

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 07, 2019

Going beyond BDI for agent-based simulation

Larsen, John Bruntse

Published in:
Journal of Information and Telecommunication

Link to article, DOI:
10.1080/24751839.2019.1620024

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Larsen, J. B. (Accepted/In press). Going beyond BDI for agent-based simulation. Journal of Information and
Telecommunication, 1-19. https://doi.org/10.1080/24751839.2019.1620024

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/219744329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/24751839.2019.1620024
https://orbit.dtu.dk/en/publications/going-beyond-bdi-for-agentbased-simulation(658e1cba-6426-41e1-bb8d-4b80565a63e2).html

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjit20

Journal of Information and Telecommunication

ISSN: 2475-1839 (Print) 2475-1847 (Online) Journal homepage: https://www.tandfonline.com/loi/tjit20

Going beyond BDI for agent-based simulation

John Bruntse Larsen

To cite this article: John Bruntse Larsen (2019): Going beyond BDI for agent-based simulation,
Journal of Information and Telecommunication, DOI: 10.1080/24751839.2019.1620024

To link to this article: https://doi.org/10.1080/24751839.2019.1620024

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 03 Jul 2019.

Submit your article to this journal

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjit20
https://www.tandfonline.com/loi/tjit20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24751839.2019.1620024
https://doi.org/10.1080/24751839.2019.1620024
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2019.1620024&domain=pdf&date_stamp=2019-07-03
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2019.1620024&domain=pdf&date_stamp=2019-07-03

Going beyond BDI for agent-based simulation
John Bruntse Larsen

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

ABSTRACT
Research in multi-agent systems has resulted in agent programming
languages and logics that are used as a foundation for engineering
multi-agent systems. Research includes reusable agent programming
platforms for engineering agent systems with environments, agent
behaviour, communication protocols and social behaviour, and work
on verification. Agent-based simulation is an approach for simulation
that also uses the notion of agents. Although agent programming
languages and logics are much less used in agent-based simulation,
there are successful examples with agents designed according to
the BDI paradigm, and work that combines agent-based simulation
platforms with agent programming platforms. This paper analyses
and evaluates benefits of using agent programming languages and
logics for agent-based simulation. In particular, the paper considers
the use of agent programming languages and logics in a case study
of simulating emergency care units.

ARTICLE HISTORY
Received 30 June 2018
Accepted 14 May 2019

KEYWORDS
Multi-agent systems; logic;
simulation

1. Introduction

Agent-Oriented Programming (AOP) is a programming paradigm where programs are com-
posed of agents. Similar to objects in Object-Oriented Programming (OOP), agentsmaintain a
mental state and react to input by performing actions and changing their mental state. Some
agents are also assumed to be intelligent agents, meaning that they pursue goals and exhibit
social behaviour by communicating with other agents. Agent programming languages are
programming languages that are designed for development of multi-agent systems with
AOP. Examples of platforms that use agent programming languages include Agent-0
(Shoham, 1993), 3APL (Hindriks, De Boer, Van Der Hoek, & Meyer, 1999), 2APL (Dastani,
2008), Jason (Bordini, Hübner, & Wooldridge, 2007), JACK (Busetta, Ronnquist, Hodgson, &
Lucas, 1999; Winikoff, 2005) and GOAL (Hindriks, 2009). The notions of belief, desire and
intention (BDI) are key components in these languages, as they respectively denote what
the agent believes, what the agent would like to achieve, and what the agent is currently
working towards achieving. Formalizations of a BDI model in modal logics provide syntax
and semantics for the model. Thus logic provides a theoretic framework for specification
and verification of agent programs. In particular, work in the AOP community has resulted
in frameworks and meta-models for Multi-Agent-Oriented Programming (MAOP).

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT John Bruntse Larsen jobla@dtu.dk DTU Compute, Technical University of Denmark, 2800 Kongens
Lyngby, Denmark

JOURNAL OF INFORMATION AND TELECOMMUNICATION
https://doi.org/10.1080/24751839.2019.1620024

http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2019.1620024&domain=pdf&date_stamp=2019-07-02
http://orcid.org/0000-0003-2500-9944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:jobla@dtu.dk
http://english.tdt.edu.vn
http://www.tandfonline.com

The BDI paradigm has also been used in agent-based simulation (ABS). The purpose of
ABS compared to multi-agent systems is to gain insight into how global properties emerge
from a system of local interacting processes. Examples of ABS platforms include Mason
(Luke, Cioffi-Revilla, Panait, Sullivan, & Balan, 2005), Repast (North et al., 2013) and
GAMA (Amouroux, Chu, Boucher, & Drogoul, 2009). ABS platforms generally do not use
above mentioned agent programming languages but some of them provides a framework
for making models with the BDI paradigm (Kravari & Bassiliades, 2015). A BDI model allows
agents to exhibit more complex behaviour than purely reactive models but without the
computational overhead of cognitive architectures. It is generally also easier for domain
experts to specify their knowledge in terms of a BDI model compared to an equations-
based model, and a BDI model supports explainable behaviour. Adam and Gaudou
(2016) present an extensive analysis and evaluation of approaches to integrating BDI
models in ABS. They highlight the previously mentioned benefits of BDI models as a
way to implement descriptive agents which use richer and more complex models than
reactive agents.

This paper is an extension of Larsen (2018) presented at ACIIDS 2018, which presents an
analysis and evaluation of using recent advances in agent programming languages and
logics, in particular frameworks for implementing social behaviour, in ABS. Our objective
is to highlight inherent limitations of using BDI for social simulation that can be adressed
by using the AORTA framework for organizational reasoning. Compared to the original
paper, we have extended the case study with an implementation of a BDI-based ABS
for a case study with emergency care. In order to achieve our objective, we include
code for the implementation. We evaluate the implementation and discuss how it could
be improved with some of the frameworks and meta-models we discuss in this paper.
The paper first presents a summary of AOP, ABS platforms and work on integrating BDI
models in simulation platforms based on Adam and Gaudou (2016). It then describes
research in frameworks and meta-models for implementing virtual environments and
social behaviour in agent programming languages. It then presents the case study men-
tioned earlier and finally discusses further use of MAOP in ABS. The criteria used in the
evaluation are in terms of:

(1) How the framework supports descriptive agents.
(2) How reusable the framework or meta-model is.
(3) How useful the framework or meta-model is for analysis.

We have chosen these criteria in order to evaluate from different perspectives that we con-
sider important in ABS: a modelling perspective, a software engineering perspective and a
simulation perspective. The evaluation is based on previous work on using the agent
organization framework AORTA (Jensen & Dignum, 2014) to create a simulation model
for an emergency care unit (Larsen & Villadsen, 2017).

2. AOP, logic and agent-based simulation

AOP was originally proposed by Shoham (1993) as a specialization of OOP. Shoham motiv-
ated AOP with cases in which multiple entities interacted with each other in order to man-
ufacture cars and reserve plane tickets. In AOP, each entity (now called an agent) maintains

2 J. B. LARSEN

a mental state of beliefs, capabilities and decisions that have dedicated terms with a
formal syntax. Communication with other agents occurs through speech-act inspired
messages. Some of the approaches to programming languages designed for AOP include:

. AgentSpeak(L) (Rao, 1996) in which an agent has a database of plans or rules for choos-
ing actions that match its current mental state. The agent programming platform Jason
(Bordini et al., 2007) implements AgentSpeak(L).

. Languages based on logic programming such as 3APL (Hindriks et al., 1999), 2APL
(Dastani, 2008), and GOAL (Hindriks, 2009).

. Jack (Busetta et al., 1999; Winikoff, 2005) which extends Java with agent programming
keywords.

. A combination of XML and Java. This approach is used in the agent programming plat-
form Jadex (Pokahr, Braubach, & Lamersdorf, 2005).

These programming languages use BDI as a common paradigm for a mental model but as
it can be seen, they have very different approaches to implementing it. The BDI paradigm
comes from philosophy and the mental model can be given formal syntax and semantics
with epistemic logics. Other logics such as first-order logic and temporal logics can be used
to specify world models of concepts and dynamics. Given a specification it is then possible
to use logic reasoning to verify properties of the specification. Thus logic provides a theor-
etical framework for specifying and verifying properties of agent programs. In the pro-
gramming languages AgentSpeak(L), 3APL, 2APL and GOAL, the agents also use logic to
do reasoning in their decision making.

ABS is an approach to simulation that takes the perspective of the individuals that
inhabit the simulated system. ABS is useful in cases where it is easier to describe a
system in terms of interacting agents rather than as a global process (Siebers, Macal,
Garnett, Buxton, & Pidd, 2010). A critical part of ABS is a scheduling mechanism which
ensures that all agents are synchronized in a finite sequence of time steps. ABS platforms
provide frameworks for ABS and typically features tools for visualizing the simulation, data
extraction tools and analysis tools. Commonly used ABS platforms include:

. Mason (Luke et al., 2005) which is a Java-based discrete-event simulation platform that
has been extended with ABS.

. Repast (North et al., 2013) which is a suite of tools in multiple programming languages
for implementing ABS.

. GAMA (Amouroux et al., 2009) which features an XML based language GAML for imple-
menting agents. GAMA also features tools for using GIS data in the simulation.

The ABS platforms typically have tools for implementing reactive agents but little support
for implementing proactive behaviour. This works well for many cases but as argued by
Adam and Gaudou, there are also cases, often those involving human agents, where
more descriptive agent models are useful for gaining insight into the decision making.
The BDI paradigm provides a framework for implementing descriptive agents that are
still fairly efficient. There have been three general approaches to implementing BDI in ABS:

JOURNAL OF INFORMATION AND TELECOMMUNICATION 3

. Extending agent programming platforms with ABS features. Bordini and Hübner (2009)
does this with Jason.

. Extending ABS platforms with BDI modelling features. Caballero, Botia, and Gomez-
Skarmeta (2011) does this with Mason .

. Combining ABS platforms with agent programming platforms. Padgham, Scerri, Jayatil-
leke, and Hickmott (2011) does this with Repast and JACK, and Singh, Padgham, and
Logan (2016) designs a framework for integrating any two platforms with each other.

The benefit of the last approach is that it leverages features from both platforms but with a
cost of computational power in keeping agents synchronized between the platforms.
Besides mental models for the individual agents, there is also work on implementing
meta-models for the environment and social behaviour such as the MASQ meta-model
by Dignum, Tranier, and Dignum (2010). Meta-models for environments and social behav-
iour are covered further in the following section.

3. From AOP to MAOP

Much of the early research in agent programming languages has been focused on the
internal agent architectures with different approaches to programming languages
based on the BDI paradigm and speech-act communication. Both the environment that
the agents inhabit and the social skills of the agents have been designed and programmed
for specific domains. Recent research has gone into making more reusable frameworks
and meta-models for creating environments and agent societies (van Riemsdijk, 2012;
Weiss, 2013). Notable examples include:

. CArtAgO (Common Artefact Infrastructure for Agent Open environment) (Ricci, Viroli, &
Omicini, 2006) which is a Java-based framework for developing and running virtual
environments based on the Agents & Artefacts meta-model. In this meta-model, the
agents use artefacts to communicate with other rather than only by speech-acts. The
artefacts provide an interface for the communication that allows for also non-BDI
agents to communicate with BDI agents. The framework has been integrated with
Jason, 2APL and JADEX (Piunti, Ricci, Braubach, & Pokahr, 2008; Ricci et al., 2008).

. EIS (Environment Interface Standard) (Behrens, Hindriks, & Dix, 2011) which is a Java-
based framework for connecting agent programming platforms with environments. It
is not a meta-model for environments but it acts as an interface for agent programming
platforms to environment platforms such as CArtAgO-based platforms.

. OperA (Dignum, 2004) which is a meta-model for agent organizations. In agent organ-
izations, the agents are assigned roles that puts a structure on how the agents can use
their abilities to communicate and carry out actions. The Eclipse plugin Operetta (Alde-
wereld & Dignum, 2011) is a tool for design, verification and simulation of OperA
models.

. MOISE+ (Hübner, Sichman, & Boissier, 2007) which is also a meta-model for implement-
ing agent organizations. MOISE+ is integrated with CArtAgO and Jason in the JaCaMo
platform (Hübner, Boissier, Kitio, & Ricci, 2010).

. AORTA (Jensen & Dignum, 2014; Jensen, Dignum, & Villadsen, 2017) which is a meta-
model that enables individual agents to reason about organizations described in

4 J. B. LARSEN

OperA. It is designed for adding organizational reasoning capabilities to BDI agents and
has been integrated with Jason (Jensen, Dignum, & Villadsen, 2014).

Table 1 summarizes the main characteristics and advantages of these frameworks andmeta-
models. A common feature of the examples is that they support more open heterogeneous
systems of agents: agents can enter and exit the system freely even though they use differ-
ent internal mechanisms for decision making. The frameworks and meta-models put an
emphasis on Multi-Agent-Oriented Programming (MAOP) with system level frameworks
rather than traditional AOP with agent-level mental models and speech-act communication.
Use of MAOP is not common in ABS literature. A possible reason for this might be that open-
ness is less important in simulation where the purpose is to gain insight in a given system. A
potential benefit of MAOP though is that it can offer reusable tools for implementing
environments and social behaviour. Using MAOP with a foundation in logic would also
allow for specification and validation of simulation models similar to the work presented
by Jensen (2015) on verification of organization-aware agents in AORTA.

4. Case study: emergency care units

To illustrate the need for going beyond BDI models in agent-based simulation, we
describe, analyse and evaluate a simulation of emergency care units we have
implemented by using the BDI framework of the ABS platform GAMA. Emergency care
units are responsible of providing care to acute patients. Hospitals often have an entire
department dedicated to emergency care and the number of incoming patients has
been increasing in recent years. Simulation could assist management staff in the decision
making by computing expected outcomes of the decisions.

4.1. Scope of the implementation

For our simulation we follow the description of emergency care from Mercuur, Larsen, and
Dignum (2018) as a base for the implemented model of an emergency care unit. The
model is based on observations from a real hospital but is still very simple compared to
reality. We limit the model to cover only the parts ending with the triage but as we
shall see, these parts already necessitate a careful agent design and implementation
with the BDI paradigm. We implement the following process:

(1) A patient arrives at the emergency care unit with some symptoms.
(2) The patient waits in a designated waiting area until retrieved by a nurse.
(3) The nurse performs triage on the patient.
(4) The patient leaves the care unit.

Table 1. Summary of main characteristics and advantages of MAOP frameworks and meta-models.
Framework/meta-model Main characteristic Main advantage
CArtAgO Virtual environments Integrated with Jason
EIS AOP platform/environment interface Integrated with Jason
OperA Agent organizations Implemented in Operetta
MOISE+ Agent organizations Integrated with Jason
AORTA Agent organizations Formally extends BDI reasoning

JOURNAL OF INFORMATION AND TELECOMMUNICATION 5

The treatment would continue after step 3 but these parts are outside the scope of our
model. Depending on what kind of symptoms the patient has, the triage is carried out by
one of three teams: damage team, medical team or surgical team. The choice of team is
made by an overall head nurse, and the choice of nurse is made by a team head nurse.

4.2. GAMA BDI framework

GAMA is an agent-based simulation platform that is originally designed for implementing
reflexive simulation agents using the GAML language (Caillou, Gaudou, Grignard, Truong,
& Taillandier, 2017; Taillandier, Bourgais, Caillou, Adam, & Gaudou, 2017). The simple-bdi
module extends agents with BDI-based behaviour and is designed with efficiency and
ease-of-use for simulation creators in mind. As such it is in the category of ABS platforms
that have been extended with BDI modelling features. We chose to use GAMA, as the BDI
framework is developed actively and allows us to easily create a visual representation of
the emergency care simulation. The main features of the platform and the simple-bdi
module we used were:

. Graphs – GAMA features import of geodata that describe a network of polygons con-
nected by lines, which are then transformed into a graph structure that agents can
move along. We use a graph to model the environment.

. Perception – An agent has a set of Perception statements that defines which parts of
the environment the agent perceives and under what conditions. We implement most
the belief updates as Perception statements.

. Rules – An agent has a set of Rule statements that is used for revising beliefs, desires
and intentions of the agent. We use rules to revise the desires of an agent when it
gains a new belief.

. Agent properties – An agent can have properties with values, similar to that of an
object. We use properties to model things we assume known such as what team a
nurse belongs to.

The next sections describe the implementation in more detail. We write… to denote pas-
sages of code omitted to save space.

4.3. Implementing the environment

The agents are situated in a virtual environment that represents the different parts of the
emergency care unit. We create a simple graph-based model where the environment con-
sists of areas connected by hallways. The benefit of using a graph-based model is that the
areas and hallways can be represented by nodes and edges in a straight-forward manner.
Figure 1 shows the emergency care environment. It consists of eight areas:

. An entrance/exit area for patients

. A waiting area for patients assigned to the damage team.

. A waiting area for patients assigned to the medical team or the surgical team.

. A triage area for patients assigned to the damage team.

. A triage area for patients assigned to the medical team or the surgical team.

. An office for each of the three teams.

6 J. B. LARSEN

We encode the environment as three shapefiles: areas, hallways and a boundary file.
global {

file shape_file_areas <- file(‘‘Areas.shp");
file shape_file_routes <- file(‘‘Routes.shp");
file shape_file_bounds <- file(‘‘Bounds.shp");
geometry shape <- envelope(shape_file_bounds);
graph the_graph;
…
init {

create area from: shape_file_areas with: [name::string(read(‘‘name"))];
create route from: shape_file_routes ;
the_graph <- as_edge_graph(route);
…
}

…
}

}

species area
{
…

}

Figure 1. The emergency care unit simulation environment consists of eight areas. The entrance/exit
(yellow), damage team (red), medical team (blue), surgical team (green), and waiting areas and triage
rooms (black).

JOURNAL OF INFORMATION AND TELECOMMUNICATION 7

species route {
…

}

4.4. Implementing basic agent code

We continue with the implementation of the agents. In this section we focus on the code
that implements basic abilities of the agents. We define the following helper functions to
handle steps of the treatment process. The functions finishPlan and focusSubin-
tention are used to respectively execution of a plan and start working on subgoals.
The believes function is used to check if an has a given fact in its belief base.

action finishPlan {
do remove_belief(get_current_intention());
do remove_intention(get_current_intention(),true);

}

action focusSubintention(string predName, map args) {
predicate pred <- new_predicate(predName,args);
do add_subintention(get_current_intention(), pred, true);
do current_intention_on_hold();

}

bool believes(string pred, map args) {
list<predicate> preds <- get_beliefs_with_name(pred);
return preds first_with (each.values = args) != nil;

}
The following rules and plans enable an agent to follow other agents and go to a

named area. The rule makes it so that when an agent is asked to follow someone or go
somewhere, adding a predicate to its belief base, the agent turns the belief into a
desire and eventually an intention. When going to an area, the agent follows the graph
of edges but when following another agent, it moves in a straight line ignoring the
graph. It assumes that the agent it follows is moving on the graph.

rule belief:new_predicate(‘‘follow")
new_desire:(get_belief_with_name(‘‘follow"));

rule belief:new_predicate(‘‘gotoArea")
new_desire:(get_belief_with_name(‘‘gotoArea"));

plan gotoArea intention:new_predicate(‘‘gotoArea"){
string targetName <- get_current_intention().values[‘‘name_value"];
area target <- area first_with (each.name = targetName);
if (self.location = target.location) {
do finishPlan();

}
else {

8 J. B. LARSEN

do goto target:target on:the_graph;
}

}

plan follow intention:new_predicate(‘‘follow") {
string targetName <- get_current_intention().values[‘‘nurseName_value"];
nurse target <- nurse first_with (each.name = targetName);
do goto target:target;

}
Nurses need to be able to locate specific patients and we assume that a nurse has free

vision of everyone in the same area as the nurse. We implement this by having each nurse
perceive the area they are currently in and maintain a list of patients which are inside that
area.
list<patient> perceivable_patients update: patient inside currentArea;

perceive target:area in: 1 {
myself.currentArea <- self;

}

4.5. Implementing the treatment process

Next we focus on the implementation of the treatment process as described earlier. The
treatment process is implemented through the plans that the agents have. These are
more problem specific, and would thus have to be redesigned and implemented to
new cases.

We create the agents at a global level, stating how many and where they are created.
global {

…

init {
…
area medical_office <- area first_with (each.name = ‘‘medical_office");
area damage_office <- area first_with (each.name = ‘‘damage_office");
area surgical_office <- area first_with (each.name = ‘‘surgical_office");
area exit <- area first_with (each.name = ‘‘exit");

create species:nurse number:2
with:(team:‘‘medical", location:any_location_in(medical_office));

create species:nurse number:2
with:(team:‘‘surgical", location:any_location_in(surgical_office));

create species:nurse number:2
with:(team:‘‘damage", location:any_location_in(damage_office));

create species:overallHeadNurse number:1
with:(location:any_location_in(exit));

create species:teamHeadNurse number:1
with:(team:‘‘medical",location:any_location_in(medical_office));

JOURNAL OF INFORMATION AND TELECOMMUNICATION 9

create species:teamHeadNurse number:1
with:(team:‘‘surgical",location:any_location_in(surgical_office));

create species:teamHeadNurse number:1
with:(team:‘‘damage",location:any_location_in(damage_office));

}
…

}

Patients are created by random chance in each simulation step

reflex createDamagePatient when:flip(damage_patient_prop){
area exit <- area first_with (each.name = ‘‘exit");
create species:patient number:1
with:(disease:‘‘crushed hand",location:any_location_in(exit));

}
Step (1) of the process is the arrival and registration of the patient. When the overall

head nurse perceives a newly arrived patient they must assign the patient to one of
three teams depending on the symptoms of the patient. In this case study we assume
that the symptoms of the patient are already known, meaning that they know which
team to assign the patient to. Assigning the patient to a team consists of two tasks: instruct
the patient to go to the waiting area of the team and instruct the team head nurse about
the arrival of the new patient. Assuming that they can message the team head nurse remo-
tely, we can implement this step as a plan for the overall head nurse using the following
code.
plan assignPatient intention:new_predicate(‘‘arrivedPatient"){

string disease <- get_current_intention().values[‘‘disease_value"];
string patientName <- get_current_intention().values[‘‘name_value"];
patient target_patient <- patient first_with (each.name = patientName);
string medical_wa <- ‘‘medical_wa";
string damage_wa <- ‘‘damage_wa";
if (target_patient != nil) {
string wa;
teamHeadNurse thn;
if (disease = ‘‘poisoning") {

thn <- teamHeadNurse first_with (each.team = ‘‘medical");
wa <- ‘‘medical_wa";

} else if (disease = ‘‘stomach") {
thn <- teamHeadNurse first_with (each.team = ‘‘surgical");
wa <- ‘‘medical_wa";

} else {
thn <- teamHeadNurse first_with (each.team = ‘‘damage");
wa <- ‘‘damage_wa";

} ask thn {
do add_belief(new_predicate(‘‘newPatient",
[‘‘patientName_value"::patientName]) with_priority 1);

} ask target_patient {

10 J. B. LARSEN

do add_belief(new_predicate(‘‘gotoArea",
[‘‘name_value"::wa]) with_priority 1);

}
focus enrolledPatient var:patientName priority:1;

}
do finishPlan();

}
Step (2) of the treatment process is having a nurse attend the waiting patient. When the

overall head nurse tells the team head nurse about the new patient, the team head nurse
assigns an available nurse to the patient. We implement the assignment of a nurse as a
plan for the team head nurse.

plan assignTriageNurse intention:new_predicate(‘‘newPatient"){
string patientName <- get_current_intention().values[‘‘patientName_value"];
patient targetPatient <- patient first_with (each.name = patientName);
nurse freeNurse <- nurse first_with (each.get_current_intention() = nil and
each.team = team);

if (freeNurse != nil){
predicate triage <- new_predicate(‘‘triage",

[‘‘patientName_value"::patientName]) with_priority 1;
ask freeNurse{

do add_belief(triage);
}
do finishPlan();

}
}
Having found a free nurse, the nurse then continues the treatment process by doing
triage.

Step (3) of the treatment is the triage process which involves: locating the patient,
bringing the patient to a triage room and then performing the triage there. We implement
the process using subgoals, which gives flexibility to the execution of the triage process. A
subgoal for getting the nurse to the same location as the patient and, once that is the case,
a subgoal of doing the triage in a triage room. The plan ensures that the nurse only uses
the room of their own team for the treatment.

plan doTriage intention:new_predicate(‘‘triage"){
string patientName <- get_current_intention().values[‘‘patientName_value"];
patient targetPatient <- patient first_with(each.name = patientName);
if (believes(‘‘triaged", [‘‘name_value"::patientName])) {
do finishPlan();

}
else if (targetPatient.location = self.location)
{
string trRoom;
if (team = ‘‘damage") {

trRoom <- ‘‘damage_trRoom";

JOURNAL OF INFORMATION AND TELECOMMUNICATION 11

} else {
trRoom <- ‘‘medical_trRoom";

}
do focusSubintention(‘‘bringToTR",

[‘‘roomName_value"::trRoom,‘‘patientName_value"::patientName]);
} else {
patient foundPatient <-

perceivable_patients first_with (each.name = patientName);
if (foundPatient = nil) {

string wa;
if (team = ‘‘damage") {
wa <- ‘‘damage_wa";

} else {
wa <- ‘‘medical_wa";

}
do focusSubintention(‘‘gotoArea",[‘‘name_value"::wa]);

} else {
do goto target:foundPatient;

}
}

}
Having located and made contact with the patient, the plan for bringing the patient to a
triage room and doing the triage is as follows. The nurse asks the patient to follow them
and they then go to the triage room. Having triaged the patient in the triage room, the
nurse asks the patient to leave and adds a belief about the patient being triaged so
that the doTriage plan can finish.

plan bringPatientToTR intention:new_predicate(‘‘bringToTR") {
string roomName <- get_current_intention().values[‘‘roomName_value"];
area trRoom <- area first_with (each.name = roomName);
string patientName <- get_current_intention().values[‘‘patientName_value"];
patient p <- patient first_with (each.name = patientName);
if (self distance_to trRoom <= 1) {
predicate leave <- new_predicate(‘‘leave");
ask p {

do add_belief(leave);
}
do add_belief(new_predicate(‘‘triaged",[‘‘name_value"::patientName]));
do finishPlan();

}
else
{
string nurseName <- name;
ask p {

predicate follow <-
new_predicate(‘‘follow",

12 J. B. LARSEN

[‘‘nurseName_value"::nurseName]) with_priority 1;
do add_belief(follow);

}
do focusSubintention(‘‘gotoArea",[‘‘name_value"::roomName]);

}
}

Step (4) of the treatment process is the patient leaving the care unit. The nurse asks the
patient to leave (by adding the belief leave to its belief base), and the patient then
applies a rule that both removes the desire to follow the nurse and adds a desire to
leave. The patient leaves the unit by going to the exit and then removing itself from
the simulation (by calling die()).

rule belief:new_predicate(‘‘leave")
remove_desire:(get_belief_with_name(‘‘follow"))
new_desire:new_predicate(‘‘leave");

plan leave intention:new_predicate(‘‘leave") {
area exit <- area first_with (each.name = ‘‘exit");
if (self distance_to exit <= 1) {
do die();

} else {
do focusSubintention(‘‘gotoArea",[‘‘name_value"::‘‘exit"]);

}
}

4.6. Evaluation

Although the simulation only covers a small part of the actual treatment process in an
emergency care unit, we can evaluate it in terms of the criteria proposed in the introduc-
tion and discuss the general limitations of the BDI-based approach.

4.6.1. Support for descriptive agents
Using the BDI paradigm we made agents in the emergency care with rich and complex
models. Agents are modelled in terms of beliefs, desires and intentions, which they use
when selecting what plans to execute and how to execute them. The agents communicate
with each other and perceive each other, updating their mental state according to their
inference rules. Although the implemented mental models were rather simple, they
could be extended with more rules and hence make more complex agents.

From a process perspective though, it is quite difficult to understand and extend the
simulation to cover more of the treatment process in an emergency care unit. Implement-
ing the process using goals and plans requires careful design and it is easy to introduce
errors which can halt the entire simulation.

4.6.2. Support for reusability
Different parts of the implemented code can be reused to varying degrees. The basic
agent code for implementing agent movement abilities presented in Section 4.4 can be

JOURNAL OF INFORMATION AND TELECOMMUNICATION 13

reused for other simulations. The code pattern for perceiving other agents in a local area
can be reused but needs to be reimplemented for other simulations. The code that
implements the treatment process however can not be reused as it is very specific to
the implemented process. The goals and plans of the agents are designed to implement
the process in this case study and can not easily be modified to simulate another process.

4.6.3. Support for analysis
We can at any time in the simulation inspect the mental state of the agents and see what
beliefs, desires and intentions they have, and what their currently selected plan is. In this
way the BDI model allows us to analyse the system from an agent perspective: how agents
revise their mental state and decide on plans. However we can not easily analyse the
system from a system perspective and answer questions such as: what stages the
implemented process consists of, or what roles and responsibilities the agents have.

4.6.4. Generality
The limitations we have highlighted in the evaluation above follow from the complexity of
the use case. The combination of interaction between individuals and an overall work
process they carry out is difficult to capture in a model. The strength of BDI is that it pro-
vides a simple paradigm for descriptive agents, reusable basic behaviour models and
analysis of agent reasoning. It is less useful for defining and simulating an event process.

4.7. Perspective on using AORTA

As the use case shows, using only the BDI paradigm has some limitations in terms of both
support for descriptive agents, reusability and analysis. The reason is that BDI is a primarily
a paradigm for designing agent reasoning and not processes or agent organizations. We
could overcome this limitation by using an organizational meta-model such as AORTA. In
previous work we presented an AORTA meta-model of the acute patient treatment
process (Larsen & Villadsen, 2017). In the AORTA meta-model, we encode organizational
knowledge in terms of roles, objectives and sub-objectives, role dependencies and con-
ditions. Each agent then maintains two knowledge bases: one with personal knowledge
and one with organizational knowledge. The organizational knowledge base describes
the stages that the patient goes through, which staff members are involved in each
stage and a selection of conventions that the agents are expected to follow. When delib-
erating which action to perform, an agent can then reason about if an action complies or
violates any obligations of the agent. Updating the knowledge base is done accordingly to
general rules of the meta-model when the agents perform actions. The agents can also
perform organizational actions, such as enacting roles, which will update their knowledge
base accordingly. In addition, the explicit representation of organizational knowledge sup-
ports specification and verification of the organizational agent model. To summarize using
AORTA in ABS could give:

(1) Descriptive agents that have a mechanism to include organizational reasoning in their
decision making. We can encode system processes as an organization and then agents
can then use general rules to decide actions. An organizational model would support

14 J. B. LARSEN

complex social and explainable behaviour, and we can extend the model without
having to add much more code.

(2) A reusable meta-model that can be integrated in any agent programming platform
that supports the BDI paradigm.

(3) Formal syntax and semantics that can be used for specification and verification of the
organizational agent model. Logic reasoning can provide insight into social relations
which are otherwise hard to identify or reason about.

5. Discussion

The BDI paradigm on its own only provides generalized methods for implementing
internal agent reasoning. It does not provide generalized methods for implementing
important aspects of multi-agent systems such as organizations and environments. The
previous section analysed potential benefits that the AORTA meta-models can provide
for ABS in the emergency care unit scenario. In this section we recap that analysis and
discuss potential benefits of applying the other frameworks and meta-models listed in
Table 1 for ABS.

CArtAgO provides a framework for implementing agent environments in Java, which is
commonly used in ABS platforms, using the Agents & Artefacts meta-model. In domains
where people interact through physical objects such as whiteboards or telephones,
CArtAgO would provide a generalized framework for encoding these objects. In the
case study with emergency care units, the physical location and availability of information
communication technologies can have a major influence on the workflow. CArtAgO has
been implemented in Jason and has been used to an increasing extent in MAS. As it is
Java based, it could potentially also be implemented for dedicated ABS platforms that
support BDI models. The Agents & Artefacts meta-model also provides theoretical foun-
dation for specification and verification of agent environments.

EIS provides a Java framework for integrating agent programming platforms with
environments. This is useful for implementing systems where the internal agent reasoning
logic and the environment logic are separated from each other. The separation allows for
more openness, as agents can then be integrated in the environment no matter how their
internal reasoning works like. As mentioned earlier, openness is less of a concern in ABS
than MAS so, although the framework is reusable, we do not see an immediate benefit
of using EIS in ABS.

OperA provides a meta-model for designing and analysing agent organizations. As the
evaluation in the previous sections shows, there are clear benefits of applying organization
meta-models to domains with human organizations. Making a model of the organization
in OperA would provide a basis for implementing ABS with AORTA agents that perform
organizational reasoning. MOISE+ provides an alternative meta-model for agent organiz-
ations. Its integration with CArtAgO and Jason in JaCaMo could provide a framework for
implementing ABS with both environment and organization models.

The AORTA meta-model, which was evaluated in the previous section, provides a basis
for implementing organizationally aware agents in ABS platforms. Doing so would give
ABS that supports descriptive agents that replicate organizational behaviour in terms of
roles and norms. In domains with human organizations, such as in the hospital case, simu-
lation with organizationally aware agents should provide more accurate outcomes than

JOURNAL OF INFORMATION AND TELECOMMUNICATION 15

with only the BDI paradigm. There are already implementations of AORTA in Jason, which
to some degree supports ABS, and since AORTA has well defined semantics and oper-
ational rules, it can be implemented in dedicated ABS platforms that support BDI
models. The formal syntax and semantics in logic also supports specification and verifica-
tion of the organizational agent model.

In ABS of social systems, there is also a growing interest in frameworks and meta-
models for social values. A social value represents a concept that an agent cares about
and it will generally perform actions that promotes its social values. Simulation with
social value models have gained interest as a way to implement social behaviour that
agents do exhibit without explicitly reasoning about them. Although there is work on
meta-models for social values, there still remains much to be done in terms of formaliza-
tion and implementation in ABS platforms. Finally, it is worth noting that current MAOP
platforms, including the one based on AORTA (Jensen et al., 2014), introduce an overhead
that may not be practical for ABS in practice. Practical ABS typically involves a large
number of agents so while introducing frameworks and meta-models can be useful for
modelling the agents, the overhead of doing so must be kept low.

6. Conclusion and future work

There is active research into providing better frameworks for implementing BDI models in
ABS. They generally use one of the methods:

. Implementing simulation features in agent programming platforms (Bordini & Hübner,
2009).

. Implementing BDI models in ABS platforms (Caballero et al., 2011).

. Combining ABS platforms with agent programming platforms (Padgham et al., 2011;
Singh et al., 2016).

The third method has the advantage that it can make use of advances in tools for both ABS
and AOP platforms. As argued by Adam and Gaudou (2016), the cost of high compu-
tational power might also become negligible as computers get more powerful. Research
in agent programming languages and logics has given frameworks and meta-models for
implementing environments and social behaviour. These are designed to be reusable and
their logical foundation can be used for specification and verification of ABS models. We
have given an analysis and evaluation of using agent programming languages and logics
in a case study based on emergency care. We have presented a simulation of emergency
care made with BDI agents in GAMA and highlighted limitations in terms of support for
descriptive agents, reusability and analysis. The case study motivates going beyond BDI
for ABS and we have given perspective on how the AORTA meta-model allows agents
to include organizational reasoning in their decision making, is reusable, and has a
formal syntax and semantics that can be used for specification and verification. We also
discussed potential benefits of using some of the other MAOP frameworks shown in
Table 1 for ABS.

To the author’s knowledge, there are still few reusable frameworks andmeta-models for
implementing social behaviour in ABS. Future work include implementing AORTA for ABS
in an extended emergency care unit scenario.

16 J. B. LARSEN

Acknowledgments

This work is part of the Industrial PhD project Hospital Staff Planning with Multi-Agent Goals between
PDC A/S and Technical University of Denmark. I am grateful to Innovation Fund Denmark for funding
and the governmental institute Region H, which manages the hospitals in the Danish capital region,
for being a collaborator on the project. I would also like to thank Jørgen Villadsen, Rijk Mercuur and
Virginia Dignum for comments on the ideas described in this paper.

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

This work was supported by Innovationsfonden [grant number 5189-00075B].

Notes on contributor

John Bruntse Larsen is employed at PDC A/S as an Industrial PhD student with a grant from Innova-
tionsfonden for his PhD project. He holds an MSc from Technical University of Denmark. He has also
worked at PDC A/S as software developer.

ORCID

John Bruntse Larsen http://orcid.org/0000-0003-2500-9944

References

Adam, C., & Gaudou, B. (2016). BDI agents in social simulations: A survey. Knowledge Engineering
Review, 31(3), 207–238.

Aldewereld, H., & Dignum, V. (2011). OperettA: organization-oriented development environment.
Lecture Notes in Computer Science, 6822, 1–18.

Amouroux, E., Chu, T.-Q., Boucher, A., & Drogoul, A. (2009). GAMA: an environment for implementing
and running spatially explicit multi-agent simulations. Lecture Notes in Computer Science, 5044,
359–371.

Behrens, T. M., Hindriks, K. V., & Dix, J. (2011). Towards an environment interface standard for agent
platforms. Annals of Mathematics and Artificial Intelligence, 61(4), 261–295.

Bordini, R. H., & Hübner, J. F. (2009). Agent-based simulation using BDI programming in Jason. In A. M.
Uhrmacher & D. Weyns (Eds.),Multi-agent systems: Simulation and applications (pp. 451–476). Boca
Raton: CRC Press.

Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak
using Jason. Chichester: John Wiley and Sons.

Busetta, P., Ronnquist, R., Hodgson, A., & Lucas, A. (1999). JACK intelligent agents – Components for
intelligent agents in Java. AgentLink News Letter, 2, 2–5.

Caballero, A., Botia, J., & Gomez-Skarmeta, A. (2011). Using cognitive agents in social simulations.
Engineering Applications of Artificial Intelligence, 24(7), 1098–1109.

Caillou, P., Gaudou, B., Grignard, A., Truong, C. Q., & Taillandier, P. (2017). A simple-to-use BDI archi-
tecture for agent-based modeling and simulation. Advances in Intelligent Systems and Computing,
528, 15–28.

Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and Multi-
Agent Systems, 16(3), 214–248.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 17

http://orcid.org/0000-0003-2500-9944

Dignum, V. (2004). A model for organizational interaction: Based on agents, founded in logic (PhD
thesis). Utrecht University.

Dignum, V., Tranier, J., & Dignum, F. (2010). Simulation of intermediation using rich cognitive agents.
Simulation Modelling Practice and Theory, 18(10), 1526–1536.

Hindriks, K. V. (2009). Programming rational agents in GOAL. In A. El Fallah Seghrouchni, J. Dix, M.
Dastani, & R. H. Bordini (Eds.), Multi-agent programming: Languages, tools and applications (pp.
119–157). Boston, MA: Springer.

Hindriks, K. V., De Boer, F. S., Van Der Hoek, W., & Meyer, J.-J. C. (1999). Agent programming in 3APL.
Autonomous Agents and Multi-agent Systems, 2(4), 357–401.

Hübner, J. F., Boissier, O., Kitio, R., & Ricci, A. (2010). Instrumenting multi-agent organisations
with organisational artifacts and agents. Autonomous Agents and Multi-Agent Systems, 20(3),
369–400.

Hübner, J. F., Sichman, J. S., & Boissier, O. (2007). Developing organised multiagent systems using the
MOISE+ model: Programming issues at the system and agent levels. Int. J. Agent-Oriented Softw.
Eng., 1(3/4), 370–395.

Jensen, A. S. (2015). Model checking AORTA: Verification of organization-aware agents. CoRR, abs/
1503.05317.

Jensen, A. S., & Dignum, V. (2014). AORTA: Adding organizational reasoning to agents. Proceedings of
the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), 2
(3), 1493–1494.

Jensen, A. S., Dignum, V., & Villadsen, J. (2014). The AORTA architecture: Integrating organizational
reasoning in Jason. Lecture Notes in Computer Science, 8758(3), 127–145.

Jensen, A. S., Dignum, V., & Villadsen, J. (2017). A framework for organization-aware agents.
Autonomous Agents and Multi-Agent Systems, 31(3), 387–422.

Kravari, K., & Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies and Social
Simulation, 18(1), 11.

Larsen, J. B. (2018). Agent programming languages and logics in agent-based simulation. In A.
Sieminski, A. Kozierkiewicz, M. Nunez, & Q. T. Ha (Eds.), Modern approaches for intelligent infor-
mation and database systems (pp. 517–526). Cham: Springer.

Larsen, J. B., & Villadsen, J. (2017). An approach for hospital planning with multi-agent organizations.
In Rough sets, IJCRS 2017 (pp. 454–465). Cham: Springer.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005). MASON: A multiagent simulation
environment. Simulation, 81(7), 517–527.

Mercuur, R., Larsen, J. B., & Dignum, V. (2018, July).Modelling the social practices of an emergency room
to ensure staff and patient wellbeing. Presentation at Socio-Cognitive Workshop 2018
(SCS18@FAIM2018), 15 pp.

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., & Sydelko, P. (2013). Complex
adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Modeling, 1(1), 3.

Padgham, L., Scerri, D., Jayatilleke, G., & Hickmott, S. (2011). Integrating BDI reasoning into agent
based modeling and simulation. In Proceedings of the Winter Simulation Conference (pp. 345–356).

Piunti, M., Ricci, A., Braubach, L., & Pokahr, A. (2008). Goal-directed interactions in artifact-based MAS:
Jadex agents playing in CARTAGO environments. 2008 International Conference on Intelligent
Agent Technology (Vol. 2, pp. 207–213).

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. In R. H. Bordini, M.
Dastani, J. Dix, & A. El Fallah Seghrouchni (Eds.), Multi-agent programming: Languages, platforms
and applications (pp. 149–174). Boston, MA: Springer.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In W. Van de
Velde & J. W. Perram (Eds.), Agents breaking away (pp. 42–55). Berlin, Heidelberg: Springer.

Ricci, A., Bordini, R. H., Piunti, M., Hübner, J. F., Acay, L. D., & Dastani, M. (2008). Integrating
heterogeneous agent programming platforms within artifact-based environments. Proceedings
of the international joint conference on autonomous agents and multiagent systems (Vol. 1,
pp. 222–229).

18 J. B. LARSEN

Ricci, A., Viroli, M., & Omicini, A. (2006). CArtAgO: A framework for prototyping artifact-based environ-
ments in MAS. Third International Workshop on Environments for Multi-agent Systems, E4MAS 2006.
Selected revised and invited papers (Lecture notes in artificial intelligence Vol. 4389, pp. 67–86).

Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1), 51–92.
Siebers, P.-O., Macal, C. M., Garnett, J., Buxton, D., & Pidd, M. (2010). Discrete-event simulation is dead,

long live agent-based simulation! Journal of Simulation, 4(3), 204–210.
Singh, D., Padgham, L., & Logan, B. (2016). Integrating BDI agents with agent-based simulation plat-

forms. Autonomous Agents and Multi-Agent Systems, 30(6), 1050–1071.
Taillandier, P., Bourgais, M., Caillou, P., Adam, C., & Gaudou, B. (2017). A BDI agent architecture for the

GAMA modeling and simulation platform. In Multi-agent based simulation xvii (pp. 3–23). Cham:
Springer.

van Riemsdijk, M. B. (2012). 20 years of agent-oriented programming in distributed AI: History and
outlook. In Proceedings of the 2nd edition on programming systems, languages and applications
based on actors, agents, and decentralized control abstractions (pp. 7–10). ACM.

Weiss, G. (2013). Multiagent systems (2nd ed.). Cambridge, MA: MIT Press.
Winikoff, M. (2005). Jack intelligent agents: An industrial strength platform. In R. H. Bordini, M.

Dastani, J. Dix, & A. El allah Seghrouchni (Eds.), Multi-agent programming: Languages, platforms
and applications (pp. 175–193). Boston, MA: Springer.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 19

	Abstract
	1. Introduction
	2. AOP, logic and agent-based simulation
	3. From AOP to MAOP
	4. Case study: emergency care units
	4.1. Scope of the implementation
	4.2. GAMA BDI framework
	4.3. Implementing the environment
	4.4. Implementing basic agent code
	4.5. Implementing the treatment process
	4.6. Evaluation
	4.6.1. Support for descriptive agents
	4.6.2. Support for reusability
	4.6.3. Support for analysis
	4.6.4. Generality

	4.7. Perspective on using AORTA

	5. Discussion
	6. Conclusion and future work
	Acknowledgments
	Disclosure statement
	Notes on contributor
	ORCID
	References

