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Abstract. Let G be a reductive p-adic group and let H(G)s be a Bernstein block
of the Hecke algebra of G. We consider two important topological completions of
H(G)s: a direct summand S(G)s of the Harish-Chandra–Schwartz algebra of G
and a two-sided ideal C∗

r (G)s of the reduced C∗-algebra of G. These are useful
for the study of all tempered smooth G-representations.

We suppose that H(G)s is Morita equivalent to an affine Hecke algebra H(R, q)
– as is known in many cases. The latter algebra also has a Schwartz completion
S(R, q) and a C∗-completion C∗

r (R, q), both defined in terms of the underlying
root datum R and the parameters q.

We prove that, under some mild conditions, a Morita equivalence H(G)s ∼M

H(R, q) extends to Morita equivalences S(G)s ∼M S(R, q) and C∗
r (G)s ∼M

C∗
r (R, q). We also check that our conditions are fulfilled in all known cases of

such Morita equivalences between Hecke algebras. This is applied to compute the
topological K-theory of the reduced C∗-algebra of a classical p-adic group.
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Introduction

Let G be a connected reductive group over a non-archimedean local field. Let
Rep(G) be the category of smooth G-representations on complex vector spaces. To
study such representations, it is often useful to consider various group algebras of
G. Most fundamentally, there is the Hecke algebra H(G), the convolution algebra
of locally constant, compactly supported functions G → C. The category Rep(G)
is equivalent to the category Mod(H(G)) of nondegenerate H(G)-modules. (Here V
nondegenerate means that H(G) · V = V .)

For purposes of harmonic analysis, and in particular for the study of tempered
smooth G-representations, the Harish-Chandra–Schwartz algebra S(G) [HC] can
be very convenient. This is a topological completion of H(G), it consists of lo-
cally constant functions G → C that decay rapidly in a specified sense. By [Wal,
§III.7] an admissible smooth G-representation is tempered if and only if it is natu-
rally a S(G)-module. For larger representations it is best to define the category of
tempered smooth G-representations as the category Mod(S(G)) of nondegenerate
S(G)-modules [SSZ, Appendix].

Further, from the point of view of operator algebras or noncommutative geom-
etry, the reduced C∗-algebra C∗

r (G) may be the most suitable. The modules of
C∗
r (G) are Banach spaces, so they are usually not smooth as G-representations. But

S(G) ⊂ C∗
r (G) and the smooth vectors in any C∗

r (G)-module do form a nondegen-
erate S(G)-module and hence a smooth G-representation. Moreover this operation
provides a bijection between the irreducible representations of C∗

r (G) and those of
S(G). This feature distinguishes C∗

r (G) from other Banach group algebras like L1(G)
or the maximal C∗-algebra of G.

Let Rep(G)s be a Bernstein block of Rep(G) [BeDe]. It is well-known that in
many cases (see Sections 4 and 5) Rep(G)s is equivalent to the category of modules
of an affine Hecke algebra H(R, q). Here R is a root datum and q is a parameter
function for R. In such cases it would be useful if one could detect, in terms of
H(R, q), whether a G-representation in Rep(G)s

(i) is tempered;
(ii) is unitary;
(iii) admits a continuous extension to a C∗

r (G)-module.

The structure needed to make sense of this is available for (extended) affine Hecke
algebras with positive parameters. They have a natural *-operation, so unitarity is
defined. Temperedness of finite-dimensional H(R, q)-modules can be defined conve-
niently either in terms of growth of matrix coefficient or by means of weights for a
large commutative subalgebra of H(R, q) [Opd, §2.7].

Furthermore there exists a Schwartz completion S(R, q) of H(R, q) [Opd, §6.2]
with a similar structure as S(G) [DeOp]. By [Opd, Corollary 6.7] a finite dimensional
H(R, q)-module is tempered if and only if it extends continuously to a S(R, q)-
module. Like for G, we define the category of tempered H(R, q)-modules to be the
module category of S(R, q).

The algebra H(R, q) is a Hilbert algebra, so it acts by multiplication on its own
Hilbert space completion. Then one can define the reduced C∗-completion C∗

r (R, q)
as the closure of H(R, q) in the algebra of bounded linear operators on that Hilbert
space. It is reasonable to expect that this algebra plays a role analogous to C∗

r (G).
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Let H(G)s (resp. S(G)s and C∗
r (G)

s) be the direct summand of H(G) (resp. S(G)
and C∗

r (G)) corresponding to Rep(G)s via the Bernstein decomposition

Mod(H(G)) ∼= Rep(G) =
∏

s∈B(G)
Rep(G)s.

In view of the above, it is natural to ask whether an equivalence of categories

(1) Rep(G)s ∼= Mod(H(G)s)
∼
−−→ Mod(H(R, q))

extends to Morita equivalences

(2) S(G)s ∼M S(R, q) and C∗
r (G)

s ∼M C∗
r (R, q).

That would solve the issues (i) and (iii) completely, and would provide a partial
answer to (ii). Namely, since irreducible tempered representations are unitary, it
would imply that (1) matches the unitary tempered representations on both sides.
(It is not clear what it could say about unitary non-tempered representations.) Fur-
thermore (2) would make Mod(S(G)s) and Mod(C∗

r (G)
s) amenable to much more

explicit calculations, in terms of the generators and relations from H(R, q). That is
important for topological K-theory, where one deals with finitely generated projec-
tive C∗

r (G)-modules.
While (2) looks fairly plausible, it is not automatic. To prove it, we impose some

conditions on the Morita equivalence H(G)s ∼M H(R, q):

• Condition 3.1 is about compatibility with parabolic induction and restriction.
• Condition 3.2 says roughly that under this Morita equivalence every (suit-
able) parabolic subgroup of G should give rise to a parabolic subalgebra of
H(R, q), and this correspondence should respect positivity in the underlying
root systems.

• Sometimes we obtain, instead of H(R, q), an extended affine Hecke algebra
H(R, q)⋊Γ, where Γ is a finite group. Then we require Condition 1.1, which
says that Γ respects all the relevant structure.

Here Condition 3.1 has little to do with affine Hecke algebras. If it holds, then
on based general principles. Condition 3.2 is needed to get affine Hecke algebras
into play. If it does not hold, than our results simply cannot be formulated in
such terms. The positivity part is innocent, usually it can be achieved by a good
choice of a standard minimal parabolic subgroup of G. The Condition 1.1 is of a
more technical nature, it serves to rule out some phenomena that could happen for
arbitrary Γ but not for reductive groups.

Notice that the above conditions do not say anything about *-homomorphisms
between H(R, q) and H(G)s. Instead, our condition are chosen so that they will
hold true for affine Hecke algebras arising from reductive p-adic groups via the two
main methods: Bushnell–Kutzko types and Bernstein’s progenerators.

Theorem 1. (see Theorem 3.12)
Suppose that there is a Morita equivalence between H(G)s and an extended affine
Hecke algebra H(R, q)⋊Γ with positive parameters, such that Conditions 3.1, 3.2 and
1.1 hold. Then it induces Morita equivalences S(G)s ∼M S(R, q) and C∗

r (G)
s ∼M

C∗
r (G).

Hitherto this was only proven for the Schwartz completions in the case of Iwahori–
spherical representations of split groups [DeOp, Theorem 10.2]. In all cases where
a Morita equivalence on the Hecke algebra level is known (to the author), we check
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that the conditions of Theorem 1 are fulfilled. This includes principal series rep-
resentations of F -split groups (F is any non-archimedean local field), level zero
representations, inner forms of GLn(F ), inner forms of SLn(F ), symplectic groups
(not necessarily split) and special orthogonal groups (also possibly non-split).

In all these cases we obtain a pretty good picture of C∗
r (G)

s, up to Morita equiv-
alence. This can, for instance, be used to compute the topological K-theory of these
algebras. Indeed, in [Sol5] the author determined the K-theory of C∗

r (R, q) for many
root data R (it does not depend on q). These calculations, together with Theorem 1
for classical groups, lead to a result which is useful in relation with the Baum–Connes
conjecture.

Theorem 2. (see Theorem 5.3)
Let G be a special orthogonal or a symplectic group over F (not necessarily split),
or an inner form of GLn(F ). Then K∗(C

∗
r (G)) is a free abelian group. For every

Bernstein block Rep(G)s, the rank of K∗(Cr(G)
s) is finite and can be computed

explicitly.

Let us also discuss other approaches to the topics (i), (ii) and (iii) from page 2.
In most cases where a Morita equivalence H(G)s ∼M H(R, q) ⋊ Γ is known, these
issues are not discussed in the literature. When the Morita equivalence comes from
a type (K,λ) in the sense of Bushnell–Kutzko [BuKu], several relevant techniques
are available. Let eλ ∈ H(G) and H(G, J, λ) = EndG(ind

G
J λ) be the idempotent and

the algebra associated to the type (K,λ) in [BuKu, §2]. In this setting the Morita
equivalence can be implemented by injective algebra homomorphisms

(3) H(R, q)⋊ Γ
Υλ−−→ H(G, J, λ) → eλH(G)eλ → H(G)s,

where we assume that Υλ is an isomorphism. It follows quickly from the definition
of types that the last two maps in (3) induce Morita equivalences [BuKu, (2.12) and
Theorem 4.3]. Both algebras H(G, J, λ) and eλH(G)eλ are endowed with a natural
trace and *, which are preserved by the injections

(4) H(G, J, λ) → eλH(G)eλ → H(G)s.

Considerations with Hilbert algebras show that the maps (4) induce equivalences
between the associated categories of finite length tempered representations [BHK].
Moreover, after the first version of this paper appeared, Ciubotaru showed that (4)
also induces equivalences between the respective subcategories of unitary modules
[Ciu]. Hence, whenever Υλ is a *-isomorphism, the categories of unitary modules of
all the algebras in (3) are equivalent. Earlier, this had been proven under certain
additional conditions [BaMo, BaCi].

Notice that in (3) all algebras are endowed with extra structure, which on the
left hand side comes from affine Hecke algebras and for the other terms from the
embedding in H(G). In particular both H(G) and H(R, q) ⋊ Γ are endowed with
a canonical trace, which stems from evaluation of functions at the unit element of
G. Usually (3) will transfer the trace on H(G)s to a positive scalar multiple of the
trace on H(R, q)⋊Γ. If that is the case and Υλ is a *-isomorphism, then by [DeOp,
Theorem 10.1] (3) induces an equivalence between the category of finite length tem-
pered G-representations in Rep(G)s and the category of finite dimensional tempered
modules of H(R, q) ⋊ Γ. This relies on properties of the Plancherel measures of G
and of H(R, q)⋊ Γ, and it uses that Υλ preserves these Plancherel measures, up to
a scalar multiple.
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When the Morita equivalence H(G)s ∼M H(R, q)⋊ Γ does not arise from a type,
fewer techniques for (i), (ii) and (iii) were known. Heiermann established such
Morita equivalences, for symplectic and special orthogonal groups and for inner
forms of GLn(F ) [Hei1], by using Bernstein’s progenerators of Rep(G)s. In [Hei2] he
showed that these equivalences preserve temperedness of finite length modules. Here
it is unknown whether the * and the trace are preserved by the Morita equivalence.
Since maps like (3) are lacking, it is even unclear how such a statement could be
formulated in this setting.

Summarizing, in the literature already several results about the behaviour of finite
length modules under a Morita equivalence between a Bernstein block Rep(G)s and
the module category of an (extended) affine Hecke algebra can be found, but there
is so far almost nothing about the Schwartz completions and the C∗-completions.

Let us briefly describe the contents of the paper. In the first section we recall the
definitions of affine Hecke algebras and their topological completions. We formulate
the Plancherel isomorphism for these completions, from [DeOp], and we establish
suitable versions for affine Hecke algebras extended with finite groups. We also ana-
lyse the space of irreducible representations and the subspace of irreducible tempered
representations, mainly relying on [Sol3]. This is formulated in terms of the Lang-
lands classification and induction from discrete series representations of parabolic
subalgebras.

After that we look at the aforementioned group algebras for a reductive p-adic
group G. We recall the Plancherel isomorphism for the Schwartz algebra of G [HC,
Wal] and for the reduced C∗-algebra of G [Ply]. Like for affine Hecke algebras, we
analyse the space of irreducible smooth G-representation in terms of the Langlands
classification and parabolic induction of square-integrable representations, following
[Sol1].

This forms the setup for the proof of our main result Theorem 1, which occupies
Section 3. The crucial idea behind our argument is that in the Plancherel isomor-
phisms for S(G)s and S(R, q) very similar algebras appear. In both settings one
encounters a bundle of matrix algebras over a compact torus, one takes C∞-sections
of those, and then invariants with respect to a finite group acting via intertwining
operators. We compare the resulting algebras on both sides, analysing the data used
to describe the Plancherel isomorphisms. First we prove that a Morita equivalence
between H(G)s and H(R, q), plus the mild extra conditions listed on page 3, imply
that the two necessary sets of data, for S(G)s and for S(R, q), become equivalent
after some manipulations. The most problematic part is to prove that the Morita
equivalences preserve temperedness and match square-integrable G-representations
with discrete series H(R, q)-modules. For that we use very specific information
about the spaces of irreducible representations and their subspaces of tempered
representations. When we have compared all the data needed for the Plancherel
isomorphisms on both sides, we establish the desired Morita equivalences between
topological algebras.

In Section 4 we check that the conditions from Section 3 are fulfilled in (most)
known cases of Morita equivalences coming from types. In the final section 5 we do
the same for Heiermann’s Morita equivalences constructed with the use of projective
generators, and we derive Theorem 2.
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1. Affine Hecke algebras

Let a be a finite dimensional real vector space and let a∗ be its dual. Let Y ⊂ a

be a lattice and X = HomZ(Y,Z) ⊂ a∗ the dual lattice. Let

(5) R = (X,R, Y,R∨,∆).

be a based root datum. Thus R is a reduced root system in X, R∨ ⊂ Y is the
dual root system, ∆ is a basis of R and the set of positive roots is denoted R+.
Furthermore a bijection R→ R∨, α 7→ α∨ is given, such that 〈α , α∨〉 = 2 and such
that the corresponding reflections sα : X → X (resp. s∨α : Y → Y ) stabilize R (resp.
R∨). We do not assume that R spans a∗. The reflections sα generate the Weyl group
W =W (R) of R, and S∆ := {sα | α ∈ ∆} is the collection of simple reflections.

We have the affine Weyl group W aff = ZR ⋊W and the extended (affine) Weyl
group W e = X ⋊W . Both can be considered as groups of affine transformations
of a∗. We denote the translation corresponding to x ∈ X by tx. As is well-known,
W aff is a Coxeter group, and the basis ∆ of R gives rise to a set Saff of simple
(affine) reflections. More explicitly, let ∆∨

M be the set of maximal elements of R∨,
with respect to the dominance ordering coming from ∆. Then

Saff = S∆ ∪ {tαsα | α∨ ∈ ∆∨
M}.

The length function ℓ of the Coxeter system (W aff , Saff) extends naturally to W e.
The elements of length zero form a subgroup Ω ⊂W e and W e =W aff ⋊ Ω.

A complex parameter function for R is a map q : Saff → C× such that q(s) = q(s′)
if s and s′ are conjugate in W e. This extends naturally to a map q : W e → C×

which is 1 on Ω and satisfies

q(ww′) = q(w)q(w′) if ℓ(ww′) = ℓ(w) + ℓ(w′).

Equivalently (see [Lus1, §3.1]) one can define q as a W -invariant function

(6) q : R ∪ {2α : α∨ ∈ 2Y } → C×.

We speak of equal parameters if q(s) = q(s′) ∀s, s′ ∈ Saff and of positive parameters

if q(s) ∈ R>0 ∀s ∈ Saff . We fix a square root q1/2 : Saff → C×.
The affine Hecke algebra H = H(R, q) is the unique associative complex algebra

with basis {Nw | w ∈W e} and multiplication rules

(7)
NwNw′ = Nww′ if ℓ(ww′) = ℓ(w) + ℓ(w′) ,
(

Ns − q(s)1/2
)(

Ns + q(s)−1/2
)

= 0 if s ∈ Saff .

In the literature one also finds this algebra defined in terms of the elements q(s)1/2Ns,
in which case the multiplication can be described without square roots. This explains
why q1/2 does not appear in the notation H(R, q). For q = 1 (7) just reflects the
defining relations of W e, so H(R, 1) = C[W e].

The set of dominant elements in X is

X+ = {x ∈ X : 〈x , α∨〉 ≥ 0 ∀α ∈ ∆}.

The subset {Ntx : x ∈ X+} ⊂ H(R, q) is closed under multiplication, and isomorphic
to X+ as a semigroup. For any x ∈ X we put

θx = Ntx1
N−1

tx2
, where x1, x2 ∈ X+ and x = x1 − x2.

This does not depend on the choice of x1 and x2, so θx ∈ H(R, q)× is well-defined.
The Bernstein presentation of H(R, q) [Lus1, §3] says that:
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• {θx : x ∈ X} forms a C-basis of a subalgebra of H(R, q) isomorphic to
C[X] ∼= O(T ), which we identify with O(T ).

• H(W, q) := C{Nw : w ∈ W} is a finite dimensional subalgebra of H(R, q)
(known as the Iwahori–Hecke algebra of W ).

• The multiplication map O(T )⊗H(W, q) → H(R, q) is a C-linear bijection.
• There are explicit cross relations between H(W, q) and O(T ), deformations
of the standard action of W on O(T ).

To define parabolic subalgebras of affine Hecke algebras, we associate some objects
to any set of simple roots Q ⊂ ∆. Let RQ be the root system they generate, R∨

Q the

root system generated by Q∨ and WQ their Weyl group. We also define

XQ = X
/(

X ∩ (Q∨)⊥
)

XQ = X/(X ∩QQ),
YQ = Y ∩QQ∨ Y Q = Y ∩Q⊥,
TQ = HomZ(XQ,C

×) TQ = HomZ(X
Q,C×),

aQ = YQ ⊗Z R aQ = Y Q ⊗Z R,
RQ = (XQ, RQ, YQ, R

∨
Q, Q) RQ = (X,RQ, Y,R

∨
Q, Q),

HQ = H(RQ, qQ) HQ = H(RQ, qQ).

Here qQ and qQ are derived from q via (6). Both HQ and HQ are called parabolic
subalgebras of H. The quotient map X 7→ XQ yields a natural projection

(8) HQ → HQ : θxNw 7→ θxQ
Nw.

In this way one can regard HQ as a “semisimple” quotient of HQ. The algebra HQ is
embedded in H via the Bernstein presentation, as the image of O(T )⊗H(WQ, q) →
H. Any t ∈ TQ and any u ∈ TQ ∩ TQ give rise to algebra automorphisms

(9)
ψu : HQ → HQ, θxQ

Nw 7→ u(xQ)θxQ
Nw,

ψt : H
Q → HQ, θxNw 7→ t(x)θxNw.

Let Γ be a finite group acting on R, i.e. it acts Z-linearly on X and preserves R and
∆. We also assume that Γ acts on T by affine transformations, whose linear part
comes from the action on X. Thus Γ acts on O(T ) ∼= C[X] by

(10) γ(θx) = zγ(x)θγx,

for some zγ ∈ T . We suppose throughout that q1/2 is Γ-invariant, and that Γ acts
on H(R, q) by the algebra automorphisms

(11) Ad(γ) :
∑

w∈W,x∈X

cx,wθxNw 7→
∑

w∈W,x∈X

cx,wzγ(x)θγ(x)Nγwγ−1 .

This being a group action, the multiplication relations in H(R, q) imply that we
must have zγ ∈ TW . We build the crossed product algebra

(12) H(R, q)⋊ Γ.

In [Sol3] we considered a slightly less general action of Γ on H(R, q), where the
elements zγ ∈ TW from (10) were all equal to 1. But the relevant results from [Sol3]
do not rely on Γ fixing the unit element of T , so they are also valid for the actions
as in (11). In this paper we will tacitly use some results from [Sol3] in the generality
of (11). We note that nontrivial zγ ∈ TW are sometimes needed to describe Hecke
algebras coming from p-adic groups, for example in [Roc2, §4].
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Since H(R, q) is of finite rank as a module over its commutative subalgebra O(T ),
all irreducible H(R, q)-modules have finite dimension. The set of O(T )-weights of a
H(R, q)-module V will be denoted by Wt(V ).

We regard t = a⊕ia as the polar decomposition of t, with associated real part map
ℜ : t → a. The vector space t can be interpreted as the Lie algebra of the complex
torus T = HomZ(X,C

×). The latter has a polar decomposition T = Trs × Tun
where Trs = HomZ(X,R>0) and Tun = HomZ(X,S

1) is the unique maximal compact
subgroup of T . The polar decomposition of an element t ∈ T is written as t =
|t| (t |t|−1). The exponential map exp : t → T becomes bijective when restricted to
a → Trs. We denote its inverse by log : Trs → a.

We write

a+ = {µ ∈ a : 〈α , µ〉 ≥ 0 ∀α ∈ ∆},

a∗+ = {x ∈ a∗ : 〈x , α∨〉 ≥ 0 ∀α ∈ ∆},

a− = {λ ∈ a : 〈x , λ〉 ≤ 0 ∀x ∈ a∗+} =
{

∑

α∈∆
λαα

∨ : λα ≤ 0
}

.

The interior a−− of a− equals
{
∑

α∈∆λαα
∨ : λα < 0

}

if ∆ spans a∗, and is empty
otherwise. We write

T− = exp(a−) ⊂ Trs and T−− = exp(a−−) ⊂ Trs.

We say that a module V for H(R, q) (or for H(R, q)⋊ Γ) is tempered if |Wt(V )| ⊂
T−, and that it is discrete series if |Wt(V )| ⊂ T−−. The latter is only possible if R
spans a, for otherwise a−− and T−− are empty. We alleviate these notions by calling
a H ⋊ Γ-module essentially discrete series if its restriction to H∆ is discrete series.
Equivalently, essentially discrete series means that Wt(V ) ⊂ T−−TunT

∆. Such a
representation is tempered if and only if Wt(V ) ⊂ T−−Tun. We denote the set of
(equivalence classes of) irreducible tempered essentially discrete series representa-
tions by IrrL2(H(R, q) ⋊ Γ).

It follows from the Bernstein presentation [Lus1, §3] that

(13) the centre of H(R, q)⋊ Γ contains O(T )WΓ = O(T/WΓ),

with equality if WΓ acts faithfully on T . By Schur’s Lemma O(T )WΓ acts on every
irreducible H⋊Γ-representation π by a character. Such a character can be identified
with a WΓ-orbit WΓt ⊂ T . We will just call WΓt the central character of π. Then
WΓ|t| ⊂ Trs and cc(π) :=WΓ log |t| is a singleWΓ-orbit in a. We fix aWΓ-invariant
inner product on a and we define

(14) ‖cc(π)‖ = ‖log |t|‖ .

In some cases that we will encounter, the appropriate parabolic subalgebras of
H(R, q) ⋊ Γ are not H(RQ, qQ), but H(RQ, qQ) ⋊ ΓQ for some subgroup ΓQ ⊂ Γ.
To make this work well, we need some assumptions on the groups ΓQ for Q ⊂ ∆.

Condition 1.1. (1) ΓQ ⊂ ΓQ′ if Q ⊂ Q′;

(2) the action of ΓQ on T stabilizes TQ and TQ;

(3) ΓQ acts on TQ by multiplication with elements of KQ.

Notice that ΓQ is a subgroup of Γ(Q,Q) = {γ ∈ Γ : γ(Q) = Q}, but that we do
not require these two groups to be equal.
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We also note that Conditions 1.1 entail that Γ∅ acts trivially on O(T ) = H∅, so

(15) Irr(H∅ ⋊ Γ∅) ∼= T × Irr(Γ∅).

Remark 1.2. Often there is a larger root system R̃ ⊃ R in X, such that WQΓQ is

contained in the parabolic subgroup of W (R̃) associated to R̃∩QQ. Then parts (2)
and (3) of Condition 1.1 are automatically satisfied (and part (1) is usually obvious).

Under Conditions 1.1 ΓQ commutes with KQ, The conditions also entail that

the projection HQ → HQ and the isomorphisms φt : HQ → HQ (t ∈ TQ) are
ΓQ-equivariant, so they extend to algebra homomorphisms

(16) HQ ⋊ ΓQ → HQ ⋊ ΓQ and φt : H
Q ⋊ ΓQ → HQ ⋊ ΓQ (t ∈ TQ).

Via the first map of (16) we can inflate any representation of HQ⋊ΓQ to HQ⋊ΓQ,

which we often do tacitly. For any representation π of HQ ⋊ ΓQ and any t ∈ TQ we
write

π ⊗ t = π ◦ φt ∈ Mod(HQ ⋊ ΓQ).

Lemma 1.3. (a) Every irreducible HQ ⋊ ΓQ-representation is of the form πQ ⊗ tQ

for some πQ ∈ Irr(HQ ⋊ ΓQ) and t
Q ∈ TQ.

(b) πQ ⊗ tQ is tempered if and only if π is tempered and tQ ∈ TQ
un.

(c) πQ ⊗ tQ is essentially discrete series if and only if πQ is discrete series.

Proof. (a) First we consider the situation without ΓQ. Let π ∈ Irr(HQ) with central
character WQt ∈ T/WQ. The group WQ = W (RQ) acts trivially on TQ, so WQt =

tQWQtQ for some tQ ∈ TQ, tQ ∈ TQ. Then π ⊗ (tQ)−1 factors through HQ → HQ

(say as πQ), and π = πQ ⊗ tQ.
To include ΓQ we use Clifford theory [RaRa, Theorem A.6]. It says that every

irreducible HQ ⋊ ΓQ-representation is of the form

π ⋊ ρ := ind
HQ⋊ΓQ

HQ⋊ΓQ,π
(π ⊗ ρ).

Here ΓQ,π is the stabilizer of π ∈ Irr(HQ) in ΓQ and (ρ, Vρ) is an irreducible represen-

tation of a twisted group algebra of ΓQ,π. If O(T ) acts by tQt1 on a vector subspace

V1 ⊂ Vπ, then for γ ∈ ΓQ it acts by the character γ−1(tQt1) on Nγ(V1 ⊗ Vρ). By
Condition 1.1.(3) γ−1(tQt1) ∈ tQKQγ

−1(t1). Hence (π⋊ρ)⊗ (tQ)−1 factors through

HQ ⋊ ΓQ → HQ ⋊ ΓQ as πQ ⋊ ρ, and

π ⋊ ρ = (πQ ⋊ ρ)⊗ tQ.

(b) As T = TQTQ with TQ∩TQ ⊂ Tun, there is a factorization Trs = TQ
rs×TQ,rs and

(with respect to RQ) T−
rs = {1} × T−

Q,rs. Also |Wt(π ⊗ tQ)| = |tQ| |Wt(π)|. These
observations imply the result.
(c) This is obvious from Wt(π ⊗ tQ) = tQWt(π). �

1.1. The Schwartz and C∗-completions.

To get nice completions of H(R, q) we assume from now on that q is a positive
parameter function for R. As a topological vector space the Schwartz completion of
H(R, q) will consist of rapidly decreasing functions onW e, with respect to a suitable
length function N . For example we can take a W -invariant norm on X ⊗Z R and



10 ON COMPLETIONS OF HECKE ALGEBRAS

put N (wtx) = ‖x‖ for w ∈ W and x ∈ X. Then we can define, for n ∈ N, the
following norm on H:

pn
(

∑

w∈W e
hwNw

)

= supw∈W e |hw|(N (w) + 1)n.

The completion of H with respect to these norms is the Schwartz algebra S =
S(R, q). It is known from [Opd, Section 6.2] that it is a Fréchet algebra. The Γ-
action on H extends continuously to S, so the crossed product algebra S(R, q) ⋊ Γ
is well-defined. By [Opd, Lemma 2.20] a finite dimensional H ⋊ Γ-representation is
tempered if and only if it extends continuously to an S ⋊ Γ-representation.

We define a *-operation and a trace on H(R, q) by
(

∑

w∈W e
cwNw

)∗
=

∑

w∈W e
cwNw−1 ,

τ
(

∑

w∈W e
cwNw

)

= ce.

Since q(sα) > 0, * preserves the relations (7) and defines an anti-involution of
H(R, q). The set {Nw : w ∈ W e} is an orthonormal basis of H(R, q) for the inner
product

〈h1 , h2〉 = τ(h∗1h2).

This gives H(R, q) the structure of a Hilbert algebra. The Hilbert space completion
L2(R) of H(R, q) is a module over H(R, q), via left multiplication. Moreover every
h ∈ H(R, q) acts as a bounded linear operator [Opd, Lemma 2.3]. The reduced
C∗-algebra of H(R, q) [Opd, §2.4], denoted C∗

r (R, q), is defined as the closure of
H(R, q) in the algebra of bounded linear operators on L2(R). By [Opd, Theorem
6.1]

H(R, q) ⊂ S(R, q) ⊂ C∗
r (R, q).

As in (12), we can extend this to a C∗-algebra C∗
r (R, q) ⋊ Γ, provided that q is

Γ-invariant.
Let us recall some background about C∗

r (R, q) ⋊ Γ, mainly from [Opd, Sol3]. It
follows from [DeOp, Corollary 5.7] that it is a finite type I C∗-algebra and that
Irr(C∗

r (R, q)) is precisely the tempered part of Irr(H(R, q)). According to [Opd,
Theorem 4.23] all irreducible S(R, q) ⋊ Γ-representations extend continuously to
C∗
r (R, q)⋊Γ. Hence we can regard the representation theory of C∗

r (R, q)⋊Γ as the
tempered unitary representation theory of H(R, q)⋊ Γ).

The structure of C∗
r (R, q)⋊ Γ is described in terms of parabolically induced rep-

resentations. As induction data we use triples (Q, δ, t) where Q ⊂ ∆, δ ∈ IrrL2(HQ)

and t ∈ TQ. We regard two triples (Q, δ, t) and (Q′, δ′, t′) as equivalent if Q =
Q′, t = t′ and δ ∼= δ′. Notice that HQ comes from a semisimple root datum, so it

can have discrete series representations. We inflate such a representation to HQ via
the projection (8). To a triple (Q, δ, t) we associate the H ⋊ Γ-representation

(17) πΓ(Q, δ, t) = indH⋊Γ
HQ (δ ◦ ψt).

(When Γ = 1, we often suppress it from these and similar notations.) For t ∈ TQ
un =

TQ∩Tun these representations extend continuously to the respective C∗-completions
of the involved algebras. Let Ξun be the set of triples (Q, δ, t) as above, such that
moreover t ∈ Tun. Considering Q and δ as discrete variables, we regard Ξun as a
disjoint union of finitely many compact real tori (of different dimensions).
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Let VΓ
Ξ be the vector bundle over Ξun, whose fibre at ξ = (Q, δ, t) is the vector

space underlying πΓ(Q, δ, t). That vector space is independent of t, so the vector
bundle is trivial. Let End(VΓ

Ξ) be the algebra bundle with fibres EndC
(

πΓ(Q, δ, t)
)

.
These data give rise to a canonical map

(18)
H(R, q)⋊ Γ → O

(

Ξ;End(VΓ
Ξ)

)

h 7→
(

ξ 7→ πΓ(ξ)(h)
)

which we refer to as the Fourier transform. By [Opd, Lemma 2.22] every discrete
series representation is unitary, so Vδ carries an HQ-invariant inner product and

EndC(Vδ) has a natural *-operation. For any t ∈ TQ this becomes an HQ-invariant
nondegenerate pairing between δ ◦φt and δ ◦φt|t|−2 . By [Opd, Proposition 4.19] this
extends canonically to an inner product on the vector space

(19) πΓ(Q, δ, t) = Γ⋉H(W, q)⊗H(WQ,q) Vδ.

That yields an anti-involution on EndC(π
Γ(Q, δ, t)) and a nondegenerate H ⋊ Γ-

invariant pairing between πΓ(Q, δ, t) and πΓ(Q, δ, t |t|−2).
The algebra O

(

Ξ;End(VΓ
Ξ)
)

is endowed with the anti-involution

(20) (f∗)(Q, δ, t) = f(Q, δ, t |t|−2)∗.

With respect to this anti-involution, (18) is a *-homomorphism.
To administer the upcoming intertwining operators we use a finite groupoid G

which acts on End(VΓ
Ξ). It is made from elements of W ⋊ Γ and of KQ := TQ ∩ TQ.

More precisely, its base space is the power set of ∆, and for Q,Q′ ⊆ ∆ the collection
of arrows from Q to Q′ is

(21) GQQ′ = {(g, u) : g ∈ Γ⋉W,u ∈ KQ, g(Q) = Q′}.

Whenever it is defined, the multiplication in G is

(g′, u′) · (g, u) = (g′g, g−1(u′)u).

In particular, writing WΓ(Q,Q) = {w ∈WΓ : w(Q) = Q}, we have the group

(22) GQQ =WΓ(Q,Q)⋊KQ.

Usually we will write elements of G simply as gu. There is an analogous groupoid

GQ for HQ ⋊ ΓQ, which under Conditions 1.1 satisfies GQ
QQ = ΓQ ×KQ.

For γ ∈ ΓW with γ(Q) = Q′ ⊂ ∆ there are algebra isomorphisms

(23)
ψγ : HQ → HQ′ , θxQ

Nw 7→ θγ(xQ)Nγwγ−1 ,

ψγ : HQ → HQ′

, θxNw 7→ θγxNγwγ−1 .

The groupoid G acts from the left on Ξun by

(24) (g, u) · (Q, δ, t) := (g(Q), δ ◦ ψ−1
u ◦ ψ−1

g , g(ut)),

the action being defined if and only if g(Q) ⊂ ∆.
Suppose that g(Q) = Q′ ⊂ ∆ and δ′ ∼= δ ◦ ψ−1

u ◦ ψ−1
g . By [Opd, Theorem 4.33]

and [Sol3, Theorem 3.1.5] there exists an intertwining operator

(25) πΓ(gu,Q, δ, t) ∈ HomH(R,q)⋊Γ

(

πΓ(Q, δ, t), πΓ(Q′, δ′, g(ut))
)

,

which depends algebraically on t ∈ TQ
un. This implies that, for all ξ ∈ Ξ and g ∈ G

such that gξ is defined, πΓ(ξ) and πΓ(gξ) have the same irreducible constituents,
counted with multiplicity [Sol3, Lemma 3.1.7].
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The action of G on the continuous sections C(Ξun; End(V
Γ
Ξ)) is given by

(26) (g · f)(gξ) = πΓ(g, ξ)f(ξ)πΓ(g, ξ)−1 g ∈ GQQ, ξ = (Q, δ, t).

The next result is the Plancherel isomorphism for affine Hecke algebras, proven in
[DeOp, Theorem 5.3 and Corollary 5.7] and [Sol3, Theorem 3.2.2].

Theorem 1.4. The map Fourier transform (18) induces *-homomorphisms

H(R, q)⋊ Γ → O
(

Ξ;End(VΓ
Ξ)

)G
,

S(R, q)⋊ Γ → C∞
(

Ξun; End(V
Γ
Ξ)

)G
,

C∗
r (R, q)⋊ Γ → C

(

Ξun; End(V
Γ
Ξ)

)G
.

The first is injective, the second is an isomorphism of Fréchet algebras and the third
is an isomorphism of C∗-algebras.

For q = 1 these simplify to the well-known isomorphisms

(27)

H(R, 1) ⋊ Γ = O(T )⋊WΓ → O
(

T ; EndC(C[WΓ])
)WΓ

,

S(R, 1) ⋊ Γ = C∞(Tun)⋊WΓ → C∞
(

Tun; EndC(C[WΓ])
)WΓ

,

C∗
r (R, 1) ⋊ Γ = C(Tun)⋊WΓ → C

(

Tun; EndC(C[WΓ])
)WΓ

.

Unfortunately, the bookkeeping in Theorem 1.4 is not entirely suitable for our pur-
poses, because sometimes the parabolic subalgebras need to be extended by dia-
gram automorphisms. In those cases we should rather use induction data based on
IrrL2(HQ ⋊ ΓQ) than based on IrrL2(HQ) or IrrL2(HQ).

We fix a system of subgroups ΓQ ⊂ Γ (Q ⊂ ∆) satisfying Condition 1.1. With
Lemma 1.3 in mind we define new induction data. They are triples (Q,σ, t) with
Q ⊂ ∆, t ∈ TQ and σ ∈ IrrL2(HQ ⋊ ΓQ). We regard another such triple (Q′, σ′, t′)
as equivalent if and only if Q′ = Q, t′ = t and σ′ ∼= σ. We keep the same groupoid
G as before, it also acts on the new triples via (24). To such a triple we associate
the representation

(28) π(Q,σ, t) = indH⋊Γ
HQ⋊ΓQ

(σ ⊗ t).

The vector space underlying π(Q,σ, t) does not depend on t, we denote it by VQ,σ.
There is a natural homomorphism

(29)
H(R, q)⋊ Γ → O(TQ)⊗ EndC(VQ,σ)

h 7→
(

t 7→ π(Q,σ, t)(h)
)

.

We refer to the system of these maps, for all Q and σ, as the Fourier transform for
H(R, q) ⋊ Γ. The recipe for the intertwining operators from [Opd, §4] and [Sol3,
Theorem 3.1.5] remains valid, so we get

(30) π(gu,Q, σ, t) ∈ HomH⋊Γ

(

π(Q,σ, t), π(g(Q), σ′ , g(ut))
)

with the same properties as in (25). In particular π(Q,σ, t) and π(g(Q), σ′, g(ut))
have the same irreducible constituents, counted with multiplicity. With these notions
we can vary on the Plancherel isomorphism (Theorem 1.4).

To do so, we first consider essentially discrete series representations of HQ ⋊ ΓQ.

Pick δ1 ∈ IrrL2(HQ) and t1 ∈ TQ
un. We note that ind

HQ⋊ΓQ

HQ (δ ⊗ t1) is unitary and
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essentially discrete series, because ΓQ stabilizes Q. Write GQ
QQδ1 = {δi}i. The

summand of C∞
(

ΞQ,un; End(V
ΓQ

ΞQ
)
)GQ

associated to (Q, δ1) is

(31)
(

⊕

i
C∞

(

TQ
un; EndC(π

ΓQ(Q, δi, ti))
)

)GQ
QQ
.

Let {σj}j be the members of IrrL2(HQ ⋊ ΓQ) contained in ind
HQ⋊ΓQ

HQ
(δ1 ◦ ψu) for

some u ∈ KQ. This set is stable under GQ
QQ = ΓQ × KQ. The summand of

(

⊕

σ C
∞
(

TQ
un; EndC(Vσ)

)

)GQ

corresponding to the σj is

(32)
(

⊕

j
C∞

(

TQ
un; EndC(Vσj

)
)

)GQ
QQ
.

Lemma 1.5. The algebras (31) and (32) are naturally isomorphic.

Proof. For σ ∈ IrrL2(HQ ⋊ ΓQ) we write (σ, t) > (δ1, t1) if

HomHQ⋊ΓQ

(

σ ⊗ t, ind
HQ⋊ΓQ

HQ (δ ⊗ t1)
)

∼= HomHQ(σ ⊗ t, δ ⊗ t1)

is nonzero. Since ΓQ is finite, the set of such (σ, t) is finite. Hence the map

⊕

(σ,t)>(δ1,t1)

σ ◦ ψt : HQ ⋊ ΓQ →
⊕

(σ,t)>(δ1 ,t1)

EndC(Vσ)

is surjective. The specialization of (31) at GQ
QQ(Q, δ1, t1) is also

⊕

(σ,t)>(δ1 ,t1)
EndC(Vσ), for that specialization is just

ind
HQ⋊ΓQ

HQ (δ ◦ ψt1)(S(R
Q, qQ)⋊ ΓQ).

Similarly, specializing the algebra (32) at all (σ, t) > (δ1, t1) gives a surjection from
(32) to

⊕

(σ,t)>(δ1 ,t1)
EndC(Vσ).

Now we can explicitly compare (32) with (31). Both are algebras of smooth
sections of (trivial) algebra bundles, and specialization at the points associated to

(δ1, t1) yields the same algebra in both cases. This holds for any t1 ∈ TQ
un and that

accounts for all base points of these algebra bundles, so (31) and (32) are isomorphic.
Moreover the isomorphism is canonical: it is the composition of the inverse of the
map in Theorem 1.4 and the map induced by (29) (both for HQ ⋊ ΓQ). �

Next we formulate our variation on the Plancherel isomorphism.

Proposition 1.6. The Fourier transform from (29) induces isomorphisms of Fréchet
*-algebras

S(R, q)⋊ Γ →
(

⊕

Q,σ C
∞
(

TQ
un; EndC(VQ,σ)

)

)G
,

C∗
r (R, q)⋊ Γ →

(

⊕

Q,σ C
(

TQ
un; EndC(VQ,σ)

)

)G
.

Proof. We will analyse the right hand side of Theorem 1.4 (for the Schwartz algebras)
and compare it with the current setting.
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For every Q ⊂ ∆, Lemma 1.5 yields a canonical isomorphism

(33)
(

⊕

σ∈Irr
L2 (HQ⋊ΓQ)

C∞
(

TQ
un; EndC(Vσ)

)

)GQ
QQ ∼=

(

⊕

δ∈Irr
L2 (HQ)

C∞
(

TQ
un; EndC(C[ΓQ]⊗ Vδ)

)

)GQ
QQ
.

To obtain the right hand side of Theorem 1.4 from (33), we must apply indH⋊Γ
HQ⋊ΓQ

to C[ΓQ]⊗Vδ ∼= ind
HQ⋊ΓQ

HQ (δ⊗ t) and then take invariants with respect to the larger

groupoid G ⊃ GQ. The formula [Sol3, (3.12)] is the same for GQ and for G, so the
intertwiners associated to elements of GQ need not be adjusted in this process.

With exactly the same procedure we can turn (33) into the right hand side of the
current proposition. The intertwining operators associated to elements of G agree
under the isomorphisms obtained from (33) by applying indH⋊Γ

HQ⋊ΓQ
, because in both

settings they were constructed with [Sol3, (3.12) and Theorem 3.1.5]. Consequently

(

⊕

Q,σ
C∞

(

TQ
un; EndC(VQ,σ)

)

)G
∼= C∞

(

Ξun; End(V
Γ
Ξ)
)G
,

proving the proposition for the Schwartz algebras. For C∗
r (R, q)⋊Γ one can use the

same argument, with everywhere C∞ replaced by continuous functions. �

Choose representatives Q for P(∆) moduloWΓ-association. For every such Q we
choose representatives σ for the action of GQQ =WΓ(Q,Q)×KQ on IrrL2(HQ⋊ΓQ).

By Lemma 1.3 these σ also form representatives for the action of GQQ ⋉ TQ
un on

IrrL2(HQ⋊ΓQ). We denote the resulting set of representatives of pairs by (Q,σ)/G.

Let GQ,σ be the setwise stabilizer of (Q,σ, TQ
un) in the group GQQ. Proposition 1.6

can be rephrased as isomorphisms

(34)
S(R, q)⋊ Γ →

⊕

(Q,σ)/G C
∞
(

TQ
un; EndC(VQ,σ)

)GQ,σ ,

C∗
r (R, q)⋊ Γ →

⊕

(Q,σ)/G C
(

TQ
un; EndC(VQ,σ)

)GQ,σ .

Sometimes we have to consider the opposite algebra (H(R, q)⋊Γ)op and its com-
pletions. It is, morally, clear that all the previous results can also developed for
right H ⋊ Γ-modules, that is, for (H ⋊ Γ)op-modules. However, none of that has
been written down, so we prefer more steady ground.

For everyH⋊Γ-representation (π, Vπ), the full linear dual V
∗
π becomes a (H⋊Γ)op-

representation π∗ by

π∗(hop)λ = λ ◦ π(h).

This sets up a bijection between finite dimensional left and right modules ofH⋊Γ. In
view of the canonical inner products from on the spaces (19), this bijection commutes
with induction from parabolic subalgebras.

For infinite dimensional representations there is often some choice for which dual
space of Vπ we use here. In particular, when Vπ is a Hilbert space we can use Vπ
also as dual space. With this convention one checks easily that π is unitary if and
only if π∗ is unitary.

The O(T )-weights of π∗ are the same as for π, so π∗ is tempered or (essentially)
discrete series if and only if π is so. Thus the pairs (Q,σ) with σ ∈ IrrL2(HQ ⋊ ΓQ)
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are in natural bijection with the pairs (Q,σ∗) in

(35)
⋃

Q⊂∆
IrrL2

(

(H(RQ, qQ)⋊ ΓQ)
op
)

.

The bijection is G-equivariant for the G-action on (35) as in (24). Hence GQ,σ = GQ,σ∗

and we can take (Q,σ∗)/G to be the image of (Q,σ)/G.

Lemma 1.7. The Fourier transform for right H(R, q)⋊Γ-modules induces isomor-
phisms of Fréchet *-algebras

(S(R, q)⋊ Γ)op →
⊕

(Q,σ∗)/G C
∞
(

TQ
un; EndC(VQ,σ∗)

)GQ,σ∗
,

(C∗
r (R, q) ⋊ Γ)op →

⊕

(Q,σ∗)/G C
(

TQ
un; EndC(VQ,σ∗)

)GQ,σ∗
.

Proof. The opposite algebra of

EndC(VQ,σ) = EndC
(

indH⋊Γ
HQ⋊ΓQ

Vδ
)

is naturally isomorphic to EndC
(

V ∗
Q,σ

)

, which by [Opd, Proposition 4.19] is canoni-
cally isomorphic with

EndC
(

indH⋊Γ
HQ⋊ΓQ

(V ∗
σ )

)

= EndC(VQ,σ∗).

For g ∈ GQ,σ we take π(g,Q, σ∗, t|t|−2) to be the transpose inverse of π(g,Q, σ, t).

Thus an element of C
(

TQ
un; EndC(VQ,σ)

)

is GQ,σ-invariant if and only if its transpose

in C
(

TQ
un; EndC(VQ,σ∗)

)

is GQ,σ∗-invariant for the action

(g · f)(g(Q,σ∗, t)) = π(g,Q, σ∗, t)f(Q,σ∗, t)π(g,Q, σ∗, t)−1.

Now we take the opposite algebras in Theorem 1.4 and we find the desired isomor-
phisms.

The implementing algebra homomorphisms are given by transpose, the Fourier
transform from (29) and again transpose, which works out to the Fourier trans-
form for (H(R, q)⋊ Γ)op-modules. Since the correspondence between left and right
H(R, q) ⋊ Γ-modules preserves unitarity, the latter Fourier transform is still a *-
homomorphism. �

1.2. The space of irreducible representations.

We compare the irreducible representations of H ⋊ Γ to its representations in-
duced from proper parabolic subalgebras (i.e. the algebras HQ ⋊ ΓQ with Q ( ∆).
Let Gr(H ⋊ Γ) be the Grothendieck group of the category of finite length H ⋊ Γ-
representations and write GrQ(H⋊Γ) = Q⊗ZGr(H⋊Γ). Then (parabolic) induction
induces a Q-linear map GrQ(HQ ⋊ ΓQ) → GrQ(H ⋊ Γ).

Theorem 1.8. (a) The collection of irreducible H⋊Γ-representations whose image
in GrQ(H ⋊ Γ) is not a Q-linear combination of representations induced from
proper parabolic subalgebras is a nonempty union of TWΓ-orbits in Irr(H ⋊ Γ).

(b) Suppose that, for every w ∈ WΓ \
⋃

Q(∆W (RQ)ΓQ, the set Tw
∆ is finite. Then

the set in part (a) is a finite union of TWΓ-orbits.

Proof. (a) Recall from (13) that O(T )W (RQ)ΓQ ⊂ Z(HQ ⋊ ΓQ). Hence all irre-

ducible representations of HQ ⋊ ΓQ come in families parametrized by TW (RQ)ΓQ .

Since TWΓ ⊂ TW (RQ)ΓQ for all Q ⊂ ∆, the set of irreducible representations under
consideration is a union of TWΓ-orbits.



16 ON COMPLETIONS OF HECKE ALGEBRAS

By [Sol4, Lemma 2.3], Irr(H ⋊ Γ) can be parametrized by the extended quotient

T//WΓ =
(

⋃

w∈WΓ
{w} × Tw

)

/

WΓ,

where WΓ acts on the union by w′ · (w, t) = (w′ww′−1, w′(t)). This parametrization
respects central characters, up to a twists which are constant on connected compo-
nents of T//WΓ [Sol4, Theorem 2.6]. In this parametrization of Irr(H ⋊ Γ) almost
all elements of a piece {w} × Tw with w ∈ W (RQ)ΓQ come from representations
induced from HQ ⋊ ΓQ, and such w account for all representations induced from
proper parabolic subalgebras. Hence the set considered in the statement can be
parametrized by

(36)
(

⋃

w∈WΓ:w/∈W (RQ)ΓQ∀Q(∆
{w} × Tw

)

/

WΓ

This set is nonempty because every Coxeter element of W = W (R) contributes at
least (w, 1) to it.
(b) This is obvious from (36). �

The induction data from Ξ give rise to a partition Irr(H⋊ Γ) into finite packets.

Theorem 1.9. [Sol3, Theorem 3.3.2.b]
For every π ∈ Irr(H ⋊ Γ) there exists a unique G-association class G(Q, δ, t) ∈ Ξ/G
such that π is a constituent of πΓ(Q, δ, t) and the invariant ‖cc(δ)‖ from (14) is
maximal for this property.

With the new induction data (Q,σ, t) from (28) we can vary on Theorem 1.9.
(Now σ ∈ IrrL2(HQ ⋊ ΓQ), whereas the above δ was a representation of HQ.)

Theorem 1.10. (a) For every π ∈ Irr(H⋊Γ) there exists a triple (Q,σ, t) as above,
such that π is a constituent of π(Q,σ, t) and ‖cc(σ)‖ is maximal for this property.
In this situation we say that π is a Langlands constituent of π(Q,σ, t).

(b) In the setting of part (a), the restriction of σ ⊗ t to HQ is a direct sum of
irreducible representations in one ΓQ-orbit, say ΓQ(δ ⊗ t) ⊂ IrrL2(HQ). Then
(Q, δ, t) is uniquely determined by π, up to the action of G.

(c) Let (Q,σ, t) be any induction datum as in (28). Every constituent of π(Q,σ, t) is
either a Langlands constituent or a constituent of π(Q′, σ′, t′) for some induction
datum with ‖cc(σ′)‖ > ‖cc(σ)‖.

(d) π is tempered if and only if t ∈ Tun, where t ∈ TQ comes from part (a).

Proof. (a) Let (Q, δ, t) be as in Theorem 1.9. Thus π is a constituent of

πΓ(Q, δ, t) = indH⋊Γ
HQ⋊ΓQ

(

ind
HQ⋊ΓQ

HQ (δ ⊗ t)
)

,

and the norm of the central character of δ is maximal for this property. Let T−−Q

be the subset T−− of T , but computed with respect to Q. Every A-weight of

ind
HQ⋊ΓQ

HQ (δ ⊗ t) lies in one of the ΓQ-orbits of weights of δ ⊗ t, which are entirely

contained in T−−QTun because ΓQ stabilizes Q. In other words, ind
HQ⋊ΓQ

HQ (δ ⊗ t) is
a direct sum of finitely many irreducible essentially discrete series representations of
HQ ⋊ Γ, all with central characters in the same WQ ⋊ ΓQ-orbit. By Lemma 1.3 all
these summands are of the form σi ⊗ t with σi ∈ IrrL2(HQ ⋊ ΓQ). Hence

(37) πΓ(Q, δ, t) =
⊕

i
π(Q,σi, t)
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and π is a constituent of (at least) one π(Q,σi, t).
The central characters of the σi and of δ have the same norm, and that of δ was

maximal given π. Hence the norm of the central character of σi is also maximal,
given π.
(b) Suppose that (Q,σ, t) satisfies the requirements of part (a), that is, π is a Lang-
lands constituent of π(Q,σ, t). In the proof of Lemma 1.3 we observed that the re-
striction of σ⊗t to HQ is a direct sum of representations of the form γ((δ⊗k−1)⊗kt)
with γ ∈ ΓQ and k ∈ KQ. For all γ ∈ ΓQ, π is a constituent of

πΓ(Q, δ, t) = πΓ(Q, γ(δ ⊗ k−1), γ(kt)).

The norm of the central character of γ(δ ⊗ k−1) is maximal for this property, by
the assumption on σ. By Theorem 1.9 all (Q, γ(δ ⊗ k−1), γ(kt)) lie in a unique
G-association class in Ξ determined by π.
(c) In view of (37), it suffices to consider the constituents of πΓ(Q, δ, t). Then the
statement is implicit in [Sol3], we make it more explicit here. By [Sol3, Lemma 3.1.7
and Theorem 3.3.2], we may furthermore assume that ξ = (Q, δ, t) is in positive
position, that is, |t| ∈ TQ+ = exp(aQ ∩ a+). Write P (ξ) = {α ∈ ∆ : |α(t)| = 1}

and consider the representation ind
HP (ξ)⋊Γ(P (ξ),P (ξ))

HQ (δ ⊗ t). By [Sol3, Proposition
3.1.4] that representation is completely reducible, and all its irreducible summands
are of the form δ′ ⊗ t′ where δ′ ∈ Irr

(

HP (ξ) ⋊ Γ(P (ξ), P (ξ))
)

is tempered and t′ ∈

TP (ξ) ∩ tTP (ξ) with

|t′| ∈ TP (ξ)++ = exp
(

{µ ∈ aP (ξ) : 〈α , µ〉 > 0 ∀α ∈ ∆ \ P (ξ)}
)

.

Thus every constituent π(Q,σ, t) is a constituent of

(38) indH⋊Γ
HP (ξ)⋊Γ(P (ξ),P (ξ))

(δ′ ⊗ t′)

for such a δ′ ⊗ t′. By [Sol3, Theorem 3.3.2], the Langlands constituents of π(Q,σ, t)
(or πΓ(Q, δ, t)) are precisely those constitutents which are quotients of a repre-
sentation (38). The Langlands classification for extended affine Hecke algebras
[Sol3, Corollary 2.2.5], says that the latter representation has a unique irreducible
quotient (called the Langlands quotient, hence our terminology Langlands con-
stituents). Moreover by [Sol3, Lemma 2.2.6.b] all other constituents of (38) are
Langlands quotients for data where the norm of the central character is bigger than
‖cc(σ)‖. Then [Sol3, Proposition 3.1.4 and Theorem 3.3.2] entail that those other
irreducible representations occur as Langlands constituents of a πΓ(Q′, δ′, t′) with
‖cc(δ′)‖ > ‖cc(σ)‖ = ‖cc(δ)‖.
(d) As observed in the proof of part (c), in the construction for part (a) and for [Sol3,
Theorem 3.3.2] we may assume that (Q,σ, t) is positive and that π is the unique
Langlands quotient of (38), for one of the above δ′ ⊗ t′. By the uniqueness in the
Langlands classification for extended affine Hecke algebras [Sol3, Corollary 2.2.5], π
is tempered if and only if P (ξ) = ∆ and t′ ∈ T∆

un.
Here P (ξ) = ∆ implies |t| = |t′| ∈ T∆, and then t′ ∈ T∆

un says that |t| = 1.
Conversely, t ∈ Tun implies P (ξ) = ∆ and t = t′ ∈ T∆. �

With Theorem 1.10 one can express the structure of Irr(H ⋊ Γ) in terms of its
subset of irreducible tempered representations. In essence, the former is the com-
plexification of the latter (which is something like a real algebraic variety with mul-
tiplicities). We do not need the full strength of this. For our purposes it suffices to
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consider half-lines in the parameter space, such that Q,σ and the unitary part of t
are fixed and the absolute value of t can be scaled by a positive factor.

Proposition 1.11. Let (Q,σ, t) be an induction datum with σ ∈ IrrL2(HQ ⋊ ΓQ).

(a) For r ∈ R>−1, the number of inequivalent Langlands constituents of π(Q,σ, t |t|r)
does not depend on r.

(b) For all but finitely many r ∈ R>−1, π(Q,σ, t |t|
r) is completely reducible. Then

all its irreducible subquotients are Langlands constituents.

Proof. (a) Let ξ = (Q, δ, t) ∈ Ξ be as in Theorem 1.10.
Notice that the intertwining operators π(gu,Q, σ, t) depend algebraically on t ∈

TQ. This implies that, for every gu ∈ G, π(Q,σ, t) and π(gu(Q,σ, t)) have the
same irreducible subquotients (counted with multiplicity), see [Sol3, Lemma 3.1.7]
or [Sol2, Lemma 3.4]. Since every G-orbit in Ξ contains an element in positive
position, we may assume that (Q, δ, t) is positive. Then (Q, δ, t |t|r) is positive for
r ≥ −1 and for r > −1 its stabilizer in G does not depend on r.

Now the statement for πΓ(Q, δ, t) is an instance of [Sol3, Proposition 3.4.1]. To-
gether with (37) and Theorem 1.10.c this implies the statement for π(Q,σ, t).
(b) By [Sol3, Proposition 3.1.4.a] the representation

(39) ind
HP (ξ)⋊Γ(P (ξ),P (ξ))

HQ (δ ⊗ t |t|r) =
⊕

i
ind

HP (ξ)⋊Γ(P (ξ),P (ξ))

HQ⋊ΓQ
(σi ⊗ t |t|r)

is completely reducible. Therefore it suffices to consider all irreducible direct sum-
mands of (39) separately. This brings us to representations of the form

(40) indH⋊Γ
HP (ξ)⋊Γ(P (ξ),P (ξ))

(δ′ ⊗ t′|t|r).

Then (P (ξ), δ′, t′|t|r) is a datum for the Langlands classification for extended affine
Hecke algebras [Sol3, Corollary 2.2.5]. This result says that such a representation
has a unique irreducible quotient, so (40) is irreducible as soon as it is completely
reducible. In that case its Langlands constituent obviously is the whole of (40). That
implies the claim about the constituents of π(Q,σ, t |t|r) when that representation
is completely reducible.

Next we show that (40) is irreducible for almost all r ∈ R>−1. From [Sol3, Lemma
2.2.6.a] we know that the space of H ⋊ Γ-endomorphisms of (40) is just CId.

For all z ∈ C the isotropy group G(P (ξ),δ′,t′) also fixes (P (ξ), δ′, t′|t|z). Since

GP (ξ),δ′ acts on TQ by group automorphisms and translations, for almost all z ∈ C

G(P (ξ),δ′,t′|t|z) equals G(P (ξ),δ′,t′). In particular this happens for some z ∈ −1 + iR.

Then t′|t|z ∈ T
P (ξ)
un and by [Sol3, Corollary 3.1.3] the representation πΓ(P (ξ), δ′, t′|t|z)

is unitary (and in particular completely reducible). By [Sol3, Theorem 3.3.1.b]

(41) EndH⋊Γ

(

indH⋊Γ
HP (ξ)⋊Γ(P (ξ),P (ξ))

(δ′ ⊗ t′|t|z)
)

is spanned by intertwining operators coming from GP (ξ),δ′,t′ , just like for (40). There-
fore (41) consists only of CId, which implies that the representation is irreducible for
that z ∈ −1+ iR. In the above algebraic family of finite dimensional representations
parametrized by z ∈ C, irreducibility is an open condition: slightly varying z cannot
destroy irreducibility. Hence the locus of z’s where the representation is reducibile
is a Zariski-closed subset of C, that is, it is finite. In particular (40) is irreducible
for all but finitely many r ∈ R>−1. �
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2. Reductive p-adic groups

Let F be a non-archimedean local field and let G = G(F ) be a connected reductive
algebraic group over F . We endow G with the topology coming from the metric on
F and we fix a Haar measure on G. Let H(G) be the Hecke algebra of G, the
convolution algebra of locally constant compactly supported functions G→ C. The
product on H(G) is convolution (with respect to the Haar measure). Let S(G) be
the Harish-Chandra–Schwartz algebra of G, as defined in [HC] and [Wal, §III.6].
By definition, a smooth G-representation (by default on a complex vector space) is
tempered if and only if it extends continuously to a module for S(G). Let C∗

r (G)
be the reduced C∗-algebra of G, the completion of H(G) in the algebra of bounded
linear operators on the Hilbert space L2(G). By [Vig, Theorem 29] there are dense
inclusions

H(G) ⊂ S(G) ⊂ C∗
r (G).

The *-operation and the trace on these algebras are

f∗(g) = f(g−1) and τ(f) = f(1G).

Fix a minimal parabolic F -subgroup P0 = M0U0 and let W (G,M0) be the Weyl
group of G with respect to the maximal F -split torus A0 in the centre of M0. Write
a0 = X∗(AM0)⊗Z R and endow this vector space with a W (G,M0)-invariant inner
product.

Every Levi F -subgroup of G is conjugate to a standard Levi subgroup, that is,
one that contains M0. Let M be such a standard Levi subgroup of G, and let AM

be the maximal F -split torus in Z(M). There is a canonical decomposition

(42) a0 = aM ⊕ aM ,

where aM = X∗(AM )⊗ZR and aM = {χ ∈ X∗(A0) : χ|AM
= 1}⊗Z R. Let R(G,M)

be the set of roots of G with respect to AM . For a parabolic subgroup P =MU of
G we let R(P,M) be the set of roots of (G,M) that appear in (the Lie algebra of)
P .

WhenM1 ⊂M is another standard Levi subgroup of G, we write aMM1
= aM1∩a

M .

Every parabolic subgroup P1 =M1U1 of M determines an obtuse cone in aMM1
:

+aMP1
=

{

∑

α∈R(P1,M1)
cαα

∣

∣

AM1
: cα > 0 ∀α

}

.

Here we would obtain the same cone if we used only the simple roots for (P1,M1).
The closure of +aMP1

in aMM1
is

+aMP1
=

{

∑

α∈R(P1,M1)
cαα

∣

∣

AM1
: cα ≥ 0 ∀α

}

.

It is easy to see that the normalized Jacquet restriction functor JG
P : Rep(G) →

Rep(M) does not preserve temperedness. Fortunately, the normalized parabolic
induction functor IGP : Rep(M) → Rep(G) does, and also respects non-temperedness:

Proposition 2.1. Let π ∈ Rep(M) be of finite length. Then IGP (π) is tempered if
and only if π is tempered.

Proof. The if part is well-known, see [Wal, Lemme III.2.3] or [Ren, Lemme VII.2.2].
By conjugating P,M and π, we can achieve that P ⊃ P0 and M ⊃ M0. Recall

from [Wal, Proposition III.2.2] that π is tempered if and only if, for every parabolic
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subgroup P1 =M1U1 of M with M1 ⊃M0 and every AM1-weight χ of JM
P1
(π):

(43) log |χ| ∈ +aMP1
.

Moreover, it is equivalent to impose this condition for all P1 such that P1 = M or
P1 is a standard maximal parabolic subgroup of M .

To show that IGP preserves non-temperedness, it suffices to consider the case that
P is a standard maximal parabolic subgroup of G. Namely, there exists a chain of
parabolic subgroups

P ⊂ P1 =M1U1 ⊂ · · · ⊂ Pn =MnUn ⊂ G =Mn+1

such that every Pi−1∩Mi is a maximal parabolic subgroup ofMi. If we can prove that

each IMi

Pi−1∩Mi
preserves non-temperedness, the transitivity of parabolic induction

[Ren, Lemme VI.1.4] implies that IGP does so as well.

Since IGP is an exact functor [Ren, Théorème VI.1.1], we may furthermore assume
that π is irreducible. So, we suppose that π is irreducible and not tempered, and
(contrary to what we want to prove) that IGP (π) is tempered. Let us consider the

Z(G)-character of π. It is also the Z(G)-character of IGP (π). Since IGP (π) is tempered,
its central character is unitary [Ren, Corollaire VII.2.6].

We claim that the AM -character ζ of π must also be unitary.
Suppose it is not, and consider its absolute value |ζ| ∈ Xnr(M) \ {1}. Let α ∈

R(G,M0) be the unique simple root of (G,M) and let sα ∈ W (G,M0) be the
associated reflection. The length of sα in W (G,M0) is one, so it is a minimal
length representative for a double coset in W (M,M0) \W (G,M0)\W (M,M0). By
Bernstein’s geometric lemma [Ren, Théorème VI.5.1] both ζ and sαζ occur as AM -
weights of JG

P (IGP (π)). Since M is a maximal Levi subgroup of G and |ζ|AG
=

|ζ|Z(G) = 1, both log |ζ| and log |sαζ| lie in the one-dimensional vector space aGM .

The reflection sα acts as−1 on aGM , so |sαζ| = |ζ|−1. As |ζ| 6= 1, it is not possible that

both log |ζ| and log |sαζ| lie in the cone +aGP . From (43) we see that this contradicts

the temperedness of IGP (π). Consequently |ζ| must be 1, and ζ must be unitary.
Now we invoke the non-temperedness of π. By [Wal, Proposition III.2.2.iii] there

exists a standard parabolic subgroup P ′ =M ′U ′ of G such that:

• M ′ =M or M ′ is a maximal Levi subgroup of M ;

• JM
P ′∩M (π) has an AM ′-weight χ with log |χ| ∈ aM ′ not in +aMP ′∩M .

When M ′ = M , then χ = ζ and the above claim says that |χ| = 1. That would be
in contradiction with the second bullet.

Hence M ′ ( M . As χ|AM
= ζAM

is unitary, χ is of the form cββ, where β ∈
R(M,M0) is the unique simple root for (M,M ′). Then the second bullet says that
cβ < 0. By Bernstein’s geometric lemma [Ren, Théorème VI.5.1] χ also a AM ′-weight

of JG
P ′(IGP (π)). As β ∈ +aGP ′ (a potentially larger cone than +aMP ′∩M ), cββ /∈ +aGP ′ .

Together with (43) this shows that IGP (π) cannot be tempered. �

Let L = L(F ) be a Levi subgroup G and let (σ, Vσ) ∈ Irr(L) be an irreducible
tempered supercuspidal L-representation. Let Xnr(L) be the group of unramified
characters L → C× and let Xunr(L) be the subgroup of unitary unramified charac-
ters. Recall that the inertial equivalence class of the pair (L, σ) consists of all pairs
of the form

(gLg−1, (g · σ)⊗ χ), where g ∈ G and χ ∈ Xnr(gLg
−1).
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We write s = [L, σ]G and call this an inertial equivalence class for G. It gives rise
to a subset Irr(G)s ⊂ Irr(G), namely all those irreducible smooth G-representations
whose supercuspidal support lies in s. This in turn is used to define a subcategory
Rep(G)s of Rep(G), namely those smooth G-representations all whose irreducible
constituents lie in Irr(G)s. The Bernstein blocks Rep(G)s have better finiteness
properties than Rep(G):

Theorem 2.2. [Kaz, §1.6]

(a) Let M ⊂ G be a Levi subgroup containing L. There exist tempered πM,i ∈

Irr(M)[L,σ]M (i = 1, . . . , κM ), such that {πM,i ⊗ χM : i = 1, . . . , κM , χM ∈

Xnr(M)} is the collection of irreducible representations in Rep(M)[L,σ]M that
are not isomorphic to the normalized parabolic induction of representation of a
proper Levi subgroup of M .

(b) Let M run through a set of representatives for the conjugacy classes of Levi
subgroups of G containing L. Then the set

⋃

M
{IGP (πM,i ⊗ χM ) : i = 1, . . . , κM , χM ∈ Xnr(M)}

spans the Grothendieck group of the category of finite length representations in
Rep(G)s.

LetB(G) be the set of all inertial equivalence classes s for G. By [BeDe, Corollaire
3.9] it is countably infinite (unless G = 1). The Bernstein decomposition [BeDe,
Theorem 2.10] says that

(44)
Rep(G) =

∏

s∈B(G) Rep(G)
s,

H(G) =
⊕

s∈B(G)H(G)s,

where H(G)s is the two-sided ideal of H(G) for which Mod(H(G)s) is naturally
equivalent with Rep(G)s.

Let S(G)s (resp. C∗
r (G)

s) be the two-sided ideal of S(G) (resp. C∗
r (G)) generated

by H(G)s. Upon completion, (44) yields further Bernstein decompositions

(45)
S(G) =

⊕

s∈B(G) S(G)
s,

C∗
r (G) =

⊕

s∈B(G) C
∗
r (G)

s.

The latter must be interpreted as a direct sum in the Banach algebra sense: it is the
completion of the algebraic direct sum with respect to the operator norm of C∗

r (G).
For a compact open subgroupK of G we let 〈K〉 be the corresponding idempotent

of H(G). Then

(46) H(G,K) := 〈K〉H(G)〈K〉

is the subalgebra of K-biinvariant functions in H(G). We define S(G,K) and
C∗
r (G,K) analogously. For every compact open subgroup K of G, S(G,K) is a

Fréchet algebra [Vig, Theorem 29]. The Schwartz algebra S(G) is their union (over
all possible K), so it is an inductive limit of Fréchet algebras.

We will focus on one Bernstein block Rep(G)s of Rep(G). By [BeDe, Corollaire
3.9] there exists a compact open subgroup Ks of G such that every representation
in Rep(G)s is generated by its Ks-fixed vectors. This leads to Morita equivalences

(47)
H(G)s ∼M H(G,Ks)

s := H(G)s ∩H(G,Ks)
S(G)s ∼M S(G,Ks)

s := S(G)s ∩ S(G,Ks)
C∗
r (G)

s ∼M C∗
r (G,Ks)

s := C∗
r (G)

s ∩ C∗
r (G,Ks).
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2.1. The Plancherel isomorphism.

We will describe the structure of S(G)s and S(G,Ks)
s in more detail. Let

[L, σ]L = Ts ⊂ Irr(L) be the set of L-representations of the form σ ⊗ χ with
χ ∈ Xnr(L). Thus there is a finite covering of complex varieties

(48) Xnr(L) → Ts : χ 7→ σ ⊗ χ.

Let Ts,un be the subset of unitary representations in Ts, it is covered by Xunr(L) via
(48). We write

Xnr(L, σ) = {χ ∈ Xnr(L) : σ ⊗ χ ∼= σ}.

This is a finite subgroup of Xunr(L). The map (48) induces an isomorphism of
algebraic varieties Xnr(L)/Xnr(L, σ) → Ts.

The group W (G,L) = NG(L)/L acts on Irr(L) by

(49) (gL · π)(l) = π(glg−1).

(The representation gL · π is only determined up to isomorphism.) This action
stabilizes Xnr(L), the unitary representations in Irr(L) and the supercuspidal L-
representations. Let Ws be the stabilizer of Ts in NG(L)/L. This group will play
the same role as WΓ did in Section 1. The theory of the Bernstein centre [BeDe,
Théor‘eme 2.13] says that the centre of H(G,Ks)

s is naturally isomorphic with
O(Ts)

Ws = O(Ts/Ws).
It will be convenient to lift everything from Ts to Xnr(L). However, Ws does not

act naturally on Xnr(L). To overcome this and similar issues, we need the following
lemma.

Lemma 2.3. Let p : T ′ → T be a surjection between complex tori, with finite
kernel K = ker p. Let Γ be a finite group acting on T by automorphisms of algebraic
varieties (so Γ need not fix 1 ∈ T ). Then there exists a canonical short exact sequence

1 → K → Γ′ → Γ → 1

and a canonical action of Γ′ on T ′ which extends the multiplication action of K on
T ′ and lifts the action of Γ on T .

Proof. Let X be the character lattice of T . Then O(T ) ∼= C[X] and Γ acts on O(T )
by (γ · f)(t) = f(γ−1t). Since

O(T )× = {zθx : z ∈ C×, x ∈ X} ∼= C× ×X,

Γ also acts naturally on X ∼= O(T )×/C×. Let us denote this action by lγ : X → X.
Notice that it defines an action of Γ on T = HomZ(X,C

×) by algebraic group
automorphisms. The given action on O(T ) can now be written as

γ(zθx) = zz−1
γ (lγ(x))θlγ(x),

for a unique zγ ∈ T . Consequently the original action of Γ on T can be expressed as

(50) γ(t) = zγ lγ(t).

The character lattice X ′ of T ′ contains X with finite index |K|, so lγ induces a
canonical linear action of Γ on X ′, also denoted lγ . For every γ ∈ Γ we choose a
z′γ ∈ p−1(zγ), and we define

φγ : T ′ → T ′, φγ(t
′) = z′γ lγ(t

′).
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Clearly φγ is a lift of (50), so for every γ, γ′ ∈ Γ there exists a unique z′γ,γ′ ∈ K with

(51) φγ ◦ φγ′ ◦ φ−1
γγ′(t

′) = z′γ,γ′t′ ∀t′ ∈ T ′.

Let Γ′ be the subgroup of Aut(T ′) generated by the φγ (γ ∈ Γ) and K. Then (51)
gives a canonical isomorphism Γ′/K ∼= Γ.

The only unnatural steps in the above argument are the choices of the z′γ . Different

choices would lead to different z′γ,γ′ in (51), but to the same group Γ′. Hence Γ′ is

canonically determined by the data T, T ′ and Γ. �

Next we recall the Plancherel isomorphism for S(G)s, as discovered by Harish-
Chandra and worked out by Waldspurger. As induction data for G we take quadru-
ples (P,M,ω, χ), where

• P is a parabolic subgroup of G with a Levi factor M ;
• (ω, Vω) ∈ IrrL2(M), the set of (isomorphism classes of) irreducible smooth
square-integrable modulo centre representations of M ;

• χ ∈ Xnr(M).

To such a datum we associate the smooth G-representation IGP (ω ⊗ χ), where IGP
denotes normalized parabolic induction. When χ is unitary, the M -invariant inner
product on (ω⊗χ, Vω) induces a G-invariant inner product on I

G
P (Vω), so I

G
P (ω⊗χ) is

pre-unitary [Cas, Proposition 3.1.4]. However, IGP (Vω) is only complete with respect

to the associated metric if dim(IGP (Vω)) is finite.

Let (ω̌, V̌ω) be the smooth contragredient of ω and put

L(ω,P ) = IG×G
P×P (ω ⊗ ω̌) = IGP (ω)⊗ IGP (ω̌).

Since IGP (ω̌) can be identified with the smooth contragredient of IGP (ω) [Cas, Propo-
sition 3.1.2], L(ω,P ) can be regarded as the algebra of finite rank linear operators
on IGP (Vω). Notice that for every χ ∈ Xnr(M) we can identify L(ω ⊗ χ,P ) with
L(ω,P ) as algebras. The inner product on IGP (Vω) induces a *-operation on this
algebra. That makes O(Xnr(M))⊗ L(ω,P ) to a *-algebra with

f∗(χ) = f(χ̌)∗.

There is a natural *-homomorphism

(52)
H(G) → O(Xnr(M))⊗ L(ω,P ),
f 7→

(

χ 7→ IGP (ω ⊗ χ)(f)
)

.

We put Tω = {ω ⊗ χ : χ ∈ Xnr(M)} and we record the covering map

(53) Xnr(M) → Tω : χ 7→ ω ⊗ χ.

The group

Xnr(M,ω) = {χ ∈ Xnr(M) : ω ⊗ χ ∼= ω}

is finite, because all its elements must be trivial on Z(M). All the fibres of (53) are
isomorphic to Xnr(M,ω).

For every k ∈ Xnr(M,ω) there exists a unitary M -intertwiner ω → ω ⊗ k, unique
up to scalars. The same map Vω → Vω also intertwines ω ⊗ χ with ω ⊗ χk, for any
χ ∈ Xnr(M). Applying IGP , we get a family a G-intertwiners

(54) π(k, ω, χ) : IGP (ω ⊗ χ) → IGP (ω ⊗ χk),
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independent of χ and unitary when χ ∈ Xunr(M). Let

π̌(k, ω, χ) : IGP (ω̌ ⊗ χ̌)) → IGP (ω̌ ⊗ χ̌k)

be the inverse transpose π(k, ω, χ). Since π(k, ω, χ) is unique up to scalars,

(55) I(k, ω, χ) := π(k, ω, χ)⊗ π̌(k, ω, χ) ∈ HomG×G

(

L(ω ⊗ χ,P ),L(ω ⊗ χk, P )
)

is canonical. Moreover it is unitary for χ ∈ Xunr(M) and independent of χ as map
between vector spaces.

Let W (Tω) be the stabilizer of Tω in W (G,M) = NG(M)/M , with respect to the
action on Irr(M) as in (49). Then W (Tω) acts naturally on Tω. From Lemma 2.3
we get a group extension

(56) 1 → Xnr(M,ω) →W ′(Tω) →W (Tω) → 1

and an action of W ′(Tω) on Xnr(M) compatible with the covering (53). In [Wal]
the representations ω⊗χ and ω⊗ χk are often not distinguished. The introduction
of W ′(Tω) and of the I(k, ω, χ) allows us to compare IGP (ω ⊗ χ) and IGP (ω ⊗ χk)
in a systematic way. From [Wal, §VI.1] one can see that actually our setup is just
another way to keep track of all the ingredients of [Wal].

The following results are proven in [Wal, Paragraphe V]. For w′ ∈ W ′(Tω) there
exist unitary G-intertwining operators

(57) π(w′, ω, χ) : IGP (ω ⊗ χ) → IGP (ω ⊗w′(χ)) χ ∈ Xunr(M),

unique up to scalars. These give canonical unitary intertwiners

(58) I(w′, ω, χ) = π(w′, ω, χ)⊗π̌(w′, ω, χ) ∈ HomG×G

(

L(ω⊗χ,P ),L(ω⊗w′(χ), P )
)

with the following properties [Wal, Lemme V.3.1]:

• as functions of χ, π(w′, ω, χ) and I(w′, ω, χ) are continuous with respect to
the Zariski topology on the real algebraic variety Xunr(M);

• I(w′
2, ω, w

′
1(χ)) ◦ I(w

′
1, ω, χ) = I(w′

2w
′
1, ω, χ) for w

′
1, w

′
2 ∈W ′(Tω).

The properties of the intertwining operators (57) imply that, for every g ∈ G, ω ∈
IrrL2(M), χ ∈ Xnr(M) and every parabolic subgroup P ′ ⊂ G with Levi factor
gMg−1, the representations IGP (ω⊗χ) and IGP ′(g ·ω⊗g ·χ) have the same irreducible
subquotients, counted with multiplicity [Sol1, Corollary 2.7].

We remark that I(w′, ω, χ) is called ◦cP |P (w
′, ω ⊗ χ) in [Wal]. The intertwining

operators (58) give rise to an action of W ′(Tω) on the algebra

C∞(Xunr(M)) ⊗ L(ω,P ) by (w′ · f)(w′χ) = I(w′, ω, χ)f(χ).

We fix a parabolic subgroup PL with Levi factor L, and we recall that s = [L, σ]G.
To study representations in the Bernstein block Rep(G)s, it suffices to consider
induction data such that P ⊃ PL,M ⊃ L and the cuspidal support of ω lies in
[L, σ]M . Then W (Tω) can be regarded as a subgroup of Ws.

Choose representatives for the G-association classes of parabolic subgroups P
containing PL. Notice that every such P has a unique Levi factor M containing
L. We also choose representatives ω for the action of Ws ⋉Xunr(M) on IrrL2(M) ∩
Irr(M)sM , where sM = [L, σ]M . We denote the resulting set of representative triples
by (P,M,ω)/ ∼. Harish-Chandra established the following Plancherel isomorphism,
see [ScZi, Theorem 8.9] for an alternative proof.
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Theorem 2.4. [Wal, Théorème VII.2.5]
The maps (52) induces isomorphisms of topological *-algebras

S(G)s →
⊕

(P,M,ω)/∼

(

C∞(Xunr(M))⊗ L(ω,P )
)W ′(Tω),

S(G,Ks)
s →

⊕

(P,M,ω)/∼

(

C∞(Xunr(M))⊗ EndC
(

IGP (Vω)
Ks

)

)W ′(Tω)
.

Plymen [Ply] showed that Theorem 2.4 has a natural extension to C∗-algebras.
Let H(ω ⊗ χ,P ) be the Hilbert space completion of IGP (Vω⊗χ) = IGP (Vω) and let
K(ω ⊗ χ,P ) be the C∗-algebra of compact operators on H(ω ⊗ χ,P ).

Theorem 2.5. The maps (52) induces isomorphisms of C∗-algebras

C∗
r (G)

s →
⊕

(P,M,ω)/∼C
(

Xunr(M);K(ω,P )
)W ′(Tω),

C∗
r (G,Ks)

s →
⊕

(P,M,ω)/∼

(

C(Xunr(M))⊗ EndC
(

IGP (Vω)
Ks

)

)W ′(Tω)
.

Proof. First we note that we have intertwining operators associated to the group
W ′(Tω), instead of W (Tω) in [Ply, Wal]. The reason for this is explained after (56).
In view of Theorem 2.4, it only remains to prove that completing with respect to
the operator norm of C∗

r (G) boils down to replacing C∞(Xunr(M)) ⊗ L(ω,P ) by
C
(

Xunr(M);K(ω,P )
)

. This is shown in [Ply, Theorem 2.5]. �

2.2. The space of irreducible representations.

Like in Paragraph 1.2, we need more information about the space of all irreducible
smooth G-representations (tempered or not). Suppose that π ∈ Irr(G) has super-
cuspidal support σ ⊗ χ, where σ ∈ IrrL2(M) and χ ∈ Xnr(M). Then log |χ| ∈ aM ,
and its image in a0 is uniquely determined, up to W (G,M0), by π. In other words,

(59) cc(π) :=W (G,M0) log |χ|

is an invariant of π. Since the norm on a0 comes from a W (G,M0)-invariant inner
product, ‖cc(π)‖ := ‖log |χ|‖ is well-defined.

Theorem 2.6. (a) For every π ∈ Irr(G) there exists an induction datum
(P,M,ω, χ), unique up to conjugation, such that π is a constituent of IGP (ω⊗χ)
and ‖cc(ω)‖ is maximal for this property. In this case we call π a Langlands
constituent of IGP (ω ⊗ χ).

(b) π is tempered if and only if χ ∈ Xunr(M).
(c) For any induction datum (P,M,ω, χ), every constituent of IGP (ω ⊗ χ) is either

a Langlands constituent or a constituent of some IGP ′(ω′ ⊗ χ′) with ‖cc(ω′)‖ >
‖cc(ω)‖.

(d) Suppose that L is a standard Levi subgroup and that π ∈ Irr(G)s, where s =
[L, σ]G. Then we can choose (P,M,ω, χ) from part (a) such that P ⊃ P0, M ⊃
L and ω ∈ Irr(M)[L,σ]M .

Proof. (a) See [Sol1, Theorem 2.15.b].
(b) This is a direct consequence of [Sol1, Proposition 2.14.b and Theorem 2.15.a].
(c) By [Sol1, Lemma 2.13] (P,M,ω, χ) is equivalent to an induction datum ξ+

in positive position. By [Sol1, Corollary 2.7] IGP (ω ⊗ χ) has the same irreducible
subquotients, counted with multiplicity, as the parabolically induced representation
associated to ξ+. Therefore we may assume that (P,M,ω, χ) is in positive position,
that is, P ⊃ P0 and log |χ| lies in the closed positive cone in a0 (determined by P0).
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Then [Sol1, Theorem 2.15.a] says that the Langlands constituents of IGP (ω⊗χ) are
precisely its irreducible quotients. Furthermore, by [Sol1, Proposition 2.15.a] IGP (ω⊗
χ) is a direct sum of representations of the form IGQ(τ ⊗ |χ|), where (Q, τ, log |χ|) is

a datum for the Langlands classification of Irr(G). Suppose that π′ is a constituent
of IGQ(τ ⊗ |χ|), but not a quotient. By [Sol1, Lemma 2.11.a and Lemma 2.12], π′ is

the Langlands quotient of IGQ′(τ ′ ⊗ ν ′), for a Langlands datum (Q′, τ ′, log ν ′) with

Q′ ⊃ Q and ‖cc(τ ′)‖ > ‖cc(τ)‖. By [Sol1, Proposition 2.15.a] π′ is a Langlands
constituent of IGP ′(ω′ ⊗ χ′), for some induction datum (P ′,M ′, ω′, χ′) with

∥

∥cc(ω′)
∥

∥ =
∥

∥cc(τ ′)
∥

∥ > ‖cc(τ)‖ = ‖cc(ω)‖ .

(d) Let Pi = MiUi be a standard parabolic subgroup and let Pi be the unique
parabolic subgroup with Levi factor Mi that is opposite to Pi. Let J

G
Pi

: Rep(G) →

Rep(Mi) be the normalized Jacquet restriction functor.
From [Ren, §VII.4.2] we recall how π can be realized as a Langlands quotient.

Namely, we take P1 such that JG
P1
(π) contains a representation of the form τ ⊗ ν,

where (P1, τ, log ν) is a Langlands datum. By [Wal, Proposition III.4.1] there exists
a parabolic subgroup P2 with P0 ⊂ P2 ⊂ P1, and a ω′ ∈ IrrL2(M2), such that τ ⊗ ν

is a direct summand of IM1
M1∩P2

(ω′ ⊗ ν). From the proof of part (c) we see that π is

a Langlands constituent of IGP2
(ω′ ⊗ ν). By the second adjointness theorem

(60) 0 6= HomG(I
G
P2
(ω′ ⊗ ν), π) ∼= HomM2(ω

′ ⊗ ν, JG
P2
(π)).

The cuspidal support of JG
P2
(π) equals that of π, so ω′⊗ ν also has cuspidal support

in [L, σ]G. More precisely, the cuspidal support of ω′ ⊗ ν is of the form [L′, σ′]M2 ,
where L′ is a standard Levi subgroup of G conjugate to L. Since every Levi subgroup
containing L is G-conjugate to a standard Levi subgroup of G containing L, we may
replace (P2,M2, ω

′, ν) by a G-conjugate (P,M,ω, χ) with M standard. Thus, we
can arrange that the cuspidal support becomes [L, σ′′]M , for some cuspidal σ′′ ∈
Irr(L). Then (60) is also valid for IGP (ω ⊗ χ), since IGP2

(ω′ ⊗ ν) is not affected by G-

conjugation of (P2,M2, ω
′, ν). Second adjointness tells us that JG

P
(π) ∈ Irr(M)[L,σ]M ,

so also ω ⊗ χ ∈ Irr(M)[L,σ]M . Finally, we may replace P by a standard parabolic
subgroup with Levi factor M , for this does not change the collection of constituents
of IGP (ω ⊗ χ). �

In [Sol1] Theorem 2.6 was used to study the geometry of Irr(G), and the relation
with the subspace of tempered irreducible representations. For our purposes we need
some aspects of that, and we need to know that for almost all induction data every
constituent is a Langlands constituent.

Proposition 2.7. Let (P,M,ω, χ) be an induction datum for G.

(a) For r ∈ R>−1, the number of inequivalent Langlands constituents of
IGP (ω ⊗ χ |χ|r) does not depend on r.

(b) For all but finitely many r ∈ R>−1, I
G
P (ω⊗χ |χ|r) is completely reducible. Then

all its irreducible subquotients are Langlands constituents.

Proof. (a) All the induction data under consideration have the same stabilizer in
W ′(Tω). As W

′(Tω) is by construction the stabilizer of Tω in the W from [Sol1], the
statement is a special case of [Sol1, Lemma 2.16].
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(b) As noted in the proof of Theorem 2.6.c, IGP (ω ⊗ χ |χ|r) is a direct sum of repre-

sentations of the form IGQ(τ ⊗ |χ|r+1), where (Q = LUQ, τ, log |χ|
r+1) is a Langlands

datum. Hence it suffices to show that IGQ (τ ⊗ |χ|r+1) is irreducible for almost all

r ∈ R>−1. The conditions of a Langlands datum say that τ ∈ Irr(L) is tempered
and that log |χ|r+1 ∈ aL is strictly positive with respect to the roots for (Q,L). This
implies that, for every r ∈ R>−1 and every root α for (G,L), 〈α , log |χ|r+1〉 6= 0.
Now [Sau, Théorème 3.2] says that, for r ∈ R>−1 close enough to −1, IGQ(τ ⊗|χ|r+1)

is irreducible. On the algebraic family of finite length representations IGQ(τ ⊗|χ|r+1)

with r ∈ R, irreducibility is an Zariski-open condition [Ren, Proposition VI.8.4].
Hence the locus of r’s for which this representation is reducible is a finite set. �

3. Morita equivalences

In this section we will first formulate a long list of conditions for the objects we
want to compare. Assuming these conditions, we will prove a comparison theorem.
In the next sections we will check that these conditions are fulfilled in cases of
interest.

3.1. Conditions and first consequences.

We keep the notations from the previous section.

Condition 3.1. For every parabolic subgroup P with PL ⊂ P ⊂ G and Levi factor
M ⊃ L, an algebra HM and a Morita equivalence

ΦM : Rep(M)sM → Mod(HM )

are given. When P ′ ⊃ P is another such parabolic subgroup, an algebra injection
λMM ′ : HM → HM ′

is given, with the below properties.

(i) The following diagram commutes:

Rep(M ′)sM′
ΦM′ // Mod(HM ′

)

Rep(M)sM

IM
′

P∩M′

OO

ΦM // Mod(HM )

indH
M′

λ
MM′ (H

M )

OO

(ii) Let P be the parabolic subgroup ofG which has Levi factorM and is opposite
to P . Let prsM : Rep(M) → Rep(M)sM be the projection coming from the
Bernstein decomposition for M . The following diagram commutes:

Rep(M ′)sM′
ΦM′ //

pr
sM

◦JM′

P∩M′

��

Mod(HM ′

)

ResH
M′

λ
MM′ (H

M )
��

Rep(M)sM
ΦM // Mod(HM )

(iii) If P ⊂ P ′ ⊂ P ′′ ⊂ G, then λMM ′′ = λM ′M ′′ ◦ λMM ′ .

The Conditions 3.1 are quite general, in the sense that they do not involve the
structure of the algebras HM . We will see later that in many cases these conditions
hold already by abstract functoriality principles.
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The next series of conditions is much more specific though. For P = MU , let
R(M,L) be the set of roots of M with respect to the maximal F -split torus AL in
the centre of L. This is a root system when L is a minimal F -Levi subgroup of G.
In general it is only an orthogonal projection of such a root system (but in many
cases encountered in the literature it is nevertheless a root system). For P ⊃ PL

we define the set of positive roots as R+(M,L) = R(M ∩ PL, L), and we call the
minimal elements of this set the simple roots of (M,L).

Condition 3.2. Assume Condition 3.1.

(i) HG (or (HG)op) is an extended affine Hecke algebra H(R, q)⋊ Γ.
(ii) All the HM (or all the (HM )op) are parabolic subalgebras and the λMM ′ are

inclusions of parabolic subalgebras.
(iii) Consider the bijection

ΦL : Xnr(L)/Xnr(L, σ) ∼= Irr(L)sL → Irr(HL) ∼= T

and its differential dΦL : X∗(L)⊗Z C → Y ⊗Z C.
Then dΦ−1

L maps the positive coroots R∨+ for H(R, q) to R+(G,L), and

dΦ−1
L (QR∨) has a Q-basis consisting of simple roots of (G,L).

(iv) Suppose that Q ⊂ ∆ and dΦL

(

QR(M,L)
)

∩R∨ = R∨
Q. ThenHM = HQ⋊ΓM

for some ΓM ⊂ Γ(Q,Q). If moreover dΦL

(

QR(M,L)
)

= QQ∨, then ΓM

satisfies Condition 1.1 for Q.

In practice the positivity part of Condition 3.2.iii is innocent. Namely, usually
one starts by fixing a minimal parabolic subgroup, and proves statements with that
parabolic as the standard one. Suppose that R(G,L) is a root system and that
all the above conditions hold, except the positivity part of Condition 3.2.iii. Then
dΦ−1

L (QR∨) ∩ R(G,L) is a parabolic root subsystem of R(G,L), so it is conjugate
under W (G,L) to a standard parabolic root subsystem, say R(M,L). Applying an
element of W (M,L), we can moreover arrange that the image of R∨+ consists of
positive roots. Equivalently, with respect to a different parabolic subgroup P ′

L of G
with Levi factor L, Condition 3.2.iii is fulfilled.

Then we restart the whole procedure with P ′
L instead of PL, and the same argu-

ments as before will also prove the required positivity statements. This applies to
all the examples discussed in Sections 4 and 5.

We draw some first consequences for the above conditions.

Lemma 3.3. Assume Conditions 3.1 and 3.2.

(a) There exists a canonical surjective homomorphism of complex tori Φnr : Xnr(L) →
T , with finite kernel Xnr(L, σ).

(b) When dΦL(QR(M,L)) ∩ R∨ = R∨
Q, the image of Xnr(M) under the map from

part (a) is contained in TQ. When moreover dΦL(QR(M,L)) = QQ∨, the image
of Xnr(M) equals TQ.

(c) For all ω ∈ Rep(M)sM and χ ∈ Xnr(M): ΦM(ω ⊗ χ) = ΦM (ω)⊗ Φnr(χ).

Proof. (a) The map χ 7→ σ ⊗ χ induces an isomorphism of algebraic varieties

Xnr(L)/Xnr(L, σ) → Irr(L)sL = {σ ⊗ χ : χ ∈ Xnr(L)}.

By Condition 3.2.(ii) ΦL gives a bijection Irr(L)sL → Irr(HL) = T . This lifts to a
surjective group homomorphism

(61) Φnr : Xnr(L) → T with ΦL(σ ⊗ χ) = ΦL(σ)⊗ Φnr(χ).
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(b) For every Q ⊂ ∆ we defined the subtorus

TQ = {t ∈ T : t(x) = 1 ∀x ∈ QQ ∩X}

of T . Using Condition 3.2.(iv) we can write

Xnr(M) = {χ ∈ Xnr(L) : χ = 1 on QR(M,L)∨ ∩X∗(Xnr(L))}.

The relation between M and Q shows that the preimage of Φ−1
nr (T

Q) contains
Xnr(M). When dΦL(QR(M,L)) = QQ∨, ΦL also induces a bijection between
QR(M,L)∨ and QQ, and Xnr(M) is the full preimage of TQ.
(c) The kernel of Φnr : Xnr(M) → TQ is

Xnr(M,σ) := Xnr(L, σ) ∩Xnr(M).

Then Xnr(M,σ) acts on Xnr(M) by translations and GQ,σ acts on TQ ∼=
Xnr(M)/Xnr(M,σ). By Lemma 2.3 there exists a canonical short exact sequence

(62) 1 → Xnr(M,σ) → G′
Q,σ → GQ,σ → 1,

such that the action of G′
Q,σ on Xnr(M) lifts that of GQ,σ on TQ. For ω ∈ Rep(M)sM

Condition 3.1.(ii) and (61) imply that

ResH
M

λLM (HL)(ΦM (ω ⊗ χ)) = ΦL(J
M
PL∩M

(ω ⊗ χ))(63)

= ΦL(J
M
PL∩M

(ω)⊗ χ) = ΦL(J
M
PL∩M

(ω))⊗ ΦL(χ)

= ResH
M

λLM (HL)(ΦM (ω))⊗ Φnr(χ) = ResH
M

λLM (HL)(ΦM (ω)⊗ Φnr(χ)).

When ω is irreducible, ΦM(ω⊗χ) lies in the same connected component of Irr(HM )
as ΦM(ω), so (63) shows that it is an unramified twist of ΦM (ω). Hence

(64) ΦM (ω ⊗ χ) = ΦM (ω)⊗ Φnr(χ) when ω is irreducible.

Using the invertibility of ΦM , both sides of (64) define a group action of Xnr(M) on
Mod(HM ), by exact functors with commute with inductive (and projective) limits.
Since these actions agree on irreducible representations, they agree on all represen-
tations. �

Lemma 3.4. Assume Conditions 3.1 and 3.2 and suppose that
dΦL

(

QR(M,L)
)

∩R∨ = R∨
Q.

(a) The map ΦL induces a group isomorphism WsM → W (RQ)ΓM .
(b) WsM fixes Xnr(M) pointwise and, when moreover dΦL

(

QR(M,L)
)

= QQ∨,

W (RQ)ΓM fixes TQ pointwise.

Proof. (a) It suffices to prove this when M = G. By [BeDe, Théorème 2.13], the
centre of the category Rep(G)s is

O(Irr(L)sL)Ws = O(Irr(L)sL/Ws).

The pointwise fixator of Xnr(L) in NG(L) is ZG(AL) = ZG(Z(L)
◦) = L. Since

Ws ⊂ NG(L)/L, it acts faithfully on Xnr(L) by algebraic group automorphisms.
Hence Ws also acts faithfully on Irr(L)sL .

By (13) the centre of Mod(H ⋊ Γ) is

(65) Z(H⋊ Γ) = O(T )WΓ = O(T/WΓ),

provided that WΓ acts faithfully on T . Clearly W acts faithfully on T . By assump-
tion every γ ∈ Γ acts on R by a diagram automorphism, so it cannot act on T as any
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nontrivial element of W . Hence, to check that WΓ acts faithfully on T , it suffices
to do so for Γ.

In view of (15), the isomorphism ΦL : Irr(L)sL → T implies that Γ∅ is trivial.
We recall from [Sau, Théorème 3.2] that that IGPL

(σ ⊗ χ) is irreducible for χ in a

Zariski-open nonempty subset of Xnr(L). If γ ∈ Γ \ {1} would act trivially on T ,
then so would the cyclic group 〈γ〉 generated by it. In that case

indH⋊Γ
H∅ Ct = indH⋊Γ

H∅⋊〈γ〉
(Ct ⊗C C〈γ〉)

would be reducible for all t ∈ T (as C〈γ〉 is reducible). That would contradict
Condition 3.1.i. So WΓ acts faithfully on T and (65) holds.

Now Condition 3.1 says that

Z(H⋊ Γ) = O(T/WΓ) ∼= O(Irr(L)sL/Ws).

From this and Condition 3.1.i, we deduce that ΦL : Irr(L)sL → T induces a bijection

Irr(L)sL/Ws → T/WΓ.

On both sides the finite groups act faithfully by automorphisms of complex algebraic
varieties. Consider the open subvariety of T (resp. of Irr(L)sL) where the stabilizers
in WΓ (resp. in Ws) are trivial. For such a t ∈ T and γ ∈ WΓ, the equation
ΦL(wΦ

−1
L t) = γt holds for a unique w ∈ Ws. This defines the group isomorphism

WΓ →Ws.
(b) The first claim is trivial, because WsM ⊂ NM (L)/L. The second claim follows
directly from the first claim, part (a) and Lemma 3.3.b. �

Lemma 3.5. Assume

M 7→ dΦL

(

QR(M,L)
)

∩∆∨

induces a bijection between:

• Ws-association classes of Levi subgroups M ⊂ G such that L ⊂ M and
dΦL

(

QR(M,L)
)

equals the Q-span of a subset of ∆∨;
• subsets of ∆∨, modulo ΓW -association.

Proof. Suppose thatM andM ′ are such Levi subgroups, and that they are conjugate
by an element w ∈ Ws. Then the functors IGP : Rep(M)sM → Rep(G)s and IGP ′ :
Rep(M ′)sM′ → Rep(G)s have the same image, for

IGP ′ ◦Ad(w)∗ = Ad(w)∗ ◦ IGP
∼= IGP .

With Condition 3.1.i, this implies that indH
G

λMG(HM ) and indH
G

λM′G(HM′ )
have the same

image. Condition 3.2.ii says that HM = HQ ⋊ ΓM and HM ′

= HQ′

⋊ ΓM ′ are
parabolic subalgebras of HG, and then Proposition 1.6 shows that they must be
G-associate. Condition 3.2.iv implies that

Q∨ = dΦL

(

QR(M,L)
)

∩∆∨ and Q′∨ = dΦL

(

QR(M ′, L)
)

∩∆∨

are WΓ-associate. Hence the map of the lemma is well-defined on the given equiv-
alence classes.

Using the same notations as above, suppose that Q∨ and Q′∨ are WΓ-associate.
Then dΦL

(

QR(M,L)
)

= QQ∨ is WΓ-associate to dΦL

(

QR(M ′, L)
)

= QQ′∨. By
Lemma 3.4, QR(M,L) is Ws-associate to QR(M ′, L). Hence M and M ′ are conju-
gate by an element of Ws, showing that the map of the lemma is injective.
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By Condition 3.2.iii, the subgroup Ps ⊂ G generated by PL and the root subgroups
for roots in dΦ−1

L (QR∨) is a parabolic subgroup of G. The map of the statement
sends the standard Levi factor Ms of Ps to ∆∨.

Suppose that the map is not surjective. Choose Q̃∨ ⊂ ∆∨ which does not lie in
the image and is maximal for that property. Since ∆∨ belongs to the image, Q̃ 6= ∆
and we can find α ∈ ∆ \ Q̃ such that Q∨ := Q̃∨ ∪ {α∨} does lie in the image. We

write ΓQ̃ = ΓQ ∩ Γ(Q̃, Q̃).

For every Levi subgroupM ′ ⊂M we choose finitely many representations πM ′,i ∈
Irr(M ′)sM′ as in Theorem 2.2. Then the representations

IMP ′∩M (πM ′,i ⊗ χM ′) with χM ′ ∈ Xnr(M
′),

for all M ′ and all possible i, span the Grothendieck group of Rep(M)sM . Applying
Condition 3.1, we find that the representations

(66) indH
M

λM′M (HM′ )
ΦM ′(πM ′,i ⊗ χM ′)

span the Grothendieck group Gr(HM ) of Mod(HM ). By Lemma 3.3

ΦM ′(πM ′,i ⊗ χM ′) = ΦM ′(πM ′,i)⊗Φnr(χM ′)

and Φnr(χM ′) ∈ TQ′

. For M ′ 6=M and t ∈ TQ′

, ΦM ′(πM ′,i)⊗t is a representation of

HQ′

⋊ ΓM ′ with Q′ not WΓ-associate to Q̃. Hence the collection of representations

(67) ΦM (πM,i)⊗ t with t ∈ TQ

spans the quotient

(68) Gr(HQ ⋊ ΓM )
/

∑

Q′(Q,Q′ not associate to Q̃

indH
Q⋊ΓM

λM′M (HQ′
⋊ΓM′)

Gr(HQ′

⋊ ΓM ′).

By Theorem 1.8.a, indH
Q⋊ΓM

λ
Q̃M

(HQ̃⋊Γ
Q̃
)
Gr(HQ̃ ⋊ ΓQ̃) contributes an entire TW (R

Q̃
)Γ

Q̃-

orbit of representations to (68).

By Lemma 3.4 TQ ⊂ TW (RQ)ΓQ , which shows in particular that the translation
part zγ of γ is trivial for all γ ∈ ΓQ. As W (RQ̃)ΓQ̃ (W (RQ)ΓQ, we have

TW (R
Q̃
)Γ

Q̃ ⊃ TQ.

We want to see that the left hand side has higher dimension than the right hand

side. By construction W (RQ̃) fixes T Q̃ pointwise. The torus T1 = (TQ ∩ T Q̃)◦ is

one-dimensional, because |Q \ Q̃| = 1. For the same reason α : T1 → C× is a

surjection with finite kernel. The group ΓQ̃ = ΓQ ∩ Γ(Q̃, Q̃) stabilizes both Q and

Q̃, so fixes α. Therefore ΓQ̃ fixes T1 pointwise. It follows that W (RQ̃)ΓQ̃ fixes the

torus T Q̃ = TQT1 pointwise.

Returning to (67) and (68), we see now that the contribution from HQ̃ ⋊ ΓQ̃

encompasses at least one T Q̃-orbit. But that is impossible, because the i’s in (67)

belong to a finite set and dimC(T
Q′

) > dimC(T
Q). This contradiction entails that

the map from the statement is surjective. �
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3.2. Preservation of temperedness.

We will show that the above conditions imply that the Morita equivalences pre-
serve temperedness and (under an extra condition) discrete series. For Φ−1

M this is
relatively easy.

Lemma 3.6. Assume Conditions 3.1 and 3.2, and let P = MU be a parabolic
subgroup containing PL such that dΦL(QR(M,L)) = QQ∨.

(a) Φ−1
M preserves temperedness of finite length representations.

(b) Φ−1
M sends finite dimensional essentially discrete series HM -representations to

essentially square-integrable M -representations.
(c) Suppose that π′ ∈ Mod(HM ) has finite dimension, is tempered, essentially dis-

crete series and factors through ψt : H
Q ⋊ ΓM → HQ ⋊ ΓM for some t ∈ TQ.

Then the M -representation Φ−1
M (π′) is square-integrable modulo centre.

Proof. (a) Since every irreducible HM -module has finite dimension, ΦM restricts to
an equivalence between finite length representations on the one hand, and the finite
dimensional modules on the other hand.

Let π ∈ Rep(M)sM be of finite length, and recall the criterion for temperedness
from [Wal, Proposition III.2.2] and (43). As the supercuspidal support of π is
contained in [L, σ]G, it is equivalent to impose these conditions only with respect to
the parabolic subgroup PL = LUL [Hei2, Proposition 1.2.i]. Let PL be the parabolic
subgroup opposite to PL. Then PL∩M is opposite to PL∩M . The above condition
(for PL) is equivalent to:

(69) log |χ| ∈ +aM
PL∩M

=
{

∑

α∈R(PL∩M,L)
cαα|AL

: cα ≤ 0
}

for every AL-weight χ of JM
M∩PL

π.

By the assumption on M and Condition 3.2.iii, dΦ−1
L : QQ∨ → QR(M,L) is a

linear bijection which sends

(70) a−Q =
{

∑

α∈Q
λαα

∨ : λα ≤ 0
}

to +aM
PL∩M

.

Suppose that ΦM (π) is tempered. By definition, this means that all HL-weights

t of ResH
M

λLM (HL)(ΦM (π)) satisfy log |t| ∈ a−Q. By Condition 3.1.(ii) and (70), all

AL-weights χ of JM
M∩PL

π have log |χ| ∈ +aM
PL∩M

. Thus (69) says that π is tempered.

(b) By [Wal, Proposition III.1.1] and arguments analogous to the above, π is square-
integrable modulo centre if and only if

(71) log |χ| ∈ +aM
PL∩M

=
{

∑

α∈R(PL∩M,L)
cαα|AL

: cα < 0
}

for every AL-weight χ of JM
M∩PL

π. The criterium for essential square-integrability

then becomes

(72) log |χ| ∈ +aM
PL∩M

+ aM .

for every AL-weight χ of JM
M∩PL

π. Since the rank |Q| of RQ equals the rank of

R(M,L) and dΦ−1
L preserves positivity, it maps a−−Q (the interior of a−Q) to aM

PL∩M
.

By Lemma 3.3.b Φ−1
L (TQ) = Xnr(M).

Suppose that ΦM(π) is essentially discrete series. By definition, this means that

all HL-weights t of ResH
M

λLM (HL)(ΦM (π)) satisfy |t| ∈ exp(a−−Q)TQ. By the above
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and Condition 3.1.ii, all AL-weights of JM
M∩PL

π lie in (72). Hence π is essentially

square-integrable.
(c) Recall that a M -representation is essentially square-integrable if its restriction
to the derived subgroup of M is square-integrable. If a M -representation with a
central character is tempered, then Z(M) acts on its by a unitary character. Hence
all tempered essentially square-integrable representations with a central character
are square-integrable modulo centre.

By parts (a) and (b) Φ−1
M (π′) is tempered and essentially square-integrable. Since

Φ−1
M (π′) lies in one Bernstein component Rep(M)sM , the maximal compact subgroup

of Z(M) acts on it by a single character χ0, which is automatically unitary. Then
Xnr(M) (resp. Xunr(M)) parametrizes the extensions of χ0 to a character (resp.
unitary character) of Z(M). Lemma 3.3.c says that Z(M) acts on Φ−1

M (π′) by the

character determined by χ0 and Φ−1
nr (t). Lemma 1.3.b shows that t ∈ TQ

un and
Φ−1
nr (Tun) = Xunr(L), so Z(M) acts by a unitary character. �

Part (a) of Lemma 3.6 admits a quick generalization to all Levi subgroups that
we encounter. On the other hand, that is not possible for parts (b) and (c). In
fact, for Levi subgroups M ⊂ G containing L but not of the form as in Lemma 3.6,
Rep(M)sM contains no essentially square-integrable representations. We delay the
proof of that claim to Proposition 3.10. We note that in those cases IrrL2(HM ) can
still be nonempty.

Lemma 3.7. Assume Conditions 3.1 and 3.2, and let P ′ = M ′U ′ be a parabolic
subgroup containing PL such that QR(M ′, L)∩dΦ−1

L (R∨) does not span QR(M ′, L).

Then Φ−1
M ′ preserves temperedness of finite length representations.

Proof. By Condition 3.2.iii dΦL(QR(M
′, L))∩R∨ is a standard parabolic root sub-

system of R∨, that is, of the form R∨
Q for a unique Q ⊂ ∆. By Lemma 3.5 there

exists a Levi subgroup M ⊂M ′ such that L ⊂M and dΦL(QR(M,L)) = QQ∨.

By Condition 3.2.iv HM ′

= HQ ⋊ ΓM ′ and HM = HQ ⋊ ΓM , and by Condition
3.2.ii ΓM ′ ⊃ ΓM and λMM ′ is just the inclusion. The cone T−Q ⊂ Trs is the same
for HM ,HQ and HM ′

. For any finite dimensional HM -module V :

(73) Wt
(

indH
M′

HM (V )
)

= {γ(t) : t ∈ Wt(V ), γ ∈ ΓM ′}.

Since ΓM ′ preserves T−Q, indH
M′

HM (V ) is tempered if and only if V is tempered.

Similarly, (73) shows that a finite dimensional HM ′

-module V ′ is tempered if and

only if ResH
M′

HM (V ′) is tempered. We note also that

(74) indH
M′

HM ResH
M′

HM (V ′) ∼= C[ΓM ′ ]⊗C[ΓM ] V
′ ∼= C[ΓM ′/ΓM ]⊗C V

′,

a HQ ⋊ ΓM ′-module for the diagonal action. Then (74) contains V ′ as the direct
summand C[ΓM ′/ΓM ′ ] ⊗C V

′, and the restriction of (74) to HM is a direct sum of

copies of ResH
M′

HM (V ′).

We recall from [Ren, Lemme VII.2.2] that IM
′

P∩M ′ always preserves temperedness.

Consider a finite dimensional tempered module V ′ ∈ Mod(HM ′

). By Lemma 3.6.a

the M ′-representation IM
′

P∩M ′ ◦ Φ
−1
M ◦ ResH

M′

HM (V ′) is tempered. By Condition 3.1 it
is isomorphic to

(75) Φ−1
M ′ ◦ ind

HM′

HM ◦ResH
M′

HM (V ′) ∼= IM
′

P∩M ′ ◦ prsM ◦ JM ′

P∩M ′ ◦ Φ
−1
M ′(V

′),
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Since Φ−1
M ′ is an equivalence, (74) shows that (75) contains Φ−1

M ′(V ′) as a direct
summand. So the latter is tempered as well. �

Let M ⊃ L be a Levi subgroup of G and write dΦL(QR(M,L)) ∩ R∨ = R∨
Q. As

family of parabolic subalgebras ofHM we take HM and theHM1 whereM )M1 ⊃ L
and dΦL(QR(M1, L)) = QQ1 for some Q1 ( Q. By Lemma 3.5 every (proper)
subset of Q is obtained in this way. Recall the notion of Langlands constituents
from Theorems 1.10 and 2.6.

Lemma 3.8. Let M ′ be a Levi subgroup of M containing L, such that
dΦL(QR(M

′, L)) = QQ′∨ for a subset Q′ ⊂ Q. Let σ ∈ IrrL2(HQ′ ⋊ ΓM ′) and

t ∈ TQ′

. Then

Φ−1
M ′(σ ⊗ t) = Φ−1

M ′(σ ⊗ t |t|−1)⊗ Φ−1
nr (|t|) with Φ−1

M ′(σ ⊗ t |t|−1) ∈ IrrL2(M ′)sM′ .

The Morita equivalence Φ−1
M restricts to a bijection between the Langlands con-

stituents of indH
M

HM′ (σ ⊗ t) and those of

Φ−1
M

(

indH
M

HM′ (σ ⊗ t)
)

∼= IM(M∩PL)M ′

(

Φ−1
M ′(σ ⊗ t |t|−1)⊗ Φ−1

nr (|t|)
)

.

Remarks. By Lemma 3.3.a Φnr becomes injective when restricted to unramified
characters with values in R>0. Therefore Φ−1

nr (|t|) ∈ Xnr(M
′) is well-defined.

When Q′ = Q, Langlands constituents are not defined on the Hecke algebra side.

In that case the lemma must be interpreted differently. The functor indH
M

HM′ =

indH
Q⋊ΓM

HQ⋊ΓM′
preserves complete reducibility (by Clifford theory, as ΓM is finite). By

Condition 3.1.i, so does IM(PL∩M)M ′ . In view of Proposition 2.7.b, the lemma becomes

true in the case Q′ = Q, provided we declare that all irreducible subquotients of

indH
M

HM′ (σ ⊗ t) are Langlands constituents.

Proof. The alternative expression for Φ−1
M ′(σ ⊗ t) comes from Lemma 3.3.c. By

Lemma 1.3 σ ⊗ t |t|−1 ∈ IrrL2(HQ′

⋊ ΓM ′), and by Lemma 3.6.c Φ−1
M ′(σ ⊗ t |t|−1) ∈

IrrL2(M ′).

Case I. Suppose that indH
M

HM′ (σ ⊗ t) is completely reducible. By Proposition
1.11.b all its irreducible subquotients are Langlands constituents. Since ΦM is an

equivalence, Φ−1
M

(

indH
M

HM′ (σ ⊗ t)
)

is also completely reducible. By Proposition 2.7.b

all its irreducible subquotients are Langlands constituents. Hence Φ−1
M provides a

bijection between these two collections of Langlands constituents.

Case II. Suppose that indH
M

HM′ (σ⊗ t) is not completely reducible. By Proposition

1.11.b there exists an r ∈ R>−1 such that indH
M

HM′ (σ⊗ t |t|r) is completely reducible.
By Proposition 1.11.a, Case I and Proposition 2.7.a, the four representations

indH
M

HM′ (σ⊗t), indH
M

HM′ (σ⊗t |t|r), Φ−1
M

(

indH
M

HM′ (σ⊗t |t|r)
)

and Φ−1
M

(

indH
M

HM′ (σ⊗t)
)

have the same number of inequivalent Langlands constituents.

Let π′ be a non-Langlands constituent of indH
M

HM′ (σ⊗ t). By Theorem 1.10.c there

exists a Levi subgroup M1 ⊂ M , with M1 = M or dΦL(QR(M1, L)) = QQ∨
1 (

Q∨, such that π′ is a constituent of indH
M

HM1
(σ1 ⊗ t1) for some t1 ∈ TQ1 and σ1 ∈

IrrL2(HQ1 ⋊ ΓM1) with ‖cc(σ1)‖ > ‖cc(σ)‖. When M1 =M , Lemma 1.3 shows that
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the same condition on π′ is also fulfilled for the unique Levi subgroupM2 ⊂M with
dΦL(QR(M2, L)) = QQ∨. In that case we replace M1 by M2.

Now Φ−1
M1

(σ1 ⊗ t1|t1|
−1) ∈ IrrL2(M1) and π

′ is a constituent of

(76) IM(M∩PL)M1

(

Φ−1
M ′(σ1 ⊗ t1|t1|

−1)⊗ Φ−1
nr (|t1|)

)

.

Recall that the invariant ‖ccM1‖ on Irr(M1)
sM1 is defined via a Ws-invariant inner

product on aL = X∗(AL)⊗Z R. Via Lemmas 3.3.a and 3.4.a this can be transferred
(canonically) to a WΓ-invariant inner product on a. The supercuspidal support

(which is involved in ccM1) on Irr(M1)
sM1 is (up to conjugation) given by JM1

PL∩M1
.

Then Condition 3.1.ii shows that

(77)
∥

∥

∥
ccM1

(

Φ−1
M1

(σ1 ⊗ t1|t1|
−1)

)

∥

∥

∥
=

∥

∥cc(σ1 ⊗ t1|t1|
−1)

∥

∥ = ‖cc(σ1)‖ >

‖cc(σ)‖ =
∥

∥cc(σ ⊗ t |t|−1)
∥

∥ =
∥

∥ccM ′

(

Φ−1
M ′(σ ⊗ t |t|−1)

)
∥

∥ .

Now Theorem 2.6.c says that Φ−1
M (π′) is not a Langlands constituent of

Φ−1
M

(

indH
M

HM′ (σ ⊗ t)
)

. Summarizing, we know that:

• Φ−1
M provides a bijection between the collections of inequivalent irreducible

subquotients of indH
M

HM′ (σ ⊗ t) and of Φ−1
M

(

indH
M

HM′ (σ ⊗ t)
)

;
• these two collections have the same number of Langlands constituents and
the same number of non-Langlands constituents;

• Φ−1
M maps non-Langlands constituents of indH

M

HM′ (σ ⊗ t) to non-Langlands

constituents of Φ−1
M

(

indH
M

HM′ (σ ⊗ t)
)

.

Consequently Φ−1
M also provides a bijection between the collections of inequivalent

Langlands constituents on both sides. �

Now we are ready for the proof of main result of this paragraph.

Theorem 3.9. Assume Conditions 3.1 and 3.2, and let P = MU be a parabolic
subgroup containing PL.

(a) ΦM restricts to an equivalence between the category of finite length tempered
representations in Rep(M)sM and the category of finite dimensional tempered
HM -modules.

(b) Suppose that dΦL(QR(M,L)) = QQ∨ for some Q ⊂ ∆. Then ΦM sends finite
length essentially square-integrable M -representations to essentially discrete se-
ries HM -representations, and Φ−1

M does the converse.

Proof. (a) In view of Lemmas 3.6.a and 3.7, it suffices to prove that ΦM preserves
temperedness of finite length representations.

Suppose, on the contrary, that there exists a finite length tempered π ∈ Rep(M)sM

such that ΦM (π) ∈ Mod(HM ) is not tempered. Since ΦM (π) has finite length, it
has a composition series with finite dimensional irreducible quotients. It follows
directly from the definition of temperedness for HM = HQ ⋊ ΓM that at least one
of these irreducible subquotients, say ρ1, is not tempered. Then we may replace
ΦM (π) by ρ1 and π by Φ−1

M (ρ1). Hence it suffices to prove the claim for irreducible
representations.

We take the same family of parabolic subalgebras of HM as in Lemma 3.8.
By Theorem 1.10.c there exists a Levi subgroup M1 ⊂ M , with M1 = M or
dΦL(QR(M1, L)) = QQ∨

1 ( Q∨, such that ΦM(π) is a Langlands constituent of
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indH
M

HM1
(σ1 ⊗ t1) for some t1 ∈ TQ1 and σ1 ∈ IrrL2(HQ1 ⋊ ΓM1). When M1 = M ,

Lemma 1.3 shows that the same condition on π′ is also fulfilled for the unique Levi
subgroup M2 ⊂ M with dΦL(QR(M2, L)) = QQ. In that case we replace M1 by
M2.

By Lemma 3.8 π is a Langlands constituent of

(78) Φ−1
M

(

indH
M

HM1
(σ ⊗ t)

)

∼= IM(M∩PL)M1

(

Φ−1
M1

(σ ⊗ t |t|−1)⊗ Φ−1
nr (|t|)

)

.

Suppose that ΦM (π) is not tempered, so t /∈ Tun by Theorem 1.10.d. Then Φ−1
nr (|t|) ∈

Xnr(M
′) \Xunr(M

′), and by Theorem 2.6.b π is not tempered.
With Lemma 3.6.a we see that Φ−1

M preserves both temperedness and non-tem-
peredness of irreducible representations. Hence so does ΦM .
(b) For Φ−1

M this is Lemma 3.6.b, so we only have to consider the claim for ΦM . Up
to (78) we can follow the proof of part (a), only replacing tempered by essentially
discrete series everywhere.

Suppose that ΦM (π) is not essentially discrete series. By the uniqueness in The-
orem 1.10.b Q′ is a proper subset of Q. Then M ′ is a proper Levi subgroup of M ,
so by the uniqueness in Theorem 2.6.a π is not essentially square-integrable. With
Lemma 3.6.b we conclude that Φ−1

M sends those irreducible representations which are
essentially discrete series to essentially square-integrable representations, and those
which are not essentially discrete series to representations that are not essentially
square-integrable. Now it is clear that ΦM also respects these properties. �

For essentially square-integrable representations we can be more precise than The-
orem 3.9. We write dΦL(QR(M,L)) ∩R∨ = R∨

Q.

Proposition 3.10. Assume Conditions 3.1 and 3.2, and let P =MU be a parabolic
subgroup containing PL.

(a) Suppose that QR(M,L))∩dΦ−1
L (R∨) does not span QR(M,L). Then Rep(M)sM

contains no finite length essentially square-integrable representations.
(b) Suppose that π ∈ Rep(M)sM is square-integrable modulo centre and has finite

length. Then ΦM (π) is tempered, essentially discrete series and factors through

ψt : H
Q ⋊ ΓM → HQ ⋊ ΓM for some t ∈ TQ

un.
(c) Suppose that dΦL(QR(M,L)) = QQ∨. Then ΦM gives a bijection between

IrrL2(M)sM and IrrL2(HM ).

Proof. (a) Suppose, contrary to what we need to show, that Rep(M)sM does contain
a representation of the indicated kind. Since it has finite length, it has an irreducible
subrepresentation, say π. Let ζ be the central character of π, and let |ζ| ∈ Xnr(M)
be its absolute value. Then π ⊗ |ζ|−1 ∈ Rep(M)sM is an irreducible essentially
square-integrable representation with a unitary central character. Hence it is square-
integrable modulo centre and in particular tempered. By Theorem 3.9.a ΦM(π ⊗
|ζ|−1) is also tempered.

Let P1 = M1U1 ⊂ G be the parabolic subgroup such that M ⊃ M1 ⊃ L and
dΦL(QR(M1, L)) is spanned by QR(M,L) ∩ dΦ−1

L (R∨). From (73) we know that

ResH
M

λMM1
(HM1 )

◦ΦM (π ⊗ |ζ|−1) is tempered and nonzero. By Lemma 3.6.a

Φ−1
M1

◦ResH
M

λMM1
(HM1 ) ◦ ΦM (π ⊗ |ζ|−1) = JM

P1∩M (π ⊗ |ζ|−1)

is also tempered and nonzero. But [Wal, Lemme III.3.2] says that this contradicts
the square-integrability (modulo centre) of π⊗|ζ|−1. (b) This follows from Theorem
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3.9, in the same way as Lemma 3.6.c followed from parts (a) and (b) of that lemma.
(c) This follows from Theorem 3.9.b, Lemma 3.6.c and part (b).

�

3.3. Comparison of completions.

In this paragraph we will show that the equivalences ΦM induce Morita equiva-
lences between the appropriate Schwartz algebras. In Proposition 1.6 we described
the Plancherel isomorphism for the Schwartz completion of an affine Hecke algebra,
in terms of the following data:

• the set of parabolic subalgebras HQ ⋊ ΓQ of H⋊ Γ, up to ΓW -equivalence,

• the tori TQ
un,

• the sets IrrL2(HQ ⋊ ΓQ), up to the actions of TQ
un and WΓ(Q,Q),

• the groupoid G,
• the intertwining operators I(g,Q, σ, t) for g ∈ GQ,σ.

These data depend mainly on the categories Mod(HQ ⋊ ΓQ). In Condition 3.2 we

included the possibility that not the HM , but the (HM )op are affine Hecke algebras,
so that ΦM becomes an equivalence between Rep(G)s and Mod

(

(HQ⋊ΓQ)
op
)

. Then
we use Lemma 1.7 to describe the Plancherel isomorphism of S(R, q) ⋊ Γ in terms
of right modules of its subalgebras HQ ⋊ ΓQ, that is in terms of the categories

Mod(HM ). With this in mind, it suffices to consider the case where each HM is an
(extended) affine Hecke algebra.

On the other hand, in Theorem 2.4 the Plancherel isomorphism for S(G)s was
formulated in terms of:

• the set of parabolic subgroups P ⊃ PL, up to conjugation by Ws,
• the tori Xunr(M),
• the sets IrrL2(M)sM , up to the actions of Xunr(M) and StabWs

(M),
• the groups W ′(Tω),
• the intertwining operators I(w′, ω ⊗ χ) for w′ ∈W ′(Tω).

We will compare these two data sets, and manipulate them until we get a nice
bijection from one side to the other.

By Proposition 3.10.a only the P with dΦL(QR(M,L)) of the form QQ∨ occur
in the Plancherel isomorphism, since for the other P the set IrrL2(M)sM is empty.
Given Q ⊂ ∆, we define ΓQ as ΓM , where QR(M,L) = QQ∨.

By Condition 3.2.iv there is a canonical bijection from the parabolic subgroups
P =MUP , with P ⊃ PL,M ⊃ L and dΦL(QR(M,L)) of the form QQ∨ and modulo
conjugation by elements of Ws, to the parabolic subalgebras HQ ⋊ ΓQ of HG, up to
association byWΓ. From Theorem 2.4 one sees that two such Levi subgroupsM ⊂ G
areWs-conjugate if and only if the tempered parts of the two subsets IGP (Rep(M)sM )
coincide. By Condition 3.1.i and Theorem 3.9.a this means precisely that two subsets

indH
G

λMG(HM )(Mod(HM )) of Mod(HG) coincide. By Theorem 1.4 that happens if and

only if the two HM are ΓW -equivalent. Thus we can pick of representatives for such
P modulo Ws- conjugacy, and then the corresponding HM form representatives for
ΓW -equivalence classes of parabolic subalgebras HM = HQ ⋊ ΓQ of HG.

By Proposition 3.10,b ΦM gives a bijection between IrrL2(M)sM and IrrL2(HM ).

Upon parabolic induction, every Xunr(M)-orbit in IrrL2(M)sM (resp. every TQ
un-

orbit in IrrL2(HM ) gives rise to a family of tempered representations in Rep(G)s

(resp. in Mod(HG)). From Theorem 2.4 we see that IGP (ω) and IGP (ω′) belong to



38 ON COMPLETIONS OF HECKE ALGEBRAS

the same such family if and only if ω′ = w(ω ⊗ χ) for some w ∈ StabWs
(M) and

χ ∈ Xunr(M). Similarly, by 3.2.ii and Proposition 1.6

indH
G

λMG(HM )(σ) and indH
G

λMG(HM )(σ
′)

belong to the same family in Mod(HG) if and only if σ′ = g(σ◦φt) for some g ∈ GQQ

and t ∈ TQ
un. Applying ΦG and Condition 3.1.i, we see that the respective equivalence

relations on IrrL2(M)sM and IrrL2(HM ) agree via ΦM .
Let the set of representatives (Q,σ)/ ∼ be as in (34) Let (P,M,ω)/ ∼ be its

image under Lemma 3.5 and the Φ−1
M . Then (P,M,ω)/ ∼ is a set of representatives

as in Theorem 2.4. Lemma 3.3.c and Condition 3.1.i guarantee that

(79) ΦG(I
G
P (ω ⊗ χ)) = indH

G

λMG(HM )(σ ⊗ Φnr(χ)) = π(Q,σ,Φnr(χ)).

Hence ΦG matches the finite length tempered elements of Rep(G) associated to
(P,M,ω) (via Theorem 2.4) with the finite dimensional tempered HG-modules as-
sociated to (Q,σ) (via Proposition 1.6). By Theorem 2.4 IGP (ω ⊗ χ) and IGP (ω⊗ χ′)
are isomorphic if and only χ′ = w′χ for some w′ ∈W ′(Tω). Analogously, Proposition
1.6 entails that π(Q,σ, t) and π(Q,σ, t′) are isomorphic if and only if t′ = g(t) for
some g ∈ GQ,σ. From this and (62) we see that Φnr (from Lemma 3.3.a) induces a
bijection

(80) Xunr(M)/W ′(Tω) → TQ
un/GQ,σ

∼= Xunr(M)/G′
Q,σ.

In the proof of Lemma 3.4 we checked that Ws (resp. WΓ) acts faithfully on Xnr(L)
(resp. on T ). Then we see from (56) and (21) that the group actions in (80) are
faithful. Comparing the outer sides of (80) and using the same method as in the
proof of Lemma 3.4, we deduce that W ′(Tω) = G′

Q,σ as subgroups of Aut(Xunr(M)).

Now we come to the intertwining operators. Recall from (57) and (58) that
I(w′, ω ⊗ χ) for w′ ∈W ′(Tω) comes from a unitary operator

(81) π(w′, ω, χ) : IGP (ω ⊗ χ) → IGP (ω ⊗ w′(χ)).

For bookkeeping purposes we replace TQ by Xnr(M) and GQ,σ by G′
Q,σ, at the same

time defining

π(Q,σ, χ) := π(Q,σ,Φnr(χ)) and π(g′, Q, σ, χ) = π(g,Q, σ,Φnr(χ))

when g′ ∈ G′
Q,σ is a lift of g ∈ GQ,σ. In particular, for k ∈ Xnr(M,σ) the interwiner

π(k,Q, σ, χ) is the identity as map on the underlying vector spaces, it only changes
χ to kχ. Then (26) says that the action of G′

Q,σ in Proposition 1.6 and (34) comes
from unitary intertwiners

(82) π(g′, Q, σ, χ) ∈ HomHG(π(Q,σ, χ), π(Q,σ, g′(χ)).

Lemma 3.11. The intertwining operators (81) and (82) can be normalized so that

ΦG(π(w
′, ω, χ)) = π(g′, Q, σ,Φnr(χ))

whenever w′ corresponds to g′ under the identification W ′(Tω) = G′
Q,σ from (80).

Proof. Both (81) and (82) are unique up to scalars, because they depend alge-
braically on χ and because for generic χ ∈ Xunr(M) the involved representations
are irreducible. (The latter follows for example from the Plancherel isomorphisms.)
Therefore, if w′ = g′ in the indicated way, ΦG(π(w

′, ω, χ)) equals π(g′, Q, σ,Φnr(χ))
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up to a complex number of absolute value 1. To make this scalar 1, we simply
replace π(w′, ω, χ) by Φ−1

G

(

π(g′, Q, σ,Φnr(χ))
)

. �

We remark that the normalization from Lemma 3.11 is harmless, because it does
not change I(w′, ω ⊗ χ).

Theorem 3.12. Under the Conditions 3.1, 3.2 and 1.1, ΦG : Rep(G)s → Mod(HG)
induces Morita equivalences

S(G)s ∼M S(R, q)⋊ Γ and C∗
r (G)

s ∼M C∗
r (R, q)⋊ Γ.

Proof. In view of Proposition 1.6 and Theorem 2.4 we have to compare the Schwartz
algebras

(83)

⊕

(P,M,ω)/∼

(

C∞(Xunr(M))⊗ EndC(I
G
P (Vω)

Ks

)W ′(Tω) and

⊕

(Q,σ)/G

C∞
(

TQ
un; EndC(VQ,σ)

)GQ,σ =
⊕

(Q,σ)/G

C∞
(

Xunr(M); EndC(VQ,σ)
)G′

Q,σ .

To justify the equality in the second line, we note that a section of the algebra
bundle over Xunr(M) is Xnr(M,σ)-invariant if and only if it descends to a section

of the analogous algebra bundle over TQ
un.

By the above constructions the ΦM provide a bijection between the indexing sets
for the sums in (83), so it suffices to compare

(84)
A1 := C∞

(

Xunr(M); EndC(I
G
P (Vω)

Ks)
)W ′(Tω) with

A2 := C∞
(

Xunr(M); EndC(VQ,σ)
)G′

Q,σ

when (P,M) corresponds to Q via Lemma 3.5 and ΦM (ω) = σ. The Morita equiva-
lences S(G,Ks)

s ∼M S(G)s and ΦG send IGP (ω ⊗ χ)Ks to π(Q,σ, χ) and by Lemma
3.11 this is compatible with the intertwining operators. IdentifyingW ′(Tω) and G′

Q,σ

via (80), we consider the following bimodules for A1 and A2:

B1 := C∞
(

Xunr(M); HomC(I
G
P (Vω)

Ks , VQ,σ)
)W ′(Tω),

B2 := C∞
(

Xunr(M); HomC(VQ,σ, I
G
P (Vω)

Ks)
)W ′(Tω).

Here the W ′(Tω)-actions are

(w′ · f1)(w
′χ) = π(w′, ω ⊗ χ)f1(χ)π(w

′, Q, σ, χ)−1 f1 ∈ B1,
(w′ · f2)(w

′χ) = π(w′, Q, σ, χ)f2(χ)π(w
′, ω ⊗ χ)−1 f2 ∈ B2.

Notice that by Lemma 3.11 these are honest group actions, not just up to some
scalars. We claim that

(85) B1 ⊗A1 B2
∼= A2 and B2 ⊗A2 B1

∼= A1

as bimodules over A2, respectively A1. Since all these algebras and modules are
of finite rank over C∞(Xunr(M))W

′(Tω), it suffices to check this locally, at any χ ∈
Xunr(M). Then the proof of the first half of (85) reduces to checking that

HomC(I
G
P (Vω)

Ks , VQ,σ)
W ′(Tω)χ ⊗

EndC(I
G
P
(Vω)Ks )W

′(Tω)χ HomC(VQ,σ, I
G
P (Vω)

Ks)W
′(Tω)χ

∼= EndC(VQ,σ)
W ′(Tω)χ ,(86)

and the other way round for B2 ⊗A2 B1
∼= A1.



40 ON COMPLETIONS OF HECKE ALGEBRAS

By the uniqueness of π(w′, Q, σ, χ) up to scalars, w′ 7→ π(w′, Q, σ, χ) defines
a projective representation of W ′(Tω)χ. Let W ′′ be a finite central extension of
W ′(Tω)χ, such that this lifts to a linear representation of W ′′. By (85) the map
w′ 7→ π(w′, ω⊗χ) also lifts to a linear representation of W ′′. Then W ′′ and W ′(Tω)
have the same invariants in the all involved modules, so we can rewrite (86) as

HomC[W ′′](I
G
P (Vω)

Ks , VQ,σ)⊗End
C[W ′′](I

G
P
(Vω)Ks ) HomC[W ′′](VQ,σ, I

G
P (Vω)

Ks)

∼= EndC[W ′′](VQ,σ).(87)

This is a statement about finite dimensional representations of the finite group W ′′.
One can verfiy (87) by reducing it to the case of irreducible W ′′-representations,
where it is obvious.

This also proves (86) and (85), and shows that the algebras in (83) are Morita
equivalent. Combining that with Theorem 2.4 and (34), we find the desired Morita
equivalences of Schwartz algebras.

To prove that Cr(G)
s and Cr(R, q) ⋊ Γ are Morita equivalent, we can use ex-

actly the same argument. We only have to replace C∞ by continuous functions
everywhere, and to use Theorem 2.5 instead of Theorem 2.4. �

4. Hecke algebras from Bushnell–Kutzko types

Let L ⊂ G be a Levi subgroup and let σ ∈ Irr(L) be supercuspidal. Recall
from [BuKu, §4] that a type for s = [L, σ]G consists of a compact open subgroup
J ⊂ G, and a λ ∈ Irr(J), such that Rep(G)s is precisely the category of smooth
G-representations which are generated by their λ-isotypical subspace. To such a
type one associates the algebra

H(G, J, λ) = EndG(ind
G
J λ),

which (by definition) acts from the right on indGJ λ. Then there is a Morita equiva-
lence

(88)
ΦG : Rep(G)s → Mod(H(G, J, λ))

π 7→ HomJ(λ, π) ∼= HomG(ind
G
J λ, π).

For a Levi subgroup M ⊂ G containing L, Bushnell and Kutzko [BuKu, §8] deve-
loped the notion that (J, λ) covers a [L, σ]M -type (JM , λM ). Roughly speaking, this
means that JM = J ∩M , that λM = ResJJMλ and that H(G, J, λ) contains invertible
”strongly positive” elements. Under these conditions, writing sM = [L, σ]M , there
is a Morita equivalence ΦM : Rep(M)sM → Mod(H(M,JM , λM )) as in (88), which
is in several ways compatible with ΦG.

Lemma 4.1. Suppose that (J, λ) is a cover of a [L, σ]L-type (JL, λL). Then Condi-
tion 3.1 is fulfilled, with HM = H(M,JM , λM )).

Proof. Let P and P ′ be as in the condition. By [BuKu, Proposition 8.5] (JM ′ , λM ′)
is a sM ′-type, (JM , λM ) is a sM -type and the former covers the latter.

By [BuKu, Corollary 8.4] there exists a unique algebra monomorphism

tP∩M : H(M,JM , λM ) → H(M ′, JM ′ , λM ′)

such that
Res

H(M ′,JM′ ,λM′ )
t
P∩M

(H(M,JM ,λM )) ◦ΦM ′ = ΦM ◦ prsM ◦RM ′

P∩M ′ .
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Here RM ′

P∩M ′
means the unnormalized parabolic restriction functor. To obtain the

version with the normalized Jacquet functor JM ′

P∩M ′
, we must adjust tP∩M by the

square root of a modular character. This yields our λMM ′ . The uniqueness of λMM ′

and the transitivity of normalized Jacquet restriction entail that

λM ′M ′′ ◦ λMM ′ = λMM ′′ when P ⊂ P ′ ⊂ P ′′ ⊂ G.

On general grounds ind
H(M ′,JM′ ,λM′)

λMM′ (H(M,JM ,λM ))
is the left adjoint of Res

H(M ′,JM′ ,λM′)

λMM′ (H(M,JM ,λM ))
.

By Bernstein’s second adjointness theorem IM
′

P∩M ′ : Rep(M) → Rep(M ′) is the left

adjoint of JM ′

P∩M ′
. Hence

IM
′

P∩M ′ : Rep(M)sM → Rep(M ′)sM′

is the left adjoint of prsM ◦ JM ′

P∩M ′
. By the uniqueness of adjoints

ΦM ′ ◦ IM
′

P∩M ′ = ind
H(M ′,JM′ ,λM′)

λMM′ (H(M,JM ,λM )) ◦ ΦM . �

Having checked Condition 3.1 in a general framework, we turn to more specific
instances where Condition 3.2 holds. In most cases the intermediate algebras HM

are not mentioned explicitly in the literature. One can obtain them by applying the
same references to the group M instead of G. Using the canonical construction of
λMM ′ as in the proof of Lemma 4.1, Condition 3.2.ii will be satisfied automatically
in those cases. We will check the remaining conditions, mainly by providing relevant
references. Recall that to achieve Condition 3.2.iii we can use the method described
on page 28.

Iwahori–spherical representations.

This is the classical case. Let oF be the ring of integers of the non-archimedean local
field F , let pF be its maximal ideal, and let kF = oF /pF be the residue field. Choose
an apartment A of the Bruhat–Tits building of G and let L be the correponding
minimal F -Levi subgroup of G. Let I be an Iwahori subgroup of G associated to a
chamber of A. Let PL be the parabolic subgroup of G with Levi factor L, such that
the reduction of I modulo pF is PL(kF ).

Borel [Bor] showed that the trivial representation of I is a s-type, where s =
[L, trivL]G. Borel assumes that G is semisimple, but it is easy to generalize his
arguments to reductive G.

By [IwMa, §3] there is a *-algebra isomorphism

(89) Cc(I\G/I) ∼= H(G, I, triv) ∼= H
(

X∗(L), R
∨(G,L),X∗(L), R(G,L),∆, qI

)

,

where the basis ∆ is determined by PL and qI,α = vol(IsαI)/vol(I) for a simple
reflection sα. From [Bor, §3.1] one sees that Conditions 3.2.iii and iv hold. Here
ΓM = 1 for all M , so Condition 1.1 is vacuous.

Of course Theorem 3.9 was already known for irreducible Iwahori-spherical repre-
sentations. Indeed, by [KaLu, Section 8] and [ABPS1, Theorem 15.1.(2) and Propo-
sition 16.6] the bijection Irr(G)s → Irr(H(G, I, triv)) preserves temperedness and
essential square-integrability. Moreover Theorem 3.12 has been proven for Schwartz
algebras in [DeOp, Theorem 10.2]: (89) extends to an isomorphism of Fréchet *-
algebras

S(I\G/I) ∼= S
(

X∗(L), R
∨(G,L),X∗(L), R(G,L),∆, qI

)

.
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Principal series representations of split groups.

Suppose that G is F -split and let T be a maximal split torus of G. Fix a smooth
character χs ∈ Irr(T ) and put s = [T, χs]G, so that

Xnr(T ) → Ts : χ 7→ χχs

is a homeomorphism. Notice that χ restricted to the unique maximal compact
subgroup Tcpt of T is a type for [T, χs]T . By [Roc1, Lemma 6.2] there exist a root
subsystem Rs ⊂ R∨(G,T ) and a subgroup Rs ⊂Ws such that Ws =W (Rs)⋊Rs.

Theorem 4.2. [Roc1, Theorem 6.3]
There exists a type (J, λ) for s and a *-algebra isomorphism

H(G, J, λ) ∼= H(Ts, Rs, q)⋊Rs,

where qα = |kF | for all α ∈ Rs. Moreover (J, λ) is a cover of (Tcpt, χ).

Furthermore Conditions 3.2.iii and iv hold by construction. If QR(M,T ) = QQ∨,
then X⋊WQΓQ ⊂ X∗(T )⋊W (M,T ), so by Remark 1.2 Condition 1.1 holds as well.

We note that for these Bernstein components Theorem 3.9.b was already proven
in [Roc1, Theorem 10.7], while Theorem 3.9.a follows from [DeOp, Theorem 10.1],
using [Roc1, Section 8].

Level zero representations.

These are G-representations which are generated by non-zero vectors fixed by the
pro-unipotent radical of a parahoric subgroup of G. Iwahori-spherical representa-
tions constitute the most basic example of this kind. A type (J, λ) for any Bernstein
component s consisting of level zero representations was exhibited in [Mor1], while
it was proven in [Mor2, Theorem 4.9] that it actually is a type. More precisely, by
[Mor2, §3.8] (J, λ) is a cover of a type for the underlying supercuspidal Bernstein
component of a Levi subgroup L of G.

By [Mor1, Theorem 7.12] (see also [Lus2])

(90) H(G, J, λ) ∼= H(R, q)⋊C[Γ, ♮s]

for suitable R, q and Γ. In all examples of level zero Bernstein blocks which have
been worked out, the 2-cocycle ♮s of Γ is trivial. But even if it were non-trivial, we
could easily deal with it. There always exists a finite central extension

1 → Γ1 → Γ2
φΓ−→ Γ → 1

such that the pullback of ♮s to Γ2 splits. Then H(G, J, λ) can be regarded as the
direct summand of H(R, q) ⋊ Γ2 associated to a minimal central idempotent p♮s ∈

C[Γ1]. The algebra H(R, q)⋊ Γ2, with the parabolic subalgebras HQ ⋊ φ−1
Γ (ΓQ), is

of the kind studied in Section 1. In this situation the Conditions 3.1 and 3.2 must
be adjusted slightly, now each HM should be p♮sH

Q ⋊ φ−1
Γ (ΓM ) for some Q ⊂ ∆.

With these minor modifications, all the arguments in Section 3 remain valid.
Conditions 3.2.iii and iv follow from the setup in [Mor1, §3.12–3.14] and [Mor2,

§1.10], combined with the description of R in [Mor1, Proposition 7.3]. The groups
ΓQ for QQ∨ = QR(M,L) satisfy Condition 1.1 because they are contained in X ⋊

W (M,S), whereW (M,S) is the Weyl group ofM with respect to a maximal F -split
torus S ⊂ L.

As in the above examples, there is previous work on temperedness also. It is
claimed in [DeOp, Theorem 10.1] that Theorem 3.9.a holds here. For this one needs
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to know that (90) preserves the traces (maybe up to a positive factor) and the
natural *-operations. The former follows from the support of the basis elements Tw
of H(G, J, λ) constructed in [Mor1] (only the unit element Te is supported on J).
For a simple (affine) reflection s, both Ts and T ∗

s have support JsJ , so they differ
only by a scalar factor. They also satisfy the same quadratic relation, so T ∗

s = Ts.
This implies that (90) is an isomorphism of *-algebras.

Knowing that [DeOp, Theorem 10.1] applies, and together with [ABPS1, Lemma
16.5] it also gives Theorem 3.9.b.

Inner forms of GLn(F ).
Let D be a division algebra with centre F . Every Levi subgroup of G = GLm(D)
is of the form L =

∏

iGLmi
(D)ei , where

∑

imiei = m. Fix a supercuspidal ω ∈

Irr(L), of the form ω =
⊗k

i=1 ω
⊗ei
i , where ωi ∈ Irr(GLmi

(D)) is supercuspidal and

not inertially equivalent with ωj if i 6= j. Then Ts ∼=
∏k

i=1(C
×)ei , Rs is of type

∏k
i=1Aei−1 and the stabilizer of s = [ω,L]G in W (G,L) is W (Rs) ∼=

∏k
i=1 Sei .

Theorem 4.3. [Séc, SéSt]
There exists a type (J, λ) for s, which is a cover of a [ω,L]L-type. There exists a
parameter function qs : Rs → qN such that there is an isomorphism of *-algebras

H(G, J, λ) ∼= H(X∗(Ts), Rs,X∗(Ts), R
∨
s , qs),

where the right hand side is a tensor product of affine Hecke algebras of type GLe

with e ≤ m. Moreover this isomorphism sends the natural trace of H(G, J, λ) to a
positive multiple of the trace of the right hand side.

We remark that the claims about the * and the traces are not made explicit in
[Séc, SéSt]. They can be deduced in the same way as for level zero representations,
see above. With [DeOp, Theorem 10.1] that proves Proposition 3.10 for these groups.

Via the tensor product factorization Condition 3.2.iii reduces to the case of a
supercuspidal representation σ⊗e of GLr(D)e. There it is a consequence of the
constructions involved in [Séc, Théorème 4.6], which entail that the same notion of
positivity in real tori is used for (GLr(D)e,GL1(D)re) and for H(GLe, q). Condition
3.2.iv is irrelevant because all the groups ΓM are trivial.

For the Schwartz algebras of these groups Theorem 3.12 can be found in [ABPS2,
Theorem 6.2]. The proof over there is similar but simpler, because not all compli-
cations from Section 3 arise.

Inner forms of SLn(F ).
Let G be the kernel of the reduced norm map GLm(D) → F×. It is an inner form
of SLn(F ), and every inner form looks like this. It was shown in [ABPS1] that
for every inertial equivalence class s, H(G)s is Morita equivalent with an algebra
which is closely related to affine Hecke algebras of type GLe (yet is of a more general
kind). It is not known whether there exists a s-type for every s, but in any case
the constructions in [ABPS1] are derived from the work of Sécherre and Stevens
on inner forms of GLn(F ), so types are not far away. Condition 3.1.i is [ABPS2,
Theorem 1.5.b], the maps λMM ′ are simply inclusions, and Condition 3.1.ii follows
from that by the uniqueness of adjoints.

Condition 3.2 does not hold precisely for the algebras HM obtained in this setting
(in fact the Plancherel isomorphism for these HM has not been worked out), so we
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cannot apply Proposition 3.10 or Theorem 3.12. Nevertheless the conclusions of
these results hold, see [ABPS2].

Let us summarize the conclusions from this section.

Corollary 4.4. Let s = [L, σ]G be an inertial equivalence class of the kind discussed
in this paragraph (principal series of split group, level zero, inner form of GLn(F )
or SLn(F )). Then S(G)s is Morita equivalent to the Schwartz completion of an
extended affine Hecke algebra and C∗

r (G)
s is Morita equivalent to the C∗-completion

of the same extended affine Hecke algebra.

Proof. Except for the last case, this follows by applying Theorem 3.12. We just
checked that all its assumptions are fulfilled. For the inner forms of SLn(F ), [ABPS2,
Theorem 6.4] gives the result in the case of Schwartz algebras. Like the proof of
Theorem 3.12, the method in [ABPS2, §6.2] also works for the C∗-algebras, with
minor modifications. �

5. Hecke algebras from Bernstein’s progenerators

We return to the notations from Sections 2 and 3. Let s = [L, σ]G be any inertial
equivalence class for G. Bernstein [BeRu, §3] constructed a projective generator
Πs for the category Rep(G)s. By [Ren, VI.10.1], for any Levi subgroup M ⊂ G
containing L:

ΠsM = IMPL∩M (ΠsL),

and this is a progenerator of Rep(M)sM . In other words, the map

ΦM : V 7→ HomM (IMPL∩M
(ΠsL), V )

is an equivalence between Rep(M)sM and the category of right modules of
EndM (IMPL∩M

ΠsL). For PL ⊂ P =MUP ⊂ G we put

HM = EndM (IMPL∩MΠsL)
op = EndM (ΠsM )op.

Then ΦM provides an equivalence of categories Rep(M)sM → Mod(HM ).

Lemma 5.1. In the above setting Condition 3.1 is fulfilled.

Proof. The functoriality of normalized parabolic induction gives natural injections

λMM ′ : HM → HM ′

for P ⊂ P ′ ⊂ G.

By naturality the λMM ′ satisfy Condition 3.1.iii. By Bernstein’s second adjointness
theorem, for V ′ ∈ Rep(M ′)sM′ :

ΦM (JM ′

P∩M ′V
′) = HomM (IMPL∩M

ΠsL , J
M ′

P∩M ′V
′)

∼= HomM ′(IM
′

P∩M ′IMPL∩MΠsL , V
′)

∼= HomM ′(IM
′

PL∩M ′ΠsL , V
′) = ΦM ′(V ′)

as HM -modules (via λMM ′). This establishes the first commutative diagram in
Condition 3.1. As in the proof of Lemma 4.1, the second commutative diagram
follows from that by invoking the uniqueness of left adjoints. �

In the remainder of this section we assume that G is:
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• either a symplectic group, not necessarily split,
• or a special orthogonal group, not necessarily split,
• or an inner form of GLn(F ).

Besides the discussion of inner forms of GLn(F ) in the previous section, we point
out that types for Bernstein components of symplectic or special orthogonal groups
have been constructed in [MiSt]. However, as far as we know the Hecke algebras
associated to these types are in only few cases known explicitly.

For the groups listed above, Heiermann has subjected (HG)op = EndG(I
G
PL

ΠsL)

to a deep study. In [Hei1] he proved that it is an extended affine Hecke age-
bra with positive parameters. The constructions in [Hei1, §5] are such that every
EndM (IMPL∩M

ΠsL) arises as a parabolic subalgebra. For Condition 3.2.iii see [Hei2,

§3]. It served as a step towards Theorem 3.9 for these groups [Hei2, Théorème 5].

By [Hei1, Proposition 1.15] the groups WQΓQ are always contained in W (R̃Q)

where R̃Q ⊂ QRQ is a larger root system. In view of Remark 1.2, Condition 3.2.iv
holds.

In fact, a more precise description of the root data and the groups ΓM is available.
By [Hei1, 1.13] the root datum underlying the affine Hecke algebra EndG(I

G
PL

ΠsL)
is a tensor product of root data of four types: GLn, Sp2n, SO2n+1 and SO2n. The
groups ΓM are described in [Hei1, 1.15], but unfortunately some elements were
overlooked, for the complete picture we refer to [Gol]. The only nontrivial ΓM come
from the type D factors, it can happen that for a root datum of type (SO2n)

e we
have (extended) Weyl groups

(91) WM
∼=W (Dn)

e, WMΓM
∼=W (Dne) ∩W (Bn)

e.

Then |ΓM | = 2e−1. In the above setting, Theorem 3.12 says:

Theorem 5.2. Let G be a symplectic group or a special orthogonal group over F
(not necessarily split), or an inner form of GLn(F ). Let s be any inertial equivalence
class for G.

Then S(G)s is Morita equivalent with the Schwartz completion of an extended
affine Hecke algebra. The underlying root datum is a tensor product of root data of
type GLn, Sp2n, SO2n+1 and SO2n, and the group Γ is a direct product of groups
ΓM as in (91). Furthermore C∗

r (G)
s is Morita equivalent with the C∗-completion of

that extended affine Hecke algebra.

Theorem 5.2 was one of the motivations for the author to write a paper about the
K-theory of C∗-completions of (extended) affine Hecke algebras [Sol5]. It enables
us to show that the K-groups of the reduced C∗-algebras of the above groups are
torsion-free.

Theorem 5.3. Let G be as in Theorem 5.2. Then K∗(C
∗
r (G)) is a free abelian

group. It is countably infinite (unless G = 1).

Proof. Recall the Bernstein decomposition from (45):

C∗
r (G)

∼=
∏

s∈B(G)
C∗
r (G)

s.

Since topological K-theory is a continuous functor on the category of Banach alge-
bras, it commutes with direct sums. This reduces the theorem to one factor C∗

r (G)
s.

By Morita invariance and Theorem 5.2, it suffices to show that the K-theory of the
C∗-completion of an extended affine Hecke algebra as in Theorem 5.2 is a finitely
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generated free abelian group. It was checked in [Sol5, (62)] that the Künneth theo-
rem for topological K-theory [Sch] applies to such algebras. Thus we only need to
prove the result when the underlying root datum is of type GLn, Sp2n or SO2n+1

and Γ is trivial, and when the root datum is of type (SO2n)
e and Γ is as in (91).

These K-groups were computed in [Sol5], see respectively Theorem 3.2, Theorem
3.3, (128), and Proposition 3.5. They are free abelian and have finite rank. �
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