco-like approach may

be possible for these variants as well. Demonic completion should

then be lifted to the level of modal, symbolic or probabilistic tran-

sition systems. If quiescence is abandoned in favour of an explicit

notion of time, such as with tioco [11], implications are less clear.

In this paper, we did not touch upon test case generation, but

this is a core motivation of model based testing. After observing

a suspension trace, the verdict for a test case should ideally be

pass for conformal traces, and fail for nonconformal traces. The-

orem 6.15 shows that this ideal test case generation is impossible

for ioco. Standard test case generation for ioco [18] is weaker, as

non-conformal traces do not always fail [5]. For example, trace

δa?δ does not fail when testing for specification sA, and neither

does trace ϵ when testing for sD . In contrast, Theorem 7.5 shows

that such an ideal test case generation is possible for uioco.

This adds up to the favourable compositionality properties of

uioco, for which it was originally introduced [4]. One could thus

argue that uioco has a more sensible semantics than ioco, and

therefore should be used as the standard conformance relation in

testing theory for LTSes with inputs, outputs and quiescence.
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