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Abstract
Many engineering applications have as their main component rotor-blade systems whose dynamics can be

represented by a linear time-varying model. Since rotor-blade systems exhibit periodic dynamics, standard

linear time-invariant analysis and synthesis techniques cannot be directly used and are not able to guarantee

closed-loop stability and performance. Although there exist many results for periodic systems, the design

of controllers for such systems is, in general, a difficult task. Its practical application is challenging, from

the computational and experimental aspects. This paper presents the application of a periodic H2 control

problem in a rotor-blade system in order to attenuate the tip vibration. The proposed control design is

based on a periodic Riccati differential equation (PRDE). The Floquet-Lyapunov theory is used to represent

the dynamics in an adequate coordinate system, so that the PRDE can be efficiently solved. A robustness

analysis is also perfomed. Numerical experiments show the effectiveness of the proposed approach.

1 Introduction

Linear time-varying (LTV) differential equations are widely used to model natural phenomena, engineering

systems, and many other situations. For instance, time-varying models have been used to describe the dy-

namic behavior of an idealized human operator in [35, 48] and to estimate the stiffness of human elbow joint

during cyclic voluntary movement in [6]. In the field of economics, the dynamics of the yield curve and

key macroeconomic variables can be modeled through linear time-varying models [7]. In the rendezvous

problem for satellites in elliptic orbits [40], the relative motion of a deputy satellite with respect to the chief

satellite can be described by a time-varying linearized equation of motion.

In a trajectory tracking problem for mechanical systems [36], it is common to use a generator to provide

an off-line open-loop optimal trajectory, basically composed of an ideal system state and control input,

which satisfies the nonlinear system dynamics and ensures that the system output follows a given reference.

Then, considering that the design objective is to keep the actual plant state near its ideal value, under small

perturbations, a linear time-varying model can be used for control design [4]. In [44], an LTV model has

been used in the steps to obtain a flatness-based open-loop control law. A sequence of linear time-varying

approximations is used in [2, 16] to solve a nonlinear optimal control problem.

Periodic systems are a particular class of LTV systems that appear frequently in engineering applications,

since machinery with rotating parts is found in many mechanical systems, such as vehicles, airplanes, ships



and wind-turbines, among others [20, 37]. Active control of rotor-blade systems has been an attractive ap-

proach to improve performance, suppress vibrations, and prolong machinery lifetime [23, 32, 46]. However,

due to the periodic time-varying nature of the problem, applications of classical LTI analysis and synthesis

techniques are not suitable.

One of the most important results available to analyze periodic systems is known as Floquet-Lyapunov

decomposition. It provides a coordinate change that reduces a homogeneous periodic system to a linear

time-invariant system. This decomposition was used in [24] to analyze helicopter rotor dynamics, in [47]

to design a periodic state feedback controller for a mistuned bladed disk, and in [41] to design a periodic

observer-based controller for mechanical systems. It was shown in [15] that the vibration of rotor-blade

systems can be attenuated using control forces acting on the hub. The presence of parametric vibration

effects due to vibration coupling between rotor and blades was analyzed in [14]. A periodic LQR controller

was proposed in [28] with guaranteed performance and closed-loop stability, and a discrete-time periodic H2

controller was proposed in [10] for vibration reduction using actively twisted blades.

The H2 norm has been extensively used to quantify system performance as an objective function for a large

class of optimal control problems [39, 45]. The H2 control problem consists of stabilizing the closed-loop

system while minimizing its H2 norm, from the disturbance input to the performance output [13, 39, 45]. The

notion of the H2 norm and synthesis conditions for the H2 state feedback control problem for continuous-

time periodic systems are found in [17, 18]. Algorithms to solve the underlying set of periodic time-varying

Lyapunov and Riccati equations [1, 8, 9], which frequently appear in control and systems theory, have been

extensively investigated in the last decades [19, 26, 30, 31].

In this paper, an H2 state feedback controller is designed to attenuate the tip vibration of a rotor-blade

system. The periodic time-varying control design is formulated in terms of a matrix Riccati differential

equation. Although the design guarantees stability and performance, an analysis of the robustness of the H2

controller with respect to stability is also provided.

2 Control design

This section presents the proposed periodic H2 optimal control design, used to improve the performance and

robustness of the rotor-blade system.

To access the best achievable performance, it is assumed henceforth that all the states are available for

feedback and, thus, the controller is a full state feedback gain. In case not all states are available for feedback,

a periodic observer can be designed, since the separation principle still holds [4, 50], with possible decrease

in performance and robustness [5, 21].

Consider the following linear time-varying system

ẋ(t) = A(t)x(t) +Bu(t)u(t) +Bw(t)w(t)

z(t) = Cz(t)x(t) +Dzu(t)u(t) +Dzw(t)w(t)
(1)

where all the matrices have compatible dimensions, are continuous functions of time, and bounded. Then,

the closed-loop system using the state feedback law

u(t) = K(t)x(t)

is given by

ẋ(t) = Acl(t)x(t) +Bcl(t)w(t)

z(t) = Ccl(t)x(t) +Dcl(t)w(t)
(2)

with

Acl(t) = A(t) +Bu(t)K(t), Bcl(t) = Bw(t), Ccl(t) = Cz(t) +Dzu(t)K(t), Dcl(t) = Dzw(t)

Before presenting the control design, some well-known results are introduced in the next section. For a

detailed exposition, see the comprehensive sources [8, 11, 52] and references therein.



2.1 Preliminary facts

Consider the following linear time-varying system H given by

H :=

{

ẋ(t) = A(t)x(t) +B(t)v(t)

y(t) = C(t)x(t) +D(t)v(t)
(3)

where all the matrices have compatible dimensions, are continuous functions of time, and bounded. The

vectors y(t) and v(t) are the output and the input signals, respectively.

A convenient notion of stabilizability and detectability is given in the next definition [38].

Definition 1. System (3) is said to be stabilizable if there exists a bounded matrix function K(t) such that

ẋ(t) = (A(t) − B(t)K(t))x(t) is exponentially stable. System (3) is said to be detectable, if there exists a

bounded matrix function L(t) such that ẋ(t) = (A(t)− L(t)C(t))x(t) is exponentially stable.

The next Lemma 2 provides a classical version of the Lyapunov stability theorem for continuous-time linear

time-varying systems [38], which was first proved for the discrete-time case in [3]. A version for periodic

systems can be found in [8].

Lemma 2. Assume the pair (A(t), B(t)) is stabilizable and the pair (A(t), C(t)) is detectable. Then, either

of the following statements is a sufficient condition for system (3) to be exponentially stable:

1. There exists a bounded nonnegative definite matrix solution Lc(t) of the equation

L̇c(t) = Lc(t)A
′(t) +A(t)Lc(t) +B(t)B′(t)

2. There exists a bounded nonnegative definite matrix solution Lo(t) of the equation

−L̇o(t) = A′(t)Lo(t) + Lo(t)A(t) + C ′(t)C(t)

In system theory, mainly in optimal control problems [29, 49], the Riccati equation plays an important role

[1, 9, 33]. The next Lemma 3 states the conditions for the solution of the Riccati differential equation to be

unique and stabilizing [38].

Lemma 3. Assume the pair (A(t), B(t)) is stabilizable and the pair (A(t), C(t)) is detectable. Then, there

exists a unique bounded solution X(t) ≥ 0 of the following Riccati equation

0 = Ẋ(t) +A′(t)X(t) +X(t)A(t)−X(t)B(t)B′(t)X(t) + C ′(t)C(t)

Furthermore, the system ẋ(t) = (A(t)−B(t)B′(t)X(t))x(t) is exponentially stable.

The next Lemma 4 provides another important result, called Floquet-Lyapunov decomposition [11, 22, 52],

which can be used to transform the homogeneous T -periodic system

ẋ(t) = A(t)x(t), A(t+ T ) = A(t) (4)

into a linear time-invariant system.

Lemma 4. Consider the T -periodic linear system (4). Let the associated transition matrix be denoted by

ΦA(t, t0). Define a matrix function P (t) and a constant matrix W via the equations

P (t) = eWtΦA(0, t) and eWT = ΦA(T, 0) (5)

Then, the transition matrix ΦA(t, t0) can be written as

ΦA(t, t0) = P−1(t)eW (t−t0)P (t0)

Moreover, system (4) is reducible in the sense of Lyapunov and its origin x = 0 is an exponentially stable

equilibrium if, and only if, W is Hurwitz.



From this previous result, it becomes clear that the class of linear periodic systems is reducible in the sense

of Lyapunov [22]. Furthermore, the change of variable η(t) = P (t)x(t) transforms (4) into the linear time-

invariant system

η̇(t) = Wη(t) (6)

To see this fact, observe that the system dynamics in the η-coordinate is given by

η̇ = Â(t)η(t)

with

Â(t) = P (t)A(t)P−1(t) + Ṗ (t)P−1(t)

whose transition matrix can be shown to be

ΦÂ(t, t0) = P (t)ΦA(t, t0)P
−1(t0) = eW (t−t0)

which is exactly the transition matrix of system (6).

The monodromy matrix ΨA, which is usually defined as the transition matrix computed over one period, i.e.

ΨA = ΦA(T, 0), is a crucial element for the stability analysis of periodic systems. The characteristic roots

of eWT = ΨA are called the multipliers associated with A(t) and the characteristic roots of W are called

characteristic exponents. As a direct consequence of Lemma 4, the stability of (4) is characterized by the

location of these roots.

Using the Floquet-Lyapunov transformation above, the periodic system (3) becomes

η̇(t) = Âη(t) + B̂(t)v(t)

y(t) = Ĉ(t)η(t) + D̂(t)v(t)
(7)

with

Â = W, B̂(t) = P (t)B(t), Ĉ(t) = C(t)P−1(t), D̂(t) = D(t)

Notice that the system matrix A(t) is transformed into a constant matrix W . However, all the other matrices

still remain time-varying. In this new coordinate, it is possible to apply an extra similarity transformation to

convert W , for instance, to a real block diagonal form.

A procedure for computing the Floquet-Lyapunov transformation using Chebyshev polynomials is presented

in [42]. Another procedure that uses a Fourier series expansion to transform a periodic system into an LTI

system in the modal form is provided in [51] and applied in [15]. Modal analysis techniques for linear

time-varying systems can be found in [12, 27, 34].

2.2 Periodic state feedback H2 synthesis

The H2 norm for linear time-invariant (LTI) systems can be computed from the controllability or the observ-

ability gramians [43, 53]. The computation of these norms is readily performed by solving the corresponding

algebraic Lyapunov equation. For linear time-varying (LTV) systems, there exist distinct characterizations

of the H2 norm, which are straightforward extensions of the LTI case, but, in general, they are not equivalent

[45]. As shown in the next Lemma 5, the H2 norm for a T -periodic system can be defined in a similar way

as the LTI case, using the controllability and the observability gramians [17].

Lemma 5. Consider system H given by (3) with D(t) = 0. Assume the T -periodic system matrix A(t) is

exponentially stable. Let the controllability gramian Lc(t) and the observability gramian Lo(t) be bounded

solutions of the following equations

L̇c(t) = Lc(t)A
′(t) +A(t)Lc(t) +B(t)B′(t)

−L̇o(t) = A′(t)Lo(t) + Lo(t)A(t) + C ′(t)C(t)



Then, the H2 norm of (3) is given by

‖H‖22 =
1

T

∫ T

0
Tr

[

C(τ)Lc(τ)C
′(τ)

]

dτ =
1

T

∫ T

0
Tr

[

B′(τ)Lo(τ)B(τ)
]

dτ

The proposed H2 optimal control problem consists in finding a state feedback gain K(t) such that the H2

norm of the closed-loop system is minimized. The next Lemma 6 provides, as shown in [18], a Riccati

differential equation that characterizes the solution of the H2 state feedback control problem for system (1),

with Dzw(t) = 0.

Lemma 6. Consider system (1) with Dzw(t) = 0. Assume that (A(t), Bu(t)) is stabilizable, Dzu(t) is

injective for each t, and that the periodic system (A(t), Bu(t), Cz(t), Dzu(t)) does not have invariant zeros

in the unit circle. Then, the optimal solution of the H2 problem is

K(t) = −R−1(t)
(

B′

u(t)X(t) +D′

zu(t)Cz(t)
)

where R(t) = D′

zu(t)Dzu(t), and X(t) is the stabilizing positive semidefinite solution of the periodic Riccati

differential equation

Ẋ(t) +A′(t)X(t) +X(t)A(t) + C ′

z(t)Cz(t)

−
(

X(t)Bu(t) + C ′

z(t)Dzu(t)
)

R−1(t)
(

B′

u(t)X(t) +D′

zu(t)Cz(t)
)

= 0

There exist appropriate techniques that can be used to solve the periodic Riccati differential equation above

[19, 26, 30, 31].

2.3 Robustness analysis

It is interesting to verify how robust the stability of the closed-loop system is, using the proposed periodic

H2 state feedback controller, when the system model is uncertain. For this analysis, different approaches can

be used.

The necessary and sufficient conditions for asymptotic stability of continuous-time linear time-varying sys-

tems and, in particular, for periodic systems presented in [25], are explored. These conditions provide a

function ρ̄(t) that bounds all the system trajectories, for a prescribed set of initial conditions, as stated in the

next Lemma 7 from [25].

Lemma 7. For a given ρ0 > 0, let ρ̄(t) = ρ0λ
1/2
max(X(t, t0)), where X(t, t0) is the solution of the following

Lyapunov differential equation

∂

∂t
X(t, t0) = A(t)X(t, t0) +X(t, t0)A

′(t), X(t0, t0) = I

and let

ρT = max
t∈[t1,t1+T ]

ρ̄(t), t1 ≥ t0

Then, the T -periodic system (4) is asymptotically stable if, and only if,

ρT < ∞ and ρ̄(t1 + T ) < ρ̄(t1), ∀t1 ≥ t0

Moreover, there always exists an initial condition x0 ∈ Ω0, with Ω0 = {x | x′x ≤ ρ20, ρ0 > 0}, such that

the associated trajectory reaches the bound ρ̄(t), in the sense that x′(t)x(t) = ρ̄2(t).

It is also possible to analyze the region of stability of the closed-loop system, using the computed H2 con-

troller, as a function of the system’s uncertainties. For this test, the stability is verified by computing the

multipliers associated with the closed-loop systems, obtained by the feedback connection of each uncertain

open-loop model with the H2 controller.



3 Rotor-blade dynamics

The two-dimensional rotor-blade system shown in Figure 1 consists of a rotor with four flexible blades,

rotating in a suspended hub, with angular velocity Ω. The hub motion is described in the inertial (x, y)-
coordinate system. The angular position of blade 1 is given by θ(t). A detailed derivation of the model is

found in [14, 15].

Figure 1: Two-dimensional model of the rotor-blade system.

Considering that the system rotates at the constant angular velocity Ω = 300 rpm, the equation of motion is

given by

M(t)q̈(t) +D(t)q̇(t) + S(t)q(t) = Quu(t) + p(t) + w(t) (8)

where M(t) is the mass matrix, D(t) is the damping matrix, S(t) is the stiffness matrix, Qu is the input

matrix, u(t) is the control input force, p(t) is the periodic force due to the unbalance, and w(t) is the

exogenous disturbance acting on the system.

The system matrices, with period T = 2π/Ω = 0.2 seconds, are given by

M(t) =

















10.99 0 −0.135S0 −0.135S1 −0.135S2 −0.135S3

0 9.09 0.135C0 0.135C1 0.135C2 0.135C3

−0.135S0 0.135C0 0.161 0 0 0
−0.135S1 0.135C1 0 0.161 0 0
−0.135S2 0.135C2 0 0 0.161 0
−0.135S3 0.135C3 0 0 0 0.161

















D(t) =

















1.200 0 −0.270ωC0 −0.270ωC1 −0.270ωC2 −0.270ωC3

0 1.500 −0.270ωS0 −0.270ωS1 −0.270ωS2 −0.270ωS3

0 0 0.800 0 0 0
0 0 0 0.800 0 0
0 0 0 0 0.800 0
0 0 0 0 0 0.800



















S(t) =



















6.6× 104 0 0.135ω2S0 0.135ω2S1 0.135ω2S2 0.135ω2S3

0 7.7× 104 −0.135ω2C0 −0.135ω2C1 −0.135ω2C2 −0.135ω2C3

0 0 Ŝ0 0 0 0

0 0 0 Ŝ1 0 0

0 0 0 0 Ŝ2 0

0 0 0 0 0 Ŝ3



















Qu =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 0.299 0 0 0
0 0 0 0.299 0 0
0 0 0 0 0.299 0
0 0 0 0 0 0.299

















where Sk = sin(ωt + πk/2), Ck = cos(ωt + πk/2) and Ŝk = 1961 + 0.102ω2 − 16.85Sk, with ω =
2π/T = 10π rad/s, and k = 0, 1, 2, 3.

The matrices M(t), D(t), S(t), and Qu above are obtained from the system matrices given in the appendix

of [14] after removing the second bending mode of the blades, i.e., after removing the 4th, 6th, 8th, 10th

lines and columns.

By defining the state space vector x(t) =
[

q′(t) q̇′(t)
]′

, equation (8) can be written in following the state

space form

ẋ(t) = A(t)x(t) +Bu(t)u(t) +Bw(t)w(t) + f(t) (9)

where

A(t) =

[

0 I
−M−1(t)S(t) −M−1(t)D(t)

]

,

Bu(t) =

[

0
M−1(t)Qu

]

, Bw(t) =

[

0
M−1(t)

]

, f(t) =

[

0
M−1(t)

]

p(t)

The displacement vector q has six generalized coordinates that account for the hub motion, in the (x, y)-
directions, and the tip deflection of each one of the four blades. Thus, the system has 6 degrees of freedom

and the state x has 12 entries.

The mechanical system has six actuators that can independently control all six degrees of freedom. Two

actuators are located in the hub, providing forces in the (x, y)-directions, and the other four are located in

each one of the blades.

As observed in [14], the force p(t), due to unbalances, is usually known or well estimated when the system

rotates at constant speed. Thus, it is possible to cancel out this effect, as performed in [28], using the

following feedforward control law

uf (t) = −
(

B′

u(t)Bu(t)
)

−1
B′

u(t)f(t)

The next section presents the numerical results in which the unbalance is neglected, since it is assumed that

a preliminary feedforward control law can always be applied to cancel its effect.

4 Numerical results

For the numerical simulations, the matrices A(t), Bu(t), and Bw(t) are provided in Section 3 and the matri-

ces Cz(t), Dzu(t), and Dzw(t) are given by

Cz(t) = 10

[

N
06,12

]

, N = blkdiag(02, I4, 02, I4), Dzu(t) =
√
0.1

[

012,6
I6

]

, Dzw(t) = 0



where 0n,m and In,m are the zero and the identity matrices of size n × m, respectively, and the operation

blkdiag(X1, . . . , Xn) denotes the block diagonal matrix concatenation of its arguments.

Using Lemma 4, a Floquet-Lyapunov decomposition can be computed to represent system (1) in a new

coordinate η(t), as shown in (7), so that the system dynamic matrix A(t) is transformed into a constant

matrix W . In the first step of this process, the monodromy matrix ΦA(T, 0), generated by the open-loop

matrix A(t), is computed and, subsequently, matrix W and the matrix function P (t) are determined using

(5). Afterwards, a similarity transformation is used to represent W in a block diagonal form. The obtained

matrix W is given by W = blkdiag(W1, . . . ,W6), with

W1 =

[

−0.5253 0.6891
−0.6891 −0.5253

]

, W2 =

[

−0.5605 12.8302
−12.8302 −0.5605

]

, W3 =

[

−2.5467 9.2207
−9.2207 −2.5467

]

W4 =

[

−1.6028 11.8287
−11.8287 −1.6028

]

, W5 =

[

−2.4885 12.5150
−12.5150 −2.4885

]

, W6 =

[

−2.4885 12.5148
−12.5148 −2.4885

]

The eigenvalues of W are given by: −0.5253 ± j0.6891, −0.5605 ± j12.8302, −1.6028 ± j11.8287,

−2.4885± j12.5150, −2.4885± j12.5148, and −2.5467± j9.2207. Thus, the open-loop system is asymp-

totically stable, although lightly damped mainly due to the eigenvalues near the imaginary axis.

Using Lemma 6, the periodic H2 state feedback controller is designed by solving the associated periodic

Riccati differential equation. The H2 norm of the open-loop system, computed using Lemma 5, is 39.5693.

On the other hand, the H2 norm of the closed-loop system is 15.5883, which corresponds to a decrease of

approximately 60%.

A time domain simulation is performed using a Gaussian white noise input w(t) with zero mean and co-

variance matrix equals to 100I . The system is assumed to be at rest with initial condition x0 = x(0) = 0.

Figure 2 and Figure 3 show, respectively, the hub position in the x-direction and the blade 1 tip deflection,

for the open-loop (dashed black line) and the closed-loop (solid red line) systems. The other blades have

similar behavior as blade 1.
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Figure 2: Blade 1 tip deflection.
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Figure 3: Hub position in the x-direction.

The next Figure 4 shows the curve given by function ρ̄(t) (solid black line) from Lemma 7, proposed in [25],

and the 2-norm of the solution x(t) (dotted red line) of the closed-loop system, for a set of 100 randomly

generated initial conditions satisfying x′0x0 = ρ20 = 1. As it can be observed from this figure, the function

ρ̄(t) bounds ‖x(t)‖2 = (x′(t)x(t))1/2 for all system trajectories and, clearly, there must exist an initial

condition x0 such that the boundary x′(t)x(t) = ρ̄2(t) is reached.

To verify how robust the closed-loop stability is under parameter variation, it is assumed that the mass matrix

M(t) varies in the range αM(t), for α ∈ [10−3, 70], and the damping matrix D(t) varies in the range βD(s),
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Figure 4: Function ρ̄(t) (solid black line) and ‖x(t)‖2 (dotted red line) for a set of 100 randomly generated

initial conditions such that x′0x0 = 1.

for β ∈ [0, 15]. Since M(t) needs to be invertible, the lower bound for α was chosen as 10−3. The upper

bounds for α and β were arbitrarily chosen. For a mesh of points in the αβ-region, the maximum absolute

value γ of the 12 multipliers associated with each closed-loop system is computed.
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Figure 5: Stability surface defined by α, β and γ.

Figure 5 shows the plot of the parametric surface defined by α, β and γ. The closed-loop system is asymp-

totically stable if, and only if, γ < 1. Notice that for small values of α, which correspond to a mass matrix

whose periodic entries have small amplitude, stability is guaranteed for any β. However, the system becomes

unstable in the region where γ exceeds unity, which occurs in the vicinity of α = 40 for a set of values of

β. This fact is illustrated in Figure 6, which is a zoom of Figure 5, and in Figure 7, which shows the view of

the αβ-plane for γ ≤ 1. In Figure 7, the stable region is represented by the yellow mesh, and the unstable

region otherwise.
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Figure 6: Zoom of the stability surface.
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5 Conclusion

In this paper, a periodic H2 state feedback controller was designed to attenuate the tip vibration of a two-

dimensional rotor-blade system. The periodic dynamics of this system has 6 degrees of freedom: two related

to the hub motion and one for each blade transverse deflection. The system is fully actuated. The unbalanced

was neglected, since its effect can be canceled by a feedforward control law.

A Floquet-Lyapunov decomposition was applied to the system such that the system matrix A(t) is reduced

to a constant matrix W . A similarity transformation is also used to represent W in a block diagonal form

with the characteristic exponent on the diagonal. Afterwards, the H2 state feedback controller is computed

from the solution of a periodic Riccati differential equation.

The H2 norm of the open- and closed-loop systems are computed from the solution of a periodic Lyapunov

differencial equation. It was readily verified that the periodic controller was capable of reducing significantly

the vibration of the tip deflection, as was expected. The reduction measured in terms of the two-norm of

closed-loop system was approximately 60%. However, different choice for the output matrices Cz and Dzu

would lead to different performance and attenuation level.

An analysis of the robustness of the H2 controller was performed a posteriori. An envelop that bounds all

the system trajectories, for a prescribed set of initial conditions, was computed. It was assumed that the

mass matrix and the damping matrices were uncertain matrices inside a given region of uncertainty, and the

stability of the closed-loop system for each uncertain model was analyzed. It was readily verified that the H2

controller is robust for most of the uncertain models, but there are some combinations of mass and stiffness

matrices for which the closed-loop system will be unstable.
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