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Speaker-normalized sound representations
in the human auditory cortex

Matthias J. Sjerps"2, Neal P. Fox® 3, Keith Johnson* & Edward F. Chang3~>

The acoustic dimensions that distinguish speech sounds (like the vowel differences in “boot”
and “boat”) also differentiate speakers' voices. Therefore, listeners must normalize across
speakers without losing linguistic information. Past behavioral work suggests an important
role for auditory contrast enhancement in normalization: preceding context affects listeners’
perception of subsequent speech sounds. Here, using intracranial electrocorticography in
humans, we investigate whether and how such context effects arise in auditory cortex.
Participants identified speech sounds that were preceded by phrases from two different
speakers whose voices differed along the same acoustic dimension as target words
(the lowest resonance of the vocal tract). In every participant, target vowels evoke a speaker-
dependent neural response that is consistent with the listener’s perception, and which follows
from a contrast enhancement model. Auditory cortex processing thus displays a critical
feature of normalization, allowing listeners to extract meaningful content from the voices of
diverse speakers.
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fundamental computational challenge faced by percep-

tual systems is the lack of a one-to-one mapping between

highly variable sensory signals and the discrete, beha-
viorally relevant features they reflect’:2. A profound example of
this problem exists in human speech perception, where the main
cues to speech sound identity also vary depending on speaker
identity3—.

For example, to distinguish one speaker’s /u/ (“boot”) and /o/
(“boat”), listeners rely primarily on the vowel’s first formant
frequency (F1; the first vocal tract resonance, reflected as a
dominant peak in the frequency spectrum) because it is lower for
/u/ than for /o/°. However, people with long vocal tracts (typically
tall male speakers) have overall lower resonance frequencies than
those of speakers with shorter vocal tracts. Consequently, a tall
person’s production of the word “boat” and a short person’s
“boot” could be acoustically identical. Behavioral research has
shown that preceding context allows listeners to tune-in to the
acoustic properties of a particular voice and normalize sub-
sequent speech input’~!1, One classic example of this effect is that
a single acoustic token, ambiguous between /u/ and /o/, will be
labelled as /o/ after a context sentence spoken by a tall-sounding
person (low F1), but as /u/ after a context sentence spoken by a
shorter-sounding person (high F1)°. Therefore, understanding
speech involves a process that builds up a representation of the
characteristics of a speaker’s voice and adjusts perception of new
speech input to accommodate those characteristics.

There is considerable evidence that perceptually relevant sound
representations arise within human parabelt (nonprimary) audi-
tory cortex (AC). First, neural activity in the superior temporal
gyrus (STG) is sensitive to acoustic-phonetic features, like F1, that
are critical for recognizing and discriminating phonemes!2-18.
For example, vowels with low F1 frequencies (e.g., /u/, /i/) can be
distinguished from vowels with relatively higher F1 frequencies
(e.g., /o, /@) based on local activity within human STG!®. Sec-
ond, the STG’s encoding of speech is not a strictly linear (ver-
idical) encoding the acoustics; rather, it reflects some properties
of abstraction, including categorical perception, relative encoding
of pitch, and attentional enhancement!320-21, However, to date, it
remains unknown whether speech representations in human AC
also exhibit the type of context-dependence that could underlie
speaker normalization.

Behavioral research in humans has previously suggested that
normalization effects could partly arise from the general auditory
contrast enhancement mechanisms!%11:22-26_ which are known to
affect neurophysiological responses throughout the auditory
hierarchy in animals?’-2°. Contrast enhancement models
posit that adaptation to the frequency content of immediately
preceding contexts—or their long-term average spectrum (see,
e.g.,1130) —affects the responses to novel stimuli depending on
the amount of overlap in their frequency content with that of the
context. Moreover, behavioral evidence suggests that this contrast
enhancement (and, hence, normalization) should arise—at least
in part—centrally. For instance, contralateral (dichotic) pre-
sentation of the context (either speech or nonspeech) and target
drive similar contrast enhancement effects in speech categoriza-
tion as do ipsilaterally presented context and target!1,2%31,32,

Taken together, past work suggests a role for contrast
enhancement in speech sound normalization in AC, but this
prediction has not been directly demonstrated in neurophysio-
logical studies in humans. Models of contrast enhancement
make specific predictions about the responses of feature-tuned
neuronal populations in AC3?. Not only should the cortical
representation of the same speech target depend on context, but,
more specifically, context-dependent representations should
differ in a particular (contrastive) way. That is, after a low-F1
context, the encoding of an ambiguous vowel target’s F1 should

more closely resemble the encoding of high F1 targets, while
after a high F1 context it should more closely resemble low F1
targets. So far, contrast enhancement has been observed within
frequency-tuned neurons in tonotopic primary AC in nonhu-
man mammals2’28, but related patterns have not yet been
observed in human AC, let alone in the context of human
speech perception.

To investigate the influence of speaker context on speech
sound encoding in AC, we recorded neural activity from human
participants implanted with subdural high-density electrode
arrays that covered peri-sylvian language cortex while they
listened to and identified target vowels presented in the context
of sentences spoken by two different voices!333. We found
direct evidence of speaker-normalized neural representations of
vowel sounds in parabelt AC, including STG. Critically, the
observed normalization effects reflected the contrastive relation
between the F1 range in the context sentences and F1 of the
target vowels, providing direct evidence for context-dependent
contrast enhancement in human speech perception. More gen-
erally, the results demonstrate the critical role of human
auditory-speech cortex in compensating for variability by inte-
grating incoming sounds with their surrounding acoustic
contexts.

Results

Speech sound perception is dependent on context. We recorded
neural activity directly from the cortical surface of five Spanish-
speaking neurosurgical patients while they voluntarily participated
in a speech sound identification task. They listened to Spanish
sentences that ended in a (pseudoword) target, which they cate-
gorized as either “sufu” or “sofo” on each trial with a button press
(Fig. la, b). The sentence-final targets comprised a digitally syn-
thesized six-step continuum morphing from an unambiguous sufu
to an unambiguous sofo, with four intermediate tokens (s?f?, ie.,
spanning a perceptually ambiguous range). On each trial, a
pseudo-randomly selected target was preceded by a context sen-
tence (A veces se halla...; “At times she feels rather...”). Two ver-
sions of this sentence were synthesized, differing only in their mean
F1 frequencies (Fig. la, ¢; Supplementary Fig. S1), yielding two
contexts that listeners perceived as two different speakers: one with
a long vocal tract (low F1; Speaker A) and one with a short vocal
tract (high F1; Speaker B). Critically, F1 frequency is also the
primary acoustic dimension that distinguishes between the vowels
/u/ and /o/ in natural speech (in both Spanish and English) (Fig. 1a
and Supplementary Fig. S1)°. Similar materials have previously
been shown to induce a reliable shift in the perception of an /u/-/o/
continuum (a normalization effect) in healthy Spanish-, English-,
and Dutch-listeners’.

As expected, participants’ perception of the target continuum
was affected by the F1 range of the preceding sentence context
(Bcontext F1 =—1.70, t=—3.51, p<0.001; Fig. 1d; see Supple-
mentary Materials for details of the mixed effects logistic
regression that was used). Specifically, participants were more
likely to identify tokens as sofo (the vowel category correspond-
ing to higher F1 values) after a low-F1 voice (Speaker A)
compared to the same target presented after a high-F1 voice
(Speaker B). Hence, listeners’ perceptual boundary between the
/u/ and /o/ vowel categories shifted to more closely reflect the F1
range of the context speaker. Past work has interpreted this
classical finding in light of the contrastive perceptual effects that
are ubiquitous among sensory systems34: the F1 of a speech
target will sound relatively higher (i.e., sound more like an /o/)
after a low-F1 context sentence than after a high-F1 context.
Behaviorally, this is reflected as a shift of the category boundary
to lower-F1 values.
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Fig. 1 Listeners perceive speech sounds relative to their acoustic context. a Target sounds were synthesized to create a six-step continuum ranging from sufu
(step 1; low-first formant [F1]) to sofo (step 6; high F1). Context sentences were synthesized to sound like two different speakers: a speaker with a long vocal
tract (low-F1 range: Speaker A), and a speaker with a short vocal tract (high-F1range; Speaker B). Context sentences contained only the vowels /e/ and /a/, but
not the target vowels /u/ and /o/. b Context sentences preceded the target on each trial (separated by 0.5s of silence), after which participants responded
with a button press to indicate whether they heard “sufu” or “sofo”. ¢ All targets were presented after both speaker contexts. d Listeners more often gave “sofo”
responses to target sounds if the preceding context was spoken by Speaker A (low F1) than Speaker B (high F1). Error bars indicate s.e.m.

Human AC exhibits speaker-dependent speech representations.
Two of the most influential hypotheses explaining the phenom-
enon of speaker normalization posit that: (1) contrast enhancing
processes, operating at early auditory processing levels, change
the representation of the input signal in a normalizing
way!1:23:30.31, (2) alternatively, it has been suggested that nor-
malization does not alter the perceptual representation of speech,
but, instead, that normalization arises as a consequence of a
speaker-specific mapping of the auditory representation onto
abstract linguistic units (i.e., listeners have learned to map an F1
of 400 Hz to /u/-words for speakers, or vocal tracts, that sound
short, but to /o/-words for speakers that sound taller)3>36. Hence,
while the contrast enhancement hypothesis predicts normalized
representations in AC, the latter theory predicts that early audi-
tory representations of speech cues remain unnormalized (ie.,
independent of speaker-context).

Past neurobiological work has demonstrated that neural
populations in parabelt AC are sensitive to acoustic-phonetic
cues that distinguish classes of speech sounds, including vowels,
and not to specific phonemes per se!®. Hence, the primary goal of
the current study was to examine whether the neural representa-
tion of vowels in parabelt AC shifts in a contrast enhancing way
relative to the acoustic characteristics of the preceding speaker, or,
alternatively, whether such contrast enhancement (or normal-
ization) is not reflected in parabelt AC processing. We first tested
whether individual cortical sites that reliably differentiate between
vowels (i.e., discriminate /u/ from /o/ in their neural response)
exhibit normalization effects.

To this end, we examined stimulus-locked neural activity in the
high-gamma band (70-150 Hz) at each temporal lobe electrode
(n =406 across patients; this number is used for all Bonferroni
corrections below) during each trial. High-gamma activity is a
spatially and temporally resolved neural signal that has been shown
to reliably encode phonetic properties of speech sounds!37:38, and
is correlated with local neuronal spiking®®-4l. We used general
linear regression models to identify local neural populations
involved in the representation of context and/or target acoustics.
Specifically, we examined the extent to which high-gamma activity
at each electrode encoded stimulus properties during presentation
of the context sentences (context window) or during presentation
of the target (target window; see Supplemental Materials). The fully
specified encoding models included numerical predictors for the
target vowel F1 (steps 1-6) and context F1 (high vs. low), as well as
their interaction. In the following, we focused on task-related
electrodes, defined as the subset of temporal lobe electrodes for

which a significant portion of the variance was explained by the full
model, either during the target window or during the context
window (p < 0.05; uncorrected, n = 98; see Supplementary Fig. S2).

Among the task-related electrodes, a subset displayed selectivity
for target vowel F1 (Fig. 2a: electrodes displaying a main effect for
target F1). Consistent with previous reports of AC tuning for
vowels!?, we observed that different subsets of electrodes displayed
a preference for either sufu or sofo targets (color-coded in Fig. 2a).
Fig. 2b and Fig. 2c (middle panel) display the response profile for
one example electrode that had a sofo preference (el; Brarget 11 =
2.80, t=9.34, p = 1.10 x 10~18). Importantly, in addition to overall
tuning to the target sound F1, the activation level of this electrode
was modulated by the F1 range of the preceding context (Fig. 2b
and bottom panel of Fig. 2¢; Bcontext F1 = —2.23, t=—4.51, p=
8.3 x 1079). This demonstrates that the responsiveness of a neural
population that is sensitive to bottom-up acoustic cues is also
affected by the distribution of that cue in a preceding context. The
direction of this influence is the same as the behavioral normal-
ization effect, such that a low-F1 speaker context was associated
with stronger responses for sofo (high-F1) targets.

To quantify this normalization effect across all electrodes that
display selectivity to target acoustics, we used linear mixed effects
regression to estimate the relation between electrodes’ target
preference (defined as the glm-based signed ¢-statistic of the target
F1 factor during the target window) and their context effect
(defined as the glm-based signed ¢-statistic of the context F1 factor
during the target window) (see Supplementary Materials for
further detail on this analysis). We found that the magnitude and
direction of an electrode’s context effect was predicted by the
magnitude and direction of its target preference (Fig. 2d). Crucially,
this strong relationship had a negative slope, such that electrodes
that had high-F1 target preferences (sofo>sufu) had stronger
responses to targets after low-F1 context sentences (low-F1 context
> high-F1 context; Brargr1c = —0.32, t =—5.00, p=1.53x107).
Importantly, this demonstrates that the relationship between
context response and target response reflects an encoding of the
contrast between the formant properties of each, consistent with
the normalization pattern observed in the behavioral responses
(Fig. 1d) and with the predictions of a contrast enhancement
model of speech normalization.

Normalization of vowel representations in all participants.
Figure 2d demonstrates that local populations in AC that display
tuning for specific target vowel F1 ranges exhibit normalization.
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Fig. 2 The neural response to bottom-up acoustic input is modulated by preceding context. a Target vowel preferences and locations (plotted on a
standardized brain) for electrodes from all patients (three with right hemisphere [RH] and two with left hemisphere [LH] grid implants). Only those
temporal lobe electrodes where the full omnibus model was significant during the context and/or the target window (F-test; p < 0.05) are displayed. Strong
target F1 selectivity is relatively uncommon: electrodes with a black-and-white outline are significant at Bonferroni corrected p < 0.05 (n=29, out of 406
temporal lobe electrodes); a single black outline indicates significance at a more liberal threshold (p < 0.05, uncorrected; n = 28). Activity from the
indicated electrode (e1) is shown in b and €. b Example of normalization in a single electrode (el; z-scored high-gamma [high-y] response averaged across
the target window [target window marked in €]). ¢ Activity from el across time, separating the endpoint targets (middle panel) or the contexts (bottom
panel). The electrode responds more strongly to /o/ stimuli than /u/ stimuli, but also responds more strongly overall after Speaker A (low-F1). This effect
is analogous to the behavioral normalization (Fig. 1d). Black bars at the bottom of the panels indicate significant time-clusters (cluster-based permutation
test of significance). d Among all electrodes with significant target sound selectivity (n =37 [9 + 28]), a relation exists between the by-electrode context
effect and target preference. Both are expressed as a signed t-value, demonstrating that the size and direction of the target preferences predicts the size
and direction of the context effects. @ An LDA classifier was trained on the distributed neural responses elicited by the sufu and sofo endpoint stimuli using
all task-related electrodes. This model was then used to predict classes for neural responses to (held-out) endpoint tokens and for the ambiguous steps in
each context condition. Proportions of neurally based “sofo” predicted trials (thick lines) display a relative shift between the two context conditions (data
from one example patient). Regression curves were fitted to these data for each participant separately to estimate 50% category boundaries per condition
for panel f (thin lines). f The neural classification functions display a shift in category boundaries between context conditions for all patients individually. In

b and ¢, error bars indicate 1 s.e.m.

However, only a few electrodes (n =9, out of 406 temporal lobe
electrodes) displayed very strong tuning (significance at
Bonferroni-corrected p <0.05), while the majority of Fl-tuned
electrodes displayed only moderate tuning and moderate context
effects. Moreover, not all participants had electrodes that dis-
played strong target F1 tuning (see Table S2). The relative spar-
seness of strong tuning is not surprising given that the target
vowel synthesis involved only small F1 frequency differences
(~30Hz per step), with the endpoints being separated by only
150 Hz (which is, however, a prototypical F1 distance between /u/
and /o0/7). However, past work has demonstrated that even small
acoustic differences among speech sounds are robustly encoded
by distributed patterns of neural activity across AC!314, In order
to determine whether distributed neural representations of vowels
reliably display normalization across all participants, we trained a
multivariate pattern classifier model (linear discriminant analysis,
LDA) on the spatiotemporal neural response patterns of each
participant. Models were trained to discriminate between the
endpoint stimuli (i.e., trained on the neural responses to steps 1
vs. 6, irrespective of context) using all task-related electrodes for
that participant. These models were then used to predict labels for

held-out neural responses to both the endpoints and the ambig-
uous steps in each context condition. For all participants, classi-
fication of held-out endpoint trials was significantly better than
chance (Supplementary Fig. S3b). To assess the influence of target
F1 and context F1 on the classifier output, a logistic generalized
linear mixed model was then fit to the proportion of predicted
sofo responses across all participants.

Figure 2e displays the proportion of sofo labels predicted for all
stimuli by the LDA classifier based on the neural data of one
example participant (thick lines). Importantly, a shift is observed
in the point of crossing of the category boundary. Regression
functions fitted to these data (thin lines) were used to estimate the
size and direction of the context-driven neural boundary (50%
crossover point) shift per participant. For each participant, the
neural vowel boundaries, like the behavioral vowel boundaries,
were found to be context-dependent (Fig. 2f; see Supplementary
Materials and Supplementary Fig. S3 for further detail).

A combined regression analysis demonstrated that, across
participants, population neural activity in the temporal lobe was
modulated both by the acoustic properties of the target vowel
(Brarget ;1 =0.50, t=13.20, p<0.001) and by the preceding
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Fig. 3 Sensitivity to contrast in acoustic-phonetic features. a Electrode preferences for both context F1 (during context window) and target F1 (during target
window) from a single example patient. Some populations display both target F1 selectivity and context F1 selectivity (marked with a black-and-white
outline), indicating a general preference for higher or lower F1 frequency ranges. Others are only tuned for target F1 or context F1 (marked with a single
black outline in their respective panels). Significance assessed at p < 0.05 uncorrected. b Mean (1 s.e.m.) high-gamma activity at an example electrode
(e2) from the example patient in panel a (conditions split as described in Fig. 2c). Activity is displayed for a time window encompassing the full trial
duration (both precursor sentence and target word). Black bars represent significant time-clusters (p < 0.05; cluster-based permutation). ¢ A relation exists
between the by-electrode context preference and target preference: electrodes that display a preference for either high- or low-target F1 typically also

display a preference for the same F1 range during the context

context (Bcontext 71 = —0.34, t = —5.58, p < 0.001). Moreover, this
effect was not observed for task-related electrodes outside of the
temporal lobe during the target window (see Supplementary
Fig. S4; nontemporal electrodes were mostly located on
sensorimotor cortex and the inferior frontal gyrus).

Importantly, and consistent with participants’ perception, the
neural classification functions demonstrate that the influence of
the context sentences consistently affected target vowel repre-
sentations in a contrastive (normalizing) direction: the neural
response to an ambiguous target vowel with a given F1 is more
like that of /o/ (high-F1) after a low-F1 context (Speaker A) than
after a high-F1 context (Speaker B; see Supplementary Figs. S3
and S4b for more detail).

Normalization by acoustic-phonetic contrast enhancement. It
has been suggested that a major organizing principle of speech
encoding by human parabelt AC is its encoding of acoustic-
phonetic features, which are more cross-linguistically general-
izable and more physically grounded than phonemes (or other
possible higher-level linguistic representations) per se!21942-44,
However, AC processing is diverse and may contain regions that
are, in fact, selective for (more abstract) phonemes. For example,
AC has also been found to display properties that are typically
associated with abstract sound categories such as categorical
perception!3. Hence, we next assessed whether the normalization
effects observed here involved neural populations that display
sensitivity to acoustic-phonetic features (i.e., relating to more
general F1 characteristics). Because the context sentence (“A veces
se halla...”) did not contain the target vowels /u/ or /o/, while its
F1 values did cover the same general frequency range, we
examined neural responses during the context window to
understand individual electrode preferences.

To this end we again used the glm-based t-statistics of all
temporal lobe electrodes that displayed tuning for the endpoint
vowels (n = 37; as per Fig. 2d). Among these electrodes, however,
we examined the relationship between their preferences for
context F1 during the context window and for target F1 during
the target window. Figure 3a displays context and target
preferences on the cortex of a single-example patient. Among
the electrodes that displayed target F1 selectivity, some also
displayed selectivity for the context F1 during the context window
(such dual preferences are indicated with a black-and-white
outline). Figure 3b displays the activation profile of one example

electrode (e2). Importantly, e2 responded more strongly to low-F1
targets during the target window (sufu preference: Brarget r1=
—0.52, t=—10.25, p=3.9 x 10721), but also to low-FI contexts
during the context window (Speaker A preference: Brargec F1 =
—0.54, t=—8.05, p=2.3x 10714). This demonstrates that this
neural population responded more strongly to low-F1 acoustic
stimuli in general and is not exclusively selective for a discrete
phoneme category. Importantly, e2 also displayed normalization,
as its activity was affected by context F1 during the target window
(p=2.7x10"%), and the direction of that context effect was
consistent with contrastive normalization (cf. Fig. 2d).
Extending this finding to the population of electrodes, we
found a significant positive relation across all target-tuned
temporal lobe electrodes between an electrode’s target preference
and its context preference (Bcont.r1—t = 0.76, t =3.59, p = 9.83 x
10~%; Fig. 3¢; see Supplementary Materials for more detail on this
analysis). Hence, a neural population’s tuning for higher or lower
F1 ranges tended to be general, not vowel-specific. Moreover,
when restricting the test of normalization (assessed as the
relationship between target preferences and the context effect, as
per Fig. 2d) to those electrodes that displayed significant tuning
for both target F1 and context F1, robust normalization was again
found (Supplementary Fig. S5). These findings confirm that
normalization affects acoustic-phonetic (i.e., pre-phonemic)
representations of speech sounds in parabelt AC.

Discussion

A critical challenge that listeners must overcome in order to
understand speech is the fact that different speakers produce the
same speech sounds differently, a phenomenon that is known as
the lack-of-invariance problem in speech perception!3. This issue
is partly due to the fact that different speakers’ voices span dif-
ferent formant ranges. We investigated the neural underpinnings
of how listeners use speaker-specific information in context to
normalize phonetic processing. First, we observed behavioral
normalization effects, replicating previous findings’~%24. More
importantly, we observed normalized representations of vowels in
parabelt AC. These normalized representations were observed
broadly across parabelt AC and were observed for all participants
individually. Moreover, we found that these effects follow the
predictions of a general auditory contrast enhancement model of
normalization, affecting speech sound representations at a
level that precedes the mapping onto phonemes or higher-level
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linguistic units. These findings suggest that contrast enhancement
plays an important role in normalization.

Recent research has demonstrated that AC responds to
acoustic cues that are critical for both recognizing and dis-
criminating phonemes!213:15-18:45 and different speakers40->0,
However, since cues that are critical for speaker and phoneme
identification are conflated in the acoustic signal, such findings
could be consistent with either context-dependent or context-
independent cortical representations of acoustic properties. Our
experiments demonstrate that rapid and broadly distributed
normalization through contrast enhancement is a basic principle
of how human AC encodes speech.

Qualitatively similar contrast enhancing operations have been
widely documented in animal neurophysiological research, where
it has been demonstrated to involve neural mechanisms such as
adaptive gain control?’-2%°1 or stimulus specific adaptation?8:29.
An intuitive mechanism for the implementation of contrast
enhancement that follows from that work involves sensory
adaptation. This could be based on neuronal fatigue: when a
neuron, or neuronal population, responds strongly to a masker
stimulus, its response to a subsequent probe is often attenuated
when the frequency of the probe falls within the neurons’ exci-
tatory receptive field>>°3. But in addition to such local forms of
adaptation, adaptation has also been thought to arise through
(inhibitory) interactions between separate populations of neurons
(which may have partly non-overlapping receptive fields)2”-°1, In
the present study, spectral peaks in the two context sentences
and those in the endpoint target vowels were partly overlapping
(see Supplementary Fig. S1). These forms of adaptation may,
hence, play a role in the type of normalization observed here.
Indeed, we observed a number of populations for which a strong
preference for one of the context sentences during the context
window was associated with a decreased response during the
target window (i.e., the normalization effect; Fig. 3b).

The prediction that contrast enhancement may play an
important role in human speech sound normalization was pre-
viously made based on behavioral studies on contrastive context
effects in speech perception!®-11:23:30.3454 A relevant observation
from that literature is that, under specific conditions, nonspeech
context sounds (e.g., broadband noise and musical tones) have
also been observed to affect the perception of speech
sounds!1222331,55 " This interpretation has been challenged,
however, suggesting that speech- and nonspeech-based context
effects could be based on qualitatively different processes®>>7. We
did not test the influence of nonspeech contexts here, and such an
investigation would provide an important next step in the study
of context effects in speech perception. However, our findings
most closely align with a model that assumes that normalization
effects may not be speech-specific and that normalization can, at
least in part, be explained by more general auditory adaptation
effects?3-348,

An interesting additional question concerns the main locus of
emergence of normalization. Broadly speaking, normalization
could be inherited from primary AC or subcortical regions (from
which we were unable to record; see®® for a more detailed dis-
cussion of these potential influences); it may largely emerge within
parabelt AC itself; or it could be driven by top-down influences
from regions outside of the AC. In our study, context and target
sounds were separated in time by a 500 ms silent interval. It has
been suggested that, over such relatively long latencies, adaptation
effects become especially dominant at cortical levels of processing
but are reduced at more peripheral levels of processing®>60:61.
Furthermore, behavioral experiments have demonstrated robust
normalization effects with contralateral presentation of context and
target sounds!!:31:32 (ie, a procedure that reduces precortical
interaural interactions). Both observations thus suggest that

normalization can also arise when the contribution of context-
target interactions in the auditory periphery may be limited. With
respect to the potential role of top-down modulations from regions
outside of the AC, inferior frontal and sensorimotor cortex have
been suggested to be involved in the resolution of perceptual
ambiguities in speech perception®>%3 and could, hence, have been
expected to play a role in normalization, too. Here, we observed
considerable activation in these regions, but, intriguingly, they did
not display normalization during the processing of the target
sounds (see Supplementary Fig. S4). While tentative, these com-
bined findings highlight human AC as the most likely locus for
the emergence of the context effects in speech processing
observed here.

In the current experiment, we recorded neural activity from
cortical sites in both the left and right hemispheres. It has pre-
viously been demonstrated that the right hemisphere is more
strongly involved in the processing of voice information®49°.
Here, normalization was observed in every participant, irrespec-
tive of which hemisphere was the source of a given participant’s
recordings (Fig. 2f). Importantly, however, recordings from any
given participant only included measurements from a single
hemisphere, so no strong conclusions regarding lateralization
should be drawn based on this dataset.

Despite normalization of vowel representations, responses were
not completely invariant to speaker differences during the context
sentences (see, for example, the behavior of example electrode e2
in Fig. 3b, which displays a preference for the Low F1 sentence
throughout most of the context window: ie., it is not fully nor-
malized). And indeed, our (and previous”113%) findings show
that, even for target sound processing, surrounding context rarely
(if ever) results in complete normalization. That is, while the
context sentence F1 differed by roughly 400 Hz between the two
speakers, the normalization effect only induced a shift of ~50 Hz
in the position of the category boundaries (in behavior and in
neural categorization). Moreover, our target F1 values were ide-
ally situated between the two context F1 ranges, which raises the
question of whether equally large effects would have been
observed for other target F1 ranges. The role of contrast
enhancement in normalization should thus be seen as a
mechanism that biases processing in a context-dependent direc-
tion, but not one that fully normalizes processing. Furthermore,
context-based normalization is not the only means by which
listeners tune-in to specific speakers: listeners categorize sound
continua differently when they are merely told they are listening
to a man or a woman, demonstrating the existence of normal-
ization mechanisms that do not rely on acoustic contexts (and
hence acoustic contrast) at all®. In addition, formant frequencies
are perceived in relation to other formants and pitch values in the
current signal, because those features are correlated within
speakers (e.g., people with long vocal tracts typically have lower
pitch and lower formant frequencies, overall). These intrinsic
normalization mechanisms have been shown to affect AC pro-
cessing of vowels as well®’~71, Tuning-in to speakers in everyday
listening must thus result from a combination of multiple
mechanisms, involving at least these three distinct types of
normalization$.

To conclude, the results presented here reveal that the pro-
cessing of vowels in AC becomes rapidly influenced by speaker-
related acoustic properties in preceding context. These findings
add to a recent literature that is ascribing a range of complex
acoustic integration processes to the broader AC, suggesting that
it participates in high-level encoding of speech sounds and
auditory objects!31972-74 Recently, it has been demonstrated
that populations in parabelt AC encode speaker-invariant con-
tours of intonation that speakers use to focus on one or the other
part of a sentence?). The current findings build on these and
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demonstrate the emergence of speaker-normalized representa-
tions of acoustic-phonetic features, the most fundamental build-
ing blocks of spoken language. This context-dependence allows
AC to partly resolve the between-speaker variance present in
speech signals. These features of AC processing underscore its
critical role in our ability to understand speech in the complex
and variable situations that we are exposed to every day.

Methods

Patients. A total of five human participants (2 male; all right-handed; mean age:
30.6 years), all native Spanish-speaking (the US hospital at which participants were
recruited has a considerable Spanish-speaking patient population), were chroni-
cally implanted with high-density (256 electrodes; 4 mm pitch) multi-electrode
cortical surface arrays as part of their clinical evaluation for epilepsy surgery.
Arrays were implanted subdurally on the peri-Sylvian region of the lateral left (n =
2) or right (n = 3) hemispheres. Placement was determined by clinical indications
only. All participants gave their written informed consent before the surgery, and
had self-reported normal hearing. The study protocol was approved by the UC San
Francisco Committee on Human Research. Electrode positions for reconstruction
figures were extracted from tomography scans and co-registered with the
patient’s MRI.

Stimulus synthesis. Details of the synthesis procedure for these stimuli have been
reported previously’. All synthesis was implemented in Praat software’. In brief,
using source-filter separation, the formant tracks of multiple recordings of clear
“sufu” and “sofo” were estimated. These estimates were used to calculate a single
average time-varying formant track for both words, now representing an average of
the formant properties over a number of instances of both [o] and [u]. The height
of only the first formant of this filter model was increased and decreased across the
whole vowel to create the new formant models for the continuum from [u] to [o]
covering the distance between endpoints in six steps. These formant tracks were
combined with a model of the glottal-pulse source to synthesize the speech sound
continuum. Synthesis parameters thus dictated that all steps were equal in pitch
contour, amplitude contour and had identical contours for the formants higher
than F1 (note that F1 and F2 values in Fig. 1a and S1 reflect measurements of the
resulting sounds, not synthesis parameters). The two context conditions were
created through source-filter separation of a single spoken utterance of the sentence
“a veces se halla” (“at times she feels rather...”). The first formant of the filter model
was then increased or decreased by 100 Hz and recombined with the source model
following similar procedures as for the targets.

Procedures. The participants were asked to categorize the last words of a stimulus
as either sufu or sofo. Listeners responded using the two buttons on a button box.
The two options sufu and sofo were always displayed on the computer screen. Each
of the 6 steps of the continuum was presented in both the low- and high-F1
sentence conditions. Context conditions were presented in separate mini-blocks of
24 trials (6 steps x 4 repetitions). Participants participated in as many blocks as
they felt comfortable with (see Table S1 for trial counts).

Data acquisition and preprocessing. Cortical local field potentials were recorded
and amplified with a multichannel amplifier optically connected to a digital signal
acquisition system (Tucker-Davis Technologies) sampling at 3052 Hz. The stimuli
were presented monaurally from loudspeakers at a comfortable level. The ambient
audio (recorded with a microphone aimed at the participant) along with a direct
audio signal of stimulus presentation were simultaneously recorded with the ECoG
signals to allow for precise alignment and later inspection of the experimental
situation. Line noise (60 Hz and harmonics at 120 and 180 Hz) was removed from
the ECoG signals with notch filters. Each time series was visually inspected for
excessive noise, and trials and or channels with excessive noise or epileptiform
activity were removed from further analysis. The remaining time series were
common-average referenced across rows of the 16 x 16 electrode grid. The time-
varying analytic amplitude was extracted from eight bandpass filters (Gaussian,
with logarithmically increasing center frequencies between 70 and 150 Hz, and
semilogarithmically increasing bandwidths) with the Hilbert transform. High-
gamma power was calculated by averaging the analytic amplitude across these eight
bands. The signal was subsequently downsampled to 100 Hz. The signal was z-
scored based on the mean and standard deviation of a baseline period (from —50 to
0 ms before the onset of the context sentence) on a trial by trial basis. In the main
text, high-y will refer to this measure.

Single-electrode encoding analysis. We used ordinary least-squares linear
regression to predict neural activity (high-y) from our stimulus conditions (target
F1 steps, coded as —2.5, —1.5, —0.5, 0.5, 1.5, 2.5; and context F1, coded as —1 and
1; as well as their interaction). These factors were used as numerical predictors to
neural activity that was averaged across the target window (from 70 to 570 ms after
target vowel onset) or across the context window (from 250 to 1450 ms after
context sentence onset—a later onset was chosen to reduce the influence of large

and non-selective onset responses present in some electrodes). For each model,
R-squared (R?) provides a measure of the proportion of variance in neural activity
that is explained by the complete model. The p value associated with the omnibus
F-statistic provides a measure of significance. We set the significance threshold at
alpha = 0.05 and corrected for multiple comparisons using the Bonferroni method,
taking individual electrodes as independent samples. Supplementary Figure S2a, b
demonstrates that most of the variance in the context was explained by the factor
context F1. During the target window, however, both target F1 and context F1
explain a considerable portion of the variance. The interaction term was included
to accommodate a situation where the context effect is more strongly expressed on
one side of the target continuum than the other (see e.g., Fig. 2b, where the context
effect is larger toward sofo), but is not further interpreted here.

For Fig. 2d and Fig. 3¢, linear mixed regression analyses were used to assess the
relation between signed t-statistics of target F1 preferences and context effects
(Fig. 2d) or context preferences (Fig. 3c). Regression estimates were computed over
all significant (9 [corrected] 4 28 [uncorrected] = 37) electrodes. Linear mixed
effects regression accommodates the hierarchical nature of these observations
(electrodes within patients).

Cluster-based permutation analyses. For single-example electrodes, a cluster-
based permutations approach was used to assess significance of differences between
two event related high-gamma time courses (Fig. 2c and Fig. 3b; following the
method described in ref. 76). For each permutation, labels of individual trials were
randomly assigned to data (high-gama time courses), and a t test was performed
for each timepoint. Next, for each time point (across all 1000 permutations) a
criterion value was established (the highest 95% of the [absolute] t values for that
timepoint). Then, for each permutation, it was established when its value reached
above the criterion value and for how many samples it remained above criterion. A
set of subsequent timepoints above criterion is defined as a cluster. Then, for each
cluster the t values were summed, and this value was assigned to that entire cluster.
For each permutation only the largest (i.e., highest summed cluster value) was
stored as a single value. This resulted in a distribution of maximally 1000 cluster
values (some permutations may not result in any significant cluster and have a
summed ¢ value of 0). Then, using the same procedure, the size of all potential
clusters was established for the real data (correct assignment of labels), and it was
established whether the size of each cluster was larger than 95% of the
permutation-based cluster values. p <0.001 indicates that the observed cluster was
larger than all permutation based clusters.

Stimulus classification. Linear discriminant analysis (LDA) models were trained
to predict the stimulus from the neural population responses evoked by the stimuli.
Per participant a single model was trained on all endpoint data, which was then
used to predict labels for the ambiguous items. To predict stimulus class for the
endpoint stimuli (steps 1 and 6) a leave-one-out cross validation procedure was
used to prevent overfitting. Model features (predictors) consisted of the selected
timepoint*electrode combinations per participant.

For the analyses (Fig. 2; Supplementary Fig. S3; Supplementary Fig. $4) training
data consisted of high-y data averaged across a 500 ms time window starting 70 ms
after target vowel onset (the target vowel was the first point of acoustic divergence
between targets).

In the analyses, all task-related electrodes for a given participant (and region-of-
interest, see Fig. S4) were selected. Trial numbers per participant are listed in
Table S1. The analysis displayed in Fig. 2 and Supplementary Figs. S3 and S4 hence
relied on a large number of predictors (electrodes x timepoints). While a large
amount of predictors could result in overfitting, these parameters led to the highest
proportion of correct classification for the endpoints: 76% correct (see
Supplementary Fig. S1b), although note that this number may be inflated because
of electrode pre-selection. This approach was chosen, however, because high
endpoint classification performance is important to establish the presence of
normalization: a shift in a response function can only be detected if the steepness of
that function is nonzero. Importantly, specifically selecting electrodes that
distinguish the endpoints does not affect the extent of observed normalization,
because the normalization effect is orthogonal to that of target F1 (i.e.,
normalization itself was not a selection criterion). Furthermore, in all analyses,
classification scores were only obtained from held-out data, preventing the fitting
of idiosyncratic models. In addition, averaging across time (hence decreasing the
number of predictors) led to qualitatively similar (and significant) effects for the
important comparisons reported in this paper. Classification analyses resulted in a
predicted class for each trial. These data were used as input for a generalized
logistic linear mixed effects model.

Linear mixed effects regression of classification data. For the analyses that
assessed the effects of target stimulus F1 and context F1 on proportion of “sofo”
responses (both behavioral and neural-classifier-based) we employed generalized
linear mixed effects models (glmer; with the dependent variable “family” set to
“binomial”). The models had Target F1 (contrast coded, with the levels —2.5; —1.5;
—0.5; 0.5; 1.5; 2.5) and Context F1 (levels —1; 1) entered as fixed effects, and
uncorrelated by-patient slopes and intercepts for these factors as random effects.
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For the analysis of the behavioral data (Brtercepe = 0.52, t = 0.79, p = 0.42), we
observed more sofo responses towards the sofo end of the stimulus continuum
(Brarget r1 = 1.86, £ = 4.10, p < 0.001). Moreover, we observed an effect of context as
items along the continuum were more often perceived as sofo (the vowel category
corresponding to higher-F1 values) after a low-F1 voice (Speaker A) than after a
high-F1 voice (Speaker B), (Bcontext ;1 = —1.70, t = —3.51, p <0.001).

For the analyses of neural representations the dependent variable consisted of
the classes predicted by LDA stimulus classification described above. For the
overall analysis including temporal lobe electrodes, the model (Bintercept = —0.16,
t=—1.06, p=0.29) revealed significant classification of the continuum
(Brarget ;1 = 0.50, t=13.20, p <0.001), suggesting reliable neural differences
between the endpoints. Furthermore, an effect was also found for the factor
Context on the proportion of “sofo” classifications (Bcontext ;1 = —0.34, t = —5.58,
P <0.001), reflecting the normalization effect of most interest. For the analysis
focusing on the dorsal and frontal electrodes (Bintercept = —0.16, t =0.91, p = 0.37)
a significant effect of Step was observed; that is, significant classification of the
continuum (Brarger ;1 = 0.23, t ="7.01, p <0.001), but no significant influence of
context (Bcontext 1 = —0.02, t=—0.39, p = 0.69) see Supplementary Fig. S4C for
further detail.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available through the Open
Science Framework at https://osf.io/t87d2/.

Code availability
These results were generated using code written in Matlab. Code is publicly available
through the Open Science Framework at https://osf.io/t87d2/.
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