

Analysis and Design

of a Stream Cipher
Máster Universitario en Ciberseguridad

Trabajo Fin de Máster

Autor:

Petar Alexandrov Nikolov

Tutor/es:

Dr. Rafael Ignacio Álvarez Sánchez

Junio 2019

I would like to acknowledge

the help received from the 2

people that made this project

real. These are my partner,

Iris, and my supervisor, Rafa.

Thank you, Iris, for being so

patient with me and help me

when I needed.

And thank you, Rafa, for

leading me through this

project.

Table of Contents

Sinopsis en castellano .. 9

1. Introduction ... 13

1.1 Encryption Algorithms ... 13

1.1.1 Stream Ciphers .. 14

1.1.2 Block Ciphers ... 15

1.2 Motivation and Proposal ... 15

2. State of the Art ... 16

2.1 RC4 ... 16

2.2 Salsa20 .. 17

2.3 ChaCha... 18

2.4 A5... 19

2.5 Snow3G .. 20

2.6 e-Stream .. 21

2.7 Block Cipher CTR Mode .. 21

3. Stream Cipher Proposal: Strounter ... 23

3.1 Description ... 24

3.1.1 Key Scheduling ... 25

3.1.2 Iteration ... 27

3.1.3 Output Filtering ... 28

3.2 Analysis .. 32

3.2.1 Randomness .. 32

3.2.2 Performance .. 38

3.2.3 Security .. 41

3.3 Uses and Recommendations.. 44

4. Conclusions .. 46

5. Future Work ... 47

6. References ... 48

Appendices .. 52

Glossary ... 52

Appendix A ... 54

Appendix B ... 55

Appendix C ... 56

Appendix D .. 57

Appendix E ... 59

Appendix F ... 60

Appendix G .. 61

Appendix H .. 63

Table of Figures

Figure 1 - CTR mode ... 22

Figure 2 - Strounter scheme ... 24

Figure 3 - Prefiltration .. 28

Figure 4 - Union representation .. 29

Figure 5 - Filtration scheme ... 30

9

Sinopsis en castellano

Un estudio preliminar sobre los números hizo que nos diésemos cuenta de lo

importantes que son los números aleatorios, cómo estos son generados y sus usos.

Por ello, se propuso realizar un generador de números pseudoaleatorios que

pudiera ser utilizado en muchos contextos diferentes, incluido como cifrador en

flujo. Un cifrador en flujo es, de hecho, un generador de números pseudoaleatorios

en el que su salida se utiliza como secuencia cifrante combinándola, mediante la

operación lógica XOR, con el mensaje en claro y, obteniendo así, un criptograma o

texto cifrado.

Una vez decidido el objetivo de este estudio, se procedió a analizar los

algoritmos más destacados a lo largo de los últimos años, donde destacan: RC4,

Salsa20, ChaCha, A5 y Snow3G. También se estudió el modo de funcionamiento

CTR de los cifradores en bloque, el cual transforma un cifrador en bloque en uno en

flujo.

Terminado este estudio, se procedió al diseño del algoritmo propuesto, el cual

hemos llamado Strounter. Recibe este nombre debido a su diseño: 4 contadores de

32 bits con 4 cajas de sustitución que se combinan para formar un cifrador en flujo.

En Strounter se inicializan las 4 cajas de sustitución de 8x32 bits haciendo uso

del framework de inicialización de cajas de sustitución estudiado en (1). Una vez

inicializadas estas cajas de sustitución, se usan para extraer (filtrar) 32 bits de cada

caja, que son combinadas junto con una constante (distinta para cada uno de los

contadores) mediante una XOR. Este diseño está orientado a evitar que los

contadores sean inicializados a 0 o al mismo valor.

10

A continuación, describimos el proceso de generación de secuencia cifrante:

1) Uno de los contadores es incrementado (al tener 4 contadores sin signo de

32 bits, tenemos un periodo de 2128) y es combinado con los otros 3 siguiendo la

siguiente expresión:

(𝐶𝑇𝑅1 + 𝐶𝑇𝑅2) ⨁ (𝐶𝑇𝑅3 + 𝐶𝑇𝑅4)

En cada iteración se incrementa un contador distinto.

2) Al resultado de esta combinación se le aplica la operación lógica XOR junto

con un estado interno del algoritmo.

3) Partiendo del valor de este nuevo estado interno, se extrae un valor de cada

caja de sustitución y, finalmente, son todos combinados mediante la operación XOR.

El resultado final son 4 bytes pseudoaleatorios que forman la secuencia cifrante.

Terminado el diseño del algoritmo, se realizaron los siguientes análisis:

 Aleatoriedad: se hizo uso de 2 suits de tests, TestU01 (2) y PractRand (3) y se

hicieron distintas pruebas (BigCrush de TestU01 y analizar 128GiB de

secuencia cifrante con PractRand) con distintas claves (una clave de 16 bytes

aleatoria, otra de 256 bytes aleatoria, y una clave de todo 0’s y otra de todo 1’s)

y los resultados han sido excelentes, demostrando el buen diseño del

algoritmo.

 Rendimiento: se ejecutó una prueba de rendimiento que midiese la fase de

inicialización y otra que midiese la fase de generación. Aunque la fase de

inicialización fue lenta (lo cual se acabó concluyendo que era bueno para otros

fines como KDFs), la fase de generación daba unos resultados muy buenos,

superiores incluso a AES con aceleración por hardware.

11

 Seguridad: se analizó, de manera teórica, la seguridad asociada al algoritmo

en sí. Se concluyó que el proceso de inicialización, al estar basado en un

framework moderno que combina partes de RC4 y Spritz, aportaba un alto

grado de seguridad a nuestro algoritmo, pues también involucraba procesos

que están más asociados a los cifradores en bloque. Por otro lado, se estudió

las repercusiones que tendría sobre Strounter efectuar un side-channel attack y,

aunque en un principio susceptible, sería bastante más complejo ejecutar

algunos ataques (como el ataque cache trace-drive attack) debido al tamaño

reducido de las s-box.

Este trabajo concluye enumerando algunos usos que tendría nuestro

algoritmo, como pueden ser: generador de números pseudoaleatorios, cifrador en

flujo (aplicable, sobretodo, a sistemas de comunicación en tiempo real debido a su

alto rendimiento) y funciones de derivación de clave (KDF), entre otros.

Se propone como futuras mejoras implementar el algoritmo en hardware y

estudiar la mejora de rendimiento que tendría; así como investigar cómo podría

optimizarse el proceso de inicialización que, si bien no es recomendable para

protocolos de forward secrecy, sí sería interesante tener una fase del algoritmo más

lenta que dificulte los ataques de fuerza bruta.

12

13

1. Introduction

Numbers. They are used every day, by everyone, in many different situations.

Prices, measures, calculations, engineering, physics, computer science, and so on.

Most important ones, at least in computer science, can be random numbers.

They are used in many fields within software development and cryptography. From

the simplest casino-like game to the most complex cryptographic algorithm.

Focusing on the cryptographic uses, they are important for challenge values,

stream ciphers, shared symmetric keys, session cookies, initialization vectors, etc.

In this paper we are going to focus on the encryption algorithms, in particular, in

stream ciphers.

1.1 Encryption Algorithms

There are many ways to classify encryption algorithms: by their key type

(public or private), by their purpose (key sharing, general purpose data encryption

or digital signature) or by their underlying design (block, stream); but we will

define the classification by their key.

There can be symmetric (private key) or asymmetric (public key) algorithms.

The first ones use the same key for encryption and decryption (or the decryption

key is easily derivable from the encryption one). These algorithms are used for

general encryption data because of their good performance. The second ones use

two different keys: one for encryption and one for decryption; and one cannot be

obtained from the other one without knowing a secret. These are used to share a

symmetric key (as they are too much slower) and to sign/verify data.

14

The symmetric algorithms can be classified, attending to their underlying

design, as stream ciphers and block ciphers. Block ciphers encrypt a message by

splitting it into blocks of the same length and applying to each block the same

algorithm with the same key. Stream ciphers generate a pseudo-random sequence

of bytes and encrypt the message applying Vernam’s scheme (4).

1.1.1 Stream Ciphers

Stream ciphers are the fastest encryption algorithms, as their encryption

algorithm consists of applying an XOR between the algorithm output and the

message.

𝑐 = 𝑚 ⨁ 𝑘

This operation is reversible, so the decryption is applying, again, the XOR

between the algorithm output and the cipher text.

𝑚 = 𝑐 ⨁ 𝑘

𝑚 = 𝑚 ⨁ 𝑘 ⨁ 𝑘

Stream ciphers must generate a large sequence of random numbers (stream)

which shall be used to encrypt a message. This stream should be generated very fast

and, as we have mentioned, it should be impossible for an attacker to determine the

sequence, since it is (or, at least, appears to be) random.

There are two kinds of stream ciphers: synchronous and self-synchronizing.

Synchronous stream ciphers are those whose output does not depend on previous

ciphertext. In contrast, self-synchronizing stream cipher output does depend on

previous ciphertext.

15

1.1.2 Block Ciphers

As stated, a block cipher is defined as applying the same algorithm with the

same key to each of the split blocks. This is known as ECB mode of operation and is

considered insecure nowadays. To deal with this insecure operation mode, the NIST

has defined other modes (5): CBC, OFB, CFB and CTR. There are other operation

modes like XTS (used to encrypt hard disks), GCM and CCM (authenticated

encryption modes).

CTR mode is, essentially, a stream cipher mode. It has a counter, which iterates

for each block and is encrypted with the algorithm and the key. This encrypted

block is XOR-ed with the plaintext block to produce the ciphertext block. So, the

decryption is identical as encryption. This is considered as the most secure mode,

and it allows to parallelize the encryption/decryption process.

1.2 Motivation and Proposal

As we have seen in the previous section, random numbers are quite relevant,

as well as stream ciphers. That is why we have decided to focus our research on this

topic, specially on pseudo-random number generators and their relationship with

stream ciphers (which are, essentially, fast and secure pseudo-random number

generators). After doing this research, we will design a stream cipher that will meet

current requirements.

These requirements are, as we will see, performance and security

(randomness, avoidance of cycles, unpredictability, etc.).

16

2. State of the Art

In the past years, many stream ciphers have been proposed and some of them

are still considered secure and used in many applications. In this chapter we will

analyze those that are most important and in widespread use, even those that are

no longer in use but were important in the past. We will also include the most

relevant algorithms from the e-Stream project.

2.1 RC4

RC4 is a stream cipher created by Ron Rivest in 1987 and, until 1994, it was

proprietary. It uses an s-box 8x8 bits balanced by columns (it takes all values from

0 to 255, permuted) (6).

RC4 is composed of 2 algorithms (7): the first one (KSA: Key-Scheduling

Algorithm) is intended to initialize the s-box by permuting its values, while the

second one (PRGA: Pseudo-Random Generation Algorithm) is intended to generate

the keystream (that means that RC4 is a synchronous stream cipher algorithm),

which will be used to be XOR-ed with the plaintext in order to perform encryption,

or with the ciphertext to decrypt. So, the encryption algorithm and the decryption

one is the same (as per Vernam’s scheme).

RC4 accepts a wide range of key sizes: from 8 to 2048 bits length (8) and its

period depends on the key (although it is difficult to calculate it).

This algorithm is used in WEP, WPA, SSL/TSL (but it was prohibited in RFC

7465 (9) as some biases of the algorithm could lead to the decryption of session

cookies and possible session hijacking, only requiring some ciphertexts of the same

plaintext encrypted with different keys) and is optional in many other protocols

(SSH, RDP, Kerberos, etc.).

17

2.2 Salsa20

Salsa20 (10) is a stream cipher designed by Daniel J. Bernstein and submitted

in 2005 to the eStream (ECRYPT Stream Cipher Project).

It’s a synchronous stream cipher that generates its output as 64-byte blocks

derived from the key, the nonce (value used once per message) and block number;

so Salsa20 allows obtaining an output block for any position independently from

any previously generated blocks.

Salsa20 does not use any s-box and does not preprocess any of its inputs, so it

calculates an output block applying directly the algorithm to the key and nonce

input values.

It was designed to be used with a 32-byte key (256 bits) and 20 rounds. But it

can be used with its 8 and 12 rounds versions and with a smaller key. The author of

Salsa20 does not recommend using a smaller key (16-byte key) since the algorithm

duplicates it to transform it into a 32-byte key.

The algorithm itself is based on addition, XOR and rotations of constant-

distance operations, all these over a 4x4 matrix of 32-bit word elements (key, nonce,

block counter and constant words). The output of this matrix after applying these

operations for n rounds is a 16-word (64 bytes) stream used to encrypt (XOR) the

plaintext.

The choice of these operations is based on a performance decision taken by the

author, as he wants it to be fast regardless of the architecture it is implemented on.

That’s why the operations over the data are specified in little-endian order, as big-

endian access may take more time.

18

Salsa20 is used in many different applications (11), such as: DNSCurve,

DNSCrypt, Shadowsocks (a socks5 proxy), Chromium OS, Linux Kernel, KeePass,

Viber (chat application), and many more.

There are some satisfactory attacks to Salsa20/5-8 rounds (12) (13), but none of

these attacks affects the recommended version of Salsa20/20 with 32-byte key.

Salsa20/5-7 is broken by differential cryptanalysis, and Salsa20/8 by Probabilistic

Neutral Bit (PNB).

2.3 ChaCha

ChaCha (14) is a synchronous stream cipher from the same author as Salsa20,

Daniel J. Bernstein.

As it stands, ChaCha is based on Salsa20 and was designed to improve it. Just

like Salsa20, ChaCha needs a 256-bit key and has 3 modes of operation: ChaCha8,

ChaCha12 and ChaCha20; where the number indicates how many rounds it

performs.

These improvements affect how the matrix is generated. The new way to

generate the matrix improves speed on SIMD (Single Instruction, Multiple Data)

platforms and also diffusion.

Another improvement was made on the quarter-round, updating each word

twice instead of once. Also, this makes ChaCha about 50% faster than Salsa20.

19

All those improvements make ChaCha safer than Salsa20 with similar

performance results. As ChaCha is based on Salsa20, the same attacks can be

performed against ChaCha. But the introduced improvements make ChaCha more

resilient and reduce in 1 round the effectiveness of these attacks. That is, the known

attacks on Salsa20 affect the operation modes from 5 to 8 rounds. But those attacks

affect ChaCha only from 4 to 7-rounds modes.

ChaCha is used in some of the following systems (15): QUIC, TLS, OpenBSD,

OpenSSH, LibreSSL, Android, NetBSD, Linux Kernel, KeePass, and many others.

2.4 A5

GSM was the first digital mobile communication system implanted

worldwide. It allowed people to communicate through voice calls and send SMSs

with good quality. To guarantee calls confidentiality, it uses the A5 stream cipher

algorithm.

A5 has some variants: A5/0, A5/1 and A5/2 (16). A5/1 is the strongest one and

used in Europe and America. Because of restrictions on exporting cryptography,

A5/0 (the weakest) is used in third world countries and those sanctioned by the UN.

A5/2 is used in Asia.

A5/1 uses 3 LFSRs (17) to produce a 64-bit key (LFSRs of 19, 22 and 23 bits

each) and its output is XOR-ed with the plaintext. This algorithm is hardware-

implemented in most cellphones to allow real time encryption and decryption.

On the other hand, A5/0 (18) does not use any pseudo-random number

generator. It uses as output stream, the same input, negated. So, this algorithm

actually does not provide any confidentiality.

20

There are few attacks to A5. For example, it was discovered (19) that in the

A5/1 version, the 10 least significant bits of the key were zero. This reduces the

brute-force attack complexity from 264 to 254.

Other attacks allow to break A5/1 in 240 steps. But, in the year 2000 an attack

was published (20), allowing an attacker to break A5/1 in real time and to listen to

the whole conversation between two people.

Furthermore, the security of this algorithm is by obscurity (companies have to

pay to have access to the algorithm specification to implement it). This concept

(security by obscurity) contrasts with Kerchoff’s principle: “A cryptosystem should be

secure even if everything about the system, except the key, is public knowledge”.

All these things lead to the need of a new algorithm for the next generation of

mobile communication (3G).

2.5 Snow3G

Snow3G (21) (22) is the stream cipher used in the third generation of mobile

communications (the second of digital one).

Snow3G uses two s-boxes (one of them is the Rijndael s-box (23)) and an LFSR

of 32 cells (its feedback function is a primitive polynomial). Each of these cells has

32 bits. That means that for every clock, it outputs 32 bits as keystream.

It also uses a Finite State Machine (FSM), which is used to initialize the LFSR

(with a 128-bit initialization vector). This FSM has 3 registers (R1, R2 and R3) of 32

bits each, and R2 and R3 are updated through the s-boxes. These registers are used

within the FSM to get the value F, used as IV to the LFSR.

There are no known successful attacks against this algorithm, but there is an

attack (24) to its variant 𝑆𝑛𝑜𝑤3𝐺⨁.

21

2.6 e-Stream

e-Stream (25) was a project running from 2004 to 2008 and its purpose was to

get a suite of stream ciphers for general purpose. It had two profiles of stream

ciphers: software and hardware profiles. The first group was focused on

performance, while the second group focused on power requirements as well as

storage capacity.

Some of the algorithms of the e-Stream portfolio have not been popular, while

others, like Salsa20 (described in 2.2) and HC-128 have been used in many different

applications and have served as the base for future algorithms. Both of these

algorithms belong to the software profile.

This portfolio is periodically revised and updated.

2.7 Block Cipher CTR Mode

Stream ciphers are fast and produce pseudo-random numbers, as well as

approximate Shannon’s perfect cryptosystem. That is why an operation mode for

block cipher algorithms was designed to operate as a stream cipher (actually, CFB

and OFB modes operate as stream ciphers too, but they are not as common as the

CTR mode). We have mentioned this in 1.1.2, and now we are going to describe it

in more detail.

CTR mode (5), or counter mode, is an operation mode that employs a block

cipher algorithm (f) to produce a keystream that will be XOR-ed with the plaintext

to encrypt it, or with the ciphertext to decrypt it.

22

It takes a counter as plaintext and, using f, encrypts it with the input key and

generates a block. This block will be used as keystream in a Vernam scheme. In

order to generate the next block, the counter is increased and the process repeated.

In the next figure we summarize this process:

Figure 1 - CTR mode

As specified by NIST, the counter is b bits length (for AES this is b = 128),

choosing m bits to be incremented and the remaining bits (b – m) kept constant. The

standard increment function is 𝑥 + 1 𝑚𝑜𝑑 2𝑚.

23

3. Stream Cipher Proposal: Strounter

In this section we are going to describe our proposed stream cipher, which we

called Strounter, designed to satisfy all requirements established in section 1.

In section 3.1 Strounter’s structure and initialization process will be described,

including its key scheduling, iteration and output filtering. Since the iteration is

relatively simple (as we will see), we are focusing on the key scheduling and output

filtering.

Next, on section 3.2, we will discuss its randomness analyzing its output with

some famous randomness test suites, such as TestU01 (2) and Practically Random

(PractRand) (3). We will see how, even with an all zeroes key, it is able to produce

pseudo-random bytes sequences that can pass all tests. Along with that, we will see

some ways that our algorithm can be broken and how secure is its initialization

process.

Also, we will analyze its performance (as this is a key feature of this kind of

algorithms); measuring, independently, its key scheduling and encryption times.

These results will be compared with other algorithms and see if ours is fast enough

or has a long way ahead to improve.

After that, we will analyze its security attending to the key setup and side-

channel attacks.

And, finally, we are going to see some uses of our proposed algorithm as well

as some recommendations of use.

24

3.1 Description

In this section we are going to describe the structure of our stream cipher and

how its components interact to produce our fast and random cipher.

As the name “Strounter” indicates, is a “stream cipher composed by counters”.

It has 4 counters of 32 bits length each one. Also, it uses 4 s-boxes (substitution box

where an input is used to index that box and produce its value as output) 8x32 bits

to filter the output of these counters and an internal state to enhance the

randomness. It produces 4 bytes per iteration.

Its working process is divided into two phases: in the first one, the 4 counters

are initialized as well as the 4 s-boxes are filled (this initial process is key-

dependent); in the second one, it produces keystream through filtering the iteration

values.

In the next picture we summarize the whole process of generating the

keystream. It will be explained in more depth in the following sections.

Figure 2 - Strounter scheme

25

3.1.1 Key Scheduling

The key has a minimum length of 16 bytes, and a maximum of 256 bytes.

After checking that the key is in this range, it replicates the key to fill that 256

bytes of maximum length, just as RC4 does.

After that, we create the motor that will be used to filter the output of our

stream cipher. This motor is created as follows:

1) An auxiliary 8x8 s-box is created and initialized, setting each s-box[i] element

to i. This way, looking at it by columns, it is balanced (same number of 0’s and 1’s

per column). An internal state, is, is created and initialized to 0. This state, is, will

never be reinitialized to 0 again.

2) For each 8x32 s-box, the following process is repeated: swap all positions of

the auxiliary 8x8 s-box according to the internal state is and the key. The result of

this auxiliary s-box is assigned to the first byte of each element of the 8x32 s-box.

This is repeated for the 4 bytes of each registry of the main s-box. This way, if we

split the 8x32 s-box into 4 independent 8x8 s-boxes, they will be still balanced.

After this initialization process of the s-boxes, there is only one thing to do:

initialize the counters. These initial values should be key-dependent to avoid an

attacker can discover them.

As many other algorithms do (specially, hash algorithms), we use 4 constants

(one per counter) that are combined with the key through an XOR to initialize the

counters. This is done to avoid the counters being initialized to the same value (it is

still possible, but with a very low probability), and to avoid all counters to be

initialized to 0 (as before, it is still possible, but with the same low probability).

26

These are the constants chosen for each counter:

#define COUNTER_A 0x12B9B0A1

For the first counter, the constant is the value 314,159,265. Which corresponds

to the integer part of 𝜋 × 108.

#define COUNTER_B 0x1033C4D6

For the second counter, the constant is the value 271,828,182. Corresponding

to the integer part of 𝑒 × 108.

#define COUNTER_C 0x277E949C

For the third counter, the constant is: 662,607,004. That is the is the integer part

of ℎ × 1043, being h the Planck constant (26).

#define COUNTER_D 0x11DE784A

For the fourth counter, the constant is 299,792,458; or the speed of light in

vacuum in meters per second (27).

Once we have defined the constants, we take 4 bytes of the key (the first 4 for

the first counter, the next 4 for the next counter, etc.) and filter them (the filtering

process will be explained in 3.1.3). Its output is XOR-ed with that counter’s constant.

When all 4 counters are initialized, the key scheduling process is done.

27

3.1.2 Iteration

In this section we will describe how the counters are iterated as well as

establish Strounter’s period.

As mentioned previously, our stream cipher is composed by 4 32-bit long

counters. In total, they form a 128-bit counter. For each iteration (in stream ciphers,

there are as many iterations as keystream is needed) one of the counters is increased

by iteration. Along with that only counter, an auxiliary counter is increased to know

which one should be increased per iteration:

void Iterate(motor m)

{

 m->P.counters[m->P.which%NUM_COUNTERS]++;

 m->P.which++;

}

This way, concatenating all of them, we have a 128-bit counter, that is, a period

of 2128. This is a great period and, if we consider the additional period that the filter

gives us potentially (this will be discussed later), it will be substantially increased

further.

But, as one can deduce, 4 counters do not have enough randomness to be used

neither as a pseudo-random number generator nor a stream cipher. The only

prerequisite they accomplish is the performance one, as there is probably no

generator that is faster than a counter.

That is why, in the next section, we are going to describe how these counters

output is filtered and how this improves the security of Strounter.

28

3.1.3 Output Filtering

As we have seen in previous sections, Strounter already has a large period and

great performance (analyzed more in depth in 3.2.2), but practically no randomness;

thus, a filter is required. Here we will describe how it works, how it is applied to

Strounter, and how it enhances it. So, first, we are going to focus on the prefiltration

stage (as shown in Figure 3):

The filter used here has an internal state and is represented by the following

structure in the C programming language:

union

{

 struct

 {

 uint32_t high;

 uint32_t low;

 } half;

uint64_t all;

} filter;

Figure 3 - Prefiltration

29

What this structure represents is the internal state called “all”. As we can see,

it is a 64-bit unsigned integer. What the union (28) type does is make “all” accessible

from 2 variables (“high” and “low”). Each of these variables are 32-bit unsigned

integers and through them we can access “all” as shown in Figure 4:

Figure 4 - Union representation

Where “low” and “high” point (first 32 bits or last ones) depends on the

platform.

Before using the s-boxes to filter the counters’ output, they are prefiltered with

the internal state. But, before this happens, they must pass from 4 32-bit counters

(128 bits in total) to a smaller value that can be used with our internal state: they

must be combined. To combine them we had to choose a function that does not omit

any value, does not introduce any cycles and is considerably fast.

The resulting function was shown in Figure 3:

(𝐶𝑇𝑅1 + 𝐶𝑇𝑅2) ⨁ (𝐶𝑇𝑅3 + 𝐶𝑇𝑅4)

30

This function returns a 32-bit value that will be added to the “high” part of our

internal state. This “high” part is initialized to 0 on the “key scheduling” phase and

will never be reset to 0 again: it will keep the value taken from the previous iteration

for the next one.

Next, we will describe how the internal state interacts with the s-boxes to

produce the filtered output.

So, now, we are going to focus on the next part of the algorithm, the filtration

scheme as shown in Figure 5:

Once the internal state has been updated for the given iteration, it proceeds to

filter the output. It is important to remember that each s-box is an 8x32 one.

As the “high” part of the internal state is 32 bits (4 bytes), we take each of its

bytes to index each of the s-boxes: we take the value from the first s-box according

to the position given by the first byte of the “high” part; the second value, taken

from the second s-box, is taken indexing the s-box by the second byte of the “high”

part; and the process is repeated for the two remaining s-boxes.

Figure 5 - Filtration scheme

31

Once all these values are taken, they are XOR-ed together with the “low” part

of the internal state (which is 32 bits as well). The resulting value of this process is

a 4-byte output that will be used as keystream (or as a pseudo-random number for

any given purpose).

Before finishing each iteration, a rotation is done as follows:

m->filter.all = ((m->filter.all)<<31)|((m->filter.all)>>33);

Ideally, all possible states of the s-boxes (2128) can be applied for each of the

states of the counters (2128). So, the maximum period is: 2128 × 2128 = 2256. This is

more than enough for current applications.

32

3.2 Analysis

In this section we are going to analyze the results of our stream cipher

attending to its randomness, performance and security. Finally, we will discuss

these results comparing them to other stream cipher algorithms.

For the performance analysis, we have used a Virtual Machine of Windows 10

x64 configured with 4GB RAM and 4 virtual processors. This virtual machine was

run on a MacBook Pro with 8GB RAM and an intel-i7 4750HQ running macOS

Mojave (version 10.14.5).

3.2.1 Randomness

Before starting with the randomness analysis, we will focus first on which tests

we have run and why we have chosen them.

As mentioned before, we will use PractRand (3) and TestU01 (2).

TestU01 is an old suite of tests that has the scientific community approval

regarding its completeness and test depth. Since it is a bit old, it is not very efficient,

but it is very thorough since if it discovers some undesirable properties in the

sequence, it can add more tests dynamically to perform more in-depth testing for

that section of the sequence. The way TestU01 is used requires implementing a

program that calls its tests with the output of a given pseudo-random number

generator. This is required since TestU01 is, actually, a library written in C, and not

a program itself.

33

Although TestU01 has many different test suites, those most commonly used

are the “crush” tests: Small Crush, Medium Crush and Big Crush, since they are the

most complete and thorough ones. From these tests, we are going to use “BigCrush”

to test Strounter’s randomness, as it is most complete one and a super-set of the

others (while SmallCrush is executed for less than a minute and MediumCrush for

less than an hour, BigCrush takes about 8 hours to execute).

By the other hand, PractRand is comparatively newer and it is not as

widespread as TestU01. Nevertheless, it has many other features that makes it better

in some respects. Firstly, PractRand is not a library the user should use and call from

a separate program, but a complete program that can read the pseudo-random

number generator’s output from many different sources (e.g., files and standard

output). Also, for every power of 2 (starting at 128MB) it prints if, so far, it has found

a sequence that is not random and how many tests the subject PRNG has passed.

Furthermore, PractRand allows its execution in n threads, so it can test far faster

than TestU01.

PractRand classifies the results in the next states:

1. normal

2. normalish

3. unusual

4. mildly suspicious

5. suspicious

6. very suspicious

7. VERY SUSPICIOUS

8. FAIL

9. FAIL !

10. FAIL !!

11. FAIL !!!

34

12. FAIL !!!!

13. FAIL !!!!!

14. FAIL !!!!!!

15. FAIL !!!!!!!

16. FAIL !!!!!!!!

Note: It must be remarked that anything not a “FAIL” is a “PASS”; and any “PASS”

result different from “normal” means that the test was passed on the outer edge of the valid

interval.

The keys used to test Strounter’s randomness have been:

 16-byte random key. Remember that our algorithm replicates it as many

times as necessary to fill a 256-byte key, so this test will see if Strounter is good

enough to produce pseudo-random numbers with the shortest key it accepts.

In addition, testing with this length of key is in particularly interesting as 16

bytes is the most common key-length used in symmetric encryption

algorithms.

This key is (in hexadecimal notation):

29392d49747d4d5f40392b242821373b

 256-byte random key. This way we will test how it works with a “perfect

key”: one that is random in all its length (without needing to replicate it).

This key is (in hexadecimal notation):

35

403e2e322a7d4826354f3c24313358396a256a4728772c67306c3e776

63e764c5e594f71513e3f3e63762c23553b5928643c3269683b24654a

374a6370786b6c43713a70584d75762133692a5d324b6d34466650585

04c6a2d3e702873795d2a592c374c2d3238432328227d6e4151625272

6971744a556f515c3436285340795a556422212177493377333750685

b437d74436b6f4c40733f565b7968783d685f40714d4d35704b3a2c36

6f593f37263d785d317b26407b2f59765d575a2976586e38244b59625

539484d253362216d577d4052313c47763f3b5e36532637456467315f

4b664b4b316a30587269556b6e695d6b712874585a3764586d372a526

63e

 All 0’s. This test will let us see if Strounter can generate pseudo-random

numbers even if a user is using the worst key possible. This will only affect

how the s-boxes are initialized, as counters’ initial state won’t be 0 as they are

XOR-ed with a constant different from 0. Furthermore, it would not be 0

anyway as it is also initialized using the s-boxes and the probability to extract

4 zeros (one from each s-box) is 0, at least with this key.

 All 1’s. Same test as the before one, but with the inverse key.

For each of these keys, we are going to do the next tests:

 Generate 128GiB of keystream and test them with PractRand.

 BigCrush.

36

The results of these tests are specified in the appendices, as shown in Table 1:

Table 1 - Appendices classification

 PractRand BigCrush

16-byte key Appendix A Appendix B

256-byte key Appendix C Appendix D

All 0’s Appendix E Appendix F

All 1’s Appendix G Appendix H

NOTE: TestU01 reports are very long, so we only include the final result: whether the

tests were passed or not. If some report shows that a test might have failed (or any result

different from “normal”), the result of that test will be put too.

Before we start analyzing the reports and see whether Strounter is as random

as it should be, we must first clarify that there is an alpha value that says with which

probability we can get a “fake positive” or a “fake negative”. So, according to this,

we can foresee that some of the failed tests might be, actually, passed, and some of

the passed might be failed.

37

Let’s start first analyzing PractRand’s results.

As we can see in Appendices E and G, with keys like all 0’s and all 1’s the

results are pretty good. We have 2 “unusual” results, one in each test, but according

to PractRand’s documentation it is still a passed test. The only thing we should care

about is that, in Appendix G (all 1’s), we get a “mildly suspicious” result in 16GB of

output analyzed. But, as we can see, in the next tests until 128GB this message is not

repeated again, so we can ignore it. Also, remember that in PractRand anything but

a “FAIL” is a “PASS”.

If we use a real key (like the 16-byte and 256-byte key), a random one that

users shall use, the results are perfect, as we can see in appendices A (here we can

see an “unusual”, but this is insignificant as it is not repeated in following tests) and

C.

Now, let’s analyze TestU01’s results.

Here we can see that there is only one test failed (see appendix F) with the

worst key: all 0’s. But, seeing the other tests for the same key and the reports from

the other keys, we might guess that this failed test it’s maybe a fake positive. Even

if it is a real failed test, it is insignificant as it is only 1 failed out of 160 tests and, it

has failed with the worst key that a user can use.

In addition, we can find that, in appendix D (random key of 256 bytes length)

we can find 1 failed test. The range of the p-value of a test to get a “pass” is [0.001,

0.9990] and, as we can see, we obtained a 0.9991, so this is not statistically significant.

After seeing the other results, we may consider that it is not about the algorithm

itself, but the chosen key which may affect the results.

After analyzing all these reports, taken from different test suites and different

keys, we can say that our proposed stream cipher is random enough to meet current

requirements.

38

3.2.2 Performance

In this section we are going to test Strounter’s performance and compare it to

AES and 5 other stream cipher algorithms such as HC-128, RC4, Salsa20, Snow3G

and Spritz.

The performance comparison will be done at key scheduling and encryption

stages. Separating these two stages is fundamental, as one can have a very slow

initialization process but be very fast in the encryption one, and vice versa.

This analysis was made as follows:

 Key scheduling level: we have initialized the algorithm 100.000 times and

measured how much time it took. After that, it was divided by the same

number and obtained the mean time for this process. This has to be done like

this because an initialization process might be so fast that measuring it only

once may lead to an incorrect result if the processor cannot measure it

accurately.

 Encryption level: we have encrypted 128MiB and measured how much time

it took. After that, we have calculated how many MiB are encrypted per

second dividing the amount encrypted (128MiB) by the time spent.

39

Here are the results:

Table 2 - Performance results

 Key Scheduling (ns) Encryption (MiB/s)

AES 2177 59.71

AES (Hardware

Accelerated)
420 329.01

RC4 4534 227.14

Spritz 725 51.44

HC-128 34767 148.98

Salsa20 0 160.46

Snow3G 1012 106.84

Strounter 2032379420 337.76

Let’s start first comparing the key scheduling times.

Salsa20 has one of the fastest key scheduling processes, it is so simple and fast,

that cannot be measured, and we got 0ns for it. If we see section 2.2, it really does

not need to initialize anything, as it builds a new state for each iteration.

40

Comparing with the other algorithms, Strounter is, by far, the one with the

slowest initialization process. This is due to the 4 8x32 s-boxes it uses. The

implementation of how these are initialized involves 16 8x8bit s-boxes, which are

combined to form our 4 8x32 s-boxes. This makes it very slow but, as this process is

made only once, it is not very significant. Another reason why this is slow is because

of the big number of RAM accesses required to initialize the s-boxes.

In contrast, this slow process is due to a safer way to initialize the s-boxes and

the algorithm itself, what makes it more secure as it is more elaborated. This

initialization process is analyzed in (1), where it is shown that key-derived s-boxes

are, in security terms, equivalent to random s-boxes.

Focusing on the encryption performance, we see how Strounter is the fastest

one with 337,76MiB/s. The only algorithm that can compete with ours is AES but

executed with hardware acceleration.

This performance is due to the fact that Strounter has one of the simplest

encryption algorithms: increase a counter and extract 4 bytes from 4 s-boxes. This

means that, for each iteration it does, it produces 4 times more keystream than other

algorithms such as RC4.

Even without hardware acceleration, it gets a slightly better performance than

AES with hardware acceleration.

41

3.2.3 Security

In this section we are going to discuss how secure our algorithm is and what

kind of attacks could disrupt its security.

3.2.3.1 Key Setup

As mentioned in section 3.2.2, we have based our s-boxes initialization process

on the framework designed in (1). This research shows how combining concepts

from RC4 and Spritz, it can create a way to initialize s-boxes being key-dependent

and perform like random s-boxes, attending to their security and balanced s-boxes

(even splitting them into 8x8 s-boxes and analyzing them independently, a

requirement that Blowfish (29) does not meet).

This framework covers also the avalanche concept. This means that, even if a

user employs two very similar keys (or two different users using similar keys), the

resulting s-boxes would be significantly different.

In addition, introducing block cipher level complexity (key derivation,

rounds, initialization process) to a stream cipher, that usually do not have any of

these, should further improve Strounter’s security.

To sum up, the key scheduling is strong enough to avoid any attacks and

attempts to extract sensitive information from the s-boxes state.

3.2.3.2 Side-Channel Attacks

A side-channel attack is an attack done with information relative to the

computer system instead of the algorithm itself. There are many different side-

channel attacks, such as: cache attacks (timing-driven attacks, access-driven attack

and trace-driven attack) (30), power-monitoring attacks, acoustic attacks, and so on.

In this section we describe which side-channel attacks can break our algorithm and

how they can get the key to decrypt a ciphertext.

42

The first one is the cache-timing attack. This attack consists on measuring how

much time an operation of the algorithm consumes and infer, going backwards,

what the input key was, attempting to recover it. This attack has successfully

cryptanalyzed AES in software and recovered the key as described in (31).

This is done by having a thread running on the same CPU and, measuring its

own access-time to cache, determining (after many executions, since they are based

on statistical interferences) what the key is and decrypt the ciphertext. To

successfully execute this attack, an attacker does not need any known plaintext or

ciphertext. As shown in (32), the bigger the tables used are, the more efficient these

attacks can be performed.

Another way to attack Strounter is through a trace-driven attack. This attack

is based on monitoring the cache to see if it gets a “miss” or a “hit”. A “miss” is

obtained where the needed data is not in cache and has to look it up on RAM. A

“hit” is obtained where the needed data is in cache and does not need to look it up.

These misses or hits can reveal information about the input used in an algorithm,

that is, the key.

These attacks, if performed while the initialization process of our algorithm,

the key can be obtained, as the s-boxes accesses are key-dependent. But if these

attacks are done during the generation of the keystream, the counter values can be

inferred as s-boxes accesses depends on them, not on the key anymore. If the

counter values are obtained, along with the s-boxes, an attacker can obtain the

keystream (not the key) and decrypt the message. Although any algorithm that uses

an s-box can be susceptible to attack, Strounter uses 4 8x32 bits s-boxes and therefore

this attack cannot be performed against it as that is only 4KiB, which is small enough

to be held in the processor cache.

43

Although these attacks can be performed, they are more theorical than

practical, as they need an evil process running on the victim’s machine and, if an

attacker can execute a program in someone else’s machine, it would be more

efficient to install a keylogger or any other malware that could potentially provide

more benefit.

44

3.3 Uses and Recommendations

After analyzing Strounter’s performance and security, let us now describe

potential applications for Strounter.

As an obvious choice, Strounter could be good as a pseudo-random number

generator. As it has been demonstrated in section 3.2.1, even with some of the

worsts seeds (keys) it can generate pseudo-random number sequences that pass the

most stringent test suites.

This leads us to the next application of Strounter: stream cipher. As explained

on previous sections, a stream cipher is quite the same as a pseudo-random number

generator, but its keystream (production) is used, applying the XOR operation, to

encrypt or decrypt a message (Vernam’s scheme).

Taking the advantage of Strounter’s performance, it could be use in real-time

communications, like phone calls or video chats, where encryption is mandatory

but should be as fast as possible and not add any delay on the communication.

According to our results in 3.2.2, Strounter can be a perfect candidate as encryption

algorithm for future real-time communication systems.

Another use we can attribute to our algorithm is operating as a KDF. A KDF

(Key Derivation Function) is a function that, given a key of a given length (e.g., 32

bytes), it iterates as many times as necessary to derive a key or a set of keys (for

example, it would derive 15 keys of 32 bytes) that can be used in other purposes

(e.g., in a chat application). This is done taking the 32 bytes of key provided by the

user and using it as input key (seed) in Strounter and generating 480 bytes of

keystream. After that, that keystream is split into chunks of 32 bytes, resulting in

the 15 keys the user needed. And, after testing its key scheduling performance, it

can be a good KDF as its initialization process is slower enough to be defended

against brute-force attacks.

45

It can even be used as PBKDF (Password-Based Key Derivation Function) just

like bcrypt, a PBKDF based upon blowfish, a block cipher algorithm with s-boxes and

a very slow initialization process.

46

4. Conclusions

After the initial research regarding how modern stream ciphers are

constructed and what key features they must have, we have designed an algorithm

that introduces additional security in the initialization process and is very fast

encrypting and producing pseudo-random numbers. Its excellent randomness and

performance characteristics make the proposed algorithm a candidate to compete

with commonly used algorithms.

This was achieved by designing an algorithm that uses just 4 counters and 4 s-

boxes, making it really simple and easy to understand regarding cryptanalysis. This

design was driven by the requirements mentioned in the first section: efficiency,

randomness and security; therefore allowing any application requiring a fast and

secure algorithm: general purpose encryption, real-time communications, KDFs (its

slow initialization process is a plus with this application), pseudo-random number

generators, and so on. The randomness results were really good even with

potentially problematic seeds, as well as the performance achieved.

Finally, according to our initial cryptanalysis, it can be broken only by side-

channel attacks, which are not algorithm-dependent.

47

5. Future Work

Algorithms, unlike protocols, usually do not need to be updated. But, as we

have seen in section 3.2.2 (performance analysis), it has a very slow process of

initialization, and this could be the first thing to work on. Trying to reduce this time

may involve reimplementing the whole initialization code or redesigning the way

the s-boxes are constructed. Anyway, this initialization process should be improved

especially in a communication system that uses forward secrecy (encryption of each

message with a different key).

Another interesting improvement would be to implement it in hardware and

analyze its performance characteristics in comparison to AES. If software

implementation of Strounter is as fast as AES accelerated by hardware, it appears

only logical that we could achieve excellent results if we implement Strounter in

hardware. Furthermore, this could help reduce initialization times as well.

48

6. References

1. Randomness Analysis and Generation of Key-Derived S-Boxes. Álvarez, Rafael

and Zamora, Antonio. 1, s.l. : Login Journal of the IGPL, 2015, Vol. 24.

2. L'Ecuyer, Pierre. TestU01. [Online]

http://simul.iro.umontreal.ca/testu01/tu01.html.

3. Ouz. Practically Random. [Online] April 9, 2004.

https://sourceforge.net/projects/pracrand/.

4. Christensen, Chris. Stream Ciphers. [Online]

https://www.nku.edu/~christensen/Stream%20ciphers.pdf.

5. Dworkin, Morris. Recommendation for Block Cipher Modes of Operation.

NIST Publications. [Online] December 2001.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf.

6. Schneier, Bruce. Applied Cryptography. s.l. : John Wiley & Sons, 1996.

7. Rise, Ralph (Eddie), Cho, Suk-Hyun and Kaylor, Devin. RC4 Encryption.

[Online]

https://sites.math.washington.edu/~nichifor/310_2008_Spring/Pres_RC4%20Encry

ption.pdf.

8. Wash, Rick. Lecture Notes on Stream Ciphers and RC4. [Online]

https://www.rickwash.com/papers/stream.pdf.

9. Popov, Andrei. Prohibiting RC4 Cipher Suites. Internet Engineering Task

Force (IETF). [Online] February 2015. https://tools.ietf.org/html/rfc7465.

10. Bernstein, Daniel J. The Salsa20 family of stream ciphers. [Online] 12 25,

2007. https://cr.yp.to/snuffle/salsafamily-20071225.pdf.

49

11. IANIX. Salsa20 Usage & Deployment. IANIX. [Online] March 8, 2019.

https://ianix.com/pub/salsa20-deployment.html.

12. Crowley, Paul. Truncated differencial cryptanalysis of five rounds of

Salsa20. [Online] October 17, 2005.

http://www.ciphergoth.org/crypto/salsa20/salsa20-cryptanalysis.pdf.

13. Maitra, Subhamoy, Paul, Goutam and Meier, Willi. Salsa20

Cryptoanalysis: New Moves and Revisiting Old Styles. [Online] 2015.

https://eprint.iacr.org/2015/217.pdf.

14. Bernstein, Daniel J. ChaCha, a variant of Salsa20. [Online] January 28,

2008. https://cr.yp.to/chacha/chacha-20080128.pdf.

15. IANIX. ChaCha Usage & Deployment. IANIX. [Online] March 17, 2019.

https://ianix.com/pub/chacha-deployment.html.

16. Srinivas, Suraj. The GSM Standard (An overview of its security). SANS

Institute. [Online] https://www.sans.org/reading-

room/whitepapers/telephone/gsm-standard-an-overview-security-317.

17. Stockinger, Thomas. GSM network and its privacy - the A5 stream cipher.

[Online] November 2005. http://www.nop.at/gsm_a5/GSM_A5.pdf.

18. Jensen, Oliver Damsgaard and Andersen, Kristoffer Alvern. A5

Encryption In GSM. [Online] June 2017.

https://koclab.cs.ucsb.edu/teaching/cren/project/2017/jensen+andersen.pdf.

19. Briceno, Marc, Goldberg, Ian and Wagner, David. A pedagogical

implementation of A5/1. [Online] http://scard.org/gsm/a51.html.

50

20. Biryukov, Alex, Shamir, Adi and Wagner, David. Real Time

Cryptanalysis of A5/1 on a PC. CRYPTOME. [Online] https://cryptome.org/a51-

bsw.htm.

21. Orhanou, Ghizlane, El Hajji, Said and Bentaleb, Youssef. SNOW 3G

Stream Cipher Operation and Complexity Study. [Online] March 2010. http://m-

hikari.com/ces/ces2010/ces1-4-2010/orhanouCES1-4-2010.pdf.

22. GSMA. Specification of the 3GPP Confidentiality and Integrity Algorithms

UEA2 & UIA2. Document 2: SNOW 3G Specifitacion. [Online] September 6, 2006.

https://www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf.

23. Distributed Wikipedia. Rijndael S-box. [Online] May 2017.

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/

wiki/Rijndael_S-box.html.

24. Biryukov, Alex, Priemuth-Schmid, Deike and Zhang, Bin. Differencial

Resynchronization Attacks on Reduced Round SNOW 3G. [Online]

http://orbilu.uni.lu/bitstream/10993/17071/1/analysis_of_snow3g-xor-

resynchronization.pdf.

25. ECRYPT. eSTREAM: the ECRYPT Stream Cipher Project. [Online] March

2012. http://www.ecrypt.eu.org/stream/.

26. NIST. The NIST Reference on Constants, Units, and Uncertainty. [Online]

https://physics.nist.gov/cgi-bin/cuu/Value?h.

27. —. The NIST Reference on Constants, Units, and Uncertainty. [Online]

https://physics.nist.gov/cgi-bin/cuu/Value?c|search_for=universal_in!.

28. Cpp Reference. Union declaration. [Online]

https://en.cppreference.com/w/c/language/union.

51

29. Description of a new variable-length key, 64-bit block cipher (Blowfish). Schneier,

Bruce. Berlin : Springer, 1993, Vol. 809.

30. Aciiçmez, Onur, Schindler, Werner and Koç, Çetin K. Cache Based

Remote Timing Attack on the AES. [Online] 2007.

http://cryptocode.net/docs/c38.pdf.

31. Bernstein, Daniel J. Cache-timing Attacks on AES. [Online] 2005.

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

32. Osvik, Dag Arne, Shamir, Adi and Tromer, Eran. Cache Attacks and

Countermeasures: the Case of AES. [Online] November 20, 2015.

https://www.cs.tau.ac.il/~tromer/papers/cache.pdf.

52

Appendices

Glossary

Challenge values: Random values used in authentication protocols to strengthen

them.

Symmetric cryptography: Algorithms that use the same key to encrypt and decrypt

a message. It’s recommended to use at least 128-bit key length and are very fast.

They are the recommended option to encrypt data.

Session cookies: Values that identify a user whilst the connection lasts. They should

be random values and kept private.

Initialization vector: Random values that are used with an encryption algorithm.

They should be different every time a message is encrypted with the same key. Their

knowledge does not attempt to the message confidentiality.

Random number generator: A random number is a value obtained through

external sources: heat, noise, packets send per second, etc. These generators are very

slow, and their sequence cannot be reproduced again.

Pseudo-random number generator (PRNG): A pseudo-random number is a value

that has the same properties as random values, and one cannot be distinguish from

each other. These generators are based on algorithms and are very fast, as well as

deterministic.

Seed: The seed is the initial value in a stream cipher or PRNG (Pseudo-Random

Number Generator). It is also known as key.

53

LFSR: Linear Feedback Shift Register. Register formed by n cells. Each one of these

cells contains a bit. At every clock beat, bits are shifted one position and XOR-ed

those on the LFSR’s polynomial function position. LFSR are very fast and used as

PRNG and stream ciphers.

Keylogger: A keylogger can be software or hardware. A software-keylogger is a

malware installed on someone’s computer and logs into a file everything that the

user types, subsequently this file is sent to the attacker to retrieve passwords or any

other sensitive information. A hardware-keylogger is similar, but it is a physical

device (usb-device) installed between the computer connector and the keyboard usb

connector that logs everything that is typed; the attacker has to get the hardware-

keylogger back to read the logged data.

54

Appendix A

RNG_test using PractRand version 0.94

RNG = RNG_stdin, seed = unknown

test set = core, folding = standard(unknown format)

rng=RNG_stdin, seed=unknown

length= 128 megabytes (2^27 bytes), time= 2.5 seconds

 Test Name Raw Processed Evaluation

 [Low1/32]DC6-9x1Bytes-1 R= +6.2 p = 3.0e-3 unusual

 ...and 195 test result(s) without anomalies

rng=RNG_stdin, seed=unknown

length= 256 megabytes (2^28 bytes), time= 5.1 seconds

 no anomalies in 213 test result(s)

rng=RNG_stdin, seed=unknown

length= 512 megabytes (2^29 bytes), time= 9.5 seconds

 no anomalies in 229 test result(s)

rng=RNG_stdin, seed=unknown

length= 1 gigabyte (2^30 bytes), time= 17.7 seconds

 no anomalies in 248 test result(s)

rng=RNG_stdin, seed=unknown

length= 2 gigabytes (2^31 bytes), time= 33.4 seconds

 no anomalies in 266 test result(s)

rng=RNG_stdin, seed=unknown

length= 4 gigabytes (2^32 bytes), time= 64.4 seconds

 no anomalies in 282 test result(s)

rng=RNG_stdin, seed=unknown

length= 8 gigabytes (2^33 bytes), time= 126 seconds

 no anomalies in 299 test result(s)

rng=RNG_stdin, seed=unknown

length= 16 gigabytes (2^34 bytes), time= 267 seconds

 no anomalies in 315 test result(s)

rng=RNG_stdin, seed=unknown

length= 32 gigabytes (2^35 bytes), time= 533 seconds

 no anomalies in 328 test result(s)

rng=RNG_stdin, seed=unknown

length= 64 gigabytes (2^36 bytes), time= 1053 seconds

 no anomalies in 344 test result(s)

rng=RNG_stdin, seed=unknown

length= 128 gigabytes (2^37 bytes), time= 2113 seconds

 no anomalies in 359 test result(s)

55

Appendix B

========= Summary results of BigCrush =========

 Version:

 Generator: GenP2

 Number of statistics: 160

 Total CPU time: 08:19:09.51

 All tests were passed

56

Appendix C

RNG_test using PractRand version 0.94

RNG = RNG_stdin, seed = unknown

test set = core, folding = standard(unknown format)

rng=RNG_stdin, seed=unknown

length= 128 megabytes (2^27 bytes), time= 2.3 seconds

 no anomalies in 196 test result(s)

rng=RNG_stdin, seed=unknown

length= 256 megabytes (2^28 bytes), time= 5.1 seconds

 no anomalies in 213 test result(s)

rng=RNG_stdin, seed=unknown

length= 512 megabytes (2^29 bytes), time= 9.6 seconds

 no anomalies in 229 test result(s)

rng=RNG_stdin, seed=unknown

length= 1 gigabyte (2^30 bytes), time= 19.1 seconds

 no anomalies in 248 test result(s)

rng=RNG_stdin, seed=unknown

length= 2 gigabytes (2^31 bytes), time= 38.7 seconds

 no anomalies in 266 test result(s)

rng=RNG_stdin, seed=unknown

length= 4 gigabytes (2^32 bytes), time= 76.6 seconds

 no anomalies in 282 test result(s)

rng=RNG_stdin, seed=unknown

length= 8 gigabytes (2^33 bytes), time= 126 seconds

 no anomalies in 299 test result(s)

rng=RNG_stdin, seed=unknown

length= 16 gigabytes (2^34 bytes), time= 257 seconds

 no anomalies in 315 test result(s)

rng=RNG_stdin, seed=unknown

length= 32 gigabytes (2^35 bytes), time= 474 seconds

 no anomalies in 328 test result(s)

rng=RNG_stdin, seed=unknown

length= 64 gigabytes (2^36 bytes), time= 959 seconds

 no anomalies in 344 test result(s)

rng=RNG_stdin, seed=unknown

length= 128 gigabytes (2^37 bytes), time= 1900 seconds

 no anomalies in 359 test result(s)

57

Appendix D

HOST =

GenP2

smarsa_GCD test:

 N = 10, n = 50000000, r = 0, s = 30

Test results for GCD values:

Kolmogorov-Smirnov+ statistic = D+ : 0.43

p-value of test : 0.02

Kolmogorov-Smirnov- statistic = D- : 2.16e-3

p-value of test : 0.9978

Anderson-Darling statistic = A2 : 4.82

p-value of test : 3.7e-3

Test on the sum of all N observations

Number of degrees of freedom : 17430

Chi-square statistic :16851.59

p-value of test : 0.9991 *****

CPU time used : 00:01:49.93

Generator state:

========= Summary results of BigCrush =========

 Version:

 Generator: GenP2

 Number of statistics: 160

 Total CPU time: 07:29:39.75

 The following tests gave p-values outside [0.001, 0.9990]:

 (eps means a value < 1.0e-300):

 (eps1 means a value < 1.0e-15):

 Test p-value

 --

 25 ClosePairs mNP2, t = 16 9.6e-4

 73 GCD 0.9991

 --

58

 All other tests were passed

59

Appendix E

RNG_test using PractRand version 0.94

RNG = RNG_stdin, seed = unknown

test set = core, folding = standard(unknown format)

rng=RNG_stdin, seed=unknown

length= 128 megabytes (2^27 bytes), time= 2.4 seconds

 no anomalies in 196 test result(s)

rng=RNG_stdin, seed=unknown

length= 256 megabytes (2^28 bytes), time= 5.1 seconds

 no anomalies in 213 test result(s)

rng=RNG_stdin, seed=unknown

length= 512 megabytes (2^29 bytes), time= 9.5 seconds

 no anomalies in 229 test result(s)

rng=RNG_stdin, seed=unknown

length= 1 gigabyte (2^30 bytes), time= 17.6 seconds

 no anomalies in 248 test result(s)

rng=RNG_stdin, seed=unknown

length= 2 gigabytes (2^31 bytes), time= 33.1 seconds

 no anomalies in 266 test result(s)

rng=RNG_stdin, seed=unknown

length= 4 gigabytes (2^32 bytes), time= 63.9 seconds

 no anomalies in 282 test result(s)

rng=RNG_stdin, seed=unknown

length= 8 gigabytes (2^33 bytes), time= 128 seconds

 no anomalies in 299 test result(s)

rng=RNG_stdin, seed=unknown

length= 16 gigabytes (2^34 bytes), time= 255 seconds

 no anomalies in 315 test result(s)

rng=RNG_stdin, seed=unknown

length= 32 gigabytes (2^35 bytes), time= 503 seconds

 no anomalies in 328 test result(s)

rng=RNG_stdin, seed=unknown

length= 64 gigabytes (2^36 bytes), time= 1057 seconds

 no anomalies in 344 test result(s)

rng=RNG_stdin, seed=unknown

length= 128 gigabytes (2^37 bytes), time= 2096 seconds

 no anomalies in 359 test result(s)

60

Appendix F

HOST =

GenP2

scomp_LinearComp test:

 N = 1, n = 400020, r = 29, s = 1

Number of degrees of freedom : 12

Chi2 statistic for size of jumps : 42.66

p-value of test : 2.6e-5 *****

Normal statistic for number of jumps : -3.82

p-value of test : 1 - 6.8e-5 *****

CPU time used : 00:02:31.73

Generator state:

========= Summary results of BigCrush =========

 Version:

 Generator: GenP2

 Number of statistics: 160

 Total CPU time: 08:13:00.06

 The following tests gave p-values outside [0.001, 0.9990]:

 (eps means a value < 1.0e-300):

 (eps1 means a value < 1.0e-15):

 Test p-value

 --

 81 LinearComp, r = 29 1 - 6.8e-5

 81 LinearComp, r = 0 2.6e-5

 --

 All other tests were passed

61

Appendix G

RNG_test using PractRand version 0.94

RNG = RNG_stdin, seed = unknown

test set = core, folding = standard(unknown format)

rng=RNG_stdin, seed=unknown

length= 128 megabytes (2^27 bytes), time= 2.9 seconds

 no anomalies in 196 test result(s)

rng=RNG_stdin, seed=unknown

length= 256 megabytes (2^28 bytes), time= 6.3 seconds

 no anomalies in 213 test result(s)

rng=RNG_stdin, seed=unknown

length= 512 megabytes (2^29 bytes), time= 11.6 seconds

 no anomalies in 229 test result(s)

rng=RNG_stdin, seed=unknown

length= 1 gigabyte (2^30 bytes), time= 20.4 seconds

 no anomalies in 248 test result(s)

rng=RNG_stdin, seed=unknown

length= 2 gigabytes (2^31 bytes), time= 37.0 seconds

 no anomalies in 266 test result(s)

rng=RNG_stdin, seed=unknown

length= 4 gigabytes (2^32 bytes), time= 82.0 seconds

 no anomalies in 282 test result(s)

rng=RNG_stdin, seed=unknown

length= 8 gigabytes (2^33 bytes), time= 158 seconds

 no anomalies in 299 test result(s)

rng=RNG_stdin, seed=unknown

length= 16 gigabytes (2^34 bytes), time= 288 seconds

 Test Name Raw Processed Evaluation

 BCFN(2+1,13-0,T) R= -9.3 p =1-6.1e-5 mildly

suspicious

 ...and 314 test result(s) without anomalies

rng=RNG_stdin, seed=unknown

length= 32 gigabytes (2^35 bytes), time= 577 seconds

 Test Name Raw Processed Evaluation

 [Low4/32]DC6-9x1Bytes-1 R= -4.6 p =1-3.6e-3 unusual

 ...and 327 test result(s) without anomalies

rng=RNG_stdin, seed=unknown

length= 64 gigabytes (2^36 bytes), time= 1236 seconds

 no anomalies in 344 test result(s)

rng=RNG_stdin, seed=unknown

length= 128 gigabytes (2^37 bytes), time= 2424 seconds

 no anomalies in 359 test result(s)

62

63

Appendix H

========= Summary results of BigCrush =========

 Version:

 Generator: GenP2

 Number of statistics: 160

 Total CPU time: 07:35:31.26

 All tests were passed

	Analysis and Design of a Stream Cipher
	Sinopsis en castellano
	1. Introduction
	1.1 Encryption Algorithms
	1.1.1 Stream Ciphers
	1.1.2 Block Ciphers

	1.2 Motivation and Proposal

	2. State of the Art
	2.1 RC4
	2.2 Salsa20
	2.3 ChaCha
	2.4 A5
	2.5 Snow3G
	2.6 e-Stream
	2.7 Block Cipher CTR Mode

	3. Stream Cipher Proposal: Strounter
	3.1 Description
	3.1.1 Key Scheduling
	3.1.2 Iteration
	3.1.3 Output Filtering

	3.2 Analysis
	3.2.1 Randomness
	3.2.2 Performance
	3.2.3 Security
	3.2.3.1 Key Setup
	3.2.3.2 Side-Channel Attacks

	3.3 Uses and Recommendations

	4. Conclusions
	5. Future Work
	6. References
	Appendices
	Glossary
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H

