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Abstract
Process Systems Engineering (PSE) is a discipline which connects a wide range
of chemical engineering topics in a systems view approach. The reason for this
systematic view of this scientific field is the need of computational concepts,
numerical methods and computer-aided tools which can be applied to differ-
ent use cases in industry. The multi-scale framework developed in this work
encompasses four levels of application:

(I) A server based property prediction software prototype which quanti-
fies the uncertainty of group contribution methods and quantitative structure
property relationship models and provides the confidence bounds of the esti-
mates.

(II) A modelling development level which allows the user to develop models
in a flexible way by using common programming languages for fast prototyping
(Python) and high performance computing (Fortran).

(III) An interface to process simulators to analyse and optimise entire
flowsheets with advanced routines.

(IV) A superstructure optimisation layer where surrogate models gener-
ated from unit operations or process models can be embedded in a superstruc-
ture formulation and solved for the optimal process structure and operating
point.

The contributions presented in this work show how the developed frame-
work allows to tackle research in machine learning, optimisation and Monte
Carlo driven methods such as sensitivity analysis. The developed tools were
applied to the oleochemical domain with selected processes. In conclusion,
this work demonstrates that a modular approach to process systems engineer-
ing, combined with tools integration from various vendors, allows to gain new
knowledge in a time-efficient and augmentable manner.
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Resumé
Process systems engineering (PSE) er en disciplin som sammenknytter en
række kemitekniske emner med fokus på en systemisk tilgang. Årsagen for
denne systematiske tilgang er efterspørgslen af beregningsmæssige koncepter,
numeriske metoder og computerstøttede værktøjer som kan anvendes til forskel-
lige studier i process systems engineering. Den multi-skala framework som er
udviklet og beskrevet i denne afhandling omfatter fire niveauer:

(I) En server baseret software prototype for beregning af kemiske egen-
skaber kvantificerer usikkerhed af gruppe-bidrags metoder og kvantitative
struktur-egenskabs modeller.

(II) Et modellerings niveau hvor brugeren kan udvikle modeller på en flek-
sibel måde med forskellige programmeringssprog til fast-prototyping (Python)
og high performance computing (Fortran).

(III) Et interface til process simulerings værktøjer som gør det muligt at
analysere og optimere processskemaer med avancerede rutiner.

(IV) Et superstruktur optimerings-niveau hvor enhedsoperationer kan blive
indlejret i superstrukturelle formuleringer og blive løst for den optimale proces-
struktur og drift.

Bidragene i dette værk viser hvordan frameworket kan benyttes til at ud-
føre forskning ved hjælp af machine learning, optimering og Monte Carlo
drevet sensitivitetsanalyse. De udviklede værktøjer er blev anvendt på det
oleokemiske domæne med udvalgte processer. Overordnet viser dette arbe-
jde, at en modulær tilgang til processteknologi kombineret med værktøjs-
integration fra forskellige leverandører giver mulighed for at opnå ny viden
på en tidseffektiv måde og med muligheden for at udvide.
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Am Wasserfall.
Beim Anblick eines Wasserfalles meinen wir in den
zahllosen Biegungen, Schlängelungen, Brechungen der
Wellen Freiheit des Willens und Belieben zu sehen; aber
Alles ist notwendig, jede Bewegung mathematisch
auszurechnen. So ist es auch bei den menschlichen
Handlungen; man müsste jede einzelne Handlung vorher
ausrechnen können, wenn man allwissend wäre, ebenso
jeden Fortschritt der Erkenntnis, jeden Irrtum, jede
Bosheit. Der Handelnde selbst steckt freilich in der
Illusion der Willkür; wenn in einem Augenblick das Rad
der Welt still stände und ein allwissender, rechnender
Verstand da wäre, um diese Pausen zu benützen, so
könnte er bis in die fernsten Zeiten die Zukunft jedes
Wesens weitererzählen und jede Spur bezeichnen, auf der
jenes Rad noch rollen wird. Die Täuschung des
Handelnden über sich, die Annahme des freien Willens,
gehört mit hinein in diesen auszurechnenden
Mechanismus.

Friedrich Nietzsche - Menschliches, Allzumenschliches



vi



Ph.D. Publications
The following publications have resulted from this Ph.D. project.

Articles in peer-reviewed journals
[1] M. N. Jones, J. Frutiger, N. G. Ince, and G. Sin, “The Monte Carlo

driven and machine learning enhanced process simulator,” Computers
& Chemical Engineering, vol. 125, pp. 324–338, 2019. doi: 10.1016/j.
compchemeng.2019.03.016.

Articles submitted to peer-reviewed journals
[2] H. Forero-Hernandez, M. N. Jones, B. Sarup, A. D. Jensen, J. Abildskov,

and G. Sin, “Comprehensive development, uncertainty and sensitivity
analysis of a model for the hydrolysis of rapeseed oil,” Computers &
Chemical Engineering, 2019.

[3] M. N. Jones, H. Forero-Hernandez, A. Zubov, B. Sarup, and G. Sin,
“Splitting triglycerides with a counter-current liquid-liquid spray col-
umn: Modelling, global sensitivity analysis, parameter estimation and
optimisation,” Processes, 2019.

Contributions to peer-reviewed proceedings
[4] J. Frutiger, M. Jones, N. G. Ince, and G. Sin, “From property uncer-

tainties to process simulation uncertainties – Monte Carlo methods in
SimSci PRO/II process simulator,” in Proceedings of the 13th Inter-
national Symposium on Process Systems Engineering (PSE 2018), ser.
Computer Aided Chemical Engineering, vol. 44, 2018, pp. 1489–1494.
doi: 10.1016/B978-0-444-64241-7.50243-3.

http://dx.doi.org/10.1016/j.compchemeng.2019.03.016
http://dx.doi.org/10.1016/j.compchemeng.2019.03.016
http://dx.doi.org/10.1016/B978-0-444-64241-7.50243-3


viii Ph.D. Publications

[5] M. Jones, H. Forero-Hernandez, A. Zubov, B. Sarup, and G. Sin, “Super-
structure optimization of oleochemical processes with surrogate models,”
in Proceedings of the 13th International Symposium on Process Systems
Engineering (PSE 2018), ser. Computer Aided Chemical Engineering,
vol. 44, 2018, pp. 277–282. doi: 10.1016/B978-0-444-64241-7.50041-
0.

[6] H. Forero-Hernandez, M. Jones, B. Sarup, J. Abildskov, A. Jensen, and
G. Sin, “A simplified kinetic and mass transfer modelling of the ther-
mal hydrolysis of vegetable oils,” in Proceedings of the 27th European
Symposium on Computer Aided Process Engineering (ESCAPE 27), ser.
Computer Aided Chemical Engineering, vol. 40, 2017, pp. 1177–1182.
doi: 10.1016/B978-0-444-63965-3.50198-7.

[7] M. Jones, H. Forero-Hernandez, B. Sarup, and G. Sin, “Multi-scale mod-
eling approach for design and optimization of oleochemical processes,”
in Proceedings of the 27th European Symposium on Computer Aided
Process Engineering (ESCAPE 27), ser. Computer Aided Chemical En-
gineering, vol. 40, 2017, pp. 1885–1890. doi: 10.1016/B978- 0- 444-
63965-3.50316-0.

Contributions to international peer-reviewed
conferences
[8] M. Jones, C. Hansen, H. Forero-Hernandez, B. Sarup, and G. Sin, “Monte

carlo based sensitivity analysis and derivative-free optimisation,” 1st
International Young Professionals Conference on Process Engineering
(YCOPE 2019), 2019, p. 49.

[9] H. Forero-Hernandez, M. Jones, B. Sarup, J. Abildskov, A. Jensen, and
G. Sin, “Modelling, uncertainty and sensitivity analysis of the batch
thermal hydrolysis of vegetable oils,” 16th Euro Fed Lipid Congress and
Expo, 2018.

[10] M. Jones, H. Forero-Hernandez, A. Zubov, B. Sarup, and G. Sin, “De-
sign, global sensitivity analysis and optimisation of a counter-current
spray column for splitting triglyceride mixtures,” 16th Euro Fed Lipid
Congress and Expo, 2018.

http://dx.doi.org/10.1016/B978-0-444-64241-7.50041-0
http://dx.doi.org/10.1016/B978-0-444-64241-7.50041-0
http://dx.doi.org/10.1016/B978-0-444-63965-3.50198-7
http://dx.doi.org/10.1016/B978-0-444-63965-3.50316-0
http://dx.doi.org/10.1016/B978-0-444-63965-3.50316-0


Contributions to international peer-reviewed conferences ix

[11] M. Jones, H. Forero-Hernandez, B. Sarup, and G. Sin, “Superstructure
optimisation with general disjunctive programming and surrogate mod-
els,” PSE@ResearchDayUK, 2018.

[12] M. Jones, J. Frutiger, J. Abildskov, and G. Sin, “Safeprops: A software
for fast and reliable estimation of safety and environmental properties
for organic compounds,” 2016 AIChE Annual Meeting, 2016.



x



Contents
Abstract i

Resumé i

Preface iii

Ph.D. Publications vii

Acronyms xv

1 Introduction 1
1.1 Motivation and goals . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Summary of main contributions . . . . . . . . . . . . . . . . . . 4

Bibliography 5

2 Multi-scale Framework for Design and Optimisation 9
2.1 Multi-scale framework for property prediction, unit operation

modelling, flowsheeting and superstructure optimisation . . . . 9
2.1.1 Property prediction level . . . . . . . . . . . . . . . . . . 12
2.1.2 Unit operation modelling level . . . . . . . . . . . . . . 13
2.1.3 Flowsheeting level . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Superstructure optimisation level . . . . . . . . . . . . . 14

2.2 Framework implementation . . . . . . . . . . . . . . . . . . . . 15

Bibliography 16

3 The Oleochemical Process Domain 19
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Selected oleochemical processes . . . . . . . . . . . . . . . . . . 21



xii Contents

Bibliography 25

4 Data-driven and Stochastic Property Prediction 33
4.1 Vegetable oils, oleochemicals and important properties . . . . . 33
4.2 Uncertainty analysis of group contribution methods for property

prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Property prediction with Gaussian process regression and molec-

ular descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Server based property prediction tool: SAFEPROPS . . . . . . 41

Bibliography 45

5 Process Design 51
5.1 Counter-current spray column . . . . . . . . . . . . . . . . . . . 53

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Model description . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Molecular distillation . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Model description . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Solvent (extractive) crystallisation . . . . . . . . . . . . . . . . 90
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Model description . . . . . . . . . . . . . . . . . . . . . 90
5.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

6 Superstructure Optimisation with Surrogate Models 107
6.1 Methodology for surrogate-based superstructure optimisation . 107
6.2 Surrogate modelling . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Comparison between surrogate modelling methods . . . 109
6.3 General disjunctive programming . . . . . . . . . . . . . . . . . 113
6.4 Convex-hull transformation . . . . . . . . . . . . . . . . . . . . 114
6.5 Logic-based outer approximation . . . . . . . . . . . . . . . . . 116
6.6 Problem formulation for reactor networks . . . . . . . . . . . . 117



Contents xiii

6.7 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 124

7 Conclusion and perspectives 127

8 Appendix 131
8.1 Fixed physical properties of triglycerides and fatty acids . . . . 131
8.2 Wilson parameters of fatty acids and acetone . . . . . . . . . . 131
8.3 Full Monte Carlo and PCE based sensitivity analysis (Sobol

method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.4 Python-PRO/II interface . . . . . . . . . . . . . . . . . . . . . 138
8.5 User-added unit operations and subroutines in PRO/II . . . . . 142

Bibliography 143



xiv



Acronyms
AAD average absolute deviation

API application programming interface

ARE average relative error

ARD automatic relevance determination

CFD computational fluid dynamics

DFT density functional theory

EOS equation of state

FAME fatty acid methyl ester

FVM finite volume model

GDP general disjunctive program

GC group contribution

GPR Gaussian process regression

IPOPT Interior Point OPTimizer

LML log marginal likelihood

MG Marrero-Gani

MINLP mixed integer nonlinear program

MSE mean squared error

PCE polynomial chaos expansion

PSE process systems engineering



xvi Acronyms

QSPR quantitative structure-property relationship

RMSE root mean squared error

SD standard deviation

SMARTS SMILES arbitrary target specification

SMILES Simplified molecular-input line-entry system

SRK Soave-Redlich-Kwong

SSE sum of squared errors



Nomenclature
α significance level

αi(T ) Generalized temperature-dependent function for pure component i de-
scribing the attractive potential of the molecules [-]

αx Backmixing coefficient of continuous phase [-]

αy Backmixing coefficient of dispersed phase [-]

αb,k Eco99 indicator points for material or energy flow in impact category
k [Pt]

βb Material or energy flow [lb/h]

R(xi, xj) Set of covariance functions (correlation matrix)

δd Normalising factor of damage category d [-]

γ Liquid activity coefficient [-]

γu Fixed charges of unit u [$/a]

P̂ Surrogate model embedded in superstructure optimisation formulation

λij Binary energy parameters (Wilson model) [-]

µ Chemical potential

µ Mean function

ωd Weighting factor of damage category d [-]

Φ Multivariate polynomial

ϕ Univariate polynomial



xviii Acronyms

ψGLY Distribution ratio of glycerol between continuous and dispersed phase
[-]

ρOil Density of vegetable oil [lb/ft3]

σf Signal variance

σ2
n Noise variance

θ Group contribution values vector

φk Fraction of total feed fed to the spray column on stage k [-]

φS,k Fraction of total steam fed to the spray column on stage k [-]

ξ Realiziation of independent input random variable

a Correction constant for attractive potential of molecules [Jm3mol−2]

ai Attraction parameter for pure component i [Jm3mol−2]

am Weighting coefficients of the basis functions for multivariate regression
splines

Aij Binary interaction parameters (Wilson model) [-]

b Volume correction constant [m3mol−1]

bi Volume parameter for pure component i [m3mol−1]

cC Price coefficient for cooling medium [$/GJ]

Cj Group contribution of first order group

cp Heat capacity [J/K]

cu Costs of unit u [$/a]

Dk Group contribution of second order group

El Group contribution of third order group

F Feed flow rate [lb/h]

Gk Mass flowrate of dispersed phase on stage k [lb/h]



Acronyms xix

h(xi) Hinge function

Hf Enthalpy of formation [J]

Lk Mass flowrate of continuous phase on stage k [lb/h]

mi Constant for pure component i [-]

Mj Occurence of first order group

N Sample size [-]

Nk Occurence of second order group

Ol Occurence of third order group

P Gas pressure [Pa]

QC Energy for cooling [W]

R Ideal gas constant [Jmol−1K−1]

R(xi, xj) Covariance function

S Spray column cross sectional area [ft2]

S Steam flow rate [lb/h]

S1i First order sensitivity index of input i

Si First order sensitivity index of output i

Sijl Third order sensitivity index of output i

Sij Second order sensitivity index of output i

ST Total effect sensitivity index

T Temperature [K]

t Time

Tr Reduced temperature [-]

TLM Logarithmic mean temperature difference [-]

V (y) Variance of output



xx Acronyms

Vm Molar volume [m3mol−1]

x∗
k Mass fraction at interphase (continuous) on stage k of referenced com-

ponent [-]

xi Input variable i

xk Continuous phase mass fraction on stage k of referenced component [-]

y(A) Data matrix A of size (N/2, 2k) containing half of the samples from
the matrix of random numbers

y(AB) Data matrix copied from A except ith column which is copied from B

y(B) Data matrix B of size (N/2, 2k) containing half of the samples from
the matrix of random numbers

y∗
k Mass fraction at interphase (dispersed) on stage k of referenced com-

ponent [-]

Yi Stability decision variable [-]

yk Dispersed phase mass fraction on stage k of referenced component [-]

α Multi-index for PCE

A Heat transfer area [m2]

C Cost [$/a]

f Stream flowrate [mol/h]

G Gibbs free energy [J]

h Height of finite element [ft]

J Jacobian

Ka Overall mass transfer coefficient [lb/(ft2 ∗ h)]

l Length scale

n Number of data points

P Pressure [Pa]



Acronyms xxi

p Number of estimated parameters

Q Heat duty [kJ/h]

r Vector of correlations

S Entropy [J/K]

T Occurence matrix

U Heat transfer coefficient [W/(m2K)]

V Volume [m3]

w Weighting factor for second order groups

z Weighting factor for third order groups



xxii



CHAPTER 1
Introduction

Energy efficient design and the use of renewable feedstock are two of the twelve
principles of green chemistry [1] to achieve more sustainable processes and to
obtain products which have formerly been produced from fossil based sources.
Oils and fats from vegetables fall into this category of feedstock. Chemicals
derived from this feedstock and processed through mechanical, chemical and
enzymatic conversion routes are called oleochemicals.

Oleochemical processes have been studied and applied by the chemical
industry for several decades and have undergone profound changes [2]. The
global oleochemical industry has grown to a worldwide market and is expected
to reach 28.6 billion US Dollars in the year of 2025 which the Southeast Asian
(Asian-Pacific) region holds the biggest market share. With the highest pro-
portion, fatty acids made up over 55 per cent of the total demand in the year
of 2016 [3].

In the recent time companies which have their production plants based in
North America or Europe shift their focus on oleochemical end consumer ap-
plications while Asian Pacific based companies have overtaken the market of
basic oleochemical products and intermediates [4]. The low margin of glycerol
is caused by the globally increased fatty acid methyl ester (biodiesel) pro-
duction which affects also the profitability of oleochemicals negatively [5, 6].
Therefore, an efficient removal and purification of glycerol is important and
further aims are to convert basic oleochemicals to high-value products with
applications in food and non-food use cases [7].

This thesis with the title ’Design and Optimisation of Oleochemical Pro-
cesses’ identifies relevant research topics in the oleochemical process domain.
The focus was put on extending the methodology of property prediction with
uncertainty analysis performed in previous work by Hukkerikar [8] and Frutiger
[9], perform multi-platform process modelling, design and analyse oleochemi-
cal processes and to perform advanced optimisation techniques.
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1.1 Motivation and goals
The aim of this thesis is to provide a framework in process systems engineering
process systems engineering (PSE) which integrates current research topics in
combination with industrial tools, modelling environments and free-licensed
scientific software with the source code being publicly shared. The devel-
oped methodologies and tools should be applicable on the different levels of
the modular framework and vice versa, the different framework levels should
be easily connectable to new routines developed in the scientific community.
Further, the framework should be applied to the oleochemical process domain
and advance the field with how these developed tools can be utilised for in-
dustrial application and what new knowledge can be gained when utilising
the framework in respect to property prediction, process, design and optimi-
sation. Especially important is also the identification of the reasons between
the differences in performance of routine implementations by various vendors.

Thus, the following challenges motivated this thesis project:

• No modular modelling framework exists so far which makes use of gen-
eral purpose programming languages and still keeps the different levels
(property prediction, process modelling, flowsheeting and optimisation)
highly modular for providing independence from the computing platform
and modelling environment.

• New developments in machine-learning and optimisation are shared more
and more as public repositories in the scientific community. A frame-
work which can easily make use of these scientific packages is highly
desirable.

• Oleochemical processes are in need of properties of compounds where
experimental data is rare (especially for fine and high value added chem-
icals) and needed properties are usually predicted by models obtained
through regression. The predictive models have to therefore be further
developed and improved in regards to data selection, data scarcity and
the predictions’ confidence/credible intervals.

• Finding the optimal process structure and operating point of processes
is a highly researched topic and superstructure optimisation has still to
be made more generic and user-friendly for industry. Surrogate mod-
elling methods can be used to provide the necessary data from lower-
level models to the superstructure formulation and by this help to make
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superstructure optimisation applicable for a wide range of chemical do-
mains.

A major goal of this thesis is to provide models of oleochemical processes for
which no model exist in the process simulator at hand or no shared implemen-
tation is provided in the research literature. Given the presented framework
and the challenges presented before, the goals of this research project are the
following:

• Valuable process models need to be identified with a preliminary tech-
nology assessment.

• The developed models need to be integrated in this framework and
should be able to connect or be transferable to different modelling envi-
ronments.

• The property prediction level of the framework can either be accessed as
a look-up tool to retrieve needed property data or through an application
programming interface (API) to retrieve the property values directly in
the routines. The implementation of the property prediction routines
should take distributed and scalable systems architectures into account
and therefore should be developed as a server-based application. This
will also make it possible to connect the unit operation models to the
property prediction level.

• Uncertainty and sensitivity analysis needs to be applied to analyse the
propagation of the uncertainties from the property estimates to the pro-
cess output. Novel procedures should be investigated to apply the meth-
ods with a process simulator and reduce the evaluation time.

• Optimisation methods should be identified and applied in respect to
economic and sustainability benchmarks.

1.2 Outline of the thesis
The structure of this thesis is as follows.

First the multi-scale framework is presented and the reader is given an
overview of the developments in process systems engineering in respect to
tools integration. Chapter 3 presents the oleochemical process domain and
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a technology assessment of selected processes. Important property predic-
tion models are then discussed and how the development of previous and the
current work has advanced in respect to property prediction with uncertainty
analysis. Further, the property prediction tool SAFEPROPS will be presented
in this chapter. Moving from the property prediction to the process design
level, an overview of the identified processes is given and how these were mod-
elled, analysed and optimised. The next level uses the rigorous spray column
model developed on the process design level to perform superstructure opti-
misation with surrogate functions. The thesis concludes with an outlook of
potential future research and a final conclusion of what has been achieved
with this work.

1.3 Summary of main contributions
The following research objectives are addressed in this work and form the main
contributions of this thesis.

(1) Methodologies applicable for sustainable process design:
A multi-level modelling framework which encompasses property prediction,

process modelling and superstructure optimisation has been developed. The
framework is applied to the selected processes in the oleochemical process
domain. Three processes were modelled: (1) a spray column as a finite volume
model (FVM), (2) a molecular distillation process as a connection of unit
operations in the process simulator PRO/II and (3) a solid flash algorithm
for simulating solvent crystallisation. The modular model library allows to
optimise and analyse the processes with external algorithms and analysis tools
such as differential evolution for optimisation and variance-based sensitivity
analysis. Techniques applied in this work are:

• Data-driven and stochastic property prediction with group contribution
methods and quantitative structure-property relationship (QSPR) mod-
els

• Uncertainty and global sensitivity analysis via a full Monte Carlo ap-
proach and via polynomial chaos expansion (PCE) to reduce the needed
number of evaluations

• Derivative-free optimisation for parameter estimation
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• Multi-objective optimisation with respect to economic cost and sustain-
ability

• Surrogate modelling for superstructure optimisation via general disjunc-
tive programming

The model library was implemented in two ways: Either models were
implemented in Fortran and Python, or processes were established in the
commercial process simulator PRO/II. A Python interface has been developed
to access the commercial process simulator.

(2) Improved property models:
Property models important for describing fixed physical, thermo-physical

and thermodynamic properties of lipids have been studied. The Marrero-
Gani (MG) group contribution and the Soave-Redlich-Kwong (SRK) equation
of state were applied and a property prediction tool named SAFEPROPS has
been developed to support the Marrero-Gani group contribution method and
QSPR models. Gaussian process regression (GPR) was applied to develop a
methodology for machine-learning driven property prediction.

(3) Process analysis and improvements:
Improvements in respect to the selected key processes were e.g. the steam

consumption of the spray column and the more efficient separation of saturated
and unsaturated fatty acids via solvent crystallisation. Due to the modular
structure of the framework the developed routines were applied with different
modelling environments.
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CHAPTER 2
Multi-scale Framework

for Design and
Optimisation

2.1 Multi-scale framework for property
prediction, unit operation modelling,
flowsheeting and superstructure
optimisation

Modelling, simulation, control and optimisation of chemical processes demand
extensive knowledge of several subjects where the scope includes chemistry,
physics, mathematics, computer science, engineering disciplines, economics
and sustainability. With the emergence of computer systems and information
technology, Rogert W. H. Sargent recognised that a systematic and struc-
tured view on the chemical and process engineering discipline was in need [1].
This lead to the process systems engineering (PSE) discipline and assisted
the chemical engineering community to develop the concepts and algorithms
which are nowadays commonly taught in the chemical engineering curriculum
and applied in industry.

This brief look into the past gives reason to formulate the question of how
computer-aided tools have to be adapted to the future needs of process engi-
neering where machine-learning methods and the simulation of computational
expensive models need to be integrated with existing frameworks. Therefore
the goal in this work is to develop a flexible and modular tool set which al-
lows to use established process simulators along with novel research methods.
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Braunschweig et al. [2] made the distinction between process modelling com-
ponents (PMCs) and process modelling environments (PMEs) in the year of
2000. Their article describe how computer-aided tools need to be able to be
used together. During the last 19 years great progress has been made in in-
formation technology and the process systems engineering community has to
keep up with the pace of developments. For that reason the CAPE-OPEN
standard has been developed with the objective to standardise physical and
thermodynamic property packages, unit operation modules, numerical solvers
and flowsheet analysis tools. Important developments by the foundation are
COM, COBIA and COMBIA which are standardised object models allowing
PMCs and PMEs to be integrated or combined. In respect to PMEs one can
separate them in PMEs with their own modelling languages (e.g. gPROMS
ModelBuilder v5.0, Modelica or GAMS) or PMEs based on a general-purpose
language such as Python or Julia (e.g. Pyomo, DAE Tools or Jump) [3].
Further, PMEs can be divided into equation-orientated and modular environ-
ments, e.g. process simulators such as PRO/II and Aspen are modular while
Pyomo and gPROMS are equation-orientated environments. The latter solves
the whole system of equations for all unit operations by the solver instance
whereas modular approaches have the unit operation models being solved lo-
cally and then passing the solutions to the connected units in the flowsheet
[2].

In this work a framework based on general-purpose languages (Python
and Fortran) is proposed and different PMEs and PMCs are adapted to the
individual use case of the task to be accomplished. An example would be
the modelling of a unit operation as a PMC in Fortran applying a functional
programming paradigm [4]. Whereas Pyomo is used as the PME for the ease
of formulating superstructure optimisation problems and solving them. The
framework supports wrapping the low-level Fortran code with a high-level lan-
guage such as Python. Unit operations can then be analysed with the newest
developments in research in form of scientific packages. Further, functional
programming can be combined with object-oriented programming when for
example a class structure is needed and several instances of a distillation unit
operation have to be created.

The framework is divided into four levels (Figure 2.1) with the property
prediction level at the lowest position. The property prediction models are
called from the unit operation model layer above to retrieve the necessary prop-
erty values of the chemical system and to simulate the unit operation. During
the simulation the unit operation model layer will access the property predic-
tion layer a multiple times during the iteration to obtain a converged solution.
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Superstructure Optimisation

Flowsheeting & Process Domains

Unit Operation Modelling

Property Prediction

Figure 2.1: Multi-scale framework encompassing property prediction, unit
operation modelling, flowsheeting and superstructure optimisa-
tion..

The process flowsheet layer connects different unit operations through mass,
energy and information streams. Likewise, the flowsheet layer will iterate
and call the unit operations and property prediction models multiple times to
reach a converged solution. Usually the iteration algorithm applied by process
simulators is the Newton-Raphson iteration method [5] to solve the system of
nonlinear equations. The top level performs superstructure optimisation. On
this level the information from all lower levels is aggregated in surrogate func-
tions to describe all possible process configurations (superstructure) in terms
of conversion, mixing, splitting, separation, economic cost and sustainability
indicators. The optimisation will then identify the optimal process structure
and operating point subject to the defined global constraints. The framework
allows to access each level individually to perform computational methods
such as sensitivity analysis, Monte Carlo techniques, machine-learning and
optimisation routines (Figure 2.2).

It is important to share the knowledge of how such frameworks and tools
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Process
Systems

Sensi-
tivity

Optimi-
sation

Machine-
learning

Monte
Carlo

Figure 2.2: Process systems on the different levels of the multi-scale frame-
work can be connected to different methods.

can be implemented. Therefore a brief instruction is provided in the appendix
on how to develop user-added unit operations or subroutines for PRO/II. In
the following the different framework levels are presented in regards to their
characteristic functionality.

2.1.1 Property prediction level
Fixed-physical, temperature-dependent and thermodynamic properties are cal-
culated with different models or correlations. These can be quantum-mechanic
based models where the electron system of the atoms in a molecule are cal-
culated with (DFT). Also simplified, semi-empirical models of describing a
molecule exist (e.g. UNIFAC) which dissect a molecule in specified groups of
connected atoms and assign different parameter values to these groups and the
interaction between each other. These parameters were fitted to experimental
phase equilibrium data and allow to predict the activity coefficient in non-
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ideal mixtures in case of the UNIFAC model. The activity coefficient belongs
to the thermophysical property class which is dependent on temperature, pres-
sure and the mixture composition. Temperature-dependent or fixed physical
properties can be retrieved from correlations which are fitted to the exper-
imental data. There also exist so called group contribution methods which,
similar to the UNIFAC model, dissect a molecule into pre-defined groups. The
group contribution values to the property are then obtained through regres-
sion of the specific group contribution model formulation. Equations of state
models describe the relation between pressure, volume and temperature. To
calculate the properties of a chemical component or mixtures in the gas phase
the Soave-Redlich-Kwong (SRK) equation of state (EOS) could for example
be applied. For the SRK model the critical pressure, the critical temperature
and the acentric factor is needed as input parameters.

2.1.2 Unit operation modelling level
The modelling of unit operations belongs to the classical engineering task and
takes considerable time and effort to generate a so called ’digital twin’ of the
real, physical system. The phenomena such as the thermodynamic behaviour,
the reaction kinetics, the mass- and heat transfer of a chemical system have
to be described to model a process. Usually assumptions are made and if the
model can be verified with the experimental data or industrial scale process
data, the assumptions are valid. If not, the assumptions have to be critically
evaluated and consequently modified or dismissed. A model will also show if
it has advanced predictive performance if analysis and optimisation methods
can be applied to the model and give correct results. The choice of the PME
in which the model is implemented can differ due to either the application
case of the model, who has to utilise the model (domain expert, optimisation
consultant or software developer) or if the model has to be implemented on
special devices such as microcontrollers. An important aspect to not under-
estimate is the extensive documentation and testing of the implementation
so that developers will always understand what action the code is meant to
initiate.

2.1.3 Flowsheeting level
At the third layer the unit operations are connected to form a process flowsheet.
Here the inlet and outlets of each unit operation are connected with each
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Figure 2.3: Interfacing of process simulator (e.g. Pro/II or Aspen) for black
box evaluation of unit operations or flowsheets.

other. Tools such as sequential or equation oriented process simulators can
help to perform this task with a graphical user interface. To be able to use
the convenience of a process simulator an application programming interface
(API) can be utilised to connect to it. This gives the user the possibility
to populate the flowsheet embedded in the simulator with values, run the
simulation and store the output values in a Monte Carlo approach. In this
way the process simulator can be used to perform variance-based sensitivity
analysis or derivative-free optimisation as seen in Figure 2.3. Further, the
API (COM interface) can also be used to perform surrogate modelling or
other techniques which make use of multiple evaluations of a process.

2.1.4 Superstructure optimisation level
The top level defines the superstructure of a specific process domain with
all possible processing routes. For this task surrogate models are obtained
from the rigorous unit operations or flowsheets and embedded in a general
disjunctive program (GDP). This keeps the superstructure formulation simple
and the advantage of applying surrogate functions is that the rigorous process
calculations are transferred to the superstructure optimisation layer whereas
other frameworks [6, 7] describe the possible process steps for example with
simplified constants for the conversion rates, separation or cost factors. No
optimal operating points of the individual determined unit operations can be
provided with these frameworks.
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2.2 Framework implementation
A server based property prediction application has been developed and is pre-
sented in this work. The software prototype allows be deployed on a server
by a hosting service or on the server of a companies or research institutions
intranet for internal use. It is also possible to run the application just on
the local machine if the user has to perform property prediction for single
user modelling and simulation purposes. The web-interface allows easy data
retrieval through a graphical interface. The API allows to directly define the
needed property estimates in a script and access the values for the subsequent
calculation routines. The SQL database allows to easily extend the prediction
model library with new or modified versions of group contribution or other
models. The stack of tools which make up the whole application is solely based
on free-licensed and open-source packages in Python, these include RDKit to
dissect the molecules presented as Simplified molecular-input line-entry sys-
tem (SMILES) strings with SMILES arbitrary target specification (SMARTS)
definitions into the defined groups, Psycopg as the PostgreSQL adapter and
Flask for the web-interface. The diagram in Figure 2.4 shows how the the
SAFEPROPS database (SP-DB) is accessed with the connect() function. To
disconnect via Psycopg the disconnect() function is called. The database itself
will be discussed further in Section 4.4. SAFEPROPS applies various func-
tions to calculate the properties for a given chemical with the listed functions
(get_groups(), filter_groups(), etc.). The API allows to let for example a
model in the model library retrieve values from SAFEPROPS. Various models
have been implemented such as the three flash calculation routines in refer-
ence to Biegler et al. [5] and the two oleochemical processes (spray column
and crystalliser) presented in this work. The models are either written in
Fortran and/or Python whereas Fortran code was wrapped with f90wrap [8]
to make it accessible to Python. The models in the process simulator can
be regarded as part of the model library in Figure 2.4. The Python code for
setting up a connection with the PRO/II process simulator through the COM
standard is found in the appendix. Different scientific packages were used to
perform analysis, optimisation or machine-learning methods such as SALib [9]
(sensitivity analysis), scipy [10] (optimisation) and scikit-learn [11] (machine
learning). Polynomial chaos expansion (PCE) as a surrogate modelling tech-
nique is supported by the packages Chaospy [12] or UQlab [13]. UQlab is a
Matlab package and the scipy.io.loadmat and scipy.io.savemat functions were
used to pipeline data between Matlab and Python. The surrogate model re-
trieved was embedded in the superstructure optimisation problem formulated
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SP-DB
GC_method:char
prop_name:char
prop_func:char
cov_mat:jsonb
gc_values:jsonb

SAFEPROPS

get_groups()
filter_groups()
get_GCvalues()
get_covariance()
calc_property()
calc_jacobian()
calc_uncertainty()

SP-DB_connection

connect()
disconnect()

Model Library

Spray Column (Fortran)
DerivedTypes:module
SprayColumnModel:module
model()
solve_model()

Shortcut Distillation (Python)

fenske()
gilliland()
kirkbride()
underwood()

Crystalliser (Python)

initial_solid_phase_guess()
gibbs()
phase_stability_analysis()
equilibrium_constraint1()
equilibrium_constraint2()

Flash (Python)

case1()
case2()
case3()

Chaospy

orth_ttr()
fit_regression()

Pyomo

generate_superstructure()
solve_superstructure_problem()

Figure 2.4: Diagram of the modular and functional elements of the multi-
scale framework.

with the Pyomo package. Different solvers can be connected to Pyomo and
in this work the Interior Point OPTimizer (IPOPT) solver was able to solve
the mixed integer nonlinear program (MINLP).
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CHAPTER 3
The Oleochemical

Process Domain
3.1 Overview
The oleochemical process domain can be divided into two branches: (1) the
refining of vegetable oils and (2) the chemical conversion to intermediate and
final products. This thesis focuses on the second branch where possible chem-
ical conversion routes of vegetable oils can be transesterification, hydrolysis,
aminolysis and saponification. The derived intermediates are glycerol, alkyl
esters such as methyl esters, fatty acids, fatty acid amides, soaps and fatty al-
cohols. The platform chemicals under the oleochemicals are glycerol, fatty acid
methyl ester (FAME), alcohols and amines [1]. High-value substances would
be for example tocols (tocopherols and tocotrienols), phospholipids, phenols,
phenolic acids, ascorbic acids, chlorogenic acids and β-carotene [2–4].

These substances are usually neither available in pure form nor highly
concentrated in mixtures. Further, the available mixtures may contain a high
number of compounds with scarce thermodynamic and kinetic data available.
A range of compounds have similar physical and chemical properties which
make the desired product design challenging. Also, these compounds and
products are degradable through high temperatures or oxidation processes
which is a major concern of the oleochemical industry [5, 6]. Hence, the
reactors and separation technology designed to recover the products from these
mixtures include processes that are not commonly used in traditional chemical
industries, and the process synthesis of these systems may require development
of new approaches. Given the lack of highly available data, a strong integration
of experimental studies with computer-aided methods is needed to address
these challenges.

The chemical conversion routes of triglycerides are presented in Figure 3.1
to 3.4. We refer to the different side-chains R′, R′′, R′′′ as R∗ for the products
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in the schemes. Transesterification allows to obtain alkyl esters from vegetable
oils by letting them react with alcohols.

CHOR′′

CH2OR′

CH2OR′′′

Triglyceride

+ 3ROH

Alcohol

Catalyst 3 R∗COOR

Alkyl esters

+ CHOH

CH2OH

CH2OH
Glycerol

Figure 3.1: Transesterification of triglyceride with alcohol.

The hydrolysis reaction involves water reacting with the triglycerides to
give fatty acids and glycerol. Diethanolamine is the reactant for the aminolysis
reaction which gives fatty acid amides. The saponification of triglycerides is
achieved by using a salt such as sodium hydroxide.

It can be seen that all reaction routes generate glycerol as a product (Fig-
ure 3.6). This causes a problem for the profitability of biorefineries since the
increased global production of biofuels through transesterification has lead to
an all time low in the price of glycerol and thereby the cost-efficient purification
of glycerol has become an important task for biorefineries [7]. Also, saponifi-
cation and aminolysis have become commercially less applied due to the less
efficient purification of glycerol with these reaction routes [8]. Moreover, soaps
and fatty acid amides are generated directly from fatty acids (Figure 3.7) or

CHOR′′

CH2OR′

CH2OR′′′

Triglyceride

+ 3 H2O

Water

HOR∗

Fatty acids

+ CHOH

CH2OH

CH2OH
Glycerol

Figure 3.2: Hydrolysis of triglyceride with water.

CHOR′′

CH2OR′

CH2OR′′′

Triglyceride

+ 3NH
CH2CH2OH

CH2CH2OH

Diethanolamine

Catalyst 3 R∗C

O

N
CH2CH2OH

CH2CH2OH

Fatty acid amides

+ CHOH

CH2OH

CH2OH
Glycerol

Figure 3.3: Aminolysis of triglyceride with diethanolamine.
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CHOR′′

CH2OR′

CH2OR′′′

Triglyceride

+ 3 NaOH

Sodium
hydroxide

3 R∗C
O

O−Na+

Soap

+ CHOH

CH2OH

CH2OH
Glycerol

Figure 3.4: Saponification of triglyceride with sodium hydroxide.

fatty acid methyl esters via saponification or hydrogenation nowadays and not
from triglycerides [8].

Palm oil is the globally most produced and has the highest yield from a
palm oil field in respect to mass per area (Figure 3.5). This makes it the most
processed raw material in the oleochemical domain for food application use
and FAME production.

3.2 Selected oleochemical processes
The composition of vegetable oils can vary depending on the type of oil and
the region where the oil plants were harvested. This makes the needed pro-
cesses difficult to design because property calculations are based on the oils
compositions and e.g. distillation schemes change subject to the raw materi-
als composition and product specification. A detailed unit operation design
or process design of a complete process flowsheet can vary significantly and
we therefore will concentrate on research aspects for the most common pro-
cesses in the oleochemical domain. Thus, in this work the conversion step via
hydrolysis and the separation and purification needed for obtaining fatty acid
cuts and micro-nutrients will be covered.

The spray column is an industrial scale unit operation which allows to
retrieve high conversion rates for the hydrolysis step. A spray column is op-
erated at high temperature and high pressure where the energy is provided
by the high pressure steam fed at the top of the column. Although spray
columns have been studied by several researchers, the hydrolysis of vegetable
oil in a spray column is still not fully understood. Especially the kinetics and
the hydrodynamics are aspects which should be studied to be able to provide
a model for a spray column which can simulate the system with different veg-
etable oils and give reliable results. In Chapter 5 the foundation is laid to
describe a spray column as a finite volume model (FVM) and allow to im-
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Figure 3.5: Global average of soy, coconut, sunflower, rapeseed, palm kernel
and palm oil yields from one hectar field per year.

plement different kinetic models and surrogate functions from computational
fluid dynamics (CFD) simulations to describe the hydrodynamics. The oper-
ating cost due to high pressurised steam makes a large contribution to the
operating cost of the column.

Fatty acid separation can be achieved by a broad range of technologies
and especially distillation columns are industrially applied to separate differ-
ent fatty acids in respect to their chain lengths. Other technoloies are the
panning and pressing method [11, 12], hydrophilisation and solvent crystalli-
sation [11]. When it comes to separating saturated from unsaturated fatty
acids, distillation columns can’t achieve the desired separation. Therefore a
solvent crystalliser model is presented and validated with the results by Wale
[12]. Further, crystallisation units can also be combined with membranes [13].

Molecular distillation allows the separation of minor compounds found in
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Figure 3.6: Chemical conversion routes of vegetable oils.
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Figure 3.7: Processing routes for fatty acids (FA).
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vegetable oil processing. It allows to separate valuable products e.g. micro-
nutrients from each other. In Chapter 5 a molecular distillation unit is studied
by means of sensitivity analysis to gain insights for separating α-tocopherol
and β-carotene from vegetable oils where purity is an important aspect and
covering uncertainties in property estimates are important in regard to achiev-
ing the desired separation and providing a robust design against uncertainty
propagation.

Table 3.1: Technology assessment of selected oleochemical processes.
Process technology Conditions Performance References
Vegetable oil hydrolysis Conversion
Spray column 225-280 °C; 30-70 bar 87 - 95 % [14–18]
PFR 240 °C; high P 83.7 % [17]
Semi batch 230-240 °C; high P 86 % [17]
CSTR 230-240 °C; 50 bar 65 % [17, 19]
Batch 225-260 °C; 55 bar 84 % [16, 17]
Enzymatic reactor 30-50 °C; ambient P; pH 5-9 36-80 % [8, 20–25]
Fatty acid separation Purity
Thin & falling film evaporation 225-260 °C; 0.047-0.066 bar 99% [26]
Molecular distillation ∼180 °C; ∼0.008 mbar 40-99 % [27–34]
Solvent crystallisation -50-0 °C; ambient P > 90 % [11–13, 35, 36]
Glycerol purification Purity
Vacuum distillation 120-125 °C; < pH 5 >96% [7, 37]
Ion exchange ∼300 °C 95-99% [7, 38]
Membrane separation technology dependent on membrane type 90-99% [7, 13]

Enzymatic hydrolysis is being researched [22–25] to reduce the economic
cost and ecological footprint of the hydrolysis of triglycerides. Decentralised
production could be the answer to make enzymatic processing of vegetable
oils feasible. The enzymatic reactors are located geographically with the goal
to improve the transportation of the pre-hydrolysed oil to the main plant
equipped with a spray column and optimise the economic and ecological per-
formance of such a production setup. This process network has to then be
compared to a single production plant setup. Studies have already been made
in respect to biofuel production [39, 40]. A single, centralised configuration
(Figure 3.8) would be the installation of an enzymatic reactor before a spray
column. This would reduce the operating cost of the spray column since the
vegetable oil has been hydrolysed by about 30 %.

The third possible process configuration would be the installation of a
single enzymatic reactor (Figure 3.9) or reactors in series with or without a
recycle of the separated triglyceride stream back to the first reactor. Here the
high cost of the enzymes need to be evaluated and reduced.
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Figure 3.8: Enzymatic pre-hydrolysis and full hydrolysis with a spray col-
umn.

Figure 3.9: Enzymatic hydrolysis with recycling the triglycerides to obtain
full conversion.

In Chapter 6 the first step is made to evaluate these process structures
against each other by applying superstructure optimisation with surrogate
models. A subsequent research topic would be the optimisation of such decen-
tralised biorefinery supply networks [41].
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CHAPTER 4
Data-driven and

Stochastic Property
Prediction

4.1 Vegetable oils, oleochemicals and
important properties

Vegetable oils are mostly mixtures of triglycerides with even fatty acid side-
chains. Traces of components such as tocopherol, carotenes and impurities
can be found in vegetable oils. But usually vegetable oils are characterised by
their triglycerides content as shown in Table 4.1 [1].

Table 4.1: Composition of vegetable oils.

Triglyceride Sunflower oil Soybean oil Palm oil Coconut oil
Tricaprylin, Caprylic (8:0) - - - 6.21 ± 0.34
Capric (10:0) - - - 6.15 ± 0.21
Lauric (12:0) - - - 51.02 ± 0.71
Myristic (14:0) - - 1.23 ± 0.28 18.94 ± 0.63
Palmitic (16:0) 6.52 ± 1.75 14.04 ± 0.62 41.78 ± 1.27 8.62 ± 0.50
Stearic (18:0) 1.98 ± 1.44 4.07 ± 0.29 3.39 ± 0.65 1.94 ± 0.17
Oleic (18:1) 45.39 ± 18.77 23.27 ± 2.43 41.90 ± 1.20 5.84 ± 0.50
Linoleic (18:2) 46.02 ± 16.75 52.18 ± 2.64 11.03 ± 0.02 1.28 ± 0.18
Linolenic (18:3) 0.12 ± 0.09 5.63 ± 3.48 - -

Chang and Liu [2] present three different ways how to define the triglyc-
eride mixtures to characterise vegetable oils and calculate their properties.
Namely, the ’mixed triglycerides’, ’simple triglycerides’ and ’pseudo-triglyceride’
approach. The first approach defines the triglyceride side-chains as fragments
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and decomposes a triglyceride mixture in these specific fragments. Proper-
ties can then be calculated with correlations and the regressed values for the
fragments. The ’mixed triglyceride approach’ calculates the properties for the
mixture from the individual properties of each triglyceride, in this case the
triglycerides aren’t dissected further in any fragments. The third method de-
fines a pseudo-triglyceride for the whole mixture by using the percentage of the
side-chains of each present triglyceride. Two schemes are presented by Chang
and Liu to then calculate the properties with the pseudo-triglyceride. Scheme
A adapts a group-contribution method and constructs the pseudo-molecule
with CH2 and CH=CH groups and then predicts the property. Scheme B
predicts the property of the mixture from the fatty acid chains percentages.

Su et al. [3] give an overview for thermophysical prediction methods rele-
vant for biodiesel manufacturing. For vegetable oils they evaluate the methods
for predicting liquid density, vapour pressure, liquid heat capacity and heat of
vapourization and perform a comparison. They compare the three vegetable
oil characterisation methods from Chang and Liu combined with different
property prediction methods and recommend to apply the mixed triglycerides
approach. If the vegetable oils composition is only provided as a composition
of fatty acids in literature then the simple triglyceride or pseudo-triglyceride
approach can be used. The recommended mixed triglyceride approach de-
scribes a triglyceride in four fragments as developed by Zong et al. [4]. In
Figure 4.1 a general triglyceride structure is shown where the individual fatty
acid side-chains R′, R′′ and R′′′ are regarded as one fragment each and the
glycerol backbone as the fourth fragment.

CHOR′′

CH2OR′

CH2OR′′′

Figure 4.1: General triglyceride structure.

Wallek et al. [5] applied a group contribution method which dissects
triglycerides or fatty acids in the structural groups listed in Table 4.1. They
extended the group contribution model by Nannoolal et al. [6] with describ-
ing the backbone of the triglyceride similar to the fourth fragment by Zong et
al. However, the side-chains can be described with the individual structural
groups listed in Table 4.2 and are not regarded as single fragments. Wallek et
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al. report an improvement of the predictive performance for normal boiling
point and viscosity estimations with the extended group contribution model.
Further, Damaceno et al. [7] also extended the modified UNIFAC model with
a new glycerol backbone group to improve the performance of phase equilib-
rium predictions.

Table 4.2: Marrero-Gani first order groups and the updated structural
groups set for describing TG, FA and FAME as proposed by
Wallek et al. extending the Nannoolal/Rarey/Ramjugernath
(NRR) GC model.

Marrero-Gani Wallek et al. (NRR ID) Description
COO (C)-COO-(C) (45) -COO- connected to two C in a chain (ester)

=C= + (F ∨ Cl ∨ N ∨ O) (7) C-atom in a chain connected to
at least one F, Cl, N or O atom

-COO-COO- (189) Group interaction between two esters
CH CH UNIFAC subgroup
CH2 -CH2- (4) -CH2- in a chain
CH3 -CH3 (1) Methyl group not attached to

either F, Cl, N or O atom
GLY Glycerol backbone

aC aliphatic C
aC-CH3 aliphatic C connected to CH3
aC-OH aliphatic C connected to OH
CH2(cyc) CH2 in a ring
C(cyc) C in a ring
O(cyc) O in a ring

To this end one can conclude that the structural information of a molecule
can improve the predictive performance of a model. Therefore, the next sec-
tions will describe current developments with respect to group contribution
methods combined with uncertainty analysis and how to combine structural
information with the machine learning method known as Gaussian process
regression. This allows a purely data-driven model generation where only the
experimental values of a certain property and the structural information of
the molecules is used as the training data.
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4.2 Uncertainty analysis of group
contribution methods for property
prediction

In this section the Marrero-Gani (MG) group contribution method [8] is dis-
cussed in respect to the studies of oleochemical property data and uncertainty
analysis. The right hand side of the equation for the MG method is:

f(x) =
∑

j

MjCj + w
∑

k

NkDk + z
∑

l

OlEl (4.1)

Cj , Dk and El are the group contribution values for the first, second and
third order groups respectively and Mj , Nk and Ol account for the number of
these groups present in the moleculare structure of the substance at hand. w
and z are the weighting factors for the second and third order groups. The left
hand side f(x) is the functional representation of the property to be predicted.
Diaz-Tovar [9] has conducted the regression of MG group contribution values
for the 1st, 2nd and 3rd order groups relevant to oleochemicals. Hukkerikar
[10] developed a methodology for uncertainty analysis of the MG method.
The uncertainty analysis is explained in the following where the MG method
is defined in matrix-vector form:

f(x) = Tθ (4.2)

with T being the occurence matrix of the functional groups (Mj , Nk, Ol)
available in the MG method and θ stores the regressed group contribution
(GC) values (Cj , Dk, El) of each functional group contributing to the property
estimation.

Frutiger et al. [11] compared three regression methods combined with and
without outlier treatment, namely ordinary least squares, robust regression
and weighted least-squares. Results showed that an outlier treatment should
be performed for all regression methods, whereas ordinary-least squares gave
best performance statistics for the standard deviation (SD), robust regression
for the average absolute deviation (AAD) and average relative error (ARE),
and weighted least-squares for the sum of squared errors (SSE).

From the regression step the covariance matrix is obtained for the regressed
group contribution values. The uncertainty of the parameter estimates is
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based on the asymptotic approximation of the covariance matrix COV(θ∗):

COV (θ∗) = SSE

n− p
(J(θ)J(θ))−1 (4.3)

where n is the number of points in the data set, p the number of esti-
mated parameters and J(θ) is the Jacobian of the estimated parameters. The
parameter estimates are described by a student t-distribution:

θ1−α = θ ±
√
diag(J(θ)COV (θ)J(θ)T ) ∗ t(n− p, αt/2) (4.4)

A first guess for the a priori unknown GC factors is provided by:

θ = (T trT )−1 ∗ T tr ∗ f(x) (4.5)

The confidence intervals of the property predictions are calculated with
the following equation:

ypred
1−α = ypred ±

√
diag(J(θ)COV (θ)J(θ)T ) ∗ t(n− p, αt/2) (4.6)

The methodology is summarised in Table 4.3 and based on the work by
Frutiger [11].

Table 4.3: Methodology for parameter estimation and uncertainty analysis
of group-contribution methods.

# Step Description
1 Experimental data & The experimental data is the target (output) and

structural information of molecule the occurence matrix is the input to the
fitting process

2 Definition of LHS and RHS & The predicted property (LHS) and the model
and predict property with initial GC values function (RHS) is defined. Initial guesses

for the GC values have to be set
3 Regression The GC values are estimated for example with robust regression

and the performance of the estimation is evaluated (e.g. ARE)
4 Outlier treatment Outlier treatment via Cock’s distance, normal distribution

or empirical cumulative distribution
5 Uncertainty based on covariance matrix Covariance of prediction is approximated with Jacobian and

covariance of the estimates
6 Parameter identifiability analysis Analyse linear correlation coefficients and parameter

estimation errors
7 Fitted model can be applied The obtained model can be used to predict the

property of a compound with the occurence matrix
and the derived GC values. The uncertainty is
calculated from the covariance

Frutiger et al. [12] extended and refined the methodology by Hukkerikar
et al. and showed that the 2nd and 3rd order groups give only marginally
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improved 95% confidence boundaries in comparison to only using 1st order
groups. The relative error between the prediction and experimental values
was even worse in the case of cis,trans-2,4-hexadiene and improved for acrolein
from 0.0094 to 0.0051 when adding second and third groups to the prediction
model [11]. Therefore this work investigates the combination of Marrero-Gani
first order groups with molecular descriptors applied in quantitative structure-
property relationship (QSPR) models to evaluate if the structural information
for prediction purposes could be enhanced with other features than the second
and third order groups.

4.3 Property prediction with Gaussian
process regression and molecular
descriptors

Gaussian process regression (GPR) is a machine learning method which can
be applied to property prediction. Obrezanova et al. [13] applied GPR to
predict absorption, distribution, metabolism and excretion (ADME) proper-
ties. Four data sets (a benzodiazepine set with 245 compounds, a blood-brain
barrier data set, a hERG data set and a solubility at pH 7.4 data set) were
used to conduct the study. Various Gaussian process models were compared:
fixed hyperparameters, hyperparameters obtained by forward variable selec-
tion, conjugate gradient optimization and nested sampling. Mondejar et al.
[14, 15] implemented a neural network to predict physical properties (TC , PC ,
ω, Tb, cp,0) for halogenated organic chemicals. The trained neural network
performs for all properties better than the MG and Joback and Reid method.
In this work a similar procedure to train a Gaussian process is applied and
the steps are listed in Table 4.4. Sola et al. [16] use QSPR to describe the
structure of a molecule and to predict the properties boiling point, critical
temperature and critical pressure of organic compounds. The right hand side
is a linear combination of filtered molecular descriptors bn multiplied with the
individual regression factor an:

f(x) = a0 + a1b1 + a2b2 + ...+ anbn (4.7)

They developed a heuristic algorithm to iterate through a database of molecu-
lar descriptors and select the descriptors with the best cross-validation statis-
tics with respect to R2. They show that each property has its individual
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set of molecular descriptors which give the best prediction results. The two
molecular descriptors with the highest correlation in respect to the boiling
point of the data set of organic compounds are: the cubic root of the gravita-
tional index and a surface area descriptor (HDCA2/TMSA). The importance
of these descriptors to predicting the normal boiling point is also shown by
Katritzky et al. [17]. Lam et al. [18] use molecular descriptors to train
Gaussian process models with a skin permeability dataset for predicting the
percutaneous absorption and apply automatic relevance determination (ARD)
to select the highest correlated molecular descriptors. Banchero et al. [19] ap-
ply Multi-Linear and Radial-Basis-Function-Neural-Networks (RBFNN) with
QSPR predictors to predict TC , PC and ω of organic compounds.

Gaussian process regression, due to its stochastic nature, provides confi-
dence bounds for the estimates and neither initial estimates of GC values nor
the individual model function for each property is needed. Gaussian processes
can be described as a linear combination of polynomials and basis functions,
where we introduce a mean function µ̂ for the polynomial and a covariance
function (also known as kernel) R(xi, xj) for the basis part, to describe a
normal distribution over a set of functions:

f̂(x∗) = µ̂(x∗) + rT
∗ R−1(y − 1µ̂) (4.8)

y is the vector for the observations made at points xi in x and [r∗]i =
R(xi, x

∗) is the vector of correlations between the current prediction point x∗

and the previously sampled data points xi [20–22]. The mean vector is [µ̂]i =
µ̂(xi) and the covariance function (correlation matrix) is [R]ij = R(xi, xj).

The predictive mean µ̂, variance and log marginal likelihood (LML) are ob-
tained through matrix inversion using Cholesky factorization as described by
Rasmussen and Williams [23]. The choice of the kernel R(xi, xj) is an impor-
tant decision to obtain a good fit to the input-output data. The radial basis
covariance function (also known as squared exponential kernel) for example is
defined as follows:

R(xi, xj) = σ2
fexp(−

1
2

|xi − xj |2

l2
) + σ2

nδi,j (4.9)

where σf denotes the signal variance, l the length scale(s) and σ2
n the

noise variance [23, 24]. These parameters are called hyperparameters and
are subject to optimisation while fitting the GP to the training data. In the
anisotropic case, where the length-scale hyperparameter l is a vector with
the size of the number of features (molecular descriptors), the inverse of l
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determines the correlation of the individual molecular descriptors. For a large
l value along a specific input axis the covariance will not be correlated to the
specific molecular descriptor and thus remove it from the inference [23]. This
is referred to as ARD [25, 26] and allows to identify the relevant features for
predicting a property.

The methodology to train a Gaussian process for property prediction with
molecular descriptors is summarised in Table 4.4. The occurence vector is
referred to as a molecular descriptor for a chemical compound where the oc-
curence matrix is the collection of occurence vectors for a set of chemicals.

Table 4.4: Methodology for training a Gaussian process with combining the
functional groups from GC methods and molecular descriptors
from QSPR methods as the features to the fitting process.

# Step Description
1 Cluster experimental data Classify experimental data with respect to chemical structures
2 Split experimental data Divide the experimental data (targets)

into a training and testing set
3 Structural information of molecule Create occurrence matrix of

first order groups and evaluate through literature research
which relevant molecular descriptors should be
chosen in respect to the predicted property

4 Train the Gaussian process Train the Gaussian process
with the training set

5 Test and analyse Report R2, MSE, RMSE for predictive performance
and analyse which features are

the trained Gaussian process important with the elements of the length scale vector l
6 Trained Gaussian process If the accuracy is satisfactory the predictive model can

can be applied be used to predict the property of a compound with the
set of important molecular descriptors.
The uncertainty of the prediction is provided by
the covariance function.

Diaz-Tovar [9] provides estimates of pure component properties for more
than 200 oleochemical compounds (Tri-, di- and monoglycerides, fatty acids
and fatty esters). Due to a confidentiality agreement the experimental values
couldn’t be disclosed by Diaz-Tovar. The estimated values in the fatty acid
and triglyceride data sets were used to show how a Gaussian process can be
trained and provide confidence bounds on the predictions.

The methodology is exemplified on the normal boiling point property and
molecular descriptors used are: the MG first order group occurrences, the
number of C atoms in the molecule, the cubic root of the gravitational index
( 3√GI), the number of C atoms, and 14 surface area descriptors available in the
Python package mordred by Moriwaki et al. [27]. The predictive performance
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of the GC, the QSPR and the hybrid GC-QSPR models is then compared in
respect to the coefficient of determination (R2), the mean squared error (MSE)
and the root mean squared error (RMSE). Table 4.5 shows the values for the
length scale hyperparameters after the Gaussian process has been trained. A
ranking of the important features can be performed while a predictive model
has been obtained including the provision of confidence bounds. The results
(Table 4.6) show that for both, fatty acids and triglycerides, the Gaussian
process regression with the molecular descriptors of the group contribution
method performs better. However, some valuable results are obtained from
the fit with the QSPR descriptors: the RPCG (relative positive charge) and
RNCG (relative negative charge) descriptors are the most important ones
for the boiling point prediction. Further, other molecular descriptors could
be added to the descriptor set to see if the predictive performance can be
improved. If this is the case, QSPR can be used to enhance GC methods. In
this example here the QSPR model has to be improved. This could also be
achieved with improving the optimisation procedure of the hyperparameters
via nested sampling for example as discussed by Obrezanova et al. [13].

4.4 Server based property prediction tool:
SAFEPROPS

A new software tool has been developed as part of this work and is named
SAFEPROPS. The application estimates major thermophysical, safety-related
and environmental properties for organic compounds. SAFEPROPS provides
accurate, reliable and fast predictions using group contribution (GC) meth-
ods such as Marrero-Gani, modified UNIFAC (Lyngby, Dortmund) and pre-
dictive Soave Redlich Kwong (PSRK). Gaussian Process regression has been
implemented to provide a fully data-driven approach where the input features
can be a set of molecular descriptors relevant for the interested property and
where the output vector holds the experimental values for each row of the
input matrix. The software prototype is implemented using Python as the
main programming language and a schematic diagram of the framework of
the software is shown in Figure 4.2.

The necessary group-contribution values together with the covariance ma-
trix are obtained from the relational database (PostgreSQL) which has been
populated using the parameter and error estimation routines described before.
Currently the data is stored in the JSONB format in non-relational form which
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Table 4.5: Length scale hyperparameters for individual features ordered
from low to high for Gaussian Process model (GC+QSPR) pre-
dicting the normal boiling point.

Descriptor Abbreviation li

Relative positive charge RPCG 0.0007452
Relative negative charge RNCG 0.00075677
Total hydrophobic surface area TASA 17.51
Surface weighted charged partial positive surface area WPSA 298.68
Occurence of CH2 groups - 1192.5
Cubic root of gravitational index 3√GI 5739.8
Occurence of CH3 groups - 29877
Partial negative surface area PNSA 30053
Relative negative charge surface area RNCS 43701
Occurence of COOH groups - 7.269e+05
Occurence of HC=CH groups - 2.5251e+06
Difference in charged partial surface area DPSA 2.7321e+06
Partial positive surface area PPSA 3.5855e+06
Relative positive charge surface area RPCS 4.5259e+06
Number of C atoms - 6.4683e+06
Fractional charged partial negative surface area FNSA 1.2652e+07
Fractional charged partial positive surface area FPSA 1.6204e+07
Surface weighted charged partial negative surface area WNSA 4.1613e+07

Table 4.6: Comparison of Gaussian process prediction performance for the
normal boiling point of fatty acids and triglycerides between dif-
ferent molecular descriptor sets.

Scoring GC QSPR GC+QSPR
Fatty acids
R2 0.977 0.936 0.919
MSE 138.5 326.2 425.8
RMSE 11.8 18.1 20.6
Triglycerides
R2 0.535 0.172 0.493
MSE 111.4 195.0 121.7
RMSE 10.6 14.0 11.0
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Figure 4.2: Framework of the SAFEPROPS software for applying group con-
tribution methods.

can be improved to make the data access faster since not the whole set of group
contribution values and the entire covariance matrix has to be retrieved. If
the data itself would be stored in relational form then it would be able to only
access the necessary values for the groups the molecule has been dissected
into. The entity relational diagram is shown in Figure 4.3 and depicts how
one GC method relates to many properties. A trained Gaussian process will
be serialised for persisting the model on the database. This database struc-
ture makes handling new data more convenient for adding other properties or
other thermophysical and thermodynamic methods.

The graphical user-interface of SAFEPROPS is a web-interface (Figure
4.4) with a search bar for providing a SMILES string. The submission of
the SMILES will let the SMARTS_matching_SMILES algorithm dissect the
molecule into the groups defined by the GC method. The set of SMARTS
definitions is stored in the gc_data table as a JSONB file (Figure 4.3). Each
GC method has its own set of SMARTS.

An application programming interface (API) allows the user to directly
connect to the SAFEPROPS software with their Matlab, Python or other
programming language scripts. The code snippets show how a connection to
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gc_data

gc_id [INTEGER]

gc_method [VARCHAR(30)]

groups_smarts [JSONB]

safeprops_data

prop_id [INTEGER]

prop_name [VARCHAR(30)]

prop_func [VARCHAR(30)]

cov_mat [JSONB]

gc_values [JSONB]

gc_id [INTEGER]

{0,1}0..N

Figure 4.3: Entity relation diagram describing how GC methods are stored
in the PostgreSQL database.

Figure 4.4: Web-interface of the SAFEPROPS property prediction software
prototype.
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1 #Python code snippet for property data retrieval from SAFEPROPS
2 import requests
3 import json
4 input = {"SMILE": 'CC', "prop": 'LowerFlammabilityLimit'}
5 response = requests.get(
6 "http://localhost:8000/single_prediction", input)
7 data = response.json()
8 ypred_value = data['ypred']
9 ybound_value = data['ybound']

10 print(ypred_value)
11 print(ybound_value)

.

1 %Matlab code snippet for property data retrieval from SAFEPROPS
2 url = 'http://localhost:8000/single_prediction';
3 SMILE_string = 'CCCCCC';
4 prop_string = 'LowerFlammabilityLimit';
5 S = webread(url, 'SMILE',SMILE_string , 'prop', prop_string);
6 disp(S(1));

.

Figure 4.5: Examples in Python or Matlab how to connect to SAFEPROPS
and retrieve property predictions.

the server can be established with Python or Matlab (Figure 4.5). This allows
the user to declare and retrieve the estimates and uncertainty bounds directly
in their developed routines.

The software can be installed locally on the users own machine and ac-
cessed via localhost or a server can be rented to run SAFEPROPS on e.g.
IBM cloud. The docker container allows the easy installation of the software
on a server. The Git repository gives the PSE community open and free access
to SAFEPROPS and issues can be submitted to collectively add new methods
and resolve mistakes in the code.



46



Bibliography
[1] K. Chowdhury, L. A. Banu, Khan, and A. Latif, “Studies on the fatty

acid composition of edible oil,” Bangladesh Journal of Scientific and
Industrial Research, vol. 42, no. 3, pp. 311–316, 2007.

[2] A. Chang and Y. A. Liu, “Integrated process modeling and product
design of biodiesel manufacturing,” Industrial & Engineering Chemistry
Research, vol. 49, no. 3, pp. 1197–1213, 2010. doi: 10.1021/ie9010047.

[3] Y.-C. Su, Y. A. Liu, C. A. Diaz Tovar, and R. Gani, “Selection of pre-
diction methods for thermophysical properties for process modeling and
product design of biodiesel manufacturing,” Industrial & Engineering
Chemistry Research, vol. 50, no. 11, pp. 6809–6836, 2011. doi: 10.1021/
ie102441u.

[4] L. Zong, S. Ramanathan, and C. Chen, “Fragment-based approach for
estimating thermophysical properties of fats and vegetable oils for model-
ing biodiesel production processes,” Industrial & Engineering Chemistry
Research, vol. 49, no. 6, pp. 3022–3023, 2010. doi: 10.1021/ie100160v.

[5] T. Wallek, J. Rarey, J. O. Metzger, and J. Gmehling, “Estimation of
pure-component properties of biodiesel-related components: Fatty acid
methyl esters, fatty acids, and triglycerides,” Industrial & Engineering
Chemistry Research, vol. 52, no. 47, pp. 16 966–16 978, 2013. doi: 10.
1021/ie402591g.

[6] Y. Nannoolal, J. Rarey, D. Ramjugernath, and W. Cordes, “Estimation
of pure component properties: Part 1. estimation of the normal boiling
point of non-electrolyte organic compounds via group contributions and
group interactions,” Fluid Phase Equilibria, vol. 226, pp. 45–63, 2004.
doi: 10.1016/j.fluid.2004.09.001.

[7] D. S. Damaceno, O. A. Perederic, R. Ceriani, G. M. Kontogeorgis, and
R. Gani, “Improvement of predictive tools for vapor-liquid equilibrium
based on group contribution methods applied to lipid technology,” Fluid

http://dx.doi.org/10.1021/ie9010047
http://dx.doi.org/10.1021/ie102441u
http://dx.doi.org/10.1021/ie102441u
http://dx.doi.org/10.1021/ie100160v
http://dx.doi.org/10.1021/ie402591g
http://dx.doi.org/10.1021/ie402591g
http://dx.doi.org/10.1016/j.fluid.2004.09.001


48 Bibliography

Phase Equilibria, vol. 470, pp. 249–258, 2018, SI:John P O’Connell. doi:
10.1016/j.fluid.2017.12.009.

[8] J. Marrero and R. Gani, “Group-contribution based estimation of pure
component properties,” Fluid Phase Equilibria, vol. 183-184, pp. 183–
208, 2001. doi: 10.1016/S0378-3812(01)00431-9.

[9] C. A. Diaz-Tovar, R. Gani, and B. Sarup, “Computer-aided modeling of
lipid processing technology,” English, PhD thesis, Jul. 2011.

[10] A. S. Hukkerikar, “Development of pure component property models
for chemical product-process design and analysis,” English, PhD thesis,
2013.

[11] J. Frutiger, C. Marcarie, J. Abildskov, and G. Sin, “A comprehensive
methodology for development, parameter estimation, and uncertainty
analysis of group contribution based property models—an application
to the heat of combustion,” Journal of Chemical & Engineering Data,
vol. 61, no. 1, pp. 602–613, 2016. doi: 10.1021/acs.jced.5b00750.

[12] J. Frutiger, “Property uncertainty analysis and methods for optimal
working fluids of thermodynamic cycles,” English, PhD thesis, 2017.

[13] O. Obrezanova, G. Csányi, J. M. R. Gola, and M. D. Segall, “Gaussian
processes:� a method for automatic qsar modeling of adme properties,”
Journal of Chemical Information and Modeling, vol. 47, no. 5, pp. 1847–
1857, 2007. doi: 10.1021/ci7000633.

[14] M. E. Mondejar, S. Cignitti, J. Abildskov, J. M.Woodley, and F. Haglind,
“Prediction of properties of new halogenated olefins using two group con-
tribution approaches,” Fluid Phase Equilibria, vol. 433, pp. 79–96, 2017.
doi: 10.1016/j.fluid.2016.10.020.

[15] M. E. Mondejar, J. Frutiger, S. Cignitti, J. Abildskov, G. Sin, J. M.
Woodley, and F. Haglind, “Uncertainty in the prediction of the ther-
mophysical behavior of new halogenated working fluids,” Fluid Phase
Equilibria, vol. 485, pp. 220–233, 2019. doi: 10.1016/j.fluid.2018.
12.020.

[16] D. Sola, A. Ferri, M. Banchero, L. Manna, and S. Sicardi, “Qspr predic-
tion of n-boiling point and critical properties of organic compounds and
comparison with a group-contribution method,” Fluid Phase Equilibria,
vol. 263, no. 1, pp. 33–42, 2008. doi: 10.1016/j.fluid.2007.09.022.

http://dx.doi.org/10.1016/j.fluid.2017.12.009
http://dx.doi.org/10.1016/S0378-3812(01)00431-9
http://dx.doi.org/10.1021/acs.jced.5b00750
http://dx.doi.org/10.1021/ci7000633
http://dx.doi.org/10.1016/j.fluid.2016.10.020
http://dx.doi.org/10.1016/j.fluid.2018.12.020
http://dx.doi.org/10.1016/j.fluid.2018.12.020
http://dx.doi.org/10.1016/j.fluid.2007.09.022


Bibliography 49

[17] A. R. Katritzky, U. Maran, V. S. Lobanov, and M. Karelson, “Struc-
turally diverse quantitative structure−property relationship correlations
of technologically relevant physical properties,” Journal of Chemical In-
formation and Computer Sciences, vol. 40, no. 1, pp. 1–18, 2000. doi:
10.1021/ci9903206.

[18] L. T. Lam, Y. Sun, N. Davey, R. Adams, M. Prapopoulou, M. B. Brown,
and G. P. Moss, “The application of feature selection to the development
of gaussian process models for percutaneous absorption,” Journal of
Pharmacy and Pharmacology, vol. 62, no. 6, pp. 738–749, 2010. doi:
10.1211/jpp.62.06.0010.

[19] M. Banchero and L. Manna, “Comparison between multi-linear- and
radial-basis-function-neural-network-based qspr models for the predic-
tion of the critical temperature, critical pressure and acentric factor of
organic compounds,” Molecules, vol. 23, no. 6, 2018. doi: 10.3390/
molecules23061379.

[20] M. J. Sasena, “Flexibility and efficiency enhancements for constrained
global design optimization with kriging approximations,” English, PhD
thesis, 2002.

[21] J. A. Caballero and I. E. Grossmann, “An algorithm for the use of
surrogate models in modular flowsheet optimization,” AIChE Journal,
vol. 54, no. 10, pp. 2633–2650, 2008. doi: 10.1002/aic.11579.

[22] S. Olofsson, M. Mehrian, L. Geris, R. Calandra, M. P. Deisenroth, and R.
Misener, “Bayesian multi-objective optimisation of neotissue growth in a
perfusion bioreactor set-up,” in 27th European Symposium on Computer
Aided Process Engineering, ser. Computer Aided Chemical Engineering,
vol. 40, 2017, pp. 2155–2160. doi: https://doi.org/10.1016/B978-0-
444-63965-3.50361-5.

[23] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning (Adaptive Computation and Machine Learning). The
MIT Press, 2005.

[24] S. Olofsson, L. Hebing, S. Niedenführ, M. P. Deisenroth, and R. Misener,
“Gpdoemd: A python package for design of experiments for model dis-
crimination,” Computers & Chemical Engineering, vol. 125, pp. 54–70,
2019. doi: 10.1016/j.compchemeng.2019.03.010.

[25] R. M. Neal, Bayesian Learning for Neural Networks, eng. Springer New
York, 1996. doi: 10.1007/978-1-4612-0745-0.

http://dx.doi.org/10.1021/ci9903206
http://dx.doi.org/10.1211/jpp.62.06.0010
http://dx.doi.org/10.3390/molecules23061379
http://dx.doi.org/10.3390/molecules23061379
http://dx.doi.org/10.1002/aic.11579
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-63965-3.50361-5
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-63965-3.50361-5
http://dx.doi.org/10.1016/j.compchemeng.2019.03.010
http://dx.doi.org/10.1007/978-1-4612-0745-0


50 Bibliography

[26] D. J. C. Mackay, “Bayesian interpolation,” eng, Neural Computation,
vol. 4, no. 3, pp. 415–447, 1992. doi: 10.1162/neco.1992.4.3.415.

[27] H. Moriwaki, Y.-S. Tian, N. Kawashita, and T. Takagi, “Mordred: A
molecular descriptor calculator,” Journal of Cheminformatics, vol. 10,
no. 1, p. 4, February 2018. doi: 10.1186/s13321-018-0258-y.

http://dx.doi.org/10.1162/neco.1992.4.3.415
http://dx.doi.org/10.1186/s13321-018-0258-y


CHAPTER 5
Process Design

Figure 5.1: Overview of available oleochemical processes in the model li-
brary.

The important process tasks identified returning a high-revenue are the
hydrolysis of vegetable oil with a counter-current spray column, molecular
distillation to recover low concentrated components such as micro-nutrients
in triglyceride and fatty acid mixtures and the separation of fatty acids in
saturated and unsaturated components. The following process technologies
were modelled and included in the model library of this framework.
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(1) The hydrolysis of triglycerides with a counter-current spray column, (2)
molecular distillation of micro-nutrients such as β-carotene and α-tocopherol
and (3) the separation of fatty acids through solvent (extractive) crystallisa-
tion.

In (1) the spray column was modelled as a finite volume model in Fortran
and embedded in the PRO/II process simulator. Additonally, the model was
wrapped with Python to perform sensitivity analysis, parameter estimation,
surrogate modelling and multi-objective optimisation via differential evolution.
The parameter estimation procedure allows to fit the model to different experi-
mental data sets and the multi-objective optimisation algorithm optimises the
high pressure steam flow and the distribution over the inlets of the column.

In (2) a patented molecular distillation is modelled and compared to a
reference base case from literature. Sensitivity analysis is applied to evaluate
if the critical property estimates TC,i, PC,i and ωi for each component in the
vegetable oil is accurate enough in respect to the purity of the product.

In (3) the solvent crystallisation process is modelled in Python to separate
stearic (saturated) and oleic acid (unsaturated) from each other with acetone
as the solvent. The model was validated with a base case and data set from
Wale [1] and Singleton [2].

Each section covering the individual unit operations is divided into the
following sub-sections:

1. Introduction

2. Model description

3. Analysis

4. Conclusion
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5.1 Counter-current spray column

5.1.1 Introduction
The hydrolysis of triglycerides is the reaction to perform if fatty acids or
glycerol are the wanted products. Figure 5.2 shows the general hydrolysis
scheme of triglycerides where the fatty acid side-chains depicted with the
letter R can vary in length and saturation (amount of double bonds).

CHOR′′

CH2OR′

CH2OR′′′

Triglyceride

+ 3 H2O

Water

HOR′,HOR′′,HOR′′′

Fatty Acids

+ CHOH

CH2OH

CH2OH
Glycerol

Figure 5.2: Hydrolysis reaction of triglycerides with water to give fatty acids
and glycerol.

The hydrolysis reaction is discussed in this section and the research on
counter-current spray columns (Figure 5.4) is elaborated subsequently.

Patil et al. [3] investigated the hydrolysis reaction in a continuous-stirred
tank reactor and propose a three-step reversible reaction scheme for the hy-
drolysis of tri- (TG), di- (DG) and monoglycerides (MG) with water (W) to
give fatty acids (FA) and glycerol (G) where DG and MG act as intermediates:

TG + W
k1−−−⇀↽−−−

k1

DG + FA

DG + W
k2−−−⇀↽−−−

k2

MG + FA

MG + W
k3−−−⇀↽−−−

k3

G + FA

These three reactions can be aggregated into a single step reaction where
the triglycerides react with water to fatty acids and glycerol:

TG + 3W k−−⇀↽−−
k

3FA + G
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Forero-Hernandez et al. [4] show with the experimental data set from
Alenezi et al. [5] that the identified mass transfer coefficient and reaction rate
constants are highly correlated. The experimental data is based on the non-
catalyzed hydrolysis of sunflower oil in a batch autoclave at 300 ◦C. A three
reaction regime over time is assumed based on the work by Patil et al. [6] and
Aniya et al. [7] where the first heterogeneous regime in the interface is mass
transfer controlled, the second pseudo-homogeneous regime in the oil phase is
controlled by the irreversible fast chemical reaction and the third homogeneous
regime in the oil phase is reaching the reversible chemical equilibrium reaction
controlled state.

Time

Xi

Reaction at interface

Heterogeneous Pseudo-
Heterogeneous

Homogeneous

Reaction
in oil phase

Reaction in oil phase

Figure 5.3: Hydrolysis of triglycerides in three step reaction periods (Xi:
conversion of triglyceride i).

The result of an extensive literature research led to the identification of one
data set which could be used for validating the finite volume model in this work.
This data set was found in the work of Jeffreys et al. [8]. The analytical model
calculations by Jeffreys et al. rely on reaction rate data by Sturzenegger and
Sturm [9] (catalyst level of 0.25% zinc oxide) and the value of 0.17 1

min was used
as the reaction rate constant. The reaction is assumed to be of pseudo first
order and irreversible. It is assumed that the water content in the continuous
phase is in excess and constant. Jeffreys et al. imply (referencing Mills and
McClair [10]) that the increase of the continuous phase and the decrease with
respectively 4% and 7% of the dispersed aqueous mass flow rate is negligible.
As a consequence of this assumption the solubility of water in the oil phase will
be about 10% at process conditions. The continuous and dispersed phase mass
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flows are being assumed as constant regardless of the internal column position
and the dispersed phase droplets are assumed to travel through the column at
the same velocity. In the discussion of their results, Jeffreys at al. state that
in the lower part of column the chemical reaction is the bottleneck to the mass
transfer controlled process. Further, they mention the unfavourably operation
at 18% flodding capacity which should rather be 30-40% as suggested by
Minard and Johnson [11] to amend the mass tranfer process. Jeffreys et al.
present an analytic algebraic equation for the glycerol fraction in the aqueous
phase over the height of the column. The overall mass transfer coefficient
Ka is obtained for six experimental data sets from a laboratory scale spray
column. The work by Jeffreys et al. is also used as the reference to validate
and discuss other developed models in the publications by Rifai et al. [12],
Namdev et al. [13] and Attarakih et al. [14].

Rifai et al. [12] propose a modified version of the linear, steady-state spray
column model established by Jeffreys et al. They present a non-linear model
with the water solubility in the continuous phase being a function of compo-
sition and the variation of the internal flow rates. The hydrolysis reaction is
assumed reversible and second order in nature. Rifai et al. expose with their
model calculations that the assumption of irreversible pseudo first order ki-
netics made by Jeffrey et al. can’t be justified. Table 5.1 shows the difference
between the assumptions made by the two studies.

Table 5.1: Comparison between Jeffreys et al. and Rifai et al. models.
Aspect Jeffreys et al. Rifai et al.
Reaction kinetics irreversible first order reversible second order:

ri = (kiSρOil/wi)xT Gi,kdh ri = (kiSρ
2
Oil/wi)(xW,kxT Gi,k − 1

KxGLY,kxF Ai,k)dh
Internal flowrates assumed constant over column height changes over column height
Water solubility assumed constant over column height changes over column height
Hydrodynamic model - Beyaert et al. [15]

vs = G
S(1−ϵ) + L

Sϵ

Solution formulation Analytical System of non-linear differential equations

In this work we make the following assumptions based on the previously
made findings from literature discussed before:

• The hydrolysis of triglycerides with water to fatty acids and glycerol
follows a first order reaction to validate the model in this work with the
experimental data set from Jeffreys et al.

• Constant mass flow rates are assumed for the continuous and dispersed
phases in case of validating the model by Jeffreys et al.



56 5 Process Design

Vegetable oil

Fatty acids

Sweet water

Steam inlet

Steam inlet

Figure 5.4: Counter-current spray column.
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• Variable mass flow rate is assumed for the continuous and dispersed
phase and the model is then re-parameterised in respect to the mass
transfer rates, reaction rate and the backmixing coefficients.

• The finite volume model also takes back-mixing into account as van
Egmond and Goossens [16] showed that they obtain better results when
considering axial dispersion.

5.1.2 Model description
Figure 5.5 shows the interaction of the important properties and phenomena to
take into account when modelling a spray column [17]. The important physical
and temperature-dependent properties in the spray column model are liquid
density and liquid viscosity. Liquid density is used in the reaction rate term to
calculate the mass based reaction rate in a volumetric element. Liquid density
and liquid viscosity enter also the hydrodynamic calculations (correlations or
computational fluid dynamics) which are in need of these properties. The hy-
drodynamic calculations provide slip velocity and the interfacial area between
the phases to the mass transfer rate calculations. Further, the backmixing
and holdup values get directly included in the mass balance equations of the
spray column model. The kinetics describe the stochiometry, reaction order
and mechanism of the reaction system. These and the liquid density go into
the reaction rate expression which makes up the production or consumption
terms in the component mass balances. The process model for hydrolysing
triglycerides with water to obtain fatty acids and glycerol is implemented as
a finite volumes model. A diagram of the finite volume model can be seen in
Figure 5.5 and the equations are described next.

The mass balance of triglycerides in the oil phase is:

dxT Gi,k

dt
= 0 =

Backmixing from upper stage︷ ︸︸ ︷
αxLk+1xT Gi,k+1 −

Comp. flow to upper stage︷ ︸︸ ︷
(1 + αx)LkxT Gi,k

− αxLkxT Gi,k︸ ︷︷ ︸
Backmixing to lower stage

+ (1 + αx)Lk−1xT Gi,k−1︸ ︷︷ ︸
Comp. flow from lower stage

− kiShρOilxT Gi,k︸ ︷︷ ︸
Consumption of TG by 1st order reaction

+ φkFxF,T Gi︸ ︷︷ ︸
Feed on stage k

(5.1)

where Lk and Gk are the mass flowrates of oil and water in lb
h . Hs is

the length of a stage or respectively a volumetric element since the modelled
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k + 1

k

k − 1

k + 1

k

k − 1

(1 + αx)Lk+1xk+1 αxLkxk

(1 + αx)Lkxk αxLk−1xk−1

(1 + αy)Gk+1yk+1 αyGkyk

(1 + αy)Gkyk αyGk−1yk−1

KaGLY Sh(y∗
GLY,k+1 − yGLY,k+1)

KaWSh((1 − yW,k+1) − (1 − y∗
W,k+1))

KaGLY Sh(y∗
GLY,k − yGLY,k)

KaWSh((1 − yW,k) − (1 − y∗
W,k))

KaGLY Sh(y∗
GLY,k−1 − yGLY,k−1)

KaWSh((1 − yW,k−1) − (1 − y∗
W,k−1))

φk+1F

φkF

φk−1F

φk+1F

φkF

φk−1F

InterphaseOil phase Water phase

Figure 5.6: Schematic diagram of the finite volume model for the counter-
current spray column.

column doesn’t feature any plates, stages or packings. The height of one
element is Hs = H/N .

The component balance of fatty acids in the oil phase is nearly identical
to the triglyceride balance except from the positive production term:

dxF Ai,k

dt
= 0 =

Backmixing from upper stage︷ ︸︸ ︷
αxLk+1xF Ai,k+1 −

Comp. flow to upper stage︷ ︸︸ ︷
(1 + αx)LkxF Ai,k

− αxLkxF Ai,k︸ ︷︷ ︸
Backmixing to lower stage

+ (1 + αx)Lk−1xF Ai,k−1︸ ︷︷ ︸
Comp. flow from lower stage

+ kiShρOilxT Gi,k

1.0495︸ ︷︷ ︸
Production of FA by 1st order reaction

+ φkFxF,F Ai︸ ︷︷ ︸
Feed on stage k

(5.2)

The component balance of glycerol in the oil phase includes the mass
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transfer of glycerol between the oil and aqueous phase:

dxGLY,k

dt
= 0 =

Backmixing from upper stage︷ ︸︸ ︷
αxLk+1xGLY,k+1 −

Comp. flow to upper stage︷ ︸︸ ︷
(1 + αx)LkxGLY,k

− αxLkxGLY,k︸ ︷︷ ︸
Backmixing to lower stage

+ (1 + αx)Lk−1xGLY,k−1︸ ︷︷ ︸
Comp. flow from lower stage

+
NoT G∑

i=1

ShρOilxT Gi,k

8.7666︸ ︷︷ ︸
Production of GLY by 1st order reaction

− KaGLY Sh(x∗
GLY,k − xGLY,k)︸ ︷︷ ︸

Mass transfer of GLY from oil to aqueous phase

+ φkFxF,GLY︸ ︷︷ ︸
Feed on stage k

(5.3)

For the component balance of glycerol in the aqueous phase the production
term can be excluded since the reaction is only taking place in the oil phase:

dyGLY,k

dt
= 0 =

Backmixing from lower stage︷ ︸︸ ︷
αyGk−1yGLY,k−1 −

Comp. flow to lower stage︷ ︸︸ ︷
(αy + 1)GkyGLY,k

− αyGkyGLY,k︸ ︷︷ ︸
Backmixing from upper stage

+ (αy + 1)Gk+1yGLY,k+1︸ ︷︷ ︸
Backmixing from upper stage

+KaGLY Sh(y∗
GLY,k − yGLY,k)︸ ︷︷ ︸+ φS,kSyS,GLY︸ ︷︷ ︸

Steam injection on stage k

(5.4)

The internal flowrate for the dispersed (water) phase is defined as:

dGk

dt
= 0 =

Backmixing from lower stage︷ ︸︸ ︷
αyGk−1 −

Total mass flow to lower stage︷ ︸︸ ︷
(αy + 1)Gk

+ (αy + 1)Gk+1︸ ︷︷ ︸
Total mass flow from upper stage

− αyGk︸ ︷︷ ︸
Backmixing from upper stage

− KaWSh((1 − yGLY,k) − (1 − y∗
GLY,k))︸ ︷︷ ︸

Mass transfer of water from aqueous to oil phase

+ KaGLY Sh(y∗
GLY,k − yGLY,k)︸ ︷︷ ︸

Mass transfer of water from aqueous to oil phase

+ φS,kS︸ ︷︷ ︸
Steam injection on stage k

(5.5)



5.1 Counter-current spray column 61

and the internal flowrate of the continuous (oil) phase reads:

dLk

dt
= 0 =

Backmixing from upper stage︷ ︸︸ ︷
αxLk+1 −

Total mass flow to upper stage︷ ︸︸ ︷
(1 + αx)Lk

− αxLk︸ ︷︷ ︸
Backmixing to lower stage

+ (1 + αx)Lk−1︸ ︷︷ ︸
Total flow from lower stage

+
NoT G∑

i

[kiShρOilxi(1/11.7233 + 1/1.0495 − 1)]︸ ︷︷ ︸
Production of GLY and FA, Consumption of TGi

+ φF,kF︸ ︷︷ ︸
Feed on stage k

(5.6)
The concentration of glycerol at the interface y∗

GLY,k can be expressed with
the distribution ratio ψGLY and the concentration in the oil phase xGLY,k:

y∗
GLY,k = ψGLY xGLY,k (5.7)

The distribution can be calculated for example with the modified UNIFAC
model but in this work we use the data for the distribution ratio from the
reference case for validation purposes.

The system comprises (NoC + 2) ∗ N equations with (NoC + 2) ∗ N un-
known variables being the fractions of the individual triglycerides and fatty
acids in the continious phase, the 2 glycerol fractions in the continuous and
dispersed phase and the internal flowrates of both phases in each volumetric
element. In this model we assume that each triglyceride has equivalent fatty
acids side-chains and consequently one kind of triglyceride will react to one
kind of fatty acid. The continuous phase consists of triglycerides, fatty acids
and glycerol. The dispersed phase is a mixture of glycerol and water since
we assume no mass transfer of triglycerides and fatty acids between the oil
and water interface. Thus, the water fraction in the dispersed phase can be
derived from the glycerol fraction with the summation rule. Equations (5.1),
(5.2) and (5.3) are (NoC − 1) ∗N equations which gives NoC ∗N equations
when including equation set (5.4). The equation sets (5.5) and (5.6) add 2∗N
equations and the system has no degrees of freedom with the number of equa-
tions being the same as the number of unknown variables. The system of
nonlinear equations was solved with a global Newton method (NLEQ1 solver
[18]).
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5.1.3 Analysis
We compare the results of the proposed finite volume model in this work with
the analytical model by Jeffreys et al. (experiment run no. 6) as seen in Figure
5.7. The parameters in Table 5.2 were used to validate the finite volume model
against the analytical model by Jeffreys et al. The figure shows that the finite
volume model aligns very well with the analytical model. The finite volume
model presented in this paper was simulated with 100 volumetric elements.
The glycerol content in the sweet water at the bottom of the column is 18.8%.

Table 5.2: Parameters for the counter-current oil-splitting column in English
units and mass based (experimental run number 6 by Jeffreys et
al.).

Parameter Symbol Nominal Value Unit
Overall mass transfer coefficient for glycerol Ka 14.21 [lb/(ft3h)]
Cross-sectional area of tower S 3.688 [ft2]
Mass flow of extract (aqueous phase) G 3760 [lb/h]
Mass flow of raffinate (oil phase) L 8540 [lb/h]
Glycerol distribution ratio m 10.32 [-]
Forward reaction rate coefficient k 10.2 [1/h]
Height of column H 73.5 [ft]
Glycerol content in fat z0/wGLY 0.0853 [-]
Liquid density of fat ρ 45.05 [lb/ft3]
Backmixing coefficient of cont. phase (oil) αx 0.0 [-]
Backmixing coefficient of disp. phase (water) αy 0.0 [-]

Global sensitivity analysis

Global sensitivity analysis allows to identify and rank the important parame-
ters of an unit operation model and can also be used to locate sensitive zones
in e.g. columns and reactors. In this work we perform variance-based Sobol
sensitivity analysis (Appendix 9.3) to evaluate physical (liquid density), ther-
modynamic (distribution ratio) and phenomena (kinetics and mass transfer)
based properties with respect to the sensitivity of the glycerol content in the
sweet water stream at the bottom of the column.

Jeffreys et al. derive from their six experiments a variation in the overall
mass transfer coefficient for glycerol from 10.1 to 16.0 lb

ft2h
. These values can

be calculated with the following equation:
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Figure 5.7: Validation of finite volume model (constant flows) with analyti-
cal model from Jeffreys et al..

KaGLY = Gmedian

HTU ∗ S
(5.8)

where the HTU (height to transfer unit) values have been documented.
First we analyse the experimental data set where the mean value ofKaGLY

is 13.0 lb
ft2h

with a standard deviation of 3.0 (±23 %). The forward reaction
rate is 10.2 1

h with no further estimates or uncertainties given. They also report
liquid density values for tripalmitin (C16:0) for each of the six experiments
(Table 5.3) which we assume to be the density value at feed temperature on the
first stage of the spray column. The mean of these six values is 45.016 with a
standard deviation of 0.068 (0.15 %) lb

ft3 and the mean of the distribution ratio
is 10.26 with a standard deviation of 1.5 (14.6 %). For the sensitivity analysis
we define the means of the parameters as the values from the experimental
run number 6 and define a normal distribution of 10 % for each parameter.
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Variance-based sensitivity analysis with the Sobol method was performed
for the analytical model and the results are depicted in Figure 5.8. The results
highlight that the distribution ratio and by this the liquid-liquid phase equilib-
rium has the highest effect on the glycerol fraction at the bottom product. The
overall mass transfer coefficient follows as the second most important parame-
ter and aligns with literature that the unit operation at hand is a mass-transfer
driven process whereas sensitivity of the glycerol fraction to the reaction rate
coefficient is negligible. The reason is the very slow reaction regime [13]. The
liquid density has no effect on the conversion from the starting material (TG
and W) to the products (FA and GLY) although the liquid density uncertainty
has been set higher than actually analysed before.

Figure 5.8: Sensitivity analysis of analytical model.

Parameter estimation via differential evolution

The initial estimates of the parameters for fitting purposes can be obtained via
differential evolution (DE). The sum of squared error is evaluated during the
parameter space search via DE by formulating the following objective function
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as the sum of squared differences between the predicted and measured data:

N∑
i=1

[(yexp
GLY,i − ysim

GLY,i)2 + (xexp
GLY,i − xsim

GLY,i)2 + (
Gexp

out,i −Gsim
out,i

10000
)2

+ (
Lexp

out,i − Lsim
out,i

10000
)2 + (

Gexp
median,i −Gsim

median,i

10000
)2 + (

Lexp
median,i − Lsim

median,i

10000
)2]

(5.9)
where

Gexp
median,i =

Gexp
in,i +Gexp

out,i

2
; Lexp

median,i =
Lexp

in,i + Lexp
out,i

2
(5.10)

and

Gsim
median,i =

Gexp
in,i +Gsim

out,i

2
; Lsim

median,i =
Lexp

in,i + Lsim
out,i

2
(5.11)

A scaling factor had to be introduced for the mass flow rate differences to
scale them to the value range of the mass fractions.

DE is a stochastic direct search method by Storn and Price [19] and the
algorithm is summarised in the following:

1. Specify population size, number of generations, crossover probability,
mutation factor

2. Initialise vector population where parameters are uniformly distributed
within their bounds

3. Evaluate the objective (cost) function for all individuals (vectors) and
store in the fitness variable

4. Generation loop until number of generations or fitness of cost function
is reached:

4.1. Mutation (Parameter mixing): Select a target vector, choose
randomly three other vectors and create mutant vector m = v1 +
mfactor ∗ (v2 − v3) where mfactor is called the mutant factor or
differential weight
4.2. Recombination: Generate trial vector by a probabilistic swap-
ping (crossover) of elements from current target vector with mutant
vector
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4.3. Replacement: Evaluate cost function and replace target vector
with trial vector if the cost function is lower with the parameters
from the trial vector

5. Parameter vector is returned with best fitness

The model is then fitted with the parameters returned from the DE routine
as the first guess. Table 5.3 summarises the data set from Jeffreys et al. which
was used for the parameter estimation.

Table 5.3: Data used for parameter estimation.

Experimental Run Input
Lin [lb/h] Gin [lb/h] ρOil [lb/ft3] m [-]

#1 7260 4600 45 10.32
#2 6490 4440 45.05 9.56
#3 6905 4300 45 11.38
#4 7400 3980 45.1 11.67
#5 6570 4480 44.9 8.32
#6 8175 4120 45.05 10.32
Experimental Run Output

yGLY [-] xGLY [-] Lout [lb/h] Gout [lb/h] Gmedian [lb/h] Lmedian [lb/h]
#1 0.1605 0.03 8050 3810 4205 7655
#2 0.1705 0.037 7180 3750 4095 6835
#3 0.189 0.027 7370 3835 4070 7140
#4 0.182 0.019 7770 3610 3795 7585
#5 0.227 0.027 7340 3710 4095 6955
#6 0.188 0.024 8900 3395 3760 8540

We assumed the same conditions as Jeffreys et al. did in their work. Since
Rifai et al. show that variable internal flowrates can’t be assumed constant
we defined variable continuous (oil) and dispersed (water) stream flowrates
for the finite volume model. A parameter estimation has to be performed for
KaGLY and the second mass transfer coefficient KaW describing the mass
transfer of water between the continuous and dispersed phase. The forward
reaction constant k has also been included as a parameter to be estimated.
The results of the parameter estimation via DE are summarised in Table 5.4
and compared to the data from Jeffreys et al.

Jeffreys et al. calculate individual mass transfer coefficients of glycerol for
each experimental run. In this work all six experiments are used for fitting
the parameters KaGLY , KaW , k, αx and αy. The covariance matrix obtained



5.1 Counter-current spray column 67

F
ig

ur
e

5.
9:

M
as
s
fra

ct
io
n
pr
ofi

le
s
af
te
r
pa

ra
m
et
er

es
tim

at
io
n
of
K
a

W
,K

a
G

L
Y
,k

,α
x
an

d
α

y
.



68 5 Process Design

Table 5.4: Results of parameter estimation via differential evolution for finite
volume model with variable internal water and oil flowrates.

Parameter Re-parameterized model Jeffreys et al.
KaGLY 19.06 14.21
KaW 28.95 -
k 33.68 10.2
αx 0.01 0.0
αy 0.10 0.0
Experiment ysim

GLY Gsim
out yexp

GLY Deviation sim. [%] Gexp
out Deviation sim. [%]

1 0.1305 4026 0.1605 - 18.7 3810 + 5.7
2 0.1427 3841 0.1705 - 16.3 3750 + 2.4
3 0.1773 3602 0.189 - 6.2 3835 - 6.1
4 0.1676 3364 0.182 - 7.9 3610 - 6.8
5 0.1758 3758 0.227 - 22.6 3710 + 1.3
6 0.1462 3553 0.188 - 22.2 3395 + 4.7

xsim
GLY Lsim

out xexp
GLY Lexp

out

1 0.0197 7056 0.03 - 34.3 8050 - 12.3
2 0.0217 6321 0.037 - 41.4 7180 - 12.0
3 0.0188 6706 0.027 - 30.4 7370 - 9.0
4 0.0171 7174 0.019 - 10.0 7770 - 7.7
5 0.0360 6494 0.027 + 33.3 7340 - 11.5
6 0.0223 7967 0.024 - 7.1 8900 - 10.5

Gsim
median Lsim

median Gexp
median Lexp

median

1 7447 4169 4205 + 77.1 7655 - 45.5
2 6727 3992 4095 + 64.3 6835 - 41.6
3 7170 3788 4070 + 76.2 7140 - 46.9
4 7587 3524 3795 + 99.9 7585 - 53.5
5 6999 3923 4095 + 70.9 6955 - 4.2
6 8364 3683 3760 + 22.4 8540 - 2.0

from the parameter estimation is:

Cov =

KaGLY k αx αy KaW


1.07 × 104 −1.83 × 104 8.08 × 102 −1.71 × 102 1.51 × 104

−1.83 × 104 3.77 × 104 −9.59 × 102 4.01 × 101 −2.58 × 104

8.08 × 102 −9.59 × 102 1.15 × 102 −3.59 × 101 1.13 × 103

−1.71 × 102 4.01 × 101 −3.59 × 101 1.43 × 101 −2.37 × 102

1.51 × 104 −2.58 × 104 1.13 × 103 −2.37 × 102 2.13 × 104

(5.12)
The standard deviation of the parameters’ mean value is calculated from

the covariance matrix and results in:
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σ =
√
diag(Cov) =


103.60
194.05
10.71
3.78

145.94

 (5.13)

The results show that more experimental data is necessary to provide a
satisfactory parameter estimation. Further, changing the kinetic model to a
second order reaction may enhance the parameter estimation but if one wants
to include a second order reaction model then experimental data of the water
concentration in the oil phase is needed.

Multi-objective optimisation via differential evolution
Energy efficiency is an important aspect to make the economic performance
of the spray column more viable and the direct injected steam consumes the
largest energy share in this process [20]. The operating cost have to be evalu-
ated in order to optimise the amount of steam fed to the column and how to
distribute it between the two steam inlets. The steam cost is summarised in
Table 3 [21] with the total cost for steam production being 13.6 $ per 1000 lb
steam.

A possible formulation of the environmental objective would be the Eco-
indicator 99 [22] which describes the effect of a product or process on the
environment over its life cycle in terms of three damage categories: Human
health, ecosystem quality and resources. The three damage categories are then
weighted and normalised to balance or put emphasis on short or long term
perspectives [23, 24]. The weighted values of the three damage categories
are then summed up to give the Eco-indicator. The measure of the Eco-
indicator is performed in points whereas 1 Point aligns with one thousandth
of the yearly environmental load of one average European inhabitant. Table 5
lists the points per lb of the material/energy flows βb consumed by the spray
column process [25]. With this table an analysis for each damage category can
be assessed as a function of the steel used for building the spray column, the
steam consumed per year and the electricity needed for feeding the oil to the
spray column. First the resource flows βb are multiplied with the individual
impact category values and then summed up for obtaining the impact of the
resource usage on the damage category. Then the damage category values
referenced to each resource are summed up and subsequently weighted and
normalised to obtain the Eco99 indicator with the final summation. It is
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Table 5.5: Fixed and variable cost for high pressure (HP) steam production.

Cost Unit per 1000 lb steam
Average boiler fuel MMBtu 1.56
Fresh water $ 0.02
Water treatment cost $ 0.74
Water preheating and pumping $ 0.62
Deareation steam $ 1.10
FD fan $ 0.05
Cvar (variable cost) $ 11.9
Boiler capital MM$ 20
R depraciation factor % of capital 15
Maintenance cost % of capital 2
Two employees $/a 120000
Employee cost factor - 3
Cfix (fixed cost) $ 1.7
CST = Cvar + Cfix $ 13.6
Fuel price: 6 $/MMBtu

noted that the values in Table 5 are already normalised in respect to the steel,
steam and electricity consumption. The equation for the indicator can be
formulated as follows:

Eco 99 =
∑

b

∑
d

δdωd

∑
k∈K

βbαb,k (5.14)

In conclusion, the description of the multi-objective optimisation problem
is:

minimise
x

f(x) = 1/Revenue + Eco99 + Product Purity Constraint

= 1/(Profit − TAC − Raw Material Cost) + Eco99

+ Product Purity Constraint
subject to G ∈ [50, 4600]

ϕInlet,1 ∈ [0.3, 1]
ϕInlet,2 = 1 − ϕInlet,1

As we applied the differential evolution algorithm to parameter estimation,
we apply the same to the optimisation problem. For both, parameter estima-
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Table 5.6: Impact categories for the eco-indicator and normalised data for
steel, steam and electricity.

Impact category Steel [points/lb] Steam [points/lb] Electricity [points/kWh]
Human health (d=1)
Carcinogenics 2.867 × 10−3 5.352 × 10−5 4.360 × 10−4

Climate change 5.942 × 10−3 7.257 × 10−4 3.610 × 10−6

Ionizing radiation 2.046 × 10−4 5.126 × 10−4 8.240 × 10−4

Ozone layer depletion 2.064 × 10−6 9.525 × 10−7 1.210 × 10−4

Respiratory effects 3.633 × 10−2 3.570 × 10−7 1.350 × 10−6

Ecosystem (d=2)
Acidification 1.229 × 10−3 5.488 × 10−3 2.810 × 10−4

Ecotoxicity 3.379 × 10−2 1.270 × 10−3 1.670 × 10−4

Resources (d=3)
Land occupation 1.692 × 10−3 3.892 × 10−5 4.680 × 10−4

Fossil fuels 2.690 × 10−2 5.670 × 10−2 1.200 × 10−3

Mineral extraction 3.366 × 10−2 4.001 × 10−6 5.7 × 10−6

tion and multi-objective optimisation, the parameters of the DE algorithm
were set to a population size of 15, a mutation range of 0.5-1.0 with dithering
enabled and a recombination value of 0.7. These paramater values are the
standard setting of the differential_evolution function in scipy.optimize. The
two parameters subject to variation are the steam flowrate G and the frac-
tion of the total feed injected through the top inlet ϕInlet,1. The algorithm
evaluates the objective function until it converges against a minimum and the
stopping criterion is reached.

Before discussing the results for the multi-objective optimisation, the re-
sponse surfaces of the finite volume model for the fatty acid and glycerol
fractions at the top and bottom of the column are shown in Figure 5.10 and
5.11. The glycerol fraction increases with decreasing steam flowrates since the
glycerol will be more concentrated with lower steam flow rates until it reaches
a maximum and then decreases because no water is available for the reaction.
We can see a slight increase of the glycerol fraction over the amount of water
fed through the first inlet.

Simultaneously when increasing the water flowrate we can see in Figure
5.11 that the fatty acid fraction reaches a plateau at about 2000 lb

h . Meaning
that the water flowrate of 4120 lb

h in the base case design is too high and dilutes
on the one side the glycerol content in the sweet water product and on the
other side it doesn’t increase the fatty acid content in the top product. The
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Figure 5.10: Response surface for glycerol fraction in bottom product with
variable water flowrate and two inlets for steam.

multi-objective optimisation will therefore find the point where the glycerol
and fatty acid fractions are balanced out to gain the highest product revenue
with a minimum in operating cost and Eco99 indicator points.

In regards to the revenue which can be generated from the fatty acid and
sweet water product streams, we assume that the product streams will be
further purified and therefore set the prices for the palmitic acid product at
the top of the spray column to be 0.71 US$

lb [26] which is the price for high
grade palmitic acid. The sweet water product at the bottom of column is
assumed to be further purified to high grade glycerol with a price of 0.085
US$

lb [27].The raw material price of the vegetable oil is 0.2359 US$
lb [28].

The size of the column is 73.5 ft in height [8], 2.16696 ft in diameter [14]
and the column wall thickness is assumed 0.01001 ft (3.05 mm). The material
is stainless steel 316 (ρSS316 = 229.9 kg

ft3 = 506.84 lb
ft3 ). For calculating the

capital cost we assume the spray column being the shape of a cylinder and thus
the weight of the column is 5.11 ft3 times 506.84 lb

ft3 which gives 116522.5 lb.
The price of stainless steel 316 is 4227 US$

t [29] and thus we obtain a capital
cost of 4966 US$ for the material of the spray column. The sustainability
indicator calculation covers the used steel material, steam generation and the
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Figure 5.11: Response surface for fatty acid fraction in top product with
variable water flowrate and two inlets for steam.

electricity for pumping. This results in the following equation for the Eco99
indicator:

Eco99 =
∑

b

∑
d

ωd

∑
k

βSteel ∗ αSteel,k

+
∑

k

βSteam ∗ αSteam,k

+
∑

k

βElectricity ∗ αElectricity,k

(5.15)

where βSteel = 1174.8 kg and the pump duty for the feed is βElectricity =
440.59 kWh. The steam flowrate is a decision variable subject to change during
the differential evolution algorithm. The weighting factors ωd are set in respect
to a hierarchist perspective (human health = 40 %, ecosystem quality = 40
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% and resources = 20 %). The results (Table 5.7) show that the optimisation
minimises the steam flowrate to reduce the steam cost. The optimal operating
point will achieve a fatty acid fraction in the top product of 0.99 while the
glycerol fraction in sweet water will be 0.76 with a top product flowrate of
7904 lb/h and a sweet water flowrate of 767 lb/h.

Table 5.7: Results of multi-objective optimisation.

Input and objective Unit Value Input bounds
Input
Steam flowrate lb/h 1069 [50, 5000]
First steam inlet fraction - 1.0 [0.1, 1.0]
Objective
Profit $/a 48211258
Total annual cost (TAC) $/a 127290
Raw material cost $/a 16775116
Revenue $/a 31308853
Eco99 indicator Points 28416

5.1.4 Conclusion
The validation of the finite volume model showed that the model can be used
to describe a spray column unit operation although more experimental data
is needed to fully develop the finite volume model. The experimental setup
of a counter-current spray column presented by Cadavid et al. [30] can be
established to obtain the necessary data. Combined with the work by Forero-
Hernandez et al. [4, 31] to perform rigorous kinetic data analysis and the
model presented here, important information about the hydrolysis of vegetable
oils in spray columns can be obtained. Future research should be made in re-
gards to computational fluid dynamics (CFD) to describe the hydrodynamics
in the spray column. This will allow to generate surrogate functions from
the computational cost-intensive CFD model and include them in the finite
volume model.

The presented model allows to be adapted to different spray column setups
and gives the engineer a valuable tool to validate, analyse and optimise an in-
dustrial scale spray column. The possibility to perform parameter estimation
is given if experimental data from an existing plant is provided. Through
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Figure 5.12: Iteration steps for finding the optimal point along the response
surface of the glycerol fraction at bottom of the column in
respect to steam flowrate and inlet fraction (the red point is
the final solution of the differential evolution procedure; the
triangle is the starting point).

multi-objective optimisation sustainable process design can be achieved by in-
cluding sustainability indicators such as the Eco99 indicator into the objective
function. The model enables to test and analyse different scenarios and allows
to communicate with packages and tools in line with the concept of digital
industries of the future. Further, a proof of concept has been realised to also
embed the spray column model in a commercial process simulator such as
PRO/II (Figure 5.14).
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Figure 5.13: Iteration steps for finding the optimal point along the response
surface of the fatty acid fraction in the product stream in re-
spect to steam flowrate and inlet fraction (the red point is the
final solution of the differential evolution procedure; the trian-
gle is the starting point).

Figure 5.14: Embedded spray column in PRO/II with glycerol purification
and recycling of water to the spray column.
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5.2 Molecular distillation

5.2.1 Introduction
The name molecular distillation already indicates that the components are sep-
arated by their molecule size. The separation is performed at very low pressure
which allows a low operating temperature and prevents the thermal decompo-
sition of the components. The evaporated molecules which escape the heated
surface of the evaporator don’t collide with each other until they condensate.
The mean free path of a molecule defines this behaviour and larger molecules
have a shorter mean free path [32]. The unit operation is commonly applied
in the food industries to recover high-value added or unwanted compounds
such as β-carotene, tocopherols, tocotrienols and cholesterol from vegetable
oils and fats [33–36]. The presented modelling and analysis of a short path
evaporator based molecular distillation unit has the goal to study the effects
of the uncertainties in physical property estimates on the product quality.

A methodology has been developed including tools integration to apply
advanced uncertainty propagation and sensitivity analysis in connection with
commercial process simulation software. The input parameters of the selected
thermodynamic model, namely critical temperature, critical pressure and acen-
tric factor, were considered as a source of uncertainty and analysed using
Monte Carlo sampling techniques. This enabled the process model output
uncertainty to be described as an empirical distribution function with a 95%
confidence interval. Variance-based decomposition such as the Sobol method
or standard regression were used to analyse the sensitivity of the respective
properties. We also show that machine learning methods such as polynomial
chaos expansion (PCE) can be applied to reduce the number of necessary pro-
cess simulations and obtained equivalent results in comparison with the more
costly full Monte Carlo based procedure.

5.2.2 Model description
A molecular distillation base case design has been modelled (Figure 5.15)
and verified with the experimental data from Unnithan et al. [37] for the
β-carotene recovery and the simulation performed by Tehlah et al. [38]. The
molecular distillation process consists of a short path distillator (180 ◦C, 0.008
mbar) with an internal condenser system which operates at 20 ◦C. The oil is
pre-heated to 120 ◦C before it enters the short path distillator.
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Figure 5.15: PRO/II flowsheet of molecular distillation process.

Tehlah et al. perform their simulation with the Aspen process simulator
and apply the Redlich-Kwong-Aspen EOS which is based on the SRK EOS.

Soave-Redlich-Kwong equation of state

In this work the SRK EOS is applied:

P = RT

Vm − b
− a

Vm(Vm + b)
(5.16)

The parameters a and b are calculated with mixing rules which can be
found in literature in different forms [39, 40].

These rules depend on the component fractions in the mixture, some inter-
action parameters and the following correction factors describing the attrac-
tion and volume of the molecules:

ai = αi0.42747
R2T 2

C,i

PC,i
(5.17)

bi = 0.08664RTC,i

PC,i
(5.18)

Mathias [39] introduced the generalised temperature-dependent function
which improves the vapour pressure prediction:

αi(T ) = [1 +mi(1 − T
1/2
r,i )]2 (5.19)



5.2 Molecular distillation 79

wheremi is a parameter for pure component i dependent on the acentric factor
ωi:

mi = 0.48 + 1.574ωi − 0.176ω2
i (5.20)

and Tr,i is the reduced temperature (Tr,i = T/TC,i).
For comparison reasons we also applied the SimSci-SRK EOS, which sim-

ilarly to the Aspen-SRK EOS, relies on a modification of the temperature-
dependent function αi(T ) [41]. The K-value describing the distribution ratio
of the individual components between the vapour and liquid phase will be de-
rived from the EOS. Thus, the uncertainties in the property parameters will
propagate from the EOS to the K-value calculations.

Table 5.8: Simulation results and comparison to experimental values from
the patent by Unnithan et al. and simulation results from Tehlah
et al. and this work with different equation of state models.

Tehlah et al. This work
Bottom component recovery Experimental RK-Aspen SRK SRK-SimSci
β-carotene 95.98 % 98.96 % 95.82 % 95.81 %
α-tocopherol 98.54 % not reported 40.37 % 40.30 %

Simulation Parameters: F = 2000 kg/h, T1 = 120 ◦C, T2 = 180 ◦C, P2 = 0.008 mbar

The simulation results in Table 5.8 show the difference between the bottom
component recoveries of β-carotene and α-tocopherol for the applied SRK
models. Tehlah et al. did not report any values for the α-tocopherol recovery.
We assume that their results for the top product recovery did not agree with
the experimental results by Unnithan et al. [37]. In the following, the effect
of uncertainties on the bottom product of the molecular distillation unit is
studied. The parameters (TC,i, PC,i and ωi) are subject to the sensitivity
analysis in the next sections and are overwritten with the COM-interface
and the values stored in the sampling hypercube for each simulation. The
β-carotene product fraction values are stored for all simulations in the output
vector.

5.2.3 Analysis
The strategy to apply the Monte Carlo method with process simulators is
based on the methodology by Frutiger et al. [42] for property uncertainty
propagation in process models. The methodology has been extended with
Sobol (variance-based) sensitivity analysis (SA) in this work:
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1) A process model is built in a commercial process simulation software
such as PRO/II or Aspen. The property models and parameters for the
uncertainty analysis need to be selected and the process variables are
specified to satisfy the degrees of freedom.

2) The property uncertainty data is retrieved from databases (e.g. NIST
TDE [43], AIChE DIPPR) or literature studies. Property uncertainty
information needs to be estimated if not available, for example through
calculation of the covariance matrix [44] or a bootstrap method [45].

3) Monte Carlo sampling technique is used to sample property values
within its corresponding uncertainty range i.e. 95%-confidence interval
using e.g. Matlab (2017b) or Python (3.6). Latin Hypercube Sampling
(LHS) [46] or Sobol sequences [47] can be utilized for the probabilistic
sampling over the components properties value space [48]. In this study
the probability of uncertainty is assumed to follow a normal distribu-
tion. However, any other distribution is also possible. The rank-based
method for correlation control of Iman and Conover [49] allows taking
correlations between the property parameters into account. This is nec-
essary, when parameters are not completely independent, as often is the
case for property models.

4) The Monte Carlo samples are evaluated in the process model executed
by the process simulator. In this work the PRO/II COM server is used,
which provides read and write access to property information in PRO/II.
This is done with the Python-COM interface.

5) Uncertainty analysis: The process model output uncertainty is quan-
tified [42]. The Monte Carlo results provide a distribution function for
the desired process model output of PRO/II. This can be analysed using
mean and percentile calculations. Hence, the 95% confidence interval of
the PRO/II output with respect to the corresponding input property
values can be obtained.

6) Sensitivity analysis: Several sensitivity analysis methods exist which
can be performed via Monte Carlo simulations or machine-learning meth-
ods. In this work we present and apply variance based sensitivity analy-
sis (SA) which is either performed via Monte Carlo simulations or by first
constructing a surrogate (response surface) model and then calculating
the sensitivity indices. The theory on the sensitivity analysis methods
applied in this work can be found in the appendix.
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To this end the methodology has been presented and Table 5.9 summarises
the above steps.

Table 5.9: Methodology for uncertainty and sensitivity analysis using a pro-
cess simulator such as PRO/II.

# Step Description Output
1 Problem definition Description of process and y = f(θ)

and analysis applied property models
2 Define set of variables Input variables of correlations or models θ = {x1, ..., xM }

for property models
3 Retrieve uncertainty data Mean and standard deviation µi, σi

4 Sampling over properties’ LHS or Sobol random sequences to generate X1, ..., Xk

confidence intervals sampling hypercube Ω
5 Monte Carlo simulations Run process simulations and store outputs y
6 Uncertainty analysis Mean and 95% confidence interval

of output due to uncertainties in θ yi ± σi

7 Sensitivity analysis Retrieval of first, total S1i, STi

and interaction sensitivity indices Si,j

Uncertainty analysis

The extended Antoine equation coefficients presented by Lim et al. [40] were
provided to PRO/II as these correlations were also used by Tehlah et al. [38].
No confidence bounds were provided by Lim et al. and thus the effect of un-
certainties in the vapour pressure estimates couldn’t be assessed in this study.
The uncertainties of the critical temperature, critical pressure and acentric
factor in respect to each component are calculated from the data provided
by different sources. Estimated values for TC and PC (without uncertainties)
were taken from Diaz-Tovar [50]. The publication by Lim et al. [40] applied
the prediction methods by Dorn and Brunner [51] and Pitzer [52] providing
the property values for TC , PC and ω without uncertainties. Further, we used
the property prediction tool ProPred [53] which is part of the KT-Consortium
software ICAS. With this application TC , PC and ω are predicted with the
Marrero-Gani [54] or the Constantinou-Gani [55] group contribution models.
No uncertainties were reported with any of these data resources or prediction
models and therefore we used the experimental and predicted values to calcu-
late the mean and standard deviation for each property as seen in Table 5.10
and 5.11.

In PRO/II 10.1 the Bio-Lib 10.1 (BIOFUELS) database stores the prop-
erty values for tripalmitin and triolein, the PRO/II SIMSCI database provided
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the values for oleic acid and the KT-Consortium LIPIDS database holds the
property data for α-tocopherol and β-carotene. The fill from structures option
was selected in PRO/II to obtain values for the ideal gas enthalpy, liquid/-
vapour thermal conductivity, liquid/vapour viscosity and surface tension for
β-carotene and α-tocopherol.

The mean and standard deviation are retrieved from the data and used
for the following sensitivity analysis.

Table 5.10: Experimental data and predicted data of properties for individ-
ual components of raw material palm oil.

Prediction methods with regressed data sets
Diaz-Tovar Dohrn and Brunner Pritzer Marrero-Gani Constantinou-Gani

Component TC PC TC PC ω TC PC TC PC ω

Tripalmitin 1017.47 753.85 947.10 396.82 1.6500 1056.51 870 - - 2.177
Triolein 1039.12 726.53 954.10 360.15 1.8004 1088.68 847 - - 2.299
Oleic acid 781 1390 813.56 1250.2 0.8104 841.41 1449 - - 1.151
alpha-Tocopherol 857.4 1070 936.93 838.45 1.1946 962.85 1207 - - -
beta-Carotene 905.4 708.15 1031.1 678.41 1.6255 - - 905.4 503 1.336

Table 5.11: Mean and standard deviation of properties for individual compo-
nents of raw material palm oil calculated from the experimental
data and predicted data in Table 5.10.

Mean and standard deviation (µ± σ)

Component TC [K] PC [kPa] ω [-]
Tripalmitin 1007.03 ± 45.27 674 ± 201 1.914 ± 0.264
Triolein 1027.3 ± 55.6 645 ± 207 2.050 ± 0.249
Oleic acid 811.99 ± 24.69 1363 ± 83 0.981 ± 0.170
alpha-Tocopherol 919.06 ± 44.87 1038 ± 152 1.195 ± 0.0001
beta-Carotene 947.3 ± 59.3 630 ± 91 1.481 ± 0.145

Sensitivity analysis

Six simulation runs were performed with sample sizes N of 32, 65, 98, 131, 313,
2188 and sampled values based on Saltelli’s extension of the Sobol sequence
[56]. These were normally distributed with the means and standard deviations
for each of the 3 property parameters of each of the 5 components (Table 5.11).
The generated sampling hypercube is used for performing Sobol sensitivity
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analysis and the obtained sensitivity indices S1 and ST are summarised in
Table 5.12. The standard deviation is calculated with σ =

√∑
j σ

2
j . Standard

deviation values with a negative S1 value are neglected in the summation
since they have converged close to zero and are treated as non-influential
parameters.

The 95% confidence interval of the β-carotene fraction at the bottom is
0.0008169 and 0.0008193 with the mean being 0.0008181 based on the simu-
lation with a sample size of N=2188. This allows the engineer to assess if the
needed purity for the β-carotene product lies within the uncertainty bounds.
If this is not the case then the sensitivity analysis in this section will help
to identify the properties which have to be revised through experiments or
literature research to improve the output prediction of the process at hand.

As can be seen in Figure 5.16 from the first order sensitivity index, the
critical temperature of β-carotene (TC,Carotene), the critical pressures of tri-
palmitin (PC,T ripalmitin) and triolein (PC,T riolein) have a main effect on the
β-carotene product fraction followed by PC,Carotene and ωCarotene. This shows,
apart from the uncertainty of the property TC,Carotene, that PC,T ripalmitin and
PC,T riolein can be properties which have to be revised although they don’t
belong to the wanted product component fraction which we use as the out-
put for the sensitivity analysis. We can also see that there is a high amount
of interactions between the property parameters when comparing the values
between S1 and ST for each parameter. This conclusion we can also draw be-
cause the sum of S1i,j doesn’t add up to 1. Table 9.6 in the appendix presents
the interaction matrix. Figure 5.17 visualises the summation of TC,i, PC,i and
ωi, indicating which chemical species have the highest effect on the output.
From these results we can conclude that β-carotene has the highest effect on
the β-carotene fraction at the bottom of the molecular distillation unit and
also a high interaction between TC,Carotene and PC,Carotene or ωCarotene can be
identified although these values are highly uncertain and even a higher sample
size N is needed to obtain more accurate values for the contribution of the
individual interactions.

When tracking the time for evaluating all sample sets we can observe a
linear increase (Figure 5.18) of the run time. The bottle neck is the Monte
Carlo simulation step encompassing the data transmission between the COM-
interface and PRO/II, populating the property variables within the process
simulator, simulating the process and storing the final output vector. The
sensitivity analysis is performed with the generated input-output data and
takes less than 10 seconds. The Monte Carlo procedure won’t be feasible for
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Table 5.12: Sobol SA of property variables used by the SRK EOS and it’s
effect on beta-carotene recovery with 70016 model evaluations
(sample size N=2188).

Component S1j,k ± σS1,j,k STj,k ± σST,j,k

TC,T ripalmitin -0.000587 ± 0.004592 0.016667 ± 0.017378
PC,T ripalmitin 0.090428 ± 0.044442 0.221925 ± 0.044754
ωT ripalmitin 0.002334 ± 0.007700 0.032921 ± 0.018697∑

j S1j,T ripalmitin 0.092762 ± 0.045104 0.271513 ± 0.051522
TC,T riolein 0.004282 ± 0.006385 0.014645 ± 0.015544
PC,T riolein 0.088856 ± 0.040798 0.214896 ± 0.046402
ωT riolein -0.002196 ± 0.006423 0.025806 ± 0.017340∑

j S1j,T riolein 0.093138 ± 0.041295 0.255347 ± 0.051918
TC,OleicAcid 0.002537 ± 0.006041 0.012168 ± 0.008537
PC,OleicAcid 0.001808 ± 0.002213 0.000584 ± 0.000635
ωOleicAcid -0.000080 ± 0.000146 0.000269 ± 0.000608∑

j S1j,OleicAcid 0.004345 ± 0.006434 0.013021 ± 0.008582
TC,T ocopherol -0.000058 ± 0.000197 0.000275 ± 0.000608
PC,T ocopherol -0.000092 ± 0.000155 0.000270 ± 0.000608
ωT ocopherol -0.000080 ± 0.000146 0.000269 ± 0.000608∑

j S1j,T ocopherol 0.000814 ± 0.001053
TC,Carotene 0.427228 ± 0.084424 0.634004 ± 0.072671
PC,Carotene 0.025124 ± 0.027615 0.169324 ± 0.059240
ωCarotene 0.058044 ± 0.028075 0.185940 ± 0.033751∑

j S1j,Carotene 0.510396 ± 0.093157 0.989268 ± 0.099647∑
k

∑
j S1j,k 0.7006 ± 0.111621 1.529963 ± 0.123912

Table 5.13: Comparison between Sobol SA with different sampling hyper-
cube sizes.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6
Sample size N 32 65 98 131 313 2188
Number of evaluations (N*(2*M+2)) 1024 2080 3136 4192 10016 70016
Run time [min] 69.73 143.52 226.25 298.27 865.45 6104.99
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Figure 5.16: Sensitivity index bar plot for S1i,j .

commercial process simulators if the evaluations are not run in parallel on
multiple processors. The total time which the evaluations takes for run 6 is
6105 min (about 101 h) and even on a multicore computer with 4 processors
would take too long performing the full Monte Carlo simulations if the results
are needed within seconds or several minutes. This situation can of course
change if computers for the general industrial user will be on the market with
a high number of processors.

But since methods exist which can reduce the number of evaluations
needed, the next section shows that polynomial chaos expansion is a promis-
ing alternative to conduct sensitivity analysis with less computational effort
and close to the results obtained with Monte Carlo based SA.

PCE based sensitivity analysis

The previous section showed that the retrieval of Sobol sensitivity indices from
the full Monte Carlo approach resulted in high confidence intervals on the sen-
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Figure 5.17: Sensitivity index bar plot for ∑j S1i,j .

sitivity indices for low sample size numbers and a high number of samples
is needed to reduce these (Figure 5.19). We therefore applied a surrogate
based sensitivity analysis [0] where first an expansion of polynomial terms is
regressed to 1024 process evaluations. Our problem at hand has a dimension-
ality of M=15 and the polynomial expansion we obtain fits the data with a
coefficient of determination R2=0.9148. The polynomial expansion has a de-
gree of p=3 and 89 coefficients. In the second step the PCE is used to retrieve
the sensitivity indices. Table 5.14 compares the obtained sensitivity indices
with the previous obtained indices from the full Monte Carlo (MC) sensitivity
analysis (SA). The results show that we are able to identify the same property
parameters compared to MC SA with TC,Carotene being the most important.
These results are obtained via PCE based SA with about 68-fold less model
evaluations.
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Figure 5.18: Run time over number of model evaluations with increasing
model evaluations for Monte Carlo based sensitivity analysis.
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Figure 5.19: Standard deviation of S1 and ST for TC,Carotene with increasing
model evaluations for Monte Carlo based sensitivity analysis.
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Table 5.14: Comparison between direct Monte Carlo based Sobol SA and
PCE based Sobol SA.

PCE SA MC SA
Property S1 ST S1 ST
TC,T ripalmitin - 0.00 - 0.02
PC,T ripalmitin 0.04 0.13 0.09 0.22
ωT ripalmitin 0.00 0.00 0.00 0.03
TC,T riolein 0.00 0.00 0.00 0.01
PC,T riolein 0.03 0.12 0.09 0.21
ωT riolein 0.00 0.00 - 0.03
TC,OleicAcid - 0.00 0.00 0.01
PC,OleicAcid - - 0.00 0.00
ωOleicAcid - 0.01 - 0.00
TC,T ocopherol - 0.00 - 0.00
PC,T ocopherol - 0.00 - 0.00
ωT ocopherol - 0 - 0.00
TC,Carotene 0.55 0.69 0.43 0.63
PC,Carotene 0.08 0.16 0.03 0.17
ωCarotene 0.07 0.15 0.06 0.19∑
Sj,k 0.77 1.26 0.75 1.52

Model evaluations 1024 70016

5.2.4 Conclusion
It was shown that machine-learning based methods such as polynomial chaos
expansion can reduce the computational time needed to perform sensitivity
analysis. Fully data-driven methods use the input-output data and treat the
process simulator as a black box. Therefore, the multiple evaluation of a
process flowsheet should be performed in parallel with sequential process sim-
ulators. To this date no process simulator such as Aspen or PRO/II has
been developed which supports this functionality and this would be a major
improvement to adapt Monte Carlo and machine-learning based methods by
commercial process simulators. It is therefore recommended to implement
parallel evaluations of process models on multiple cores (e.g. with Co-array
Fortran and/or MPI [57–59]) to reduce the computational time due to the
high number of evaluations in case of the full Monte Carlo approach or to
increase the speed of machine learning methods. This is necessary and impor-
tant to realise the growing potential of these methods. It would be worthwile
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to test the performance of different machine learning techniques in respect to
sensitivity analysis methods in the future, e.g. the comparison between neural
networks, Gaussian process regression and polynomial chaos expansion.

Monte Carlo and machine learning methods can be integrated in commer-
cial process simulators and applied by industrial users. Uncertainties of exper-
imental data or estimated values should always be reported and we suggest
that process simulators should take the uncertainties in properties as given
and evaluate process models in respect to these uncertainty ranges. It was
demonstrated in this work that small changes in property uncertainties can
have a major effect on the process flowsheet output.

The study presented a Monte Carlo based methodology and tools integra-
tion with scripting languages such as Python or Matlab for enabling property
uncertainty and sensitivity analysis with a commercial process simulator. The
framework enables process design engineers to perform robustness analysis of
process design effectively and increases the value of commercial process sim-
ulators since considering uncertainty gains more and more importance in the
process systems engineering community. The study shows that it is possible
to use Monte Carlo techniques with commercial process simulators, which is
currently not state-of-the-art in industrial practice. Further we highlight that
machine learning based techniques can be applied to reduce the computational
expensive full Monte Carlo approach. This was exemplified with polynomial
chaos expansion. To this end, the generic nature of the methodology was suc-
cessfully implemented with respect to a molecular distillation process. The
uncertainties in properties such as critical temperature TC,i, critical pressure
PC,i and acentric factor ωi were propagated through the SRK EOS and the
process models in PRO/II. Analysis of the molecular distillation showed that
the uncertainty of the recovery of β-carotene can be apportioned mostly to
TC,Carotene as the input properties’ uncertainties propagate from the SRK EOS
through the calculations of the molecular distillation unit. The mostly higher
values of the total order indices indicate a high degree of interaction between
the parameters. This can be verified by evaluating the interaction sensitivity
indices as shown in Table 9.6 in the appendix. The methodology we presented
is also applicable to the case of analysing multiple outputs of a process.
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5.3 Solvent (extractive) crystallisation

5.3.1 Introduction
Crystallisation allows to separate compounds by means of cooling, evaporation
or through a chemical reaction between two phases which increase a species
in the solution until it is supersaturated. Thus, the driving force of a solvent
crystallisation process is the solubility gradient over temperature which differs
from substance to substance. The liquid mixture of components are in solid-
liquid equilibrium where the solid phase crystallises in three steps [1]. In the
first step supersaturation is achieved which is the driving force for nucleation
(step two) and as the third step crystal growth will increase the product yield.
The equilibrium is reached where the Gibbs free energy is at its minimum and
the solid and liquid phases are stable. In the next sections the calculation
of the solid-liquid equilibrium with the Wilson activity coefficient model is
explained. Thereafter, Michelsen’s tangent plane criteria for the phase sta-
bility test and the formulation of the Gibbs energy minimisation algorithm
is presented. The solvent crystallisation model is then validated with experi-
mental data from literature. The industrial crystallisation of fatty acids with
methanol as the polar solvent is also known as the Emersol process [60, 61]
where a multitubular crystalliser with scraper blades [62] is utilised. In this
work only pure solid phases are assumed and polymorphism is not taken into
account.

5.3.2 Model description

Solid-liquid equilibrium and Wilson activity coefficient model
The thermodynamic equilibrium is defined as the state where the chemical po-
tentials of all phases in a mixture are equal. Thus, the solid-liquid equilibrium
can be defined as [63]:

µj
i = µl

i (5.21)

where µj
i and µl

i are the chemical potentials in the solid phase j and liquid
phase l for component i. There exist N components and P phases where P - 1
phases are solid and the remaining phase is liquid [64].

The chemical potential µi at a certain temperature is dependent on tem-
perature T, the liquid activity coefficient γi and the component fraction of
species i. Further, the chemical potential is related to a reference potential
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µ0,i and the expressions for the liquid and solid chemical potentials are:

µl
i = µl

0,i +RTln(γl
ix

l
i) (5.22)

µj
i = µj

0,i +RTln(γj
i x

j
i ) (5.23)

Equations 5.16, 5.17 and 5.18 give the following relation:

ln(γ
j
i x

j
i

γl
ix

l
i

) =
µl

0,i − µj
0,i

RT
(5.24)

The differential change in chemical potential is defined by [63]:

dµi = −SidT + VidP (5.25)

where Si and Vi are the entropy and volume for species i. As Clausius showed,
the heat transfer along an isotherm of a system follows proportional behaviour
and thus entropy Si was defined as an extensive state variable of a thermo-
dynamic system [65]. The proportional relation can be written in differential
form as:

∆Si = ∆Hi/T (5.26)

The enthalpy of formation is calculated from the molar enthalpy, heat ca-
pacity and the difference between the temperature T of the system and the
temperature of formation Tf,i of species i:

∆Hf,i = ∆Hf,i + ∆cp,i(T − Tf,i) (5.27)

With equations 5.19 to 5.22 we can formulate the following expression:

ln(γ
j
i x

j
i

γl
ix

l
i
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R
( 1
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− 1
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R
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T
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ln(Tf,i

T
) (5.28)

The ∆cp values and Tf,i − T term for triglycerides and fatty acids are
comparable small and thus the previous equation simplifies to:

ln(γ
j
i x

j
i

γl
ix

l
i

) =
∆Hj

f,i

R
( 1
T

− 1
Tf,i

) (5.29)

The activity coefficients can be calculated with an activity or equation of
state model (e.g. Wilson, UNIFAC, Soave-Redlich-Kwong or Margules [66–
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68]). In this work the Wilson model is applied. The needed binary interaction
parameters for the Wilson model are defined as [1]:

Aij = Vj

Vi
exp(−(λij − λji)

RT
) (5.30)

Vj and Vi are the molar volumes of component j and i in the liquid phase
whereas λij and λji are the binary energy parameters.

The liquid activity coefficient is calculated with [1]:

lnγk = −
N∑

j=1
xjAkj + 1 −

N∑
i=1

xiAik∑N
j=1 xjAij

(5.31)

Phase stability
A phase stability test has to be performed to evaluate if the addition of a new
phase to the thermodynamic system in equilibrium will lead to a decrease in
the Gibbs free energy. For this a tangent to the Gibbs free energy curve can
be drawn at the point of the current composition and if the Gibbs curve lies
above this tangent then the mixture is stable.

The tangent plane criterion by Michelsen is defined as [69]:

ln(Yi) = µj
i − µy

i

RT
− ln(γy

i ) (5.32)

where Yi is the stability decision variable. A stable equilibrium is present if
Yi < 0.

Gibbs free energy minimisation
The phase equilibrium is described by a set of nonlinear equations which have
to be solved by minimising the total Gibbs energy as the objective function
to satisfy the equilibrium condition (Eq. 5.21).

The Gibbs free energy can be expressed as [1]:

G = ∆gsolid + ∆gliq (5.33)

where ∆gliq and ∆gsolid are:

∆gsolid = RT
N∑

i=1
ϕsolid,i[

∆Hf,i

R
( 1
T

− 1
Tf,i

)]i (5.34)
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∆gliq = ϕliqRT
N∑

i=1
xiln(γixi) (5.35)

For any given system the mole balance constraints must be satisfied in
respect to the total moles in each phase of species i and the total moles of
species i in the whole system. Thus, the Gibbs free energy minimisation
problem can be formulated as follows:

minimise G = ∆gsolid + ∆gliq

subject to
N∑

i=1
xj

i = 1

P∑
j=1

xj
iϕ

j = zi

(5.36)

and is solved in this work via the sequential least squares programming
method in the scientific Python package SciPy [70].

Solid flash algorithm

The algorithm for the composition calculation of the liquid phase of the prod-
uct of the crystalliser is depicted with the flow diagram in Figure 5.20 and
can be divided into the following steps:

1. A first estimation is made of the number of phases, the present amount
of each phase ϕj and of their compositions xj

i .

2. Calculation of the activity coefficient(s).

3. Perform new estimation of the amount of phases and the compositions
with the newly calculated activity coefficients and repeat the previous
and this step until the Gibbs energy converged to the global minimum.

4. Perform the stability test and check if estimates give a stable mixture.

5. If the mixture is unstable repeat the previous steps with an additional
phase.

6. If the mixture is stable the final result is obtained.
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The input parameters to the algorithm are the interaction parameters
of the Wilson model ∆λij , the operating temperature of the crystalliser T ,
the heat of fusion ∆Hf,i, the temperature of formation Tf,i and the molar
volumes Vi of each component. The independent variables are xj

i and ϕj and
the dependent variables are Aij and γj

i .

INPUT:
∆λij , T , ∆Hi, Tm,i, xj

i , ϕ0
j

Activity coefficient calculation
with Wilson model

Gibbs energy minimisation

Phase stability analysis
New estimation of composition matrix xj

i

and phase fractions ϕj

Yi < 0

RESULT: xj
i , ϕj

No
Yes

Figure 5.20: Solid flash algorithm.

5.3.3 Analysis
The model is validated with the property data given in Table 5.15. The Wil-
son parameters are documented in the appendix. Wales obtained the energy
parameters by regressing experimental data sets for solid-liquid equilibria [71].

Process configurations
Four process configurations have been studied to separate a mixture of stearic,
palmitic, linoleic and oleic fatty acids (Figure 5.21) for a feed flowrate of
36483.125 mol/h. The solvent for the crystallisation process is acetone. The
equipment cost were calculated on the basis of Guthrie’s module costing
method. The operating cost for the distillation and crystallisation units were
calculated with the following relations,
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Table 5.15: Property data for crystallisation calculations.

Components Tf,i [°C] Vi [cm3/mol] ∆Hf,i [J/mol]
Palmitic acid (16:0) 62.8 300.97 53973
Stearic acid (18:0) 69.6 302.38 61222
Oleic acid (18:1) 16.30 315.61 39598
Linoleic acid (18:2) -5.20 311.609 31200
Acetone -95 74.03 5720

Table 5.16: Validation of model with results of the composition of the liquid
product from the crystallizer.
Experimental data Predictions by Wale Predictions by model in this work

Temperature [◦C] xStearic xOleic xAcetone xStearic xOleic xAcetone xStearic xOleic xAcetone

0 0.0009 0.0124 0.9867 0.0006 0.0124 0.9870 0.0011 0.0124 0.9864
-10 0.0003 0.0146 0.9851 0.0003 0.0141 0.9856 0.0004 0.0146 0.9850
-20 0.0001 0.0143 0.9856 0.0002 0.0151 0.9847 0.00016 0.0267 0.9731
-30 2.0e-5 0.0061 0.9939 2.9e-5 0.0043 0.9957 3.75e-5 0.00649 0.9934
-40 6e-5 0.0025 0.9975 3.1e-5 0.0018 0.9981 1.03e-5 0.007 0.9930

CDist
OP = QCondcCW +QRebcSteam (5.37)

Qcond and QReb are the heat duties of the condenser and reboiler. cCW and
cSteam are the price coefficients for cooling water and steam.

CCryst
OP = QCcC (5.38)

QC is the energy for cooling and cC is the price coefficient for the cooling
medium.

QC is calculated with the overall heat transfer coefficient U, the heat trans-
fer area A and the logarithmic mean temperature difference ∆TLM :

QC = UA∆TLM (5.39)

Condenser and reboiler duties for the distillation columns, density and heat
capacity values were calculated with the PRO/II process simulator. Data
for the price coefficients was gathered from literature [72] and regressed to
estimate the cost coefficient for a certain cooling temperature.

The results of this preliminary, qualitative economic evaluation showed
that the first process structure is the most economic in regards to equipment
and operating cost. The product purity of oleic acid, stearic acid and palmitic
acid are 99% and the product purity of linoleic acid is 96% respectively.
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1:

2:

3:

4:

Figure 5.21: Process configurations for separating a mixture of stearic (SA),
palmitic (PA), linoleic (LA) and oleic (OA) fatty acids.
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Table 5.17: Price coefficients cC for cooling medium.

Temperature [°C] Price [$/GJ]
15 4.0
5 5.0
-20 8.0
-50 14.0

Table 5.18: Operating conditions of the unit operations for the different pro-
cess configurations.

Process structure Operating conditions
1 TCryst1 = 242.2 K, TCryst2 = 230 K,

PDist = 1.2 kPa
2 TCryst1 = 274 K, TCryst2 = 243.5 K, TCryst3 = 230 K,

PDist = 1.2 kPa
3 TCryst1 = 274 K, TCryst2 = 242.15 K, TCryst3 = 230 K,

PDist = 1.2 kPa
4 TCryst1 = 246 K, TCryst2 = 220 K,

PDist = 1.2 kPa

5.3.4 Conclusion
A solid flash algorithm has been developed to model a solvent crystallisation
process. The results aligned well with the experimental data. Four different
process structures have been evaluated to gain some preliminary knowledge
on how solvent crystallisation can be implemented for separating fatty acid
mixtures. The process with two crystallisers in series and a distillation column
after the first crystalliser in parallel to the second crystalliser, gave the most
feasible process in regards to capital and operating cost.

The algorithm can be extended to support polymorphic crystallisation into
the major α, β and β′ forms. For this extension, the number of trial splits
needs to be increased from one binary flash to four flash calculations (β-β,
β-β′, β-α and β-liquid split) [73, 74]. Solvent selection and design is also
an important aspect to solvent crystallisation and computer-aided molecular
design (CAMD) can be applied to find suitable economic and sustainable
solvents.
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CHAPTER 6
Superstructure

Optimisation with
Surrogate Models

The formulation of an optimisation problem in form of a general disjunctive
program (GDP) has been researched extensively [1–3]. GDPs for superstruc-
ture optimisation allows the identification of optimal process flowsheet struc-
ture and point of operation given a set of possible alternatives. The super-
structure optimisation incorporates selection and interconnection of each unit
operation in form of disjunctions and with the objective to maximise profit
or to minimise total cost. In this paper we highlight the surrogate building
step of the methodology with a rigorous counter-current spray column model
and a continuous stirred tank reactor (CSTR). We assess the performance of
different surrogate modelling methods such as multivariate regression splines,
polynomial chaos expansion and Gaussian process regression in respect to the
coefficient of determination (R2), the root- and mean squared error (RMSE,
MSE). The GDP is solved by transforming it to a MINLP via convex-hull
transformation and then solving the problem with a nonlinear solver (e.g.
IPOPT).

6.1 Methodology for surrogate-based
superstructure optimisation

The steps of the methodology are presented as follows:

1. Sampling of the design space: The independent variables (i.e. design
degrees of freedom) of the process under research are identified and the



108 6 Superstructure Optimisation with Surrogate Models

boundaries specified. Different experimental designs exist to cover the
domain of variation such as Monte Carlo samples obtained with random
generators, Latin hypercube samples or quasi-random (low-discrepancy)
sequences, e.g. Sobol, Hammersley or Halton sequences. A hypercube is
generated and used for the next step to perform Monte Carlo simulation.
Due to optimization (step 6) the bounds of the independent variables
will get iteratively updated to ensure feasible solutions.

2. Monte Carlo simulation of rigorous process: The model is evalu-
ated for each sample and the matrix of observations (model outputs) is
stored for the surrogate modelling step.

3. Build surrogate models: To build a surrogate model the sampling hy-
percube and matrix of observations obtained from step 1 and 2 are used
to apply methods such as multivariate regression splines, polynomial
chaos expansion or Gaussian process regression.

4. Surrogate-based superstructure generation: A superstructure for-
mulation of the interconnected surrogates and all possible combinations
of process structures with operating set points are generated through
enumeration or transforming a disjunctive program into a mixed integer
non-linear program (MINLP).

5. Multi-criteria economic & sustainability evaluation: The differ-
ent process structures are evaluated in terms of capital, operating and
total annual costs and total environmental impact is assessed to take
the sustainability of a process into account.

6. Optimisation solver: In this step the optimization problem is solved
where the economic and environmental objective function is formulated
as the minimization of total annual cost and environmental impact sub-
ject to boundary conditions. To ensure that we obtain a feasible solution
the bounds of the independent variables get updated every time a solu-
tion is found which violates the specified bounds defined in the previous
iteration step.

6.2 Surrogate modelling
Different methods of generating surrogate models have been applied in lit-
erature. Fernandes [4] used neural networks to model the Fischer–Tropsch
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process. Neural networks were also used to generate a surrogate model for
each unit operation in the process superstructure by Henao and Maravelias [5]
and to optimise the problem. Cremaschi [6] combined second-order surrogate
models and a steepest descent routine iteratively in a post-combustion CO2
removal process and neural networks for several other processes. Carpio et
al. [7] present surrogate modelling with Gaussian processes (Kriging) com-
bined with the probability of improvement method for constrained global op-
timisation. They apply their methodology also to three chemical engineering
problems. Schweidtmann and Mitsos [8] perform optimisation with neural net-
works in respect to a fermentation process , a compressor plant and a cumene
process. It is important research to perform optimisation with surrogate mod-
els to treat existing processes as black boxes, but it has to be questioned if
steady-state models should be substituted by a surrogate to optimise only for
the operating point. Generating a surrogate will increase the uncertainty of
the estimated model output to some extent and in respect to neural networks
drop outs have to be implemented to retrieve the confidence bounds. In case
of Gaussian processes (Kriging) the uncertainties are provided and one could
argue that surrogate methods allow to estimate the uncertainty of a process
output without using a full Monte Carlo approach as discussed in the molecu-
lar distillation process in this work (Section 5.1.3). However, surrogate models
are popular to substitute black-box models which are either computationally
expensive to evaluate, have noisy output behaviour or don’t supply gradients
[9]. Such models treated as black boxes can be for example computational
fluid dynamics (CFD) models or dynamic process control models. Especially
for multi-scale modelling applications surrogate modelling will play an impor-
tant role in process systems engineering. Therefore we evaluate the possibility
of generating surrogate functions from rigorous steady-state unit operation
models and embed them in a superstructure optimisation problem. The su-
perstructure is then solved to determine the best process route and operating
point.

6.2.1 Comparison between surrogate modelling
methods

The spray column model presented in section 5.1.1 serves as the rigorous model
to be substituted by surrogate functions. The design space of the model
is summarized in Table 6.1. The same boundaries are defined to generate
identical hypercubes for all surrogate modelling methods. The sample size
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Table 6.1: Design parameters with design space boundaries for the counter-
current spray column model.

Parameter Unit Lower Bound Upper Bound
Feed flowr rate kmol/h 2000 3500
Solvent to feed ratio - 1.4 1.9
Gaussian process regression K 473.15 533.15

of the hypercube is 500 and populated with Sobol sequences. The model is
solved with the input hypercube and the output (overall conversion) is stored
for the surrogate modelling step. The sampling and observation data was
split half wise for training and testing. The surrogate models were built with
the train set and the predictions were then compared with the test set. The
coefficient of determination (R2), the mean squared error (MSE) and the root
mean squared error (RMSE) are given in Table 6.2 to compare the different
surrogate modelling methods as well as the accuracy of mapping the rigorous
(black-box) model to a surrogate model. Multivariate regression splines,
polynomial chaos expansion (PCE) and Gaussian process regression (GPR)
were applied. The theory covering GPR and PCE can be found in section 4.3
and 9.3. The surrogate modelling methods assume:

yj = fj(x1, ..., xp) + ϵj (6.1)

as the output to input relation of the system under research where f is the
approximating function and ϵ the error.

For multivariate regression splines a training data set is fit to obtain f̂j to
each function fj with the expansion of basis functions:

f̂(x1, ..., xp) =
M∑

m=0
amBm(x1, ..., xp) (6.2)

Least-squares minimisation gives the coefficients am weighting the basis
functions which take the form of a hinge function h(xi). The linear combina-
tion of a constant, a linear function and several hinge functions is iteratively
calculated with a two-step forward/backward algorithm. In the first forward
step the surrogate model is being built by adding hinge functions while max-
imizing the goodness of fit until a user-defined level of complexity has been
reached. The second pruning and pass step will compare subsets of the poten-
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Figure 6.1: Comparison between the behaviour of training score and testing
score as a function of the used training samples for Gaussian
Process regression of spray column model.

tial hinge functions by means of a true cross-validation score (CVS) to prevent
overfitting. The subset with the lowest CVS is chosen.

Table 6.2: Comparison between different surrogate modelling methods.

Surrogate modelling method R2 MSE RMSE
Multivariate regression splines 96.2 0.1e-03 0.01
Polynomial chaos expansion 99.7 0.55e-05 0.00235
Gaussian process regression (Matérn kernel) 99.9 0.40e-05 0.002

In respect to GPR Figure 6.1 shows how the cross-validation score, in this
case R2 , behaves as a function of the number of samples used for training the
model. With a training set of more than 15 samples the fitted model will give
predictions with R2 greater 95 %.

The surrogate functions obtained from PCE are chosen to be embedded
in the superstructure formulation. The reason is the polynomial nature of
these surrogates which the solvers can better handle than the terms obtained
from Gaussian process regression. Figure 6.2 and 6.3 show the surrogate
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functions for the glycerol fraction at the bottom of the spray column and for
the operating cost. The bottom fraction is described by a quadratic function
and the operating cost by a bilinear term.

Figure 6.2: Plot of surrogate function for the glycerol mass fraction in re-
spect to the sweet water product at the bottom of the spray
column.
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Figure 6.3: Surrogate function for operating cost of the spray column.

6.3 General disjunctive programming
A general disjunctive program can be formulated with the following equations
[10]:

minimize
x

Z =
∑
u∈U

cu + f(x)

subject to h(x) = 0
g(x) ≤ 0

Yu

hu(x) = 0
ru(x) ≤ 0
cu = γu

 , ∀u ∈ UP

(6.3)

Ω(Y ) = True, Yu ∈ {True, False}, x ∈ X, cu ≥ 0 (6.4)
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x and cu are continuous variables where x encompasses e.g. flowrates,
pressures and temperatures and cu and γu represent costs and fixed charges.
h(x) and g(x) are the global equality and inequality constraints of the whole
problem formulation (e.g. mass balances) whereas hu(x) are the constraints
subject to the individual unit. Yu is a binary variable indicating either a
permanent process unit in the set UP or the activation or deactivation (¬Yu)
of a conditional process unit in the set UC . Conditional units are useful
for process synthesis purposes [5] and each conditional unit can also include
conditional finite elements (e.g. to describe trays in a distillation column or
reactors in series) [11] in the set UC

F E :



Yu

hu(x) = 0
ru(x) ≤ 0

cu = γu +
∑

cuv
Yu,v

hu(x) = 0
ruv ≤ 0

cuv = γuv

∨


¬Yu,v

Buvx = 0
cuv = 0

 , ∀v ∈ UC
F E


∨


¬Yu

Bux = 0
cu = 0

 , ∀u ∈ UC

(6.5)
Different methods exist to solve a GDP. One possibility is to tranform the

GDP via convex-hull transformation and then solve the obtained MINLP with
a nonlinear solver. Logic-based outer approximation is an other approach to
solve a GDP which subdivides the GDP into NLP subproblems and into one
MINLP master problem. The next two sections present the two methods more
in depth.

6.4 Convex-hull transformation
Convex-hull transformation applies relaxations on the nonlinear disjunctions
of the GDP to reformulate the problem as a MINLP. Hereby multipliers (λu)
are introduced to relax the equality and inequality constraints in the disjunc-
tions. This leads to the linearisation of the equality constraints and the intro-
duction of bi-linearity in the inequality constraints. The non-convex inequality
constraints have to be further treated by defining a new variable (νu = xλu)
the following can be defined with the convexity of λu:
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∑
u∈U

xλu = x =
∑
u∈U

νu (6.6)

∑
u∈U

cλu = c =
∑
u∈U

γuλu (6.7)

Rearranging the equations leads then to convex inequality constraints [12]:

λuru(νu/λu) ≤ 0 (6.8)

and νu is bounded by:

0 ≤ νu ≤ λuUu (6.9)

where Uu are the upper bounds.
Thus, the relaxation of the following disjunction:

∨u∈U


Yu

ru(x) ≤ 0
cu = γu

 (6.10)

would be [13]:

x =
∑
u∈U

νu, c =
∑
u∈U

λuγu (6.11)

0 ≤ νu ≤ λuUu (6.12)

∑
u

λu = 1, 0 ≤ λu ≤ 1 (6.13)

λuru(νu/λu) ≤ 0 (6.14)

x, νu, c ≥ 0 (6.15)
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6.5 Logic-based outer approximation
Logic-based outer approximation (LOA) requires the solution of NLP sub-
problems (only for the existing units) by fixing binary variables. The solution
of these sub-problems provides an upper bound ZU . The MILP master prob-
lems provide lower bounds and new values for the integer variables [14]. This
allows solving reduced space NLP sub-problems rather than the full-space rep-
resentations encountered when solving MINLPs, thereby improving robustness
[15]. The NLP sub-problems and the MILP master problems are solved until
the bounds of both problems converge. During iteration the nonlinear objec-
tive functions and constraints of the sub-problems are linearized at the solution
points received from the NLP subproblems. The MILP master problem is set
up and solved for the lower bound ZL then.

INPUT:
Initial NLP sub-problem(s)

Solve MILP master-problem
Lower Bound ZL

Linearize objective function and constraints
of current NLP sub-problem(s)

and set up the MILP master problem

Identification and selection of disjunctions
by fixing the binary variables

Solve NLP sub-problem(s)
Lowest solution gives upper bound ZU

|ZU − ZL| ≤ ϵ

RESULT: ZU is optimal solution
with optimal process structure

and operating point

No

Yes

Figure 6.4: Logic-based outer approximation flow diagram.
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6.6 Problem formulation for reactor networks
Given is a triglyceride feed which has to be processed by means of the hy-
drolysis reaction. An interesting question is if either the very efficient spray
column with high conversion rates up to 99 per cent should be installed or a
series of CSTRs which provide the same conversion of the raw material and
investigate which configuration will give the lowest total annual cost. This
task can be performed with describing the reactor superstructure (Figure 6.5)
with a general disjunctive program (GDP) and include the conversion and
cost functions as surrogate models obtained from the rigorous unit operation
models. For this a set of reactants (triglyceride, water) and a set of products
(fatty acid, glycerol) are specified. Additionally, either the feed rates along
with purity requirements or the required production rates must be specified.
A set of surrogate functions is given to provide the product composition of
the bottom of the spray column as a function of solvent to feed ratio, whereas
the surrogate function of the operating cost is a function of the feed flowrate
and feed to solvent ratio. The objective is to minimise total annual cost and
hereby find the optimal process structure and point of operation.

The objective is to minimise total annual cost which is composed of oper-
ating and capital costs for each unit, the raw material costs and the revenue
of the products:

min TAC =
∑
u∈U

COP
u + CC

u

3
+
∑
r∈R

fr ∗ cr −
∑
p∈P

fp ∗ rp

subject to the following global constraints:

• Fixed raw material compositions and component flowrates:

x1,4 = 1.0
x2,1 = 1.0
f1,1:3 = 0
f2,2:4 = 0

(6.16)

• Material balance around units and mixers:
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f3 + f4 = f7 + f8

f9 = f5 + f6

f7 = f7,3 + f7,4

f8 = f8,1 + f8,2

f1 = f3 + f6

f2 = f4 + f5

(6.17)

• Closing equations:

fi,j = xi,j

∑
j∈J

fi,j

1 =
∑
j∈J

xi,j

(6.18)

• Maximum product demand:

f8,2 + f9,2 ≤ D (6.19)

The disjunction for the spray column is:
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Y1

f4 = f3 ∗ ϕ1

f3 = f1

f3,j = f1,j

x3,j = x1,j

f4 = f2

f4,j = f2,j

x4,j = x2,j

x7,GLY = P̂ (ϕ1)
f7 = f7,GLY + f7,W

f7,W = f3,W − 3f7x7,GLY

f8,T G = f4,T G − f7x7,GLY

f8,F A = 3f7x7,GLY

COP
1 = P̂ (f4, ϕ1)
CC

1 = 137220



∨



¬Y1

f4 = 0
f3 = 0
f3,j = 0
x3,j = 0
f7 = 0
f7,j = 0
f8 = 0
f8,j = 0
COP

1 = 0
CC

1 = 0



, Y1 ∈ UC (6.20)

It is assumed that the fatty acids are not miscible in the water phase.
Streams are denoted with fi,j where i is the stream number and j the specifier
for the species. The indices slightly change for the CSTR finite elements
(fi∗,i,j) where the first two indices are the identifiers for the stream and the
third index is specifying the species.

The disjunction for the CSTRs in series is:
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Y2

f5 = f6ϕ2

f6 =
F E∑

i

f6∗
i

f6,j = f1,j

x6,j = x1,j

f5 = f2

f5,j = f2,j

x5,j = x2,j

f9,j = f5∗
F E,j

x9,j = x5∗
F E,j

COP
2 =

F E∑
i

COP
2,i

CC
2 =

F E∑
i

CC
2,i

Y2,1

f5∗
1 = f5

x5∗
1,j = x5,j

f6∗
1 = f5∗

1 ϕ2,1

x6∗
1,j = x6,j

f5∗
2 = f5∗

1 + f6∗
1

COP
2,1 = P̂OP,2(x)
CC

2,1 = 30000



∨



¬Y2,1

f5∗
1 = 0
x5∗

1,j = 0
f6∗

1 = 0
x6∗

1,j = 0
f5∗

2 = 0
COP

2,1 = 0
CC

2,1 = 0




Y2,v

f5∗
v = f5∗

v−1 + f6 −
v−1∑

i

f6∗
i

f6∗
v = f5∗

v ϕ2,v

x6∗
v,j = x6,j

x5∗
v,GLY = P̂ (ϕ2,v)

f5∗
v,T G = f5∗

v−1,T G + f6∗
v−1,T G − f5∗

v x5∗
v,GLY

f5∗
v,W = f5∗

v−1,W + f6∗
v−1,W − 3f5∗

v x5∗
v,GLY

COP
2,v = P̂OP,2(x)
CC

2,v = 30000



∨



¬Y2,v

f5∗
v = 0
f6∗

v = 0
x6∗

v,j = 0
x5∗

v,GLY = 0
f5∗

v,T G = 0
f5∗

v,W = 0
COP

2,v = 0
CC

2,v = 0



, v ∈ [2, ..., FE]



∨



¬Y2,v

f5 = 0
f6 = 0
f6,j = 0
x6,j = 0
f5 = 0
f5,j = 0
x5,j = 0
f9,j = 0
x9,j = 0
COP

2 = 0
CC

2 = 0



, Y2 ∈ UC

(6.21)
Surrogate functions are introduced to the GDP for calculating the oper-

ational cost of the spray column and to map the reactor conversion to the
glycerol mass fraction of the sweet water product. Superstructure optimisa-
tion was applied to assess the choice between a spray column and a CSTR
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given to the global constraints. Surrogate models were obtained through the
simulation data of the rigorous models and embedded in the GDP based super-
structure. The goal therefore is to develop a design methodology which allows
the generation of an optimised oleochemical process where the applying en-
gineer has to define the raw material composition and product specification
and the here proposed design toolbox generates the optimal process flowsheet
structure and operating condition.

6.7 Optimisation
The GDP is formulated in Pyomo and transformed to a MINLP to then be
solved with the solver IPOPT. The operating cost for the spray columns is
embedded in the problem formulation. The conversion rates for the spray
column and CSTR are set to 0.87 and 0.65 according to Namdev et al. [16].
The problem is solved by maximising the following objective function:

Profit = Revenue − Material Cost − Operating Cost
= f7,3 ∗ p2 + f8,2 ∗ p1 + f9,3 ∗ p2 + f9,2 ∗ p1 − f1 ∗ c1 − f2 ∗ c2

− COP
Spray Column − COP

CSTR

(6.22)

where Si,j and Si are the component streams and total streams. p1 and p2
are the selling price for the fatty acid and glycerol. c1 and c2 are the cost for
the vegetable oil and high pressure steam. COP

Spray Column and COP
CSTR are the

operating costs of the spray column and CSTR respectively.

6.8 Results
The results in Table 6.3 show that the optimisation problem is solved correctly
by selecting the spray column as the unit operation and finds the optimal point
of operation for the feed to solvent ratio ( 1

ϕ) at 0.58. The operating cost for
this process structure is 1512401 $/a. The streams connected to the CSTR
are zero.
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Table 6.3: Component stream table after superstructure optimisation.

Component stream Flowrate value [mol/h]
f1,1 0
f1,2 0
f1,3 0
f1,4 4509.7
f1 4509.7
f2,1 1570.7
f2,2 0
f2,3 0
f2,4 0
f2 1570.7
f3,1 0
f3,2 0
f3,3 0
f3,4 4509.7
f3 4509.7
f4,1 1570.7
f4,2 0
f4,3 0
f4,4 0
f4 1570.7
f7,1 0
f7,2 0
f7,3 1366.5
f7,4 410.3
f7 1776.8
f8,1 204.2
f8,2 4099.5
f8,3 0
f8,4 0
f8 4303.7
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6.9 Discussion
The first steps for performing superstructure optimisation with surrogate mod-
els has been presented by formulating a general disjunctive program incorpo-
rating a surrogate function from a rigorous spray column model. Next develop-
ments steps include a more flexible and faster way of dealing with Pyomo as an
equation based modelling environment by providing an interface to set initial
estimates and automate the calculations of the initial estimates of the unknown
variables. Also the definition of ports for each unit will make the superstruc-
ture formulation more easy to extend to various unit operations. For this
task the Pyomo Network package can be used. The formulation of a concrete
model to an abstract model would be the final step to make superstructure
formulations highly generic and to connect the routine to process simulators
from which the surrogates of various unit operations or sub-processes can then
be retrieved from.
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CHAPTER 7
Conclusion and

perspectives
This thesis project presented a comprehensive multi-scale framework cover-
ing property prediction, process design, flowsheeting and optimisation. The
methodologies and tools were applied to the oleochemical domain. The results
show that industrial relevant processes with detailed models can be generated
combined with advanced analysis and optimisation methods.

The proposed data-driven property prediction methodology with Gaussian
process regression (GPR) is a promising method to retrieve stochastic models
from experimental data. This will allow users in the future to train predic-
tion models with molecular descriptors and the experimental values without
the necessity to provide initial estimates of the group contribution values and
reducing the empiric nature of group contribution methods. The structural in-
formation of the experimental component is automatically generated for train-
ing the Gaussian process. Markov Chain Monte Carlo (MCMC) algorithms
could be used to apply full Bayesian inference by defining prior distributions
over all unknowns. These unknowns would be the length scale hyperparame-
ter, each molecular descriptor and the noise variance in respect to the example
of this work.

The modelling procedure presented proved to be highly flexible and allowed
to embed and connect the models of processes with a wide range of tools. Thus,
the established framework marks the foundation for the development of a
highly flexible software prototype. From the practical standpoint the database,
data structures and data pipeline have to be further improved, standardised
and adapted to the CAPE-OPEN Binary Interop Architecture (COBIA).

Three oleochemical processes have been presented in this thesis to study
different aspects of important analysis and optimisation methods. The spray
column model showed that it is possible and useful to make use of the For-
tran90 programming language to embed the model in a process simulator but
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also wrap it in a higher-level language. This allowed to perform parameter
estimation and optimisation with differential evolution and Sobol sensitivity
analysis which wouldn’t have been possible by only using a process simulator.
The spray column model was successfully validated with the only available
experimental data set for a spray column from the 60s. The parameter esti-
mation and optimisation routine makes this contribution valuable for industry.
Combined with a more sophisticated kinetic model and knowledge from CFD
results, the finite volume model will allow to make use of the full simulation
capabilities it holds and provide accurate design specifications and operating
conditions.

The molecular distillation model showed that uncertainty and sensitivity
analysis can be performed with a process simulator. This is an important
aspect for the industrial practice to build processes with a feasible and robust
design with the desired characteristics of the product. Since the full Monte
Carlo approach to sensitivity analysis showed that the time of evaluating all
sampled data points is infeasible, polynomial chaos expansion based sensitiv-
ity analysis was able to reduce the needed number of evaluations drastically
and also could handle a number of input parameters up to 15 in the presented
example. It is highly recommendable that commercial process simulators im-
plement the proposed methodology. Further studies should be made in respect
to different machine-learning based sensitivity analysis methods. Also the as-
sessment of the limited number of input parameters (curse of dimensionality)
of different machine-learning methods should be performed.

The implemented crystallisation process model for separating saturated
and unsaturated fatty acids agreed with experimental results. Different evalu-
ated process structures indicated how crystallisation units should be combined
with distillation columns. The methods which have been applied to the spray
column and molecular distillation study should also be applied to the crystalli-
sation process to identify the optimal operating temperature of each crystalli-
sation unit and reduce the needed amount of solvent. Further, solvent design
may enhance the process considerably. The polymorphic behaviour of the oil
crystals hasn’t been taken into account in this work, therefore the extension
of the model to the capability of predicting the crystal forms is advisable.

The use of polynomial surrogate functions in superstructure optimisation
has been successfully demonstrated. A formulation of the decision problem
between two reactors has been solved correctly. The work on superstructure
optimisation needs to be extended and made more generic. This means that
the working example of the concrete model has to be formulated as an ab-
stract model in Pyomo and a more generic port connection system needs to
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be implemented which the Pyomo Network is capable of. This will allow the
user to perform superstructure optimisation with a set of process tasks in
which several different unit operations can be chosen from. All the necessary
information for performing the optimisation is stored in surrogate functions ob-
tained from the rigorous process models. Therefore the abstract model needs
to provide an interface to retrieve and store the surrogate models. The future
perspective would be to have a connection with a process simulator which
performs the multiple evaluations of all unit operations or sub-processes. The
obtained surrogates are then automatically send to the superstructure optimi-
sation to evaluate the optimal process structure and point of operation.
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CHAPTER 8
Appendix

8.1 Fixed physical properties of triglycerides
and fatty acids

Table 8.1: Triglycerides with identical fatty acid chains.

C:DB Name Formula Tb [K] [1]
C6:0 Tricaproin C21H38O6 -
C8:0 Tricaprylin C27H50O6 705.92
C10:0 Tricaprin C33H62O6 -
C12:0 Trilaurin C39H74O6 703.92
C14:0 Trimyristin C45H86O6 715.20
C16:0 Tripalmitin C51H98O6 721.80
C18:0 Tristearin C57H110O6 705.00
C18:1 Triolein C57H104O6 727.70
C18:2 Linolein C57H98O6 687.20
C18:3 Linolenic triglyceride C57H90O6 672.10
C20:0 Triarachidin C63H122O6 867.98
C22:0 Behenic triglyceride C69H134O6 -
C22:1 Erucic triglyceride C69H128O6 -
C24:0 Lignoceric triglyceride C54H140O6 -

8.2 Wilson parameters of fatty acids and
acetone

The energy parameters are taken from Wale [2] who obtained the parameters
through regression of the data from Barley [] and Brown.
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Table 8.2: Fatty acids.

C:DB Name Formula Tb [K] [1]
C6:0 Caproic acid C6H12O2 478.85
C8:0 Caprylic acid C8H16O2 512.85
C10:0 Capric acid C10H20O2 543.15
C12:0 Lauric acid C12H24O2 571.85
C14:0 Myristic acid C14H28O2 599.35
C16:0 Palmitic acid C16H32O2 624.15
C18:0 Stearic acid C18H36O2 648.35
C18:1 Oleic acid C18H34O2 633.0
C18:2 Linoleic acid C18H32O2 628.0
C18:3 Linolenic acid C18H30O2 632.0
C20:0 Arachidic acid C20H40O2 670.15
C20:5 Eicosapentanoic acid C20H30O2 601.7
C22:0 Behenic acid C22H44O2 690.0
C22:1 Erucic acid C22H42O2 659.5
C24:0 Lignoceric acid C24H48O2 694.0

Table 8.3: Wilson energy parameters for binary mixtures of fatty acids.

i-j λij [J/mol] λji [J/mol]
Stearic-Palmitic 6595.9 -3332.9
Stearic-Oleic -260.0 869.62
Stearic-Linoleic -1465.8 2744.7
Palmitic-Oleic 5141.9 -2496.5
Palmitic-Linoleic 2001.5 -1269.7
Oleic-Linoleic -2788.1 6041.8

Table 8.4: Wilson energy parameters for binary mixtures of fatty acids and
acetone.

i-j λij [J/mol] λji [J/mol]
Stearic-Acetone -843.7 4930.3
Palmitic-Acetone 2584.9 1872.0
Oleic-Acetone 6127.3 -125.9
Linoleic-Acetone 6222.7 -3334.4
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8.3 Full Monte Carlo and PCE based
sensitivity analysis (Sobol method)

Variance-based sensitivity analysis is described in the following. The analysis
of variance (ANOVA-HDMR) decomposition gives the relation:∑

i

Si +
∑

i

∑
j>i

Sij +
∑

i

∑
j>i

∑
l>j

Sijl + ...+ S123...M = 1 (8.1)

For a model with 3 input variables under study, the total effect ST1 of
input variable x1 is analytically defined as the sum of the first order effect and
higher order interactions:

ST1 = S1 + S12 + S13 + S123 = S11 + S12 + S13 + S123 (8.2)
The first-order sensitivity index is a measure for the contribution of the

i-th input parameter to the variance of the output V (Y ). We can describe the
index in probabilistic form as:

S1i = V [E(y|xi)]
V (y)

(8.3)

where V [E(y|xi)] is the conditional variance and for S1i the following
condition holds:

0 ≤ S1i ≤ 1 ∧
∑

S1i ≤ 1 (8.4)
S11 = 1 would imply that all variance of y is affected by x1 and fixing it

also determines y.
We generate two independent sampling matrices A and B where the row

index denotes the simulation number and the column index references the
input factor. A(i)

B is a matrix which is copied from A except the i-th column
which is copied from B. With these matrices we can calculate the first-order
index [3]:

S1i =
1
N

∑N
j=1 y(B)j(y(A(i)

B )j − y(A)j)
V (y)

(8.5)

The total effect index describes the amount of interactions between the
input factors. In probabilistic form, the definition of the index is:

STi = E[V (y|x∼i)]
V (y)

(8.6)



134 8 Appendix

2M − 1 total sensitivity indices exist for a given input-output model with
M number of inputs. We calculate the first order and total effect indices with
A, B and A(i)

B [4] [5, 6]:

STi =
1

2N

∑N
j=1(y(A)j − y(A(i)

B )j)2

V (y)
(8.7)

where for both indices V (y) is the variance of the model output [3, 7]:

V (y) = 1
N

N∑
j=1

(y(A)j)2 − ( 1
N

N∑
j=1

y(A)j)2 (8.8)

2N simulations have to be performed to obtain the output y from the
matrices A and B. For computing y(A(i)

B ), M times N simulations are needed.
The overall model evaluations would be N(M+2) [5]. To also calculate the
interaction effects the number of needed model evaluations would be N(2M+2)
[6].

The other approach we want to discuss in this work is the retrieval of
the sensitivity indices from a surrogate (response surface) model which we
generate from the input-output data via polynomial chaos expansion (PCE).
A PCE can be expressed by the following equation [8, 9]:

ŷ(ξ) =
∞∑

i∈NM

ciΦi(ξ) (8.9)

A truncation scheme is applied limiting the expansion order to a degree of
p to make the method computational feasible. In this work we generate the
polynomial basis with the Wiener-Askey scheme [10] which defines the type
of univariate polynomial to select for a given standard distribution of ξi. If
the input parameters xi can not be interpreted via the Wiener-Askey scheme,
copula theory [11] can be applied or a isoprobalistic transformation has to be
performed via Rosenblatt transformation [9]. To put it simply, we derive from
the independent input random vector x a set of realizations which we compute
the basic random vector ξ from and for which we have a look up table to choose
the univariate polynomials (e.g. Hermite polynomials for normal distributions
and Legendre polynomials for uniform distributions). We can construct the
M-variate orthogonal polynomial basis (multivariate polynomials Φi(ξ)) as a
tensor product of the univariate orthonormal polynomials ϕ(j)

αj (ξi) [12]:
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Φi(ξ) =
M∏

j=1
ϕ(j)

αj
(ξi) (8.10)

For high-dimensional problems (M ≥ 10) an adaptive sparse PCE can be
generated to compensate the curse of dimensionality [13, 14]. These adaptive
algorithms select a subset of the polynomial basis during the truncation step
and then evaluate if the regression method used, e.g. least angle regression
(LARS) [15], gives the minimum leave-one-out-error. The coefficients are then
estimated with least squares regression to minimize the L2-norm.

The mean µ and variance σ2 of the model output are retrieved from the
coefficients of the individual basis functions:

µ = c0 (8.11)

σ2 =
∑
i̸=0

c2
i Φ2

i =
∑
i̸=0

c2
i (8.12)

The sensitivity indices are also calculated with the coefficients and the
uni-/multivariate polynomials from the PCE [16]:

S1i =
∑

α∈Imi
c2

αϕ
2
α∑p

k=1 c
2
kΦ2

k

(8.13)

STi =
∑

α∈ȷi
c2

αϕ
2
α∑p

k=1 c
2
kΦ2

k

(8.14)

Note the difference between the calculation of S1i and STi, namely the
sets of indices Imi and ȷi:

Imi =


αk k = 1, ..., n k ∈ (i1, ..., is)

α:
αk k = 1, ..., n k /∈ (i1, ..., is)

 (8.15)

ȷi1,i2,...,is = {α : αk > 0 ∀k = 1, ..., n k ∈ (i1, i2, ..., is)} (8.16)

The integer set of the tuple α represents each term in the expansion, being
the tensor product of univariate orthogonal polynomials , and is defined as
follows:

α = (α1, ..., αn); αi ≥ 0;
M∑

i=1
αi ≤ P (8.17)
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See also Table 9 for more clarification on how the multi-index maps to the
basis functions.

The following relation holds for the number of polynomials P of an expan-
sion with degree p and the input vector dimensionality of M:

P =
(
M + p
p

)
= (M + p)!

M !p!
(8.18)

For example, the PCE of a two dimensional input vector and a polynomial
degree of three leads to the number of polynomials of P=10. As mentioned
before, Table 9 lists the basis functions and the corresponding multi-index for
this case.

Table 8.5: Mapping from multiple indices to single index via multi-index for
the two dimensional case and a polynomial degree of three.

m p Basis functions Multi-index
0 0 Φ0(ξ1, ξ2) = 1 α0 = (0,0)
1 1 Φ1(ξ1, ξ2) = ϕ1(ξ1) α1 = (1,0)
2 1 Φ2(ξ1, ξ2) = ϕ1(ξ2) α2 = (0,1)
3 2 Φ3(ξ1, ξ2) = ϕ2(ξ1) α3 = (2,0)
4 2 Φ4(ξ1, ξ2) = ϕ1(ξ1)ϕ1(ξ2) α4 = (1,1)
5 2 Φ5(ξ1, ξ2) = ϕ2(ξ2) α5 = (0,2)
6 3 Φ6(ξ1, ξ2) = ϕ3(ξ1) α6 = (3,0)
7 2 Φ7(ξ1, ξ2) = ϕ2(ξ1)ϕ1(ξ2) α7 = (2,1)
8 2 Φ8(ξ1, ξ2) = ϕ1(ξ1)ϕ2(ξ2) α8 = (1,2)
9 3 Φ9(ξ1, ξ2) = ϕ3(ξ2) α9 = (0,3)
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8.4 Python-PRO/II interface
The following Python script establishes a COM server connection with the
process simulator PRO/II. The sampling hypercube has to be generated by
the user and stored as a numpy data object depicted in the code as X.npy. For
storing and loading .mat files the scipy.io class is recommended. The Python
packages SALib and Chaospy were used to conduct sensitivity analysis and to
generate the polynomial chaos expansion and to post-process the SA. Better
results (January 2019) were obtained with the UQLab Matlab package for
the polynomial chaos expansion since this package has the adaptive algorithm
implemented which is mentioned in the previous section.

1 import numpy as np
2 import win32com.client as win32
3 import os
4 import time
5

6

7 #Connect via COM interface
8 def COMconnect(db_path):
9 pro2 = "Nothing"

10 pro2db = "Nothing"
11 pro2 = win32.Dispatch("SimSciDbs.Database.101")
12

13 pro2.Initialize()
14

15 pro2.SetOption("showInternalObjects", "1")
16 pro2.SetOption("DoublePrecision", "1")
17

18 pro2.Import(os.path.splitext(db_path)[0]+'.inp')
19

20 pro2db = pro2.OpenDatabase(db_path)
21

22 #Get a security license (for better performance)
23 pro2.GetSecuritySeat(2)
24

25 return pro2, pro2db
26

27

28 #Disconnect COM interface
29 def COMdisconnect(pro2, pro2db):
30 #Release the security license
31 pro2.ReleaseSecuritySeat()
32

33 #Shut down the connection to the COM server
34 pro2db = "Nothing"
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35 pro2 = "Nothing"
36

37 return pro2, pro2db
38

39

40 #Evaluate flowsheet with new input vector/matrix
41 def evaluate(db_path , NOC, X):
42

43 pro2, pro2db = COMconnect(db_path)
44 pro2check = pro2db.CheckData
45 pro2db = "Nothing"
46 pro2run = pro2.RunCalcs(db_path)
47 pro2db = pro2.OpenDatabase(db_path)
48

49

50 #Provide array in which the results are stored
51 Stream_Product_Bottom_arr = np.zeros(shape=(len(X),1))
52

53 Component_Name_List = [
54 "TRIPALM",
55 "TRIOLEIN",
56 "OLEIC",
57 "A-TOCOPH",
58 "B-CAROTN"]
59

60 #Check data and run simulations
61 for sim_id , sim_id_ in enumerate(Stream_Product_Bottom_arr):
62

63 print("Simulation Number:", sim_id)
64

65 prop_idx = 0 # Property index
66

67 for comp_id , comp_name in enumerate(Component_Name_List):
68

69 print("Component Name:", comp_name)
70

71 Tc_value = X[sim_id , prop_idx]
72

73 #Change critical temperature in database of component i
74 Comp_i = pro2db.ActivateObject("CompIn", comp_name)
75 Comp_i.PutAttribute(Tc_value , "CritTempIn")
76 Comp_i.Commit(True)
77 Comp_i = "Nothing"
78

79 prop_idx += 1
80

81 Pc_value = X[sim_id , prop_idx]
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82

83 #Change critical pressure in database of component i
84 Comp_i = pro2db.ActivateObject("CompIn", comp_name)
85 Comp_i.PutAttribute(Pc_value , "CritPressIn")
86 Comp_i.Commit(True)
87 Comp_i = "Nothing"
88

89 prop_idx += 1
90

91 omega_value = X[sim_id , prop_idx]
92

93 #Change acentric factor in database of component i
94 Comp_i = pro2db.ActivateObject("CompIn", comp_name)
95 Comp_i.PutAttribute(omega_value , "AcenFactorIn")
96 Comp_i.Commit(True)
97 Comp_i = "Nothing"
98

99 prop_idx += 1
100

101 print("Property values perturbed to...
102 T_c:", Tc_value ,
103 "P_c:", Pc_value ,
104 "omega:", omega_value)
105

106 pro2check = pro2db.CheckData
107 pro2check = pro2db.DbsSaveDb
108 print("Database saved:", pro2check)
109 pro2db = "Nothing"
110

111 print("Return Value of CheckData
112 (0=no error , 1=error):", pro2check)
113

114 #Print error messages
115 nMsg = pro2.MsgCount
116 if nMsg > 0:
117 print(nMsg)
118 for i in range(0, nMsg):
119 print("Error message:", pro2.MsgText(i))
120

121 #Run simulation
122 pro2run = pro2.RunCalcs(db_path)
123 print("Return Value of RunCalc:", pro2run)
124 Solutions[sim_id] = pro2run
125

126 nMsg = pro2.MsgCount
127 if nMsg > 0:
128 print(nMsg)
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129 for i in range(0, nMsg):
130 print("Error message:", pro2.MsgText(i))
131

132 #OUTPUT
133 pro2db = pro2.OpenDatabase(db_path)
134

135 pro2db.CalculateStreamProps("REFINED")
136

137 #beta-carotene fraction at bottom
138 Stream_Product_Bottom = pro2db.ActivateObject("Stream", "

REFINED")
139 Stream_Product_Bottom_arr[sim_id] =
140 Stream_Product_Bottom.GetAttribute("LiquidComposition",4)
141

142 print("Stream_Product_Bottom:", Stream_Product_Bottom)
143 print("Stream Product Bottom Total Composition Value:",
144 Stream_Product_Bottom_arr[sim_id])
145

146 Stream_Product_Bottom = "Deactivate"
147 Stream_Product_Bottom = "Nothing"
148

149 np.save('Y_temp.npy', Stream_Product_Bottom_arr)
150 #----End of simulation loop----
151

152 pro2, pro2db = COMdisconnect(pro2, pro2db)
153

154 return Stream_Product_Bottom_arr
155

156 if __name__ == "__main__":
157

158 np.set_printoptions(threshold=np.inf)
159

160 #Path to the ProII file
161 db_path = "C:\\Users\\foo\\bar.prz"
162

163 #Number of components
164 NOC = 5
165

166 X = np.load("X.npy")
167 print("Size of loaded sample hypercube:", X.shape)
168

169 start_time = time.time()
170

171 Y = evaluate(db_path , NOC, X)
172

173 #Print how much time the evaluations took
174 print("--- \%s seconds ---" \% (time.time() - start_time))
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175

176 #Save results
177 np.save('Y.npy', Y)

.

8.5 User-added unit operations and
subroutines in PRO/II

The user can declare data structures with so called derived types in Fortran
combined with the possibility to perform high-performance computing by im-
plementing algorithms in parallel. This allows to perform computational ex-
pensive model simulations. Such a model can then be wrapped by the Python
programming language to apply different tools and transfer the generated data
to the next simulation tool such as a process simulator in order to simulate
a process flowsheet. Further, commercial process simulators such as Aspen
and PRO/II so far only support user-added unit operations as Fortran models
which can be directly used in the graphical user interface of the simulator.
The Fortran 2018 standard (N2162) has been published by the International
Organization for Standardization (ISO) and now also supports parallel pro-
gramming with coarrays without any additional message passing interface
such as OpenMPI.

After a Fortran model has been developed, the code has to be adapted
to the specific data structures of PRO/II. A good modelling practice would
be to identify how the code should be implemented as a pure Fortran model
to make the conversion to a Fortran-PRO/II implementation as easy as pos-
sible. Example Fortran-PRO/II files for user-added unit operations (UAOP)
or subroutines (UAS) are found in the folder path C:/Program Files/SIM-
SCI/PROII/User/UAS/. Configuration files for the UAOP or UAS (.xml,
*.dat and p2uasreg.ini) are located or have to be created in the ../ProII/Sys-
tem folder.

The model has to be compiled to a shared library in form of a dynamic
linked library (.dll) so that the model can be accessed with PRO/II. For this
only the Microsoft Virtual Studio development environment can be used with
the Intel Fortran compiler. It is not possible to compile the Fortran code with
an open-source compiler such as gfortran as stated by the PRO/II manual.
But it could be tried to use MinGW to not be dependent on the Intel Fortran
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compiler. More information can be found in the user-added unit operation
manual of PRO/II.
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