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ABSTRACT
Data processing and communication in almost all electronic systems
are based on Central Processing Units (CPUs). In order to guaran-
tee confidentiality and integrity of the software running on a CPU,
hardware-assisted security architectures are used. However, both
the threat model and the non-functional platform requirements, i.e.
performance and energy budget, differ when we go from high-end
desktop computers and servers to low-end embedded devices that
populate the internet of things (IoT). For high-end platforms, a rel-
atively large energy budget is available to protect software against
attacks. However, measures to optimize performance give rise to
microarchitectural side-channel attacks. IoT devices, in contrast,
are constrained in terms of energy consumption and do not incor-
porate the performance enhancements found in high-end CPUs.
Hence, they are less likely to be susceptible to microarchitectural
attacks, but give rise to physical attacks, exploiting, e.g., leakage
in power consumption or through fault injection. Whereas previ-
ous work mostly concentrates on a specific architecture, this paper
covers the whole spectrum of computing systems, comparing the
corresponding hardware architectures, and most relevant threats.
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1 INTRODUCTION
Software attacks can lead to unauthorized access or physical dam-
age to infected devices and networks. To limit potential attacks to
only the code containing the flaw, operating system kernels make
use of process isolation. However, flaws in the kernel itself can be
used to undermine process isolation. Trusted Execution Environ-
ments (TEEs) and hardware-assisted approaches try to guarantee
a level of security that mitigations for vulnerable software have
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failed to provide. The basic assumption for hardware-assisted se-
curity mechanisms is that hardware is less likely to have software-
exploitable vulnerabilities. Building on those primitives, the com-
plexity of the software parts in mitigations can be reduced. As a
consequence, industry is advocating hardware-assisted approaches
on all fronts: desktop computers (Intel SGX [16], AMD SEV [20]),
smartphones (ARM TrustZone [2]), down to low-energy embedded
devices (ARM TrustZone-M [43]). In parallel, academia proposed
many security solutions based on those industrial hardware trust
anchors. A promising approach is to manage hardware by a small
software Trusted Computing Base (TCB) to create TEEs, e.g., pro-
tecting sensitive user-space code on mobile devices based on ARM
TrustZone [7], or improving Intel SGX on RISC-V [11]. However,
other types of attacks, besides software attacks, are exploiting the
microarchitectural details of the CPU or the physical leakage from
cryptographic implementations in hardware or software. Tradi-
tional physical attacks either maliciously inject faults [5] or exploit
physical leakage from side channels such as timing [23], power con-
sumption [25] or electromagnetic emanations [14] to infer secret
information from cryptographic algorithms. Microarchitectural at-
tacks are side-channel attacks that rely on the CPU’s architectural
specifics [15, 17, 24, 29, 38].
In this paper, we survey different security architectures based on
the gains they inherit from underlying hardware security primi-
tives, and present pains caused by subtle state-of-the-art attacks on
these security architectures that exploit microarchitectural effects
of modern hardware performance enhancements.
2 ADVERSARY MODEL AND REQUIREMENTS
We rely on the classification presented in [1] and distinguish the
following types of adversaries: (1) remote adversary, capable of in-
serting malicious software; (2) local adversary, capable of remote at-
tacks, and controlling and eavesdropping on the communication; (3)
physical adversary, capable of performing (non-)intrusive physical
attacks—we distinguish between microarchitectural side-channel
analysis (SCA) attacks and classical physical attacks. Depending
on the computing platform, the importance of each attack model
differs, as illustrated in Figure 1. Remote and local attacks are appli-
cable to all types of computing platforms. Classical physical attacks,
discussed in Section 5 are not considered a main threat in servers
and desktop computers, while they are prominent on IoT devices
that allow potential adversaries in close proximity. Today’s microar-
chitectural attacks, on the other hand, are a consequence of perfor-
mance enhancements in high-end CPUs and are thus mostly appli-
cable to servers and desktop computers, as explained in Section 4.
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Non-functional requirements such as performance and energy con-
sumption determine which security architectures the computing
platforms are capable of integrating, as explained in Section 3.

Server, Desktop Mobile Devices Embedded Devices

remote attacks

local attacks

classical physical attacks

microarchitectural attacks

performance

energy budget

Figure 1: Adversary models and non-functional requirements (the
darker the color, the higher the importance).

3 HARDWARE-ASSISTED SECURITY
ARCHITECTURES

We categorize existing hardware-assisted security architectures
depending on the performance capabilities of the devices on which
they are implemented.

3.1 Stationary High-Performance Devices
We present the most popular industrial and academic hardware-
assisted security architectures, namely, Intel SGX for x86, and Sanc-
tum for the open RISC-V architecture.
Intel SGX. SGX [10, 16] provides TEEs, also called enclaves, on
recent Intel processors. An enclave is used to execute sensitive pro-
gram code in user space, isolated from a potentially malicious OS
or hypervisor. Each enclave is bundled with a regular non-sensitive
host application which invokes the enclave. During the enclave
setup, the integrity of the enclave code is attested locally or re-
motely using authenticated measurements of the code. The enclave
memory management, exception handling and I/O is performed
by the untrusted OS. However, hardware features protect the en-
clave memory from an unauthorized access by the untrusted OS or
hypervisor. SGX’s TCB only comprises the CPU hardware and its
microcode. SGX encrypts all enclave code and data leaving the CPU.
This allows SGX to protect enclaves from Direct Memory Access
(DMA) attacks and to persistently store the state of an enclave.
Sanctum. Sanctum [11] was developed for the open RISC-V archi-
tecture and resembles Intel SGX regarding its high-level concept.
However, SGX’s microcode TCB is substituted by a privileged soft-
ware component called the monitor code. The isolation of the en-
clave memory is enforced by introducing small hardware changes
around the page table walker of the CPU’s Memory Management
Unit (MMU). In contrast to SGX, Sanctum does not encrypt the
enclave code and data in the main memory. However, Sanctum
provides a basic DMA attack protection by modifying the memory
controller. Unlike SGX, Sanctum implements cache partitioning in
the shared last-level cache through memory page coloring. This
allows Sanctum to assign cache lines exclusively to an enclave.

3.2 Mobile High-Performance Devices
ARM TrustZone is a widely deployed industrial TEE on mobile
devices which provides a single enclave. Sanctuary is an academic
TEE that leverages TrustZone to overcome this shortcoming.

ARM TrustZone. ARM TrustZone [2] is used to implement se-
curity architectures on ARM-based devices. TrustZone separates
the system into two worlds, normal world and secure world. The
secure world represents the single enclave (or TEE) of the system.
All sensitive apps run in the secure world but are only separated
by a software-based isolation. TrustZone can, in contrast to SGX
and Sanctum, establish secure channels between peripherals and
sensitive apps. The world switch is performed by a privileged com-
ponent called the monitor code which also verifies all secure world
code during boot using digital signatures. The monitor code rep-
resents the software TCB of the system, together with all code in
the secure world. The separation between both worlds is enforced
in hardware by a set of security enhancements of the CPU and
other SoC components. TrustZone does not provide cache parti-
tioning but DMA access control by temporarily assigning memory
regions exclusively to SoC components (e.g. the CPU or GPU). Since
TrustZone only provides a single enclave, the device vendor has to
establish a costly trust relationship to all sensitive app developers.
Sanctuary. Sanctuary [7] solves the main problem of currently
deployed TrustZone-based architectures by providing an arbitrary
number of user-space enclaves without introducing new hardware
components. In Sanctuary, sensitive apps are not included in the
secure world but temporarily isolated on physical cores. The se-
cure world only contains security primitives provided by the device
vendor. Therefore, the system TCB only consists of device vendor
code. No trust relationships between device vendor and app de-
velopers need to be established. The security primitives provide
TrustZone functionalities to Sanctuary (e.g DMA access control or
secure channels to peripherals). The isolation of the physical cores
is enforced by exploiting a feature of ARM’s TrustZone-enabled
address space controller. In contrast to Sanctum, Sanctuary cannot
provide cache partitioning of the shared last-level cache. However,
software cache side-channel attacks on sensitive apps are prevented
by excluding enclave memory from the shared caches.

3.3 Embedded Devices
Embedded systems have a tight energy budget. Thus, instead of
integrating fully-fledged MMUs, these systems use primitive access
controllers that limit secure and trusted execution capabilities.
SMART. SMART [12] establishes a dynamic root of trust using
hardware-assisted attestation. SMART supports remote attestation
but not code isolation. To do so, SMART leverages read-only mem-
ory (ROM) containing the attestation code and a secure key that
can only be accessed if the program counter is pointing to the ROM
region. In detail, attestation is invoked by an untrusted entity that
wants to attest code in regular memory. First, the attestation code
disables interrupts. Then, the secret key is used to compute an at-
testation report containing the HMAC of the memory region, input
parameters, a nonce and an after-attestation destination address.
Then, the report is copied to regular memory, SMART cleans up
attestation traces, and jumps to the destination address in the at-
tested code. The attested code can enable interrupts again, execute,
and send the attestation report to a verifier. Because of disabled
interrupts, SMART is not suitable for real-time applications, and
does not consider side-channel attacks or DMA attacks [31] in its
threat model. Sancus [33] reduces SMART’s TCB to pure hardware.



TrustLite. In contrast to SMART and Sancus, TrustLite [26] pro-
vides a fully-fledged TEE for embedded devices. TrustLite leverages
an (extended) execution-aware Memory Protection Unit (EA-MPU)
and generalizes the concept of a read-only attestation code to freely-
configurable regions, called Trustlets, protected in terms of confi-
dentiality and integrity. First, the Secure Loader, stored in ROM,
loads the Trustlets into memory and configures the EA-MPU to
enforce isolation for each Trustlet’s memory. Second, EA-MPU
configuration is locked, thus, protection regions are static and a
cleanup as in SMART is not needed anymore. Finally, the OS is
started. TrustLite provides more flexibility in protecting enclaves
than SMART and Sancus. Still, side-channel and DMA attacks are
not part of the attacker model. TyTAN [6], an extension of TrustLite
for real-time systems, further adds secure boot and secure storage.

4 MICROARCHITECTURAL ATTACKS
In recent years, security research has shown that CPU performance
optimizations like caches or transient execution can be exploited
by software attackers to infer information from victim processes.

4.1 Software Cache Side-Channel Attacks
In software-based cache side-channel attacks, the attacker measures
the duration of memory accesses to infer if a victim process touched
certain data. This information can, e.g., be used to attack crypto-
graphic algorithms [34, 35]. Recently, various cache side-channel
attacks were presented, e.g, Evict+Time [34], Prime+Probe [34], and
Flush+Reload [42]. Attacks are, however, not limited to memory
caches: theoretically, any cache structure shared by the attacker
and the victim can be exploited, e.g. the TLB [15] or the BTB [28].
Software countermeasures can be implemented in the algorithms
that should be protected, e.g. [3, 34], or in privileged software levels
that oversee the attacker and victim processes, e.g. [9, 32]. Hardware
countermeasures implemented as part of a security architecture
either use some sort of cache partitioning [39] or randomize the
mapping from memory addresses to cache lines [40].
Software-induced cache side-channel attacks have only been con-
sidered in security architectures most recently. SGX and TrustZone
do not provide cache side-channel protection on an architectural
level for their enclaves [8, 44]. Sanctuary and Sanctum flush core-
exclusive caches on the enclave context switches. In contrast to SGX
and TrustZone, Sanctum provides partitioning for the shared last-
level cache. Sanctuary relies on the TrustZone and can therefore not
provide cache partitioning. However, Sanctuary protects from cache
side-channel attacks by excluding the Sanctuary memory from the
shared caches, while none of the presented security architectures
for embedded devices even considers cache side channels.

4.2 Transient Execution Attacks
Transient instructions are used to implement CPU performance
optimization techniques like out-of-order execution or branch pre-
diction. However, recent attacks showed that there are several flaws
in the design of transient execution which an attacker can exploit
to alter the microarchitectural state normally invisible to the archi-
tecture. In this section, we give an overview over these attacks.
Spectre. Spectre and its variants [22, 24, 27] use mistraining of
branch (or return) prediction to transiently execute code even when

it is guarded by an access-restricting branch while bypassing all
software defenses like bounds checking or CFI. In addition, on
modern CPUs, branch prediction buffers are indexed using virtual
addresses of the branch instructions [21], allowing mistraining not
only from the same address space, but also from different processes.
Meltdown.Meltdown and its variants [22, 29, 36] focus onmemory
accesses instead of code execution. By exploiting the time window
between the cause of an exception and its actual raise at retirement
of the causing instructions, Meltdown leaks results of transient
instructions that get successively executed during this window. At
instruction retirement, the microarchitectural state gets cleaned up,
yet, (cache) side channels can be used to extract these results.
Foreshadow. Foreshadow [38] is a transient-execution attack on
Intel SGX based on Meltdown’s insights. SGX is immune to a plain
Meltdown attack as enclave memory usually does not raise memory
access exceptions. However, as the OS is in control of all page tables,
an attacker can set the present or reserved bit to force the
enclave to raise a page fault (dubbed L1 Terminal Fault, L1TF [17],
by Intel) [41]. Under those conditions, address translation is aborted,
only cache values tagged with the corresponding physical address
can be extracted this way. However, arbitrary encrypted enclave
pages can be externally forced to be decrypted to the L1 cache
using SGX’s secure page swapping, enabling the attacker to proceed
analogously to a normal Meltdown attack.
Consequences. Most of the known transient execution attacks
have been mitigated. Yet, trust has been shattered irreparably, e.g.,
Foreshadow was used to extract attestation keys of Intel SGX. In
parallel, new transient execution attacks are emerging [4, 18], even
on embedded devices [13]. For most of the hardware-assisted secu-
rity mechanisms presented in this paper, an extensive evaluation
of transient execution attacks has not been presented yet.

5 CLASSICAL PHYSICAL ATTACKS
Physical attacks can be categorized into non-intrusive (passive)
and intrusive (active) attacks. In the former case, an adversary,
e.g., monitors power consumption while a device performs secret
key operations [25]. Other sources of side-channel information,
such as electromagnetic (EM) emanations from a chip [14] and
timings for different operations performed [23] have also shown to
be effective [30]. In contrast, intrusive attacks induce faults in the
system that lead to secret information being leaked in the system’s
output [5]. Physical attacks are performed on both software and
hardware implementations of cryptographic algorithms.
Typical countermeasures against passive SCA attacks can be divided
into two categories: hiding and masking. Hiding countermeasures
aim at breaking the link between the processed data and the side-
channel leakage. Masking countermeasures break the link between
the actual data and the processed data such that side-channel leak-
age does not infer the secret information. For an overview, see [30].
While SCA is a passive technique that relies on merely observing
leakages, fault attacks are actively provoked and require direct
access to the device. Fault attacks aim at exposing sensitive infor-
mation triggered by irregular conditions that lead to faulty com-
putations. One way to accomplish this is by “glitching” the device,
i.e., forcing changes in the values of relevant physical parameters
outside the specified intervals. Glitches can be induced through the
clock signal, the power supply, EM pulses or optical signals. When



the glitch leads to exploitable faulty computations, fault analysis
can be performed. The state of the art in fault attacks and counter-
measures can be found in [19]. A recent attack worth mentioning,
is demonstrated on ARM TrustZone: CLKSCREW forces a proces-
sor to operate beyond its Dynamic Voltage and Frequency Scaling
(DVFS) limits in order to leak cryptographic keys [37].

6 CONCLUSION
Learning from the mistakes of speculative execution, computing
architectures should be built with security in mind—not only per-
formance. Similar, as the current trend of shrinking the software
TCB by adding hardware security extensions is continuing, careful
analysis of these components and their interplay is needed more
than ever. Building on this underlying TCB, security solutions like
cryptographic primitives or TEEs face multi-faceted challenges in
the future. Existing TEEs have unsolved issues and are still not
widely-adopted, also because of licensing contracts needed to de-
ploy TEE apps in industry solutions. In addition, mobile devices
and IoT devices need to face the challenge of protecting against
attackers that are in the vicinity of the devices and thus capable of
performing physical attacks through side channels or fault injection.
In general, it is important to select the optimal security architecture
given the energy and performance budget of the application.
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