

UNIVERSITY OF ALICANTE

BACHELOR’S THESIS

Synthetic Data Generation for Deep
Learning-based Semantic Segmentation

Author:
Alvaro JOVER-ALVAREZ

Supervisor:
Dr. Jose

GARCIA-RODRIGUEZ

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Bachelor’s Degree in Computer Engineering
Department of Information Technologies and Computing

May 30, 2019

http://www.ua.es
https://www.dtic.ua.es/~jgarcia/
https://www.dtic.ua.es/~jgarcia/
https://cvnet.cpd.ua.es/webcvnet/planestudio/planestudiond.aspx?plan=C203
https://web.ua.es/dtic

iii

Declaration of Authorship
I, Alvaro JOVER-ALVAREZ, declare that this thesis titled, “Synthetic Data Generation
for Deep Learning-based Semantic Segmentation” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“Optimal.”

Alberto Garcia-Garcia

vii

UNIVERSITY OF ALICANTE

Abstract
University of Alicante

Department of Information Technologies and Computing

Bachelor of Science

Synthetic Data Generation for Deep Learning-based Semantic Segmentation

by Alvaro JOVER-ALVAREZ

The semantic segmentation of a scene is one of the basic components towards the to-
tal understanding of this scene that make up a robotic perception system. Currently,
systems based on deep learning, specifically convolutional networks, dominate the
state of the art with highly accurate results. However, these systems rely on datasets
of unprecedented scale and variability in order to properly generalize into the poten-
tially infinite number of situations in which they can be deployed. Current datasets
often have problems in achieving this scale and variability as they rely on human op-
erators both for the capture of the data itself and for its labelling, which is essential
for this type of supervised learning techniques. The high cost in time and resources
of this task makes it difficult to obtain large-scale and highly representative data sets
for specific situations.

In this work we propose the exploration of photorealistic synthetic data as a
source to train new systems, to improve the capacity of generalization of those al-
ready trained with real data or to facilitate training when a small amount of them
is available. To do this we will resort to Unreal Engine 4 to create UnrealROX1 with
the objective of generating an extremely photorealistic data set. We will implement
a series of tools to generate this data by creating a simulator capable of doing this
work.

1https://github.com/3dperceptionlab/unrealrox

HTTP://WWW.UA.ES
http://www.ua.es
https://web.ua.es/dtic
https://github.com/3dperceptionlab/unrealrox

ix

Acknowledgements
This project would not have been possible without the direct collaboration of the
Department of Information Technologies and Computing (DTIC) of the University
of Alicante of the Faculty of Computer Science. I would like to thank my tutor Jose
Garcia-Rodriguez and co-tutors for the great show of interest in the work done. I
would especially like to thank Pablo Martinez-Gonzalez and Albert Garcia-Garcia
for the continuous revisions and the constant perseverance to get an optimal and
well-done project.

In addition, I would like to thank the department for giving me the opportunity
to work on such a significant project as UnrealROX.

xi

List of Acronyms

CDO Class Default Object

UE4 Unreal Engine 4

HUD heads-up display

CUDA Compute Unified Device Architecture

IDE integrated development environment

SSD Solid State Drive

HDD Hard Disk Drive

SSHD Solid State Hybrid Drive

GPU graphics processing unit

6DOF 6 degrees of freedom

FSM finite state machine

VR virtual reality

FPS frames per second

JSON JavaScript Object Notation

RGB Red Green Blue

PBR Physically Based Rendering

DLSS Deep Learning Super Sampling

BVH Bounding Volume Hierarchy

GI Global Illumination

GAN Generative Adversarial Networks

SDR Structured Domain Randomization

DR Domain Randomization

VKITTI Virtual KITTI

ADR Active Domain Randomization

RL Reinforcement Learning

SVPG Stein Variational Policy Gradient

xii

URDF Universal Robotic Description Format

FABRIK Forward And Backward Reaching Inverse Kinematics

NDDS NVIDIA Deep learning Dataset Synthesizer

DTIC Department of Information Technologies and Computing

UCV UnrealCV

THOR The House Of inteRactions

MINOS Multimodal Indoor Simulator

COMBAHO COMe BAck HOme

xiii

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

List of Acronyms xi

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Objectives . 3

1.3.1 Initial architecture . 3
1.3.2 Final version . 4

1.4 Thesis Structure . 4

2 State of the Art 5
2.1 Sim-To-Real . 5

2.1.1 Photorealism . 6
2.1.2 Domain randomization . 11
2.1.3 Simulators . 15
2.1.4 Generators . 19
2.1.5 UnrealROX in context . 21

3 Methodology 23
3.1 Introduction . 23
3.2 Software . 23

Unreal Engine 4 . 23
Visual Studio . 25
Visual Assist . 26
Python . 26
irfanView . 27
Sublime Text Editor . 28

3.3 Hardware . 28
3.3.1 PC Resources . 28

Personal Computer . 29
Challenger . 29
Asimov . 30

3.3.2 Virtual Reality headsets . 30
Oculus Rift . 31
HTC Vive Pro . 31

xiv

4 UnrealROX 33
4.1 Introduction . 33
4.2 Multi-camera Support . 34

4.2.1 The Camera Actor . 35
4.2.2 Camera Movement . 36
4.2.3 Implementation . 37
4.2.4 Recapitulation . 40

4.3 User Interface . 43
4.3.1 The HUD class . 44

4.4 Animation System . 45
4.4.1 Persona . 45
4.4.2 Execution Flow . 46

Event Graph . 46
Animation Graph . 47

4.4.3 Inverse Kinematics . 50
The FABRIK node . 50

4.4.4 Bulk Transform (Modify) Bones 51
4.5 The Player Controller . 53

4.5.1 Input Definitions . 53
4.5.2 Main Behavior . 54

4.6 The Pawn . 56
4.6.1 Initialization . 56
4.6.2 Main Handlers . 60
4.6.3 Grasping . 61

4.7 The Tracker . 65
4.7.1 Usage . 65
4.7.2 Initialization . 68
4.7.3 Recording the scene . 69
4.7.4 Reproducing the scene . 71

5 Conclusion 75
5.1 Conclusions . 75
5.2 Highlights . 76
5.3 Future Work . 77

Bibliography 79

xv

List of Figures

1.1 Synthetic scene on UE4 . 2
1.2 Some samples of the RobotriX dataset. 3
1.3 Architecture of UnrealCV. Figure from the documentation of UnrealCV 3
1.4 Multi-camera setup on UnrealROX. 4

2.1 Manually labeled scene from the Mapillary Dataset. 5
2.2 Visual representation of a BVH data structure. Source: NVIDIA De-

vblogs. 7
2.3 Denoise filter applied over a real time ray-traced image. Image from:

What’s the Latest? DirectX and the New Rise of Ray Tracing. 7
2.4 DLSS provides better images without using as much processing power

of the graphics card as traditional anti-aliasing techniques.Images are
courtesy of Patrick Glynn from Bubble Pony INC. 8

2.5 RenderMan denoising algorithm created by Walt Disney Animation
Studios and Disney Research. 9

2.6 Results of a sample from Set5 using bicubic interpolation, SRResNet
and SRGAN. [4× upscaling]. Image taken from the paper referenced. . 10

2.7 Isaac Sim Randomized scene. 11
2.8 Using Unreal Engine 4 (UE4)’s procedural mesh component to gener-

ate a mesh in real time. 12
2.9 Domain randomization intentionally avoids photorealism for variety,

which leads to weird generated synthetic data. Image extracted from
the same paper. 13

2.10 Synthetic data coming out from similar datasets. Image extracted
from the same paper. 13

2.11 "ADR proposes randomized environments (c) or simulation instances
from a simulator (b) and rolls out an agent policy (d) in those in-
stances. The discriminator (e) learns a reward (f) as a proxy for envi-
ronment difficulty by distinguishing between rollouts in the reference
environment (a) and randomized instances, which is used to train
SVPG particles (g). Enforced through the SVPG formulation, the par-
ticles propose a diverse set of environment dynamics, and try to find
the environment parameters (h) that are currently causing the agent
the most difficulty" (Bhairav Mehta et al.). 14

2.12 On this representation, there is an active agent subject to physics con-
straints simulated by PyBullet (gravity and collision) that can move
around in a large space. Said agent receives a stream of Red Green
Blue (RGB) frames, captured with a virtual on-board camera, plus
some additional modalities like semantics or depth. Image from: GIB-
SON ENVIRONMENT: a real-world perception simulator for embodied agents. 15

2.13 Multiple agents on Gibson thanks to the import feature. 16

xvi

2.14 Goggles can be seen as corrective glasses of the agent. Image source:
Gibson paper referenced above. 16

2.15 Interaction example of AI2-THOR. Figure from: AI2-THOR: An Inter-
active 3D Environment for Visual AI. 17

2.16 Overview of the MINOS framework and APIs. Figure from: MINOS:
Multimodal Indoor Simulator for Navigation in Complex Environments. . . 18

2.17 House3D agent ground truth. Figure from: House3D : A Rich and Re-
alistic 3D Environment. 18

2.18 The room is from the demo RealisticRendering, built by Epic Games.
From left to right are the synthetic image, object instance mask, depth,
surface normal. Image taken from the UnrealCV paper. 19

2.19 Example of an image generated using NDDS, along with ground truth
segmentation, depth, and object poses. From the referenced paper. . . 20

2.20 State of Unreal (2019) shows UE4’s take on ray-tracing. 21
2.21 With UnrealGrasp you can grasp two dynamic objects simultaneously. 22

3.1 This figure showcases some of the advantages of UE4. In Figure 3.1b
we can see some members of its community. 24

3.2 Snapshots of the daylight and night room setup for the Realistic Ren-
dering released by Epic Games to showcase the realistic rendering ca-
pabilities of UE4. 25

3.3 Microsoft Visual Studio environment. 26
3.4 Bounding box generation using Python. These images are part of the

UnrealROX dataset. 27
3.5 irfanView and infanView paint dialog. 27
3.6 Full Oculus Rift Set. 31
3.7 Full HTC Vive Pro Set. 31

4.1 UnrealROX decouples the recording and data generation processes so
that we can achieve high framerate when gathering data. 33

4.2 User interacting as Pepper in the scene. 35
4.3 Main execution flow depending on the cameras. 35
4.4 A CameraActor in the viewport rendering a stair. 36
4.5 In-engine representation of the array of structs. In (a) we can see the

representation of the array struct in the instance of the object, while in
(b) we see its visual representation in the engine. 38

4.6 Placing a camera. 40
4.7 BoneCams Property. 40
4.8 Adding a new entry in the array. 41
4.9 Execution flow of the OnConstruction function. 41
4.10 Camera actor assigned to a socket. 42
4.11 Camera actor exaggerated offset from original position. 42
4.12 Error message representing the lack of the tracker. 43
4.13 Scene Capture drawn in the viewport. 44
4.14 UE4 Skeleton Editor. Source: UE4 documentation. 45
4.15 We can see how we use Blueprints to retrieve from the ROXBasePawn

variables like RecordMode (showcased in red). 46
4.16 Velocity Calculation using Blueprints . 46

xvii

4.17 UnrealROX full Animation Graph, on the left side of the image we
can see the main finite state machine (FSM), each circle corresponds
to a single animation state, while the arrows refers to the transitions
of these states. 47

4.18 HeadTransform variable applied to the head skeleton bone. It makes
the head rotate applying inverse kinematics. 47

4.19 HeadRotation calculation based on the Pawn Camera. 48
4.20 Bulk Transform (Modify) Bones applies transforms in bulk to specific

bones. 48
4.21 Left to Right: Blend Poses by bool and normal branch. 48
4.22 Main animation graph branches. 49
4.23 UnrealROX main animation finite state machine. 49
4.24 The poses that the human operator makes get translated to the man-

nequin appropriately thanks to the inverse kinematic techniques ap-
plied. 50

4.25 FABRIK node and its detail window in context. 50
4.27 Transform (Modify) Bone node. 51
4.28 Bulk Transform (Modify) Bones in detail. 52
4.29 UnrealROX input definition. 53
4.30 Inputs defined at Project Settings. 54
4.31 Excerpt of the editor details panel of the ROXMannequinClass (Child

of ROXBasePawn). 56
4.32 Specific variables initialized at the Pawn constructor. 57
4.33 ROXBasePawn Constructor body. 57
4.34 Skeletal Mesh and Blueprint graph assets for the USekeletalMesh-

Component. 58
4.35 VRCamera and VROrigin are attached to the VRTripod which is act-

ing as the root for this component chain. 58
4.36 Capsule colliders placed manually on the hand. 61
4.37 Initialization of the Tumb_3R capsule collider. 61
4.38 Begin and End overlap callbacks for the hand colliders. 63
4.39 The three important fingers to consider an object to be grasped are the

thumb, the index and the middle finger. 64
4.40 UE4 content browser. 65
4.41 Tracker Actor generic settings. 66
4.42 Tracker Actor recording settings. 66
4.43 Tracker Actor playback settings. 67
4.44 View mode settings. 68
4.45 Sample header from the recording TXT file. 69
4.46 TXT recording file. 70
4.47 Async task for writing a string on a file. 70
4.48 Normal viewmode material. 73
4.49 UnrealROX viewmodes raw results. 73

xix

List of Tables

3.1 Hardware specifications of my personal PC. 29
3.2 Hardware specifications of Challenger. 29
3.3 Hardware specifications of Asimov. 30

xxi

Dedicated to my parents, who supported me through this
adventure.

1

Chapter 1

Introduction

The first chapter describes the main topic of this work. This chapter is divided in four sections:
Section 1.1, where we will see an overview of the complete thesis. Section 1.2, where we will
explain the motivation of this work. Then Section 1.3, describes the main objectives of this
work. And finally, section 1.4 delineates the main structure of this thesis.

1.1 Overview

In this work we propose the exploration of photorealistic synthetic data generation
as the main source of data to train deep learning architectures for various computer
vision tasks (object detection, image segmentation, object pose estimation...). For
that, we propose UnrealROX, a simulator able to generate ground truth employing
artificial data. To do this we will use UE4 with the objective of generating an ex-
tremely photorealistic data set. This simulator covers different unsolved problems
of the current state of the art and opens future exploration avenues thanks to the
flexibility of its systems.

1.2 Motivation

This document represents the knowledge acquired both inside and outside the de-
gree of Computer Engineering at the University of Alicante.

This thesis arose due to a collaboration with the DTIC department, specifically
with the 3D Perception Lab group. The main research area of this group focuses on the
intersection of Machine Learning (Deep Learning specifically), 3D Computer Vision,
and graphics processing unit (GPU) Computing.

This collaboration addresses several projects, one of which was presented at the
IROS technology conference in 2018, The RobotriX: An eXtremely Photorealistic and
Very-Large-Scale Indoor Dataset of Sequences with Robot Trajectories and Interactions [3].
RobotriX is funded by Ministerio de Economia y Competitividad of the Spanish Govern-
ment as part of the project COMe BAck HOme (COMBAHO): system for enhancing
autonomy of people with acquired brain injury and dependent on their integration
into society (TIN2016-76515-R), and counts with the participation of Jose Garcia-
Rodriguez and Miguel Angel Cazorla- Quevedo as main researchers, both being
professors at the University of Alicante. UnrealROX is the main tool used to gener-
ate the data of such dataset, which will be detailed later in this document.

Personally, I believe that generating synthetic data to train new systems is a ne-
cessity, since there is a current human dependency to collect data for datasets. Game
engines with advanced graphics capabilities can accelerate this task by working with
synthetic data. In order to achieve this, there is the need to create a framework ca-
pable of recording and generating synthetic data, that is why UnrealROX was born.

2 Chapter 1. Introduction

UnrealROX was already created when I entered the RobotriX project. It was
my task to coordinate the main refactor of the source code in order to improve its
flexibility, effiency, and to bring it into a production state; progressively porting it to
C++ and providing advice to the rest of the team members based on my previous
experience with UE4.

The main purpose of this project is to create a simulator that will serve to reduce
the gap between synthetic and real data. Future works would have to demonstrate
that the simulator is capable of generating samples that are easily transferred to
a real-world domain. My main objective on this project is to ensure an efficient
framework able to record at a minimum framerate of 60+ frames per second (FPS)
and generate data as efficiently as possible since we are going to deal with huge
amounts of data.

One proposal to test the performance of UnrealROX simulator is binary catego-
rization by using UnrealGrasp [13], which allows us to grasp dynamic objects from
a scene, extending it to classify when a user is touching or not a particular object.
Therefore, the problem would be divided into two major classes, interaction and
non-interaction. Once the dataset is obtained, we can train an architecture able to
classify within this synthetic data both situations. The next step would be testing
this same architecture with real data to see how it performs.

(A) Unreal Paris 2018 by Dereau Benoit. (B) Archviz for UE4 by SOA Academy.

(C) Summer House Archviz Project by Ervin
Jesse.

(D) Post soviet bathroom by White Noise
Team.

FIGURE 1.1: Synthetic scenes on UE4

Thanks to this work, we will be able to prove that synthetic datasets, such as The
RobotriX [3], are valid for real-world problems, which means that the gap between
real data and synthetic data (as seen in Figure 1.1) will be even smaller.

1.3. Objectives 3

1.3 Objectives

In this section we are going to define the main objectives of this project. To do this,
we must first describe the state of the system prior to this work in Section 1.3.1. Then,
Section 1.3.2 will describe the main objectives once seen the initial architecture and
the process we followed to achieve the completion of the extensible framework.

1.3.1 Initial architecture

UnrealROX was designed to compensate the main absences of the current state of
the art in terms of simulators. The first version of the environment consisted on a
UE4 project with a premature grasping system (UnrealGrasp [13]) that allowed an
operator to interact with different objects in the scene by controlling an interchange-
able 3D agent using the Oculus Rift headset and controllers. The project also allowed
to record the state of the scene and the movements of the operator with a primitive
version of our Tracker Actor, documented in Section 4.7.

FIGURE 1.2: Some samples of the RobotriX dataset.

UnrealROX had a single camera embedded in the head of the controlled agent,
this camera would be used to generate data for our dataset. In order to create said
data, the simulator would reproduce the recorded movements offline to generate
ground truth and raw data making use of UnrealCV [15] to capture the scene from a
specific camera. The weight of the algorithm fell on a prototype made in Python that
made use of UnrealCV with an HTTP server, as seen in Figure 1.3, and was therefore
slow and limited to the features of the plugin. This first version of the project was
the one used to generate The RobotriX1 [3] dataset (see Figure 1.2), which motivated
the continuity of the simulator.

FIGURE 1.3: Architecture of UnrealCV. Figure from the documenta-
tion of UnrealCV2.

1https://github.com/3dperceptionlab/therobotrix

https://github.com/3dperceptionlab/therobotrix

4 Chapter 1. Introduction

1.3.2 Final version

Once the architecture of UnrealROX had been studied, a series of objectives were
set to make the environment more flexible and efficient. One of the first priorities
was to add support for on boarding cameras, since most robots in the public market
integrate multiple cameras in different parts of their bodies (see Section 4.2). In
addition, we implemented external cameras to provide the robot with information
that it is not able to perceive directly.

FIGURE 1.4: Multi-camera setup on UnrealROX.

Adding more cameras increased considerably the computation time when we
executed the algorithm to generate data, which meant that we needed to do some-
thing regarding the generation algorithm. The final decision was to get rid of the
client Python application to communicate with the UnrealCV server, executing ev-
erything locally. This decreased considerably the execution time of the algorithm.
Then, in order to not bound ourselves to UnrealCV, we decided to create a ground
truth generator specific for UnrealROX, which allowed us to have more control over
the generated data. We also added a way to select which type of data is relevant
for the user, so we only generate the data that the user specifies on the generation
settings.

Furthermore, we were able to integrate support for the HTC Vive headset, which
was possible thanks to the cooperation of the DTIC department. Adding support for
other devices on UE4 is easy thanks to the input system and the flexible API that the
engine provides.

Another of the great challenges that UnrealROX posed was to completely refac-
tor the animation system in order to simplify the import of new 3D agents (skele-
tal meshes), for that, we implemented a custom animation node for the animation
system of UE4 that enabled us to bulk a series of bones by name accompanied by
the modified transform; this node is the responsible of setting the translation and
rotation of all the bones that we record with the Tracker Actor. Another of my re-
sponsibilities in the project was to convert all the code to C++ to decrease compute
time.

1.4 Thesis Structure

This thesis is organized as follows. In Chapter 1 we give an introduction to the
project and its goals. In Chapter 2 we review the current state of the art as well as
all the inspirational works that have been instrumental in the creation of this project.
Then, in Chapter 3 we describe the methodology followed in this work ranging from
all the hardware equipment to each software tool we used. Next, in Chapter 4, we
describe every subsystem that composes UnrealROX. And finally, in Chapter 5 we
we draw the conclusions to which we have been able to arrive after this work.

2http://docs.unrealcv.org/en/latest/reference/architecture.html

http://docs.unrealcv.org/en/latest/reference/architecture.html

5

Chapter 2

State of the Art

The second chapter reviews the current state of sim-to-real. First, we will explore the two
main avenues, photorealism and domain randomization. Then, we will put some of the most
relevant simulators in context. And finally, we will present the advantages of UnrealROX.

2.1 Sim-To-Real

One of the main problems when training a semantic segmentation model is the
dataset. Specific large-scale sets of images are needed to solve different problems
since we need to include a considerable amount of variability and complete ground
truth for each one of them. Collecting data that satisfies these requirements is hard
due to the main difficulties of capturing and processing this data manually.

Traditional data collection techniques consist on capturing the environment with
the right device. For instance, if we want to capture 2D data, an RGB camera is
needed. Following next we have to process the data based on the problem require-
ments, this means that we need to define a set of classes to represent every entity we
want to classify and assign an identifier to each class. In the case of 2D Semantic Seg-
mentation, this codification can be done with colors so we would paint every pixel
from each captured image with the chosen color for that class. This is a complicated
and costly process since it requires human operators to paint the images, which can
introduce errors in the dataset due to the resolution and the quantity of classes some
of these datasets handle. Figure 2.1 showcases a manually labeled image from the
Mapillary Vistas Dataset1, where each color represents a different entity type.

FIGURE 2.1: Manually labeled scene from the Mapillary Dataset.

1https://www.mapillary.com/dataset/vistas?pKey=aFWuj_m4nGoq3-tDz5KAqQ&lat=20&lng=
0&z=1.5

https://www.mapillary.com/dataset/vistas?pKey=aFWuj_m4nGoq3-tDz5KAqQ&lat=20&lng=0&z=1.5
https://www.mapillary.com/dataset/vistas?pKey=aFWuj_m4nGoq3-tDz5KAqQ&lat=20&lng=0&z=1.5

6 Chapter 2. State of the Art

The importance of large-scale data when working with data-hungry learning al-
gorithms is critical in order to achieve proper results and generalization. As we saw
before, collecting and labeling real-world data is a tedious and costly process partly
due to the main complications explained above.

This problem is partially solved thanks to synthetic datasets, which are created
without the need for real data. However, for a synthetic dataset to be useful, it
must resemble reality as much as possible. Physics simulators like Bullet2, FleX3 or
PhysX4, and 3D rendering engines in Unity, UE4, and Physically Based Rendering
(PBR) engines have played a substantial role in this process.

To recapitulate, synthetic datasets are sets of computer generated or enhanced
images for which ground truth can be extracted automatically without the need for
human intervention, which alleviates the laborious and complex task of collecting
real world data.

In this section, we will document sim-to-real and see the different influxes that
dominate the state of art. In section 2.1.1, we explain how photorealism has been
a very important factor when generating synthetic datasets, as well as how some
modern tools, such as ray-tracing, have improved the rendering pipeline to achieve
more photorealistic results. In section 2.1.2 we describe the alternative to photore-
alism, Domain Randomization (DR), and we will expose some related works. Sec-
tion 2.1.3 describes different simulators that have helped on this matter. Then, Sec-
tion 2.1.4 showcases UnrealCV (UCV) and NVIDIA Deep learning Dataset Synthe-
sizer (NDDS), two generators able to generate ground truth given a dataset. And
finally, Section 2.1.5 will put UnrealROX, our sim-to-real simulator, in context.

2.1.1 Photorealism

As we commented previously, a synthetic dataset is useful when it is capable of
significantly resembling reality in a considerable manner. In this regard, the use of
photorealistic rendering solutions is a necessity.

The state of the art in relation to photorealism is evolving vertiginously. One
of the biggest advancements today is the inclusion of real-time ray-tracing technol-
ogy in NVIDIA GeForce RTX5 graphics cards. Ray-tracing allows to simulate the
physical behavior of light to provide a cinematographic quality rendering in real
time. This implies a great advance in the field of real-time rendering, since real-time
ray-tracing has not been possible until the current date. NVIDIA RTX technology
introduces some new features to the graphics pipeline:

• Ray-Triangle Intersection: This technique lets us decide what to do when a ray is
shot into a scene. It is up to the user to determine if it intersects with geometry
and what to do with it regarding reflections, occlusion, shadows and things of
that nature.

• Bounding Volume Hierarchy (BVH): A BVH is a tree-based data structure that
contains multiple hierarchically-arranged bounding boxes that surround dif-
ferent amounts of scene primitives (see Figure 2.2). In this type of data struc-
ture each ray only needs to be tested against the BVH using a depth-first tree
traversal process instead of against every primitive in the scene, this makes
doing high-performance ray tracing into a scene in real time possible.

2https://pybullet.org/wordpress/
3https://developer.nvidia.com/flex
4https://www.geforce.com/hardware/technology/physx
5https://www.nvidia.com/en-us/geforce/20-series/rtx/

https://pybullet.org/wordpress/
https://developer.nvidia.com/flex
https://www.geforce.com/hardware/technology/physx
https://www.nvidia.com/en-us/geforce/20-series/rtx/

2.1. Sim-To-Real 7

FIGURE 2.2: Visual representation of a BVH data structure. Source:
NVIDIA Devblogs6.

• Denoising Filtering: Ray tracing results in a grainy image for real time solutions.
Denoising filtering can produce high fidelity images from ray tracers that ap-
pear visually noiseless, as we can see in Figure 2.3. Denoisers need to inter-
pret and merge these pixels in the most appropriate way, that is why many
approaches do not work quite well in motion, since pixel caching is not a pos-
sibility. Some denoising implementations choose to blur the final result by
design to eliminate any kind of artifact, this is the case of Metro Exodus Global
Illumination (GI) Ray Tracing approach, which does not take into account nor-
mal maps, just stores the scene data in a voxel grid as spherical harmonics in
world space which encodes some color and directional properties7.

FIGURE 2.3: Denoise filter applied over a real time ray-traced image.
Image from: What’s the Latest? DirectX and the New Rise of Ray Tracing8.

The RTX graphics cards also feature a new technology called Deep Learning Su-
per Sampling (DLSS) that uses artificial intelligence to generate crisp images while
running up to 2 times faster than previous generation GPUs using conventional anti-
aliasing techniques. In short, DLSS render pass, renders the scene at a lower reso-
lution and then uses an AI algorithm to make it look as rendered at a higher one,
but without the overhead of rendering it at that resolution. Thats where the perfor-
mance enhancement comes from, and ideally, where the maintained visual quality
does too. Figure 2.4 displays a comparison between DLSS enabled and disabled.

6https://devblogs.nvidia.com/thinking-parallel-part-ii-tree-traversal-gpu/
7https://www.eurogamer.net/articles/digitalfoundry-2019-metro-exodus-tech-interview
8https://www.youtube.com/watch?v=476N4KX8shA

https://devblogs.nvidia.com/thinking-parallel-part-ii-tree-traversal-gpu/
https://www.eurogamer.net/articles/digitalfoundry-2019-metro-exodus-tech-interview
https://www.youtube.com/watch?v=476N4KX8shA

8 Chapter 2. State of the Art

(A) Metro with DLSS disabled.

(B) Metro with DLSS enabled.

FIGURE 2.4: DLSS provides better images without using as much pro-
cessing power of the graphics card as traditional anti-aliasing tech-
niques.Images are courtesy of Patrick Glynn from Bubble Pony INC.

However, the final output image that DLSS produces is far from perfect, since the
super-sampling algorithm generates blur in some cases, which is not very ideal for a
photorealistic setup. Added to the fact that DLSS is an NVIDIA exclusive technology
that requires new hardware and compatible software as of today.

Even with all these inconveniences, real-time ray tracing is usable to generate
photorealistic synthetic datasets, since the quality of the output images is decent
enough. Selective ray tracing is a technique that DICE has developed and demon-
strated on Battlefield 59. This approach allows them to know which surfaces have
reflective properties, so they trace more rays from the most reflective surfaces, and
less rays from the less reflective ones. Which allows them to have ray tracing re-
flections where it matters, which lets them deliver a really great result, while still
delivering a good frame rate.

To sum up, if it is desired to use real time ray tracing in its greater potential as
of today, it is necessary to make an intelligent use of the technology. Nowadays, our
hardware resources do not allow us to trace an infinite number of rays in real time,
that is why hybrid solutions must be considered.

9https://www.ea.com/es-es/news/battlefield-5-real-time-ray-tracing

https://www.ea.com/es-es/news/battlefield-5-real-time-ray-tracing

2.1. Sim-To-Real 9

We have talked about hyper-realistic rendering in real time and how for the
present time, these solutions are limited to high end devices even using advanced
optimization techniques. However, offline solutions are more affordable for the
average consumer since the main trade-off is rendering time. These systems take
longer to compute because they are looking for the most accurate result. In this case,
instead of having a hybrid ray-tracing approach in real time to get high resolution
and good frame-rate, we focus on achieving the same but offline. This means that
we can multiply significantly the amount of rays we trace, meaning that each frame
will take a considerable amount of time to render.

Although we increase the number of rays per pixel, it is necessary to apply a
denoising filter over the scene to hide minimum artifacts that have been produced.
Obviously this denoising will not have to assume as much information as an aggres-
sive denoiser and will be able to return more precise results as we can see in Figure
2.5 taken from the RenderMan10 render system.

(A) 96 rays per pixel, before denoising. (B) After denoising.

FIGURE 2.5: RenderMan denoising algorithm created by Walt Disney
Animation Studios and Disney Research.

Offline rendering is used in animation films, where they can afford to trace bil-
lions of rays per frame. However, rendering a single frame using this technique is
very slow, that is why film studios, such as PIXAR or LucasFilms, employ rendering
farms where they can distribute the work-load and speed up the production of the
film. It is clear that there is a relationship between visual quality and computational
time, where the user utilizing the rendering engine is the one who decides how many
traces make a specific scene look right for the imposed quality requirements.

As we can see, the rendering cost is equivalent to the amount of rays we want to
trace. The more rays we add, the more accurate and expensive to render the scene
will be. The less rays we add, a more aggressive denoising filter will be needed, and
as we said previously, an aggressive denoiser decreases the overall quality of the
output image.

10https://renderman.pixar.com

https://renderman.pixar.com

10 Chapter 2. State of the Art

One of the main problems when it comes to render hyper-realistic scenes is reso-
lution. If we take a modern high-budget animated ray-traced film as an example, we
could speak of an average of 1,584 rays per pixel. That would be 3,284,582,400 rays
for a single 1920 x 1080 image, which makes 13,138,329,600 rays for a 4K frame, with-
out having any lights that add more complexity to it (this data has been extracted
from Arnold render system11 on production quality).

The problem is evident, the computational cost increases for the same amount of
rays per pixel the higher the desired resolution is. We spoke earlier about NVIDIA’s
DLSS technology, which upscales the input image using Artificial Intelligence. This
technique suggests to render first at a lower resolution, which means that we trace
less rays (maintaining the same amount of rays per pixel), to then post-process the
image upscaling it. NVIDIA has demonstrated that this technique is applicable in
real time with DLSS [12]; however, the algorithm is not available to the public as of
today.

On the other hand, a paper presented in 2017, proposes the use of Generative
Adversarial Networks (GAN) [8] to solve this problem. In this paper they discuss
and compare the performance of SRResNet and SRGAN to NN, bicubic interpola-
tion, and four state-of-the-art methods [5]. The idea is similar: rendering the image
at a lower resolution (off-line or on-line), and then post-process it to achieve the de-
sired resolution. Figure 2.6 represents the distinction between different upscaling
methods in a practical way.

FIGURE 2.6: Results of a sample from Set5 using bicubic interpola-
tion, SRResNet and SRGAN. [4× upscaling]. Image taken from the

paper referenced.

The main objective of that work is to improve the overall quality of the target
images rather than computational efficiency. However, they prove that shallower
networks have the potential to provide very efficient alternatives at a small reduction
of qualitative performance, nonetheless, this comes at the cost of longer training and
testing times.

This type of architecture consists of two neural networks that compete with each
other in a zero-sum game framework. The generative network generates candidates
while the discriminative network evaluates them. The generative network training
objective is to increase the error rate of the discriminative network [17]; this is why
GANs deliver a powerful environment for generating realistic looking natural im-
ages with high perceptual fidelity.

11https://docs.arnoldrenderer.com

https://docs.arnoldrenderer.com

2.1. Sim-To-Real 11

In conclusion, the best rendering technique in terms of photorealism out of the
traditional ones12 [25] is non-hybrid ray-tracing; however, this method comes with
the disadvantage of a very great performance cost if it is desired to render at a high
resolution with a great sample-per-pixel rate. In order to circumvent this issue, the
current state of the art is trying to optimize the process using upscaling techniques;
however, these approaches affect the quality of the final image. Nonetheless, they
can provide accurate enough output images to represent a close-to photorealistic
setup. In conclusion, it is conceptually impossible to get a lossless output using
these methods, but thanks to this problem, upscaling techniques have evolved to a
point where the upscaled result is very close to the original image, hence we could
consider that getting close to a photo-realist environment should be the main con-
sideration when creating a photorealistic synthetic dataset.

2.1.2 Domain randomization

As we said in the introduction of this section, domain randomization is the main
alternative to photorealism. Domain randomization is a technique for training mod-
els with synthetic data that gets generated by randomizing input in a simulator
(meshes, materials, lighting...). With enough variability, the real world may appear
to the model as just another variation [22]. There are a lot of approaches to generate
synthetic data to construct a domain randomized dataset. The simplest approach
is object randomization. If we take NVIDIA’s Isaac Sim13 domain randomization
plugin as an example, displayed in Figure 2.7, we can study simple randomization
techniques:

• Randomize Meshes: Each class has an array of possible meshes. The selected
mesh gets determined thanks to the seed mechanism included in the plugin
used to initialize a pseudorandom number generator.

• Randomize Lighting: Randomizing how lighting behaves on a specific scene is
crucial if it’s desired to achieve a data-set able to perform great at different
lighting conditions. This Plugin allows the user to tweak how the light looks.

• Randomized Materials: Aside randomizing meshes and lighting, we can take ex-
isting meshes and modify their materials to increase the samples of a single
class without the need of modeling a new object of the same type.

FIGURE 2.7: Isaac Sim Randomized scene.

12https://en.wikipedia.org/wiki/Rendering_(computer_graphics)#Techniques
13https://docs.nvidia.com/isaac/isaac_sim/index.html

https://en.wikipedia.org/wiki/Rendering_(computer_graphics)#Techniques
https://docs.nvidia.com/isaac/isaac_sim/index.html

12 Chapter 2. State of the Art

Another interesting approach not observed on this project, is generating and de-
forming meshes in runtime. UE4 provides a powerful set of tools to generate and
edit meshes in real time14; however, the main complication when using these tools
is that we need to work with fully procedural content, meaning that we have to
parametrize everything to create objects that make sense and belong to our domain.
Figure 2.8 shows a mesh created using these tools.

(A) Blueprint graph to generate a simple squared plane with a procedural mesh component.

(B) Result of the parameters applied on Figure 2.8a.

FIGURE 2.8: Using UE4’s procedural mesh component to generate a
mesh in real time.

Defining a mesh in runtime is costly and complicated, that is why it is not con-
sidered on most of the cases. However, deforming a mesh could help for future
non-rigid objects deformations, which is one of the current limitations of most of the
grasping simulators, like UnrealGrasp [13], included on UnrealROX.

14https://api.unrealengine.com/INT/BlueprintAPI/Components/ProceduralMesh/index.html

https://api.unrealengine.com/INT/BlueprintAPI/Components/ProceduralMesh/index.html

2.1. Sim-To-Real 13

On October of 2018, NVIDIA’s research group published a paper that presents
Structured Domain Randomization (SDR) as an alternative of DR. In contrast to DR,
which places objects and distractors randomly according to a uniform probability
distribution, SDR places objects and distractors randomly according to probability
distributions specific to the presented problem [14]. The main strength of SDR is
that takes into account the context and structure of the scene; hence the parame-
ters exposed for the random system to modify are constraint to real world possible
data. Meaning that we won’t have nonsensical randomizations as the one exposed
in Figure 2.9 for the Virtual KITTI (VKITTI) dataset [2].

FIGURE 2.9: Domain randomization intentionally avoids photoreal-
ism for variety, which leads to weird generated synthetic data. Image

extracted from the same paper.

SDR strikes a balance between photorealism and domain randomization, pro-
ducing images that are realistic in many respects but nevertheless exhibit large vari-
ety. SDR focuses its attention on improving the VKITTI dataset with sensical domain
randomization; for that, a scenario is chosen at random, then global parameters
(road curvature, lighting, etc.),which cause context splines (road lanes, sidewalks,
etc.) to be generated, upon which objects (cars, pedestrians, cyclists, houses, build-
ings, etc.) are placed. Figure 2.10, shows a comparison between different synthetic
datasets used for training object detection models.

FIGURE 2.10: Synthetic data coming out from similar datasets. Image
extracted from the same paper.

SDR outperforms the GTA-based synthetic data of Sim 200k [6], because SDR
provides more variability in the geometry of the scenes. VKITTI is a replica of the
KITTI dataset [4] so it is highly correlated with KITTI, which means not enough
variability. Also, DR generates nonsensical data as commented above. According
to the authors, synthetic SDR data combined with real KITTI data outperforms real
KITTI data alone, thanks to the context based generation.

14 Chapter 2. State of the Art

As we mentioned before, domain randomization sacrifices realism to include a
lot of variety in its samples. SDR partially solves this problem by manually control-
ling the generation parameters with a predefined set of scenarios.

Bhairav Mehta et al. proposed on April of 2019 Active Domain Randomiza-
tion (ADR) [10], a type of DR that looks for randomized environments that maximize
utility for the agent policy within a given randomization range. The task of search-
ing randomized environments is casted as a Reinforcement Learning (RL) problem
[20], where the samples get parameterized using Stein Variational Policy Gradi-
ent (SVPG), which balances exploitation and exploration [9]. ADR method learns
an adaptive randomization strategy that finds problematic environments within the
given randomization ranges. They found that training on these instances led to bet-
ter agent generalization. Also, according to the authors, ADR can provide insight
into which dimensions and parameter ranges are most influential, which can aid the
tuning of randomization ranges before expensive experiments are undertaken. Fig-
ure 2.11, displays the main functioning scheme of Active Domain Randomization.

FIGURE 2.11: "ADR proposes randomized environments (c) or simu-
lation instances from a simulator (b) and rolls out an agent policy (d)
in those instances. The discriminator (e) learns a reward (f) as a proxy
for environment difficulty by distinguishing between rollouts in the
reference environment (a) and randomized instances, which is used
to train SVPG particles (g). Enforced through the SVPG formulation,
the particles propose a diverse set of environment dynamics, and try
to find the environment parameters (h) that are currently causing the

agent the most difficulty" (Bhairav Mehta et al.).

The main issue of ADR is that the reward calculation and discount factor need
to be defined manually for each proposed environment due to the RL approach.
However, this solution expedites the overall process of obtaining a randomized set
that works for a specific problem by automating the parameter lookup.

2.1. Sim-To-Real 15

2.1.3 Simulators

Traditionally, computer vision problems are approached using real world datasets.
However, most of the current vision problems need to develop perception models
for agents that are physically active in the world, like robots. Commercial datasets
are passive and cannot achieve this task, since the content or camera location cannot
change according to agents actions. This issue can be solved by placing a physical
agent in a world with a series of on-board cameras. The main trade-off of this ap-
proach is that learning speed is bounded to real time; also, important critical events,
like a car crash, cannot be freely reproduced; plus the fact that working with hard-
ware can become very tedious and expensive. An alternative approach is learning
in simulators; however, we encounter two new challenges about generalization:

• Photorealism: In Section 2.1.1 we documented some of the main issues photore-
alism has as of today. However, these problems can be alleviated as hardware
and computer graphics get better followed along the improvement of domain
adaptation methods.

• Semantic distribution mismatch: The models used in simulators are usually hand
designed and artificial so they do not really reflect the semantic complexity of
real-world. This issue can be improved with domain randomization.

In this section we review some of the most popular simulators that alleviate the
commented issues. First, we describe Gibson, followed by AI2-THOR. Next, we
discuss how Minos and House3D have been relevant on the current state of the art.

On August 2018, Fei Xia et al. proposed the Gibson Environment [27], a real-
world perception simulator for embodied agents. Figure 2.12 displays and describes
the Gibson Environment at a glance.

FIGURE 2.12: On this representation, there is an active agent subject
to physics constraints simulated by PyBullet (gravity and collision)
that can move around in a large space. Said agent receives a stream
of RGB frames, captured with a virtual on-board camera, plus some
additional modalities like semantics or depth. Image from: GIBSON
ENVIRONMENT: a real-world perception simulator for embodied agents15.

16 Chapter 2. State of the Art

Gibson provides a dataset that counts with 572 full buildings, which consist on
real spaces scanned with 3D scanners, that can be fully explored on the simula-
tor. Gibson also gives the possibility to import arbitrary agents using the Universal
Robotic Description Format (URDF)16 as we can see in Figure 2.13.

FIGURE 2.13: Multiple agents on Gibson thanks to the import feature.

In Gibson, the physics constraints are enforced by integrating PyBullet3D17 en-
gine, which encompasses all the collision and gravitational data of the simulator.

In order to provide RGB frames from arbitrary viewpoints, they developed a
neural view synthesizer called Goggles, that has a baked-in adaption mechanism for
transferring to real world. This approach geometrically renders a base image for the
target view, which is resorted to a neural network to correct artifacts. Said neural
network fills the dis-occluded areas, along with jointly training a backward function
for mapping real images onto the synthesized ones, as we can see on Figure 2.14.

FIGURE 2.14: Goggles can be seen as corrective glasses of the agent.
Image source: Gibson paper referenced above.

15https://www.youtube.com/watch?v=1T8-PLy5mVo
16http://gazebosim.org/tutorials/?tut=ros_urdf
17https://pybullet.org/wordpress/

https://www.youtube.com/watch?v=1T8-PLy5mVo
http://gazebosim.org/tutorials/?tut=ros_urdf
https://pybullet.org/wordpress/

2.1. Sim-To-Real 17

One of the main issues of Gibson is the lack of interaction with the scene, AI2-The
House Of inteRactions (THOR) [7] proposes an environment centered mainly in in-
teraction, as we can see in Figure 2.15. AI2-THOR is an open-source visual AI plat-
form that provides a rich actionable 3D environment controlled by a Python interface
to communicate with the engine through HTTP commands.

AI2-THOR v1.0 consists of 120 near photorealistic scenes covering four different
categories: bedrooms, bathrooms, living rooms and kitchens, within which an agent
can interact. Interaction takes various shapes in THOR: the agent can open and close
different objects, pick up and place them in various locations, turn on and off lights...

FIGURE 2.15: Interaction example of AI2-THOR. Figure from: AI2-
THOR: An Interactive 3D Environment for Visual AI.

Photorealism is one of the main features of THOR, since it allows better transfer
of learned models to the real world. THOR is built on top of the Unity game engine,
which allows for observing pixel level results to actions performed by the agents,
as well as support on a wide variety of platforms. Some of the drawbacks of this
environment are the absence of a controllable 3D agent, the lack of multiple points
of view, and the binary categorization for interactables, e.g., a door can be only open
or closed. However, the fact that THOR os a Unity project, makes easier its extension.

Multimodal Indoor Simulator (MINOS) [18] is a simulator for navigation in com-
plex indoor environments. The framework provides access to a large number of real-
istic synthetic scenes and reconstructed indoor spaces such as SUNCG [19] and Mat-
terport3D [1] respectively. MINOS provides a 3D agent represented by a cylinder
proxy geometry with parameterized radius, height and ground offset; able to navi-
gate through the scenes, obtaining (if desired) information from multimodal sensory
inputs, including vision, depth, surface normals, contact forces, and semantic seg-
mentation. The simulator provides two client APIs: a Python wrapper designed to
support efficient RL, and a web client for interactive exploration and data collection.
Figure 2.16 showcases an overview of the MINOS framework and APIs.

However, this simulator lacks some features such as photorealism, a more com-
plex geometry model instead of a cylindrical proxy, configurable points of view, and
scene interactions.

18 Chapter 2. State of the Art

FIGURE 2.16: Overview of the MINOS framework and APIs. Figure
from: MINOS: Multimodal Indoor Simulator for Navigation in Complex

Environments.

House3D [26] is a rich, extensible and efficient environment that contains over
45,000 synthetic 3D scenes of visually realistic houses, equipped with a diverse set
of fully labeled 3D objects, textures and scene layouts, sourced from the SUNCG
dataset. Each scene in SUNCG is fully annotated containing 3D coordinates, object
type and the room these objects are in.

There is a simplistic agent able to access the following data: the visual RGB signal
of its current first person view, semantic/instance segmentation masks for all the
objects visible in the same view, and depth information (see Figure 2.17).

FIGURE 2.17: House3D agent ground truth. Figure from: House3D :
A Rich and Realistic 3D Environment.

To render SUNCG scenes they have employed OpenGL, which can run on both
Linux and MacOS, and provides RGB images, semantic segmentation masks, in-
stance segmentation masks and depth maps.

Nevertheless, House3D has some disadvantages, such as the lack of a realistic
3D agent, the absence of interactive elements and the non-existence of many per-
spectives to capture the data.

2.1. Sim-To-Real 19

2.1.4 Generators

When it comes to generate a dataset, not only simulators have been relevant for this
task. Generators decouple the ground truth creation from the problem paradigm. A
generator consists of a decoupled interface to generate ground truth given synthetic
data. These generators work with environments able to hold said samples, such as
Unity or UE4. The main difference between a generator and a simulator that gener-
ates, is that the generator is agnostic to the problem paradigm, while the simulator
can induce data into their generation process, to solve problems such as the semantic
interaction proposal mentioned in Section 1.2.

Although generators are agnostic to the problem to resolve and can only be used
in the environment for which they were created, they have the great advantage of
being decoupled entities. This implies that we will be able to use the generator
in any project of the environment for which they have been created without major
complications.

In this section we are going to review two generators that have inspired the cre-
ation of our simulator, UnrealROX. Concretely, we are going to describe chronologi-
cally UCV and NDDS, both working under the UE4 environment.

UCV [15] [16] is a generator for UE4 that extends the engine to create virtual
worlds and facilitate communication with computer vision applications. UnrealCV
is comprised of two components: server plugin and client application.

• Server plugin: The server consists of a UE4 plugin that runs embedded into a UE4
project. It uses the built-in socket system of the engine to listen to UnrealCV
commands sent by a client, executing them using UE4’s C++ API18. For exam-
ple: change the current view mode.

• Client application: The client is a Python application which communicates with
the server. It sends commands to the server and waits for a response. All the
commands can be consulted in the official documentation of the generator.

UnrealCV generates synthetic images and its ground truth as we can see in Fig-
ure 2.18. The generator can produce RGB, object instance mask, depth and surface
normal images.

FIGURE 2.18: The room is from the demo RealisticRendering, built by
Epic Games. From left to right are the synthetic image, object instance
mask, depth, surface normal. Image taken from the UnrealCV paper.

Besides the fact that UnrealCV is an open-source tool decoupled and agnostic
to the problem to resolve, it has some inconveniences. The main disadvantage of
UnrealCV is the delay induced by the client-server communication. This delay slows
down the dateset generation process in spite of gaining a good flexibility thanks to
the proposed paradigm.

18https://docs.unrealengine.com/en-us/Programming

https://docs.unrealengine.com/en-us/Programming

20 Chapter 2. State of the Art

Thang To et al. released on 2018 NDDS [21], a UE4 based simulator which solves
the problematic issue of generating hand-labeled data. This is troublesome when the
task demands expert understanding or not-so-obvious notations (e.g., 3D bounding
box vertices). To solve these limitations, using simulators is one of the most recurrent
state of the art strategies.

NDDS is an NVIDIA UE4 plugin that allows computer vision researchers to ex-
port high-quality labeled synthetic images. NDDS supports images, segmentation,
depth, object pose, bounding box, key points and custom templates. In addition to
the exporter, the plugin includes different components to generate random images.
This randomization includes lighting, objects, camera position, poses, textures and
distractors, as well as camera path tracking, and so on. Together, these components
allow researchers to create random scenes to train deep neural networks.

FIGURE 2.19: Example of an image generated using NDDS, along
with ground truth segmentation, depth, and object poses. From the

referenced paper.

This simulator has been used to generate the Falling Things dataset: A Synthetic
Dataset for 3D Object Detection and Pose Estimation [23]. Which has been success-
fully tested and used to solve a deep object pose estimation problem [24], so this
proves that networks trained on synthetic data operate correctly when exposed to
real-world data.

We are proving slowly that these networks perform well in the real world when
trained with synthetic samples, this means that these environments are effectively
helping to close the gap between synthetic and real data. Continuous research on
simulators depend on how rendering solutions and hardware evolve in the future.
Domain randomization has proven to work if the data is sanitized, however, photo-
realism is as well part of the formula in which simulators have yet to improve.

2.1. Sim-To-Real 21

2.1.5 UnrealROX in context

In this section we have talked about a good portion of the current advancements
of the Sim2real field. To recap, in Section 2.1.1, we discussed some of the improve-
ments, advantages and disadvantages of synthetic photorealism. Then, in Section
2.1.2, we cover the main alternative to synthetic photorealism: domain randomiza-
tion, which solves partially the variability problem. Simulators have played an im-
portant role in generating synthetic datasets. However, the biggest problem with
the majority of them, is that they focus their resources on either getting many FPS,
or achieving a decent resolution.

UnrealROX tries to alleviate these problems by balancing the resource consump-
tion, offering that way high resolution photorealism (1080p) at 60 FPS, combining
the strenghts of previous simulators and reducing their weaknesses (strenghts like
resolution, framerate, and realism) and reducing weaknesses (now objects are inter-
actable, hands, grasping...). In addition, UnrealROX is developed on top of the UE4
engine, which means that the State of Unreal19, can translate seamlessly to what the
simulator will be able to offer in the future at a higher level, including ray-tracing
(see Figure 2.20).

FIGURE 2.20: State of Unreal (2019) shows UE4’s take on ray-tracing.

UnrealROX is open-sourced, this means that it’s not a single purpose simulator,
since the final user can modify its goal. As of today, UnrealROX is being extended
in some projects on the University of Alicante, this means that it is constantly under
development to make the whole framework more user friendly. The base of Unreal-
ROX covered on this work has the following features:

• Virtual Reality: UnrealROX is an environment that records the movements of an
operator and plays them back off-line generating ground truth (instance seg-
mentation, normal maps, depth and RGB data). This means that the user is
the main responsible of the movements of the robot in which we play back this
motion. This introduces a layer of natural movement from which the dataset
can benefit.

• Complex kinematic system: Thanks to the built in Forward And Backward Reach-
ing Inverse Kinematics (FABRIK) system, the agents can resolve bone hierar-
chy movements respecting their degrees of freedom.

19https://www.youtube.com/watch?v=s55Uob494Do

https://www.youtube.com/watch?v=s55Uob494Do

22 Chapter 2. State of the Art

• Grasping: UnrealROX comes with UnrealGrasp, a grasping system that allows an
agent to interact and grasp dynamic objects from the scene, as we can see on
Figure 2.21.

FIGURE 2.21: With UnrealGrasp you can grasp two dynamic objects
simultaneously.

• UE4: Being a UE4 project brings an incredible amount of advantages to this work.
For example, thanks to the Skeletal Mesh system, we can re-target new skele-
tons easily by mapping bone names; this means that we can import photoreal-
istic arms to generate a synthetic dataset with UnrealGrasp. Furthermore, UE4
counts with a very powerful community that generate content constantly. This
has been a critical point for UnrealROX, since all the scenes we gathered come
from its community. We can also find URDF import plugins and several tools
that can speed up the development.

• Multicamera System: UnrealROX allows the user to define as many on board
cameras as desired. It supports aswell static cameras. This makes the dataset
more rich in content and context thanks to the multiple points of view. Ground
truth is also generated for each one of these cameras.

• Open to domain randomization: As we said previously, UnrealROX is an open
source simulator that supports extensive customization. This means that there
is an open via to cover both of the Sim2Real avenues, photorealism and do-
main randomization. One example of this is Isaac Sim, as we commented in
Section 2.1.2, it is an environment created on UE4 that supports extensive do-
main randomization.

In short, UnrealROX is an open source framework that allows users to extend (or
modify) its base using Blueprints and/or C++. Aside working with virtual reality
(VR), the possibilities of UnrealROX go beyond that. Some of these points are further
elaborated on chapter 4.

23

Chapter 3

Methodology

In this third chapter we describe the different materials and methods we used in this Thesis.
The chapter is divided into three sections: Section 3.1, where we put in context the different
materials based on their nature. Section 3.2, where we decompose the software used to make
UnrealROX. And finally Section 3.3, where we reveal the different physical resources we had
to employ to make posible this Thesis.

3.1 Introduction

To do this work we have chosen the most appropriate tools based on our require-
ments. This environment encompasses several tools, such as UE4, Visual Studio, Vi-
sual Assist, Python, irfanView and Sublime Text Editor. All these tools have been used
to develop, post process and validate the generated data.

Furthermore, we need hardware that adheres to our needs. In this case it is rec-
ommended to have a powerful setup with a mid-end/high-end GPU that supports
complex scenarios composed by high resolution textures and detailed models. In ad-
dition, due to the nature of this work, we need a virtual reality headset compatible
with UE4.

3.2 Software

It is essential to have the necessary tools to carry out an UE4-based project for data
generation. The choice to work with UE4 and not other game engine is mainly
because of the virtual reality support and the potential to represent photorealistic
scenes in real time. In addition, I count with previous experience working with UE4,
which has helped on the development of the tool. UE4 disposes of Blueprints, a
visual scripting tool that we have used to prototype the base functionality of the
project. Then, we iterated to C++ for efficiency and flexibility, so we needed an IDE;
that is where Visual Studio comes into play as well as Visual Assist. We also needed
to program a set of scripts to process and post-process the data, so we used Python.
Finally, we used irfanView and SublimeText to verify the generated samples.

Unreal Engine 4

If we want to define UE4, we can look directly at the definition that Epic Games
give in their official web page1: "Unreal Engine 4 is a complete suite of development
tools made for anyone working with real-time technology". UE4 is the tool we use to
generate the first layer of data, in order to get to that point we had to build a project
named UnrealROX that counts with a set of tools which allows the user to record

1https://www.unrealengine.com/en-US/features

https://www.unrealengine.com/en-US/features

24 Chapter 3. Methodology

their actions in a realistic scene, and then be able to reproduce them frame by frame
exporting the desired images (depth, rgb, normals and/or mask).

UE4 also counts with a custom scripting language called Blueprints that allows
us to define custom behaviors in a very easy way, we will see some of its features
later in Section 4.4.2. Blueprints have played a substantial role when developing
UnrealROX, since they allow quick iterations to create a prototype, which can be
later converted and extended in C++.

Some of the main advantages of Unreal Engine that have been beneficial for the
complete development of UnrealROX are the following:

• Active development: UE4 is on continuous development due to how demanding
the gaming industry is. This makes the engine perfect for current state of the
art studies in modern rendering techniques. One recent example is the inclu-
sion of ray-tracing technology in real time, as we commented in Section 2.1.1.
Also, the staff tries to fix as soon as possible all the bugs that might appear
between versions.

• Big community: UE4 disposes of a very active community located in the offi-
cial forums2, the unofficial UnrealSlackers Discord3 and the UE4 AnswerHub4,
where continuous questions are answered of several problems from various
topics. UE4 marketplace is where creators sell or give out UE4 assets for free
, which is the case of some of the scenes we employed in the creation of The
RobotriX dataset [3].

• Blueprints: This is one of the most powerful tools that the engine disposes. It
started as Unreal Kismet5 and has been evolving since the first version of Un-
real Engine 4. The set of tools available in Blueprints makes possible to pro-
totype quickly any project using only this visual scripting language. The only
inconvenience is that it is binary based, which hampers version controlling.

Figure 3.1 displays how Blueprints look and the UE4 AnswerHub community.

(A) Blueprints. (B) UE4 AnswerHub.

FIGURE 3.1: This figure showcases some of the advantages of UE4. In
Figure 3.1b we can see some members of its community.

2https://forums.unrealengine.com/
3https://unrealslackers.org/
4https://answers.unrealengine.com
5https://www.youtube.com/watch?v=IReehyN6iCc

https://forums.unrealengine.com/
https://unrealslackers.org/
https://answers.unrealengine.com
https://www.youtube.com/watch?v=IReehyN6iCc

3.2. Software 25

In Figure 3.2 we can see the capacity of UE4 to render photorealistic scenes.

FIGURE 3.2: Snapshots of the daylight and night room setup for the
Realistic Rendering released by Epic Games to showcase the realistic

rendering capabilities of UE4.

However, it’s not all about advantages, since UE4 has some inconveniences and
inconsistencies we had to deal with:

• Regressive bugs: UE4 has some inconsistencies when it comes to Blueprint-C++
communication. From cyclical dependencies that produce Class Default Object
(CDO) resets, to blueprintable C++ structs that get corrupted after inserting
members on the type. As I mentioned before, these bugs get addressed when
the staff is able to reproduce them, but they eventually come back between
versions, which makes updating projects of UE4 harder.

• C++ compile times: This is not exactly a UE4 problem, but since UE4 uses C++
we can include it to the list. When not using a very powerful setup, compiling
a project can take minutes, which slows down considerably the development
process. Current versions of UE4 have improved the situation with Live++6.

Fortunately, the advantages far outweigh the disadvantages for the scope of this
project, which is why we have decided to go ahead with Unreal Engine despite the
inconveniences discussed.

Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Mi-
crosoft. It is used to develop computer programs as well as websites, web applica-
tions, web services and mobile applications.

Like any other IDE, it includes a code editor that supports syntax highlighting
and code completion using IntelliSense (see Figure 3.3). It also includes a debugger
that works both as a source-level debugger and as a machine-level debugger. In
addition, Visual Studio counts with a great quantity of plugins to ease development.

UE4 is designed to integrate seamlessly with Visual Studio7, allowing the user
to quickly and easily make code changes in its projects to immediately see results

6https://molecular-matters.com/products_livepp.html
7https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup

https://molecular-matters.com/products_livepp.html
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup

26 Chapter 3. Methodology

upon compilation. Configuring Visual Studio to work with Unreal Engine can help
improve the efficiency and overall user experience of developers using Unreal En-
gine. Also, Visual Studio has support for extending the debugger with visualizers
that allow easy inspection of common Unreal types such as FNames and dynamic
arrays.In UnrealROX we’ve complemented the usage of Visual Studio with Visual
Assist, a tool we will describe bellow.

FIGURE 3.3: Microsoft Visual Studio environment.

Visual Assist

Visual Assist is a plugin for Microsoft Visual Studio developed by Whole Tomato
Software. The plugin mainly improves IntelliSense8 and syntax highlighting. It
also enhances code suggestions, provides refactoring commands, and includes spell-
check support for comments. It can also detect basic syntax errors such as the use of
undeclared variables. Visual Assist includes features specific to development with
UE4, including support for UE4 keywords, preprocessor macros, and solution setup.
It also includes a series of bindings that allow us to navigate more easily through the
project and engine code. These are some of the features we have used:

• Find Symbol in Solution: It allows the user to list all the symbols of the project
filtered by a string. It can be fast acceded pressing Shift+Alt+S.

• GoTo Implementation: Jumps to the declaration or implementation of the current
symbol. Its shortcut is Alt+G.

• Open File in Solution: Opens a dialog of filenames filtered by a string with the
shortcut Shift+Alt+O.

Python

Python is an interpreted programming language whose philosophy emphasizes a
syntax that favors readable code.

It is a multiparadigm programming language, as it supports object-oriented, im-
perative programming and, to a lesser extent, functional programming. It is an in-
terpreted language, uses dynamic typing and is multiplatform.

It is administered by the Python Software Foundation. It has an open source
license, called Python Software Foundation License9, which is compatible with the
GNU General Public License from version 2.1.1, and incompatible in certain earlier
versions.

8https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense?view=vs-2015
9https://docs.python.org/3/license.html

https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense?view=vs-2015
https://docs.python.org/3/license.html

3.2. Software 27

Python has been used to extend the data generation pipeline with an additional
ground truth generator module to produce extra data from the raw images and in-
formation. One of the multiple tasks in which Python has been used is to generate
visible bounding boxes of the objects in a scene (as seen in Figure 3.4).

FIGURE 3.4: Bounding box generation using Python. These images
are part of the UnrealROX dataset.

irfanView

IrfanView is an image viewer, editor, organiser and converter program for Microsoft
Windows. IrfanView is specifically optimized for fast image display and loading
times. It supports viewing and saving of numerous file types including image for-
mats such as BMP, GIF, JPEG, JP2 and PNG between others.

IrfanView allows us to verify that the images are generated properly by observ-
ing the RGB value of every pixel using the color picker tool from the paint dialog,
which can be enabled by pressing F12, as we can see in Figure 3.5.

FIGURE 3.5: irfanView and infanView paint dialog.

28 Chapter 3. Methodology

Sublime Text Editor

Sublime Text is a sophisticated text editor for code, markup and prose. The following
description represents the main features of Sublime Text editor:

• GoTo anything: Quick navigation to files, symbols or lines. With extremely long
JSON files, this feature has been one of the most important ones when it comes
to verify the data. This enabled us quick navigation between our files.

• The Command Palette: Uses adaptive correspondence for quick invocation of ar-
bitrary commands from the keyboard.

• Simultaneous editing: Simultaneously make the same interactive changes in sev-
eral selected areas. This feature allowed us to fix different JSON fields after
main project refactors, meaning that we could fix previously recorded datasets
to work with the up to date version.

• Extensive customization capability: Through JSON configuration files, including
project-specific and platform-specific configuration.

• Cross-platform: Cross-platform (Windows, macOS and Linux) and cross-platform
support plugins.

Thanks to that set of features, Sublime Text has been the main text editor used
when developing the Python Scripts for the dataset. It also has been a great tool
for text logging verification due to the extensive lookup functions that Sublime Text
disposes, such as the regular expresion tool.

3.3 Hardware

As we have already mentioned in Section 3.1, hardware is one of the most important
parts when dealing with large amounts of data and complex UE4 scenarios. Without
powerful enough hardware, recording at a constant FPS rate becomes more difficult.
Also, when we play the data back to generate ground truth, we need the algorithm to
execute as fast as possible, this becomes difficult when the computer has difficulties
processing the scene to switch from one viewmode to another. In addition, it is
convenient to have a good computer to work comfortably in UE4.

To solve these problems, there have been several hardware PC architectures that
have allowed a remarkable acceleration generating and processing the data. It is also
important to have a comfortable and capable personal computer to develop and run
reduced tests, we will divide this PC architectures in Subsection 3.3.1.

We will also see in Subsection 3.3.2 the additional hardware that has been used
in UnrealROX: the virtual reality headsets HTC Vive Pro and Oculus Rift.

3.3.1 PC Resources

The project has been developed and tested on several PCs, however we are going
to remark the most notable and used ones: my personal PC, Challenger and Asimov,
both provided by the 3D Perception Lab10. In order to make the scheme simpler, we
will divide the resources from less to more power in this Section.

10https://labs.iuii.ua.es/3dperceptionlab/

https://labs.iuii.ua.es/3dperceptionlab/

3.3. Hardware 29

Personal Computer

My personal computer has been used mainly for the learning process and the devel-
opment of several projects implied in this thesis. The Table 3.1 shows the complete
configuration of the hardware of my personal computer.

My personal PC
Motherboard Z370 GAMING PLUS (MS-7B61) 0

Intel Z370 Chipset
2× PCIe 3.0 × 16 slots
4× PCIe 3.0 × 1 slots

CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 1

3.7 GHz (4.7 GHz Turbo Boost)
6 cores (12 threads)
95 W TDP

GPU NVIDIA GeForce GTX 1070 Ti 2

2432 Compute Unified Device Architecture (CUDA) cores
8 GB of GDDR5 Video Memory
16× PCIe 3.0
180 W TDP

RAM G.Skill Ripjaws V Red DDR4 2400 PC4-19200 16GB 2× 8GB CL15
Storage (Data) Seagate ST2000DX001 Solid State Hybrid Drive (SSHD)
Storage (OS) Crucial MX500 CT500MX500 Solid State Drive (SSD)

TABLE 3.1: Hardware specifications of my personal PC.

Challenger

Challenger has been used to develop UnrealRox, it is a computer with a powerful
processor and GPU, so it has also been used for data generation. It has an NVIDIA
GPU with CUDA support and we can see its specifications in table 3.2.

Challenger
Motherboard MSI Z370 PC Pro 0

Intel Z370 Chipset
2× PCIe 3.0 × 16 slots
4× PCIe 3.0 × 1 slots

CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 1

3.7 GHz (4.7 GHz Turbo Boost)
6 cores (12 threads)
95 W TDP

GPU NVIDIA GeForce Titan Xp 2

3840 CUDA cores
12 GB of G5X Video Memory
16× PCIe 3.0
250 W TDP

RAM G.Skill Ripjaws V Red DDR4 2400 PC4-19200 16GB 2× 8GB CL15
Storage (Data) Seagate ST2000DX001 SSHD
Storage (OS) Crucial MX500 CT500MX500 SSD

TABLE 3.2: Hardware specifications of Challenger.

30 Chapter 3. Methodology

Asimov

Asimov has been used to generate data and hold it in its RAID configuration. As
can be seen in table 3.3, Asimov has a total of 3 GPUs each dedicated to a specific
task, the Titan X, has been allocated to all the deep learning part, having another
graphics card for all graphics processing, the GT730, which relieves the work of the
Titan X. At the same time, the server also has an extra GPU that is used mainly for
computing.

Asimov
Motherboard Asus X99-A 0

Intel X99 Chipset
4× PCIe 3.0/2.0

CPU Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz 1

3.3 GHz (3.6 GHz Turbo Boost)
6 cores (12 threads)
140 W TDP

GPU (visualization) NVIDIA GeForce GT730 2

96 CUDA cores
1024 MiB of DDR3 Video Memory
PCIe 2.0
49 W TDP

GPU (deep learning) NVIDIA GeForce Titan X 3

3072 CUDA cores
12 GiB of GDDR5 Video Memory
PCIe 3.0
250 W TDP

GPU (compute) NVIDIA Tesla K40c 4

2880 CUDA cores
12 GiB of GDDR5 Video Memory
PCIe 3.0
235 W TDP

RAM 4 × 8 GiB Kingston Hyper X DDR4 2666 MHz CL13
Storage (Data) Seagate Barracuda 7200rpm 3TiB SATA III Hard Disk Drive (HDD) 5

Storage (OS) Samsung 850 EVO 500GiB SATA III SSD 6

TABLE 3.3: Hardware specifications of Asimov.

3.3.2 Virtual Reality headsets

One of the fundamental requirements when working in a VR environment is the
headset. In this case and due to the nature of this project, we have counted with
two very different devices in order to increase compatibility of the project. There are
differences in function between these devices, such as the way they calculate head
positions.

In this case we have mainly worked with the Oculus Rift headset and the HTC
Vive Pro headset, both provided by the 3D Perception Lab. The use of two different
technologies has helped us to test and debug the project with different perspectives,
which is essential when it comes to expanding the number of potential users who
will be able to use UnrealROX in the future.

In this subsection we will proceed to describe all the additional materials that we
have used for the realization of this thesis.

3.3. Hardware 31

Oculus Rift

The Oculus Rift is a virtual reality headset developed and manufactured by Oculus.
It has a total resolution of 2160x1200 (1080x1200 per eye) and its refresh rate is at
90 Hz. They have integrated 3D audio headphones. In addition to this, it can be
controlled with the normal Xbox One controller or with the Oculus Touch motion
tracked controllers.

According to tracking input specifications, it has 6 degrees of freedom (6DOF) (3-
axis rotational tracking + 3-axis positional tracking) through USB-connected IR LED
sensor, which tracks via the constellation method. The headset has a series of external
sensors that help establish the position of the user’s head and the controllers. Oculus
called this tracking technique constellation, which gave their sensors its name. We
can see the complete set in Figure 3.6.

FIGURE 3.6: Full Oculus Rift Set.

HTC Vive Pro

The HTC Vive is a virtual reality headset developed by HTC and Valve Corporation.
The headset uses tracking technology that allows the user to move in a 3D space
and interact with it using the motion-tracked controllers. It has a total resolution of
2880x1600 (1400x1600 per eye) and its refresh rate is at 90 Hz. They have integrated
3D audio headphones. The controllers have multiple input methods including a
track pad, grip buttons, and a dual-stage trigger. The Vibe Base Stations emit timed
infrared pulses that are picked up by the headset to create a 360 degree virtual space.
The set of these accessories (as seen in Figure 3.7) makes it possible to navigate quite
precisely in a simulated environment.

FIGURE 3.7: Full HTC Vive Pro Set.

33

Chapter 4

UnrealROX

The fourth chapter describes UnrealROX project architecture. Each section describes a sub-
system that takes part on the project.

4.1 Introduction

In Section 2.1.3, we delineated various simulators that try to minimize the gap be-
tween synthetic and real data using different techniques, such as: physics-based
robots on scanned indoor scenes, basic interaction systems, reconstructed houses
from various datasets, ect. We witnessed and studied the main advantages and dis-
advantages of each one. And while the features of some complement others, there is
no middle ground between the discussed simulators.

FIGURE 4.1: UnrealROX decouples the recording and data generation
processes so that we can achieve high framerate when gathering data.

34 Chapter 4. UnrealROX

UnrealROX is an open-source simulator that tries to bring together and improve
all the advantages of the aforementioned environments and unite them in a single
framework. This simulator is based on UE4 since it conforms to the state of the art
in terms of rendering techniques, meaning that making visually believable photo-
realistic scenes becomes a possibility. As we mentioned in Section 2.1.1, photoreal-
ism is one of the ways to reduce the gap between synthetic and real data, which is
the main basis of our engine choice. In addition, we observed that among the simu-
lators that we have analyzed in this work, none of them had virtual reality support,
which inclusion in UnrealROX was possible thanks to UE4. Since UnrealROX is a
UE4 project, the amount of possibilities our environment offers are subject to the
users extending it, thanks to the fact that Unreal Engine source code is modifiable.

In our environment, UE4 renders a scene and a robot into a VR headset (see Sec-
tion 3.3.2), so that a user can move the robot and interact with objects with the robotic
hands; storing scene information on a text file every frame so that it can be repro-
duced offline to generate ground truth from multiple points of view predefined by
the user. This virtual reality environment enables robotic vision researchers to gen-
erate visually plausible data with full ground truth for a wide variety of problems:
class and instance semantic segmentation, object detection, depth estimation, visual
grasping, navigation, etc. Figure 4.1 displays the main architecture of the complete
framework.

In this chapter, we will describe every component and subsystem that shapes
UnrealROX; starting with Section 4.2, which defines our multi camera setup. Then,
Section 4.3 describes the debugging tools implemented on the user interface of Un-
realROX. Next, in Section 4.4 we will see all the animation implementation details,
followed by a detailed explanation of the controller class in Section 4.5. Finally, Sec-
tion 4.6 and 4.7 delineate the main controllable robot class and our data dumper in
depth.

4.2 Multi-camera Support

If we look at any of the robots available on the market, we can see that almost all of
them integrate multiple cameras in different parts of their bodies. These cameras can
be used for any purpose the developers require. In addition, external cameras are
usually added to the system to provide external (non-egocentric) data to he robot. In
UnrealROX, we want to simulate the ability to add multiple cameras in a synthetic
environment with the goal in mind of having the same or more amount of data that
we would have in a real environment. For instance, in order to train a data-driven
grasping algorithm it would be needed to generate synthetic images from a certain
point of view: the wrist of the robot. To simulate this situation in our synthetic
scenario, we would like to give the user the ability to place cameras attached to
sockets in the robot’s body, e.g., the wrist itself. Another plausible application sce-
nario would be a pose estimation algorithm which needs static cameras placed in a
room. In a real environment, it would be necessary to place them manually to gather
data, which can become a tedious and slow task; however, in UnrealROX we offer
the possibility to place cameras in a user friendly way using the UE4 editor.

One of the examples to be highlighted in UnrealROX that makes use of this prac-
tice is the social robot Pepper (Figure 4.2), thanks to the multi-camera support, we
can generate a dataset for Pepper in which it is seen how the user grabs an object
from multiple points of view (being one of them the robot’s wrist). This dataset can
be used to teach Pepper to pick up objects.

4.2. Multi-camera Support 35

FIGURE 4.2: User interacting as Pepper in the scene.

To make this system of multiple cameras possible, both static and attached to
bones or sockets, we will use CameraActor as the camera class and the Pawn class
as the entity to which we will attach them. By default, UE4 does not allow us to
precisely attach components in the editor so it is necessary to define a socket-camera
relationship in the Pawn class. This is due to the fact that it has direct access to the
skeleton which we will be attaching some of the cameras.

In this section, we will describe the implementation of the multi-camera subsys-
tem. Firstly, in Section 4.2.1 we will describe the CameraActor class itself. Next, in
Section 4.2.2, we will explain how to make those actors to move by attaching them
to sockets. At last, Section 4.2.3 provides all the implementation details needed to
put all the components together.

4.2.1 The Camera Actor

The objective of the CameraActor class is to render any scene from a specific point of
view. This actor can be placed and rotated at the user’s discretion in the viewport,
which makes them ideal for recording any type of scene from any desired point
of view. The main goal in UnrealROX is to use these cameras to collect data from
arbitrary points of view. The output of this camera is the one that we will use to
generate part of the dataset as seen in Figure 4.3.

FIGURE 4.3: Main execution flow depending on the cameras.

The CameraActor is represented in UE4 by a 3D camera (shown in Figure 4.4)
icon and like any other actor, it can be moved, rotated and scaled in the viewport,
however scaling the camera will not have any effect on the output rendering.

36 Chapter 4. UnrealROX

FIGURE 4.4: A CameraActor in the viewport rendering a stair.

This class has an extensive collection of parameters that the user can manipu-
late to adjust the camera rendering in the editor. Among these variables1 we can
discriminate between different categories:

• Camera Settings: In this category we have parameters such as the projection mode,
the field of view and the aspect ratio.

• Color grading: In this category we can modify the post-processing of the camera,
correcting the gamma or modifying the white balance among other options.

• Tonemapper: Here we can modify the values of Slope, Toe, Shoulder, Black clip
and White clip of the camera.

• Lens: The Lens section exposes various effects, such as chromatic aberration, grain
or vignette intensity. We can also modify the bloom, add masks, modify the
auto exposure, ect.

• Other rendering features: In this section we will be able to adjust the post pro-
cessing materials, the environmental occlusion, the blur and the global illumi-
nation in addition to other similar parameters.

As can be seen, UE4 has a very complete camera class, which we will use throughout
the project to render our scenes. In addition UnrealROX will expose the camera
options most demanded by the user as is the case of the field of view or the aspect
ratio, as well as additional features not included by default in the actor, such as the
possibility of creating stereo vision [11], done by placing automatically in generation
time an additional camera next to the original one with the same settings.

4.2.2 Camera Movement

Since some of the points of view are dynamic, e.g., robot’s wrists, we need to make
the cameras move with them. To achieve that, an attaching operation where the
camera actors will be parented to the component’s point of view that we want to
record will be needed. In this regards, understanding the attaching operations the
engine provides (as can be observed in Listing 4.1) is essential.

1https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/FPostProcessSettings/
index.html

https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/FPostProcessSettings/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/FPostProcessSettings/index.html

4.2. Multi-camera Support 37

LISTING 4.1: Attaches an actor to a parent actor.

void AttachToActor
(

AActor ∗ ParentActor ,
const FAttachmentTransformRules & AttachmentRules ,
FName SocketName

)

The AttachToActor function is in charge of parenting one actor with another fol-
lowing some attachment rules. In addition, we can specify on which socket we want
to attach the object. This means that when the selected socket changes its transform,
the attached object will change it too according to the AttachmentRules. These rules
specify how this new attached actor will behave when the socket it is linked moves
or rotates.

The AttachmentRules can be defined separately for location, rotation, and scale
(we can choose between these three options defined on the EAttachmentRule enu-
meration2). Each entry will modify the attached actor (or component) behaviour in
the following way:

• KeepRelative: Keeps current relative transform as the relative transform to the
new parent.

• KeepWorld: Automatically calculates the relative transform such that the attached
component maintains the same world transform.

• SnapToTarget: Snaps transform to the attach point.

4.2.3 Implementation

This problem lead us to define an implicit relatioship between the CameraActor and
the socket it is attached to, in order to implement this relationship, the Pawn class
implements a USTRUCT (the Unreal Engine struct) that has two parameters: the
camera itself and the socket name. These properties are accompanied by the Edi-
tAnywhere meta3, which makes possible the edition of the properties not only on the
CDO but also on the instance of the object.

LISTING 4.2: Struct used at UnrealROX to resolve the Camera-Socket
relationship.

USTRUCT()
s t r u c t FBoneCam
{

UPROPERTY(EditAnywhere)
ACameraActor∗ CameraActor ;

UPROPERTY(EditAnywhere)
FName SocketName ;

} ;

2https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/EAttachmentRule/index.
html

3To fully understand the metas, it is necessary to understand the UPROPERTIES and the reflection
system of UE4 which can be studied on the following URLs https://www.unrealengine.com/en-US/
blog/unreal-property-system-reflection https://wiki.unrealengine.com/UPROPERTY

https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/EAttachmentRule/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/EAttachmentRule/index.html
https://www.unrealengine.com/en-US/blog/unreal-property-system-reflection
https://www.unrealengine.com/en-US/blog/unreal-property-system-reflection
https://wiki.unrealengine.com/UPROPERTY

38 Chapter 4. UnrealROX

Once the relationship between these two components has been sorted out (see
Listing 4.2), it only needs to be adapted for a scenario in which we can possibly have
more than one camera. For this, we will use an array of structs as seen in Listing 4.3.

LISTING 4.3: Array of structs of the previously defined type.

UPROPERTY(EditAnywhere , Category = Tracker)
TArray<FBoneCam> BoneCams ;

The user will be in charge of filling the array specified in Listing 4.3. To make the
process easier, we exposed these properties to be editable in the editor (see Figure
4.5).

(A) Representation of the array. (B) Pawn Actor with cameras.

FIGURE 4.5: In-engine representation of the array of structs. In (a)
we can see the representation of the array struct in the instance of the

object, while in (b) we see its visual representation in the engine.

In order to do this, we will override the OnConstruction function (represented in
Listing 4.4) of our Pawn class, which is executed every time we alter the Pawn in
the viewport. This handle is managed by the engine automatically and it is used to
program custom behaviour for a concrete actor in the editor world (OnConstruction
function will not execute if we move the actor while playing).

LISTING 4.4: Called when an instance of this class is placed (in editor)
or spawned.

v i r t u a l void OnConstruction
(

const FTransform & Transform
)

The OnConstruction algorithm will have to automatically manage all the BoneCams
entering and exiting the array. For this, we will use an extra variable of the same type
(CachedBoneCamsPT), which will contain the BoneCams of the previous execution of
the OnConstruction function. The objetive under caching this array is to control the
cameras that existed in the array in the previous execution that no longer exist (and
vice-versa).

4.2. Multi-camera Support 39

BoneCams := unique_cameras(BoneCams);

C := BoneCams.intersect_cameras(CachedBoneCamsPT);
for x in CachedBoneCamsPT do

if x NOT in C then
x.Camera->DetachFromActor(...);

end
end

for b in BoneCams do
b.Camera->AttachToComponent(b.socketName);
c := b.found(CachedBoneCamsPT);
if c != nullptr && c.socketName != b.socketName then

b.SetActorRelativeTransform(FTransform());
end

end

CachedBoneCamsPT = BoneCams;

Algorithm 1: Main algorithm to attach and detach camera actors to the relative
socket

As can be seen in Algorithm 1, the first step is to make sure that there are no
repeated cameras in the array, since conceptually we cannot assign the same camera
to two different sockets. The next step is to detach the cameras that were in the array
in the previous execution that are no longer in the array. For that, we need to know
which cameras are still on the array using an intersection operation, the cameras
that are in CachedBoneCamsPT but not in the intersection will need to be detached.
Finally, the last step is to attach the BoneCams cameras to the appropriate socket. If
the camera already existed in the array and the socket has changed, we will set its
relative transform to FTransform()4, since it is possible that the user has defined an
offset. Once the process is completed, we will prepare CachedBoneCamsPT for the
next execution, as can be seen at the end of Algorithm 1.

4FTransform default constructor sets all the values to unitary or zero as it follows: FTransform(FVec-
tor(0,0,0), FRotator(0,0,0), FVector(1,1,1)) for Location, Rotation and Scale respectively

40 Chapter 4. UnrealROX

4.2.4 Recapitulation

To recap this episode, we will do the complete process described above, starting with
placing a camera, seen in Figure 4.6. We will have to ignore the camera placed be-
hind the pawn, since it is the one that comes with the pawn and is not a CameraActor,
it is a CameraComponent.

FIGURE 4.6: Placing a camera.

Next, we will associate this camera to a bone. In order to do that, we have to
select the Pawn and find in the exposed properties of the instance of the Pawn a
Property called BoneCams as we can see in Figure 4.7. This Property is a TArray
type, so we will see a + symbol on it which needs to be clicked to add a new entry.

FIGURE 4.7: BoneCams Property.

4.2. Multi-camera Support 41

In the added entry we will assign in CameraActor the camera we created previ-
ously, and in SocketName, the bone or socket to which we want to attach it, as Figure
4.8 shows, we have chosen to attach this camera to the hand_l bone of the skeleton
of the selected pawn.

FIGURE 4.8: Adding a new entry in the array.

Then the OnConstruction algorithm executes doing the convenient operations
following the execution flow represented in Figure 4.9.

FIGURE 4.9: Execution flow of the OnConstruction function.

Once the OnConstruction function has been executed we will have our camera
attached to the socket that we have assigned to it, in this case hand_l.

42 Chapter 4. UnrealROX

We will see this relationship in the editor as it follows: the camera will set its
location and rotation following the socket orientation and position, this can be seen
in Figure 4.10.

FIGURE 4.10: Camera actor assigned to a socket.

Usually this first setup does not suffice to have a clear viewpoint from a desired
location, that is why we allow the user to add a relative offset (location and rota-
tion) to this position. In our case we have to adjust the camera to the right position
to replicate our desired viewpoint (possible point of view example represented in
Figure 4.11).

FIGURE 4.11: Camera actor exaggerated offset from original position.

Once we have completed all this process, we are ready (if required) to record
from the new defined point of view. To add other points of view we would simply
have to add a new entry in the array mentioned before and follow the steps defined
above.

4.3. User Interface 43

4.3 User Interface

It is convenient for any system to have a debug subsystem that provides feedback
to the user about the application states. In UnrealROX we let the user know several
points if this requires it. UnrealROXs heads-up display (HUD) can be turned off or
on to the users will, making it completely decoupled from the rest of the systems. It
can even be removed/erased if maximum performance is required. The main points
covered in HUD are as follows:

• States: Notifies the user through a message on the screen with the relevant buttons
pressed, the joints in contact with an object, the recording state, etc.

• Error: Prints a red message indicating an error. An example of this would be try-
ing to record without the tracker on the scene (as seen in Figure 4.12).

• Profiling: The HUD also allows us to easily profile the system, allowing activation
and deactivation with a single button. In addition, the user will be notified
with a state message.

• Scene Capture: It allows us to establish a debugging point of view so that we can
see our pawn from a different perspective from the editor. This scene capture
will be described in Section 4.3.1.

FIGURE 4.12: Error message representing the lack of the tracker.

UnrealROX allows to make use of this class in a very simple way thanks to the
UE4 interfaces5, in case the user needs to debug a custom feature.

5https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/
Interfaces

https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Interfaces
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Interfaces

44 Chapter 4. UnrealROX

4.3.1 The HUD class

In UnrealROX we have used the HUD class that provides UE4. This class has a
canvas and a debug canvas on which primitive shapes can be drawn. Provides
some simple methods for rendering text, textures, rectangles and materials which
can also be accessed from blueprints. An example of texture drawing in practice in
our project is the Scene Capture, which consists in drawing a texture in the viewport
captured from a camera, as can be seen in Figure 4.13. This will be useful for the
user to see if the animations are being played correctly in a VR environment.

FIGURE 4.13: Scene Capture drawn in the viewport.

4.4. Animation System 45

4.4 Animation System

It is essential to have an animation system to transfer all the movements captured
with the virtual reality peripherals to the skeleton we are controlling. In order to
do that we will use Persona, which is the set of features of UE4 for working with
skeletal animations and Skeletal Meshes.

In Section 4.4.1 we will describe Persona, followed by a study of the order of
execution of the animations in Section 4.4.2, next, in Section 4.4.3, we will see the
diverse methods of inverse kinematics used, and finally in Section 4.4.4, we will
observe and analyze a special animation node that has been created for UnrealROX.

4.4.1 Persona

Persona is the name UE4 gives to the main animation framework of the engine. This
framework is composed by several features that are listed bellow:

• Skeleton Editor: Here we can examine and modify the Skeleton of a Skeletal Mesh.
In this editor is where we will be able to add Sockets to our skeletons, it is
showcased in Figure 4.14.

• Skeletal Mesh Editor: In this editor we can assign default materials to your Skele-
tal Mesh.

• Animation Editor: Here we will be able to work with Animation Sequences and
other animation assets, such as Blend Spaces and Animation Montages.

• Animation Blueprint Editor: Is where we can create the rules for when and how
the animations are played. Here we’ll be able to use complex state machines
and different blends to make the skeleton of our pawn move.

FIGURE 4.14: UE4 Skeleton Editor. Source: UE4 documentation.

The Animation Blueprint Editor will be the main point of study in the following
subsections because it is where we will drive all the logic for our animations to play,
that is why it’s so important to describe the full environment.

46 Chapter 4. UnrealROX

4.4.2 Execution Flow

The Animation Blueprint Editor has two principal features, the Event Graph and
the Animation Graph. Each graph is in charge of a different task, however they are
coupled in a way that one needs from the other to be coherent.

Event Graph

The Event Graph is in charge of retrieving all the variables and functions belonging
to our owning pawn using Blueprints as can be seen in figure 4.15.

FIGURE 4.15: We can see how we use Blueprints to retrieve from the
ROXBasePawn variables like RecordMode (showcased in red).

This graph holds all the desired logic we want to give our animations. We can
create events, functions, sub-graphs and macros, like in any other UE4 Graph.

A peculiarity to comment about this Event Graph is the native event that we use
to handle all our ticking logic, the Event Blueprint Update Animation. As we can see in
Figure 4.15, this node returns the Delta Time X, which is the time between animation
updates that gets cached on a variable for ease of use. However, this delta time is
different than the global Tick (Update frame) time.

Another relevant node that we can observe on the same Figure is TryGetPawnOwner,
which is exclusive to the Animation Blueprint Editor Event Graph. This node gets
the owning pawn of this animation system, however if the owning pawn is invalid,
it will retrieve nullptr. We take advantage of this node and use it to retrieve every
useful value stored on our pawn, for that we will have to Cast to its type (since it
inherits from pawn, it is a valid case).

FIGURE 4.16: Velocity Calculation using Blueprints

Since we have access to the owning pawn, we can get its location and calculate a
speed (Speed = Space/Time) as we can see in Figure 4.16. We calculate the Space by
subtracting the Current Location with the previous location (stored on LastTickLoca-
tion variable).

4.4. Animation System 47

Animation Graph

The Animation Graph will handle all the logic referred to the animations, it is totally
relevant that we analyze deeply the execution order and how several conditions can
affect and differ the output. The Figure 4.17 shows UnrealROX’s Animation Graph
along a reduced version of our main FSM.

FIGURE 4.17: UnrealROX full Animation Graph, on the left side of
the image we can see the main FSM, each circle corresponds to a sin-
gle animation state, while the arrows refers to the transitions of these

states.

As we can see in the previous Figure, the logic splits in two main branches that
relate to the animation mode. UnrealROX counts with two custom modes, record
mode and rebuild mode.

The record mode reads the retrieved variables on the event graph and applies
these transformations to the bones through inverse kinematics. This mode plays the
animations while the operator controls the VR peripherals described in Section 3.3.2.

FIGURE 4.18: HeadTransform variable applied to the head skeleton
bone. It makes the head rotate applying inverse kinematics.

48 Chapter 4. UnrealROX

An example of this can be seen in Figure 4.18 where we get the head transform,
that has been calculated on the Event Graph (as we can see in Figure 4.19), and use
it to apply a transform to the head bone and relatives, using the FABRIK6 and the
Transform (Modify) Bone7 nodes.

FIGURE 4.19: HeadRotation calculation based on the Pawn Camera.

The rebuild mode simply plays back all the movements we recorded previously.
These movements, which were stored frame by frame on a text file as transforma-
tions, are retrieved in rebuild mode and applied to each related bone with a custom
bulk operation (see Figure 4.20) that will be described in Section 4.4.4.

FIGURE 4.20: Bulk Transform (Modify) Bones applies transforms in
bulk to specific bones.

One detail to comment about the previous Figure is the ScaleHeadSmallAnim vari-
able, this variable determines if we should reduce the head size to 10% of the origi-
nal value. We do that on first person mode, because some artifacts can be seen if the
head is in place, so to avoid these artifacts, we reduce the size of the head notably.

We have two separated modes that we need to control separately, for that, we
created the RecordMode variable we spoke about previously, this variable is in charge
of deciding which execution branch will reach to the final Animation Pose.

FIGURE 4.21: Left to Right: Blend Poses by bool and normal branch.

In order to do that we use the Blend Poses by Bool node. This node behaves like a
normal branch node, the only difference is that it outputs a pose instead of a execu-
tion signal as we can see in Figure 4.21.

6https://docs.unrealengine.com/en-us/Engine/Animation/NodeReference/Fabrik
7https://docs.unrealengine.com/en-us/Engine/Animation/NodeReference/

SkeletalControls/TransformBone

https://docs.unrealengine.com/en-us/Engine/Animation/NodeReference/Fabrik
https://docs.unrealengine.com/en-us/Engine/Animation/NodeReference/SkeletalControls/TransformBone
https://docs.unrealengine.com/en-us/Engine/Animation/NodeReference/SkeletalControls/TransformBone

4.4. Animation System 49

Apart from the record mode condition, in UnrealROX we also differentiate the
situation in which the user does not have the headset on (IsHMDEEnabledAnim), so
we can avoid the inverse kinematic and grasping logic that is not needed without
VR. These branches are located at the end of our animation graph as the Figure 4.22
shows.

FIGURE 4.22: Main animation graph branches.

Figure 4.23 shows the main state machine used in UnrealROX, it can be extended
with more states and transitions up to the user will. In this case the previously
calculated Speed (Figure 4.16) drives the most part of the transition logic. Each state
has a final animation pose that feeds our main animation graph, these states can be
considered sub-animation graphs.

FIGURE 4.23: UnrealROX main animation finite state machine.

50 Chapter 4. UnrealROX

4.4.3 Inverse Kinematics

In order to apply several transformations to the skeleton of our pawn coherently, in-
verse kinematics techniques have had to be employed. Specifically, we have worked
with chains of bones to simulate a more natural movement of the skeleton. The only
inputs we have available are the position of the hands and head, all of this thanks
to the virtual reality controllers. With only these positions we have to make all the
body move accordingly in a cohesive way.

FIGURE 4.24: The poses that the human operator makes get trans-
lated to the mannequin appropriately thanks to the inverse kinematic

techniques applied.

In order to get the effect achieved in Figure 4.24, we need to open our Animation
Graph and analyze each specific skeleton bone that we are controlling using inverse
kinematics.

The FABRIK node

The bone system of UE4 classifies the bones of the skeleton through a hierarchy of
inheritance, this means that the bones of the fingers belong to the bone of the hand
which at the same time belongs to the bone of the arm and so forth. We can use this
hierarchy to define chains of bones affected by the movement of a single bone. This
is done by the FABRIK node, which allows us to define a tip bone and a root bone.
FABRIK will automatically handle the translations and rotations of the bones that
are included in this defined chain as we can see in Figure 4.25.

FIGURE 4.25: FABRIK node and its detail window in context.

4.4. Animation System 51

The following visual representation in Figure 4.26 represents these two elements,
the tip and the root. As we can see we have a direct relationship between the root
bone that acts as a support bone and the tip bone, which is the moving bone on our
bone chain, every movement made by the tip bone will adjust the other bones of this
chain, setting their translations and rotations using the root bone as a base.

FIGURE 4.26: Basic inverse kinematics scenario. Source: Luis Mar-
tinez IK solver8.

The example visualized at Figure 4.25 is using the head as the tip bone and the
spine as the root bone. This means that if we incline our head forward, all the bones
between the head and the spine will rotate accordingly, however it is impossible to
make a total representation of the reality without more tracking points, so the system
only tries to represent in the best possible manner the operator’s pose.

4.4.4 Bulk Transform (Modify) Bones

Bulk Transform (Modify) Bones is a node that has been created to assign multiple trans-
forms at multiple bones. To understand this node, we have first to take a look at the
original Transform (Modify) Bone node.

FIGURE 4.27: Transform (Modify) Bone node.

8https://vimeo.com/246238063

https://vimeo.com/246238063

52 Chapter 4. UnrealROX

This node (represented in Figure 4.27) takes a pose as an input, on the detail
panel of the node we can assign the bone we want to modify (in the case of the
image hand_l), and then we can define the rules to apply for the new translation,
rotation and scale applied to said bone, which modification gets returned on the
output pose.

The main problem of this node is that it only allows us to select one single bone,
so at the first stages of development it was very complicated to handle every bone
in the rebuild mode, since the code was enormous. This led us to come up with a
solution in which we could assign all these transformations at once without having
to create an endless chain of nodes to handle each bone in the skeleton.

FIGURE 4.28: Bulk Transform (Modify) Bones in detail.

In Figure 4.28 we can see this node applied on the rebuild mode along its detail
panel that doesn’t differ too much from the original Transform (Modify) Bone node.
The node receives a pose and a struct as parameters and returns a pose with the
transforms applied. The struct holds a Hash Map that has as a key the name of each
bone accompanied by the transform of that same bone as a value. This statement is
valid since there cannot be bones on the UE4 skeleton that have repeated names.

The functionality of this node consists of modifying each bone to the transform
assigned to it, which is why we have opted for a hash-map to create this relation-
ship. That hash-map will be filled at runtime and will change every single movement
iteration according to the previously recorded txt file.

The struct is necesary due to a limitation of UE4 that doesn’t allow the user to
have a hash map as an input for this kind of node, but it is totally redundant. The
functionality of this node is as simple as described in Algorithm 2.

for pair in REC_NameTransformMap_Anim do
if pair.bone in Pose.Bones then

BoneId := Pose.GetId(pair.bone);
Pose.Bones[BoneId].transform = pair.transform;

end
end

Algorithm 2: Very simplistic version of the bulk modify bones algorithm.

UE4 animation system disposes of specific handles to extract the bone id given
a bone name along another useful features, however that is way too specific for the
purpose of this document. Algorithm 2 is a very naive and simple version of the real
algorithm applied to modify all the transformations for all the bones.

4.5. The Player Controller 53

4.5 The Player Controller

UE4 describes the PlayerController as the interface between the Pawn and the human
player controlling it. The APlayerController class inherits from the AController class
which is a non-physical Actor that can possess a Pawn (or Pawn-derived class) to
control its actions.

Controllers receive notifications for many of the events occurring for the Pawn
they are controlling. This gives the Controller the opportunity to implement the be-
havior in response to this event, intercepting the event and superseding the Pawn’s
default behavior.

In UnrealROX, the Player Controller (ROXPlayerController) is used as the main
input handler class. This is where all the input propagates to the specific classes that
need an entry point behavior. Another use we give the Controller is handling the
movement of the controlled pawn.

In Section 4.5.1 we list all the inputs, then in Section 4.5.2 we will briefly describe
the functionality of each one of those inputs as well as other details that will help for
further implementations.

4.5.1 Input Definitions

In order to add input functionality to a PlayerController in UE4, we need to over-
ride the SetupInputComponent() function defined on the base PlayerController class.
This function adds a UInputComponent to the Controller, and this component allows
us to define inputs by name and add behavior to them as shown in the figure 4.29.

FIGURE 4.29: UnrealROX input definition.

The Input component exposes two functions that helps the user to define a spe-
cific behavior for a specific axis or action.

• Bind Axis: Binds a delegate function an Axis defined in the project settings.

• Bind Action: Binds a delegate function to an Action defined in the project settings.

54 Chapter 4. UnrealROX

Action Mappings are for key presses and releases, while Axis Mappings allow
for inputs that have a continuous range. These mappings can be configured on UE4
under "ProjectSettings/Input" as can be seen in Figure 4.30.

FIGURE 4.30: Inputs defined at Project Settings.

This is where we define the default keys-action/axis relationships of our project,
as we can see these names need to match with the action/axis names we set in the
controller on the SetupInputComponent() function as we saw in Figure 4.29.

4.5.2 Main Behavior

Before looking at all input functions seen above, it is necessary to comment on the
BeginPlay function of ROXPlayerController. BeginPlay is a function that gets called
when an Actor object got properly instantiated and initialized. Since APlayerCon-
troller belongs to the AActor inheritation chain and it’s an available function to use,
we can override it to implement any behavior when the Actor is created. On algo-
rithm 3 we can see a simplistic version of the ROXPlayerController BeginPlay.

CachedPawn = Cast<AROXBasePawn>(this->GetPawn());

if XRSystem->IsHeadTrackingAllowed() then
isHMDEnabled = true;
HMDDvcType = XRSystem->GetHMDDevice()->GetHMDDeviceType();

end

Algorithm 3: On the first line we cache the casted Pawn in order to avoid casting
every time we need to access any specific feature of our subclass (GetPawn()
returns APawn type). Next, we gather information about the VR device in use.

4.5. The Player Controller 55

Once we have all this information cached, we can look at the rest of the code that
is handled by the input. In order to follow the subsequent points it is recommended
to look at Figure 4.29.

• Move functions: Move forward and move right simply move the pawn onto the
desired direction applying an acceleration formula, this acceleration formula
is defined at JoystickAxisTunning(float x).

• Turn and Look: These four functions are in charge of rotating the camera accord-
ing to the user view.

• MoveCameraUpDown: This function moves on the Z axis the camera location at
the user will.

• Grasp functions: Propagate input to the pawn, which will handle the grasping of
each hand.

• Move Modifiers: These functions toggle the functionality of moving the camera
with the axis.

• Start Recording: It toggles the recording function of the tracker by accessing the
tracker from the cached pawn.

• Reset VR: Executes the console command "vr.HeadTracking.Reset" which resets
the VR virtual headset position to the origin.

• ShowCamTexture: It is the input handler to activate the cam texture, as seen in
Figure 4.13.

• Restart Level: It restarts the current level, meaning that all the objects we manip-
ulated in runtime will return to their original state.

• Start/Stop Profiling: Delegates input to the HUD to handle this profiling function
as described in Section 4.3.

• ShowDebugging: Toggles on and off the UE4 stats handled in the HUD class.

• Change Lit/Vertex/Depth/Normal: Propagates input to the tracker through the
cached pawn in order to change the view mode.

• Camera Next/Prev: Manual handlers for the camera iterator to set a camera for
the controlled pawn, this is all controlled by the tracker so we need to access it
through the cached pawn.

• Take Screenshot: Calls this function on the tracker through the cached pawn.

• Set Record Settings: Prepares the map for the recording state. This is partially
handled by the controller and the tracker. The controller sets the viewmode to
unlit and the FPS to 60 to record at that rate, while the tracker will erase every
single light actor of the scene to get the most performance friendly recording
environment.

56 Chapter 4. UnrealROX

4.6 The Pawn

The Pawn class, as UE4 defines it, is the base class of all Actors that can be controlled
by the players or the AI. A Pawn is the embodiment of a player or AI actor in the
world. This not only translates into the Pawn visually defining how the AI actor or
player looks, but also how it interacts with the world. By default, there is a one-
to-one relationship between Controllers (see Section 4.5) and Pawns; meaning, each
Controller controls only one Pawn.

In UnrealROX, the Pawn (ROXBasePawn) handles the Bone-Camera subsystem
that we saw in Section 4.2. This class is also responsible for defining the Skeletal
Mesh that the pawn uses, we can also choose the Animation Graph that this mesh
will use, the responsibilities of the Animation Graph are defined in Section 4.4.

In Section 4.6.1 we will see and explain in detail the CDO of the ROXBasePawn
as well as the initialization functions like BeginPlay, then in Section 4.6.2 we will
describe a number of functions of the pawn that serve to return information to the
classes that require it, like the Tracker class, which we will describe in Section 4.7.
Finally in Section 4.6.3 we will explain the grasping system.

4.6.1 Initialization

The initialization of an Actor in UE4 has various phases. Once it gets instantiated,
the very early phase consists on retrieving the values of the CDO of the Actor. These
values can be defined on the Details Panel of a child Blueprint Actor as seen in Figure
4.31. However, if we instantiate the parent C++ class of that Blueprint child, the
values will be retrieved directly from the constructor of that class.

FIGURE 4.31: Excerpt of the editor details panel of the ROXMan-
nequinClass (Child of ROXBasePawn).

Variables need to be marked in the C++ class as UPROPERTY with the speci-
fier EditDefaultOnly to be able to access them from the details panel in the child
Blueprint class (Figure 4.31). These specifiers work along with the UE4 reflection
system and are defined on their documentation about UProperties9. Besides this, if
we create a variable directly in Blueprints, UE4 will add it to the list of properties in
the details panel of that Blueprint class and their childs.

9https://wiki.unrealengine.com/UPROPERTY

https://wiki.unrealengine.com/UPROPERTY

4.6. The Pawn 57

UnrealROX Pawn variable definition is all contained on the parent C++ AROX-
BasePawn class, which already contains all the properties inherited from its parent
APawn. The following figure 4.32 is a section of the constructor where the non-
component variables are initialized.

FIGURE 4.32: Specific variables initialized at the Pawn constructor.

Next we proceed to describe the properties seen in the image:

• bRecordMode: Used to know if we are in recording mode in the current execu-
tion.

• SpeedModifier: Pawn Movement Speed.

• isHMDEnabled: Whether or not switching to stereo is enabled; if it is false, then
EnableStereo(true) will do nothing. Defines if the game is in VR Mode.

• bScaleHeadSmall: Defines if the head of the mannequin should be scaled down,
as we can see in Figure 4.20.

FIGURE 4.33: ROXBasePawn Constructor body.

58 Chapter 4. UnrealROX

The rest of the ROXBasePawn class constructor initializes some of the properties
defined in the header, especially components as we can observe in Figure 4.33.

MeshComponent is a variable of type USkeletalMeshComponent which receives
a USkeletalMesh as a variable, which we can assign in one of the children of this
Blueprint. We can set this mesh in C++, but it’s inconvenient since we have to work
with relative routes to find the editor asset, that’s why an inherited Blueprint class
is used for these purposes as the Figure 4.34 shows.

FIGURE 4.34: Skeletal Mesh and Blueprint graph assets for the
USekeletalMeshComponent.

VRTripod will be used as the root component for all the VR subcomponents.
Thanks to the hierarchy of unreal components, if we move the root component, all
subcomponents associated with it, will move too. This can be seen visually better in
the editor as Figure 4.35 shows.

FIGURE 4.35: VRCamera and VROrigin are attached to the VRTripod
which is acting as the root for this component chain.

At the same time, PawnCamera, which is the first person camera of this pawn
class, is attached to VRCamera. The Motion controllers are children of VROrigin.
These motion controllers are the components in charge of communicating the hand
controllers with UE4, giving it input information as well as transform information.

The last relevant bit in the constructor class is the SetupHandsCapsuleColliders
function, which will setup all the colliders for the hands of the Pawn. This function
creates as many colliders as we need and places them in the fingers of the mannequin
we are working with. It also defines the event dispatchers we need for the collision
of a specific collider with a world object.This is specific to the grasping method used
in the project. In our case, grasping is based on collision with capsules in the hand
of the mannequin, as we will elaborate in Section 4.6.3.

4.6. The Pawn 59

Once we understand how the CDO works, we can explain the latest initialization
phase utilized on this specific Actor: The BeginPlay.

As we described in Section 4.5.2, this event is triggered for all Actors when the
game is started, any Actors spawned after the game is started will have this called
immediately.

Super::BeginPlay();

if GEngine->XRSystem.IsValid() then
if GEngine->XRSystem->IsHeadTrackingAllowed() then

isHMDEnabled = true;
end

end

if !isHMDEnabled then
PawnCamera->SetRelativeLocation(RelativeCameraPosition);

end

for const EHandFinger Finger : EHandFingerAll do
R_FingerGrips.Emplace(Finger, 0.0f);
R_FingerOverlapping.Emplace(Finger, false);
R_FingerBlocked.Emplace(Finger, false);
L_FingerGrips.Emplace(Finger, 0.0f);
L_FingerOverlapping.Emplace(Finger, false);
L_FingerBlocked.Emplace(Finger, false);

end

for i = 0; i < MeshComponent->GetNumBones(); ++i do
REC_NameTransformMap.Emplace(MeshComponent-
>GetBoneName(i), FTransform());

end

UpdateBoneCamsArray();
SetupHandsCapsuleCollidersAttachment();

CachedPC = Cast<AROXPlayerController>(GetController());

Algorithm 4: Updating finger block and calling SmoothGrasp if conditions are
met.

Next, we will describe Algorithm 4 in order. The first thing we do in BeginPlay
is to check if we have some kind of virtual reality device connected. If the answer
is yes, we will put isHMDEnabled to true. However, if this is not met, we will put
the camera in third person mode by just setting the relative location of it. Follow-
ing next, we initialize the hash maps for our grasping algorithm by just iterating
through the Finger enum (which will be described in Section 4.6.3). The next loop
initializes the NameTransformMap which stores the transformations that must be
applied to each bone, it is used in Rebuild mode to receive the joint transformations
from the Tracker and send them to the AnimGraph. UpdateBoneCamsArray initial-
izes the BoneCams array documented in Section 4.2.1. Next SetupHandsCapsuleCollid-
ersAttachment attaches all the finger colliders to the skeletal mesh so they follow the
skeleton animations. Finally, we cache the Controller to avoid extra casting.

60 Chapter 4. UnrealROX

4.6.2 Main Handlers

The Pawn is constantly accessed from external classes, that’s why we have certain
public handlers that let the user retrieve information about it or update a specific
variable. In this section we won’t discuss the handlers used for the Grasping algo-
rithm, which will be documented in Section 4.6.3.

The first handler we find, which has to do with the initialization section, is Init-
FromTracker, this function is called from the Tracker object and sets the recording
mode in which we are, also caches the tracker to access it from the Pawn. In addition,
if we are in playback mode, we deactivate the user input and disable the HUD.

The second handler is MoveCameraRelative, this function is accessed by the
ROXPlayerController, and it simply moves the camera in the desired direction by
using a vector as an input, which will work as a position offset. This handler is
called from the camera movement functions defined in Section 4.5.2.

The next function is MoveVRCameraControllersRelative, which is in charge of
moving the VRTripod we saw on Figure 4.35. This is called on the Controller when
we want to relocate the VR subcomponents in a new location, we do this specifi-
cally when we move the camera to a new location, so the VR handlers are placed
appropriately in relation to the camera (which represents our head on VR).

Tick is a function included in the AActor class which gets called once per frame.
The tick interval can be altered, but for the scope of this project we don’t need to
change the tick rate. In ROXPlayerController, the Tick will set the proxy Pawn-
Camera (PawnCameraSub) position to where the CameraComponent of the Pawn
is located at by just getting its transform. We use this camera Actor proxy because
the real Pawn camera is a UCameraComponent, and the PlayBack algorithm works
only with ACameraActors, recapitulating Section 4.2.4.

The fifth handler is CameraPitchRotation, this function is called from the Con-
troller to modify the PawnCamera pitch rotation.

ChangeViewTarget is a function called from the Tracker object that changes the
current active point of view (camera) of the controller. This function is used on the
Tracker algorithm to swap between the cameras that are placed in the scene or in the
pawn skeleton.

The next handler is CheckFirstPersonCamera, which is called from the Tracker
and it checks if the input CameraActor is the proxy camera we use to represent the
first person camera (PawnCameraSub). This function will scale down the head and
return true if the input camera is the one used to represent the first person pawn cam-
era. The Tracker algorithm calls this function every time a new camera is swapped,
that’s why we reduce the head when the input camera matches, we don’t want arti-
facts on a first person view.

The last function we will be documenting in this section is PrintHUD. PrintHUD
is a function that communicates with the HUD interface to show a screen message.
This interface has been documented in Section 4.3, where we explain in detail the
user interface system of UnrealROX.

In addition to these handlers, ROXBasePawn implements inlined getters for sev-
eral variables: the record mode, the tracker, the speed modifier, the name transform
hash map and the mesh component.

4.6. The Pawn 61

4.6.3 Grasping

As we stated previously, UnrealROX grasping algorithm is based on the collision
produced by the capsules attached to the hand of the skeletal mesh of the Pawn
with a world object eligible for this interaction. These capsules need to be placed
manually by the user according the skeleton hands. Figure 4.36 shows the hands
colliders attached to the Mannequin Pawn, which is the Pawn example UnrealROX
provides.

FIGURE 4.36: Capsule colliders placed manually on the hand.

Next, we will explain the algorithm in a more precise way, which is implemented
in ROXBasePawn.

As we explained in Section 4.6.1, the constructor of the Pawn will be in charge
of creating and initializing each of these capsules, as well as placing them in the
correct position for the Pawn. The initialization method is the same for each of these
colliders, as we can see on Figure 4.37.

FIGURE 4.37: Initialization of the Tumb_3R capsule collider.

The first line creates the component then we set its parent using the SetupAttach-
ment function. SetRelativeTransform is the function we use to properly place these
colliders, and with SetCapsuleSize we can adjust the size of this collider. Next, we
activate the Overlap events for this specific collider setting bGenerateOverlapEvents
to true, and we set up some collision rules. Finally, we can bind the overlapping
events to whatever function we have in our class; as soon as it meets the function
requirements10 (same signature as the Overlap engine functions).

10https://api.unrealengine.com/INT/API/Runtime/Engine/Components/
UPrimitiveComponent/OnComponentBeginOverlap/index.html

https://api.unrealengine.com/INT/API/Runtime/Engine/Components/UPrimitiveComponent/OnComponentBeginOverlap/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Components/UPrimitiveComponent/OnComponentBeginOverlap/index.html

62 Chapter 4. UnrealROX

As we documented previously, the BeginPlay will iterate through the EHandFin-
ger to initialize the grasping maps for both hands. These maps control the finger
grips, the overlapping and the block based on certain conditions that we will study
later in this document. The initialization is simple, as we can see in Algorithm 4.

Once everything is initialized, the next step is analyzing the entry points, which
are GraspRightHand and GraspLeftHand, as we documented in Section 4.5.2. We’ll
only cover GraspRightHand, since the behavior for both Grasping functions is the
same.

GraspRightHand works like an axis, it takes a value and it calls a function which
will do the grasping algorithm. Since the axis are ticking, we can have a continuous
control of the user input, hence the Grasp function will be called every tick, the only
difference will be the R_CurrentGrip value, which is set to the axis value (how much
the user presses a button, like a joystick).

The Grasp function is reused for the both hands thanks to the input parameters.
The following list includes all the input parameters as well as an explanation of each
of them.

• float CurrentGrip: Current axis value.

• TMap<EHandFinger, float> &FingerGrips: Map that stores the fingers bending
value.

• TMap<EHandFinger, bool> &FingerOverlapping: Map that holds the overlap-
ping state of each finger.

• TMap<EHandFinger, bool> &FingerBlocked: Map that determines if a finger should
be blocked from bending or not.

• FName BoneName: Bone where to attach the grasped object, in this case hand_r
or hand_l.

• AActor* &OverlappedActor: Current Overlapping Actor.

• bool &isActorAttached: Defines if the Overlapped Actor is attached.

• bool &DisableGrab: Determines if the current hand can grab an object.

• AActor* &AttachedActor: Holds a reference to the currently grasped Actor.

• bool &isActorAttachedOtherHand: This property will be true if an Actor is at-
tached to the "other hand" and not to the one we are checking in this exe-
cution. This is done because we can have two different actors attached at the
same time, one on each hand. The overlapped actor we receive can be different
for each hand, so we only want isActorAttachedOtherHand and AttachedAc-
torOtherHand in order to check if we are passing the same object from one
hand to the other, as this case requires some special logic.

• bool &DisableGrabOtherHand: Determines if the opposite to the current hand
can grab an object. It is useful to avoid attaching and detaching the object
repeatedly (and quickly) between hands. After detaching from one hand, that
hand won’t be able to grab any other object until it is completely opened.

• AActor* &AttachedActorOtherHand: Holds a reference to the currently grasped
Actor on the other hand.

4.6. The Pawn 63

As we saw, the Grasp function needs information about the currently overlapped
actor, this information will be retrieved from the callbacks we defined in the colliders
initialization. The Figure 4.38 shows these overlapping functions that will grant this
information to the Grasping method.

FIGURE 4.38: Begin and End overlap callbacks for the hand colliders.

As we can see, the SetOverlap function sets the OverlappingActor (passed by
reference) that we will use later on the Grasping method. SetOverlapEnd only up-
dates the overlapping state of that finger by accessing the map.

Now that we know where the data comes from, we can disassemble the Grasp
function better. But first, let’s define it’s purpose.

The Grasp function needs to move all the fingers of the hand following a grasp-
ing animation until they collide with something. If a finger of the hand collided
with something, it will be blocked on the position it collided, meaning that it won’t
be able to go through the object. The same process is repeated for the rest of the
fingers.

for auto Entry : FingerBlocked.CreateIterator() do

const EHandFinger& Finger = Entry.Key();
const bool& bFingerBlocked = Entry.Value();
float fFingerGrip = *FingerGrips.Find(Finger);

bool bFingerOverlapping = *FingerOverlapping.Find(Finger);
bool bSmoothGrasp = false;

...

end

Algorithm 5: Iterating through the fingers array.

First, we iterate through the fingers array caching out all the information we need
for its post process as we can see in Algorithm 5.

Following next, if the finger in this map element is blocked, then we update the
block state of this finger to false and set bSmoothGrasp to true to call it afterwards.

64 Chapter 4. UnrealROX

...

if bFingerBlocked then

if CurrentGrip < fFingerGrip then
FingerBlocked.Emplace(Finger, false);
bSmoothGrasp = true;

end

else

bSmoothGrasp = true;

end

if bFingerBlocked then

SmoothGrasp(FingerGrips, Finger, CurrentGrip, 0.6f);

end

Algorithm 6: Updating finger block and calling SmoothGrasp if conditions are
met.

SmoothGrasp simply updates smoothly the position of the fingers by accessing
the FingerGrips hash map having in consideration the delta time to achieve a slow
and smooth grasp movement. Then, we retrieve overlapping information to know
if an object can be grasped, as we can see in Figure 4.39.

FIGURE 4.39: The three important fingers to consider an object to be
grasped are the thumb, the index and the middle finger.

Then based on that information, we will decide if we should grasp or not an
object. Specifically the rules would go as it follows: If the thumb is overlapping
along the index or the middle finger, then we can attach the overlapped actor to the
proper hand socket, however in order to do this, the actor can’t be already attached
and the hand can’t be marked as Disabled. If we grasp an object that is already hold
by the other hand, we will just detach this object from the other hand and attach it
to the hand we are grasping with. If the first condition wasn’t met and we have an
actor attached, we’ll just detach it.

To attach and detach actors to the hands of the skeleton, we’ll use the built in
UE4 functions AttachToComponent11 and DetachFromComponent12. The latter needs to
re-enable the physics of the object as well as enable its collision.

11https://api.unrealengine.com/INT/API/Runtime/Engine/Components/USceneComponent/
AttachToComponent/index.html

12https://api.unrealengine.com/INT/API/Runtime/Engine/Components/USceneComponent/
DetachFromComponent/index.html

https://api.unrealengine.com/INT/API/Runtime/Engine/Components/USceneComponent/AttachToComponent/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Components/USceneComponent/AttachToComponent/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Components/USceneComponent/DetachFromComponent/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Components/USceneComponent/DetachFromComponent/index.html

4.7. The Tracker 65

4.7 The Tracker

The Tracker Actor is one of the most important pieces of UnrealROX, as it is the class
responsible for recording and reproducing the actions of the scene, including the
Pawn.

First in Section 4.7.1 we will explain what is the Tracker and how to use it on
UnrealROX. Then, in Section 4.7.3, we will explain how the scene actions are saved
to a text file which we later interpret with the playback mechanism explained in
Section 4.7.4. We will also see how the tracker gets initialized in Section 4.7.2.

4.7.1 Usage

As we explained in the introduction, the Tracker is the class in charge of recording
and reproducing a scene to obtain the dataset. Without a Tracker Actor in a scene
none of this can be achieved.

Now that we know what is the responsibility of this Actor, we can explain how
to use it inside UnrealROX.

The Tracker can be found under the default folder C++ Classes in the Content
Browser13 (this directory only appears in the content browser if you are working
with a C++ UE4 project) under the robotrix folder in the public category, we can use
the searching function of the content browser to find it immediately as we can see in
Figure 4.40.

FIGURE 4.40: UE4 content browser.

As we explained previously, in order to record a scene, we need to add a Tracker
to the scene we want to record. To do that, we simply have to click and drag the
Tracker Actor from the content browser to the level viewport. This will add a tracker
to the scene. We can verify that the Actor is placed in the scene by finding it in the
World Outliner, which is located to the right of the level viewport, we can see the
placed ROXTracker in the World Outliner in Figure 4.40.

Once this Actor is added to the scene, we can click on it on the World Outliner
and see it’s exposed properties. Figure 4.41 shows the first section of the exposed
properties of the Tracker.

13https://docs.unrealengine.com/en-us/Engine/Content/Browser

https://docs.unrealengine.com/en-us/Engine/Content/Browser

66 Chapter 4. UnrealROX

FIGURE 4.41: Tracker Actor generic settings.

These are the settings we can see in the previous Figure and their description:

• Record Mode: If this value is true, we will be on recording mode, meaning that
if we trigger the recording action, the Tracker will start populating a TXT, that
will be translated on a further step into a JavaScript Object Notation (JSON)
file. If it’s set to false we will be interpreting the data of that JSON and repro-
ducing it.

• Scene Save Directory: Absolute path in which we will save the JSON data.

• Scene Folder: Folder inside the Scene Save Directory where we will save the JSONs
for every sequence.

• Generate Sequence JSON: It transforms the txt data into a JSON. It can be pressed
in the editor.

The next properties we can find on the Tracker are under the Recording category,
which will remain active only if the Record Mode boolean is set to true. We can see
these settings in Figure 4.42.

FIGURE 4.42: Tracker Actor recording settings.

This section has 3 arrays. The first one called Pawns, contains the Pawn references
that we will be recording, which we will see in detail in Section 4.7.3. The second
array stores all the camera references that will be tracked. An finally, the third array
defines the stereo distance (if any) for these cameras following the same order as the
previous array. Scene File Name Prefix is a simple naming convention setting.

4.7. The Tracker 67

The final exposed properties belong to the Playback category on the Tracker as
we can see in Figure 4.43.

FIGURE 4.43: Tracker Actor playback settings.

• Json File Names: This array stores the input JSONs we generated in the recording
phase that the playback system will process.

• Start Frames: This array correlates with the Json File Names array, meaning that
it allows us to set a certain start frame per JSON. The first array entry will set
the first frame to start for the first JSON on the Json File Names array.

• Playback Only: It plays the JSON without generating any data.

• Playback Speed Rate: It’s only available when we set the Playback Only option
to true and it allows us to set the speed at which the playback will play.

• Generate RGB: It generates a RGB image per camera per frame, we can adjust the
format to JPG-80, JPG-95 (the number is the percentage of quality set to the
JPG compression algorithm) or PNG if this boolean is set to true.

• Generate Depth: It generates a Depth image per camera per frame.

• Generate Object Mask: It generates an Object Mask image per camera per frame.
This image gets generated by setting the viewmode to unlit and changing ev-
ery single instance material to a unique color per object instance.

• Generate Normal: It generates a Normals image per camera per frame. We can
obtain the normal information of the objects inside UE4.

• Generate Depth Txt Cm: Generates a text file where each number correlates to
the depth value in centimeters of the k pixel of the depth image.

• Screenshot Folder/Save directory: It determines where the screenshots will be saved.

• Generated Images width/Height: Resolution of the image.

68 Chapter 4. UnrealROX

4.7.2 Initialization

Now that we covered all the properties we can start with the logic. In this first
section we will study how the Tracker initializes and prepares other classes for the
recording and the playback.

If we look at the Tracker Begin Play, we can see that we store the original En-
gineShowFlags variable in the GameShowFlags variable defined on the Tracker class.
ShowFlags are a set of bits that are stored in the ViewFamily that can alter the way
a scene renders in UE4. We store the original reference of the engine ShowFlags to
reset its values after we made a change to the EngineShowFlags variable in other part
of the code as we can see in Listing 4.5.

LISTING 4.5: GameShowFlags variable usage example.

GameShowFlags = new FShowFlags (Viewport()−>EngineShowFlags) ;
/ / A l t e r i n g t h e ShowFlags v a r i a b l e
AlterEngineShowFlags (Viewport()−>EngineShowFlags) ;
/ / S e t t i n g b a c k d e f a u l t v a l u e
Viewport()−>EngineShowFlags = ∗GameShowFlags ;

Following next, GScreenshotResolutionX and GScreenshotResolutionY are set, these
variables are part of the engine and set the resolution of the images that TakeHigh-
ResScreenShot14 outputs. In UnrealROX there is a functionality that allows us to take
screenshots in the runtime by using this function, so the resolution set by the user in
the Tracker Actor will be the one this function will be processing.

Next, Pawns get initialized by looping through the Pawn array that we saw in
Figure 4.42. That loop calls the function InitFromTracker (explained in Section 4.6.2) in
every pawn of this array. The initialization also caches the ControllerPawn variable,
which represents the pawn user-controlled pawn.

The camera actors set in the editor get added to an Actor view target array, which
we use to swap between different view targets, as we explained in Section 4.6.2. To
recapitulate, these view targets are the points of view we set in our scene, to do that
we place camera Actors in the editor in the locations from where we desire to have
a point of view.

FIGURE 4.44: View mode settings.

The last step we do in the generic initialization of the Tracker is filling the EROX-
ViewModeList array. As we can observe in Figure 4.44, this array is populated based
on the settings the user introduces in the editor, as we saw previously in the intro-
duction. This array will be used in the main Tracker algorithm to determine which
view modes should be computed.

Finally if we are in playback mode, we call RebuildModeBegin(), which will be in
charge of playing the JSON file.

14https://api.unrealengine.com/INT/API/Runtime/Engine/FViewport/
TakeHighResScreenShot/index.html

https://api.unrealengine.com/INT/API/Runtime/Engine/FViewport/TakeHighResScreenShot/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/FViewport/TakeHighResScreenShot/index.html

4.7. The Tracker 69

PrepareMaterials is a function that will prepare the object mask materials. This
will be done by spawning flat materials and caching the original materials of every
single mesh in the scene, it will also assign a color per mesh component. Masked ma-
terials are flat colored materials that rendered in Unlit mode, let us segment Actors
by colors.

4.7.3 Recording the scene

When we set the Tracker in recording mode, the system is prepared to record the
scene we are on. For that, we have the StartRecording handler on the Controller, as we
explained in Section 4.5.2. When that handler is used, the function ToggleRecording
on the Tracker is called. This function works like a flip flop, meaning that if the
recording mode is activated and the function gets called, it will be deactivated and
vice-versa. ToggleRecording resets the frame counter to zero, so every time we want
to record, it will be properly initialized, it also writes the header in the text file we
will be writing on this recording phase.

The header is the initial information the playback system (explained in Section
4.7.4) needs to be aware of. The WriteHeader function writes this initial part of the
TXT. In order to do it, first, prints the number of the cameras the Tracker has on
the CameraActors array. Then, iterates through this array printing the name of each
camera accompanied by certain settings, such as the stereo distance and the field of
view. Next, prints the number of static mesh actors tagged as movable contained in
the scene and iterates through them printing their names and bounding box infor-
mation. The following step is printing the number of Pawns that we will be tracking
accompanied by their names and socket number (number of bones in the skeleton
used). Lastly, the non movable objects information gets printed following the same
format as the movable objects. Figure 4.45 shows a sample header.

FIGURE 4.45: Sample header from the recording TXT file.

Once the header is written and the recording mode is set to true, the Tracker starts
calling every frame WriteScene, which is the function in charge of writing every tick
the information of the scene. To do that, it prints the word frame along the number of
the frame processed accompanied by the the time, the frame counter gets increased
every time this function gets called. This variable is convenient since it allows us to
know the frame related to a specific setup, like an ordered array structure.

70 Chapter 4. UnrealROX

The execution flow of this function goes as it follows: First, we iterate through
the camera Actor array, obtaining their names followed by their transform informa-
tion to then print them in order. Next we iterate through the pawns getting their
name and transform information, in addition, we iterate through the sockets of the
skeleton of each pawn to obtain the desired socket information. This socket infor-
mation is what will make the skeleton of our pawns move, since thanks to that we
can know the location and the rotation of every socket in the skeleton. The last thing
we do is printing the information of every mesh in the scene following the format
explained previously. As we said before, this information is retrieved in every tick,
and we can see the format in Figure 4.46.

FIGURE 4.46: TXT recording file.

In order to write the information to a text file and not lock the main game thread,
we have created an Async task15 that we use to write strings on a file as we can see
on Figure 4.47. This task uses a built in function of UE4 for writing a string in a file.

FIGURE 4.47: Async task for writing a string on a file.

This task has as arguments the absolute path of the file, including the name,
besides the string that we want to add to the file.

We mentioned earlier that the playback mode uses a JSON file, and so far we
have commented that the data is written in a TXT file. UnrealROX has a feature,
already commented in Section 4.7.1, that allows us to transform this generated TXT
file into a JSON file. We do this separately because the data in a JSON is more bulky,
that means that you have to write more in every frame, hence the performance of the
project could be compromised. That’s why we generate first a TXT, which is lighter
to create. File which we will transform to JSON from the editor, out of runtime.

Once the JSON file is generated, we are ready to use the playback mode.

15https://wiki.unrealengine.com/Using_AsyncTasks

https://wiki.unrealengine.com/Using_AsyncTasks

4.7. The Tracker 71

4.7.4 Reproducing the scene

Playing a scene from a JSON file in UnrealROX requires a previous setup, which
consists of several phases. As we have already explained, the objective of this stage
is to generate a dataset, which is composed of images taken in UE4 from different
points of view in a specific scene.

The first step to generate this dataset is to place as many Camera Actors as we
need. These actors, as described in Section 4.2, will be the points of view that will
be taken into account when generating the data, in addition to the default camera of
the pawns. These cameras need to be set up on the Tracker in the recording phase,
so we can track their position.

Once the JSON is ready, we can set the Tracker Actor on playback mode, to do
this, we set the bRecordMode variable of the Tracker to false. If it is set to false, Begin-
Play will call RebuildModeBegin, which is in charge of the playback loop.

The design of the playback mode of the Tracker allows us to define several JSON
files to reproduce in an array. This option enables the generation of data from dif-
ferent recordings in a single playback session. By this statement we are defining our
first outer loop.

First, we load the JSON file we want to play onto our JSONParser class. This
class will be in charge of parsing the JSON data into a more UE4 friendly format.
It’s also essential to disable the gravity in all the meshes of the scene, since we don’t
want any physic simulation to happen while we are setting the transform of the ob-
jects recorded previously. Once everything is initialized we can start with the inner
loop which takes place on the RebuildModeMain function. The following Algorithm
7 represents a simplistic version of the playback loop.

for current_json_file in json_file_names do
for frame in current_json_numframes do

for actor in Scene do
FROXJsonParser* ActData := frame.Find(actor->GetName());
if actor not null then

actor->SetActorTransform(ActData->Transform);
end

end
if !playback_only then

RTs := CreateRenderTargets(Cameras->Transform);
for viewmode in viewmodes do

for rt in rts do
rt->TakeScreenshot(viewmode);

end
end

end
end

end

Algorithm 7: Very simplistic version of the playback loop execution flow.

72 Chapter 4. UnrealROX

Following next, we iterate through all the frames contained in a single JSON file
doing the following: All the objects in the scene retrieve and set their transforms for
the current frame from the JSON data we explained above. Once all the objects are
placed for a specific frame, we can start taking screenshots for that frame (only if the
user desires so).

To take the screenshots, we use the Render Target16 class, since it allows us to
define specific render modes to retrieve precise data from the render target instance.
To do this, we will spawn one render target per viewmode in the spot where the
camera is located; which means that the cameras are only used as a helper class to
spawn the necessary render targets in the appropriate locations.

This means that we will have four render targets per camera: Lit, Depth, Object
Mask and Normal. To make this approach more seamless and performant, we have
four arrays containing the cached render targets (or scene capturers), one for each
mode, SceneCapture_Depth, SceneCapture_Lit and so on. These arrays are encoded
in a way that the n index of the lit array corresponds to the n index of the depth array
and the remaining arrays. This means that SceneCapture_x[n], being x the viewmode,
represents one single viewpoint.

If we describe the problem at a lower level, we can elaborate that each viewmode
consists on a series of techniques applied over each render target. We will see a more
complex explanation of these techniques below.

• Lit: Normal RGB lit picture. Gets generated by setting the Scene capture source17 in
SCS_FinalColorLDR mode, the Render Target Format18 in RTF_RGBA8 mode,
and the Gamma correction to 2.2, so the final result is accurtate with what
we see in the screen (without this gamma corrections the pictures would be
darker).

• Depth: This mode represents what a depth camera would do if it would take a
picture of the scene. Each pixel represents the distance between the viewer
and the surface where this pixel resides, the darker the pixel is, the nearer this
surface is from the viewer. It gets generated by setting the Scene capture source
in SCS_SceneDepth mode, the Render Target Format in RTF_RGBA16f mode,
and the Gamma correction to 0. There is also an option to write the pixel data
on a txt, we do that by iterating through the pixel data and printing the content
to a TXT file.

• Object Mask: This viewmode consists on painting in different colors every object
instance in the scene. We do this to differentiate every instance in the screen by
its pixels color in a very precise way. In order to do this, we use the BaseColor
RenderTarget in combination with plain-colored materials. This material has a
color parameter which permits us to set a unique color to every object instance.
By doing that we can have a total control of the color that we set to every actor.
It gets generated by setting the Scene capture source in SCS_BaseColor mode,
the Render Target Format in RTF_RGBA8 mode, and the Gamma needs to be set
to 1, which is the only notable difference we can find with the Lit mode setup.

16https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
17https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/ESceneCaptureSource/

index.html
18https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/UTextureRenderTarget2D/

RenderTargetFormat/index.html

https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/ESceneCaptureSource/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/ESceneCaptureSource/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/UTextureRenderTarget2D/RenderTargetFormat/index.html
https://api.unrealengine.com/INT/API/Runtime/Engine/Engine/UTextureRenderTarget2D/RenderTargetFormat/index.html

4.7. The Tracker 73

• Normal: The normal viewmode simply displays the normals19 of the world. This
is done by applying a post process material to the render target. The material
can be seen in Figure 4.48. It gets generated by setting the Scene capture source
in SCS_FinalColorLDR mode, the Render Target Format in RTF_RGBA8 mode,
and the Gamma correction remains unmodified.

FIGURE 4.48: Normal viewmode material.

The following Figure 4.49 shows some samples extracted directly from the dataset
in which the viewmodes are demonstrated. One of the most important points when
working on this project is to get correct data, that’s why we emphasize on the for-
mats for each viewmode, as they are essential to produce a quality dataset. Continu-
ous studies have been made of the generated data with software such as IrfanView,
explained in Section 3.2, to corroborate the produced results.

(A) RGB viewmode (B) Depth viewmode

(C) Normal viewmode (D) Object Mask viewmode

FIGURE 4.49: UnrealROX viewmodes raw results.

19http://wiki.polycount.com/wiki/Normal_map

 http://wiki.polycount.com/wiki/Normal_map

75

Chapter 5

Conclusion

This chapter makes an overview of the conclusions of this work. This chapter is divided into
three sections: Section 5.1, summarizes the work done in this Thesis. Section 5.2, highlights
the main points of this project. And finally, Section 5.3 delineates future research lines that
could derive from this project.

5.1 Conclusions

In this work, we have reviewed a large part of the methods that have been beneficial
to reduce the gap between the synthetic and the real-world domains. In that regard,
we proposed UnrealROX, a simulator that improves the drawbacks of the different
simulators proposed until now.

First, we analyzed the two main avenues to minimize this gap: photorealism
and domain randomization. Then, we discussed the main advantages and disad-
vantages about some of the most relevant simulators and generators belonging to
the Sim-To-Real area1.

As for photorealism, we have concluded that it is one of the most important
points for the transfer of synthetic learned models to the real world. For that, we
have determined that using a game engine that conforms to the state of the art in
terms of rendering techniques leads to great results, as we discussed in Section 2.1.3.
We have also commented on the current limitations of real time ray-tracing to im-
prove the overall quality of the final image; at this date, there is not enough comput-
ing power on average devices to carry out a perfect ray-tracing setup.

On the other hand, we found that models used in simulators do not reflect the se-
mantic complexity of real-world, and this makes them prone to poor generalizations
when it comes to new data. This issue can be improved with domain randomiza-
tion, which proposes to generate random variations of the synthetic world so that
after the model has seen enough variations it can identify the real world as just an-
other variation. However, this type of randomization can lead to meaningless data,
as we discussed in Section 2.1.2. Various models, such as ADR and SDR propose an
improved paradigm where this randomization gets controlled following different
criteria.

As we have commented before, we have reviewed some of the most relevant
simulators and generators to the present day. This task has been critical when defin-
ing UnrealROX since one of the main objectives of our simulator is to compensate
for the shortcomings of other environments.

1https://sim2realai.github.io/

https://sim2realai.github.io/

76 Chapter 5. Conclusion

UnrealROX is a simulator that implements grasping interaction using an inter-
changeable skeletal mesh mannequin that reproduces movements recorded previ-
ously with a VR device. Our simulator is capable of translating seamlessly the op-
erator’s movements into the robot’s degrees of freedom. In UnrealROX the user can
select the type of data to generate, avoiding unnecessary long calculation times. This
data will be generated from the multiple points of view placed and configured by
the operator, thus making the system more flexible, as well as improving the dataset.
All of this accompanied by the base features of UE4, which allow the user to import
new scenarios and models. In addition, any developer can download and extend
UnrealROX, thanks to the fact that the simulator is open sourced and available at
Github2. UnrealROX also counts with a polished documentation open to the public.
All of this opens up new research avenues for future work, which we will cover in
Section 5.3.

5.2 Highlights

The highlights of this work are the following:

• In depth study of the Sim-To-Real field analyzing it’s two main avenues: photore-
alism and domain randomization.

• Review and analysis of the most relevant simulators and synthetic data generators
to date.

• Proposal and implementation of UnrealROX, a simulator that covers the limita-
tions of other environments.

• In depth documentation for UnrealROX and its components3.

• Various video presentations for RobotriX4, UnrealROX5 and UnrealGrasp6.

• A dataset featured at IROS 20187: The RobotriX [3], a photorealistic indoor dataset
for deep learning.

• UnrealGrasp [13], a realistic grasping system designed for UnrealROX.

• An incoming UnrealHands, a hand pose detection algorithm using synthetic data.

• Generation of synthetic data for segmentation of actions in video sequences. Unre-
alROX has been used as a tool to generate the dataset from previously labelled
sequences of actions.

• Automation of UnrealROX agents and generation of synthetic actions for semantic
segmentation.

2https://github.com/3dperceptionlab/unrealrox
3https://unrealrox.readthedocs.io
4https://www.youtube.com/watch?v=CiRc5tCtCak
5https://www.youtube.com/watch?v=YOiVr2A2TZo
6https://www.youtube.com/watch?v=4sPhLbHpywM
7https://www.iros2018.org/

https://github.com/3dperceptionlab/unrealrox
https://unrealrox.readthedocs.io
https://www.youtube.com/watch?v=CiRc5tCtCak
https://www.youtube.com/watch?v=YOiVr2A2TZo
https://www.youtube.com/watch?v=4sPhLbHpywM
https://www.iros2018.org/

5.3. Future Work 77

5.3 Future Work

We have been mentioning throughout this work some of the possible future research
lines that could be opened to complement this work. Some of them were initially
proposed as part of the planning of this project, however, due to time constraints it
has been impossible to address some of them. In this section we summarize them to
conclude this Thesis:

• Interaction mask: One of the proposed objectives of this project was to create an
interaction mask. This method would consist of creating a binary categoriza-
tion for the objects with which the user interacts in a scene, drawing in white
those pixels which correspond to the objects the operator is interacting with,
and in black those which don’t. Once the interaction mask is created using
synthetic data, we can generate an interaction dataset. Finally we can transfer
the learned model to the real world to see how it performs.

• Domain Randomization: In Section 2.1.5, we discussed the future possibility of
including domain randomization in UnrealROX. This would consist of having
a total control over the assets in the scene, trying get feasible scenarios as SDR
proposes. A possible approach might be to create different arrays of meshes
and assign predefined random points in the scene where they would appear.
We could also control the materials these assets spawn with and define random
lighting options for the scene.

• Ray-tracing: We have analyzed in depth the current state of the art of ray-tracing
at the beginning of this work, and we concluded that to use ray-tracing in
a feasible manner there needs to be a selective way to decide where to trace
more or less rays. As of today, UE4 implements a ray-tracer in its 4.22 version;
however, the technology is still too primitive to be used directly in real time
without a major performance hit and framerate drops in VR.

• Non-rigid objects manipulation: This is the most complex research option out of
the proposed ones, since the support for non-rigid objects in UE4 is very lim-
ited. One of the few presences of non rigid objects in the engine is the clothing
tool8, but the integration is more focused on visuals rather than interaction.
Integrating non-rigid interactive objects in game engines is one of the future
state of the art challenges when it comes to physics in real time. Deforming
a shader is not enough to bring collision data to the CPU, which is the main
research topic of this matter.

8https://docs.unrealengine.com/en-us/Engine/Physics/Cloth/Overview

https://docs.unrealengine.com/en-us/Engine/Physics/Cloth/Overview

79

Bibliography

[1] Angel Chang et al. “Matterport3D: Learning from RGB-D Data in Indoor En-
vironments”. In: International Conference on 3D Vision (3DV) (2017).

[2] Adrien Gaidon et al. “VirtualWorlds as Proxy for Multi-object Tracking Analy-
sis”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016). DOI: 10.1109/cvpr.2016.470. URL: http://dx.doi.org/10.1109/
CVPR.2016.470.

[3] Alberto Garcia-Garcia et al. “The RobotriX: An Extremely Photorealistic and
Very-Large-Scale Indoor Dataset of Sequences with Robot Trajectories and In-
teractions”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (2018). DOI: 10.1109/iros.2018.8594495. URL: http://dx.
doi.org/10.1109/IROS.2018.8594495.

[4] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for autonomous driving?
The KITTI vision benchmark suite”. In: 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition. IEEE, 2012. DOI: 10.1109/cvpr.2012.6248074.
URL: https://doi.org/10.1109%2Fcvpr.2012.6248074.

[5] Ian Goodfellow et al. “Generative Adversarial Nets”. In: (June 2014). URL:
https://arxiv.org/pdf/1406.2661.pdf.

[6] Matthew Johnson-Roberson et al. “Driving in the Matrix: Can virtual worlds
replace human-generated annotations for real world tasks?” In: 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA) (2017). DOI: 10.1109/
icra . 2017 . 7989092. URL: http : / / dx . doi . org / 10 . 1109 / ICRA . 2017 .
7989092.

[7] Eric Kolve et al. AI2-THOR: An Interactive 3D Environment for Visual AI. 2017.
arXiv: 1712.05474 [cs.CV].

[8] Christian Ledig et al. “Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network”. In: (May 2017). URL: https://arxiv.org/
pdf/1609.04802.pdf.

[9] Yang Liu et al. Stein Variational Policy Gradient. 2017. arXiv: 1704.02399 [cs.LG].

[10] Bhairav Mehta et al. Active Domain Randomization. 2019. arXiv: 1904.04762
[cs.LG].

[11] Paul W. Munro and Antony P. Gerdelan. “Stereo Vision Computer Depth Per-
ception”. In: 2006.

[12] NVIDIA. “NVIDIA TURING GPU ARCHITECTURE”. In: (Sept. 2018). URL:
https : / / www . nvidia . com / content / dam / en - zz / Solutions / design -
visualization / technologies / turing - architecture / NVIDIA - Turing -
Architecture-Whitepaper.pdf.

[13] Sergiu Oprea et al. A Visually Plausible Grasping System for Object Manipula-
tion and Interaction in Virtual Reality Environments. 2019. arXiv: 1903 . 05238
[cs.GR].

https://doi.org/10.1109/cvpr.2016.470
http://dx.doi.org/10.1109/CVPR.2016.470
http://dx.doi.org/10.1109/CVPR.2016.470
https://doi.org/10.1109/iros.2018.8594495
http://dx.doi.org/10.1109/IROS.2018.8594495
http://dx.doi.org/10.1109/IROS.2018.8594495
https://doi.org/10.1109/cvpr.2012.6248074
https://doi.org/10.1109%2Fcvpr.2012.6248074
https://arxiv.org/pdf/1406.2661.pdf
https://doi.org/10.1109/icra.2017.7989092
https://doi.org/10.1109/icra.2017.7989092
http://dx.doi.org/10.1109/ICRA.2017.7989092
http://dx.doi.org/10.1109/ICRA.2017.7989092
https://arxiv.org/abs/1712.05474
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/abs/1704.02399
https://arxiv.org/abs/1904.04762
https://arxiv.org/abs/1904.04762
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://arxiv.org/abs/1903.05238
https://arxiv.org/abs/1903.05238

80 Bibliography

[14] Aayush Prakash et al. Structured Domain Randomization: Bridging the Reality
Gap by Context-Aware Synthetic Data. 2018. arXiv: 1810.10093 [cs.CV].

[15] Weichao Qiu and Alan Yuille. UnrealCV: Connecting Computer Vision to Unreal
Engine. 2016. arXiv: 1609.01326 [cs.CV].

[16] Weichao Qiu et al. “UnrealCV: Virtual Worlds for Computer Vision”. In: Oct.
2017, pp. 1221–1224. DOI: 10.1145/3123266.3129396.

[17] Tim Salimans et al. “Improved Techniques for Training GANs”. In: (June 2016).
URL: https://arxiv.org/pdf/1606.03498.pdf.

[18] Manolis Savva et al. MINOS: Multimodal Indoor Simulator for Navigation in Com-
plex Environments. 2017. arXiv: 1712.03931 [cs.LG].

[19] Shuran Song et al. “Semantic Scene Completion from a Single Depth Image”.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017). DOI: 10.1109/cvpr.2017.28. URL: http://dx.doi.org/10.1109/
CVPR.2017.28.

[20] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. Second. The MIT Press, 2018. URL: http://incompleteideas.net/book/
the-book-2nd.html.

[21] Thang To et al. NDDS: NVIDIA Deep Learning Dataset Synthesizer. https://
github.com/NVIDIA/Dataset_Synthesizer. 2018.

[22] Josh Tobin et al. “Domain randomization for transferring deep neural net-
works from simulation to the real world”. In: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (2017). DOI: 10.1109/iros.
2017.8202133. URL: http://dx.doi.org/10.1109/IROS.2017.8202133.

[23] Jonathan Tremblay, Thang To, and Stan Birchfield. “Falling Things: A Synthetic
Dataset for 3D Object Detection and Pose Estimation”. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2018).
DOI: 10.1109/cvprw.2018.00275. URL: http://dx.doi.org/10.1109/CVPRW.
2018.00275.

[24] Jonathan Tremblay et al. Deep Object Pose Estimation for Semantic Robotic Grasp-
ing of Household Objects. 2018. arXiv: 1809.10790 [cs.RO].

[25] Michael F. Worboys. “GIS: A Computer Science Perspective”. In: (Oct. 1995),
p. 232. URL: https://books.google.es/books?id=duT2fcnQeJMC&pg=PA232&
redir_esc=y#v=onepage&q&f=false.

[26] Yi Wu et al. Building Generalizable Agents with a Realistic and Rich 3D Environ-
ment. 2018. arXiv: 1801.02209 [cs.LG].

[27] Fei Xia et al. “Gibson env: real-world perception for embodied agents”. In:
Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on. IEEE.
2018.

https://arxiv.org/abs/1810.10093
https://arxiv.org/abs/1609.01326
https://doi.org/10.1145/3123266.3129396
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/abs/1712.03931
https://doi.org/10.1109/cvpr.2017.28
http://dx.doi.org/10.1109/CVPR.2017.28
http://dx.doi.org/10.1109/CVPR.2017.28
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
 https://github.com/NVIDIA/Dataset_Synthesizer
 https://github.com/NVIDIA/Dataset_Synthesizer
https://doi.org/10.1109/iros.2017.8202133
https://doi.org/10.1109/iros.2017.8202133
http://dx.doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/cvprw.2018.00275
http://dx.doi.org/10.1109/CVPRW.2018.00275
http://dx.doi.org/10.1109/CVPRW.2018.00275
https://arxiv.org/abs/1809.10790
https://books.google.es/books?id=duT2fcnQeJMC&pg=PA232&redir_esc=y#v=onepage&q&f=false
https://books.google.es/books?id=duT2fcnQeJMC&pg=PA232&redir_esc=y#v=onepage&q&f=false
https://arxiv.org/abs/1801.02209

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Acronyms
	Introduction
	Overview
	Motivation
	Objectives
	Initial architecture
	Final version

	Thesis Structure

	State of the Art
	Sim-To-Real
	Photorealism
	Domain randomization
	Simulators
	Generators
	UnrealROX in context

	Methodology
	Introduction
	Software
	Unreal Engine 4
	Visual Studio
	Visual Assist
	Python
	irfanView
	Sublime Text Editor

	Hardware
	PC Resources
	Personal Computer
	Challenger
	Asimov

	Virtual Reality headsets
	Oculus Rift
	HTC Vive Pro

	UnrealROX
	Introduction
	Multi-camera Support
	The Camera Actor
	Camera Movement
	Implementation
	Recapitulation

	User Interface
	The HUD class

	Animation System
	Persona
	Execution Flow
	Event Graph
	Animation Graph

	Inverse Kinematics
	The FABRIK node

	Bulk Transform (Modify) Bones

	The Player Controller
	Input Definitions
	Main Behavior

	The Pawn
	Initialization
	Main Handlers
	Grasping

	The Tracker
	Usage
	Initialization
	Recording the scene
	Reproducing the scene

	Conclusion
	Conclusions
	Highlights
	Future Work

	Bibliography

